SQLite

Check-in [87a0eab5d9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Import all the latest trunk changes into the sessions branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1: 87a0eab5d98fff93aa2147c04c4af27be42fb365
User & Date: drh 2012-04-18 01:41:37.755
Context
2012-04-19
20:00
Merge the latest trunk changes into the sessions branch. (check-in: 2b7a91e617 user: drh tags: sessions)
2012-04-18
01:41
Import all the latest trunk changes into the sessions branch. (check-in: 87a0eab5d9 user: drh tags: sessions)
2012-04-17
16:38
Improved handling of aggregate subqueries within an aggregate query. (check-in: 430bb59d79 user: drh tags: trunk)
2012-03-30
17:30
Merge all recent trunk changes into the sessions branch. (check-in: fb9b9987de user: drh tags: sessions)
Changes
Unified Diff Show Whitespace Changes Patch
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.11.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.12.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.11'
PACKAGE_STRING='sqlite 3.7.11'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.12'
PACKAGE_STRING='sqlite 3.7.12'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.11 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.12 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.11:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.12:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.11
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.11, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.12
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.12, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.11, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.12, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.11
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.12
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to ext/fts3/fts3_icu.c.
106
107
108
109
110
111
112



113
114
115
116
117
118
119
120

  UChar32 c;
  int iInput = 0;
  int iOut = 0;

  *ppCursor = 0;




  if( nInput<0 ){
    nInput = strlen(zInput);
  }
  nChar = nInput+1;
  pCsr = (IcuCursor *)sqlite3_malloc(
      sizeof(IcuCursor) +                /* IcuCursor */
      nChar * sizeof(UChar) +            /* IcuCursor.aChar[] */
      (nChar+1) * sizeof(int)            /* IcuCursor.aOffset[] */







>
>
>
|







106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

  UChar32 c;
  int iInput = 0;
  int iOut = 0;

  *ppCursor = 0;

  if( zInput==0 ){
    nInput = 0;
    zInput = "";
  }else if( nInput<0 ){
    nInput = strlen(zInput);
  }
  nChar = nInput+1;
  pCsr = (IcuCursor *)sqlite3_malloc(
      sizeof(IcuCursor) +                /* IcuCursor */
      nChar * sizeof(UChar) +            /* IcuCursor.aChar[] */
      (nChar+1) * sizeof(int)            /* IcuCursor.aOffset[] */
Changes to ext/fts3/fts3_test.c.
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
** that the sqlite3_tokenizer_module.xLanguage() method is invoked correctly.
*/

#include <tcl.h>
#include <string.h>
#include <assert.h>

#ifdef SQLITE_TEST


/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
#include "fts3Int.h"

#define NM_MAX_TOKEN 12

typedef struct NearPhrase NearPhrase;







|
>







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
** that the sqlite3_tokenizer_module.xLanguage() method is invoked correctly.
*/

#include <tcl.h>
#include <string.h>
#include <assert.h>

#if defined(SQLITE_TEST)
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)

/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
#include "fts3Int.h"

#define NM_MAX_TOKEN 12

typedef struct NearPhrase NearPhrase;
526
527
528
529
530
531
532

533
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  Tcl_CreateObjCommand(
      interp, "fts3_test_tokenizer", fts3_test_tokenizer_cmd, 0, 0
  );
  return TCL_OK;
}

#endif                  /* ifdef SQLITE_TEST */







>

527
528
529
530
531
532
533
534
535
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  Tcl_CreateObjCommand(
      interp, "fts3_test_tokenizer", fts3_test_tokenizer_cmd, 0, 0
  );
  return TCL_OK;
}
#endif                  /* SQLITE_ENABLE_FTS3 || SQLITE_ENABLE_FTS4 */
#endif                  /* ifdef SQLITE_TEST */
Changes to ext/fts3/fts3_write.c.
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
    }

    /* Advance to the next output block */
    pLeaf->iBlock++;
    pLeaf->key.n = 0;
    pLeaf->block.n = 0;

    nPrefix = 0;
    nSuffix = nTerm;
    nSpace  = 1;
    nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
    nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
  }

  blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);







<







3735
3736
3737
3738
3739
3740
3741

3742
3743
3744
3745
3746
3747
3748
    }

    /* Advance to the next output block */
    pLeaf->iBlock++;
    pLeaf->key.n = 0;
    pLeaf->block.n = 0;


    nSuffix = nTerm;
    nSpace  = 1;
    nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
    nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
  }

  blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
Changes to ext/rtree/rtree.c.
178
179
180
181
182
183
184













185
186
187
188
189
190
191
  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1














/*
** The minimum number of cells allowed for a node is a third of the 
** maximum. In Gutman's notation:
**
**     m = M/3
**
** If an R*-tree "Reinsert" operation is required, the same number of







>
>
>
>
>
>
>
>
>
>
>
>
>







178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1

/*
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
** only deal with integer coordinates.  No floating point operations
** will be done.
*/
#ifdef SQLITE_RTREE_INT_ONLY
  typedef sqlite3_int64 RtreeDValue;       /* High accuracy coordinate */
  typedef int RtreeValue;                  /* Low accuracy coordinate */
#else
  typedef double RtreeDValue;              /* High accuracy coordinate */
  typedef float RtreeValue;                /* Low accuracy coordinate */
#endif

/*
** The minimum number of cells allowed for a node is a third of the 
** maximum. In Gutman's notation:
**
**     m = M/3
**
** If an R*-tree "Reinsert" operation is required, the same number of
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228



229
230
231
232
233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

union RtreeCoord {
  float f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a double. This macro assumes that local variable pRtree points
** to the Rtree structure associated with the RtreeCoord.

*/



#define DCOORD(coord) (                           \
  (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
    ((double)coord.f) :                           \
    ((double)coord.i)                             \
)


/*
** A search constraint.
*/
struct RtreeConstraint {
  int iCoord;                     /* Index of constrained coordinate */
  int op;                         /* Constraining operation */
  double rValue;                  /* Constraint value. */
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  sqlite3_rtree_geometry *pGeom;  /* Constraint callback argument for a MATCH */
};

/* Possible values for RtreeConstraint.op */
#define RTREE_EQ    0x41
#define RTREE_LE    0x42
#define RTREE_LT    0x43







|





|
|
>

>
>
>





>







|
|







226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

union RtreeCoord {
  RtreeValue f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a RtreeDValue (double or int64). This macro assumes that local
** variable pRtree points to the Rtree structure associated with the
** RtreeCoord.
*/
#ifdef SQLITE_RTREE_INT_ONLY
# define DCOORD(coord) ((RtreeDValue)coord.i)
#else
#define DCOORD(coord) (                           \
  (pRtree->eCoordType==RTREE_COORD_REAL32) ?      \
    ((double)coord.f) :                           \
    ((double)coord.i)                             \
)
#endif

/*
** A search constraint.
*/
struct RtreeConstraint {
  int iCoord;                     /* Index of constrained coordinate */
  int op;                         /* Constraining operation */
  RtreeDValue rValue;             /* Constraint value. */
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  sqlite3_rtree_geometry *pGeom;  /* Constraint callback argument for a MATCH */
};

/* Possible values for RtreeConstraint.op */
#define RTREE_EQ    0x41
#define RTREE_LE    0x42
#define RTREE_LT    0x43
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
** An instance of this structure must be supplied as a blob argument to
** the right-hand-side of an SQL MATCH operator used to constrain an
** r-tree query.
*/
struct RtreeMatchArg {
  u32 magic;                      /* Always RTREE_GEOMETRY_MAGIC */
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  void *pContext;
  int nParam;
  double aParam[1];
};

/*
** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
** a single instance of the following structure is allocated. It is used
** as the context for the user-function created by by s_r_g_c(). The object
** is eventually deleted by the destructor mechanism provided by
** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
** the geometry callback function).
*/
struct RtreeGeomCallback {
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
  void *pContext;
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN







|


|











|







301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
/*
** An instance of this structure must be supplied as a blob argument to
** the right-hand-side of an SQL MATCH operator used to constrain an
** r-tree query.
*/
struct RtreeMatchArg {
  u32 magic;                      /* Always RTREE_GEOMETRY_MAGIC */
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue*, int *);
  void *pContext;
  int nParam;
  RtreeDValue aParam[1];
};

/*
** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
** a single instance of the following structure is allocated. It is used
** as the context for the user-function created by by s_r_g_c(). The object
** is eventually deleted by the destructor mechanism provided by
** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
** the geometry callback function).
*/
struct RtreeGeomCallback {
  int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*);
  void *pContext;
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
static int testRtreeGeom(
  Rtree *pRtree,                  /* R-Tree object */
  RtreeConstraint *pConstraint,   /* MATCH constraint to test */
  RtreeCell *pCell,               /* Cell to test */
  int *pbRes                      /* OUT: Test result */
){
  int i;
  double aCoord[RTREE_MAX_DIMENSIONS*2];
  int nCoord = pRtree->nDim*2;

  assert( pConstraint->op==RTREE_MATCH );
  assert( pConstraint->pGeom );

  for(i=0; i<nCoord; i++){
    aCoord[i] = DCOORD(pCell->aCoord[i]);







|







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
static int testRtreeGeom(
  Rtree *pRtree,                  /* R-Tree object */
  RtreeConstraint *pConstraint,   /* MATCH constraint to test */
  RtreeCell *pCell,               /* Cell to test */
  int *pbRes                      /* OUT: Test result */
){
  int i;
  RtreeDValue aCoord[RTREE_MAX_DIMENSIONS*2];
  int nCoord = pRtree->nDim*2;

  assert( pConstraint->op==RTREE_MATCH );
  assert( pConstraint->pGeom );

  for(i=0; i<nCoord; i++){
    aCoord[i] = DCOORD(pCell->aCoord[i]);
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
  int ii;
  int bRes = 0;
  int rc = SQLITE_OK;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
    double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);

    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );

    switch( p->op ){
      case RTREE_LE: case RTREE_LT: 







|
|







912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
  int ii;
  int bRes = 0;
  int rc = SQLITE_OK;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
    RtreeDValue cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);

    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );

    switch( p->op ){
      case RTREE_LE: case RTREE_LT: 
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
  RtreeCell cell;
  int ii;
  *pbEof = 0;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    double coord = DCOORD(cell.aCoord[p->iCoord]);
    int res;
    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );
    switch( p->op ){
      case RTREE_LE: res = (coord<=p->rValue); break;
      case RTREE_LT: res = (coord<p->rValue);  break;







|







965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
  RtreeCell cell;
  int ii;
  *pbEof = 0;

  nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
  for(ii=0; ii<pCursor->nConstraint; ii++){
    RtreeConstraint *p = &pCursor->aConstraint[ii];
    RtreeDValue coord = DCOORD(cell.aCoord[p->iCoord]);
    int res;
    assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE 
        || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
    );
    switch( p->op ){
      case RTREE_LE: res = (coord<=p->rValue); break;
      case RTREE_LT: res = (coord<p->rValue);  break;
1145
1146
1147
1148
1149
1150
1151

1152
1153
1154


1155
1156
1157
1158
1159
1160
1161

  if( i==0 ){
    i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
    sqlite3_result_int64(ctx, iRowid);
  }else{
    RtreeCoord c;
    nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);

    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else{


      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }

  return SQLITE_OK;
}







>


|
>
>







1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

  if( i==0 ){
    i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
    sqlite3_result_int64(ctx, iRowid);
  }else{
    RtreeCoord c;
    nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      sqlite3_result_double(ctx, c.f);
    }else
#endif
    {
      assert( pRtree->eCoordType==RTREE_COORD_INT32 );
      sqlite3_result_int(ctx, c.i);
    }
  }

  return SQLITE_OK;
}
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

  /* Check that value is actually a blob. */
  if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;

  /* Check that the blob is roughly the right size. */
  nBlob = sqlite3_value_bytes(pValue);
  if( nBlob<(int)sizeof(RtreeMatchArg) 
   || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
  ){
    return SQLITE_ERROR;
  }

  pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
      sizeof(sqlite3_rtree_geometry) + nBlob
  );
  if( !pGeom ) return SQLITE_NOMEM;
  memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
  p = (RtreeMatchArg *)&pGeom[1];

  memcpy(p, sqlite3_value_blob(pValue), nBlob);
  if( p->magic!=RTREE_GEOMETRY_MAGIC 
   || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
  ){
    sqlite3_free(pGeom);
    return SQLITE_ERROR;
  }

  pGeom->pContext = p->pContext;
  pGeom->nParam = p->nParam;







|













|







1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243

  /* Check that value is actually a blob. */
  if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR;

  /* Check that the blob is roughly the right size. */
  nBlob = sqlite3_value_bytes(pValue);
  if( nBlob<(int)sizeof(RtreeMatchArg) 
   || ((nBlob-sizeof(RtreeMatchArg))%sizeof(RtreeDValue))!=0
  ){
    return SQLITE_ERROR;
  }

  pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
      sizeof(sqlite3_rtree_geometry) + nBlob
  );
  if( !pGeom ) return SQLITE_NOMEM;
  memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
  p = (RtreeMatchArg *)&pGeom[1];

  memcpy(p, sqlite3_value_blob(pValue), nBlob);
  if( p->magic!=RTREE_GEOMETRY_MAGIC 
   || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(RtreeDValue))
  ){
    sqlite3_free(pGeom);
    return SQLITE_ERROR;
  }

  pGeom->pContext = p->pContext;
  pGeom->nParam = p->nParam;
1280
1281
1282
1283
1284
1285
1286



1287

1288
1289
1290
1291
1292
1293
1294
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
          }else{



            p->rValue = sqlite3_value_double(argv[ii]);

          }
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      pCsr->pNode = 0;







>
>
>

>







1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
            ** an sqlite3_rtree_geometry_callback() SQL user function.
            */
            rc = deserializeGeometry(argv[ii], p);
            if( rc!=SQLITE_OK ){
              break;
            }
          }else{
#ifdef SQLITE_RTREE_INT_ONLY
            p->rValue = sqlite3_value_int64(argv[ii]);
#else
            p->rValue = sqlite3_value_double(argv[ii]);
#endif
          }
        }
      }
    }
  
    if( rc==SQLITE_OK ){
      pCsr->pNode = 0;
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
  pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static float cellArea(Rtree *pRtree, RtreeCell *p){
  float area = 1.0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (float)(area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static float cellMargin(Rtree *pRtree, RtreeCell *p){
  float margin = 0.0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (float)(DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/







|
|


|








|
|


|







1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
  pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
  return rc;
}

/*
** Return the N-dimensional volumn of the cell stored in *p.
*/
static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){
  RtreeDValue area = (RtreeDValue)1;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    area = (area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])));
  }
  return area;
}

/*
** Return the margin length of cell p. The margin length is the sum
** of the objects size in each dimension.
*/
static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){
  RtreeDValue margin = (RtreeDValue)0;
  int ii;
  for(ii=0; ii<(pRtree->nDim*2); ii+=2){
    margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
  }
  return margin;
}

/*
** Store the union of cells p1 and p2 in p1.
*/
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
  }
  return 1;
}

/*
** Return the amount cell p would grow by if it were unioned with pCell.
*/
static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
  float area;
  RtreeCell cell;
  memcpy(&cell, p, sizeof(RtreeCell));
  area = cellArea(pRtree, &cell);
  cellUnion(pRtree, &cell, pCell);
  return (cellArea(pRtree, &cell)-area);
}

#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
static float cellOverlap(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  int ii;
  float overlap = 0.0;
  for(ii=0; ii<nCell; ii++){
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii!=iExclude )
#else
    assert( iExclude==-1 );
    UNUSED_PARAMETER(iExclude);
#endif
    {
      int jj;
      float o = 1.0;
      for(jj=0; jj<(pRtree->nDim*2); jj+=2){
        double x1;
        double x2;

        x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
        x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));

        if( x2<x1 ){
          o = 0.0;
          break;
        }else{
          o = o * (float)(x2-x1);
        }
      }
      overlap += o;
    }
  }
  return overlap;
}
#endif

#if VARIANT_RSTARTREE_CHOOSESUBTREE
static float cellOverlapEnlargement(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *pInsert, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  double before;
  double after;
  before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  cellUnion(pRtree, p, pInsert);
  after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  return (float)(after-before);
}
#endif


/*
** This function implements the ChooseLeaf algorithm from Gutman[84].
** ChooseSubTree in r*tree terminology.







|
|








|







|









|

|
<








|










|







|
<



|







1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
  }
  return 1;
}

/*
** Return the amount cell p would grow by if it were unioned with pCell.
*/
static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
  RtreeDValue area;
  RtreeCell cell;
  memcpy(&cell, p, sizeof(RtreeCell));
  area = cellArea(pRtree, &cell);
  cellUnion(pRtree, &cell, pCell);
  return (cellArea(pRtree, &cell)-area);
}

#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
static RtreeDValue cellOverlap(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  int ii;
  RtreeDValue overlap = 0.0;
  for(ii=0; ii<nCell; ii++){
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    if( ii!=iExclude )
#else
    assert( iExclude==-1 );
    UNUSED_PARAMETER(iExclude);
#endif
    {
      int jj;
      RtreeDValue o = (RtreeDValue)1;
      for(jj=0; jj<(pRtree->nDim*2); jj+=2){
        RtreeDValue x1, x2;


        x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
        x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));

        if( x2<x1 ){
          o = 0.0;
          break;
        }else{
          o = o * (x2-x1);
        }
      }
      overlap += o;
    }
  }
  return overlap;
}
#endif

#if VARIANT_RSTARTREE_CHOOSESUBTREE
static RtreeDValue cellOverlapEnlargement(
  Rtree *pRtree, 
  RtreeCell *p, 
  RtreeCell *pInsert, 
  RtreeCell *aCell, 
  int nCell, 
  int iExclude
){
  RtreeDValue before, after;

  before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  cellUnion(pRtree, p, pInsert);
  after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
  return (after-before);
}
#endif


/*
** This function implements the ChooseLeaf algorithm from Gutman[84].
** ChooseSubTree in r*tree terminology.
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
  RtreeNode *pNode;
  rc = nodeAcquire(pRtree, 1, 0, &pNode);

  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
    int iCell;
    sqlite3_int64 iBest = 0;

    float fMinGrowth = 0.0;
    float fMinArea = 0.0;
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    float fMinOverlap = 0.0;
    float overlap;
#endif

    int nCell = NCELL(pNode);
    RtreeCell cell;
    RtreeNode *pChild;

    RtreeCell *aCell = 0;







|
|

|
|







1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
  RtreeNode *pNode;
  rc = nodeAcquire(pRtree, 1, 0, &pNode);

  for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
    int iCell;
    sqlite3_int64 iBest = 0;

    RtreeDValue fMinGrowth = 0.0;
    RtreeDValue fMinArea = 0.0;
#if VARIANT_RSTARTREE_CHOOSESUBTREE
    RtreeDValue fMinOverlap = 0.0;
    RtreeDValue overlap;
#endif

    int nCell = NCELL(pNode);
    RtreeCell cell;
    RtreeNode *pChild;

    RtreeCell *aCell = 0;
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614

    /* Select the child node which will be enlarged the least if pCell
    ** is inserted into it. Resolve ties by choosing the entry with
    ** the smallest area.
    */
    for(iCell=0; iCell<nCell; iCell++){
      int bBest = 0;
      float growth;
      float area;
      nodeGetCell(pRtree, pNode, iCell, &cell);
      growth = cellGrowth(pRtree, &cell, pCell);
      area = cellArea(pRtree, &cell);

#if VARIANT_RSTARTREE_CHOOSESUBTREE
      if( ii==(pRtree->iDepth-1) ){
        overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);







|
|







1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637

    /* Select the child node which will be enlarged the least if pCell
    ** is inserted into it. Resolve ties by choosing the entry with
    ** the smallest area.
    */
    for(iCell=0; iCell<nCell; iCell++){
      int bBest = 0;
      RtreeDValue growth;
      RtreeDValue area;
      nodeGetCell(pRtree, pNode, iCell, &cell);
      growth = cellGrowth(pRtree, &cell, pCell);
      area = cellArea(pRtree, &cell);

#if VARIANT_RSTARTREE_CHOOSESUBTREE
      if( ii==(pRtree->iDepth-1) ){
        overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int i;
  int iLeftSeed = 0;
  int iRightSeed = 1;
  float maxNormalInnerWidth = 0.0;

  /* Pick two "seed" cells from the array of cells. The algorithm used
  ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 
  ** indices of the two seed cells in the array are stored in local
  ** variables iLeftSeek and iRightSeed.
  */
  for(i=0; i<pRtree->nDim; i++){
    float x1 = DCOORD(aCell[0].aCoord[i*2]);
    float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
    float x3 = x1;
    float x4 = x2;
    int jj;

    int iCellLeft = 0;
    int iCellRight = 0;

    for(jj=1; jj<nCell; jj++){
      float left = DCOORD(aCell[jj].aCoord[i*2]);
      float right = DCOORD(aCell[jj].aCoord[i*2+1]);

      if( left<x1 ) x1 = left;
      if( right>x4 ) x4 = right;
      if( left>x3 ){
        x3 = left;
        iCellRight = jj;
      }
      if( right<x2 ){
        x2 = right;
        iCellLeft = jj;
      }
    }

    if( x4!=x1 ){
      float normalwidth = (x3 - x2) / (x4 - x1);
      if( normalwidth>maxNormalInnerWidth ){
        iLeftSeed = iCellLeft;
        iRightSeed = iCellRight;
      }
    }
  }








|







|
|
|
|






|
|














|







1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
  int nCell, 
  int *piLeftSeed, 
  int *piRightSeed
){
  int i;
  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue maxNormalInnerWidth = (RtreeDValue)0;

  /* Pick two "seed" cells from the array of cells. The algorithm used
  ** here is the LinearPickSeeds algorithm from Gutman[1984]. The 
  ** indices of the two seed cells in the array are stored in local
  ** variables iLeftSeek and iRightSeed.
  */
  for(i=0; i<pRtree->nDim; i++){
    RtreeDValue x1 = DCOORD(aCell[0].aCoord[i*2]);
    RtreeDValue x2 = DCOORD(aCell[0].aCoord[i*2+1]);
    RtreeDValue x3 = x1;
    RtreeDValue x4 = x2;
    int jj;

    int iCellLeft = 0;
    int iCellRight = 0;

    for(jj=1; jj<nCell; jj++){
      RtreeDValue left = DCOORD(aCell[jj].aCoord[i*2]);
      RtreeDValue right = DCOORD(aCell[jj].aCoord[i*2+1]);

      if( left<x1 ) x1 = left;
      if( right>x4 ) x4 = right;
      if( left>x3 ){
        x3 = left;
        iCellRight = jj;
      }
      if( right<x2 ){
        x2 = right;
        iCellLeft = jj;
      }
    }

    if( x4!=x1 ){
      RtreeDValue normalwidth = (x3 - x2) / (x4 - x1);
      if( normalwidth>maxNormalInnerWidth ){
        iLeftSeed = iCellLeft;
        iRightSeed = iCellRight;
      }
    }
  }

1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  #define FABS(a) ((a)<0.0?-1.0*(a):(a))

  int iSelect = -1;
  float fDiff;
  int ii;
  for(ii=0; ii<nCell; ii++){
    if( aiUsed[ii]==0 ){
      float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      float diff = FABS(right-left);
      if( iSelect<0 || diff>fDiff ){
        fDiff = diff;
        iSelect = ii;
      }
    }
  }
  aiUsed[iSelect] = 1;







|



|
|
|







1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
  RtreeCell *pLeftBox, 
  RtreeCell *pRightBox,
  int *aiUsed
){
  #define FABS(a) ((a)<0.0?-1.0*(a):(a))

  int iSelect = -1;
  RtreeDValue fDiff;
  int ii;
  for(ii=0; ii<nCell; ii++){
    if( aiUsed[ii]==0 ){
      RtreeDValue left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
      RtreeDValue diff = FABS(right-left);
      if( iSelect<0 || diff>fDiff ){
        fDiff = diff;
        iSelect = ii;
      }
    }
  }
  aiUsed[iSelect] = 1;
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
  int *piRightSeed
){
  int ii;
  int jj;

  int iLeftSeed = 0;
  int iRightSeed = 1;
  float fWaste = 0.0;

  for(ii=0; ii<nCell; ii++){
    for(jj=ii+1; jj<nCell; jj++){
      float right = cellArea(pRtree, &aCell[jj]);
      float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
      float waste = growth - right;

      if( waste>fWaste ){
        iLeftSeed = ii;
        iRightSeed = jj;
        fWaste = waste;
      }
    }







|



|
|
|







1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
  int *piRightSeed
){
  int ii;
  int jj;

  int iLeftSeed = 0;
  int iRightSeed = 1;
  RtreeDValue fWaste = 0.0;

  for(ii=0; ii<nCell; ii++){
    for(jj=ii+1; jj<nCell; jj++){
      RtreeDValue right = cellArea(pRtree, &aCell[jj]);
      RtreeDValue growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
      RtreeDValue waste = growth - right;

      if( waste>fWaste ){
        iLeftSeed = ii;
        iRightSeed = jj;
        fWaste = waste;
      }
    }
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDistance(
  int *aIdx, 
  int nIdx, 
  float *aDistance, 
  int *aSpare
){
  if( nIdx>1 ){
    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;







|







1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
**
** The aSpare array is used as temporary working space by the
** sorting algorithm.
*/
static void SortByDistance(
  int *aIdx, 
  int nIdx, 
  RtreeDValue *aDistance, 
  int *aSpare
){
  if( nIdx>1 ){
    int iLeft = 0;
    int iRight = 0;

    int nLeft = nIdx/2;
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
      if( iLeft==nLeft ){
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }else if( iRight==nRight ){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        float fLeft = aDistance[aLeft[iLeft]];
        float fRight = aDistance[aRight[iRight]];
        if( fLeft<fRight ){
          aIdx[iLeft+iRight] = aLeft[iLeft];
          iLeft++;
        }else{
          aIdx[iLeft+iRight] = aRight[iRight];
          iRight++;
        }
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        float left = aDistance[aIdx[jj-1]];
        float right = aDistance[aIdx[jj]];
        assert( left<=right );
      }
    }
#endif
  }
}








|
|















|
|







1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
      if( iLeft==nLeft ){
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }else if( iRight==nRight ){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        RtreeDValue fLeft = aDistance[aLeft[iLeft]];
        RtreeDValue fRight = aDistance[aRight[iRight]];
        if( fLeft<fRight ){
          aIdx[iLeft+iRight] = aLeft[iLeft];
          iLeft++;
        }else{
          aIdx[iLeft+iRight] = aRight[iRight];
          iRight++;
        }
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue left = aDistance[aIdx[jj-1]];
        RtreeDValue right = aDistance[aIdx[jj]];
        assert( left<=right );
      }
    }
#endif
  }
}

1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;
    while( iLeft<nLeft || iRight<nRight ){
      double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
      double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
      double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
      double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
      if( (iLeft!=nLeft) && ((iRight==nRight)
       || (xleft1<xright1)
       || (xleft1==xright1 && xleft2<xright2)
      )){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
        float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
        float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
        float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
      }
    }
#endif
  }
}








|
|
|
|

















|
|
|
|







1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012

    SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
    SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);

    memcpy(aSpare, aLeft, sizeof(int)*nLeft);
    aLeft = aSpare;
    while( iLeft<nLeft || iRight<nRight ){
      RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
      RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
      RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
      RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
      if( (iLeft!=nLeft) && ((iRight==nRight)
       || (xleft1<xright1)
       || (xleft1==xright1 && xleft2<xright2)
      )){
        aIdx[iLeft+iRight] = aLeft[iLeft];
        iLeft++;
      }else{
        aIdx[iLeft+iRight] = aRight[iRight];
        iRight++;
      }
    }

#if 0
    /* Check that the sort worked */
    {
      int jj;
      for(jj=1; jj<nIdx; jj++){
        RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
        RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
        RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
        RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
        assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
      }
    }
#endif
  }
}

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
){
  int **aaSorted;
  int *aSpare;
  int ii;

  int iBestDim = 0;
  int iBestSplit = 0;
  float fBestMargin = 0.0;

  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));

  aaSorted = (int **)sqlite3_malloc(nByte);
  if( !aaSorted ){
    return SQLITE_NOMEM;
  }

  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
  memset(aaSorted, 0, nByte);
  for(ii=0; ii<pRtree->nDim; ii++){
    int jj;
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
    for(jj=0; jj<nCell; jj++){
      aaSorted[ii][jj] = jj;
    }
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
  }

  for(ii=0; ii<pRtree->nDim; ii++){
    float margin = 0.0;
    float fBestOverlap = 0.0;
    float fBestArea = 0.0;
    int iBestLeft = 0;
    int nLeft;

    for(
      nLeft=RTREE_MINCELLS(pRtree); 
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
      nLeft++
    ){
      RtreeCell left;
      RtreeCell right;
      int kk;
      float overlap;
      float area;

      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
      for(kk=1; kk<(nCell-1); kk++){
        if( kk<nLeft ){
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
        }else{







|




















|
|
|











|
|







2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
){
  int **aaSorted;
  int *aSpare;
  int ii;

  int iBestDim = 0;
  int iBestSplit = 0;
  RtreeDValue fBestMargin = 0.0;

  int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));

  aaSorted = (int **)sqlite3_malloc(nByte);
  if( !aaSorted ){
    return SQLITE_NOMEM;
  }

  aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
  memset(aaSorted, 0, nByte);
  for(ii=0; ii<pRtree->nDim; ii++){
    int jj;
    aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
    for(jj=0; jj<nCell; jj++){
      aaSorted[ii][jj] = jj;
    }
    SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
  }

  for(ii=0; ii<pRtree->nDim; ii++){
    RtreeDValue margin = 0.0;
    RtreeDValue fBestOverlap = 0.0;
    RtreeDValue fBestArea = 0.0;
    int iBestLeft = 0;
    int nLeft;

    for(
      nLeft=RTREE_MINCELLS(pRtree); 
      nLeft<=(nCell-RTREE_MINCELLS(pRtree)); 
      nLeft++
    ){
      RtreeCell left;
      RtreeCell right;
      int kk;
      RtreeDValue overlap;
      RtreeDValue area;

      memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
      memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
      for(kk=1; kk<(nCell-1); kk++){
        if( kk<nLeft ){
          cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
        }else{
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
  nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
  aiUsed[iLeftSeed] = 1;
  aiUsed[iRightSeed] = 1;

  for(i=nCell-2; i>0; i--){
    RtreeCell *pNext;
    pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
    float diff =  
      cellGrowth(pRtree, pBboxLeft, pNext) - 
      cellGrowth(pRtree, pBboxRight, pNext)
    ;
    if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
     || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
    ){
      nodeInsertCell(pRtree, pRight, pNext);







|







2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
  nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
  aiUsed[iLeftSeed] = 1;
  aiUsed[iRightSeed] = 1;

  for(i=nCell-2; i>0; i--){
    RtreeCell *pNext;
    pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
    RtreeDValue diff =  
      cellGrowth(pRtree, pBboxLeft, pNext) - 
      cellGrowth(pRtree, pBboxRight, pNext)
    ;
    if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
     || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
    ){
      nodeInsertCell(pRtree, pRight, pNext);
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466

2467
2468
2469
2470

2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
  RtreeNode *pNode, 
  RtreeCell *pCell, 
  int iHeight
){
  int *aOrder;
  int *aSpare;
  RtreeCell *aCell;
  float *aDistance;
  int nCell;
  float aCenterCoord[RTREE_MAX_DIMENSIONS];
  int iDim;
  int ii;
  int rc = SQLITE_OK;


  memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);

  nCell = NCELL(pNode)+1;


  /* Allocate the buffers used by this operation. The allocation is
  ** relinquished before this function returns.
  */
  aCell = (RtreeCell *)sqlite3_malloc(nCell * (
    sizeof(RtreeCell) +         /* aCell array */
    sizeof(int)       +         /* aOrder array */
    sizeof(int)       +         /* aSpare array */
    sizeof(float)               /* aDistance array */
  ));
  if( !aCell ){
    return SQLITE_NOMEM;
  }
  aOrder    = (int *)&aCell[nCell];
  aSpare    = (int *)&aOrder[nCell];
  aDistance = (float *)&aSpare[nCell];

  for(ii=0; ii<nCell; ii++){
    if( ii==(nCell-1) ){
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
    }else{
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
    }
    aOrder[ii] = ii;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2]);
      aCenterCoord[iDim] += (float)DCOORD(aCell[ii].aCoord[iDim*2+1]);
    }
  }
  for(iDim=0; iDim<pRtree->nDim; iDim++){
    aCenterCoord[iDim] = (float)(aCenterCoord[iDim]/((float)nCell*2.0));
  }

  for(ii=0; ii<nCell; ii++){
    aDistance[ii] = 0.0;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      float coord = (float)(DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
          DCOORD(aCell[ii].aCoord[iDim*2]));
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
    }
  }

  SortByDistance(aOrder, nCell, aDistance, aSpare);
  nodeZero(pRtree, pNode);







|

|



>

|


>




|



|




|
|
|









|
|



|





|







2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
  RtreeNode *pNode, 
  RtreeCell *pCell, 
  int iHeight
){
  int *aOrder;
  int *aSpare;
  RtreeCell *aCell;
  RtreeDValue *aDistance;
  int nCell;
  RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS];
  int iDim;
  int ii;
  int rc = SQLITE_OK;
  int n;

  memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS);

  nCell = NCELL(pNode)+1;
  n = (nCell+1)&(~1);

  /* Allocate the buffers used by this operation. The allocation is
  ** relinquished before this function returns.
  */
  aCell = (RtreeCell *)sqlite3_malloc(n * (
    sizeof(RtreeCell) +         /* aCell array */
    sizeof(int)       +         /* aOrder array */
    sizeof(int)       +         /* aSpare array */
    sizeof(RtreeDValue)             /* aDistance array */
  ));
  if( !aCell ){
    return SQLITE_NOMEM;
  }
  aOrder    = (int *)&aCell[n];
  aSpare    = (int *)&aOrder[n];
  aDistance = (RtreeDValue *)&aSpare[n];

  for(ii=0; ii<nCell; ii++){
    if( ii==(nCell-1) ){
      memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
    }else{
      nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
    }
    aOrder[ii] = ii;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
      aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
    }
  }
  for(iDim=0; iDim<pRtree->nDim; iDim++){
    aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2));
  }

  for(ii=0; ii<nCell; ii++){
    aDistance[ii] = 0.0;
    for(iDim=0; iDim<pRtree->nDim; iDim++){
      RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - 
          DCOORD(aCell[ii].aCoord[iDim*2]));
      aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
    }
  }

  SortByDistance(aOrder, nCell, aDistance, aSpare);
  nodeZero(pRtree, pNode);
2743
2744
2745
2746
2747
2748
2749

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759


2760
2761
2762
2763
2764
2765
2766
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );

    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }else{


      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }







>


|
|





|
>
>







2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){
    int ii;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );
#ifndef SQLITE_RTREE_INT_ONLY
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (RtreeValue)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (RtreeValue)sqlite3_value_double(azData[ii+4]);
        if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }else
#endif
    {
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
        cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
3150
3151
3152
3153
3154
3155
3156

3157





3158
3159
3160
3161
3162
3163
3164
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){

      sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);





      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;







>
|
>
>
>
>
>







3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
#ifndef SQLITE_RTREE_INT_ONLY
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %f",
                       (double)cell.aCoord[jj].f);
#else
      sqlite3_snprintf(512-nCell,&zCell[nCell], " %d",
                       cell.aCoord[jj].i);
#endif
      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;
3192
3193
3194
3195
3196
3197
3198



3199

3200
3201
3202
3203
3204
3205
3206
  int rc;

  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){



    void *c = (void *)RTREE_COORD_REAL32;

    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
  }
  if( rc==SQLITE_OK ){
    void *c = (void *)RTREE_COORD_INT32;
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
  }








>
>
>

>







3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
  int rc;

  rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
  }
  if( rc==SQLITE_OK ){
#ifdef SQLITE_RTREE_INT_ONLY
    void *c = (void *)RTREE_COORD_INT32;
#else
    void *c = (void *)RTREE_COORD_REAL32;
#endif
    rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
  }
  if( rc==SQLITE_OK ){
    void *c = (void *)RTREE_COORD_INT32;
    rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
  }

3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243



3244

3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
** table MATCH operators.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->xGeom = pGeomCtx->xGeom;
    pBlob->pContext = pGeomCtx->pContext;
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){



      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);

    }
    sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
  void *pContext
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

  /* Allocate and populate the context object. */
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
  if( !pGeomCtx ) return SQLITE_NOMEM;







|










>
>
>

>











|







3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
** table MATCH operators.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->xGeom = pGeomCtx->xGeom;
    pBlob->pContext = pGeomCtx->pContext;
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){
#ifdef SQLITE_RTREE_INT_ONLY
      pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
#else
      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
#endif
    }
    sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry *, int, RtreeDValue *, int *),
  void *pContext
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

  /* Allocate and populate the context object. */
  pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
  if( !pGeomCtx ) return SQLITE_NOMEM;
Changes to ext/rtree/rtree1.test.
99
100
101
102
103
104
105












106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    catchsql " 
      CREATE VIRTUAL TABLE t1 USING rtree($columns);
    "
  } $X

  catchsql { DROP TABLE t1 }
}













# Test that it is possible to open an existing database that contains
# r-tree tables.
#
do_test rtree-1.4.1 {
  execsql {
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2);
    INSERT INTO t1 VALUES(1, 5.0, 10.0);
    INSERT INTO t1 VALUES(2, 15.0, 20.0);
  }
} {}
do_test rtree-1.4.2 {
  db close
  sqlite3 db test.db
  execsql { SELECT * FROM t1 ORDER BY ii }
} {1 5.0 10.0 2 15.0 20.0}
do_test rtree-1.4.3 {
  execsql { DROP TABLE t1 }
} {}

# Test that it is possible to create an r-tree table with ridiculous
# column names.
#
do_test rtree-1.5.1 {
  execsql {
    CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
    INSERT INTO t1 VALUES(1, 2, 3);
    SELECT "the key", "x dim.", "x2'dim" FROM t1;
  }
} {1 2.0 3.0}
do_test rtree-1.5.1 {
  execsql { DROP TABLE t1 }
} {}

# Force the r-tree constructor to fail.
#
do_test rtree-1.6.1 {







>
>
>
>
>
>
>
>
>
>
>
>














|
|








|




|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    catchsql " 
      CREATE VIRTUAL TABLE t1 USING rtree($columns);
    "
  } $X

  catchsql { DROP TABLE t1 }
}

# Like execsql except display output as integer where that can be
# done without loss of information.
#
proc execsql_intout {sql} {
  set out {}
  foreach term [execsql $sql] {
    regsub {\.0$} $term {} term
    lappend out $term
  }
  return $out
}

# Test that it is possible to open an existing database that contains
# r-tree tables.
#
do_test rtree-1.4.1 {
  execsql {
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2);
    INSERT INTO t1 VALUES(1, 5.0, 10.0);
    INSERT INTO t1 VALUES(2, 15.0, 20.0);
  }
} {}
do_test rtree-1.4.2 {
  db close
  sqlite3 db test.db
  execsql_intout { SELECT * FROM t1 ORDER BY ii }
} {1 5 10 2 15 20}
do_test rtree-1.4.3 {
  execsql { DROP TABLE t1 }
} {}

# Test that it is possible to create an r-tree table with ridiculous
# column names.
#
do_test rtree-1.5.1 {
  execsql_intout {
    CREATE VIRTUAL TABLE t1 USING rtree("the key", "x dim.", "x2'dim");
    INSERT INTO t1 VALUES(1, 2, 3);
    SELECT "the key", "x dim.", "x2'dim" FROM t1;
  }
} {1 2 3}
do_test rtree-1.5.1 {
  execsql { DROP TABLE t1 }
} {}

# Force the r-tree constructor to fail.
#
do_test rtree-1.6.1 {
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
    SELECT * FROM t1;
  }
} {}

do_test rtree-2.1.2 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql { SELECT * FROM t1 }
} {1 1.0 3.0 2.0 4.0}
do_test rtree-2.1.3 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql { SELECT rowid FROM t1 ORDER BY rowid }
} {1 2}
do_test rtree-2.1.3 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql { SELECT ii FROM t1 ORDER BY ii }







|
|







169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
    SELECT * FROM t1;
  }
} {}

do_test rtree-2.1.2 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql_intout { SELECT * FROM t1 }
} {1 1 3 2 4}
do_test rtree-2.1.3 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql { SELECT rowid FROM t1 ORDER BY rowid }
} {1 2}
do_test rtree-2.1.3 {
  execsql { INSERT INTO t1 VALUES(NULL, 1, 3, 2, 4) }
  execsql { SELECT ii FROM t1 ORDER BY ii }
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
do_test rtree-3.1.1 {
  execsql { 
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
    SELECT * FROM t1;
  }
} {}
do_test rtree-3.1.2 {
  execsql { 
    INSERT INTO t1 VALUES(5, 1, 3, 2, 4);
    SELECT * FROM t1;
  }
} {5 1.0 3.0 2.0 4.0}
do_test rtree-3.1.3 {
  execsql {
    INSERT INTO t1 VALUES(6, 2, 6, 4, 8);
    SELECT * FROM t1;
  }
} {5 1.0 3.0 2.0 4.0 6 2.0 6.0 4.0 8.0}

# Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)):
do_test rtree-3.2.1 {
  catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) }
} {1 {constraint failed}}
do_test rtree-3.2.2 {
  catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) }
} {0 {}}

#----------------------------------------------------------------------------
# Test cases rtree-5.* test DELETE operations.
#
do_test rtree-5.1.1 {
  execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) }
} {}
do_test rtree-5.1.2 {
  execsql { 
    INSERT INTO t2 VALUES(1, 10, 20);
    INSERT INTO t2 VALUES(2, 30, 40);
    INSERT INTO t2 VALUES(3, 50, 60);
    SELECT * FROM t2 ORDER BY ii;
  }
} {1 10.0 20.0 2 30.0 40.0 3 50.0 60.0}
do_test rtree-5.1.3 {
  execsql { 
    DELETE FROM t2 WHERE ii=2;
    SELECT * FROM t2 ORDER BY ii;
  }
} {1 10.0 20.0 3 50.0 60.0}
do_test rtree-5.1.4 {
  execsql { 
    DELETE FROM t2 WHERE ii=1;
    SELECT * FROM t2 ORDER BY ii;
  }
} {3 50.0 60.0}
do_test rtree-5.1.5 {
  execsql { 
    DELETE FROM t2 WHERE ii=3;
    SELECT * FROM t2 ORDER BY ii;
  }
} {}
do_test rtree-5.1.6 {
  execsql { SELECT * FROM t2_rowid }
} {}

#----------------------------------------------------------------------------
# Test cases rtree-5.* test UPDATE operations.
#
do_test rtree-6.1.1 {
  execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) }
} {}
do_test rtree-6.1.2 {
  execsql {
    INSERT INTO t3 VALUES(1, 2, 3, 4, 5);
    UPDATE t3 SET x2=5;
    SELECT * FROM t3;
  }
} {1 2.0 5.0 4.0 5.0}
do_test rtree-6.1.3 {
  execsql { UPDATE t3 SET ii = 2 }
  execsql { SELECT * FROM t3 }
} {2 2.0 5.0 4.0 5.0}

#----------------------------------------------------------------------------
# Test cases rtree-7.* test rename operations.
#
do_test rtree-7.1.1 {
  execsql {
    CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2);
    INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7);
  }
} {}
do_test rtree-7.1.2 {
  execsql { ALTER TABLE t4 RENAME TO t5 }
  execsql { SELECT * FROM t5 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.3 {
  db close
  sqlite3 db test.db
  execsql { SELECT * FROM t5 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.4 {
  execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''}
  execsql { SELECT * FROM "raisara ""one""'" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.5 {
  execsql { SELECT * FROM 'raisara "one"''' }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.6 {
  execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" }
  execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.1.7 {
  db close
  sqlite3 db test.db
  execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}

# An error midway through a rename operation.
do_test rtree-7.2.1 {
  execsql { 
    CREATE TABLE t4_node(a);
  }
  catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.2 {
  execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.2.3 {
  execsql { 
    DROP TABLE t4_node;
    CREATE TABLE t4_rowid(a);
  }
  catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.4 {
  db close
  sqlite3 db test.db
  execsql { SELECT * FROM "abc 123" }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}
do_test rtree-7.2.5 {
  execsql { DROP TABLE t4_rowid }
  execsql { ALTER TABLE "abc 123" RENAME TO t4 }
  execsql { SELECT * FROM t4 }
} {1 2.0 3.0 4.0 5.0 6.0 7.0}


#----------------------------------------------------------------------------
# Test cases rtree-8.*
#

# Test that the function to determine if a leaf cell is part of the







|



|

|



|
















|





|

|



|

|



|

















|




|


|
|












|
|



|
|


|
|

|
|


|
|



|
|









|
|










|
|



|
|







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
do_test rtree-3.1.1 {
  execsql { 
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x1, x2, y1, y2);
    SELECT * FROM t1;
  }
} {}
do_test rtree-3.1.2 {
  execsql_intout { 
    INSERT INTO t1 VALUES(5, 1, 3, 2, 4);
    SELECT * FROM t1;
  }
} {5 1 3 2 4}
do_test rtree-3.1.3 {
  execsql_intout {
    INSERT INTO t1 VALUES(6, 2, 6, 4, 8);
    SELECT * FROM t1;
  }
} {5 1 3 2 4 6 2 6 4 8}

# Test the constraint on the coordinates (c[i]<=c[i+1] where (i%2==0)):
do_test rtree-3.2.1 {
  catchsql { INSERT INTO t1 VALUES(7, 2, 6, 4, 3) }
} {1 {constraint failed}}
do_test rtree-3.2.2 {
  catchsql { INSERT INTO t1 VALUES(8, 2, 6, 3, 3) }
} {0 {}}

#----------------------------------------------------------------------------
# Test cases rtree-5.* test DELETE operations.
#
do_test rtree-5.1.1 {
  execsql { CREATE VIRTUAL TABLE t2 USING rtree(ii, x1, x2) }
} {}
do_test rtree-5.1.2 {
  execsql_intout { 
    INSERT INTO t2 VALUES(1, 10, 20);
    INSERT INTO t2 VALUES(2, 30, 40);
    INSERT INTO t2 VALUES(3, 50, 60);
    SELECT * FROM t2 ORDER BY ii;
  }
} {1 10 20 2 30 40 3 50 60}
do_test rtree-5.1.3 {
  execsql_intout { 
    DELETE FROM t2 WHERE ii=2;
    SELECT * FROM t2 ORDER BY ii;
  }
} {1 10 20 3 50 60}
do_test rtree-5.1.4 {
  execsql_intout { 
    DELETE FROM t2 WHERE ii=1;
    SELECT * FROM t2 ORDER BY ii;
  }
} {3 50 60}
do_test rtree-5.1.5 {
  execsql { 
    DELETE FROM t2 WHERE ii=3;
    SELECT * FROM t2 ORDER BY ii;
  }
} {}
do_test rtree-5.1.6 {
  execsql { SELECT * FROM t2_rowid }
} {}

#----------------------------------------------------------------------------
# Test cases rtree-5.* test UPDATE operations.
#
do_test rtree-6.1.1 {
  execsql { CREATE VIRTUAL TABLE t3 USING rtree(ii, x1, x2, y1, y2) }
} {}
do_test rtree-6.1.2 {
  execsql_intout {
    INSERT INTO t3 VALUES(1, 2, 3, 4, 5);
    UPDATE t3 SET x2=5;
    SELECT * FROM t3;
  }
} {1 2 5 4 5}
do_test rtree-6.1.3 {
  execsql { UPDATE t3 SET ii = 2 }
  execsql_intout { SELECT * FROM t3 }
} {2 2 5 4 5}

#----------------------------------------------------------------------------
# Test cases rtree-7.* test rename operations.
#
do_test rtree-7.1.1 {
  execsql {
    CREATE VIRTUAL TABLE t4 USING rtree(ii, x1, x2, y1, y2, z1, z2);
    INSERT INTO t4 VALUES(1, 2, 3, 4, 5, 6, 7);
  }
} {}
do_test rtree-7.1.2 {
  execsql { ALTER TABLE t4 RENAME TO t5 }
  execsql_intout { SELECT * FROM t5 }
} {1 2 3 4 5 6 7}
do_test rtree-7.1.3 {
  db close
  sqlite3 db test.db
  execsql_intout { SELECT * FROM t5 }
} {1 2 3 4 5 6 7}
do_test rtree-7.1.4 {
  execsql { ALTER TABLE t5 RENAME TO 'raisara "one"'''}
  execsql_intout { SELECT * FROM "raisara ""one""'" }
} {1 2 3 4 5 6 7}
do_test rtree-7.1.5 {
  execsql_intout { SELECT * FROM 'raisara "one"''' }
} {1 2 3 4 5 6 7}
do_test rtree-7.1.6 {
  execsql { ALTER TABLE "raisara ""one""'" RENAME TO "abc 123" }
  execsql_intout { SELECT * FROM "abc 123" }
} {1 2 3 4 5 6 7}
do_test rtree-7.1.7 {
  db close
  sqlite3 db test.db
  execsql_intout { SELECT * FROM "abc 123" }
} {1 2 3 4 5 6 7}

# An error midway through a rename operation.
do_test rtree-7.2.1 {
  execsql { 
    CREATE TABLE t4_node(a);
  }
  catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.2 {
  execsql_intout { SELECT * FROM "abc 123" }
} {1 2 3 4 5 6 7}
do_test rtree-7.2.3 {
  execsql { 
    DROP TABLE t4_node;
    CREATE TABLE t4_rowid(a);
  }
  catchsql { ALTER TABLE "abc 123" RENAME TO t4 }
} {1 {SQL logic error or missing database}}
do_test rtree-7.2.4 {
  db close
  sqlite3 db test.db
  execsql_intout { SELECT * FROM "abc 123" }
} {1 2 3 4 5 6 7}
do_test rtree-7.2.5 {
  execsql { DROP TABLE t4_rowid }
  execsql { ALTER TABLE "abc 123" RENAME TO t4 }
  execsql_intout { SELECT * FROM t4 }
} {1 2 3 4 5 6 7}


#----------------------------------------------------------------------------
# Test cases rtree-8.*
#

# Test that the function to determine if a leaf cell is part of the
Changes to ext/rtree/rtree4.test.
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
















43
44
45
46
47
48
49
}

set ::NROW 2500
if {[info exists G(isquick)] && $G(isquick)} {
  set ::NROW 250
}


# Return a floating point number between -X and X.
# 
proc rand {X} {
  return [expr {int((rand()-0.5)*1024.0*$X)/512.0}]
}

# Return a positive floating point number less than or equal to X
#
proc randincr {X} {
  while 1 {
    set r [expr {int(rand()*$X*32.0)/32.0}]
    if {$r>0.0} {return $r}
  }
















}

# Scramble the $inlist into a random order.
#
proc scramble {inlist} {
  set y {}
  foreach x $inlist {







>













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
}

set ::NROW 2500
if {[info exists G(isquick)] && $G(isquick)} {
  set ::NROW 250
}

ifcapable !rtree_int_only {
# Return a floating point number between -X and X.
# 
proc rand {X} {
  return [expr {int((rand()-0.5)*1024.0*$X)/512.0}]
}

# Return a positive floating point number less than or equal to X
#
proc randincr {X} {
  while 1 {
    set r [expr {int(rand()*$X*32.0)/32.0}]
    if {$r>0.0} {return $r}
  }
  }
} else {
  # For rtree_int_only, return an number between -X and X.
  # 
  proc rand {X} {
    return [expr {int((rand()-0.5)*2*$X)}]
  }
  
  # Return a positive integer less than or equal to X
  #
  proc randincr {X} {
    while 1 {
      set r [expr {int(rand()*$X)+1}]
      if {$r>0} {return $r}
    }
  }
}

# Scramble the $inlist into a random order.
#
proc scramble {inlist} {
  set y {}
  foreach x $inlist {
Changes to ext/rtree/rtree5.test.
45
46
47
48
49
50
51

52
53
54

55
56
57
58
59
60
61
do_test rtree5-1.6 { 
  execsql { SELECT x1==5.0 FROM t1 }
} {1}

do_test rtree5-1.7 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5 }
} {1}

do_test rtree5-1.8 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5.2 }
} {0}

do_test rtree5-1.9 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5.0 }
} {1}

do_test rtree5-1.10 { 
  execsql { SELECT (1<<31)-5, (1<<31)-1, -1*(1<<31), -1*(1<<31)+5 }
} {2147483643 2147483647 -2147483648 -2147483643}







>



>







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
do_test rtree5-1.6 { 
  execsql { SELECT x1==5.0 FROM t1 }
} {1}

do_test rtree5-1.7 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5 }
} {1}
ifcapable !rtree_int_only {
do_test rtree5-1.8 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5.2 }
} {0}
}
do_test rtree5-1.9 { 
  execsql { SELECT count(*) FROM t1 WHERE x1==5.0 }
} {1}

do_test rtree5-1.10 { 
  execsql { SELECT (1<<31)-5, (1<<31)-1, -1*(1<<31), -1*(1<<31)+5 }
} {2147483643 2147483647 -2147483648 -2147483643}
Changes to ext/rtree/rtree6.test.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl

ifcapable !rtree {
  finish_test
  return
}

#   Operator    Byte Value
#   ----------------------
#      =        0x41 ('A')







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl

ifcapable {!rtree || rtree_int_only} {
  finish_test
  return
}

#   Operator    Byte Value
#   ----------------------
#      =        0x41 ('A')
Changes to ext/rtree/rtree7.test.
19
20
21
22
23
24
25












26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
} 
source $testdir/tester.tcl

ifcapable !rtree||!vacuum {
  finish_test
  return
}













do_test rtree7-1.1 {
  execsql {
    PRAGMA page_size = 1024;
    CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2);
    INSERT INTO rt VALUES(1, 1, 2, 3, 4);
  }
} {}
do_test rtree7-1.2 {
  execsql { SELECT * FROM rt }
} {1 1.0 2.0 3.0 4.0}
do_test rtree7-1.3 {
  execsql { 
    PRAGMA page_size = 2048;
    VACUUM;
    SELECT * FROM rt;
  }
} {1 1.0 2.0 3.0 4.0}
do_test rtree7-1.4 {
  for {set i 2} {$i <= 51} {incr i} {
    execsql { INSERT INTO rt VALUES($i, 1, 2, 3, 4) }
  }
  execsql { SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt }
} {51.0 102.0 153.0 204.0}
do_test rtree7-1.5 {
  execsql { 
    PRAGMA page_size = 512;
    VACUUM;
    SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt
  }
} {51.0 102.0 153.0 204.0}

finish_test







>
>
>
>
>
>
>
>
>
>
>
>









|
|

|




|




|
|

|




|


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
} 
source $testdir/tester.tcl

ifcapable !rtree||!vacuum {
  finish_test
  return
}

# Like execsql except display output as integer where that can be
# done without loss of information.
#
proc execsql_intout {sql} {
  set out {}
  foreach term [execsql $sql] {
    regsub {\.0$} $term {} term
    lappend out $term
  }
  return $out
}

do_test rtree7-1.1 {
  execsql {
    PRAGMA page_size = 1024;
    CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2);
    INSERT INTO rt VALUES(1, 1, 2, 3, 4);
  }
} {}
do_test rtree7-1.2 {
  execsql_intout { SELECT * FROM rt }
} {1 1 2 3 4}
do_test rtree7-1.3 {
  execsql_intout { 
    PRAGMA page_size = 2048;
    VACUUM;
    SELECT * FROM rt;
  }
} {1 1 2 3 4}
do_test rtree7-1.4 {
  for {set i 2} {$i <= 51} {incr i} {
    execsql { INSERT INTO rt VALUES($i, 1, 2, 3, 4) }
  }
  execsql_intout { SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt }
} {51 102 153 204}
do_test rtree7-1.5 {
  execsql_intout { 
    PRAGMA page_size = 512;
    VACUUM;
    SELECT sum(x1), sum(x2), sum(y1), sum(y2) FROM rt
  }
} {51 102 153 204}

finish_test
Changes to ext/rtree/rtree9.test.
13
14
15
16
17
18
19

20
21
22
23
24
25
26
# 

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl
ifcapable !rtree { finish_test ; return }


register_cube_geom db

do_execsql_test rtree9-1.1 {
  CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2, z1, z2);
  INSERT INTO rt VALUES(1, 1, 2, 1, 2, 1, 2);
} {}







>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# 

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl
ifcapable !rtree { finish_test ; return }
ifcapable rtree_int_only { finish_test; return }

register_cube_geom db

do_execsql_test rtree9-1.1 {
  CREATE VIRTUAL TABLE rt USING rtree(id, x1, x2, y1, y2, z1, z2);
  INSERT INTO rt VALUES(1, 1, 2, 1, 2, 1, 2);
} {}
Changes to ext/rtree/rtreeB.test.
14
15
16
17
18
19
20













21
22
23
24
25
26
27
28
29
30
31
32
33
34

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl
ifcapable !rtree { finish_test ; return }














do_test rtreeB-1.1 {
  db eval {
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1);
    INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0);
    INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0);
    INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0);
    INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0);
    INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400);
    SELECT rtreenode(2, data) FROM t1_node;
  }
} {{{1073741824 0.000000 0.000000 100.000000 100.000000} {2147483646 0.000000 0.000000 200.000000 200.000000} {4294967296 0.000000 0.000000 300.000000 300.000000} {8589934592 20.000000 20.000000 150.000000 150.000000} {9223372036854775807 150.000000 150.000000 400.000000 400.000000}}}


finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>











|


14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

if {![info exists testdir]} {
  set testdir [file join [file dirname [info script]] .. .. test]
} 
source $testdir/tester.tcl
ifcapable !rtree { finish_test ; return }

ifcapable rtree_int_only {
  do_test rtreeB-1.1-intonly {
    db eval {
      CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1);
      INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0);
      INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0);
      INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0);
      INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0);
      INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400);
      SELECT rtreenode(2, data) FROM t1_node;
    }
  } {{{1073741824 0 0 100 100} {2147483646 0 0 200 200} {4294967296 0 0 300 300} {8589934592 20 20 150 150} {9223372036854775807 150 150 400 400}}}
} else {  
do_test rtreeB-1.1 {
  db eval {
    CREATE VIRTUAL TABLE t1 USING rtree(ii, x0, y0, x1, y1);
    INSERT INTO t1 VALUES(1073741824, 0.0, 0.0, 100.0, 100.0);
    INSERT INTO t1 VALUES(2147483646, 0.0, 0.0, 200.0, 200.0);
    INSERT INTO t1 VALUES(4294967296, 0.0, 0.0, 300.0, 300.0);
    INSERT INTO t1 VALUES(8589934592, 20.0, 20.0, 150.0, 150.0);
    INSERT INTO t1 VALUES(9223372036854775807, 150, 150, 400, 400);
    SELECT rtreenode(2, data) FROM t1_node;
  }
} {{{1073741824 0.000000 0.000000 100.000000 100.000000} {2147483646 0.000000 0.000000 200.000000 200.000000} {4294967296 0.000000 0.000000 300.000000 300.000000} {8589934592 20.000000 20.000000 150.000000 150.000000} {9223372036854775807 150.000000 150.000000 400.000000 400.000000}}}
}

finish_test
Changes to ext/rtree/sqlite3rtree.h.
27
28
29
30
31
32
33



34

35
36
37
38
39
40
41
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,



  int (*xGeom)(sqlite3_rtree_geometry *, int nCoord, double *aCoord, int *pRes),

  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().







>
>
>
|
>







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
#ifdef SQLITE_RTREE_INT_ONLY
  int (*xGeom)(sqlite3_rtree_geometry*, int n, sqlite3_int64 *a, int *pRes),
#else
  int (*xGeom)(sqlite3_rtree_geometry*, int n, double *a, int *pRes),
#endif
  void *pContext
);


/*
** A pointer to a structure of the following type is passed as the first
** argument to callbacks registered using rtree_geometry_callback().
Changes to src/btree.c.
7550
7551
7552
7553
7554
7555
7556



















7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574

7575
7576
7577
7578
7579
7580
7581
7582
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK



















/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( pCheck->anRef[iPage]==1 ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }

  return  (pCheck->anRef[iPage]++)>1;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|



>
|







7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

/*
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
** corresponds to page iPg is already set.
*/
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
}

/*
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
*/
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
7944
7945
7946
7947
7948
7949
7950
7951

7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }
  sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );

  if( !sCheck.anRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }
  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ){
    sCheck.anRef[i] = 1;
  }
  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");







|
>
|




<

|
<
<







7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977

7978
7979


7980
7981
7982
7983
7984
7985
7986
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite3BtreeLeave(p);
    return 0;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    *pnErr = 1;
    sqlite3BtreeLeave(p);
    return 0;
  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);


  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( sCheck.anRef[i]==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( sCheck.anRef[i]==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( sCheck.anRef[i]!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.anRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);







|






|



|




















|







7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite3PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite3BtreeLeave(p);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
Changes to src/btreeInt.h.
627
628
629
630
631
632
633






634
635
636
637
638
639
640
641
642
643
644
645
646
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.






*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  int *anRef;       /* Number of times each page is referenced */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};








>
>
>
>
>
>





|







627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
**
** The aRef[] array is allocated so that there is 1 bit for each page in
** the database. As the integrity-check proceeds, for each page used in
** the database the corresponding bit is set. This allows integrity-check to 
** detect pages that are used twice and orphaned pages (both of which 
** indicate corruption).
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  u8 *aPgRef;       /* 1 bit per page in the db (see above) */
  Pgno nPage;       /* Number of pages in the database */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

Changes to src/callback.c.
218
219
220
221
222
223
224
225








226
227
228
229
230
231
232
233
234
235
236
237
238
239



240

241




242
243

244
245


246


247
248


249


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
}

/* During the search for the best function definition, this procedure
** is called to test how well the function passed as the first argument
** matches the request for a function with nArg arguments in a system
** that uses encoding enc. The value returned indicates how well the
** request is matched. A higher value indicates a better match.
**








** The returned value is always between 0 and 6, as follows:
**
** 0: Not a match, or if nArg<0 and the function is has no implementation.
** 1: A variable arguments function that prefers UTF-8 when a UTF-16
**    encoding is requested, or vice versa.
** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is
**    requested, or vice versa.
** 3: A variable arguments function using the same text encoding.
** 4: A function with the exact number of arguments requested that
**    prefers UTF-8 when a UTF-16 encoding is requested, or vice versa.
** 5: A function with the exact number of arguments requested that
**    prefers UTF-16LE when UTF-16BE is requested, or vice versa.
** 6: An exact match.
**



*/

static int matchQuality(FuncDef *p, int nArg, u8 enc){




  int match = 0;
  if( p->nArg==-1 || p->nArg==nArg 

   || (nArg==-1 && (p->xFunc!=0 || p->xStep!=0))
  ){


    match = 1;


    if( p->nArg==nArg || nArg==-1 ){
      match = 4;


    }


    if( enc==p->iPrefEnc ){
      match += 2;
    }
    else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) ||
             (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){
      match += 1;
    }
  }
  return match;
}

/*
** Search a FuncDefHash for a function with the given name.  Return
** a pointer to the matching FuncDef if found, or 0 if there is no match.
*/








>
>
>
>
>
>
>
>


|
|
<
|
<
|
|
<
|
<
|

>
>
>

>
|
>
>
>
>
|
|
>
|
|
>
>
|
>
>
|

>
>

>
>

|
<
<
|
|

|







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

238

239
240

241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272


273
274
275
276
277
278
279
280
281
282
283
}

/* During the search for the best function definition, this procedure
** is called to test how well the function passed as the first argument
** matches the request for a function with nArg arguments in a system
** that uses encoding enc. The value returned indicates how well the
** request is matched. A higher value indicates a better match.
**
** If nArg is -1 that means to only return a match (non-zero) if p->nArg
** is also -1.  In other words, we are searching for a function that
** takes a variable number of arguments.
**
** If nArg is -2 that means that we are searching for any function 
** regardless of the number of arguments it uses, so return a positive
** match score for any
**
** The returned value is always between 0 and 6, as follows:
**
** 0: Not a match.
** 1: UTF8/16 conversion required and function takes any number of arguments.

** 2: UTF16 byte order change required and function takes any number of args.

** 3: encoding matches and function takes any number of arguments
** 4: UTF8/16 conversion required - argument count matches exactly

** 5: UTF16 byte order conversion required - argument count matches exactly

** 6: Perfect match:  encoding and argument count match exactly.
**
** If nArg==(-2) then any function with a non-null xStep or xFunc is
** a perfect match and any function with both xStep and xFunc NULL is
** a non-match.
*/
#define FUNC_PERFECT_MATCH 6  /* The score for a perfect match */
static int matchQuality(
  FuncDef *p,     /* The function we are evaluating for match quality */
  int nArg,       /* Desired number of arguments.  (-1)==any */
  u8 enc          /* Desired text encoding */
){
  int match;

  /* nArg of -2 is a special case */
  if( nArg==(-2) ) return (p->xFunc==0 && p->xStep==0) ? 0 : FUNC_PERFECT_MATCH;

  /* Wrong number of arguments means "no match" */
  if( p->nArg!=nArg && p->nArg>=0 ) return 0;

  /* Give a better score to a function with a specific number of arguments
  ** than to function that accepts any number of arguments. */
  if( p->nArg==nArg ){
      match = 4;
  }else{
    match = 1;
    }

  /* Bonus points if the text encoding matches */
    if( enc==p->iPrefEnc ){
    match += 2;  /* Exact encoding match */


  }else if( (enc & p->iPrefEnc & 2)!=0 ){
    match += 1;  /* Both are UTF16, but with different byte orders */
    }

  return match;
}

/*
** Search a FuncDefHash for a function with the given name.  Return
** a pointer to the matching FuncDef if found, or 0 if there is no match.
*/
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8.  Return a
** pointer to the FuncDef structure that defines that function, or return
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.  When createFlag is true
** and the nArg parameter is -1, then only a function that accepts
** any number of arguments will be returned.
**
** If createFlag is false and nArg is -1, then the first valid
** function found is returned.  A function is valid if either xFunc

** or xStep is non-zero.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
FuncDef *sqlite3FindFunction(
  sqlite3 *db,       /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  u8 enc,            /* Preferred text encoding */
  int createFlag     /* Create new entry if true and does not otherwise exist */
){
  FuncDef *p;         /* Iterator variable */
  FuncDef *pBest = 0; /* Best match found so far */
  int bestScore = 0;  /* Score of best match */
  int h;              /* Hash value */



  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);

  /* First search for a match amongst the application-defined functions.
  */
  p = functionSearch(&db->aFunc, h, zName, nName);
  while( p ){







|
<
<

|
|
>
|











|






|
>







325
326
327
328
329
330
331
332


333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
** Locate a user function given a name, a number of arguments and a flag
** indicating whether the function prefers UTF-16 over UTF-8.  Return a
** pointer to the FuncDef structure that defines that function, or return
** NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed.


**
** If nArg is -2, then the first valid function found is returned.  A
** function is valid if either xFunc or xStep is non-zero.  The nArg==(-2)
** case is used to see if zName is a valid function name for some number
** of arguments.  If nArg is -2, then createFlag must be 0.
**
** If createFlag is false, then a function with the required name and
** number of arguments may be returned even if the eTextRep flag does not
** match that requested.
*/
FuncDef *sqlite3FindFunction(
  sqlite3 *db,       /* An open database */
  const char *zName, /* Name of the function.  Not null-terminated */
  int nName,         /* Number of characters in the name */
  int nArg,          /* Number of arguments.  -1 means any number */
  u8 enc,            /* Preferred text encoding */
  u8 createFlag      /* Create new entry if true and does not otherwise exist */
){
  FuncDef *p;         /* Iterator variable */
  FuncDef *pBest = 0; /* Best match found so far */
  int bestScore = 0;  /* Score of best match */
  int h;              /* Hash value */

  assert( nArg>=(-2) );
  assert( nArg>=(-1) || createFlag==0 );
  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a);

  /* First search for a match amongst the application-defined functions.
  */
  p = functionSearch(&db->aFunc, h, zName, nName);
  while( p ){
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    }
  }

  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && (bestScore<6 || pBest->nArg!=nArg) && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->iPrefEnc = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);







|







396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    }
  }

  /* If the createFlag parameter is true and the search did not reveal an
  ** exact match for the name, number of arguments and encoding, then add a
  ** new entry to the hash table and return it.
  */
  if( createFlag && bestScore<FUNC_PERFECT_MATCH && 
      (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){
    pBest->zName = (char *)&pBest[1];
    pBest->nArg = (u16)nArg;
    pBest->iPrefEnc = enc;
    memcpy(pBest->zName, zName, nName);
    pBest->zName[nName] = 0;
    sqlite3FuncDefInsert(&db->aFunc, pBest);
Changes to src/expr.c.
480
481
482
483
484
485
486





487
488

489
490
491
492
493


















494
495
496
497




498
499
500
501
502
503




504
505
506
507
508
509
510
Expr *sqlite3PExpr(
  Parse *pParse,          /* Parsing context */
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){





  Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
  sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);

  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}



















/*
** Join two expressions using an AND operator.  If either expression is
** NULL, then just return the other expression.




*/
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
  if( pLeft==0 ){
    return pRight;
  }else if( pRight==0 ){
    return pLeft;




  }else{
    Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
    sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
    return pNew;
  }
}








>
>
>
>
>
|

>





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>
>
>






>
>
>
>







480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
Expr *sqlite3PExpr(
  Parse *pParse,          /* Parsing context */
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){
  Expr *p;
  if( op==TK_AND && pLeft && pRight ){
    /* Take advantage of short-circuit false optimization for AND */
    p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
  }else{
    p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
  sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  }
  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}

/*
** Return 1 if an expression must be FALSE in all cases and 0 if the
** expression might be true.  This is an optimization.  If is OK to
** return 0 here even if the expression really is always false (a 
** false negative).  But it is a bug to return 1 if the expression
** might be true in some rare circumstances (a false positive.)
**
** Note that if the expression is part of conditional for a
** LEFT JOIN, then we cannot determine at compile-time whether or not
** is it true or false, so always return 0.
*/
static int exprAlwaysFalse(Expr *p){
  int v = 0;
  if( ExprHasProperty(p, EP_FromJoin) ) return 0;
  if( !sqlite3ExprIsInteger(p, &v) ) return 0;
  return v==0;
}

/*
** Join two expressions using an AND operator.  If either expression is
** NULL, then just return the other expression.
**
** If one side or the other of the AND is known to be false, then instead
** of returning an AND expression, just return a constant expression with
** a value of false.
*/
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
  if( pLeft==0 ){
    return pRight;
  }else if( pRight==0 ){
    return pLeft;
  }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
    sqlite3ExprDelete(db, pLeft);
    sqlite3ExprDelete(db, pRight);
    return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
  }else{
    Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
    sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
    return pNew;
  }
}

3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;







|







3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
  if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
  if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
  if( ExprHasProperty(pA, EP_IntValue) ){
    if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
      return 2;
    }
  }else if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
    if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
  if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3778
3779
3780
3781
3782
3783
3784



































3785
3786
3787
3788
3789
3790
3791
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}




































/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  int i;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
    Expr *pExprA = pA->a[i].pExpr;
    Expr *pExprB = pB->a[i].pExpr;
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}

/*
** This is the expression callback for sqlite3FunctionUsesOtherSrc().
**
** Determine if an expression references any table other than one of the
** tables in pWalker->u.pSrcList and abort if it does.
*/
static int exprUsesOtherSrc(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
    int i;
    SrcList *pSrc = pWalker->u.pSrcList;
    for(i=0; i<pSrc->nSrc; i++){
      if( pExpr->iTable==pSrc->a[i].iCursor ) return WRC_Continue;
    }
    return WRC_Abort;
  }else{
    return WRC_Continue;
  }
}

/*
** Determine if any of the arguments to the pExpr Function references
** any SrcList other than pSrcList.  Return true if they do.  Return
** false if pExpr has no argument or has only constant arguments or
** only references tables named in pSrcList.
*/
static int sqlite3FunctionUsesOtherSrc(Expr *pExpr, SrcList *pSrcList){
  Walker w;
  assert( pExpr->op==TK_AGG_FUNCTION );
  memset(&w, 0, sizeof(w));
  w.xExprCallback = exprUsesOtherSrc;
  w.u.pSrcList = pSrcList;
  if( sqlite3WalkExprList(&w, pExpr->x.pList)!=WRC_Continue ) return 1;
  return 0;
}

/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  int i;
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
      ** to be ignored */
      if( pNC->nDepth==0 ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
            break;







|
<
<







3961
3962
3963
3964
3965
3966
3967
3968


3969
3970
3971
3972
3973
3974
3975
            break;
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      if( !sqlite3FunctionUsesOtherSrc(pExpr, pSrcList) ){


        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
            break;
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967

3968
3969
3970
3971
3972
3973
3974
        return WRC_Prune;
      }
    }
  }
  return WRC_Continue;
}
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
  NameContext *pNC = pWalker->u.pNC;
  if( pNC->nDepth==0 ){
    pNC->nDepth++;
    sqlite3WalkSelect(pWalker, pSelect);
    pNC->nDepth--;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ResolveExprNames().
*/
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  Walker w;

  w.xExprCallback = analyzeAggregate;
  w.xSelectCallback = analyzeAggregatesInSelect;
  w.u.pNC = pNC;
  assert( pNC->pSrcList!=0 );
  sqlite3WalkExpr(&w, pExpr);
}








<
<
<
<
<
<
<


<











>







4005
4006
4007
4008
4009
4010
4011







4012
4013

4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
        return WRC_Prune;
      }
    }
  }
  return WRC_Continue;
}
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){







    return WRC_Continue;
  }


/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqlite3ResolveExprNames().
*/
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = analyzeAggregate;
  w.xSelectCallback = analyzeAggregatesInSelect;
  w.u.pNC = pNC;
  assert( pNC->pSrcList!=0 );
  sqlite3WalkExpr(&w, pExpr);
}

Changes to src/insert.c.
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
  }

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;
    int i;
    pParse->ckBase = regData;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);







<







1214
1215
1216
1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
  }

  /* Test all CHECK constraints
  */
#ifndef SQLITE_OMIT_CHECK
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;

    pParse->ckBase = regData;
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk = sqlite3VdbeMakeLabel(v);
      sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
Changes to src/os_unix.c.
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539






540
541
542
543



544
545
546
547
548
549
550
551
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}

/*
** Invoke open().  Do so multiple times, until it either succeeds or
** files for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int rc;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }






  do{ rc = osOpen(z,f,m2); }while( rc<0 && errno==EINTR );
  if( m ){
    osUmask(origM);
  }



  return rc;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
** shared by multiple threads.







|















|








>
>
>
>
>
>
|



>
>
>
|







508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
  }
  return 0;
}

/*
** Invoke open().  Do so multiple times, until it either succeeds or
** fails for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite.  The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask.  If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files.  We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
  int fd;
  mode_t m2;
  mode_t origM = 0;
  if( m==0 ){
    m2 = SQLITE_DEFAULT_FILE_PERMISSIONS;
  }else{
    m2 = m;
    origM = osUmask(0);
  }
  do{
#if defined(O_CLOEXEC)
    fd = osOpen(z,f|O_CLOEXEC,m2);
#else
    fd = osOpen(z,f,m2);
#endif
  }while( fd<0 && errno==EINTR );
  if( m ){
    osUmask(origM);
  }
#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
  if( fd>=0 ) osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
  return fd;
}

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be 
** shared by multiple threads.
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';
    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
    if( fd>=0 ){
#ifdef FD_CLOEXEC
      osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
    }
  }
  *pFd = fd;
  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
}








<
<
<







3341
3342
3343
3344
3345
3346
3347



3348
3349
3350
3351
3352
3353
3354

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';
    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
    if( fd>=0 ){



      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
    }
  }
  *pFd = fd;
  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
}

3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, (off_t)nByte);
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);







|







3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, (off_t)nByte);
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    p->openFlags = openFlags;
  }
#endif

#ifdef FD_CLOEXEC
  osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);







<
<
<
<







5185
5186
5187
5188
5189
5190
5191




5192
5193
5194
5195
5196
5197
5198
  }
#if SQLITE_ENABLE_LOCKING_STYLE
  else{
    p->openFlags = openFlags;
  }
#endif





  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);
Changes to src/resolve.c.
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;







|







529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

      testcase( pExpr->op==TK_CONST_FUNC );
      assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
      zId = pExpr->u.zToken;
      nId = sqlite3Strlen30(zId);
      pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
      if( pDef==0 ){
        pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0);
        if( pDef==0 ){
          no_such_func = 1;
        }else{
          wrong_num_args = 1;
        }
      }else{
        is_agg = pDef->xFunc==0;
Changes to src/rowset.c.
72
73
74
75
76
77
78





79
80
81
82
83
84
85
** The number of rowset entries per allocation chunk.
*/
#define ROWSET_ENTRY_PER_CHUNK  \
                       ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))

/*
** Each entry in a RowSet is an instance of the following object.





*/
struct RowSetEntry {            
  i64 v;                        /* ROWID value for this entry */
  struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
  struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
};








>
>
>
>
>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
** The number of rowset entries per allocation chunk.
*/
#define ROWSET_ENTRY_PER_CHUNK  \
                       ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))

/*
** Each entry in a RowSet is an instance of the following object.
**
** This same object is reused to store a linked list of trees of RowSetEntry
** objects.  In that alternative use, pRight points to the next entry
** in the list, pLeft points to the tree, and v is unused.  The
** RowSet.pForest value points to the head of this forest list.
*/
struct RowSetEntry {            
  i64 v;                        /* ROWID value for this entry */
  struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
  struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
};

101
102
103
104
105
106
107
108
109
110
111
112
113






114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157


158























159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
*/
struct RowSet {
  struct RowSetChunk *pChunk;    /* List of all chunk allocations */
  sqlite3 *db;                   /* The database connection */
  struct RowSetEntry *pEntry;    /* List of entries using pRight */
  struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
  struct RowSetEntry *pFresh;    /* Source of new entry objects */
  struct RowSetEntry *pTree;     /* Binary tree of entries */
  u16 nFresh;                    /* Number of objects on pFresh */
  u8 isSorted;                   /* True if pEntry is sorted */
  u8 iBatch;                     /* Current insert batch */
};







/*
** Turn bulk memory into a RowSet object.  N bytes of memory
** are available at pSpace.  The db pointer is used as a memory context
** for any subsequent allocations that need to occur.
** Return a pointer to the new RowSet object.
**
** It must be the case that N is sufficient to make a Rowset.  If not
** an assertion fault occurs.
** 
** If N is larger than the minimum, use the surplus as an initial
** allocation of entries available to be filled.
*/
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
  RowSet *p;
  assert( N >= ROUND8(sizeof(*p)) );
  p = pSpace;
  p->pChunk = 0;
  p->db = db;
  p->pEntry = 0;
  p->pLast = 0;
  p->pTree = 0;
  p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
  p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
  p->isSorted = 1;
  p->iBatch = 0;
  return p;
}

/*
** Deallocate all chunks from a RowSet.  This frees all memory that
** the RowSet has allocated over its lifetime.  This routine is
** the destructor for the RowSet.
*/
void sqlite3RowSetClear(RowSet *p){
  struct RowSetChunk *pChunk, *pNextChunk;
  for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
    pNextChunk = pChunk->pNextChunk;
    sqlite3DbFree(p->db, pChunk);
  }
  p->pChunk = 0;
  p->nFresh = 0;
  p->pEntry = 0;
  p->pLast = 0;
  p->pTree = 0;


  p->isSorted = 1;























}

/*
** Insert a new value into a RowSet.
**
** The mallocFailed flag of the database connection is set if a
** memory allocation fails.
*/
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
  struct RowSetEntry *pEntry;  /* The new entry */
  struct RowSetEntry *pLast;   /* The last prior entry */
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;

    p->nFresh = ROWSET_ENTRY_PER_CHUNK;
  }
  pEntry = p->pFresh++;
  p->nFresh--;
  pEntry->v = rowid;
  pEntry->pRight = 0;
  pLast = p->pLast;
  if( pLast ){
    if( p->isSorted && rowid<=pLast->v ){
      p->isSorted = 0;
    }
    pLast->pRight = pEntry;
  }else{
    assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
    p->pEntry = pEntry;
  }
  p->pLast = pEntry;
}

/*
** Merge two lists of RowSetEntry objects.  Remove duplicates.
**
** The input lists are connected via pRight pointers and are 
** assumed to each already be in sorted order.
*/
static struct RowSetEntry *rowSetMerge(
  struct RowSetEntry *pA,    /* First sorted list to be merged */
  struct RowSetEntry *pB     /* Second sorted list to be merged */
){
  struct RowSetEntry head;
  struct RowSetEntry *pTail;

  pTail = &head;







|

|



>
>
>
>
>
>




















|


|



















|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











<
<
<
<
<
<
|
<
<
<
>
|
|
|
|




|
|



<











|







106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205






206



207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
*/
struct RowSet {
  struct RowSetChunk *pChunk;    /* List of all chunk allocations */
  sqlite3 *db;                   /* The database connection */
  struct RowSetEntry *pEntry;    /* List of entries using pRight */
  struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
  struct RowSetEntry *pFresh;    /* Source of new entry objects */
  struct RowSetEntry *pForest;   /* List of binary trees of entries */
  u16 nFresh;                    /* Number of objects on pFresh */
  u8 rsFlags;                    /* Various flags */
  u8 iBatch;                     /* Current insert batch */
};

/*
** Allowed values for RowSet.rsFlags
*/
#define ROWSET_SORTED  0x01   /* True if RowSet.pEntry is sorted */
#define ROWSET_NEXT    0x02   /* True if sqlite3RowSetNext() has been called */

/*
** Turn bulk memory into a RowSet object.  N bytes of memory
** are available at pSpace.  The db pointer is used as a memory context
** for any subsequent allocations that need to occur.
** Return a pointer to the new RowSet object.
**
** It must be the case that N is sufficient to make a Rowset.  If not
** an assertion fault occurs.
** 
** If N is larger than the minimum, use the surplus as an initial
** allocation of entries available to be filled.
*/
RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
  RowSet *p;
  assert( N >= ROUND8(sizeof(*p)) );
  p = pSpace;
  p->pChunk = 0;
  p->db = db;
  p->pEntry = 0;
  p->pLast = 0;
  p->pForest = 0;
  p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
  p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
  p->rsFlags = ROWSET_SORTED;
  p->iBatch = 0;
  return p;
}

/*
** Deallocate all chunks from a RowSet.  This frees all memory that
** the RowSet has allocated over its lifetime.  This routine is
** the destructor for the RowSet.
*/
void sqlite3RowSetClear(RowSet *p){
  struct RowSetChunk *pChunk, *pNextChunk;
  for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
    pNextChunk = pChunk->pNextChunk;
    sqlite3DbFree(p->db, pChunk);
  }
  p->pChunk = 0;
  p->nFresh = 0;
  p->pEntry = 0;
  p->pLast = 0;
  p->pForest = 0;
  p->rsFlags = ROWSET_SORTED;
}

/*
** Allocate a new RowSetEntry object that is associated with the
** given RowSet.  Return a pointer to the new and completely uninitialized
** objected.
**
** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
** routine returns NULL.
*/
static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
  assert( p!=0 );
  if( p->nFresh==0 ){
    struct RowSetChunk *pNew;
    pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
    if( pNew==0 ){
      return 0;
    }
    pNew->pNextChunk = p->pChunk;
    p->pChunk = pNew;
    p->pFresh = pNew->aEntry;
    p->nFresh = ROWSET_ENTRY_PER_CHUNK;
  }
  p->nFresh--;
  return p->pFresh++;
}

/*
** Insert a new value into a RowSet.
**
** The mallocFailed flag of the database connection is set if a
** memory allocation fails.
*/
void sqlite3RowSetInsert(RowSet *p, i64 rowid){
  struct RowSetEntry *pEntry;  /* The new entry */
  struct RowSetEntry *pLast;   /* The last prior entry */










  /* This routine is never called after sqlite3RowSetNext() */
  assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );

  pEntry = rowSetEntryAlloc(p);
  if( pEntry==0 ) return;
  pEntry->v = rowid;
  pEntry->pRight = 0;
  pLast = p->pLast;
  if( pLast ){
    if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
      p->rsFlags &= ~ROWSET_SORTED;
    }
    pLast->pRight = pEntry;
  }else{

    p->pEntry = pEntry;
  }
  p->pLast = pEntry;
}

/*
** Merge two lists of RowSetEntry objects.  Remove duplicates.
**
** The input lists are connected via pRight pointers and are 
** assumed to each already be in sorted order.
*/
static struct RowSetEntry *rowSetEntryMerge(
  struct RowSetEntry *pA,    /* First sorted list to be merged */
  struct RowSetEntry *pB     /* Second sorted list to be merged */
){
  struct RowSetEntry head;
  struct RowSetEntry *pTail;

  pTail = &head;
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
    pTail->pRight = pB;
  }
  return head.pRight;
}

/*
** Sort all elements on the pEntry list of the RowSet into ascending order.

*/ 
static void rowSetSort(RowSet *p){
  unsigned int i;
  struct RowSetEntry *pEntry;
  struct RowSetEntry *aBucket[40];

  assert( p->isSorted==0 );
  memset(aBucket, 0, sizeof(aBucket));
  while( p->pEntry ){
    pEntry = p->pEntry;
    p->pEntry = pEntry->pRight;
    pEntry->pRight = 0;
    for(i=0; aBucket[i]; i++){
      pEntry = rowSetMerge(aBucket[i], pEntry);
      aBucket[i] = 0;
    }
    aBucket[i] = pEntry;

  }
  pEntry = 0;
  for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
    pEntry = rowSetMerge(pEntry, aBucket[i]);
  }
  p->pEntry = pEntry;
  p->pLast = 0;
  p->isSorted = 1;
}


/*
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
** Convert this tree into a linked list connected by the pRight pointers
** and return pointers to the first and last elements of the new list.







|
>

|

|
<

<

|
<
|
|

|


|
>

|

|

|
<
<







259
260
261
262
263
264
265
266
267
268
269
270
271

272

273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288


289
290
291
292
293
294
295
    assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
    pTail->pRight = pB;
  }
  return head.pRight;
}

/*
** Sort all elements on the list of RowSetEntry objects into order of
** increasing v.
*/ 
static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
  unsigned int i;
  struct RowSetEntry *pNext, *aBucket[40];



  memset(aBucket, 0, sizeof(aBucket));
  while( pIn ){

    pNext = pIn->pRight;
    pIn->pRight = 0;
    for(i=0; aBucket[i]; i++){
      pIn = rowSetEntryMerge(aBucket[i], pIn);
      aBucket[i] = 0;
    }
    aBucket[i] = pIn;
    pIn = pNext;
  }
  pIn = 0;
  for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
    pIn = rowSetEntryMerge(pIn, aBucket[i]);
  }
  return pIn;


}


/*
** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
** Convert this tree into a linked list connected by the pRight pointers
** and return pointers to the first and last elements of the new list.
351
352
353
354
355
356
357
358
359
360

361
362
363


364


365









366
367
368
369
370
371




372
373
374
375
376
377
378
379
380
381
382



383


384
385
386
387
388
389
390
391
392
393
394
395
396
397
398




399
400
401






402
403


















404



405


406
407

408
409
410




411

412
413
414
415
416
417
418
419
420

421
422
    p->pLeft = pLeft;
    p->pRight = rowSetNDeepTree(&pList, iDepth);
  }
  return p;
}

/*
** Convert the list in p->pEntry into a sorted list if it is not
** sorted already.  If there is a binary tree on p->pTree, then
** convert it into a list too and merge it into the p->pEntry list.

*/
static void rowSetToList(RowSet *p){
  if( !p->isSorted ){


    rowSetSort(p);


  }









  if( p->pTree ){
    struct RowSetEntry *pHead, *pTail;
    rowSetTreeToList(p->pTree, &pHead, &pTail);
    p->pTree = 0;
    p->pEntry = rowSetMerge(p->pEntry, pHead);
  }




}

/*
** Extract the smallest element from the RowSet.
** Write the element into *pRowid.  Return 1 on success.  Return
** 0 if the RowSet is already empty.
**
** After this routine has been called, the sqlite3RowSetInsert()
** routine may not be called again.  
*/
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){



  rowSetToList(p);


  if( p->pEntry ){
    *pRowid = p->pEntry->v;
    p->pEntry = p->pEntry->pRight;
    if( p->pEntry==0 ){
      sqlite3RowSetClear(p);
    }
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.




*/
int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p;






  if( iBatch!=pRowSet->iBatch ){
    if( pRowSet->pEntry ){


















      rowSetToList(pRowSet);



      pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);


      pRowSet->pEntry = 0;
      pRowSet->pLast = 0;

    }
    pRowSet->iBatch = iBatch;
  }




  p = pRowSet->pTree;

  while( p ){
    if( p->v<iRowid ){
      p = p->pRight;
    }else if( p->v>iRowid ){
      p = p->pLeft;
    }else{
      return 1;
    }
  }

  return 0;
}







|
|
|
>


|
>
>
|
>
>

>
>
>
>
>
>
>
>
>
|

|
<
|

>
>
>
>











>
>
>
|
>
>















>
>
>
>


|
>
>
>
>
>
>

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
>
>


>



>
>
>
>
|
>









>


375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    p->pLeft = pLeft;
    p->pRight = rowSetNDeepTree(&pList, iDepth);
  }
  return p;
}

/*
** Take all the entries on p->pEntry and on the trees in p->pForest and
** sort them all together into one big ordered list on p->pEntry.
**
** This routine should only be called once in the life of a RowSet.
*/
static void rowSetToList(RowSet *p){

  /* This routine is called only once */
  assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );

  if( (p->rsFlags & ROWSET_SORTED)==0 ){
    p->pEntry = rowSetEntrySort(p->pEntry);
  }

  /* While this module could theoretically support it, sqlite3RowSetNext()
  ** is never called after sqlite3RowSetText() for the same RowSet.  So
  ** there is never a forest to deal with.  Should this change, simply
  ** remove the assert() and the #if 0. */
  assert( p->pForest==0 );
#if 0
  while( p->pForest ){
    struct RowSetEntry *pTree = p->pForest->pLeft;
    if( pTree ){
    struct RowSetEntry *pHead, *pTail;
      rowSetTreeToList(pTree, &pHead, &pTail);

      p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
  }
    p->pForest = p->pForest->pRight;
  }
#endif
  p->rsFlags |= ROWSET_NEXT;  /* Verify this routine is never called again */
}

/*
** Extract the smallest element from the RowSet.
** Write the element into *pRowid.  Return 1 on success.  Return
** 0 if the RowSet is already empty.
**
** After this routine has been called, the sqlite3RowSetInsert()
** routine may not be called again.  
*/
int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
  assert( p!=0 );

  /* Merge the forest into a single sorted list on first call */
  if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);

  /* Return the next entry on the list */
  if( p->pEntry ){
    *pRowid = p->pEntry->v;
    p->pEntry = p->pEntry->pRight;
    if( p->pEntry==0 ){
      sqlite3RowSetClear(p);
    }
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entires
** on pRowSet->pEntry, then sort those entires into the forest at
** pRowSet->pForest so that they can be tested.
*/
int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
  struct RowSetEntry *p, *pTree;

  /* This routine is never called after sqlite3RowSetNext() */
  assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );

  /* Sort entries into the forest on the first test of a new batch 
  */
  if( iBatch!=pRowSet->iBatch ){
    p = pRowSet->pEntry;
    if( p ){
      struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
      if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
        p = rowSetEntrySort(p);
      }
      for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
        ppPrevTree = &pTree->pRight;
        if( pTree->pLeft==0 ){
          pTree->pLeft = rowSetListToTree(p);
          break;
        }else{
          struct RowSetEntry *pAux, *pTail;
          rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
          pTree->pLeft = 0;
          p = rowSetEntryMerge(pAux, p);
        }
      }
      if( pTree==0 ){
        *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
        if( pTree ){
          pTree->v = 0;
          pTree->pRight = 0;
          pTree->pLeft = rowSetListToTree(p);
        }
      }
      pRowSet->pEntry = 0;
      pRowSet->pLast = 0;
      pRowSet->rsFlags |= ROWSET_SORTED;
    }
    pRowSet->iBatch = iBatch;
  }

  /* Test to see if the iRowid value appears anywhere in the forest.
  ** Return 1 if it does and 0 if not.
  */
  for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
    p = pTree->pLeft;
  while( p ){
    if( p->v<iRowid ){
      p = p->pRight;
    }else if( p->v>iRowid ){
      p = p->pLeft;
    }else{
      return 1;
    }
  }
  }
  return 0;
}
Changes to src/select.c.
1254
1255
1256
1257
1258
1259
1260

1261
1262
1263







1264
1265
1266
1267
1268
1269
1270
  int cnt;                    /* Index added to make the name unique */
  Column *aCol, *pCol;        /* For looping over result columns */
  int nCol;                   /* Number of columns in the result set */
  Expr *p;                    /* Expression for a single result column */
  char *zName;                /* Column name */
  int nName;                  /* Size of name in zName[] */


  *pnCol = nCol = pEList ? pEList->nExpr : 0;
  aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
  if( aCol==0 ) return SQLITE_NOMEM;







  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = pEList->a[i].pExpr;
    assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
               || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){







>
|
|
|
>
>
>
>
>
>
>







1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
  int cnt;                    /* Index added to make the name unique */
  Column *aCol, *pCol;        /* For looping over result columns */
  int nCol;                   /* Number of columns in the result set */
  Expr *p;                    /* Expression for a single result column */
  char *zName;                /* Column name */
  int nName;                  /* Size of name in zName[] */

  if( pEList ){
    nCol = pEList->nExpr;
    aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
    testcase( aCol==0 );
  }else{
    nCol = 0;
    aCol = 0;
  }
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = pEList->a[i].pExpr;
    assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
               || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
2839
2840
2841
2842
2843
2844
2845
2846

2847
2848
2849
2850
2851
2852
2853
    }
  }

  /***** If we reach this point, flattening is permitted. *****/

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);

  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 







|
>







2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
    }
  }

  /***** If we reach this point, flattening is permitted. *****/

  /* Authorize the subquery */
  pParse->zAuthContext = pSubitem->zName;
  TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  testcase( i==SQLITE_DENY );
  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then (by restrictions
  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  ** be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
Changes to src/shell.c.
417
418
419
420
421
422
423

424
425
426
427
428
429
430
*/
struct callback_data {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int statsOn;           /* True to display memory stats before each finalize */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */

  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */
  int colWidth[100];     /* Requested width of each column when in column mode*/







>







417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
*/
struct callback_data {
  sqlite3 *db;           /* The database */
  int echoOn;            /* True to echo input commands */
  int statsOn;           /* True to display memory stats before each finalize */
  int cnt;               /* Number of records displayed so far */
  FILE *out;             /* Write results here */
  FILE *traceOut;        /* Output for sqlite3_trace() */
  int nErr;              /* Number of errors seen */
  int mode;              /* An output mode setting */
  int writableSchema;    /* True if PRAGMA writable_schema=ON */
  int showHeader;        /* True to show column names in List or Column mode */
  char *zDestTable;      /* Name of destination table when MODE_Insert */
  char separator[20];    /* Separator character for MODE_List */
  int colWidth[100];     /* Requested width of each column when in column mode*/
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314
1315
1316
1317
1318

    zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0);
    /* Always quote the table name, even if it appears to be pure ascii,
    ** in case it is a keyword. Ex:  INSERT INTO "table" ... */
    zTmp = appendText(zTmp, zTable, '"');
    if( zTmp ){
      zSelect = appendText(zSelect, zTmp, '\'');

    }
    zSelect = appendText(zSelect, " || ' VALUES(' || ", 0);
    rc = sqlite3_step(pTableInfo);
    while( rc==SQLITE_ROW ){
      const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1);
      zSelect = appendText(zSelect, "quote(", 0);
      zSelect = appendText(zSelect, zText, '"');







>







1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

    zSelect = appendText(zSelect, "SELECT 'INSERT INTO ' || ", 0);
    /* Always quote the table name, even if it appears to be pure ascii,
    ** in case it is a keyword. Ex:  INSERT INTO "table" ... */
    zTmp = appendText(zTmp, zTable, '"');
    if( zTmp ){
      zSelect = appendText(zSelect, zTmp, '\'');
      free(zTmp);
    }
    zSelect = appendText(zSelect, " || ' VALUES(' || ", 0);
    rc = sqlite3_step(pTableInfo);
    while( rc==SQLITE_ROW ){
      const char *zText = (const char *)sqlite3_column_text(pTableInfo, 1);
      zSelect = appendText(zSelect, "quote(", 0);
      zSelect = appendText(zSelect, zText, '"');
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
    zSelect = appendText(zSelect, zTable, '"');

    rc = run_table_dump_query(p, zSelect, zPrepStmt);
    if( rc==SQLITE_CORRUPT ){
      zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0);
      run_table_dump_query(p, zSelect, 0);
    }
    if( zSelect ) free(zSelect);
  }
  return 0;
}

/*
** Run zQuery.  Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.







|







1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
    zSelect = appendText(zSelect, zTable, '"');

    rc = run_table_dump_query(p, zSelect, zPrepStmt);
    if( rc==SQLITE_CORRUPT ){
      zSelect = appendText(zSelect, " ORDER BY rowid DESC", 0);
      run_table_dump_query(p, zSelect, 0);
    }
    free(zSelect);
  }
  return 0;
}

/*
** Run zQuery.  Use dump_callback() as the callback routine so that
** the contents of the query are output as SQL statements.
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
    if( zErr ){
      fprintf(p->out, "/****** %s ******/\n", zErr);
      sqlite3_free(zErr);
      zErr = 0;
    }
    zQ2 = malloc( len+100 );
    if( zQ2==0 ) return rc;
    sqlite3_snprintf(sizeof(zQ2), zQ2, "%s ORDER BY rowid DESC", zQuery);
    rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
    if( rc ){
      fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
    }else{
      rc = SQLITE_CORRUPT;
    }
    sqlite3_free(zErr);







|







1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
    if( zErr ){
      fprintf(p->out, "/****** %s ******/\n", zErr);
      sqlite3_free(zErr);
      zErr = 0;
    }
    zQ2 = malloc( len+100 );
    if( zQ2==0 ) return rc;
    sqlite3_snprintf(len+100, zQ2, "%s ORDER BY rowid DESC", zQuery);
    rc = sqlite3_exec(p->db, zQ2, dump_callback, p, &zErr);
    if( rc ){
      fprintf(p->out, "/****** ERROR: %s ******/\n", zErr);
    }else{
      rc = SQLITE_CORRUPT;
    }
    sqlite3_free(zErr);
1429
1430
1431
1432
1433
1434
1435

1436
1437
1438
1439
1440
1441
1442
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"

  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;







>







1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"
  ".trace FILE|off        Output each SQL statement as it is run\n"
  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;
1517
1518
1519
1520
1521
1522
1523














































1524
1525
1526
1527
1528
1529
1530
  if( strcmp(zArg,"on")==0 ){
    val = 1;
  }else if( strcmp(zArg,"yes")==0 ){
    val = 1;
  }
  return val;
}















































/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
  if( strcmp(zArg,"on")==0 ){
    val = 1;
  }else if( strcmp(zArg,"yes")==0 ){
    val = 1;
  }
  return val;
}

/*
** Close an output file, assuming it is not stderr or stdout
*/
static void output_file_close(FILE *f){
  if( f && f!=stdout && f!=stderr ) fclose(f);
}

/*
** Try to open an output file.   The names "stdout" and "stderr" are
** recognized and do the right thing.  NULL is returned if the output 
** filename is "off".
*/
static FILE *output_file_open(const char *zFile){
  FILE *f;
  if( strcmp(zFile,"stdout")==0 ){
    f = stdout;
  }else if( strcmp(zFile, "stderr")==0 ){
    f = stderr;
  }else if( strcmp(zFile, "off")==0 ){
    f = 0;
  }else{
    f = fopen(zFile, "wb");
    if( f==0 ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
    }
  }
  return f;
}

/*
** A routine for handling output from sqlite3_trace().
*/
static void sql_trace_callback(void *pArg, const char *z){
  FILE *f = (FILE*)pArg;
  if( f ) fprintf(f, "%s\n", z);
}

/*
** A no-op routine that runs with the ".breakpoint" doc-command.  This is
** a useful spot to set a debugger breakpoint.
*/
static void test_breakpoint(void){
  static int nCall = 0;
  nCall++;
}

/*
** If an input line begins with "." then invoke this routine to
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
1596
1597
1598
1599
1600
1601
1602







1603
1604
1605
1606
1607
1608
1609
    }
    sqlite3_close(pDest);
  }else

  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else








  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;







>
>
>
>
>
>
>







1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
    }
    sqlite3_close(pDest);
  }else

  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else

  /* The undocumented ".breakpoint" command causes a call to the no-op
  ** routine named test_breakpoint().
  */
  if( c=='b' && n>=3 && strncmp(azArg[0], "breakpoint", n)==0 ){
    test_breakpoint();
  }else

  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
      rc = 1;
    }
  }else
#endif

  if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=2 ){
    const char *zFile = azArg[1];
    if( p->pLog && p->pLog!=stdout && p->pLog!=stderr ){
      fclose(p->pLog);
      p->pLog = 0;
    }
    if( strcmp(zFile,"stdout")==0 ){
      p->pLog = stdout;
    }else if( strcmp(zFile, "stderr")==0 ){
      p->pLog = stderr;
    }else if( strcmp(zFile, "off")==0 ){
      p->pLog = 0;
    }else{
      p->pLog = fopen(zFile, "w");
      if( p->pLog==0 ){
        fprintf(stderr, "Error: cannot open \"%s\"\n", zFile);
      }
    }
  }else

  if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){
    int n2 = strlen30(azArg[1]);
    if( (n2==4 && strncmp(azArg[1],"line",n2)==0)
        ||
        (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){







<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<







1984
1985
1986
1987
1988
1989
1990

1991
1992













1993
1994
1995
1996
1997
1998
1999
      rc = 1;
    }
  }else
#endif

  if( c=='l' && strncmp(azArg[0], "log", n)==0 && nArg>=2 ){
    const char *zFile = azArg[1];

    output_file_close(p->pLog);
    p->pLog = output_file_open(zFile);













  }else

  if( c=='m' && strncmp(azArg[0], "mode", n)==0 && nArg==2 ){
    int n2 = strlen30(azArg[1]);
    if( (n2==4 && strncmp(azArg[1],"line",n2)==0)
        ||
        (n2==5 && strncmp(azArg[1],"lines",n2)==0) ){
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024

2025

2026
2027
2028
2029
2030
2031
2032

  if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) {
    sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue,
                     "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]);
  }else

  if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){
    if( p->out!=stdout ){
      if( p->outfile[0]=='|' ){
        pclose(p->out);
      }else{
        fclose(p->out);
      }
    }
    if( strcmp(azArg[1],"stdout")==0 ){
      p->out = stdout;
      sqlite3_snprintf(sizeof(p->outfile), p->outfile, "stdout");
    }else if( azArg[1][0]=='|' ){
      p->out = popen(&azArg[1][1], "w");
      if( p->out==0 ){
        fprintf(stderr,"Error: cannot open pipe \"%s\"\n", &azArg[1][1]);
        p->out = stdout;
        rc = 1;
      }else{
        sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }else{
      p->out = fopen(azArg[1], "wb");
      if( p->out==0 ){

        fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]);

        p->out = stdout;
        rc = 1;
      } else {
         sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }
  }else







<



|

<
<
|
<
|









|

>

>







2038
2039
2040
2041
2042
2043
2044

2045
2046
2047
2048
2049


2050

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

  if( c=='n' && strncmp(azArg[0], "nullvalue", n)==0 && nArg==2 ) {
    sqlite3_snprintf(sizeof(p->nullvalue), p->nullvalue,
                     "%.*s", (int)ArraySize(p->nullvalue)-1, azArg[1]);
  }else

  if( c=='o' && strncmp(azArg[0], "output", n)==0 && nArg==2 ){

      if( p->outfile[0]=='|' ){
        pclose(p->out);
      }else{
      output_file_close(p->out);
      }


    p->outfile[0] = 0;

    if( azArg[1][0]=='|' ){
      p->out = popen(&azArg[1][1], "w");
      if( p->out==0 ){
        fprintf(stderr,"Error: cannot open pipe \"%s\"\n", &azArg[1][1]);
        p->out = stdout;
        rc = 1;
      }else{
        sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }else{
      p->out = output_file_open(azArg[1]);
      if( p->out==0 ){
        if( strcmp(azArg[1],"off")!=0 ){
        fprintf(stderr,"Error: cannot write to \"%s\"\n", azArg[1]);
        }
        p->out = stdout;
        rc = 1;
      } else {
         sqlite3_snprintf(sizeof(p->outfile), p->outfile, "%s", azArg[1]);
      }
    }
  }else
2391
2392
2393
2394
2395
2396
2397












2398
2399
2400
2401
2402
2403
2404
  }else
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else












  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){







>
>
>
>
>
>
>
>
>
>
>
>







2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
  }else
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='t' && strncmp(azArg[0], "trace", n)==0 && nArg>1 ){
    output_file_close(p->traceOut);
    p->traceOut = output_file_open(azArg[1]);
#ifndef SQLITE_OMIT_TRACE
    if( p->traceOut==0 ){
      sqlite3_trace(p->db, 0, 0);
    }else{
      sqlite3_trace(p->db, sql_trace_callback, p->traceOut);
    }
#endif
  }else
  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
  }
  free(zLine);
  return errCnt;
}

/*
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.  Space to hold the
** resulting string is obtained from malloc().  The calling
** function should free the result.
*/
static char *find_home_dir(void){
  char *home_dir = NULL;


#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL)
  struct passwd *pwent;
  uid_t uid = getuid();
  if( (pwent=getpwuid(uid)) != NULL) {
    home_dir = pwent->pw_dir;
  }
#endif

#if defined(_WIN32_WCE)
  /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv()
   */
  home_dir = strdup("/");
#else

#if defined(_WIN32) || defined(WIN32) || defined(__OS2__)
  if (!home_dir) {
    home_dir = getenv("USERPROFILE");
  }
#endif







|
<
<


|
>












|







2655
2656
2657
2658
2659
2660
2661
2662


2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
  }
  free(zLine);
  return errCnt;
}

/*
** Return a pathname which is the user's home directory.  A
** 0 return indicates an error of some kind.


*/
static char *find_home_dir(void){
  static char *home_dir = NULL;
  if( home_dir ) return home_dir;

#if !defined(_WIN32) && !defined(WIN32) && !defined(__OS2__) && !defined(_WIN32_WCE) && !defined(__RTP__) && !defined(_WRS_KERNEL)
  struct passwd *pwent;
  uid_t uid = getuid();
  if( (pwent=getpwuid(uid)) != NULL) {
    home_dir = pwent->pw_dir;
  }
#endif

#if defined(_WIN32_WCE)
  /* Windows CE (arm-wince-mingw32ce-gcc) does not provide getenv()
   */
  home_dir = "/";
#else

#if defined(_WIN32) || defined(WIN32) || defined(__OS2__)
  if (!home_dir) {
    home_dir = getenv("USERPROFILE");
  }
#endif
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
  struct callback_data *p,        /* Configuration data */
  const char *sqliterc_override   /* Name of config file. NULL to use default */
){
  char *home_dir = NULL;
  const char *sqliterc = sqliterc_override;
  char *zBuf = 0;
  FILE *in = NULL;
  int nBuf;
  int rc = 0;

  if (sqliterc == NULL) {
    home_dir = find_home_dir();
    if( home_dir==0 ){
#if !defined(__RTP__) && !defined(_WRS_KERNEL)
      fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0);
#endif
      return 1;
    }
    nBuf = strlen30(home_dir) + 16;
    zBuf = malloc( nBuf );
    if( zBuf==0 ){
      fprintf(stderr,"%s: Error: out of memory\n",Argv0);
      return 1;
    }
    sqlite3_snprintf(nBuf, zBuf,"%s/.sqliterc",home_dir);
    free(home_dir);
    sqliterc = (const char*)zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      fprintf(stderr,"-- Loading resources from %s\n",sqliterc);
    }
    rc = process_input(p,in);
    fclose(in);
  }
  free(zBuf);
  return rc;
}

/*
** Show available command line options
*/
static const char zOptions[] = 







<










<
<
<
<
<
<
|
<
|









|







2728
2729
2730
2731
2732
2733
2734

2735
2736
2737
2738
2739
2740
2741
2742
2743
2744






2745

2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
  struct callback_data *p,        /* Configuration data */
  const char *sqliterc_override   /* Name of config file. NULL to use default */
){
  char *home_dir = NULL;
  const char *sqliterc = sqliterc_override;
  char *zBuf = 0;
  FILE *in = NULL;

  int rc = 0;

  if (sqliterc == NULL) {
    home_dir = find_home_dir();
    if( home_dir==0 ){
#if !defined(__RTP__) && !defined(_WRS_KERNEL)
      fprintf(stderr,"%s: Error: cannot locate your home directory\n", Argv0);
#endif
      return 1;
    }






    zBuf = sqlite3_mprintf("%s/.sqliterc",home_dir);

    sqliterc = zBuf;
  }
  in = fopen(sqliterc,"rb");
  if( in ){
    if( stdin_is_interactive ){
      fprintf(stderr,"-- Loading resources from %s\n",sqliterc);
    }
    rc = process_input(p,in);
    fclose(in);
  }
  sqlite3_free(zBuf);
  return rc;
}

/*
** Show available command line options
*/
static const char zOptions[] = 
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
#endif
      rc = process_input(&data, 0);
      if( zHistory ){
        stifle_history(100);
        write_history(zHistory);
        free(zHistory);
      }
      free(zHome);
    }else{
      rc = process_input(&data, stdin);
    }
  }
  set_table_name(&data, 0);
  if( data.db ){
    sqlite3_close(data.db);
  }
  return rc;
}







<










3090
3091
3092
3093
3094
3095
3096

3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
#endif
      rc = process_input(&data, 0);
      if( zHistory ){
        stifle_history(100);
        write_history(zHistory);
        free(zHistory);
      }

    }else{
      rc = process_input(&data, stdin);
    }
  }
  set_table_name(&data, 0);
  if( data.db ){
    sqlite3_close(data.db);
  }
  return rc;
}
Changes to src/sqlite.h.in.
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFNIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */







|







1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
** connection is opened. If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.
**
** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
** <dd> These options are obsolete and should not be used by new code.
** They are retained for backwards compatibility but are now no-ops.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
Changes to src/sqliteInt.h.
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;           /* True if aggregates are seen */
  u8 isCheck;          /* True if resolving names in a CHECK constraint */
  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.







<







2015
2016
2017
2018
2019
2020
2021

2022
2023
2024
2025
2026
2027
2028
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;           /* True if aggregates are seen */
  u8 isCheck;          /* True if resolving names in a CHECK constraint */

  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
2485
2486
2487
2488
2489
2490
2491

2492
2493
2494
2495
2496
2497
2498
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */

  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);







>







2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */
    SrcList *pSrcList;                         /* FROM clause */
  } u;
};

/* Forward declarations */
int sqlite3WalkExpr(Walker*, Expr*);
int sqlite3WalkExprList(Walker*, ExprList*);
int sqlite3WalkSelect(Walker*, Select*);
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
void sqlite3HaltConstraint(Parse*, int, char*, int);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
void sqlite3ChangeCookie(Parse*, int);








|







2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
void sqlite3HaltConstraint(Parse*, int, char*, int);
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
IdList *sqlite3IdListDup(sqlite3*,IdList*);
Select *sqlite3SelectDup(sqlite3*,Select*,int);
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
void sqlite3RegisterBuiltinFunctions(sqlite3*);
void sqlite3RegisterDateTimeFunctions(void);
void sqlite3RegisterGlobalFunctions(void);
int sqlite3SafetyCheckOk(sqlite3*);
int sqlite3SafetyCheckSickOrOk(sqlite3*);
void sqlite3ChangeCookie(Parse*, int);

Changes to src/test_config.c.
421
422
423
424
425
426
427






428
429
430
431
432
433
434
#endif

#ifdef SQLITE_ENABLE_RTREE
  Tcl_SetVar2(interp, "sqlite_options", "rtree", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "rtree", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY);
#endif








>
>
>
>
>
>







421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#endif

#ifdef SQLITE_ENABLE_RTREE
  Tcl_SetVar2(interp, "sqlite_options", "rtree", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "rtree", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_RTREE_INT_ONLY
  Tcl_SetVar2(interp, "sqlite_options", "rtree_int_only", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "rtree_int_only", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_SCHEMA_PRAGMAS
  Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "schema_pragmas", "1", TCL_GLOBAL_ONLY);
#endif

Changes to src/test_fuzzer.c.
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
  }
  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that provides read-only access to a
** Tcl global variable namespace.
*/
static sqlite3_module fuzzerModule = {
  0,                           /* iVersion */
  fuzzerConnect,
  fuzzerConnect,
  fuzzerBestIndex,
  fuzzerDisconnect, 







|
<







1123
1124
1125
1126
1127
1128
1129
1130

1131
1132
1133
1134
1135
1136
1137
  }
  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "fuzzer".

*/
static sqlite3_module fuzzerModule = {
  0,                           /* iVersion */
  fuzzerConnect,
  fuzzerConnect,
  fuzzerBestIndex,
  fuzzerDisconnect, 
Changes to src/test_multiplex.c.
325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350






351
352
353
354
355
356
357
358
359
360
361


362
363
364
365
366
367
368

#ifdef SQLITE_ENABLE_8_3_NAMES
  /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are 
  ** part of a database journal are named db.401, db.402, and so on. A 
  ** database may therefore not grow to larger than 400 chunks. Attempting
  ** to open chunk 401 indicates the database is full. */
  if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){

    *rc = SQLITE_FULL;
    return 0;
  }
#endif

  *rc = multiplexSubFilename(pGroup, iChunk);
  if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){
    int flags, bExists;
    flags = pGroup->flags;
    if( createFlag ){
      flags |= SQLITE_OPEN_CREATE;
    }else if( iChunk==0 ){
      /* Fall through */
    }else if( pGroup->aReal[iChunk].z==0 ){
      return 0;
    }else{
      *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z,
                              SQLITE_ACCESS_EXISTS, &bExists);
      if( *rc || !bExists ) return 0;






      flags &= ~SQLITE_OPEN_CREATE;
    }
    pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile );
    if( pSubOpen==0 ){
      *rc = SQLITE_IOERR_NOMEM;
      return 0;
    }
    pGroup->aReal[iChunk].p = pSubOpen;
    *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen,
                          flags, pOutFlags);
    if( (*rc)!=SQLITE_OK ){


      sqlite3_free(pSubOpen);
      pGroup->aReal[iChunk].p = 0;
      return 0;
    }
  }
  return pSubOpen;
}







>


















|
>
>
>
>
>
>











>
>







325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

#ifdef SQLITE_ENABLE_8_3_NAMES
  /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are 
  ** part of a database journal are named db.401, db.402, and so on. A 
  ** database may therefore not grow to larger than 400 chunks. Attempting
  ** to open chunk 401 indicates the database is full. */
  if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){
    sqlite3_log(SQLITE_FULL, "multiplexed chunk overflow: %s", pGroup->zName);
    *rc = SQLITE_FULL;
    return 0;
  }
#endif

  *rc = multiplexSubFilename(pGroup, iChunk);
  if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){
    int flags, bExists;
    flags = pGroup->flags;
    if( createFlag ){
      flags |= SQLITE_OPEN_CREATE;
    }else if( iChunk==0 ){
      /* Fall through */
    }else if( pGroup->aReal[iChunk].z==0 ){
      return 0;
    }else{
      *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z,
                              SQLITE_ACCESS_EXISTS, &bExists);
     if( *rc || !bExists ){
        if( *rc ){
          sqlite3_log(*rc, "multiplexor.xAccess failure on %s",
                      pGroup->aReal[iChunk].z);
        }
        return 0;
      }
      flags &= ~SQLITE_OPEN_CREATE;
    }
    pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile );
    if( pSubOpen==0 ){
      *rc = SQLITE_IOERR_NOMEM;
      return 0;
    }
    pGroup->aReal[iChunk].p = pSubOpen;
    *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen,
                          flags, pOutFlags);
    if( (*rc)!=SQLITE_OK ){
      sqlite3_log(*rc, "multiplexor.xOpen failure on %s",
                  pGroup->aReal[iChunk].z);
      sqlite3_free(pSubOpen);
      pGroup->aReal[iChunk].p = 0;
      return 0;
    }
  }
  return pSubOpen;
}
Changes to src/test_quota.c.
116
117
118
119
120
121
122



123
124
125
126
127
128
129
** open file.  This object is opaque to all users - the internal
** structure is only visible to the functions below.
*/
struct quota_FILE {
  FILE *f;                /* Open stdio file pointer */
  sqlite3_int64 iOfst;    /* Current offset into the file */
  quotaFile *pFile;       /* The file record in the quota system */



};


/************************* Global Variables **********************************/
/*
** All global variables used by this file are containing within the following
** gQuota structure.







>
>
>







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
** open file.  This object is opaque to all users - the internal
** structure is only visible to the functions below.
*/
struct quota_FILE {
  FILE *f;                /* Open stdio file pointer */
  sqlite3_int64 iOfst;    /* Current offset into the file */
  quotaFile *pFile;       /* The file record in the quota system */
#if SQLITE_OS_WIN
  char *zMbcsName;        /* Full MBCS pathname of the file */
#endif
};


/************************* Global Variables **********************************/
/*
** All global variables used by this file are containing within the following
** gQuota structure.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012



1013
1014
1015

1016
1017
1018
1019
1020
1021
1022

/*
** Open a potentially quotaed file for I/O.
*/
quota_FILE *sqlite3_quota_fopen(const char *zFilename, const char *zMode){
  quota_FILE *p = 0;
  char *zFull = 0;
  char *zFullTranslated;
  int rc;
  quotaGroup *pGroup;
  quotaFile *pFile;

  zFull = (char*)sqlite3_malloc(gQuota.sThisVfs.mxPathname + 1);
  if( zFull==0 ) return 0;
  rc = gQuota.pOrigVfs->xFullPathname(gQuota.pOrigVfs, zFilename,
                                      gQuota.sThisVfs.mxPathname+1, zFull);
  if( rc ) goto quota_fopen_error;
  p = (quota_FILE*)sqlite3_malloc(sizeof(*p));
  if( p==0 ) goto quota_fopen_error;
  memset(p, 0, sizeof(*p));
  zFullTranslated = quota_utf8_to_mbcs(zFull);
  if( zFullTranslated==0 ) goto quota_fopen_error;
  p->f = fopen(zFullTranslated, zMode);
  quota_mbcs_free(zFullTranslated);
  if( p->f==0 ) goto quota_fopen_error;
  quotaEnter();
  pGroup = quotaGroupFind(zFull);
  if( pGroup ){
    pFile = quotaFindFile(pGroup, zFull, 1);
    if( pFile==0 ){
      quotaLeave();
      goto quota_fopen_error;
    }
    pFile->nRef++;
    p->pFile = pFile;
  }
  quotaLeave();
  sqlite3_free(zFull);



  return p;

quota_fopen_error:

  sqlite3_free(zFull);
  if( p && p->f ) fclose(p->f);
  sqlite3_free(p);
  return 0;
}

/*







|















<














>
>
>



>







978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

/*
** Open a potentially quotaed file for I/O.
*/
quota_FILE *sqlite3_quota_fopen(const char *zFilename, const char *zMode){
  quota_FILE *p = 0;
  char *zFull = 0;
  char *zFullTranslated = 0;
  int rc;
  quotaGroup *pGroup;
  quotaFile *pFile;

  zFull = (char*)sqlite3_malloc(gQuota.sThisVfs.mxPathname + 1);
  if( zFull==0 ) return 0;
  rc = gQuota.pOrigVfs->xFullPathname(gQuota.pOrigVfs, zFilename,
                                      gQuota.sThisVfs.mxPathname+1, zFull);
  if( rc ) goto quota_fopen_error;
  p = (quota_FILE*)sqlite3_malloc(sizeof(*p));
  if( p==0 ) goto quota_fopen_error;
  memset(p, 0, sizeof(*p));
  zFullTranslated = quota_utf8_to_mbcs(zFull);
  if( zFullTranslated==0 ) goto quota_fopen_error;
  p->f = fopen(zFullTranslated, zMode);

  if( p->f==0 ) goto quota_fopen_error;
  quotaEnter();
  pGroup = quotaGroupFind(zFull);
  if( pGroup ){
    pFile = quotaFindFile(pGroup, zFull, 1);
    if( pFile==0 ){
      quotaLeave();
      goto quota_fopen_error;
    }
    pFile->nRef++;
    p->pFile = pFile;
  }
  quotaLeave();
  sqlite3_free(zFull);
#if SQLITE_OS_WIN
  p->zMbcsName = zFullTranslated;
#endif
  return p;

quota_fopen_error:
  quota_mbcs_free(zFullTranslated);
  sqlite3_free(zFull);
  if( p && p->f ) fclose(p->f);
  sqlite3_free(p);
  return 0;
}

/*
1041
1042
1043
1044
1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
  size_t nmemb,          /* Number of elements */
  quota_FILE *p          /* Write to this quota_FILE objecct */
){
  sqlite3_int64 iOfst;
  sqlite3_int64 iEnd;
  sqlite3_int64 szNew;
  quotaFile *pFile;

  
  iOfst = ftell(p->f);
  iEnd = iOfst + size*nmemb;
  pFile = p->pFile;
  if( pFile && pFile->iSize<iEnd ){
    quotaGroup *pGroup = pFile->pGroup;
    quotaEnter();







>







1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
  size_t nmemb,          /* Number of elements */
  quota_FILE *p          /* Write to this quota_FILE objecct */
){
  sqlite3_int64 iOfst;
  sqlite3_int64 iEnd;
  sqlite3_int64 szNew;
  quotaFile *pFile;
  size_t rc;
  
  iOfst = ftell(p->f);
  iEnd = iOfst + size*nmemb;
  pFile = p->pFile;
  if( pFile && pFile->iSize<iEnd ){
    quotaGroup *pGroup = pFile->pGroup;
    quotaEnter();
1064
1065
1066
1067
1068
1069
1070


1071
1072













1073
1074
1075
1076
1077
1078
1079
        iEnd = iOfst + size*nmemb;
        szNew = pGroup->iSize - pFile->iSize + iEnd;
      }
    }
    pGroup->iSize = szNew;
    pFile->iSize = iEnd;
    quotaLeave();


  }
  return fwrite(pBuf, size, nmemb, p->f);













}

/*
** Close an open quota_FILE stream.
*/
int sqlite3_quota_fclose(quota_FILE *p){
  int rc;







>
>

|
>
>
>
>
>
>
>
>
>
>
>
>
>







1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        iEnd = iOfst + size*nmemb;
        szNew = pGroup->iSize - pFile->iSize + iEnd;
      }
    }
    pGroup->iSize = szNew;
    pFile->iSize = iEnd;
    quotaLeave();
  }else{
    pFile = 0;
  }
  rc = fwrite(pBuf, size, nmemb, p->f);

  /* If the write was incomplete, adjust the file size and group size
  ** downward */
  if( rc<nmemb && pFile ){
    size_t nWritten = rc>=0 ? rc : 0;
    sqlite3_int64 iNewEnd = iOfst + size*nWritten;
    if( iNewEnd<iEnd ) iNewEnd = iEnd;
    quotaEnter();
    pFile->pGroup->iSize += iNewEnd - pFile->iSize;
    pFile->iSize = iNewEnd;
    quotaLeave();
  }
  return rc;    
}

/*
** Close an open quota_FILE stream.
*/
int sqlite3_quota_fclose(quota_FILE *p){
  int rc;
1089
1090
1091
1092
1093
1094
1095



1096
1097
1098
1099
1100
1101
1102
        gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0);
        quotaRemoveFile(pFile);
      }
      quotaGroupDeref(pGroup);
    }
    quotaLeave();
  }



  sqlite3_free(p);
  return rc;
}

/*
** Flush memory buffers for a quota_FILE to disk.
*/







>
>
>







1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        gQuota.pOrigVfs->xDelete(gQuota.pOrigVfs, pFile->zFilename, 0);
        quotaRemoveFile(pFile);
      }
      quotaGroupDeref(pGroup);
    }
    quotaLeave();
  }
#if SQLITE_OS_WIN
  quota_mbcs_free(p->zMbcsName);
#endif
  sqlite3_free(p);
  return rc;
}

/*
** Flush memory buffers for a quota_FILE to disk.
*/
1130
1131
1132
1133
1134
1135
1136













































































1137
1138
1139
1140
1141
1142
1143

/*
** Tell the current location of a quota_FILE stream.
*/
long sqlite3_quota_ftell(quota_FILE *p){
  return ftell(p->f);
}














































































/*
** Remove a managed file.  Update quotas accordingly.
*/
int sqlite3_quota_remove(const char *zFilename){
  char *zFull;            /* Full pathname for zFilename */
  int nFull;              /* Number of bytes in zFilename */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

/*
** Tell the current location of a quota_FILE stream.
*/
long sqlite3_quota_ftell(quota_FILE *p){
  return ftell(p->f);
}

/*
** Truncate a file to szNew bytes.
*/
int sqlite3_quota_ftruncate(quota_FILE *p, sqlite3_int64 szNew){
  quotaFile *pFile = p->pFile;
  int rc;
  if( (pFile = p->pFile)!=0 && pFile->iSize<szNew ){
    quotaGroup *pGroup;
    if( pFile->iSize<szNew ){
      /* This routine cannot be used to extend a file that is under
      ** quota management.  Only true truncation is allowed. */
      return -1;
    }
    pGroup = pFile->pGroup;
    quotaEnter();
    pGroup->iSize += szNew - pFile->iSize;
    quotaLeave();
  }
#if SQLITE_OS_UNIX
  rc = ftruncate(fileno(p->f), szNew);
#endif
#if SQLITE_OS_WIN
  rc = _chsize_s(_fileno(p->f), szNew);
#endif
  if( pFile && rc==0 ){
    quotaGroup *pGroup = pFile->pGroup;
    quotaEnter();
    pGroup->iSize += szNew - pFile->iSize;
    pFile->iSize = szNew;
    quotaLeave();
  }
  return rc;
}

/*
** Determine the time that the given file was last modified, in
** seconds size 1970.  Write the result into *pTime.  Return 0 on
** success and non-zero on any kind of error.
*/
int sqlite3_quota_file_mtime(quota_FILE *p, time_t *pTime){
  int rc;
#if SQLITE_OS_UNIX
  struct stat buf;
  rc = fstat(fileno(p->f), &buf);
#endif
#if SQLITE_OS_WIN
  struct _stati64 buf;
  rc = _stati64(p->zMbcsName, &buf);
#endif
  if( rc==0 ) *pTime = buf.st_mtime;
  return rc;
}

/*
** Return the true size of the file, as reported by the operating
** system.
*/
sqlite3_int64 sqlite3_quota_file_truesize(quota_FILE *p){
  int rc;
#if SQLITE_OS_UNIX
  struct stat buf;
  rc = fstat(fileno(p->f), &buf);
#endif
#if SQLITE_OS_WIN
  struct _stati64 buf;
  rc = _stati64(p->zMbcsName, &buf);
#endif
  return rc==0 ? buf.st_size : -1;
}

/*
** Return the size of the file, as it is known to the quota subsystem.
*/
sqlite3_int64 sqlite3_quota_file_size(quota_FILE *p){
  return p->pFile ? p->pFile->iSize : -1;
}

/*
** Remove a managed file.  Update quotas accordingly.
*/
int sqlite3_quota_remove(const char *zFilename){
  char *zFull;            /* Full pathname for zFilename */
  int nFull;              /* Number of bytes in zFilename */
1651
1652
1653
1654
1655
1656
1657


























































































1658
1659
1660
1661
1662
1663
1664
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  x = sqlite3_quota_ftell(p);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(x));
  return TCL_OK;
}



























































































/*
** tclcmd: sqlite3_quota_remove FILENAME
*/
static int test_quota_remove(
  void * clientData,
  Tcl_Interp *interp,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  x = sqlite3_quota_ftell(p);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(x));
  return TCL_OK;
}

/*
** tclcmd: sqlite3_quota_ftruncate HANDLE SIZE
*/
static int test_quota_ftruncate(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  quota_FILE *p;
  sqlite3_int64 x;
  Tcl_WideInt w;
  int rc;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE SIZE");
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  if( Tcl_GetWideIntFromObj(interp, objv[2], &w) ) return TCL_ERROR;
  x = (sqlite3_int64)w;
  rc = sqlite3_quota_ftruncate(p, x);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}

/*
** tclcmd: sqlite3_quota_file_size HANDLE
*/
static int test_quota_file_size(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  quota_FILE *p;
  sqlite3_int64 x;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE");
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  x = sqlite3_quota_file_size(p);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(x));
  return TCL_OK;
}

/*
** tclcmd: sqlite3_quota_file_truesize HANDLE
*/
static int test_quota_file_truesize(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  quota_FILE *p;
  sqlite3_int64 x;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE");
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  x = sqlite3_quota_file_truesize(p);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(x));
  return TCL_OK;
}

/*
** tclcmd: sqlite3_quota_file_mtime HANDLE
*/
static int test_quota_file_mtime(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  quota_FILE *p;
  time_t t;
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "HANDLE");
    return TCL_ERROR;
  }
  p = sqlite3TestTextToPtr(Tcl_GetString(objv[1]));
  t = 0;
  sqlite3_quota_file_mtime(p, &t);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(t));
  return TCL_OK;
}


/*
** tclcmd: sqlite3_quota_remove FILENAME
*/
static int test_quota_remove(
  void * clientData,
  Tcl_Interp *interp,
1722
1723
1724
1725
1726
1727
1728




1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    { "sqlite3_quota_fread",      test_quota_fread },
    { "sqlite3_quota_fwrite",     test_quota_fwrite },
    { "sqlite3_quota_fclose",     test_quota_fclose },
    { "sqlite3_quota_fflush",     test_quota_fflush },
    { "sqlite3_quota_fseek",      test_quota_fseek },
    { "sqlite3_quota_rewind",     test_quota_rewind },
    { "sqlite3_quota_ftell",      test_quota_ftell },




    { "sqlite3_quota_remove",     test_quota_remove },
    { "sqlite3_quota_glob",       test_quota_glob },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }

  return TCL_OK;
}
#endif







>
>
>
>












1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
    { "sqlite3_quota_fread",      test_quota_fread },
    { "sqlite3_quota_fwrite",     test_quota_fwrite },
    { "sqlite3_quota_fclose",     test_quota_fclose },
    { "sqlite3_quota_fflush",     test_quota_fflush },
    { "sqlite3_quota_fseek",      test_quota_fseek },
    { "sqlite3_quota_rewind",     test_quota_rewind },
    { "sqlite3_quota_ftell",      test_quota_ftell },
    { "sqlite3_quota_ftruncate",     test_quota_ftruncate },
    { "sqlite3_quota_file_size",     test_quota_file_size },
    { "sqlite3_quota_file_truesize", test_quota_file_truesize },
    { "sqlite3_quota_file_mtime",    test_quota_file_mtime },
    { "sqlite3_quota_remove",     test_quota_remove },
    { "sqlite3_quota_glob",       test_quota_glob },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }

  return TCL_OK;
}
#endif
Changes to src/test_quota.h.
25
26
27
28
29
30
31








32
33
34
35
36
37
38
** callback does enlarge the quota such that the total size of all
** files within the group is less than the new quota, then the write
** continues as if nothing had happened.
*/
#ifndef _QUOTA_H_
#include "sqlite3.h"
#include <stdio.h>









/* Make this callable from C++ */
#ifdef __cplusplus
extern "C" {
#endif

/*







>
>
>
>
>
>
>
>







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
** callback does enlarge the quota such that the total size of all
** files within the group is less than the new quota, then the write
** continues as if nothing had happened.
*/
#ifndef _QUOTA_H_
#include "sqlite3.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#if SQLITE_OS_UNIX
# include <unistd.h>
#endif
#if SQLITE_OS_WIN
# include <windows.h>
#endif

/* Make this callable from C++ */
#ifdef __cplusplus
extern "C" {
#endif

/*
178
179
180
181
182
183
184










































185
186
187
188
189
190
191
** Move the read/write pointer for a quota_FILE object.  Or tell the
** current location of the read/write pointer.
*/
int sqlite3_quota_fseek(quota_FILE*, long, int);
void sqlite3_quota_rewind(quota_FILE*);
long sqlite3_quota_ftell(quota_FILE*);











































/*
** Delete a file from the disk, if that file is under quota management.
** Adjust quotas accordingly.
**
** If zFilename is the name of a directory that matches one of the
** quota glob patterns, then all files under quota management that
** are contained within that directory are deleted.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
** Move the read/write pointer for a quota_FILE object.  Or tell the
** current location of the read/write pointer.
*/
int sqlite3_quota_fseek(quota_FILE*, long, int);
void sqlite3_quota_rewind(quota_FILE*);
long sqlite3_quota_ftell(quota_FILE*);

/*
** Truncate a file previously opened by sqlite3_quota_fopen().  Return
** zero on success and non-zero on any kind of failure.
**
** The newSize argument must be less than or equal to the current file size.
** Any attempt to "truncate" a file to a larger size results in 
** undefined behavior.
*/
int sqlite3_quota_ftrunate(quota_FILE*, sqlite3_int64 newSize);

/*
** Return the last modification time of the opened file, in seconds
** since 1970.
*/
int sqlite3_quota_file_mtime(quota_FILE*, time_t *pTime);

/*
** Return the size of the file as it is known to the quota system.
**
** This size might be different from the true size of the file on
** disk if some outside process has modified the file without using the
** quota mechanism, or if calls to sqlite3_quota_fwrite() have occurred
** which have increased the file size, but those writes have not yet been
** forced to disk using sqlite3_quota_fflush().
**
** Return -1 if the file is not participating in quota management.
*/
sqlite3_int64 sqlite3_quota_file_size(quota_FILE*);

/*
** Return the true size of the file.
**
** The true size should be the same as the size of the file as known
** to the quota system, however the sizes might be different if the
** file has been extended or truncated via some outside process or if
** pending writes have not yet been flushed to disk.
**
** Return -1 if the file does not exist or if the size of the file
** cannot be determined for some reason.
*/
sqlite3_int64 sqlite3_quota_file_truesize(quota_FILE*);

/*
** Delete a file from the disk, if that file is under quota management.
** Adjust quotas accordingly.
**
** If zFilename is the name of a directory that matches one of the
** quota glob patterns, then all files under quota management that
** are contained within that directory are deleted.
Changes to src/test_rtree.c.
45
46
47
48
49
50
51



52

53
54
55
56
57
58
59

/*
** Implementation of "circle" r-tree geometry callback.
*/
static int circle_geom(
  sqlite3_rtree_geometry *p,
  int nCoord, 



  double *aCoord, 

  int *pRes
){
  int i;                          /* Iterator variable */
  Circle *pCircle;                /* Structure defining circular region */
  double xmin, xmax;              /* X dimensions of box being tested */
  double ymin, ymax;              /* X dimensions of box being tested */








>
>
>

>







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/*
** Implementation of "circle" r-tree geometry callback.
*/
static int circle_geom(
  sqlite3_rtree_geometry *p,
  int nCoord, 
#ifdef SQLITE_RTREE_INT_ONLY
  sqlite3_int64 *aCoord,
#else
  double *aCoord, 
#endif
  int *pRes
){
  int i;                          /* Iterator variable */
  Circle *pCircle;                /* Structure defining circular region */
  double xmin, xmax;              /* X dimensions of box being tested */
  double ymin, ymax;              /* X dimensions of box being tested */

185
186
187
188
189
190
191



192

193
194
195
196
197
198
199
**   cube(x, y, z, width, height, depth)
**
** The width, height and depth parameters must all be greater than zero.
*/
static int cube_geom(
  sqlite3_rtree_geometry *p,
  int nCoord, 



  double *aCoord, 

  int *piRes
){
  Cube *pCube = (Cube *)p->pUser;

  assert( p->pContext==(void *)&gHere );

  if( pCube==0 ){







>
>
>

>







189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
**   cube(x, y, z, width, height, depth)
**
** The width, height and depth parameters must all be greater than zero.
*/
static int cube_geom(
  sqlite3_rtree_geometry *p,
  int nCoord, 
#ifdef SQLITE_RTREE_INT_ONLY
  sqlite3_int64 *aCoord, 
#else
  double *aCoord, 
#endif
  int *piRes
){
  Cube *pCube = (Cube *)p->pUser;

  assert( p->pContext==(void *)&gHere );

  if( pCube==0 ){
Changes to src/vdbe.c.
2740
2741
2742
2743
2744
2745
2746

2747
2748
2749

2750
2751
2752
2753
2754
2755
2756
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        iSavepoint = db->nSavepoint - iSavepoint - 1;

        for(ii=0; ii<db->nDb; ii++){
          sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
        }

        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){







>



>







2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        iSavepoint = db->nSavepoint - iSavepoint - 1;
        if( p1==SAVEPOINT_ROLLBACK ){
        for(ii=0; ii<db->nDb; ii++){
          sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
        }
        }
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
Changes to src/vdbeaux.c.
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
      */
      if( pOp->p4type==P4_SUBPROGRAM ){
        int nByte = (nSub+1)*sizeof(SubProgram*);
        int j;
        for(j=0; j<nSub; j++){
          if( apSub[j]==pOp->p4.pProgram ) break;
        }
        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
          apSub = (SubProgram **)pSub->z;
          apSub[nSub++] = pOp->p4.pProgram;
          pSub->flags |= MEM_Blob;
          pSub->n = nSub*sizeof(SubProgram*);
        }
      }
    }







|







1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
      */
      if( pOp->p4type==P4_SUBPROGRAM ){
        int nByte = (nSub+1)*sizeof(SubProgram*);
        int j;
        for(j=0; j<nSub; j++){
          if( apSub[j]==pOp->p4.pProgram ) break;
        }
        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
          apSub = (SubProgram **)pSub->z;
          apSub[nSub++] = pOp->p4.pProgram;
          pSub->flags |= MEM_Blob;
          pSub->n = nSub*sizeof(SubProgram*);
        }
      }
    }
Changes to src/vdbemem.c.
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78




79
80
81
82
83
84
85
#endif
}

/*
** Make sure pMem->z points to a writable allocation of at least 
** n bytes.
**
** If the memory cell currently contains string or blob data
** and the third argument passed to this function is true, the 

** current content of the cell is preserved. Otherwise, it may
** be discarded.  
**
** This function sets the MEM_Dyn flag and clears any xDel callback.
** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 
** not set, Mem.n is zeroed.
*/
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
  assert( 1 >=
    ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
    (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 
    ((pMem->flags&MEM_Ephem) ? 1 : 0) + 
    ((pMem->flags&MEM_Static) ? 1 : 0)
  );
  assert( (pMem->flags&MEM_RowSet)==0 );





  if( n<32 ) n = 32;
  if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
    if( preserve && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      preserve = 0;
    }else{







<
|
>
|
|













>
>
>
>







55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#endif
}

/*
** Make sure pMem->z points to a writable allocation of at least 
** n bytes.
**

** If the third argument passed to this function is true, then memory
** cell pMem must contain a string or blob. In this case the content is
** preserved. Otherwise, if the third parameter to this function is false,
** any current string or blob value may be discarded.
**
** This function sets the MEM_Dyn flag and clears any xDel callback.
** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 
** not set, Mem.n is zeroed.
*/
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
  assert( 1 >=
    ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
    (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 
    ((pMem->flags&MEM_Ephem) ? 1 : 0) + 
    ((pMem->flags&MEM_Static) ? 1 : 0)
  );
  assert( (pMem->flags&MEM_RowSet)==0 );

  /* If the preserve flag is set to true, then the memory cell must already
  ** contain a valid string or blob value.  */
  assert( preserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );

  if( n<32 ) n = 32;
  if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
    if( preserve && pMem->z==pMem->zMalloc ){
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      preserve = 0;
    }else{
Changes to test/capi3.test.
897
898
899
900
901
902
903






904
905
906
907
908
909
910
} {0 {}}
do_test capi3-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3-11.10 {
  sqlite3_step $STMT
} {SQLITE_ERROR}






do_test capi3-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}







>
>
>
>
>
>







897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
} {0 {}}
do_test capi3-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3-11.10 {
  sqlite3_step $STMT
} {SQLITE_ERROR}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}
Changes to test/capi3c.test.
852
853
854
855
856
857
858






859
860
861
862
863
864
865
} {0 {}}
do_test capi3c-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3c-11.10 {
  sqlite3_step $STMT
} {SQLITE_ABORT}






do_test capi3c-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3c-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}







>
>
>
>
>
>







852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
} {0 {}}
do_test capi3c-11.9.3 {
  sqlite3_get_autocommit $DB
} 1
do_test capi3c-11.10 {
  sqlite3_step $STMT
} {SQLITE_ABORT}
ifcapable !autoreset {
  # If SQLITE_OMIT_AUTORESET is defined, then the statement must be
  # reset() before it can be passed to step() again.
  do_test capi3-11.11a { sqlite3_step $STMT } {SQLITE_MISUSE}
  do_test capi3-11.11b { sqlite3_reset $STMT } {SQLITE_ABORT}
}
do_test capi3c-11.11 {
  sqlite3_step $STMT
} {SQLITE_ROW}
do_test capi3c-11.12 {
  sqlite3_step $STMT
  sqlite3_step $STMT
} {SQLITE_DONE}
Changes to test/fts3defer.test.
485
486
487
488
489
490
491


































492
493
  INSERT INTO x2 VALUES('a b c d e f g h i j k l m n o p q r s t u v w x y m');
  COMMIT;
}
do_execsql_test 4.2 {
  SELECT * FROM x2 WHERE x2 MATCH 'a b c d e f g h i j k l m n o p q r s';
} {{a b c d e f g h i j k l m n o p q r s t u v w x y m}}




































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
  INSERT INTO x2 VALUES('a b c d e f g h i j k l m n o p q r s t u v w x y m');
  COMMIT;
}
do_execsql_test 4.2 {
  SELECT * FROM x2 WHERE x2 MATCH 'a b c d e f g h i j k l m n o p q r s';
} {{a b c d e f g h i j k l m n o p q r s t u v w x y m}}

set tokenizers {1 simple}
ifcapable icu { lappend tokenizers 2 {icu en_US} }
foreach {tn tokenizer} $tokenizers {
  do_execsql_test 5.$tn.1 "
    CREATE VIRTUAL TABLE x3 USING FTS4(a, b, TOKENIZE $tokenizer)
  "
  do_execsql_test 5.$tn.2 {
    BEGIN;
    INSERT INTO x3 VALUES('b b b b b b b b b b b', 'b b b b b b b b b b b b b');
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 SELECT * FROM x3;
    INSERT INTO x3 VALUES('a b c', NULL);
    INSERT INTO x3 VALUES('a x c', NULL);
    COMMIT;

    SELECT * FROM x3 WHERE x3 MATCH 'a b';
  } {{a b c} {}}

  do_execsql_test 5.$tn.3 { DROP TABLE x3 }
}

finish_test
Changes to test/fts4merge3.test.
15
16
17
18
19
20
21





22
23
24
25
26
27
28
set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/fts3_common.tcl
source $testdir/lock_common.tcl
source $testdir/bc_common.tcl

set ::testprefix fts4merge3






if {"" == [bc_find_binaries backcompat.test]} {
  finish_test
  return
}

db close







>
>
>
>
>







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/fts3_common.tcl
source $testdir/lock_common.tcl
source $testdir/bc_common.tcl

set ::testprefix fts4merge3

ifcapable !fts3 {
  finish_test
  return
}

if {"" == [bc_find_binaries backcompat.test]} {
  finish_test
  return
}

db close
Changes to test/in.test.
254
255
256
257
258
259
260
261
262
263
264
265



266
267
268
269
270









271
272
273
274
275
276
277
  }
} {}
do_test in-7.5 {
  execsql {
    SELECT a FROM t1 WHERE a IN (5) AND b NOT IN ();
  }
} {5}
do_test in-7.6 {
  execsql {
    SELECT a FROM ta WHERE a IN ();
  }
} {}



do_test in-7.7 {
  execsql {
    SELECT a FROM ta WHERE a NOT IN ();
  }
} {1 2 3 4 6 8 10}










do_test in-8.1 {
  execsql {
    SELECT b FROM t1 WHERE a IN ('hello','there')
  }
} {world}
do_test in-8.2 {







|




>
>
>





>
>
>
>
>
>
>
>
>







254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  }
} {}
do_test in-7.5 {
  execsql {
    SELECT a FROM t1 WHERE a IN (5) AND b NOT IN ();
  }
} {5}
do_test in-7.6.1 {
  execsql {
    SELECT a FROM ta WHERE a IN ();
  }
} {}
do_test in-7.6.2 {
  db status step
} {0}
do_test in-7.7 {
  execsql {
    SELECT a FROM ta WHERE a NOT IN ();
  }
} {1 2 3 4 6 8 10}

do_test in-7.8.1 {
  execsql {
    SELECT * FROM ta LEFT JOIN tb ON (ta.b=tb.b) WHERE ta.a IN ();
  }
} {}
do_test in-7.8.2 {
  db status step
} {0}

do_test in-8.1 {
  execsql {
    SELECT b FROM t1 WHERE a IN ('hello','there')
  }
} {world}
do_test in-8.2 {
Changes to test/quota2.test.
72
73
74
75
76
77
78







79
80
81
82
83
84
85
do_test quota2-1.1 {
  set ::h1 [sqlite3_quota_fopen quota2a/xyz.txt w+b]
  sqlite3_quota_fwrite $::h1 1 7000 $bigtext
} {4000}
do_test quota2-1.2 {
  set ::quota
} {PWD/quota2a/xyz.txt 4000 7000}







do_test quota2-1.3 {
  sqlite3_quota_rewind $::h1
  set ::x [sqlite3_quota_fread $::h1 1001 7]
  string length $::x
} {3003}
do_test quota2-1.4 {
  string match $::x [string range $::bigtext 0 3002]







>
>
>
>
>
>
>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
do_test quota2-1.1 {
  set ::h1 [sqlite3_quota_fopen quota2a/xyz.txt w+b]
  sqlite3_quota_fwrite $::h1 1 7000 $bigtext
} {4000}
do_test quota2-1.2 {
  set ::quota
} {PWD/quota2a/xyz.txt 4000 7000}
do_test quota2-1.2.1 {
  sqlite3_quota_file_size $::h1
} {4000}
do_test quota2-1.2.2 {
  sqlite3_quota_fflush $::h1 1
  sqlite3_quota_file_truesize $::h1
} {4000}
do_test quota2-1.3 {
  sqlite3_quota_rewind $::h1
  set ::x [sqlite3_quota_fread $::h1 1001 7]
  string length $::x
} {3003}
do_test quota2-1.4 {
  string match $::x [string range $::bigtext 0 3002]
108
109
110
111
112
113
114



























115
116
117
118
119
120
121

122
123
124
125
126
127
128
  sqlite3_quota_rewind $::h1
  sqlite3_quota_ftell $::h1
} {0}
do_test quota2-1.11 {
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 1 0}}}
do_test quota2-1.12 {



























  sqlite3_quota_fclose $::h1
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 0 0}}}
do_test quota2-1.13 {
  sqlite3_quota_remove quota2a/xyz.txt
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 0}}



set quota {}
do_test quota2-2.1 {
  set ::h1 [sqlite3_quota_fopen quota2c/xyz.txt w+b]
  sqlite3_quota_fwrite $::h1 1 7000 $bigtext
} {7000}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|



>







115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  sqlite3_quota_rewind $::h1
  sqlite3_quota_ftell $::h1
} {0}
do_test quota2-1.11 {
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 1 0}}}
do_test quota2-1.12 {
  sqlite3_quota_ftruncate $::h1 3500
  sqlite3_quota_file_size $::h1
} {3500}
do_test quota2-1.13 {
  sqlite3_quota_file_truesize $::h1
} {3500}
do_test quota2-1.14 {
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 3500 {PWD/quota2a/xyz.txt 3500 1 0}}}
do_test quota2-1.15 {
  sqlite3_quota_fseek $::h1 0 SEEK_END
  sqlite3_quota_ftell $::h1
} {3500}
do_test quota2-1.16 {
  sqlite3_quota_fwrite $::h1 1 7000 $bigtext
} {500}
do_test quota2-1.17 {
  sqlite3_quota_ftell $::h1
} {4000}
do_test quota2-1.18 {
  sqlite3_quota_file_size $::h1
} {4000}
do_test quota2-1.19 {
  sqlite3_quota_fflush $::h1 1
  sqlite3_quota_file_truesize $::h1
} {4000}
do_test quota2-1.20 {
  sqlite3_quota_fclose $::h1
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 4000 {PWD/quota2a/xyz.txt 4000 0 0}}}
do_test quota2-1.21 {
  sqlite3_quota_remove quota2a/xyz.txt
  standard_path [sqlite3_quota_dump]
} {{*/quota2b/* 5000 0} {*/quota2a/* 4000 0}}



set quota {}
do_test quota2-2.1 {
  set ::h1 [sqlite3_quota_fopen quota2c/xyz.txt w+b]
  sqlite3_quota_fwrite $::h1 1 7000 $bigtext
} {7000}
Added test/savepoint7.test.
































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# 2012 March 31
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Focus on the interaction between RELEASE and ROLLBACK TO with
# pending query aborts.  See ticket [27ca74af3c083f787a1c44b11fbb7c53bdbbcf1e].
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# The RELEASE of an inner savepoint should not effect pending queries.
#
do_test savepoint7-1.1 {
  db eval {
    CREATE TABLE t1(a,b,c);
    CREATE TABLE t2(x,y,z);
    INSERT INTO t1 VALUES(1,2,3);
    INSERT INTO t1 VALUES(4,5,6);
    INSERT INTO t1 VALUES(7,8,9);
    SAVEPOINT x1;
  }
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; RELEASE x1}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.2 {
  db eval {DELETE FROM t2;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2}
} {1 2 3 4 5 6 7 8 9}

do_test savepoint7-1.3 {
  db eval {DELETE FROM t2; BEGIN;}
  db eval {SELECT * FROM t1} {
    db eval {
      SAVEPOINT x2;
      INSERT INTO t2 VALUES($a,$b,$c);
      RELEASE x2;
    }
  }
  db eval {SELECT * FROM t2; ROLLBACK;}
} {1 2 3 4 5 6 7 8 9}

# However, a ROLLBACK of an inner savepoint will abort all queries, including
# queries in outer contexts.
#
do_test savepoint7-2.1 {
  db eval {DELETE FROM t2; SAVEPOINT x1;}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  db eval {RELEASE x1}
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {callback requested query abort} {}}

do_test savepoint7-2.2 {
  db eval {DELETE FROM t2;}
  set rc [catch {
    db eval {SELECT * FROM t1} {
      db eval {
        SAVEPOINT x2;
        INSERT INTO t2 VALUES($a,$b,$c);
        ROLLBACK TO x2;
      }
    }
  } msg]
  list $rc $msg [db eval {SELECT * FROM t2}]
} {1 {callback requested query abort} {}}

finish_test
Changes to test/subquery.test.
326
327
328
329
330
331
332















































333
334
335
336
337
338
339
  }
} {1 one 2 two}
do_test subquery-3.3.5 {
  execsql {
    SELECT a, (SELECT count(*) FROM t2 WHERE a=c) FROM t1;
  }
} {1 1 2 1}
















































#------------------------------------------------------------------
# These tests - subquery-4.* - use the TCL statement cache to try 
# and expose bugs to do with re-using statements that have been 
# passed to sqlite3_reset().
#
# One problem was that VDBE memory cells were not being initialised







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  }
} {1 one 2 two}
do_test subquery-3.3.5 {
  execsql {
    SELECT a, (SELECT count(*) FROM t2 WHERE a=c) FROM t1;
  }
} {1 1 2 1}

# The following tests check for aggregate subqueries in an aggregate
# query.
#
do_test subquery-3.4.1 {
  execsql {
    CREATE TABLE t34(x,y);
    INSERT INTO t34 VALUES(106,4), (107,3), (106,5), (107,5);
    SELECT a.x, avg(a.y)
      FROM t34 AS a
     GROUP BY a.x
     HAVING NOT EXISTS( SELECT b.x, avg(b.y)
                          FROM t34 AS b
                         GROUP BY b.x
                         HAVING avg(a.y) > avg(b.y));
  }
} {107 4.0}
do_test subquery-3.4.2 {
  execsql {
    SELECT a.x, avg(a.y) AS avg1
      FROM t34 AS a
     GROUP BY a.x
     HAVING NOT EXISTS( SELECT b.x, avg(b.y) AS avg2
                          FROM t34 AS b
                         GROUP BY b.x
                         HAVING avg1 > avg2);
  }
} {107 4.0}
do_test subquery-3.4.3 {
  execsql {
    SELECT
       a.x,
       avg(a.y),
       NOT EXISTS ( SELECT b.x, avg(b.y)
                      FROM t34 AS b
                      GROUP BY b.x
                     HAVING avg(a.y) > avg(b.y)),
       EXISTS ( SELECT c.x, avg(c.y)
                  FROM t34 AS c
                  GROUP BY c.x
                 HAVING avg(a.y) > avg(c.y))
      FROM t34 AS a
     GROUP BY a.x
     ORDER BY a.x;
  }
} {106 4.5 0 1 107 4.0 1 0}


#------------------------------------------------------------------
# These tests - subquery-4.* - use the TCL statement cache to try 
# and expose bugs to do with re-using statements that have been 
# passed to sqlite3_reset().
#
# One problem was that VDBE memory cells were not being initialised
Changes to tool/build-shell.sh.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# ~/sqlite/bld.  There should be an appropriate Makefile in the current
# directory as well.
#
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT2 \
   -DSQLITE_ENABLE_FTS3 \
   -DSQLITE_ENABLE_RTREE \
   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \
   sqlite3.c -ldl -lreadline -lncurses







|
|





8
9
10
11
12
13
14
15
16
17
18
19
20
21
# ~/sqlite/bld.  There should be an appropriate Makefile in the current
# directory as well.
#
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT3 \
   -DSQLITE_ENABLE_FTS4 \
   -DSQLITE_ENABLE_RTREE \
   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \
   sqlite3.c -ldl -lreadline -lncurses
Changes to tool/showdb.c.
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
/*
** A utility for printing all or part of an SQLite database file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>



static int pagesize = 1024;     /* Size of a database page */
static int db = -1;             /* File descriptor for reading the DB */
static int mxPage = 0;          /* Last page number */
static int perLine = 16;        /* HEX elements to print per line */












>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** A utility for printing all or part of an SQLite database file.
*/
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include "sqlite3.h"


static int pagesize = 1024;     /* Size of a database page */
static int db = -1;             /* File descriptor for reading the DB */
static int mxPage = 0;          /* Last page number */
static int perLine = 16;        /* HEX elements to print per line */

445
446
447
448
449
450
451


























































































































































































































452
453
454
455
456
457
458
459
460

461
462
463
464
465
466
467
      pgno = 0;
    }else{
      pgno = (int)decodeInt32(&a[0]);
    }
    free(a);
  }
}



























































































































































































































/*
** Print a usage comment
*/
static void usage(const char *argv0){
  fprintf(stderr, "Usage %s FILENAME ?args...?\n\n", argv0);
  fprintf(stderr,
    "args:\n"
    "    dbheader        Show database header\n"

    "    NNN..MMM        Show hex of pages NNN through MMM\n"
    "    NNN..end        Show hex of pages NNN through end of file\n"
    "    NNNb            Decode btree page NNN\n"
    "    NNNbc           Decode btree page NNN and show content\n"
    "    NNNbm           Decode btree page NNN and show a layout map\n"
    "    NNNt            Decode freelist trunk page NNN\n"
    "    NNNtd           Show leaf freelist pages on the decode\n"







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>







446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
      pgno = 0;
    }else{
      pgno = (int)decodeInt32(&a[0]);
    }
    free(a);
  }
}

/*
** A short text comment on the use of each page.
*/
static char **zPageUse;

/*
** Add a comment on the use of a page.
*/
static void page_usage_msg(int pgno, const char *zFormat, ...){
  va_list ap;
  char *zMsg;

  va_start(ap, zFormat);
  zMsg = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( pgno<=0 || pgno>mxPage ){
    printf("ERROR: page %d out of bounds.  Range=1..%d.  Msg: %s\n",
            pgno, mxPage, zMsg);
    sqlite3_free(zMsg);
    return;
  }
  if( zPageUse[pgno]!=0 ){
    printf("ERROR: page %d used multiple times:\n", pgno);
    printf("ERROR:    previous: %s\n", zPageUse[pgno]);
    printf("ERROR:    current:  %s\n", zPageUse[pgno]);
    sqlite3_free(zPageUse[pgno]);
  }
  zPageUse[pgno] = zMsg;
}

/*
** Find overflow pages of a cell and describe their usage.
*/
static void page_usage_cell(
  unsigned char cType,    /* Page type */
  unsigned char *a,       /* Cell content */
  int pgno,               /* page containing the cell */
  int cellno              /* Index of the cell on the page */
){
  int i;
  int nDesc = 0;
  int n = 0;
  i64 nPayload;
  i64 rowid;
  int nLocal;
  i = 0;
  if( cType<=5 ){
    a += 4;
    n += 4;
  }
  if( cType!=5 ){
    i = decodeVarint(a, &nPayload);
    a += i;
    n += i;
    nLocal = localPayload(nPayload, cType);
  }else{
    nPayload = nLocal = 0;
  }
  if( cType==5 || cType==13 ){
    i = decodeVarint(a, &rowid);
    a += i;
    n += i;
  }
  if( nLocal<nPayload ){
    int ovfl = decodeInt32(a+nLocal);
    int cnt = 0;
    while( ovfl && (cnt++)<mxPage ){
      page_usage_msg(ovfl, "overflow %d from cell %d of page %d",
                     cnt, cellno, pgno);
      a = getContent((ovfl-1)*pagesize, 4);
      ovfl = decodeInt32(a);
      free(a);
    }
  }
}


/*
** Describe the usages of a b-tree page
*/
static void page_usage_btree(
  int pgno,             /* Page to describe */
  int parent,           /* Parent of this page.  0 for root pages */
  int idx,              /* Which child of the parent */
  const char *zName     /* Name of the table */
){
  unsigned char *a;
  const char *zType = "corrupt node";
  int nCell;
  int i;
  int hdr = pgno==1 ? 100 : 0;

  if( pgno<=0 || pgno>mxPage ) return;
  a = getContent((pgno-1)*pagesize, pagesize);
  switch( a[hdr] ){
    case 2:  zType = "interior node of index";  break;
    case 5:  zType = "interior node of table";  break;
    case 10: zType = "leaf of index";           break;
    case 13: zType = "leaf of table";           break;
  }
  if( parent ){
    page_usage_msg(pgno, "%s [%s], child %d of page %d",
                   zType, zName, idx, parent);
  }else{
    page_usage_msg(pgno, "root %s [%s]", zType, zName);
  }
  nCell = a[hdr+3]*256 + a[hdr+4];
  if( a[hdr]==2 || a[hdr]==5 ){
    int cellstart = hdr+12;
    unsigned int child;
    for(i=0; i<nCell; i++){
      int ofst;

      ofst = cellstart + i*2;
      ofst = a[ofst]*256 + a[ofst+1];
      child = decodeInt32(a+ofst);
      page_usage_btree(child, pgno, i, zName);
    }
    child = decodeInt32(a+cellstart-4);
    page_usage_btree(child, pgno, i, zName);
  }
  if( a[hdr]==2 || a[hdr]==10 || a[hdr]==13 ){
    int cellstart = hdr + 8 + 4*(a[hdr]<=5);
    for(i=0; i<nCell; i++){
      int ofst;
      ofst = cellstart + i*2;
      ofst = a[ofst]*256 + a[ofst+1];
      page_usage_cell(a[hdr], a+ofst, pgno, i);
    }
  }
  free(a);
}

/*
** Determine page usage by the freelist
*/
static void page_usage_freelist(int pgno){
  unsigned char *a;
  int cnt = 0;
  int i;
  int n;
  int iNext;
  int parent = 1;

  while( pgno>0 && pgno<=mxPage && (cnt++)<mxPage ){
    page_usage_msg(pgno, "freelist trunk #%d child of %d", cnt, parent);
    a = getContent((pgno-1)*pagesize, pagesize);
    iNext = decodeInt32(a);
    n = decodeInt32(a+4);
    for(i=0; i<n; i++){
      int child = decodeInt32(a + (i*4+8));
      page_usage_msg(child, "freelist leaf, child %d of trunk page %d",
                     i, pgno);
    }
    free(a);
    parent = pgno;
    pgno = iNext;
  }
}

/*
** Try to figure out how every page in the database file is being used.
*/
static void page_usage_report(const char *zDbName){
  int i;
  int rc;
  sqlite3 *db;
  sqlite3_stmt *pStmt;
  unsigned char *a;

  /* Avoid the pathological case */
  if( mxPage<1 ){
    printf("empty database\n");
    return;
  }

  /* Open the database file */
  rc = sqlite3_open(zDbName, &db);
  if( rc ){
    printf("cannot open database: %s\n", sqlite3_errmsg(db));
    sqlite3_close(db);
    return;
  }

  /* Set up global variables zPageUse[] and mxPage to record page
  ** usages */
  zPageUse = sqlite3_malloc( sizeof(zPageUse[0])*(mxPage+1) );
  if( zPageUse==0 ) out_of_memory();
  memset(zPageUse, 0, sizeof(zPageUse[0])*(mxPage+1));

  /* Discover the usage of each page */
  a = getContent(0, 100);
  page_usage_freelist(decodeInt32(a+32));
  free(a);
  page_usage_btree(1, 0, 0, "sqlite_master");
  rc = sqlite3_prepare_v2(db,
           "SELECT type, name, rootpage FROM SQLITE_MASTER WHERE rootpage",
           -1, &pStmt, 0);
  if( rc==SQLITE_OK ){
    while( sqlite3_step(pStmt)==SQLITE_ROW ){
      int pgno = sqlite3_column_int(pStmt, 2);
      page_usage_btree(pgno, 0, 0, sqlite3_column_text(pStmt, 1));
    }
  }else{
    printf("ERROR: cannot query database: %s\n", sqlite3_errmsg(db));
  }
  sqlite3_finalize(pStmt);
  sqlite3_close(db);

  /* Print the report and free memory used */
  for(i=1; i<=mxPage; i++){
    printf("%5d: %s\n", i, zPageUse[i] ? zPageUse[i] : "???");
    sqlite3_free(zPageUse[i]);
  }
  sqlite3_free(zPageUse);
  zPageUse = 0;
}

/*
** Print a usage comment
*/
static void usage(const char *argv0){
  fprintf(stderr, "Usage %s FILENAME ?args...?\n\n", argv0);
  fprintf(stderr,
    "args:\n"
    "    dbheader        Show database header\n"
    "    pgidx           Index of how each page is used\n"
    "    NNN..MMM        Show hex of pages NNN through MMM\n"
    "    NNN..end        Show hex of pages NNN through end of file\n"
    "    NNNb            Decode btree page NNN\n"
    "    NNNbc           Decode btree page NNN and show content\n"
    "    NNNbm           Decode btree page NNN and show a layout map\n"
    "    NNNt            Decode freelist trunk page NNN\n"
    "    NNNtd           Show leaf freelist pages on the decode\n"
498
499
500
501
502
503
504




505
506
507
508
509
510
511
    int i;
    for(i=2; i<argc; i++){
      int iStart, iEnd;
      char *zLeft;
      if( strcmp(argv[i], "dbheader")==0 ){
        print_db_header();
        continue;




      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){







>
>
>
>







718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
    int i;
    for(i=2; i<argc; i++){
      int iStart, iEnd;
      char *zLeft;
      if( strcmp(argv[i], "dbheader")==0 ){
        print_db_header();
        continue;
      }
      if( strcmp(argv[i], "pgidx")==0 ){
        page_usage_report(argv[1]);
        continue;
      }
      if( !isdigit(argv[i][0]) ){
        fprintf(stderr, "%s: unknown option: [%s]\n", argv[0], argv[i]);
        continue;
      }
      iStart = strtol(argv[i], &zLeft, 0);
      if( zLeft && strcmp(zLeft,"..end")==0 ){
Changes to tool/spaceanal.tcl.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
}

# Compute the total file size assuming test_multiplexor is being used.
# Assume that SQLITE_ENABLE_8_3_NAMES might be enabled
#
set extension [file extension $file_to_analyze]
set pattern $file_to_analyze
append pattern {[0-9][0-9]}
foreach f [glob -nocomplain $pattern] {
  incr true_file_size [file size $f]
  set extension {}
}
if {[string length $extension]>=2 && [string length $extension]<=4} {
  set pattern [file rootname $file_to_analyze]
  append pattern [string range $extension 0 1]
  append pattern {[0-9][0-9]}
  foreach f [glob -nocomplain $pattern] {
    incr true_file_size [file size $f]
  }
}

# Open the database
#







|






<
|







45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
}

# Compute the total file size assuming test_multiplexor is being used.
# Assume that SQLITE_ENABLE_8_3_NAMES might be enabled
#
set extension [file extension $file_to_analyze]
set pattern $file_to_analyze
append pattern {[0-3][0-9][0-9]}
foreach f [glob -nocomplain $pattern] {
  incr true_file_size [file size $f]
  set extension {}
}
if {[string length $extension]>=2 && [string length $extension]<=4} {
  set pattern [file rootname $file_to_analyze]

  append pattern {.[0-3][0-9][0-9]}
  foreach f [glob -nocomplain $pattern] {
    incr true_file_size [file size $f]
  }
}

# Open the database
#
Changes to tool/warnings-clang.sh.
1
2
3
4
5
6
7
8
9
10
11
12
13

#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
rm -f sqlite3.c
make sqlite3.c
echo '************* FTS4 and RTREE ****************'
scan-build gcc -c -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      -DSQLITE_DEBUG sqlite3.c 2>&1 | grep -v 'ANALYZE:'
echo '********** ENABLE_STAT3. THREADSAFE=0 *******'
scan-build gcc -c -DSQLITE_ENABLE_STAT3 -DSQLITE_THREADSAFE=0 \
      -DSQLITE_DEBUG sqlite3.c 2>&1 | grep -v 'ANALYZE:'












|
|
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
rm -f sqlite3.c
make sqlite3.c
echo '************* FTS4 and RTREE ****************'
scan-build gcc -c -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      -DSQLITE_DEBUG sqlite3.c 2>&1 | grep -v 'ANALYZE:'
echo '********** ENABLE_STAT3. THREADSAFE=0 *******'
scan-build gcc -c -I. -DSQLITE_ENABLE_STAT3 -DSQLITE_THREADSAFE=0 \
      -DSQLITE_DEBUG \
      sqlite3.c ../sqlite/src/shell.c -ldl 2>&1 | grep -v 'ANALYZE:'