Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | More bug fixes in btree.c. (CVS 1322) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
a80939ef714ec884950b4a1f4f809ffa |
User & Date: | drh 2004-05-07 23:50:57.000 |
Context
2004-05-08
| ||
02:03 | More bug fixes in btree.c. (CVS 1323) (check-in: 2d64cba38c user: drh tags: trunk) | |
2004-05-07
| ||
23:50 | More bug fixes in btree.c. (CVS 1322) (check-in: a80939ef71 user: drh tags: trunk) | |
17:57 | The btree.c module compiles and links and passes some tests. Many tests still fail, though. (CVS 1321) (check-in: d394b2b217 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.112 2004/05/07 23:50:57 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
262 263 264 265 266 267 268 | BtCursor *pShared; /* Loop of cursors with the same root page */ int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->aCell[] */ u8 wrFlag; /* True if writable */ | < > > < < < < < < < < | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | BtCursor *pShared; /* Loop of cursors with the same root page */ int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->aCell[] */ u8 wrFlag; /* True if writable */ u8 iMatch; /* compare result from last sqlite3BtreeMoveto() */ u8 isValid; /* TRUE if points to a valid entry */ u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */ }; /* ** Read or write a two-, four-, and eight-byte big-endian integer values. */ static u32 get2byte(unsigned char *p){ return (p[0]<<8) | p[1]; } static u32 get4byte(unsigned char *p){ |
︙ | ︙ | |||
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | oldPage = pPage->aData; hdr = pPage->hdrOffset; addr = 3+hdr; n = 6+hdr; if( !pPage->leaf ){ n += 4; } start = n; pc = get2byte(&oldPage[addr]); i = 0; while( pc>0 ){ assert( n<pPage->pBt->pageSize ); size = cellSize(pPage, &oldPage[pc]); memcpy(&newPage[n], &oldPage[pc], size); put2byte(&newPage[addr],n); | > | > | | | > | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | oldPage = pPage->aData; hdr = pPage->hdrOffset; addr = 3+hdr; n = 6+hdr; if( !pPage->leaf ){ n += 4; } memcpy(&newPage[hdr], &oldPage[hdr], n-hdr); start = n; pc = get2byte(&oldPage[addr]); i = 0; while( pc>0 ){ assert( n<pPage->pBt->pageSize ); size = cellSize(pPage, &oldPage[pc]); memcpy(&newPage[n], &oldPage[pc], size); put2byte(&newPage[addr],n); pPage->aCell[i++] = &oldPage[n]; n += size; addr = pc; pc = get2byte(&oldPage[pc]); } assert( i==pPage->nCell ); leftover = pPage->pBt->pageSize - n; assert( leftover>=0 ); assert( pPage->nFree==leftover ); if( leftover<4 ){ oldPage[hdr+5] = leftover; leftover = 0; n = pPage->pBt->pageSize; } memcpy(&oldPage[hdr], &newPage[hdr], n-hdr); if( leftover==0 ){ put2byte(&oldPage[hdr+1], 0); }else if( leftover>=4 ){ put2byte(&oldPage[hdr+1], n); put2byte(&oldPage[n], 0); put2byte(&oldPage[n+2], leftover); memset(&oldPage[n+4], 0, leftover-4); } oldPage[hdr+5] = 0; } /* ** Allocate nByte bytes of space on a page. If nByte is less than ** 4 it is rounded up to 4. ** ** Return the index into pPage->aData[] of the first byte of |
︙ | ︙ | |||
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | int rc; rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_commit(pBt->pPager); pBt->inTrans = 0; pBt->inStmt = 0; unlockBtreeIfUnused(pBt); return rc; } /* ** Rollback the transaction in progress. All cursors will be ** invalided by this operation. Any attempt to use a cursor ** that was open at the beginning of this operation will result ** in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeRollback(Btree *pBt){ int rc; | > > > > > > > > > > > > > > > > < | < < < < < < | 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | int rc; rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_commit(pBt->pPager); pBt->inTrans = 0; pBt->inStmt = 0; unlockBtreeIfUnused(pBt); return rc; } /* ** Invalidate all cursors */ static void invalidateCursors(Btree *pBt){ BtCursor *pCur; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; if( pPage && !pPage->isInit ){ releasePage(pPage); pCur->pPage = 0; pCur->isValid = 0; pCur->status = SQLITE_ABORT; } } } /* ** Rollback the transaction in progress. All cursors will be ** invalided by this operation. Any attempt to use a cursor ** that was open at the beginning of this operation will result ** in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeRollback(Btree *pBt){ int rc; if( pBt->inTrans==0 ) return SQLITE_OK; pBt->inTrans = 0; pBt->inStmt = 0; rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_rollback(pBt->pPager); invalidateCursors(pBt); unlockBtreeIfUnused(pBt); return rc; } /* ** Set the checkpoint for the current transaction. The checkpoint serves ** as a sub-transaction that can be rolled back independently of the |
︙ | ︙ | |||
1151 1152 1153 1154 1155 1156 1157 | ** ** All cursors will be invalided by this operation. Any attempt ** to use a cursor that was open at the beginning of this operation ** will result in an error. */ int sqlite3BtreeRollbackStmt(Btree *pBt){ int rc; | < | < < < < < < | 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 | ** ** All cursors will be invalided by this operation. Any attempt ** to use a cursor that was open at the beginning of this operation ** will result in an error. */ int sqlite3BtreeRollbackStmt(Btree *pBt){ int rc; if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; rc = sqlite3pager_stmt_rollback(pBt->pPager); invalidateCursors(pBt); pBt->inStmt = 0; return rc; } /* ** Default key comparison function to be used if no comparison function ** is specified on the sqlite3BtreeCursor() call. |
︙ | ︙ | |||
1261 1262 1263 1264 1265 1266 1267 | goto create_cursor_exception; } pCur->xCompare = xCmp ? xCmp : dfltCompare; pCur->pArg = pArg; pCur->pBt = pBt; pCur->wrFlag = wrFlag; pCur->idx = 0; | < > > | 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 | goto create_cursor_exception; } pCur->xCompare = xCmp ? xCmp : dfltCompare; pCur->pArg = pArg; pCur->pBt = pBt; pCur->wrFlag = wrFlag; pCur->idx = 0; pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pCur->pPrev = 0; pRing = pBt->pCursor; while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; } if( pRing ){ pCur->pShared = pRing->pShared; pRing->pShared = pCur; }else{ pCur->pShared = pCur; } pBt->pCursor = pCur; pCur->isValid = 0; pCur->status = SQLITE_OK; *ppCur = pCur; return SQLITE_OK; create_cursor_exception: *ppCur = 0; if( pCur ){ releasePage(pCur->pPage); |
︙ | ︙ | |||
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 | ** to a valid entry, *pSize is set to 0. ** ** For a table with the INTKEY flag set, this routine returns the key ** itself, not the number of bytes in the key. */ int sqlite3BtreeKeySize(BtCursor *pCur, u64 *pSize){ MemPage *pPage; pPage = pCur->pPage; assert( pPage!=0 ); | > > > > | < < | | 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 | ** to a valid entry, *pSize is set to 0. ** ** For a table with the INTKEY flag set, this routine returns the key ** itself, not the number of bytes in the key. */ int sqlite3BtreeKeySize(BtCursor *pCur, u64 *pSize){ MemPage *pPage; unsigned char *cell; if( !pCur->isValid ){ *pSize = 0; }else{ pPage = pCur->pPage; assert( pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( !pPage->leaf ){ cell += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ while( (0x80&*(cell++))!=0 ){} /* Skip the data size number */ } |
︙ | ︙ | |||
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 | int rc; MemPage *pPage; Btree *pBt; u64 nData, nKey; int maxLocal, ovflSize; assert( pCur!=0 && pCur->pPage!=0 ); pBt = pCur->pBt; pPage = pCur->pPage; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); aPayload = pPage->aCell[pCur->idx]; aPayload += 2; /* Skip the next cell index */ if( !pPage->leaf ){ aPayload += 4; /* Skip the child pointer */ | > | 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 | int rc; MemPage *pPage; Btree *pBt; u64 nData, nKey; int maxLocal, ovflSize; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBt; pPage = pCur->pPage; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); aPayload = pPage->aCell[pCur->idx]; aPayload += 2; /* Skip the next cell index */ if( !pPage->leaf ){ aPayload += 4; /* Skip the child pointer */ |
︙ | ︙ | |||
1470 1471 1472 1473 1474 1475 1476 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ | < < | < < < | > > > | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ assert( amt>=0 ); assert( offset>=0 ); if( pCur->isValid==0 ){ return pCur->status; } assert( pCur->pPage!=0 ); assert( pCur->pPage->intKey==0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } /* ** Return a pointer to the key of record that cursor pCur ** is point to if the entire key is in contiguous memory. ** If the key is split up among multiple tables, return 0. |
︙ | ︙ | |||
1508 1509 1510 1511 1512 1513 1514 | */ void *sqlite3BtreeKeyFetch(BtCursor *pCur){ unsigned char *aPayload; MemPage *pPage; Btree *pBt; u64 nData, nKey; | | > > > > > > | > > > > > > | < < > | 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 | */ void *sqlite3BtreeKeyFetch(BtCursor *pCur){ unsigned char *aPayload; MemPage *pPage; Btree *pBt; u64 nData, nKey; assert( pCur!=0 ); if( !pCur->isValid ){ return 0; } assert( pCur->pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); pBt = pCur->pBt; pPage = pCur->pPage; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); assert( pPage->intKey==0 ); aPayload = pPage->aCell[pCur->idx]; aPayload += 2; /* Skip the next cell index */ if( !pPage->leaf ){ aPayload += 4; /* Skip the child pointer */ } if( !pPage->zeroData ){ aPayload += getVarint(aPayload, &nData); } aPayload += getVarint(aPayload, &nKey); if( nKey>pBt->maxLocal ){ return 0; } return aPayload; } /* ** Set *pSize to the number of bytes of data in the entry the ** cursor currently points to. Always return SQLITE_OK. ** Failure is not possible. If the cursor is not currently ** pointing to an entry (which can happen, for example, if ** the database is empty) then *pSize is set to 0. */ int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ MemPage *pPage; unsigned char *cell; u64 size; if( !pCur->isValid ){ return pCur->status ? pCur->status : SQLITE_INTERNAL; } pPage = pCur->pPage; assert( pPage!=0 ); assert( pPage->isInit ); if( pPage->zeroData ){ *pSize = 0; }else{ assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); cell = pPage->aCell[pCur->idx]; cell += 2; /* Skip the offset to the next cell */ if( !pPage->leaf ){ cell += 4; /* Skip the child pointer */ } getVarint(cell, &size); assert( (size & 0x00000000ffffffff)==size ); |
︙ | ︙ | |||
1567 1568 1569 1570 1571 1572 1573 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ | | > | < | < < > | 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ if( !pCur->isValid ){ return pCur->status ? pCur->status : SQLITE_INTERNAL; } assert( amt>=0 ); assert( offset>=0 ); assert( pCur->pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); return getPayload(pCur, offset, amt, pBuf, 1); } /* ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page in the byte order of the disk image. */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; MemPage *pNewPage; MemPage *pOldPage; Btree *pBt = pCur->pBt; assert( pCur->isValid ); rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); if( rc ) return rc; pNewPage->idxParent = pCur->idx; pOldPage = pCur->pPage; pOldPage->idxShift = 0; releasePage(pOldPage); pCur->pPage = pNewPage; |
︙ | ︙ | |||
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 | */ static void moveToParent(BtCursor *pCur){ Pgno oldPgno; MemPage *pParent; MemPage *pPage; int idxParent; pPage = pCur->pPage; assert( pPage!=0 ); assert( !isRootPage(pPage) ); pParent = pPage->pParent; assert( pParent!=0 ); idxParent = pPage->idxParent; sqlite3pager_ref(pParent->aData); | > | 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 | */ static void moveToParent(BtCursor *pCur){ Pgno oldPgno; MemPage *pParent; MemPage *pPage; int idxParent; assert( pCur->isValid ); pPage = pCur->pPage; assert( pPage!=0 ); assert( !isRootPage(pPage) ); pParent = pPage->pParent; assert( pParent!=0 ); idxParent = pPage->idxParent; sqlite3pager_ref(pParent->aData); |
︙ | ︙ | |||
1682 1683 1684 1685 1686 1687 1688 | */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; Btree *pBt = pCur->pBt; rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); | | > > > > > | 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 | */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; Btree *pBt = pCur->pBt; rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); if( rc ){ pCur->isValid = 0; return rc; } releasePage(pCur->pPage); pCur->pPage = pRoot; pCur->idx = 0; if( pRoot->nCell==0 && !pRoot->leaf ){ Pgno subpage; assert( pRoot->pgno==1 ); subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+6]); assert( subpage>0 ); rc = moveToChild(pCur, subpage); } pCur->isValid = pCur->pPage->nCell>0; return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->isValid ); while( !(pPage = pCur->pPage)->leaf ){ assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); pgno = get4byte(&pPage->aCell[pCur->idx][2]); rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; |
︙ | ︙ | |||
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 | ** finds the right-most entry beneath the *page*. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]); pCur->idx = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->idx = pPage->nCell - 1; return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; | > | > > > | > < | > > | | > < | 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 | ** finds the right-most entry beneath the *page*. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->isValid ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+6]); pCur->idx = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->idx = pPage->nCell - 1; return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; if( pCur->status ){ return pCur->status; } rc = moveToRoot(pCur); if( rc ) return rc; if( pCur->isValid==0 ){ assert( pCur->pPage->nCell==0 ); *pRes = 1; return SQLITE_OK; } assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ int rc; if( pCur->status ){ return pCur->status; } rc = moveToRoot(pCur); if( rc ) return rc; if( pCur->isValid==0 ){ assert( pCur->pPage->nCell==0 ); *pRes = 1; return SQLITE_OK; } assert( pCur->isValid ); *pRes = 0; rc = moveToRightmost(pCur); return rc; } /* Move the cursor so that it points to an entry near pKey/nKey. ** Return a success code. ** ** For INTKEY tables, only the nKey parameter is used. pKey is |
︙ | ︙ | |||
1805 1806 1807 1808 1809 1810 1811 | ** exactly matches pKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than pKey. */ int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, u64 nKey, int *pRes){ int rc; | > | | > > > > > > > | 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 | ** exactly matches pKey. ** ** *pRes>0 The cursor is left pointing at an entry that ** is larger than pKey. */ int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, u64 nKey, int *pRes){ int rc; if( pCur->status ){ return pCur->status; } rc = moveToRoot(pCur); if( rc ) return rc; assert( pCur->pPage ); assert( pCur->pPage->isInit ); if( pCur->isValid==0 ){ assert( pCur->pPage->nCell==0 ); return SQLITE_OK; } for(;;){ int lwr, upr; Pgno chldPg; MemPage *pPage = pCur->pPage; int c = -1; /* pRes return if table is empty must be -1 */ lwr = 0; upr = pPage->nCell-1; |
︙ | ︙ | |||
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 | }else if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+6]); }else{ chldPg = get4byte(&pPage->aCell[lwr][2]); } if( chldPg==0 ){ pCur->iMatch = c; if( pRes ) *pRes = c; return SQLITE_OK; } pCur->idx = lwr; rc = moveToChild(pCur, chldPg); | > | > > > > > > > > > > > > > < < < < < | < > < < < < < < > | 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 | }else if( lwr>=pPage->nCell ){ chldPg = get4byte(&pPage->aData[pPage->hdrOffset+6]); }else{ chldPg = get4byte(&pPage->aCell[lwr][2]); } if( chldPg==0 ){ pCur->iMatch = c; assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); if( pRes ) *pRes = c; return SQLITE_OK; } pCur->idx = lwr; rc = moveToChild(pCur, chldPg); if( rc ){ return rc; } } /* NOT REACHED */ } /* ** Return TRUE if the cursor is not pointing at an entry of the table. ** ** TRUE will be returned after a call to sqlite3BtreeNext() moves ** past the last entry in the table or sqlite3BtreePrev() moves past ** the first entry. TRUE is also returned if the table is empty. */ int sqlite3BtreeEof(BtCursor *pCur){ return pCur->isValid==0; } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage = pCur->pPage; assert( pRes!=0 ); if( pCur->isValid==0 ){ *pRes = 1; return SQLITE_OK; } assert( pPage->isInit ); assert( pCur->idx<pPage->nCell ); pCur->idx++; if( pCur->idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+6])); if( rc ) return rc; rc = moveToLeftmost(pCur); *pRes = 0; return rc; } do{ if( isRootPage(pPage) ){ *pRes = 1; pCur->isValid = 0; return SQLITE_OK; } moveToParent(pCur); pPage = pCur->pPage; }while( pCur->idx>=pPage->nCell ); *pRes = 0; return SQLITE_OK; |
︙ | ︙ | |||
1936 1937 1938 1939 1940 1941 1942 | ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; Pgno pgno; MemPage *pPage; | | < < < < < < < | | < < < < > | | 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; Pgno pgno; MemPage *pPage; if( pCur->isValid==0 ){ *pRes = 1; return SQLITE_OK; } pPage = pCur->pPage; assert( pPage->isInit ); assert( pCur->idx>=0 ); if( !pPage->leaf ){ pgno = get4byte(&pPage->aCell[pCur->idx][2]); rc = moveToChild(pCur, pgno); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->idx==0 ){ if( isRootPage(pPage) ){ pCur->isValid = 0; *pRes = 1; return SQLITE_OK; } moveToParent(pCur); pPage = pCur->pPage; } pCur->idx--; rc = SQLITE_OK; |
︙ | ︙ | |||
2920 2921 2922 2923 2924 2925 2926 | int loc; int szNew; MemPage *pPage; Btree *pBt = pCur->pBt; unsigned char *oldCell; unsigned char newCell[MX_CELL_SIZE]; | | | | 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 | int loc; int szNew; MemPage *pPage; Btree *pBt = pCur->pBt; unsigned char *oldCell; unsigned char newCell[MX_CELL_SIZE]; if( pCur->status ){ return pCur->status; /* A rollback destroyed this cursor */ } if( !pBt->inTrans || nKey+nData==0 ){ /* Must start a transaction before doing an insert */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); if( !pCur->wrFlag ){ |
︙ | ︙ | |||
2965 2966 2967 2968 2969 2970 2971 | assert( pPage->leaf ); } insertCell(pPage, pCur->idx, newCell, szNew); rc = balance(pPage); /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ /* fflush(stdout); */ moveToRoot(pCur); | < | | | 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 | assert( pPage->leaf ); } insertCell(pPage, pCur->idx, newCell, szNew); rc = balance(pPage); /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ /* fflush(stdout); */ moveToRoot(pCur); return rc; } /* ** Delete the entry that the cursor is pointing to. The cursor ** is left pointing at a random location. */ int sqlite3BtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; unsigned char *pCell; int rc; Pgno pgnoChild; Btree *pBt = pCur->pBt; assert( pPage->isInit ); if( pCur->status ){ return pCur->status; /* A rollback destroyed this cursor */ } if( !pBt->inTrans ){ /* Must start a transaction before doing a delete */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); if( pCur->idx >= pPage->nCell ){ |
︙ | ︙ | |||
3272 3273 3274 3275 3276 3277 3278 | } if( !pPage->leaf ){ printf("right_child: %d\n", get4byte(&pPage->aData[6])); } nFree = 0; i = 0; idx = get2byte(&pPage->aData[hdrOffset+1]); | | | 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 | } if( !pPage->leaf ){ printf("right_child: %d\n", get4byte(&pPage->aData[6])); } nFree = 0; i = 0; idx = get2byte(&pPage->aData[hdrOffset+1]); while( idx>0 && idx<pPage->pBt->pageSize ){ int sz = get2byte(&pPage->aData[idx+2]); sprintf(range,"%d..%d", idx, idx+sz-1); nFree += sz; printf("freeblock %2d: i=%-10s size=%-4d total=%d\n", i, range, sz, nFree); idx = get2byte(&pPage->aData[idx]); i++; |
︙ | ︙ | |||
3342 3343 3344 3345 3346 3347 3348 | }else{ aResult[3] = 0; aResult[6] = 0; } aResult[4] = pPage->nFree; cnt = 0; idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); | | | 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 | }else{ aResult[3] = 0; aResult[6] = 0; } aResult[4] = pPage->nFree; cnt = 0; idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); while( idx>0 && idx<pPage->pBt->pageSize ){ cnt++; idx = get2byte(&pPage->aData[idx]); } aResult[5] = cnt; aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+6]); return SQLITE_OK; } |
︙ | ︙ | |||
3703 3704 3705 3706 3707 3708 3709 | */ int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ int rc = SQLITE_OK; Pgno i, nPage, nToPage; if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR; if( pBtTo->pCursor ) return SQLITE_BUSY; | | | 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | */ int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ int rc = SQLITE_OK; Pgno i, nPage, nToPage; if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR; if( pBtTo->pCursor ) return SQLITE_BUSY; memcpy(pBtTo->pPage1, pBtFrom->pPage1, pBtFrom->pageSize); rc = sqlite3pager_overwrite(pBtTo->pPager, 1, pBtFrom->pPage1); nToPage = sqlite3pager_pagecount(pBtTo->pPager); nPage = sqlite3pager_pagecount(pBtFrom->pPager); for(i=2; rc==SQLITE_OK && i<=nPage; i++){ void *pPage; rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); if( rc ) break; |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.39 2004/05/07 23:50:57 drh Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* ** Forward declarations of structure */ |
︙ | ︙ | |||
68 69 70 71 72 73 74 75 76 77 78 79 80 81 | int sqlite3BtreeMoveto(BtCursor*, const void *pKey, u64 nKey, int *pRes); int sqlite3BtreeDelete(BtCursor*); int sqlite3BtreeInsert(BtCursor*, const void *pKey, u64 nKey, const void *pData, int nData); int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, u64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); void *sqlite3BtreeKeyFetch(BtCursor*); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); | > | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | int sqlite3BtreeMoveto(BtCursor*, const void *pKey, u64 nKey, int *pRes); int sqlite3BtreeDelete(BtCursor*); int sqlite3BtreeInsert(BtCursor*, const void *pKey, u64 nKey, const void *pData, int nData); int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, u64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); void *sqlite3BtreeKeyFetch(BtCursor*); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); |
︙ | ︙ |
Changes to src/test3.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.28 2004/05/07 23:50:57 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
805 806 807 808 809 810 811 812 813 814 815 816 817 818 | Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"%d",res); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_keysize ID ** ** Return the number of bytes of key. */ static int btree_keysize( | > > > > > > > > > > > > > > > > > > > > > > > > > > | 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 | Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"%d",res); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_eof ID ** ** Return TRUE if the given cursor is not pointing at a valid entry. ** Return FALSE if the cursor does point to a valid entry. */ static int btree_eof( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ BtCursor *pCur; char zBuf[50]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pCur) ) return TCL_ERROR; sprintf(zBuf, "%d", sqlite3BtreeEof(pCur)); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* ** Usage: btree_keysize ID ** ** Return the number of bytes of key. */ static int btree_keysize( |
︙ | ︙ | |||
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 | { "btree_cursor", (Tcl_CmdProc*)btree_cursor }, { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_move_to", (Tcl_CmdProc*)btree_move_to }, { "btree_delete", (Tcl_CmdProc*)btree_delete }, { "btree_insert", (Tcl_CmdProc*)btree_insert }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_prev", (Tcl_CmdProc*)btree_prev }, { "btree_keysize", (Tcl_CmdProc*)btree_keysize }, { "btree_key", (Tcl_CmdProc*)btree_key }, { "btree_data", (Tcl_CmdProc*)btree_data }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_last", (Tcl_CmdProc*)btree_last }, { "btree_cursor_dump", (Tcl_CmdProc*)btree_cursor_dump }, | > | 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 | { "btree_cursor", (Tcl_CmdProc*)btree_cursor }, { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_move_to", (Tcl_CmdProc*)btree_move_to }, { "btree_delete", (Tcl_CmdProc*)btree_delete }, { "btree_insert", (Tcl_CmdProc*)btree_insert }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_prev", (Tcl_CmdProc*)btree_prev }, { "btree_eof", (Tcl_CmdProc*)btree_eof }, { "btree_keysize", (Tcl_CmdProc*)btree_keysize }, { "btree_key", (Tcl_CmdProc*)btree_key }, { "btree_data", (Tcl_CmdProc*)btree_data }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_last", (Tcl_CmdProc*)btree_last }, { "btree_cursor_dump", (Tcl_CmdProc*)btree_cursor_dump }, |
︙ | ︙ |
Changes to test/btree.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # # $Id: btree.test,v 1.17 2004/05/07 23:50:58 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Basic functionality. Open and close a database. # |
︙ | ︙ | |||
181 182 183 184 185 186 187 | do_test btree-3.18 { btree_next $::c1 btree_key $::c1 } {600} do_test btree-3.19 { btree_data $::c1 } {6.00} | | | | | > > > > | 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | do_test btree-3.18 { btree_next $::c1 btree_key $::c1 } {600} do_test btree-3.19 { btree_data $::c1 } {6.00} do_test btree-3.20.1 { btree_next $::c1 btree_key $::c1 } {0} do_test btree-3.20.2 { btree_eof $::c1 } {1} do_test btree-3.21 { set rc [catch {btree_data $::c1} res] lappend rc $res } {1 SQLITE_INTERNAL} # Commit the changes, reopen and reread the data # do_test btree-3.22 { set rc [catch {btree_close_cursor $::c1} msg] lappend rc $msg } {0 {}} |
︙ | ︙ | |||
266 267 268 269 270 271 272 | btree_data $::c1 } {6.00} do_test btree-3.39 { btree_next $::c1 btree_key $::c1 } {0} do_test btree-3.40 { | | > | | 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | btree_data $::c1 } {6.00} do_test btree-3.39 { btree_next $::c1 btree_key $::c1 } {0} do_test btree-3.40 { set rc [catch {btree_data $::c1} res] lappend rc $res } {1 SQLITE_INTERNAL} do_test btree-3.41 { lindex [btree_pager_stats $::b1] 1 } {1} # Now try a delete # |
︙ | ︙ | |||
303 304 305 306 307 308 309 | btree_key $::c1 } {400} do_test btree-4.4 { btree_move_to $::c1 0 set r {} while 1 { set key [btree_key $::c1] | | | | 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | btree_key $::c1 } {400} do_test btree-4.4 { btree_move_to $::c1 0 set r {} while 1 { set key [btree_key $::c1] if {[btree_eof $::c1]} break lappend r $key lappend r [btree_data $::c1] btree_next $::c1 } set r } {200 2.00 300 3.00 400 4.00 500 5.00 600 6.00} # Commit and make sure the delete is still there. # do_test btree-4.5 { btree_commit $::b1 btree_move_to $::c1 0 set r {} while 1 { set key [btree_key $::c1] if {[btree_eof $::c1]} break lappend r $key lappend r [btree_data $::c1] btree_next $::c1 } set r } {200 2.00 300 3.00 400 4.00 500 5.00 600 6.00} |
︙ | ︙ | |||
348 349 350 351 352 353 354 | lindex [btree_pager_stats $::b1] 1 } {1} do_test btree-4.9 { set r {} btree_first $::c1 while 1 { set key [btree_key $::c1] | | | 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | lindex [btree_pager_stats $::b1] 1 } {1} do_test btree-4.9 { set r {} btree_first $::c1 while 1 { set key [btree_key $::c1] if {[btree_eof $::c1]} break lappend r $key lappend r [btree_data $::c1] btree_next $::c1 } set r } {200 2.00 300 3.00 400 4.00 500 5.00 600 6.00} |
︙ | ︙ | |||
392 393 394 395 396 397 398 | 140 150 btree_commit $::b1 btree_get_meta $::b1 } {0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150} proc select_all {cursor} { set r {} | < < < < < < | < < < < < < | < | | < | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | 140 150 btree_commit $::b1 btree_get_meta $::b1 } {0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150} proc select_all {cursor} { set r {} btree_first $cursor while {![btree_eof $cursor]} { set key [btree_key $cursor] lappend r $key lappend r [btree_data $cursor] btree_next $cursor } return $r } proc select_keys {cursor} { set r {} btree_first $cursor while {![btree_eof $cursor]} { set key [btree_key $cursor] lappend r $key btree_next $cursor } return $r } # Try to create a new table in the database file |
︙ | ︙ | |||
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | } {1} do_test btree-6.2.2 { set ::c2 [btree_cursor $::b1 $::t2 1] lindex [btree_pager_stats $::b1] 1 } {2} do_test btree-6.2.3 { btree_insert $::c2 ten 10 btree_key $::c2 } {ten} do_test btree-6.3 { btree_commit $::b1 set ::c1 [btree_cursor $::b1 1 1] lindex [btree_pager_stats $::b1] 1 } {2} do_test btree-6.3.1 { | > | | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | } {1} do_test btree-6.2.2 { set ::c2 [btree_cursor $::b1 $::t2 1] lindex [btree_pager_stats $::b1] 1 } {2} do_test btree-6.2.3 { btree_insert $::c2 ten 10 btree_move_to $::c2 ten btree_key $::c2 } {ten} do_test btree-6.3 { btree_commit $::b1 set ::c1 [btree_cursor $::b1 1 1] lindex [btree_pager_stats $::b1] 1 } {2} do_test btree-6.3.1 { select_all $::c1 } {200 2.00 300 3.00 400 4.00 500 5.00 600 6.00} #btree_page_dump $::b1 3 do_test btree-6.4 { select_all $::c2 } {ten 10} # Drop the new table, then create it again anew. |
︙ | ︙ | |||
493 494 495 496 497 498 499 | } {2} do_test btree-6.9.1 { btree_move_to $::c2 {} btree_key $::c2 } {} | | | | | | | | | | > > > > > > | | | > | < < < > > | > > > | > | | > > > | | | | | | | | | | | | | | | | | | | | | > | > | | | | 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 | } {2} do_test btree-6.9.1 { btree_move_to $::c2 {} btree_key $::c2 } {} # If we drop table 1 it just clears the table. Table 1 always exists. # do_test btree-6.10 { btree_close_cursor $::c1 btree_drop_table $::b1 1 set ::c1 [btree_cursor $::b1 1 1] btree_first $::c1 btree_eof $::c1 } {1} do_test btree-6.11 { btree_commit $::b1 select_all $::c1 } {} do_test btree-6.12 { select_all $::c2 } {} do_test btree-6.13 { btree_close_cursor $::c2 lindex [btree_pager_stats $::b1] 1 } {1} # Check to see that pages defragment properly. To do this test we will # # 1. Fill the first page of table 1 with data. # 2. Delete every other entry of table 1. # 3. Insert a single entry that requires more contiguous # space than is available. # do_test btree-7.1 { btree_begin_transaction $::b1 } {} catch {unset key} catch {unset data} do_test btree-7.2 { # Each record will be 10 bytes in size. # + 100 bytes of database header # + 6 bytes of table header # + 91*10=910 bytes of cells # Totals 1016 bytes. 8 bytes left over # Keys are 1000 through 1090. for {set i 1000} {$i<1091} {incr i} { set key $i set data [format %5d $i] btree_insert $::c1 $key $data } lrange [btree_cursor_dump $::c1] 4 5 } {8 1} do_test btree-7.3 { for {set i 1001} {$i<1091} {incr i 2} { btree_move_to $::c1 $i btree_delete $::c1 } # Freed 45 blocks. Total freespace is 458 # Keys remaining are even numbers between 1000 and 1090, inclusive lrange [btree_cursor_dump $::c1] 4 5 } {458 46} #btree_page_dump $::b1 2 do_test btree-7.4 { # The largest free block is 10 bytes long. So if we insert # a record bigger than 10 bytes it should force a defrag # The record is 20 bytes long. btree_insert $::c1 2000 {123456789_12345} btree_move_to $::c1 2000 btree_key $::c1 } {2000} do_test btree-7.5 { lrange [btree_cursor_dump $::c1] 4 5 } {438 1} #btree_page_dump $::b1 2 # Delete an entry to make a hole of a known size, then immediately recreate # that entry. This tests the path into allocateSpace where the hole exactly # matches the size of the desired space. # # Keys are even numbers between 1000 and 1090 and one record of 2000. # There are 47 keys total. # do_test btree-7.6 { btree_move_to $::c1 1006 btree_delete $::c1 btree_move_to $::c1 1010 btree_delete $::c1 } {} do_test btree-7.7 { lrange [btree_cursor_dump $::c1] 4 5 } {458 3} ;# Create two new holes of 10 bytes each #btree_page_dump $::b1 2 do_test btree-7.8 { btree_insert $::c1 1006 { 1006} lrange [btree_cursor_dump $::c1] 4 5 } {448 2} ;# Filled in the first hole #btree_page_dump $::b1 2 # Make sure the freeSpace() routine properly coaleses adjacent memory blocks # do_test btree-7.9 { btree_move_to $::c1 1012 btree_delete $::c1 lrange [btree_cursor_dump $::c1] 4 5 } {458 2} ;# Coalesce with the whole before do_test btree-7.10 { btree_move_to $::c1 1008 btree_delete $::c1 lrange [btree_cursor_dump $::c1] 4 5 } {468 2} ;# Coalesce with whole after do_test btree-7.11 { btree_move_to $::c1 1030 btree_delete $::c1 lrange [btree_cursor_dump $::c1] 4 5 } {478 3} ;# Make a new hole do_test btree-7.13 { btree_move_to $::c1 1034 btree_delete $::c1 lrange [btree_cursor_dump $::c1] 4 5 } {488 4} ;# Make another hole do_test btree-7.14 { btree_move_to $::c1 1032 btree_delete $::c1 lrange [btree_cursor_dump $::c1] 4 5 } {498 3} ;# The freed space should coalesce on both ends #btree_page_dump $::b1 2 do_test btree-7.15 { lindex [btree_pager_stats $::b1] 1 } {1} # Check to see that data on overflow pages work correctly. # do_test btree-8.1 { set data "*** This is a very long key " while {[string length $data]<1234} {append data $data} set ::data $data btree_insert $::c1 2020 $data } {} #btree_page_dump $::b1 2 do_test btree-8.1.1 { lindex [btree_pager_stats $::b1] 1 } {1} #btree_pager_ref_dump $::b1 do_test btree-8.2 { btree_move_to $::c1 2020 string length [btree_data $::c1] } [string length $::data] do_test btree-8.3 { btree_data $::c1 } $::data do_test btree-8.4 { btree_delete $::c1 } {} do_test btree-8.4.1 { lindex [btree_get_meta $::b1] 0 } [expr {int(([string length $::data]-238+1019)/1020)}] do_test btree-8.5 { set data "*** This is an even longer key" while {[string length $data]<2000} {append data $data} set ::data $data btree_insert $::c1 2030 $data } {} do_test btree-8.6 { btree_move_to 2030 string length [btree_data $::c1] } [string length $::data] do_test btree-8.7 { btree_data $::c1 } $::data do_test btree-8.8 { btree_commit $::b1 btree_data $::c1 } $::data do_test btree-8.9 { btree_close_cursor $::c1 btree_close $::b1 set ::b1 [btree_open test1.bt 2000 0] set ::c1 [btree_cursor $::b1 1 1] btree_move_to $::c1 2030 btree_data $::c1 } $::data do_test btree-8.10 { btree_begin_transaction $::b1 btree_delete $::c1 } {} do_test btree-8.11 { lindex [btree_get_meta $::b1] 0 } {} # Now check out keys on overflow pages. # do_test btree-8.12 { set ::keyprefix "This is a long prefix to a key " while {[string length $::keyprefix]<256} {append ::keyprefix $::keyprefix} btree_close_cursor $::c1 |
︙ | ︙ |