/ Check-in [912faf18]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:When optimizing out an ORDER BY clause due to uniqueness constraints, make sure unused terms to the right in the ORDER BY clause to not reference other tables in a join. Ticket #2211. Additional test cases needed before closing this ticket. (CVS 3629)
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 912faf18d86416b1a36660851f8a4554e6746875
User & Date: drh 2007-02-06 13:26:33
Context
2007-02-06
23:41
Additional tests to give full coverage testing to ticket #2211. (CVS 3630) check-in: ecb1f2fd user: drh tags: trunk
13:26
When optimizing out an ORDER BY clause due to uniqueness constraints, make sure unused terms to the right in the ORDER BY clause to not reference other tables in a join. Ticket #2211. Additional test cases needed before closing this ticket. (CVS 3629) check-in: 912faf18 user: drh tags: trunk
11:11
Check the return value of lseek() in os_unix.c to make sure it really worked. (CVS 3628) check-in: e4408dd1 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Show Whitespace Changes Patch

Changes to src/where.c.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
39
40
41
42
43
44
45

46
47
48
49
50
51
52
...
102
103
104
105
106
107
108

109
110
111
112
113
114
115
...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
...
182
183
184
185
186
187
188
189




190

191
192
193
194
195
196
197
...
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
...
588
589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605
606
...
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
...
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
...
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
...
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
...
832
833
834
835
836
837
838



















839
840
841
842
843
844
845
...
854
855
856
857
858
859
860

861
862
863
864
865
866
867
...
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
...
937
938
939
940
941
942
943
944
945

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960

961
962



963
964
965
966
967
968
969
970
971
972
973
974
975

976
977
978
979
980
981
982
983

984
985
986
987
988
989
990
....
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
....
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
....
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
....
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
....
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.236 2007/01/25 16:56:07 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
................................................................................
#else
# define TRACE(X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;


/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** All WhereTerms are collected into a single WhereClause structure.  
................................................................................

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */

  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
  WhereTerm aStatic[10];   /* Initial static space for a[] */
};

/*
................................................................................
** Note that the mapping is not necessarily ordered.  In the example
** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4.  Or one of 719 other combinations might be used. It
** does not really matter.  What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/
typedef struct ExprMaskSet ExprMaskSet;
struct ExprMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
};


/*
................................................................................
#define WHERE_REVERSE      0x200000   /* Scan in reverse order */
#define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
#define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(WhereClause *pWC, Parse *pParse){




  pWC->pParse = pParse;

  pWC->nTerm = 0;
  pWC->nSlot = ARRAYSIZE(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
................................................................................
      return pTerm;
    }
  }
  return 0;
}

/* Forward reference */
static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
**
**
*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  ExprMaskSet *pMaskSet,   /* table masks */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
    exprAnalyze(pTabList, pMaskSet, pWC, i);
  }
}

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints.  Return TRUE if it is
................................................................................
** to the standard form of "X <op> <expr>".  If the expression is of
** the form "X <op> Y" where both X and Y are columns, then the original
** expression is unchanged and a new virtual expression of the form
** "Y <op> X" is added to the WHERE clause and analyzed separately.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  ExprMaskSet *pMaskSet,    /* table masks */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereTerm *pTerm = &pWC->a[idxTerm];

  Expr *pExpr = pTerm->pExpr;
  Bitmask prereqLeft;
  Bitmask prereqAll;
  int nPattern;
  int isComplete;
  int op;

................................................................................
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
                             sqlite3ExprDup(pList->a[i].pExpr), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

................................................................................
    int ok;
    int i, j;
    int iColumn, iCursor;
    WhereClause sOr;
    WhereTerm *pOrTerm;

    assert( (pTerm->flags & TERM_DYNAMIC)==0 );
    whereClauseInit(&sOr, pWC->pParse);
    whereSplit(&sOr, pExpr, TK_OR);
    exprAnalyzeAll(pSrc, pMaskSet, &sOr);
    assert( sOr.nTerm>0 );
    j = 0;
    do{
      iColumn = sOr.a[j].leftColumn;
      iCursor = sOr.a[j].leftCursor;
      ok = iCursor>=0;
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
................................................................................
      pDup = sqlite3ExprDup(pLeft);
      pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
        transferJoinMarkings(pNew, pExpr);
        pNew->pList = pList;
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        pWC->a[idxNew].iParent = idxTerm;
        pTerm->nChild = 1;
      }else{
        sqlite3ExprListDelete(pList);
      }
    }
................................................................................
    pStr2 = sqlite3ExprDup(pStr1);
    if( pStr2 ){
      assert( pStr2->token.dyn );
      ++*(u8*)&pStr2->token.z[nPattern-1];
    }
    pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
    pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;
      pTerm->nChild = 2;
    }
  }
................................................................................
      pTerm->flags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}





















/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
................................................................................
** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.)  The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int isSortingIndex(
  Parse *pParse,          /* Parsing context */

  Index *pIdx,            /* The index we are testing */
  int base,               /* Cursor number for the table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int nEqCol,             /* Number of index columns with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;                       /* Loop counters */
................................................................................
    int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
    const char *zColl; /* Name of the collating sequence for i-th index term */

    pExpr = pTerm->pExpr;
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      return 0;
    }
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
    if( !pColl ){
      pColl = db->pDfltColl;
    }
    if( i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
................................................................................
        return 0;
      }
    }else{
      sortOrder = termSortOrder;
    }
    j++;
    pTerm++;
    if( iColumn<0 ){
      /* If the indexed column is the primary key and everything matches

      ** so far, then we are assured that the index can be used to sort
      ** because the primary key is unique and so none of the other columns
      ** will make any difference
      */
      j = nTerm;
    }
  }

  *pbRev = sortOrder!=0;
  if( j>=nTerm ){
    /* All terms of the ORDER BY clause are covered by this index so
    ** this index can be used for sorting. */
    return 1;
  }
  if( j==pIdx->nColumn && pIdx->onError!=OE_None ){

    /* All terms of this index match some prefix of the ORDER BY clause
    ** and this index is UNIQUE, so this index can be used for sorting. */



    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID.  Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
  int base,               /* Cursor number for table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */

  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  Expr *p;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  p = pOrderBy->a[0].pExpr;
  if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){

    *pbRev = pOrderBy->a[0].sortOrder;
    return 1;
  }
  return 0;
}

/*
................................................................................
  ** clause that refer to the ROWID, then we will never be able to do
  ** anything other than a full table scan on this table.  We might as
  ** well put it first in the join order.  That way, perhaps it can be
  ** referenced by other tables in the join.
  */
  if( pProbe==0 &&
     findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
     (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){
    *pFlags = 0;
    *ppIndex = 0;
    *pnEq = 0;
    return 0.0;
  }

  /* Check for a rowid=EXPR or rowid IN (...) constraints
................................................................................
  }else{
    flags = 0;
  }

  /* If the table scan does not satisfy the ORDER BY clause, increase
  ** the cost by NlogN to cover the expense of sorting. */
  if( pOrderBy ){
    if( sortableByRowid(iCur, pOrderBy, &rev) ){
      flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
      if( rev ){
        flags |= WHERE_REVERSE;
      }
    }else{
      cost += cost*estLog(cost);
      TRACE(("... sorting increases cost to %.9g\n", cost));
................................................................................
      }
    }

    /* Add the additional cost of sorting if that is a factor.
    */
    if( pOrderBy ){
      if( (flags & WHERE_COLUMN_IN)==0 &&
           isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){
        if( flags==0 ){
          flags = WHERE_COLUMN_RANGE;
        }
        flags |= WHERE_ORDERBY;
        if( rev ){
          flags |= WHERE_REVERSE;
        }
................................................................................
    return 0;
  }

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(&maskSet);
  whereClauseInit(&wc, pParse);
  whereSplit(&wc, pWhere, TK_AND);
    
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite3MallocFailed() ){
................................................................................
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  for(i=0; i<pTabList->nSrc; i++){
    createMask(&maskSet, pTabList->a[i].iCursor);
  }
  exprAnalyzeAll(pTabList, &maskSet, &wc);
  if( sqlite3MallocFailed() ){
    goto whereBeginNoMem;
  }

  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:







|







 







>







 







>







 







<







 







|
>
>
>
>

>







 







|








<




|







 







<




>







 







|







 







|

|







 







|







 







|


|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>







 







|







 







|

>
|
|
|











|
>

<
>
>
>













>







|
>







 







|







 







|







 







|







 







|







 







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
..
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
...
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
...
136
137
138
139
140
141
142

143
144
145
146
147
148
149
...
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
...
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

481
482
483
484
485
486
487
488
489
490
491
492
...
593
594
595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
...
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
...
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
...
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
...
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
...
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
...
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
...
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
...
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988

989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
....
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
....
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
....
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
....
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
....
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.237 2007/02/06 13:26:33 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
................................................................................
#else
# define TRACE(X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct ExprMaskSet ExprMaskSet;

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by an AND operator.
**
** All WhereTerms are collected into a single WhereClause structure.  
................................................................................

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
  WhereTerm aStatic[10];   /* Initial static space for a[] */
};

/*
................................................................................
** Note that the mapping is not necessarily ordered.  In the example
** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
** 57->5, 73->4.  Or one of 719 other combinations might be used. It
** does not really matter.  What is important is that sparse cursor
** numbers all get mapped into bit numbers that begin with 0 and contain
** no gaps.
*/

struct ExprMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
};


/*
................................................................................
#define WHERE_REVERSE      0x200000   /* Scan in reverse order */
#define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
#define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  Parse *pParse,           /* The parsing context */
  ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;
  pWC->nTerm = 0;
  pWC->nSlot = ARRAYSIZE(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
................................................................................
      return pTerm;
    }
  }
  return 0;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
**
**
*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */

  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
    exprAnalyze(pTabList, pWC, i);
  }
}

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints.  Return TRUE if it is
................................................................................
** to the standard form of "X <op> <expr>".  If the expression is of
** the form "X <op> Y" where both X and Y are columns, then the original
** expression is unchanged and a new virtual expression of the form
** "Y <op> X" is added to the WHERE clause and analyzed separately.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */

  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereTerm *pTerm = &pWC->a[idxTerm];
  ExprMaskSet *pMaskSet = pWC->pMaskSet;
  Expr *pExpr = pTerm->pExpr;
  Bitmask prereqLeft;
  Bitmask prereqAll;
  int nPattern;
  int isComplete;
  int op;

................................................................................
    assert( pList->nExpr==2 );
    for(i=0; i<2; i++){
      Expr *pNewExpr;
      int idxNew;
      pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
                             sqlite3ExprDup(pList->a[i].pExpr), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

................................................................................
    int ok;
    int i, j;
    int iColumn, iCursor;
    WhereClause sOr;
    WhereTerm *pOrTerm;

    assert( (pTerm->flags & TERM_DYNAMIC)==0 );
    whereClauseInit(&sOr, pWC->pParse, pMaskSet);
    whereSplit(&sOr, pExpr, TK_OR);
    exprAnalyzeAll(pSrc, &sOr);
    assert( sOr.nTerm>0 );
    j = 0;
    do{
      iColumn = sOr.a[j].leftColumn;
      iCursor = sOr.a[j].leftCursor;
      ok = iCursor>=0;
      for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
................................................................................
      pDup = sqlite3ExprDup(pLeft);
      pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
        transferJoinMarkings(pNew, pExpr);
        pNew->pList = pList;
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        pWC->a[idxNew].iParent = idxTerm;
        pTerm->nChild = 1;
      }else{
        sqlite3ExprListDelete(pList);
      }
    }
................................................................................
    pStr2 = sqlite3ExprDup(pStr1);
    if( pStr2 ){
      assert( pStr2->token.dyn );
      ++*(u8*)&pStr2->token.z[nPattern-1];
    }
    pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;
      pTerm->nChild = 2;
    }
  }
................................................................................
      pTerm->flags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}

/*
** Return TRUE if any of the expressions in pList->a[iFirst...] contain
** a reference to any table other than the iBase table.
*/
static int referencesOtherTables(
  ExprList *pList,          /* Search expressions in ths list */
  ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
  int iFirst,               /* Be searching with the iFirst-th expression */
  int iBase                 /* Ignore references to this table */
){
  Bitmask allowed = ~getMask(pMaskSet, iBase);
  while( iFirst<pList->nExpr ){
    if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
      return 1;
    }
  }
  return 0;
}


/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
................................................................................
** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
** index do not need to satisfy this constraint.)  The *pbRev value is
** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
** the ORDER BY clause is all ASC.
*/
static int isSortingIndex(
  Parse *pParse,          /* Parsing context */
  ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
  Index *pIdx,            /* The index we are testing */
  int base,               /* Cursor number for the table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int nEqCol,             /* Number of index columns with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;                       /* Loop counters */
................................................................................
    int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
    const char *zColl; /* Name of the collating sequence for i-th index term */

    pExpr = pTerm->pExpr;
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      break;
    }
    pColl = sqlite3ExprCollSeq(pParse, pExpr);
    if( !pColl ){
      pColl = db->pDfltColl;
    }
    if( i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
................................................................................
        return 0;
      }
    }else{
      sortOrder = termSortOrder;
    }
    j++;
    pTerm++;
    if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
      /* If the indexed column is the primary key and everything matches
      ** so far and none of the ORDER BY terms to the right reference other
      ** tables in the join, then we are assured that the index can be used 
      ** to sort because the primary key is unique and so none of the other
      ** columns will make any difference
      */
      j = nTerm;
    }
  }

  *pbRev = sortOrder!=0;
  if( j>=nTerm ){
    /* All terms of the ORDER BY clause are covered by this index so
    ** this index can be used for sorting. */
    return 1;
  }
  if( pIdx->onError!=OE_None && i==pIdx->nColumn
      && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
    /* All terms of this index match some prefix of the ORDER BY clause

    ** and the index is UNIQUE and no terms on the tail of the ORDER BY
    ** clause reference other tables in a join.  If this is all true then
    ** the order by clause is superfluous. */
    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
** by sorting in order of ROWID.  Return true if so and set *pbRev to be
** true for reverse ROWID and false for forward ROWID order.
*/
static int sortableByRowid(
  int base,               /* Cursor number for table to be sorted */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  Expr *p;

  assert( pOrderBy!=0 );
  assert( pOrderBy->nExpr>0 );
  p = pOrderBy->a[0].pExpr;
  if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
    && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
    *pbRev = pOrderBy->a[0].sortOrder;
    return 1;
  }
  return 0;
}

/*
................................................................................
  ** clause that refer to the ROWID, then we will never be able to do
  ** anything other than a full table scan on this table.  We might as
  ** well put it first in the join order.  That way, perhaps it can be
  ** referenced by other tables in the join.
  */
  if( pProbe==0 &&
     findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
     (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
    *pFlags = 0;
    *ppIndex = 0;
    *pnEq = 0;
    return 0.0;
  }

  /* Check for a rowid=EXPR or rowid IN (...) constraints
................................................................................
  }else{
    flags = 0;
  }

  /* If the table scan does not satisfy the ORDER BY clause, increase
  ** the cost by NlogN to cover the expense of sorting. */
  if( pOrderBy ){
    if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
      flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
      if( rev ){
        flags |= WHERE_REVERSE;
      }
    }else{
      cost += cost*estLog(cost);
      TRACE(("... sorting increases cost to %.9g\n", cost));
................................................................................
      }
    }

    /* Add the additional cost of sorting if that is a factor.
    */
    if( pOrderBy ){
      if( (flags & WHERE_COLUMN_IN)==0 &&
           isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
        if( flags==0 ){
          flags = WHERE_COLUMN_RANGE;
        }
        flags |= WHERE_ORDERBY;
        if( rev ){
          flags |= WHERE_REVERSE;
        }
................................................................................
    return 0;
  }

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(&maskSet);
  whereClauseInit(&wc, pParse, &maskSet);
  whereSplit(&wc, pWhere, TK_AND);
    
  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value.
  */
  pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  if( sqlite3MallocFailed() ){
................................................................................
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  for(i=0; i<pTabList->nSrc; i++){
    createMask(&maskSet, pTabList->a[i].iCursor);
  }
  exprAnalyzeAll(pTabList, &wc);
  if( sqlite3MallocFailed() ){
    goto whereBeginNoMem;
  }

  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:

Changes to test/where.test.

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
....
1033
1034
1035
1036
1037
1038
1039

1040


1041




































































1042
1043
1044
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the use of indices in WHERE clases.
#
# $Id: where.test,v 1.39 2006/12/20 03:24:19 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test where-1.0 {
................................................................................
} {4 four 1 one nosort}
do_test where-13.12 {
  cksort {
    SELECT * FROM t7 ORDER BY a ASC, b DESC;
  }
} {1 one 4 four nosort}










































































integrity_check {where-99.0}

finish_test







|







 







>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
....
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the use of indices in WHERE clases.
#
# $Id: where.test,v 1.40 2007/02/06 13:26:34 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test where-1.0 {
................................................................................
} {4 four 1 one nosort}
do_test where-13.12 {
  cksort {
    SELECT * FROM t7 ORDER BY a ASC, b DESC;
  }
} {1 one 4 four nosort}

# Ticket #2211.
#
# When optimizing out ORDER BY clauses, make sure that trailing terms
# of the ORDER BY clause do not reference other tables in a join.
#
do_test where-14.1 {
  execsql {
    CREATE TABLE t8(a INTEGER PRIMARY KEY, b TEXT UNIQUE);
    INSERT INTO t8 VALUES(1,'one');
    INSERT INTO t8 VALUES(4,'four');
  }
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.a, y.b
  } 
} {1/4 1/1 4/4 4/1 sort}
do_test where-14.2 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.a, y.b DESC
  } 
} {1/1 1/4 4/1 4/4 sort}
do_test where-14.3 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.a, x.b
  } 
} {1/1 1/4 4/1 4/4 nosort}
do_test where-14.4 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.a, x.b DESC
  } 
} {1/1 1/4 4/1 4/4 nosort}
btree_breakpoint
do_test where-14.5 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, x.a||x.b
  } 
} {4/1 4/4 1/1 1/4 nosort}
do_test where-14.6 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, x.a||x.b DESC
  } 
} {4/1 4/4 1/1 1/4 nosort}
do_test where-14.7 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||y.b
  } 
} {4/1 4/4 1/1 1/4 sort}
do_test where-14.8 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||y.b DESC
  } 
} {4/4 4/1 1/4 1/1 sort}
do_test where-14.9 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, x.a||y.b
  } 
} {4/4 4/1 1/4 1/1 sort}
do_test where-14.10 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, x.a||y.b DESC
  } 
} {4/1 4/4 1/1 1/4 sort}
do_test where-14.11 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||x.b
  } 
} {4/1 4/4 1/1 1/4 sort}
do_test where-14.12 {
  cksort {
    SELECT x.a || '/' || y.a FROM t8 x, t8 y ORDER BY x.b, y.a||x.b DESC
  } 
} {4/4 4/1 1/4 1/1 sort}


integrity_check {where-99.0}

finish_test