/ Check-in [79125ec9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge enhancements from trunk, and in particular the WAL overwrite feature.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: 79125ec9d2cdb96d65ceeb19c2862665f9267d4e
User & Date: drh 2016-01-11 12:49:55
Context
2016-01-11
13:03
Import the version number change to 3.11.0. check-in: 132772d1 user: drh tags: apple-osx
12:49
Merge enhancements from trunk, and in particular the WAL overwrite feature. check-in: 79125ec9 user: drh tags: apple-osx
12:13
If a single page is written to the wal file more than once, instead of appending the second and subsequent copy to the wal file, overwrite the first. Update: See the important bug fix at [f694e60a]! check-in: d493d4f1 user: dan tags: trunk
2016-01-06
14:35
Merge all version 3.10.0 updates. check-in: 77c28c2b user: drh tags: apple-osx
Changes
Hide Diffs Unified Diffs Show Whitespace Changes Patch

Changes to src/btmutex.c.

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
...
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
...
294
295
296
297
298
299
300



















301
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );

  return (p->sharable==0 || p->locked);
}
#endif


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter and leave a mutex on a Btree given a cursor owned by that
** Btree.  These entry points are used by incremental I/O and can be
** omitted if that module is not used.
*/
void sqlite3BtreeEnterCursor(BtCursor *pCur){
  sqlite3BtreeEnter(pCur->pBtree);
}
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
  sqlite3BtreeLeave(pCur->pBtree);
}
#endif /* SQLITE_OMIT_INCRBLOB */


/*
** Enter the mutex on every Btree associated with a database
** connection.  This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.
................................................................................
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}

/*
** Return true if a particular Btree requires a lock.  Return FALSE if
** no lock is ever required since it is not sharable.
*/
int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/
................................................................................
    Btree *p = db->aDb[i].pBt;
    if( p ){
      p->pBt->db = p->db;
    }
  }
}
#endif /* if SQLITE_THREADSAFE */



















#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







<
<
<
<
<
<
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

164
165
166
167
168
169
170















171
172
173
174
175
176
177
...
198
199
200
201
202
203
204








205
206
207
208
209
210
211
...
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
  assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );

  return (p->sharable==0 || p->locked);
}
#endif

















/*
** Enter the mutex on every Btree associated with a database
** connection.  This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.
................................................................................
  assert( sqlite3_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite3BtreeLeave(p);
  }
}









#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/
................................................................................
    Btree *p = db->aDb[i].pBt;
    if( p ){
      p->pBt->db = p->db;
    }
  }
}
#endif /* if SQLITE_THREADSAFE */

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter a mutex on a Btree given a cursor owned by that Btree. 
**
** These entry points are used by incremental I/O only. Enter() is required 
** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not 
** the build is threadsafe. Leave() is only required by threadsafe builds.
*/
void sqlite3BtreeEnterCursor(BtCursor *pCur){
  sqlite3BtreeEnter(pCur->pBtree);
}
# if SQLITE_THREADSAFE
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
  sqlite3BtreeLeave(pCur->pBtree);
}
# endif
#endif /* ifndef SQLITE_OMIT_INCRBLOB */

#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */

Changes to src/btree.c.

452
453
454
455
456
457
458




459
460
461
462
463
464
465
...
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
....
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
....
3172
3173
3174
3175
3176
3177
3178


3179
3180
3181
3182
3183
3184
3185
....
3194
3195
3196
3197
3198
3199
3200

3201
3202
3203
3204
3205
3206
3207
....
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
....
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
....
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
....
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
....
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
....
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
....
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
....
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
....
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
....
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
....
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
....
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
....
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
....
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
....
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
....
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
....
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
....
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
....
9694
9695
9696
9697
9698
9699
9700









**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}




#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
................................................................................
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
................................................................................
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  sqlite3 *pBlock = 0;
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
................................................................................
  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE


  /* If another database handle has already opened a write transaction 
  ** on this shared-btree structure and a second write transaction is
  ** requested, return SQLITE_LOCKED.
  */
  if( (wrflag && pBt->inTransaction==TRANS_WRITE)
   || (pBt->btsFlags & BTS_PENDING)!=0
  ){
................................................................................
    }
  }
  if( pBlock ){
    sqlite3ConnectionBlocked(p->db, pBlock);
    rc = SQLITE_LOCKED_SHAREDCACHE;
    goto trans_begun;
  }

#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  if( SQLITE_OK!=rc ) goto trans_begun;
................................................................................
** that the cursor has Cursor.eState==CURSOR_VALID.
**
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
................................................................................

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorHoldsMutex(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
................................................................................
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
................................................................................
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
................................................................................
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
................................................................................
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorHoldsMutex(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
................................................................................
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
................................................................................
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
................................................................................
/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
................................................................................
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
................................................................................
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
................................................................................
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( *pRes==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
................................................................................
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
................................................................................
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
................................................................................
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorHoldsMutex(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
................................................................................
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorHoldsMutex(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
................................................................................
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
................................................................................
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorHoldsMutex(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
................................................................................
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
















>
>
>
>







 







|







 







<







 







>
>







 







>







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







|







 







>
>
>
>
>
>
>
>
>
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
...
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
....
3153
3154
3155
3156
3157
3158
3159

3160
3161
3162
3163
3164
3165
3166
....
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
....
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
....
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
....
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
....
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
....
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
....
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
....
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
....
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
....
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
....
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
....
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
....
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
....
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
....
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
....
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
....
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
....
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
....
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
....
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
....
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}
static int cursorOwnsBtShared(BtCursor *p){
  assert( cursorHoldsMutex(p) );
  return (p->pBtree->db==p->pBt->db);
}
#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
................................................................................
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
................................................................................
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){

  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
................................................................................
  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  {
    sqlite3 *pBlock = 0;
    /* If another database handle has already opened a write transaction 
    ** on this shared-btree structure and a second write transaction is
    ** requested, return SQLITE_LOCKED.
    */
    if( (wrflag && pBt->inTransaction==TRANS_WRITE)
     || (pBt->btsFlags & BTS_PENDING)!=0
    ){
................................................................................
      }
    }
    if( pBlock ){
      sqlite3ConnectionBlocked(p->db, pBlock);
      rc = SQLITE_LOCKED_SHAREDCACHE;
      goto trans_begun;
    }
  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  if( SQLITE_OK!=rc ) goto trans_begun;
................................................................................
** that the cursor has Cursor.eState==CURSOR_VALID.
**
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
................................................................................

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
................................................................................
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  u32 amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
  amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
  if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
  *pAmt = amt;
................................................................................
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
................................................................................
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
................................................................................
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorOwnsBtShared(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
................................................................................
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
................................................................................
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
................................................................................
/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
................................................................................
/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
................................................................................
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
................................................................................
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( *pRes==0 );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
................................................................................
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  MemPage *pPage;
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  *pRes = 0;
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
................................................................................
** SQLite btree implementation does not. (Note that the comdb2 btree
** implementation does use this hint, however.)
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
................................................................................
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  assert( cursorOwnsBtShared(pCur) );
  assert( pRes!=0 );
  assert( *pRes==0 || *pRes==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  *pRes = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
................................................................................
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
................................................................................
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  assert( pCur->eState==CURSOR_VALID );
................................................................................
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorOwnsBtShared(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
................................................................................
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Return true if the Btree passed as the only argument is sharable.
*/
int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}
#endif

Changes to src/btree.h.

283
284
285
286
287
288
289


290
291
292


293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures.  So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
  void sqlite3BtreeEnter(Btree*);
  void sqlite3BtreeEnterAll(sqlite3*);


#else
# define sqlite3BtreeEnter(X) 
# define sqlite3BtreeEnterAll(X)


#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
  int sqlite3BtreeSharable(Btree*);
  void sqlite3BtreeLeave(Btree*);
  void sqlite3BtreeEnterCursor(BtCursor*);
  void sqlite3BtreeLeaveCursor(BtCursor*);
  void sqlite3BtreeLeaveAll(sqlite3*);
#ifndef NDEBUG
  /* These routines are used inside assert() statements only. */
  int sqlite3BtreeHoldsMutex(Btree*);
  int sqlite3BtreeHoldsAllMutexes(sqlite3*);
  int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
#endif
#else

# define sqlite3BtreeSharable(X) 0
# define sqlite3BtreeLeave(X)
# define sqlite3BtreeEnterCursor(X)
# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X)

# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3SchemaMutexHeld(X,Y,Z) 1
#endif


#endif /* _BTREE_H_ */







>
>



>
>



<

<










<

<










283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300

301
302
303
304
305
306
307
308
309
310

311

312
313
314
315
316
317
318
319
320
321
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures.  So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
  void sqlite3BtreeEnter(Btree*);
  void sqlite3BtreeEnterAll(sqlite3*);
  int sqlite3BtreeSharable(Btree*);
  void sqlite3BtreeEnterCursor(BtCursor*);
#else
# define sqlite3BtreeEnter(X) 
# define sqlite3BtreeEnterAll(X)
# define sqlite3BtreeSharable(X) 0
# define sqlite3BtreeEnterCursor(X)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE

  void sqlite3BtreeLeave(Btree*);

  void sqlite3BtreeLeaveCursor(BtCursor*);
  void sqlite3BtreeLeaveAll(sqlite3*);
#ifndef NDEBUG
  /* These routines are used inside assert() statements only. */
  int sqlite3BtreeHoldsMutex(Btree*);
  int sqlite3BtreeHoldsAllMutexes(sqlite3*);
  int sqlite3SchemaMutexHeld(sqlite3*,int,Schema*);
#endif
#else


# define sqlite3BtreeLeave(X)

# define sqlite3BtreeLeaveCursor(X)
# define sqlite3BtreeLeaveAll(X)

# define sqlite3BtreeHoldsMutex(X) 1
# define sqlite3BtreeHoldsAllMutexes(X) 1
# define sqlite3SchemaMutexHeld(X,Y,Z) 1
#endif


#endif /* _BTREE_H_ */

Changes to src/build.c.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
*/
#include "sqliteInt.h"

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
*/
void sqlite3BeginParse(Parse *pParse, int explainFlag){
  pParse->explain = (u8)explainFlag;
  pParse->nVar = 0;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;             /* The database containing the table to be locked */







<
<
<
<
<
<
<
<
<







20
21
22
23
24
25
26









27
28
29
30
31
32
33
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
*/
#include "sqliteInt.h"










#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** The TableLock structure is only used by the sqlite3TableLock() and
** codeTableLocks() functions.
*/
struct TableLock {
  int iDb;             /* The database containing the table to be locked */

Changes to src/expr.c.

457
458
459
460
461
462
463
464
465

466
467
468
469
470
471
472
  if( pToken ){
    if( op!=TK_INTEGER || pToken->z==0
          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
      nExtra = pToken->n+1;
      assert( iValue>=0 );
    }
  }
  pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
  if( pNew ){

    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = iValue;
      }else{







|

>







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
  if( pToken ){
    if( op!=TK_INTEGER || pToken->z==0
          || sqlite3GetInt32(pToken->z, &iValue)==0 ){
      nExtra = pToken->n+1;
      assert( iValue>=0 );
    }
  }
  pNew = sqlite3DbMallocRaw(db, sizeof(Expr)+nExtra);
  if( pNew ){
    memset(pNew, 0, sizeof(Expr));
    pNew->op = (u8)op;
    pNew->iAgg = -1;
    if( pToken ){
      if( nExtra==0 ){
        pNew->flags |= EP_IntValue;
        pNew->u.iValue = iValue;
      }else{

Changes to src/func.c.

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
...
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
...
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
...
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
...
794
795
796
797
798
799
800
801
802
803

804
805
806
807
808
809
810
...
836
837
838
839
840
841
842


843
844
845
846
847
848
849
850
851
852
853
854
855
856
  sqlite3_result_int(context, sqlite3_total_changes(db));
}

/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
  u8 matchAll;
  u8 matchOne;
  u8 matchSet;
  u8 noCase;
};

/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, provde the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.
................................................................................
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 esc                          /* The escape character */
){
  u32 c, c2;                       /* Next pattern and input string chars */
  u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
  u32 matchAll = pInfo->matchAll;  /* "*" or "%" */
  u32 matchOther;                  /* "[" or the escape character */
  u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
  const u8 *zEscaped = 0;          /* One past the last escaped input char */
  
  /* The GLOB operator does not have an ESCAPE clause.  And LIKE does not
  ** have the matchSet operator.  So we either have to look for one or
  ** the other, never both.  Hence the single variable matchOther is used
  ** to store the one we have to look for.
  */
  matchOther = esc ? esc : pInfo->matchSet;

  while( (c = Utf8Read(zPattern))!=0 ){
    if( c==matchAll ){  /* Match "*" */
      /* Skip over multiple "*" characters in the pattern.  If there
      ** are also "?" characters, skip those as well, but consume a
      ** single character of the input string for each "?" skipped */
      while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;   /* "*" at the end of the pattern matches */
      }else if( c==matchOther ){
        if( esc ){
          c = sqlite3Utf8Read(&zPattern);
          if( c==0 ) return 0;
        }else{
          /* "[...]" immediately follows the "*".  We have to do a slow
          ** recursive search in this case, but it is an unusual case. */
          assert( matchOther<0x80 );  /* '[' is a single-byte character */
          while( *zString
                 && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
            SQLITE_SKIP_UTF8(zString);
          }
          return *zString!=0;
        }
      }

      /* At this point variable c contains the first character of the
................................................................................
          cx = sqlite3Toupper(c);
          c = sqlite3Tolower(c);
        }else{
          cx = c;
        }
        while( (c2 = *(zString++))!=0 ){
          if( c2!=c && c2!=cx ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }else{
        while( (c2 = Utf8Read(zString))!=0 ){
          if( c2!=c ) continue;
          if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
        }
      }
      return 0;
    }
    if( c==matchOther ){
      if( esc ){
        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ) return 0;
        zEscaped = zPattern;
      }else{
        u32 prior_c = 0;
        int seen = 0;
        int invert = 0;
................................................................................
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}

/*
** The sqlite3_strlike() interface.
*/
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
  return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
................................................................................
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);


#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( sqlite3_value_type(argv[0])==SQLITE_BLOB
   || sqlite3_value_type(argv[1])==SQLITE_BLOB
  ){
#ifdef SQLITE_TEST
    sqlite3_like_count++;
................................................................................
    if( zEsc==0 ) return;
    if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
      sqlite3_result_error(context, 
          "ESCAPE expression must be a single character", -1);
      return;
    }
    escape = sqlite3Utf8Read(&zEsc);


  }
  if( zA && zB ){
    struct compareInfo *pInfo = sqlite3_user_data(context);
#ifdef SQLITE_TEST
    sqlite3_like_count++;
#endif
    
    sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the







|
|
|
|







 







|




<



<
<
<
<
<
<
<













|







|







 







|




|





|







 







|







 







|


>







 







>
>


<



<







563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
...
629
630
631
632
633
634
635
636
637
638
639
640

641
642
643







644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
...
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
...
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
...
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
...
829
830
831
832
833
834
835
836
837
838
839

840
841
842

843
844
845
846
847
848
849
  sqlite3_result_int(context, sqlite3_total_changes(db));
}

/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
  u8 matchAll;          /* "*" or "%" */
  u8 matchOne;          /* "?" or "_" */
  u8 matchSet;          /* "[" or 0 */
  u8 noCase;            /* true to ignore case differences */
};

/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, provde the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.
................................................................................
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 matchOther                   /* The escape char (LIKE) or '[' (GLOB) */
){
  u32 c, c2;                       /* Next pattern and input string chars */
  u32 matchOne = pInfo->matchOne;  /* "?" or "_" */
  u32 matchAll = pInfo->matchAll;  /* "*" or "%" */

  u8 noCase = pInfo->noCase;       /* True if uppercase==lowercase */
  const u8 *zEscaped = 0;          /* One past the last escaped input char */
  







  while( (c = Utf8Read(zPattern))!=0 ){
    if( c==matchAll ){  /* Match "*" */
      /* Skip over multiple "*" characters in the pattern.  If there
      ** are also "?" characters, skip those as well, but consume a
      ** single character of the input string for each "?" skipped */
      while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
        if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
          return 0;
        }
      }
      if( c==0 ){
        return 1;   /* "*" at the end of the pattern matches */
      }else if( c==matchOther ){
        if( pInfo->matchSet==0 ){
          c = sqlite3Utf8Read(&zPattern);
          if( c==0 ) return 0;
        }else{
          /* "[...]" immediately follows the "*".  We have to do a slow
          ** recursive search in this case, but it is an unusual case. */
          assert( matchOther<0x80 );  /* '[' is a single-byte character */
          while( *zString
                 && patternCompare(&zPattern[-1],zString,pInfo,matchOther)==0 ){
            SQLITE_SKIP_UTF8(zString);
          }
          return *zString!=0;
        }
      }

      /* At this point variable c contains the first character of the
................................................................................
          cx = sqlite3Toupper(c);
          c = sqlite3Tolower(c);
        }else{
          cx = c;
        }
        while( (c2 = *(zString++))!=0 ){
          if( c2!=c && c2!=cx ) continue;
          if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
        }
      }else{
        while( (c2 = Utf8Read(zString))!=0 ){
          if( c2!=c ) continue;
          if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
        }
      }
      return 0;
    }
    if( c==matchOther ){
      if( pInfo->matchSet==0 ){
        c = sqlite3Utf8Read(&zPattern);
        if( c==0 ) return 0;
        zEscaped = zPattern;
      }else{
        u32 prior_c = 0;
        int seen = 0;
        int invert = 0;
................................................................................
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[')==0;
}

/*
** The sqlite3_strlike() interface.
*/
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
  return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
................................................................................
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);
  struct compareInfo *pInfo = sqlite3_user_data(context);

#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( sqlite3_value_type(argv[0])==SQLITE_BLOB
   || sqlite3_value_type(argv[1])==SQLITE_BLOB
  ){
#ifdef SQLITE_TEST
    sqlite3_like_count++;
................................................................................
    if( zEsc==0 ) return;
    if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
      sqlite3_result_error(context, 
          "ESCAPE expression must be a single character", -1);
      return;
    }
    escape = sqlite3Utf8Read(&zEsc);
  }else{
    escape = pInfo->matchSet;
  }
  if( zA && zB ){

#ifdef SQLITE_TEST
    sqlite3_like_count++;
#endif

    sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
  }
}

/*
** Implementation of the NULLIF(x,y) function.  The result is the first
** argument if the arguments are different.  The result is NULL if the

Changes to src/mem5.c.

98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
...
220
221
222
223
224
225
226




227
228
229
230
231
232
233
234


235
236
237
238
239
240
241
...
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
...
296
297
298
299
300
301
302


303
304
305
306
307
308

309
310
311
312
313
314
315
  u8 *zPool;       /* Memory available to be allocated */
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;


  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */

  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
  */
  int aiFreelist[LOGMAX+1];
................................................................................
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  /* nByte must be a positive */
  assert( nByte>0 );





  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){
    /* Abort if the requested allocation size is larger than the largest
    ** power of two that we can represent using 32-bit signed integers. */
    if( nByte > 0x40000000 ) return 0;
    mem5.maxRequest = nByte;
  }



  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
................................................................................
    iBin--;
    newSize = 1 << iBin;
    mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
    memsys5Link(i+newSize, iBin);
  }
  mem5.aCtrl[i] = iLogsize;


  /* Update allocator performance statistics. */
  mem5.nAlloc++;
  mem5.totalAlloc += iFullSz;
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;


#ifdef SQLITE_DEBUG
  /* Make sure the allocated memory does not assume that it is set to zero
  ** or retains a value from a previous allocation */
  memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
#endif

................................................................................

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;


  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.szAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.szAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );


  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( ALWAYS(iLogsize<LOGMAX) ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;
    }else{







>











>







 







>
>
>
>



<
<
<


>
>







 







>








>







 







>
>






>







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235



236
237
238
239
240
241
242
243
244
245
246
...
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
...
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  u8 *zPool;       /* Memory available to be allocated */
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Performance statistics
  */
  u64 nAlloc;         /* Total number of calls to malloc */
  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
  u64 totalExcess;    /* Total internal fragmentation */
  u32 currentOut;     /* Current checkout, including internal fragmentation */
  u32 currentCount;   /* Current number of distinct checkouts */
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
#endif
  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
  */
  int aiFreelist[LOGMAX+1];
................................................................................
  int iBin;        /* Index into mem5.aiFreelist[] */
  int iFullSz;     /* Size of allocation rounded up to power of 2 */
  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */

  /* nByte must be a positive */
  assert( nByte>0 );

  /* No more than 1GiB per allocation */
  if( nByte > 0x40000000 ) return 0;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){



    mem5.maxRequest = nByte;
  }
#endif


  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
................................................................................
    iBin--;
    newSize = 1 << iBin;
    mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
    memsys5Link(i+newSize, iBin);
  }
  mem5.aCtrl[i] = iLogsize;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /* Update allocator performance statistics. */
  mem5.nAlloc++;
  mem5.totalAlloc += iFullSz;
  mem5.totalExcess += iFullSz - nByte;
  mem5.currentCount++;
  mem5.currentOut += iFullSz;
  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
#endif

#ifdef SQLITE_DEBUG
  /* Make sure the allocated memory does not assume that it is set to zero
  ** or retains a value from a previous allocation */
  memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
#endif

................................................................................

  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
  size = 1<<iLogsize;
  assert( iBlock+size-1<(u32)mem5.nBlock );

  mem5.aCtrl[iBlock] |= CTRL_FREE;
  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  assert( mem5.currentCount>0 );
  assert( mem5.currentOut>=(size*mem5.szAtom) );
  mem5.currentCount--;
  mem5.currentOut -= size*mem5.szAtom;
  assert( mem5.currentOut>0 || mem5.currentCount==0 );
  assert( mem5.currentCount>0 || mem5.currentOut==0 );
#endif

  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
  while( ALWAYS(iLogsize<LOGMAX) ){
    int iBuddy;
    if( (iBlock>>iLogsize) & 1 ){
      iBuddy = iBlock - size;
    }else{

Changes to src/os_unix.c.

722
723
724
725
726
727
728



729
730

731



732
733
734

735
736
737
738
739
740

741



742
743
744
745
746
747
748
749
750
751
752
753
754
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
#define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },



#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)


  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },



#define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)

#if HAVE_MREMAP

  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)


  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },



#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)

  { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)

#endif

}; /* End of the overrideable system calls */


/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if







>
>
>


>

>
>
>


<
>






>

>
>
>





<







722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

758
759
760
761
762
763
764
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
#define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",         (sqlite3_syscall_ptr)mmap,            0 },
#else
  { "mmap",         (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#else
  { "munmap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)


#if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#else
  { "getpagesize",  (sqlite3_syscall_ptr)0,               0 },
#endif
#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)

  { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)



}; /* End of the overrideable system calls */


/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if

Changes to src/parse.y.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= explain cmdx SEMI.
explain ::= .           { sqlite3BeginParse(pParse, 0); }
%ifndef SQLITE_OMIT_EXPLAIN
explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//

cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}







|

|
|







110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= explain cmdx SEMI.
explain ::= .
%ifndef SQLITE_OMIT_EXPLAIN
explain ::= EXPLAIN.              { pParse->explain = 1; }
explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
%endif  SQLITE_OMIT_EXPLAIN
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }

///////////////////// Begin and end transactions. ////////////////////////////
//

cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}

Changes to src/pcache.h.

50
51
52
53
54
55
56


57
58
59
60
61
62
63
#define PGHDR_DIRTY           0x002  /* Page is on the PCache.pDirty list */
#define PGHDR_WRITEABLE       0x004  /* Journaled and ready to modify */
#define PGHDR_NEED_SYNC       0x008  /* Fsync the rollback journal before
                                     ** writing this page to the database */
#define PGHDR_NEED_READ       0x010  /* Content is unread */
#define PGHDR_DONT_WRITE      0x020  /* Do not write content to disk */
#define PGHDR_MMAP            0x040  /* This is an mmap page object */



/* Initialize and shutdown the page cache subsystem */
int sqlite3PcacheInitialize(void);
void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.







>
>







50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#define PGHDR_DIRTY           0x002  /* Page is on the PCache.pDirty list */
#define PGHDR_WRITEABLE       0x004  /* Journaled and ready to modify */
#define PGHDR_NEED_SYNC       0x008  /* Fsync the rollback journal before
                                     ** writing this page to the database */
#define PGHDR_NEED_READ       0x010  /* Content is unread */
#define PGHDR_DONT_WRITE      0x020  /* Do not write content to disk */
#define PGHDR_MMAP            0x040  /* This is an mmap page object */

#define PGHDR_WAL_APPEND      0x080  /* Appended to wal file */

/* Initialize and shutdown the page cache subsystem */
int sqlite3PcacheInitialize(void);
void sqlite3PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.

Changes to src/select.c.

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123







124
125
126
127
128
129
130
131
132
133

134
135
136
137
138
139
140
141
142
143
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
    memset(pNew, 0, sizeof(*pNew));
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;







  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = selFlags;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;

  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );







|



<





>
>
>
>
>
>
>






|
|


>

<
<







107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141


142
143
144
145
146
147
148
  u16 selFlags,         /* Flag parameters, such as SF_Distinct */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;

  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  pNew->op = TK_SELECT;
  pNew->selFlags = selFlags;
  pNew->iLimit = 0;
  pNew->iOffset = 0;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->nSelectRow = 0;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->pPrior = 0;
  pNew->pNext = 0;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->pWith = 0;
  assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );


  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );

Changes to src/sqliteInt.h.

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
....
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
#endif

/*
** Default maximum size of memory used by memory-mapped I/O in the VFS
*/
#ifdef __APPLE__
# include <TargetConditionals.h>
# if TARGET_OS_IPHONE
#   undef SQLITE_MAX_MMAP_SIZE
#   define SQLITE_MAX_MMAP_SIZE 0
# endif
#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun) \
  || defined(__FreeBSD__) \
................................................................................
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
void sqlite3ResetAllSchemasOfConnection(sqlite3*);
void sqlite3ResetOneSchema(sqlite3*,int);
void sqlite3CollapseDatabaseArray(sqlite3*);
void sqlite3BeginParse(Parse*,int);
void sqlite3CommitInternalChanges(sqlite3*);
void sqlite3DeleteColumnNames(sqlite3*,Table*);
int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
void sqlite3OpenMasterTable(Parse *, int);
Index *sqlite3PrimaryKeyIndex(Table*);
i16 sqlite3ColumnOfIndex(Index*, i16);







<
<
<
<







 







<







763
764
765
766
767
768
769




770
771
772
773
774
775
776
....
3342
3343
3344
3345
3346
3347
3348

3349
3350
3351
3352
3353
3354
3355
#endif

/*
** Default maximum size of memory used by memory-mapped I/O in the VFS
*/
#ifdef __APPLE__
# include <TargetConditionals.h>




#endif
#ifndef SQLITE_MAX_MMAP_SIZE
# if defined(__linux__) \
  || defined(_WIN32) \
  || (defined(__APPLE__) && defined(__MACH__)) \
  || defined(__sun) \
  || defined(__FreeBSD__) \
................................................................................
u32 sqlite3ExprListFlags(const ExprList*);
int sqlite3Init(sqlite3*, char**);
int sqlite3InitCallback(void*, int, char**, char**);
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
void sqlite3ResetAllSchemasOfConnection(sqlite3*);
void sqlite3ResetOneSchema(sqlite3*,int);
void sqlite3CollapseDatabaseArray(sqlite3*);

void sqlite3CommitInternalChanges(sqlite3*);
void sqlite3DeleteColumnNames(sqlite3*,Table*);
int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
void sqlite3OpenMasterTable(Parse *, int);
Index *sqlite3PrimaryKeyIndex(Table*);
i16 sqlite3ColumnOfIndex(Index*, i16);

Changes to src/tclsqlite.c.

2971
2972
2973
2974
2975
2976
2977




2978
2979
2980
2981
2982
2983
2984
#endif

  if( objc==2 ){
    zArg = Tcl_GetStringFromObj(objv[1], 0);
    if( strcmp(zArg,"-version")==0 ){
      Tcl_AppendResult(interp,sqlite3_libversion(), (char*)0);
      return TCL_OK;




    }
    if( strcmp(zArg,"-has-codec")==0 ){
#ifdef SQLITE_HAS_CODEC
      Tcl_AppendResult(interp,"1",(char*)0);
#else
      Tcl_AppendResult(interp,"0",(char*)0);
#endif







>
>
>
>







2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
#endif

  if( objc==2 ){
    zArg = Tcl_GetStringFromObj(objv[1], 0);
    if( strcmp(zArg,"-version")==0 ){
      Tcl_AppendResult(interp,sqlite3_libversion(), (char*)0);
      return TCL_OK;
    }
    if( strcmp(zArg,"-sourceid")==0 ){
      Tcl_AppendResult(interp,sqlite3_sourceid(), (char*)0);
      return TCL_OK;
    }
    if( strcmp(zArg,"-has-codec")==0 ){
#ifdef SQLITE_HAS_CODEC
      Tcl_AppendResult(interp,"1",(char*)0);
#else
      Tcl_AppendResult(interp,"0",(char*)0);
#endif

Changes to src/vdbeInt.h.

485
486
487
488
489
490
491
492
493
494
495
496





497
498
499
500
501
502
503
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
  void sqlite3VdbeEnter(Vdbe*);
  void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)





# define sqlite3VdbeLeave(X)
#endif

#ifdef SQLITE_DEBUG
void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
int sqlite3VdbeCheckMemInvariants(Mem*);
#endif







|

<


>
>
>
>
>







485
486
487
488
489
490
491
492
493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
int sqlite3VdbeSorterRewind(const VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(const VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int, int *);

#if !defined(SQLITE_OMIT_SHARED_CACHE) 
  void sqlite3VdbeEnter(Vdbe*);

#else
# define sqlite3VdbeEnter(X)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
  void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeLeave(X)
#endif

#ifdef SQLITE_DEBUG
void sqlite3VdbeMemAboutToChange(Vdbe*,Mem*);
int sqlite3VdbeCheckMemInvariants(Mem*);
#endif

Changes to src/vdbeaux.c.

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
  assert( i<(int)sizeof(p->btreeMask)*8 );
  DbMaskSet(p->btreeMask, i);
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    DbMaskSet(p->lockMask, i);
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**







|







1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
  assert( i<(int)sizeof(p->btreeMask)*8 );
  DbMaskSet(p->btreeMask, i);
  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
    DbMaskSet(p->lockMask, i);
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**

Changes to src/wal.c.

441
442
443
444
445
446
447

448
449
450
451
452
453
454
...
694
695
696
697
698
699
700

701
702
703
704
705
706
707
708
709

710
711
712
713
714
715
716
....
2645
2646
2647
2648
2649
2650
2651

2652
2653
2654
2655
2656
2657
2658
....
2680
2681
2682
2683
2684
2685
2686

2687
2688
2689
2690
2691
2692
2693
....
2915
2916
2917
2918
2919
2920
2921





















































2922
2923
2924
2925
2926
2927
2928
....
2936
2937
2938
2939
2940
2941
2942


2943
2944
2945
2946
2947
2948
2949
....
2950
2951
2952
2953
2954
2955
2956





2957
2958
2959
2960
2961
2962
2963
....
3022
3023
3024
3025
3026
3027
3028





















3029
3030
3031
3032
3033
3034
3035







3036
3037
3038
3039
3040
3041
3042
....
3083
3084
3085
3086
3087
3088
3089

3090
3091
3092
3093
3094
3095
3096
....
3195
3196
3197
3198
3199
3200
3201

3202
3203
3204
3205
3206
3207
3208
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */

  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
................................................................................
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);

  memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

  sqlite3Put4byte(&aFrame[16], aCksum[0]);
  sqlite3Put4byte(&aFrame[20], aCksum[1]);
}


/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
static int walDecodeFrame(
................................................................................
*/
int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );


  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
................................................................................
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;

    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
................................................................................
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
#endif
  return rc;
}






















































/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
................................................................................
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */



  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );
................................................................................

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
              pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
  }
#endif






  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }
................................................................................
  }
#endif


  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */





















    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;







  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
................................................................................
  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){

    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);
................................................................................
    if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
      sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
    }
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){

    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */







>







 







>









>







 







>







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>







 







>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>







 







>







 







>







441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
...
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
....
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
....
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
....
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
....
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
....
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
....
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
....
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
....
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  u32 iReCksum;              /* On commit, recalculate checksums from here */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
................................................................................
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);
  if( pWal->iReCksum==0 ){
    memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

    nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

    sqlite3Put4byte(&aFrame[16], aCksum[0]);
    sqlite3Put4byte(&aFrame[20], aCksum[1]);
  }
}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
static int walDecodeFrame(
................................................................................
*/
int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc;

  /* Cannot start a write transaction without first holding a read
  ** transaction. */
  assert( pWal->readLock>=0 );
  assert( pWal->writeLock==0 && pWal->iReCksum==0 );

  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
................................................................................
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    pWal->iReCksum = 0;
    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
................................................................................
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
#endif
  return rc;
}

/*
** This function is called as part of committing a transaction within which
** one or more frames have been overwritten. It updates the checksums for
** all frames written to the wal file by the current transaction starting
** with the earliest to have been overwritten.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walRewriteChecksums(Wal *pWal, u32 iLast){
  const int szPage = pWal->szPage;/* Database page size */
  int rc = SQLITE_OK;             /* Return code */
  u8 *aBuf;                       /* Buffer to load data from wal file into */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
  u32 iRead;                      /* Next frame to read from wal file */
  i64 iCksumOff;

  aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
  if( aBuf==0 ) return SQLITE_NOMEM;

  /* Find the checksum values to use as input for the recalculating the
  ** first checksum. If the first frame is frame 1 (implying that the current
  ** transaction restarted the wal file), these values must be read from the
  ** wal-file header. Otherwise, read them from the frame header of the
  ** previous frame.  */
  assert( pWal->iReCksum>0 );
  if( pWal->iReCksum==1 ){
    iCksumOff = 24;
  }else{
    iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
  }
  rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
  pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
  pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);

  iRead = pWal->iReCksum;
  pWal->iReCksum = 0;
  for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
    i64 iOff = walFrameOffset(iRead, szPage);
    rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
    if( rc==SQLITE_OK ){
      u32 iPgno, nDbSize;
      iPgno = sqlite3Get4byte(aBuf);
      nDbSize = sqlite3Get4byte(&aBuf[4]);

      walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
      rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
    }
  }

  sqlite3_free(aBuf);
  return rc;
}

/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
................................................................................
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */
  u32 iFirst = 0;                 /* First frame that may be overwritten */
  WalIndexHdr *pLive;             /* Pointer to shared header */

  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );
................................................................................

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
              pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
  }
#endif

  pLive = (WalIndexHdr*)walIndexHdr(pWal);
  if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
    iFirst = pLive->mxFrame+1;
  }

  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }
................................................................................
  }
#endif


  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */

    /* Check if this page has already been written into the wal file by
    ** the current transaction. If so, overwrite the existing frame and
    ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 
    ** checksums must be recomputed when the transaction is committed.  */
    if( iFirst && (p->pDirty || isCommit==0) ){
      u32 iWrite = 0;
      VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
      assert( rc==SQLITE_OK || iWrite==0 );
      if( iWrite>=iFirst ){
        i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
        if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
          pWal->iReCksum = iWrite;
        }
        rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOff);
        if( rc ) return rc;
        p->flags &= ~PGHDR_WAL_APPEND;
        continue;
      }
    }

    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;
    p->flags |= PGHDR_WAL_APPEND;
  }

  /* Recalculate checksums within the wal file if required. */
  if( isCommit && pWal->iReCksum ){
    rc = walRewriteChecksums(pWal, iFrame);
    if( rc ) return rc;
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
................................................................................
  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = pWal->hdr.mxFrame;
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
    if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
    iFrame++;
    rc = walIndexAppend(pWal, iFrame, p->pgno);
  }
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iFrame, pLast->pgno);
................................................................................
    if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
      sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
    }
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){

    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */

Changes to test/fuzzcheck.c.

861
862
863
864
865
866
867




868
869

870
871
872
873
874
875
876
        zExpSql = argv[++i];
      }else
      if( strcmp(z,"help")==0 ){
        showHelp();
        return 0;
      }else
      if( strcmp(z,"limit-mem")==0 ){




        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        nMem = integerValue(argv[++i]);

      }else
      if( strcmp(z,"limit-vdbe")==0 ){
        vdbeLimitFlag = 1;
      }else
      if( strcmp(z,"load-sql")==0 ){
        zInsSql = "INSERT INTO xsql(sqltext) VALUES(CAST(readfile(?1) AS text))";
        iFirstInsArg = i+1;







>
>
>
>


>







861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        zExpSql = argv[++i];
      }else
      if( strcmp(z,"help")==0 ){
        showHelp();
        return 0;
      }else
      if( strcmp(z,"limit-mem")==0 ){
#if !defined(SQLITE_ENABLE_MEMSYS3) && !defined(SQLITE_ENABLE_MEMSYS5)
        fatalError("the %s option requires -DSQLITE_ENABLE_MEMSYS5 or _MEMSYS3",
                   argv[i]);
#else
        if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
        nMem = integerValue(argv[++i]);
#endif
      }else
      if( strcmp(z,"limit-vdbe")==0 ){
        vdbeLimitFlag = 1;
      }else
      if( strcmp(z,"load-sql")==0 ){
        zInsSql = "INSERT INTO xsql(sqltext) VALUES(CAST(readfile(?1) AS text))";
        iFirstInsArg = i+1;

Changes to test/tester.tcl.

1049
1050
1051
1052
1053
1054
1055






1056
1057
1058
1059
1060
1061
1062
1063
      if {[info exists known_error($x)]} {incr nKnown}
    }
  }
  if {$nKnown>0} {
    output2 "[expr {$nErr-$nKnown}] new errors and $nKnown known errors\
         out of $nTest tests"
  } else {






    output2 "$nErr errors out of $nTest tests"
  }
  if {$nErr>$nKnown} {
    output2 -nonewline "!Failures on these tests:"
    foreach x [set_test_counter fail_list] {
      if {![info exists known_error($x)]} {output2 -nonewline " $x"}
    }
    output2 ""







>
>
>
>
>
>
|







1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
      if {[info exists known_error($x)]} {incr nKnown}
    }
  }
  if {$nKnown>0} {
    output2 "[expr {$nErr-$nKnown}] new errors and $nKnown known errors\
         out of $nTest tests"
  } else {
    set cpuinfo {}
    if {[catch {exec hostname} hname]==0} {set cpuinfo [string trim $hname]}
    append cpuinfo " $::tcl_platform(os)"
    append cpuinfo " [expr {$::tcl_platform(pointerSize)*8}]-bit"
    append cpuinfo " [string map {E -e} $::tcl_platform(byteOrder)]"
    output2 "SQLite [sqlite3 -sourceid]"
    output2 "$nErr errors out of $nTest tests on $cpuinfo"
  }
  if {$nErr>$nKnown} {
    output2 -nonewline "!Failures on these tests:"
    foreach x [set_test_counter fail_list] {
      if {![info exists known_error($x)]} {output2 -nonewline " $x"}
    }
    output2 ""

Changes to test/vtabH.test.

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
set x4 abandonint
set x5 babble
set x6 baboon
set x7 backbone
set x8 backarrow
set x9 castle

db func glob gfunc
proc gfunc {a b} {
  incr ::gfunc
  return 1
}

db func like lfunc
proc lfunc {a b} {
  incr ::gfunc 100
  return 1
}

db func regexp rfunc
proc rfunc {a b} {
  incr ::gfunc 10000
  return 1
}

foreach ::tclvar_set_omit {0 1} {
  foreach {tn expr res cnt} {







|





|





|







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
set x4 abandonint
set x5 babble
set x6 baboon
set x7 backbone
set x8 backarrow
set x9 castle

db func glob -argcount 2 gfunc
proc gfunc {a b} {
  incr ::gfunc
  return 1
}

db func like -argcount 2 lfunc
proc lfunc {a b} {
  incr ::gfunc 100
  return 1
}

db func regexp -argcount 2 rfunc
proc rfunc {a b} {
  incr ::gfunc 10000
  return 1
}

foreach ::tclvar_set_omit {0 1} {
  foreach {tn expr res cnt} {

Changes to test/wal.test.

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746





747
748
749


750
751
752
753
754
755
756
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {16 ok}
do_test wal-11.6 {
  execsql COMMIT
  list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 41 1024]]
do_test wal-11.7 {
  execsql { 
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {16 ok}
do_test wal-11.8 {
  execsql { PRAGMA wal_checkpoint }
  list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 41 1024]]
do_test wal-11.9 {
  ifcapable enable_persist_wal {
    file_control_persist_wal db 0
  }
  db close
  list [expr [file size test.db]/1024] [log_deleted test.db-wal]
} {37 1}
sqlite3_wal db test.db





set nWal 39
if {[permutation]!="mmap"} {set nWal 37}
ifcapable !mmap {set nWal 37}


ifcapable enable_persist_wal {
  file_control_persist_wal db 0
}
do_test wal-11.10 {
  execsql {
    PRAGMA cache_size = 10;
    BEGIN;







|









|








>
>
>
>
>
|
|
|
>
>







721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {16 ok}
do_test wal-11.6 {
  execsql COMMIT
  list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 3 [wal_file_size 40 1024]]
do_test wal-11.7 {
  execsql { 
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {16 ok}
do_test wal-11.8 {
  execsql { PRAGMA wal_checkpoint }
  list [expr [file size test.db]/1024] [file size test.db-wal]
} [list 37 [wal_file_size 40 1024]]
do_test wal-11.9 {
  ifcapable enable_persist_wal {
    file_control_persist_wal db 0
  }
  db close
  list [expr [file size test.db]/1024] [log_deleted test.db-wal]
} {37 1}
sqlite3_wal db test.db

# After adding the capability of WAL to overwrite prior uncommitted
# frame in the WAL-file with revised content, the size of the WAL file
# following cache-spill is smaller.
#
#set nWal 39
#if {[permutation]!="mmap"} {set nWal 37}
#ifcapable !mmap {set nWal 37}
set nWal 34

ifcapable enable_persist_wal {
  file_control_persist_wal db 0
}
do_test wal-11.10 {
  execsql {
    PRAGMA cache_size = 10;
    BEGIN;

Added test/waloverwrite.test.









































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# 2010 May 5
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the operation of the library in
# "PRAGMA journal_mode=WAL" mode.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/wal_common.tcl
set testprefix waloverwrite

ifcapable !wal {finish_test ; return }

# Simple test:
#
# Test cases *.1 - *.6:
#
#   + Create a database of blobs roughly 50 pages in size.
#
#   + Set the db cache size to something much smaller than this (5 pages)
#
#   + Within a transaction, loop through the set of blobs 5 times. Update
#      each blob as it is visited.
#
#   + Test that the wal file is roughly 50 pages in size - even though many
#      database pages have been written to it multiple times.
#
#   + Take a copy of the database and wal file. Test that recovery can
#     be run on it.
#
# Test cases *.7 - *.9:
#
#   + Same thing, but before committing the statement transaction open
#     a SAVEPOINT, update the blobs another 5 times, then roll it back.
#
#   + Check that if recovery is run on the resulting wal file, the rolled
#     back changes from within the SAVEPOINT are not present in the db.
#
# The above is run twice - once where the wal file is empty at the start of
# step 3 (tn==1) and once where it already contains a transaction (tn==2).
#
foreach {tn xtra} {
  1 {}
  2 { UPDATE t1 SET y = randomblob(799) WHERE x=4 }
} {
  reset_db
  do_execsql_test 1.$tn.0 {
    CREATE TABLE t1(x, y);
    CREATE TABLE t2(x, y);
    CREATE INDEX i1y ON t1(y);
  
    WITH cnt(i) AS (
      SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<20
    )
    INSERT INTO t1 SELECT i, randomblob(800) FROM cnt;
  } {}
  
  do_test 1.$tn.1 {
    set nPg [db one { PRAGMA page_count } ]
    expr $nPg>40 && $nPg<50
  } {1}
  
  do_test 1.$tn.2 {
    db close
    sqlite3 db test.db
  
    execsql {PRAGMA journal_mode = wal}
    execsql {PRAGMA cache_size = 5}
    execsql $xtra
  
    db transaction {
      for {set i 0} {$i < 5} {incr i} {
        foreach x [db eval {SELECT x FROM t1}] {
          execsql { UPDATE t1 SET y = randomblob(799) WHERE x=$x }
        }
      }
    }
  
    set nPg [wal_frame_count test.db-wal 1024]
    expr $nPg>40 && $nPg<60
  } {1}
  
  do_execsql_test 1.$tn.3 { PRAGMA integrity_check } ok
  
  do_test 1.$tn.4 {
    forcedelete test.db2 test.db2-wal
    forcecopy test.db test.db2
    sqlite3 db2 test.db2
    execsql { SELECT sum(length(y)) FROM t1 } db2
  } [expr 20*800]
  
  do_test 1.$tn.5 {
    db2 close
    forcecopy test.db test.db2
    forcecopy test.db-wal test.db2-wal
    sqlite3 db2 test.db2
    execsql { SELECT sum(length(y)) FROM t1 } db2
  } [expr 20*799]
  
  do_test 1.$tn.6 {
    execsql { PRAGMA integrity_check } db2
  } ok
  db2 close

  do_test 1.$tn.7 {
    execsql { PRAGMA wal_checkpoint }
    db transaction {
      for {set i 0} {$i < 1} {incr i} {
        foreach x [db eval {SELECT x FROM t1}] {
          execsql { UPDATE t1 SET y = randomblob(798) WHERE x=$x }
        }
      }

      execsql {
        WITH cnt(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM cnt WHERE i<20)
        INSERT INTO t2 SELECT i, randomblob(800) FROM cnt;
      }

      execsql {SAVEPOINT abc}
      for {set i 0} {$i < 5} {incr i} {
        foreach x [db eval {SELECT x FROM t1}] {
          execsql { UPDATE t1 SET y = randomblob(797) WHERE x=$x }
        }
      }
      breakpoint
      execsql {ROLLBACK TO abc}

    }

    set nPg [wal_frame_count test.db-wal 1024]
    expr $nPg>55 && $nPg<75
  } {1}

  do_test 1.$tn.8 {
    forcedelete test.db2 test.db2-wal
    forcecopy test.db test.db2
    sqlite3 db2 test.db2
    execsql { SELECT sum(length(y)) FROM t1 } db2
  } [expr 20*799]

  do_test 1.$tn.9 {
    db2 close
    forcecopy test.db-wal test.db2-wal
    sqlite3 db2 test.db2
    execsql { SELECT sum(length(y)) FROM t1 } db2
  } [expr 20*798]

  do_test 1.$tn.9 {
    execsql { PRAGMA integrity_check } db2
  } ok
  db2 close
}

finish_test