Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge recent performance enhancements from trunk onto the threads branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | threads |
Files: | files | file ages | folders |
SHA1: |
35c44a3c73e2e8b14ff194c41986f4bd |
User & Date: | drh 2014-08-29 14:40:07.113 |
Context
2014-08-29
| ||
16:20 | Add SQLITE_LIMIT_WORKER_THREADS for controlling the maximum number of worker threads. (check-in: 1b598c68f3 user: drh tags: threads) | |
14:40 | Merge recent performance enhancements from trunk onto the threads branch. (check-in: 35c44a3c73 user: drh tags: threads) | |
14:20 | Not a fault after all, rather a testing mistake. Move this change back to trunk. Was: Avoid an unnecessary OP_Move operation for expression subqueries. (check-in: 2a74129a21 user: drh tags: trunk) | |
2014-08-25
| ||
23:44 | Remove the SQLITE_CONFIG_WORKER_THREADS configuration parameter. The number of worker threads in the sorter is now determined only by the PRAGMA threads=N setting. (check-in: e3305d4b4e user: drh tags: threads) | |
Changes
Changes to src/expr.c.
︙ | ︙ | |||
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 | assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } | > | 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 | assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); assert( ExprHasProperty(pExpr, EP_xIsSelect) ); pSel = pExpr->x.pSelect; sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); if( pExpr->op==TK_SELECT ){ dest.eDest = SRT_Mem; dest.iSdst = dest.iSDParm; sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); VdbeComment((v, "Init subquery result")); }else{ dest.eDest = SRT_Exists; sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); VdbeComment((v, "Init EXISTS result")); } |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
3618 3619 3620 3621 3622 3623 3624 | if( rc==SQLITE_OK ){ pager_reset(pPager); pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); pPager->pageSize = pageSize; sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; | | | 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 | if( rc==SQLITE_OK ){ pager_reset(pPager); pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); pPager->pageSize = pageSize; sqlite3PageFree(pPager->pTmpSpace); pPager->pTmpSpace = pNew; rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); } } *pPageSize = pPager->pageSize; if( rc==SQLITE_OK ){ if( nReserve<0 ) nReserve = pPager->nReserve; assert( nReserve>=0 && nReserve<1000 ); |
︙ | ︙ | |||
4381 4382 4383 4384 4385 4386 4387 | ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementaton it | | | 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 | ** ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling ** regardless of whether or not a sync is required. This is set during ** a rollback or by user request, respectively. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementaton it ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); testcase( pPager->doNotSpill & SPILLFLAG_OFF ); |
︙ | ︙ | |||
4717 4718 4719 4720 4721 4722 4723 | */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } | > > > > > > > | | < > < < < < < < | 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 | */ if( rc==SQLITE_OK ){ assert( pPager->memDb==0 ); rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); testcase( rc!=SQLITE_OK ); } /* Initialize the PCache object. */ if( rc==SQLITE_OK ){ assert( nExtra<1000 ); nExtra = ROUND8(nExtra); rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); } /* If an error occurred above, free the Pager structure and close the file. */ if( rc!=SQLITE_OK ){ sqlite3OsClose(pPager->fd); sqlite3PageFree(pPager->pTmpSpace); sqlite3_free(pPager); return rc; } PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) pPager->useJournal = (u8)useJournal; /* pPager->stmtOpen = 0; */ /* pPager->stmtInUse = 0; */ /* pPager->nRef = 0; */ |
︙ | ︙ | |||
5281 5282 5283 5284 5285 5286 5287 | } /* If the pager is in the error state, return an error immediately. ** Otherwise, request the page from the PCache layer. */ if( pPager->errCode!=SQLITE_OK ){ rc = pPager->errCode; }else{ | < | > > | > > > > > > > | 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 | } /* If the pager is in the error state, return an error immediately. ** Otherwise, request the page from the PCache layer. */ if( pPager->errCode!=SQLITE_OK ){ rc = pPager->errCode; }else{ if( bMmapOk && pagerUseWal(pPager) ){ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); if( rc!=SQLITE_OK ) goto pager_acquire_err; } if( bMmapOk && iFrame==0 ){ void *pData = 0; rc = sqlite3OsFetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData ); if( rc==SQLITE_OK && pData ){ if( pPager->eState>PAGER_READER ){ pPg = sqlite3PagerLookup(pPager, pgno); } if( pPg==0 ){ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); }else{ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); } if( pPg ){ assert( rc==SQLITE_OK ); *ppPage = pPg; return SQLITE_OK; } } if( rc!=SQLITE_OK ){ goto pager_acquire_err; } } { sqlite3_pcache_page *pBase; pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); if( pBase==0 ){ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); if( rc!=SQLITE_OK ) goto pager_acquire_err; } pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); if( pPg==0 ) rc = SQLITE_NOMEM; } } if( rc!=SQLITE_OK ){ /* Either the call to sqlite3PcacheFetch() returned an error or the ** pager was already in the error-state when this function was called. ** Set pPg to 0 and jump to the exception handler. */ pPg = 0; |
︙ | ︙ | |||
5411 5412 5413 5414 5415 5416 5417 | ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ | | | | | 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 | ** See also sqlite3PagerGet(). The difference between this routine ** and sqlite3PagerGet() is that _get() will go to the disk and read ** in the page if the page is not already in cache. This routine ** returns NULL if the page is not in cache or if a disk I/O error ** has ever happened. */ DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ sqlite3_pcache_page *pPage; assert( pPager!=0 ); assert( pgno!=0 ); assert( pPager->pPCache!=0 ); pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); } /* ** Release a page reference. ** ** If the number of references to the page drop to zero, then the ** page is added to the LRU list. When all references to all pages |
︙ | ︙ |
Changes to src/pcache.c.
︙ | ︙ | |||
139 140 141 142 143 144 145 146 147 148 149 150 151 152 | if( p->pCache->bPurgeable ){ if( p->pgno==1 ){ p->pCache->pPage1 = 0; } sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these ** functions are threadsafe. */ int sqlite3PcacheInitialize(void){ | > > > > > > > > > > > | 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | if( p->pCache->bPurgeable ){ if( p->pgno==1 ){ p->pCache->pPage1 = 0; } sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); } } /* ** Compute the number of pages of cache requested. */ static int numberOfCachePages(PCache *p){ if( p->szCache>=0 ){ return p->szCache; }else{ return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); } } /*************************************************** General Interfaces ****** ** ** Initialize and shutdown the page cache subsystem. Neither of these ** functions are threadsafe. */ int sqlite3PcacheInitialize(void){ |
︙ | ︙ | |||
172 173 174 175 176 177 178 | /* ** Create a new PCache object. Storage space to hold the object ** has already been allocated and is passed in as the p pointer. ** The caller discovers how much space needs to be allocated by ** calling sqlite3PcacheSize(). */ | | | > | > > > > > > > > | < < < < < < < | < < | < > > > > > > > > > > > > > > > > > > > > > | | < < < > | < < < < < < < < < < < < < < < < < < < | > > | | > | > > > > > > > > > > > > > > > > > > | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 | /* ** Create a new PCache object. Storage space to hold the object ** has already been allocated and is passed in as the p pointer. ** The caller discovers how much space needs to be allocated by ** calling sqlite3PcacheSize(). */ int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *p /* Preallocated space for the PCache */ ){ memset(p, 0, sizeof(PCache)); p->szPage = 1; p->szExtra = szExtra; p->bPurgeable = bPurgeable; p->eCreate = 2; p->xStress = xStress; p->pStress = pStress; p->szCache = 100; return sqlite3PcacheSetPageSize(p, szPage); } /* ** Change the page size for PCache object. The caller must ensure that there ** are no outstanding page references when this function is called. */ int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ assert( pCache->nRef==0 && pCache->pDirty==0 ); if( pCache->szPage ){ sqlite3_pcache *pNew; pNew = sqlite3GlobalConfig.pcache2.xCreate( szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable ); if( pNew==0 ) return SQLITE_NOMEM; sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); if( pCache->pCache ){ sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } pCache->pCache = pNew; pCache->pPage1 = 0; pCache->szPage = szPage; } return SQLITE_OK; } /* ** Try to obtain a page from the cache. ** ** This routine returns a pointer to an sqlite3_pcache_page object if ** such an object is already in cache, or if a new one is created. ** This routine returns a NULL pointer if the object was not in cache ** and could not be created. ** ** The createFlags should be 0 to check for existing pages and should ** be 3 (not 1, but 3) to try to create a new page. ** ** If the createFlag is 0, then NULL is always returned if the page ** is not already in the cache. If createFlag is 1, then a new page ** is created only if that can be done without spilling dirty pages ** and without exceeding the cache size limit. ** ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly ** initialize the sqlite3_pcache_page object and convert it into a ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() ** routines are split this way for performance reasons. When separated ** they can both (usually) operate without having to push values to ** the stack on entry and pop them back off on exit, which saves a ** lot of pushing and popping. */ sqlite3_pcache_page *sqlite3PcacheFetch( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ int createFlag /* If true, create page if it does not exist already */ ){ int eCreate; assert( pCache!=0 ); assert( pCache->pCache!=0 ); assert( createFlag==3 || createFlag==0 ); assert( pgno>0 ); /* eCreate defines what to do if the page does not exist. ** 0 Do not allocate a new page. (createFlag==0) ** 1 Allocate a new page if doing so is inexpensive. ** (createFlag==1 AND bPurgeable AND pDirty) ** 2 Allocate a new page even it doing so is difficult. ** (createFlag==1 AND !(bPurgeable AND pDirty) */ eCreate = createFlag & pCache->eCreate; assert( eCreate==0 || eCreate==1 || eCreate==2 ); assert( createFlag==0 || pCache->eCreate==eCreate ); assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); } /* ** If the sqlite3PcacheFetch() routine is unable to allocate a new ** page because new clean pages are available for reuse and the cache ** size limit has been reached, then this routine can be invoked to ** try harder to allocate a page. This routine might invoke the stress ** callback to spill dirty pages to the journal. It will then try to ** allocate the new page and will only fail to allocate a new page on ** an OOM error. ** ** This routine should be invoked only after sqlite3PcacheFetch() fails. */ int sqlite3PcacheFetchStress( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number to obtain */ sqlite3_pcache_page **ppPage /* Write result here */ ){ PgHdr *pPg; if( pCache->eCreate==2 ) return 0; /* Find a dirty page to write-out and recycle. First try to find a ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC ** cleared), but if that is not possible settle for any other ** unreferenced dirty page. */ expensive_assert( pcacheCheckSynced(pCache) ); |
︙ | ︙ | |||
292 293 294 295 296 297 298 | numberOfCachePages(pCache)); #endif rc = pCache->xStress(pCache->pStress, pPg); if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ return rc; } } | < | > > > > > > > > > > > > > > > > | < | > | > > > > > > > > > > > | | > > | > > | < | < | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 | numberOfCachePages(pCache)); #endif rc = pCache->xStress(pCache->pStress, pPg); if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ return rc; } } *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; } /* ** This is a helper routine for sqlite3PcacheFetchFinish() ** ** In the uncommon case where the page being fetched has not been ** initialized, this routine is invoked to do the initialization. ** This routine is broken out into a separate function since it ** requires extra stack manipulation that can be avoided in the common ** case. */ static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; assert( pPage!=0 ); pPgHdr = (PgHdr *)pPage->pExtra; assert( pPgHdr->pPage==0 ); memset(pPgHdr, 0, sizeof(PgHdr)); pPgHdr->pPage = pPage; pPgHdr->pData = pPage->pBuf; pPgHdr->pExtra = (void *)&pPgHdr[1]; memset(pPgHdr->pExtra, 0, pCache->szExtra); pPgHdr->pCache = pCache; pPgHdr->pgno = pgno; return sqlite3PcacheFetchFinish(pCache,pgno,pPage); } /* ** This routine converts the sqlite3_pcache_page object returned by ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine ** must be called after sqlite3PcacheFetch() in order to get a usable ** result. */ PgHdr *sqlite3PcacheFetchFinish( PCache *pCache, /* Obtain the page from this cache */ Pgno pgno, /* Page number obtained */ sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ ){ PgHdr *pPgHdr; if( pPage==0 ) return 0; pPgHdr = (PgHdr *)pPage->pExtra; if( !pPgHdr->pPage ){ return pcacheFetchFinishWithInit(pCache, pgno, pPage); } if( 0==pPgHdr->nRef ){ pCache->nRef++; } pPgHdr->nRef++; if( pgno==1 ){ pCache->pPage1 = pPgHdr; } return pPgHdr; } /* ** Decrement the reference count on a page. If the page is clean and the ** reference count drops to 0, then it is made elible for recycling. */ void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ |
︙ | ︙ | |||
467 468 469 470 471 472 473 | } } /* ** Close a cache. */ void sqlite3PcacheClose(PCache *pCache){ | | < | 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | } } /* ** Close a cache. */ void sqlite3PcacheClose(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); } /* ** Discard the contents of the cache. */ void sqlite3PcacheClear(PCache *pCache){ sqlite3PcacheTruncate(pCache, 0); } |
︙ | ︙ | |||
578 579 580 581 582 583 584 | return p->nRef; } /* ** Return the total number of pages in the cache. */ int sqlite3PcachePagecount(PCache *pCache){ | < | | < < > < < | < | 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | return p->nRef; } /* ** Return the total number of pages in the cache. */ int sqlite3PcachePagecount(PCache *pCache){ assert( pCache->pCache!=0 ); return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); } #ifdef SQLITE_TEST /* ** Get the suggested cache-size value. */ int sqlite3PcacheGetCachesize(PCache *pCache){ return numberOfCachePages(pCache); } #endif /* ** Set the suggested cache-size value. */ void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ assert( pCache->pCache!=0 ); pCache->szCache = mxPage; sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, numberOfCachePages(pCache)); } /* ** Free up as much memory as possible from the page cache. */ void sqlite3PcacheShrink(PCache *pCache){ assert( pCache->pCache!=0 ); sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); } #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ |
︙ | ︙ |
Changes to src/pcache.h.
︙ | ︙ | |||
64 65 66 67 68 69 70 | */ void sqlite3PCacheBufferSetup(void *, int sz, int n); /* Create a new pager cache. ** Under memory stress, invoke xStress to try to make pages clean. ** Only clean and unpinned pages can be reclaimed. */ | | | | > > | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | */ void sqlite3PCacheBufferSetup(void *, int sz, int n); /* Create a new pager cache. ** Under memory stress, invoke xStress to try to make pages clean. ** Only clean and unpinned pages can be reclaimed. */ int sqlite3PcacheOpen( int szPage, /* Size of every page */ int szExtra, /* Extra space associated with each page */ int bPurgeable, /* True if pages are on backing store */ int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */ void *pStress, /* Argument to xStress */ PCache *pToInit /* Preallocated space for the PCache */ ); /* Modify the page-size after the cache has been created. */ int sqlite3PcacheSetPageSize(PCache *, int); /* Return the size in bytes of a PCache object. Used to preallocate ** storage space. */ int sqlite3PcacheSize(void); /* One release per successful fetch. Page is pinned until released. ** Reference counted. */ sqlite3_pcache_page *sqlite3PcacheFetch(PCache*, Pgno, int createFlag); int sqlite3PcacheFetchStress(PCache*, Pgno, sqlite3_pcache_page**); PgHdr *sqlite3PcacheFetchFinish(PCache*, Pgno, sqlite3_pcache_page *pPage); void sqlite3PcacheRelease(PgHdr*); void sqlite3PcacheDrop(PgHdr*); /* Remove page from cache */ void sqlite3PcacheMakeDirty(PgHdr*); /* Make sure page is marked dirty */ void sqlite3PcacheMakeClean(PgHdr*); /* Mark a single page as clean */ void sqlite3PcacheCleanAll(PCache*); /* Mark all dirty list pages as clean */ |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
851 852 853 854 855 856 857 | ** of the scan loop. */ case SRT_Mem: { assert( nResultCol==1 ); if( pSort ){ pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); }else{ | | | 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 | ** of the scan loop. */ case SRT_Mem: { assert( nResultCol==1 ); if( pSort ){ pushOntoSorter(pParse, pSort, p, regResult, 1, nPrefixReg); }else{ assert( regResult==iParm ); /* The LIMIT clause will jump out of the loop for us */ } break; } #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ case SRT_Coroutine: /* Send data to a co-routine */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
1541 1542 1543 1544 1545 1546 1547 | sqlite3_value **apVal; int n; n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); | | | < < < < < < < < < | < < < < < < < < < < | | < < | < < < < < < < < | | | 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 | sqlite3_value **apVal; int n; n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pOut = &aMem[pOp->p3]; memAboutToChange(p, ctx.pOut); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ assert( memIsValid(pArg) ); apVal[i] = pArg; Deephemeralize(pArg); REGISTER_TRACE(pOp->p2+i, pArg); } assert( pOp->p4type==P4_FUNCDEF ); ctx.pFunc = pOp->p4.pFunc; ctx.iOp = pc; ctx.pVdbe = p; MemSetTypeFlag(ctx.pOut, MEM_Null); ctx.fErrorOrAux = 0; if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ assert( pOp>aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } db->lastRowid = lastRowid; (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* If the function returned an error, throw an exception */ if( ctx.fErrorOrAux ){ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut)); rc = ctx.isError; } sqlite3VdbeDeleteAuxData(p, pc, pOp->p1); } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(ctx.pOut, encoding); if( sqlite3VdbeMemTooBig(ctx.pOut) ){ goto too_big; } REGISTER_TRACE(pOp->p3, ctx.pOut); UPDATE_MAX_BLOBSIZE(ctx.pOut); break; } /* Opcode: BitAnd P1 P2 P3 * * ** Synopsis: r[P3]=r[P1]&r[P2] ** ** Take the bit-wise AND of the values in register P1 and P2 and |
︙ | ︙ | |||
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 | } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: Cast P1 P2 * * * ** ** Force the value in register P1 to be the type defined by P2. ** ** <ul> ** <li value="97"> TEXT ** <li value="98"> BLOB ** <li value="99"> NUMERIC | > | 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 | } break; } #endif #ifndef SQLITE_OMIT_CAST /* Opcode: Cast P1 P2 * * * ** Synopsis: affinity(r[P1]) ** ** Force the value in register P1 to be the type defined by P2. ** ** <ul> ** <li value="97"> TEXT ** <li value="98"> BLOB ** <li value="99"> NUMERIC |
︙ | ︙ | |||
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 | ** successors. */ case OP_AggStep: { int n; int i; Mem *pMem; Mem *pRec; sqlite3_context ctx; sqlite3_value **apVal; n = pOp->p5; assert( n>=0 ); pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ assert( memIsValid(pRec) ); apVal[i] = pRec; memAboutToChange(p, pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; | > | | | | | > | < | < | 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 | ** successors. */ case OP_AggStep: { int n; int i; Mem *pMem; Mem *pRec; Mem t; sqlite3_context ctx; sqlite3_value **apVal; n = pOp->p5; assert( n>=0 ); pRec = &aMem[pOp->p2]; apVal = p->apArg; assert( apVal || n==0 ); for(i=0; i<n; i++, pRec++){ assert( memIsValid(pRec) ); apVal[i] = pRec; memAboutToChange(p, pRec); } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) ); ctx.pMem = pMem = &aMem[pOp->p3]; pMem->n++; t.flags = MEM_Null; t.z = 0; t.zMalloc = 0; t.xDel = 0; t.db = db; ctx.pOut = &t; ctx.isError = 0; ctx.pColl = 0; ctx.skipFlag = 0; if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */ if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t)); rc = ctx.isError; } if( ctx.skipFlag ){ assert( pOp[-1].opcode==OP_CollSeq ); i = pOp[-1].p1; if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); } sqlite3VdbeMemRelease(&t); break; } /* Opcode: AggFinal P1 P2 * P4 * ** Synopsis: accum=r[P1] N=P2 ** ** Execute the finalizer function for an aggregate. P1 is |
︙ | ︙ | |||
6122 6123 6124 6125 6126 6127 6128 | sqlite3VdbeMemSetNull(pDest); break; } pVtab = pCur->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); | | < < < < < < | < < < < < < | < | 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 | sqlite3VdbeMemSetNull(pDest); break; } pVtab = pCur->pVtabCursor->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; MemSetTypeFlag(pDest, MEM_Null); rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); sqlite3VtabImportErrmsg(p, pVtab); if( sContext.isError ){ rc = sContext.isError; } sqlite3VdbeChangeEncoding(pDest, encoding); REGISTER_TRACE(pOp->p3, pDest); UPDATE_MAX_BLOBSIZE(pDest); if( sqlite3VdbeMemTooBig(pDest) ){ goto too_big; } break; |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
262 263 264 265 266 267 268 269 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ | > < | 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { Mem *pOut; /* The return value is stored here */ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ Mem *pMem; /* Memory cell used to store aggregate context */ CollSeq *pColl; /* Collating sequence */ Vdbe *pVdbe; /* The VM that owns this context */ int iOp; /* Instruction number of OP_Function */ int isError; /* Error code returned by the function. */ u8 skipFlag; /* Skip skip accumulator loading if true */ u8 fErrorOrAux; /* isError!=0 or pVdbe->pAuxData modified */ |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
219 220 221 222 223 224 225 | static void setResultStrOrError( sqlite3_context *pCtx, /* Function context */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | static void setResultStrOrError( sqlite3_context *pCtx, /* Function context */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ sqlite3_result_error_toobig(pCtx); } } void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>=0 ); assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, 0, xDel); } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; pCtx->fErrorOrAux = 1; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_ERROR; pCtx->fErrorOrAux = 1; sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } #endif void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); } void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); } void sqlite3_result_null(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); } void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); } void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); } void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); } #endif /* SQLITE_OMIT_UTF16 */ void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemCopy(pCtx->pOut, pValue); } void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); } void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode; pCtx->fErrorOrAux = 1; if( pCtx->pOut->flags & MEM_Null ){ sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, SQLITE_STATIC); } } /* Force an SQLITE_TOOBIG error. */ void sqlite3_result_error_toobig(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); pCtx->isError = SQLITE_TOOBIG; pCtx->fErrorOrAux = 1; sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, SQLITE_UTF8, SQLITE_STATIC); } /* An SQLITE_NOMEM error. */ void sqlite3_result_error_nomem(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); pCtx->isError = SQLITE_NOMEM; pCtx->fErrorOrAux = 1; pCtx->pOut->db->mallocFailed = 1; } /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ static int doWalCallbacks(sqlite3 *db){ |
︙ | ︙ | |||
564 565 566 567 568 569 570 | ** returns a copy of the pointer to the database connection (the 1st ** parameter) of the sqlite3_create_function() and ** sqlite3_create_function16() routines that originally registered the ** application defined function. */ sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ assert( p && p->pFunc ); | | | | 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 | ** returns a copy of the pointer to the database connection (the 1st ** parameter) of the sqlite3_create_function() and ** sqlite3_create_function16() routines that originally registered the ** application defined function. */ sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ assert( p && p->pFunc ); return p->pOut->db; } /* ** Return the current time for a statement */ sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ Vdbe *v = p->pVdbe; int rc; if( v->iCurrentTime==0 ){ rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, &v->iCurrentTime); if( rc ) v->iCurrentTime = 0; } return v->iCurrentTime; } /* ** The following is the implementation of an SQL function that always |
︙ | ︙ | |||
631 632 633 634 635 636 637 | /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); | | | | 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); assert( sqlite3_mutex_held(p->pOut->db->mutex) ); testcase( nByte<0 ); if( (p->pMem->flags & MEM_Agg)==0 ){ return createAggContext(p, nByte); }else{ return (void*)p->pMem->z; } } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ AuxData *pAuxData; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } return (pAuxData ? pAuxData->pAux : 0); } |
︙ | ︙ | |||
669 670 671 672 673 674 675 | int iArg, void *pAux, void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe = pCtx->pVdbe; | | | 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 | int iArg, void *pAux, void (*xDelete)(void*) ){ AuxData *pAuxData; Vdbe *pVdbe = pCtx->pVdbe; assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( iArg<0 ) goto failed; for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; } if( pAuxData==0 ){ pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
196 197 198 199 200 201 202 | pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); } return SQLITE_OK; } #endif | < > | | < < < < > > > > > > > > > > > > > > | 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); } return SQLITE_OK; } #endif /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. */ static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ return SQLITE_OK; /* Nothing to do */ }else{ return vdbeMemAddTerminator(pMem); } } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int and MEM_Real are invalidated if |
︙ | ︙ | |||
276 277 278 279 280 281 282 283 284 285 | ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( ALWAYS(pFunc && pFunc->xFinalize) ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); | > > | | > | | 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( ALWAYS(pFunc && pFunc->xFinalize) ){ sqlite3_context ctx; Mem t; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); memset(&t, 0, sizeof(t)); t.flags = MEM_Null; t.db = pMem->db; ctx.pOut = &t; ctx.pMem = pMem; ctx.pFunc = pFunc; pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); sqlite3DbFree(pMem->db, pMem->zMalloc); memcpy(pMem, &t, sizeof(t)); rc = ctx.isError; } return rc; } /* ** If the memory cell contains a string value that must be freed by |
︙ | ︙ | |||
600 601 602 603 604 605 606 607 608 609 610 611 612 | sqlite3VdbeMemGrow(pMem, n, 0); if( pMem->z ){ pMem->n = n; memset(pMem->z, 0, n); } #endif } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ | > > > > > > > > > > > | > > > | 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | sqlite3VdbeMemGrow(pMem, n, 0); if( pMem->z ){ pMem->n = n; memset(pMem->z, 0, n); } #endif } /* ** The pMem is known to contain content that needs to be destroyed prior ** to a value change. So invoke the destructor, then set the value to ** a 64-bit integer. */ static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemReleaseExternal(pMem); pMem->u.i = val; pMem->flags = MEM_Int; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ if( VdbeMemDynamic(pMem) ){ vdbeReleaseAndSetInt64(pMem, val); }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
︙ | ︙ | |||
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 | }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < | < | < < < | < < < < < < < < < < < < < < < < | < | 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 | }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } /* ** The pVal argument is known to be a value other than NULL. ** Convert it into a string with encoding enc and return a pointer ** to a zero-terminated version of that string. */ SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ assert( pVal!=0 ); assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( (pVal->flags & MEM_RowSet)==0 ); assert( (pVal->flags & (MEM_Null))==0 ); if( pVal->flags & (MEM_Blob|MEM_Str) ){ pVal->flags |= MEM_Str; if( pVal->flags & MEM_Zero ){ sqlite3VdbeMemExpandBlob(pVal); } if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); } if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ sqlite3VdbeMemStringify(pVal, enc, 0); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ return pVal->z; }else{ return 0; } } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( (pVal->flags & MEM_RowSet)==0 ); if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* ** Create a new sqlite3_value object. */ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 | ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. */ tRowcnt iLower; tRowcnt iUpper; if( nEq==p->nKeyCol ){ aff = SQLITE_AFF_INTEGER; }else{ aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; } /* Determine iLower and iUpper using ($P) only. */ if( nEq==0 ){ | > > > > | 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 | ** less than the upper bound of the range query. Where the upper bound ** is either ($P) or ($P:$U). Again, even if $U is available, both values ** of iUpper are requested of whereKeyStats() and the smaller used. */ tRowcnt iLower; tRowcnt iUpper; if( pRec ){ testcase( pRec->nField!=pBuilder->nRecValid ); pRec->nField = pBuilder->nRecValid; } if( nEq==p->nKeyCol ){ aff = SQLITE_AFF_INTEGER; }else{ aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; } /* Determine iLower and iUpper using ($P) only. */ if( nEq==0 ){ |
︙ | ︙ | |||
2246 2247 2248 2249 2250 2251 2252 | nNew = sqlite3LogEst(iUpper - iLower); }else{ nNew = 10; assert( 10==sqlite3LogEst(2) ); } if( nNew<nOut ){ nOut = nNew; } | | | 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 | nNew = sqlite3LogEst(iUpper - iLower); }else{ nNew = 10; assert( 10==sqlite3LogEst(2) ); } if( nNew<nOut ){ nOut = nNew; } WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", (u32)iLower, (u32)iUpper, nOut)); } }else{ int bDone = 0; rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); if( bDone ) return rc; } |
︙ | ︙ | |||
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 | ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if( pLower && pUpper ) nNew -= 20; nOut -= (pLower!=0) + (pUpper!=0); if( nNew<10 ) nNew = 10; if( nNew<nOut ) nOut = nNew; pLoop->nOut = (LogEst)nOut; return rc; } #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the number of rows that will be returned based on | > > > > > > | 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 | ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to ** match 1/64 of the index. */ if( pLower && pUpper ) nNew -= 20; nOut -= (pLower!=0) + (pUpper!=0); if( nNew<10 ) nNew = 10; if( nNew<nOut ) nOut = nNew; #if defined(WHERETRACE_ENABLED) if( pLoop->nOut>nOut ){ WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", pLoop->nOut, nOut)); } #endif pLoop->nOut = (LogEst)nOut; return rc; } #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the number of rows that will be returned based on |
︙ | ︙ | |||
2386 2387 2388 2389 2390 2391 2392 | nRowEst += nEst; pBuilder->nRecValid = nRecValid; } if( rc==SQLITE_OK ){ if( nRowEst > nRow0 ) nRowEst = nRow0; *pnRow = nRowEst; | | | 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 | nRowEst += nEst; pBuilder->nRecValid = nRecValid; } if( rc==SQLITE_OK ){ if( nRowEst > nRow0 ) nRowEst = nRow0; *pnRow = nRowEst; WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); } assert( pBuilder->nRecValid==nRecValid ); return rc; } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* |
︙ | ︙ | |||
4709 4710 4711 4712 4713 4714 4715 | } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* Loop over all indices */ for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ if( pProbe->pPartIdxWhere!=0 | | > | 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 | } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ /* Loop over all indices */ for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ continue; /* Partial index inappropriate for this query */ } rSize = pProbe->aiRowLogEst[0]; pNew->u.btree.nEq = 0; pNew->u.btree.nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; |
︙ | ︙ |
Changes to test/index7.test.
︙ | ︙ | |||
243 244 245 246 247 248 249 250 251 | do_execsql_test index7-5.0 { CREATE INDEX t3b ON t3(b) WHERE xyzzy.t3.b BETWEEN 5 AND 10; /* ^^^^^-- ignored */ ANALYZE; SELECT count(*) FROM t3 WHERE t3.b BETWEEN 5 AND 10; SELECT stat+0 FROM sqlite_stat1 WHERE idx='t3b'; } {6 6} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | do_execsql_test index7-5.0 { CREATE INDEX t3b ON t3(b) WHERE xyzzy.t3.b BETWEEN 5 AND 10; /* ^^^^^-- ignored */ ANALYZE; SELECT count(*) FROM t3 WHERE t3.b BETWEEN 5 AND 10; SELECT stat+0 FROM sqlite_stat1 WHERE idx='t3b'; } {6 6} # Verify that the problem identified by ticket [98d973b8f5] has been fixed. # do_execsql_test index7-6.1 { CREATE TABLE t5(a, b); CREATE TABLE t4(c, d); INSERT INTO t5 VALUES(1, 'xyz'); INSERT INTO t4 VALUES('abc', 'not xyz'); SELECT * FROM (SELECT * FROM t5 WHERE a=1 AND b='xyz'), t4 WHERE c='abc'; } { 1 xyz abc {not xyz} } do_execsql_test index7-6.2 { CREATE INDEX i4 ON t4(c) WHERE d='xyz'; SELECT * FROM (SELECT * FROM t5 WHERE a=1 AND b='xyz'), t4 WHERE c='abc'; } { 1 xyz abc {not xyz} } do_execsql_test index7-6.3 { CREATE VIEW v4 AS SELECT * FROM t4; INSERT INTO t4 VALUES('def', 'xyz'); SELECT * FROM v4 WHERE d='xyz' AND c='def' } { def xyz } do_eqp_test index7-6.4 { SELECT * FROM v4 WHERE d='xyz' AND c='def' } { 0 0 0 {SEARCH TABLE t4 USING INDEX i4 (c=?)} } finish_test |
Changes to test/whereJ.test.
︙ | ︙ | |||
366 367 368 369 370 371 372 373 374 375 | AND t0b.id=2 AND t1b.id BETWEEN t0b.minChild AND t0b.maxChild AND t2b.id BETWEEN t1b.minChild AND t1b.maxChild AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild AND t4.id BETWEEN t3a.minChild AND t3b.maxChild ORDER BY t4.x; } {~/SCAN/} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | AND t0b.id=2 AND t1b.id BETWEEN t0b.minChild AND t0b.maxChild AND t2b.id BETWEEN t1b.minChild AND t1b.maxChild AND t3b.id BETWEEN t2b.minChild AND t2b.maxChild AND t4.id BETWEEN t3a.minChild AND t3b.maxChild ORDER BY t4.x; } {~/SCAN/} ############################################################################ ifcapable stat4 { # Create and populate table. do_execsql_test 3.1 { CREATE TABLE t1(a, b, c) } for {set i 0} {$i < 32} {incr i 2} { for {set x 0} {$x < 100} {incr x} { execsql { INSERT INTO t1 VALUES($i, $x, $c) } incr c } execsql { INSERT INTO t1 VALUES($i+1, 5, $c) } incr c } do_execsql_test 3.2 { SELECT a, count(*) FROM t1 GROUP BY a HAVING a < 8; } { 0 100 1 1 2 100 3 1 4 100 5 1 6 100 7 1 } do_execsql_test 3.3 { CREATE INDEX idx_ab ON t1(a, b); CREATE INDEX idx_c ON t1(c); ANALYZE; } {} # This one should use index "idx_c". do_eqp_test 3.4 { SELECT * FROM t1 WHERE a = 4 AND b BETWEEN 20 AND 80 -- Matches 80 rows AND c BETWEEN 150 AND 160 -- Matches 10 rows } { 0 0 0 {SEARCH TABLE t1 USING INDEX idx_c (c>? AND c<?)} } # This one should use index "idx_ab". do_eqp_test 3.5 { SELECT * FROM t1 WHERE a = 5 AND b BETWEEN 20 AND 80 -- Matches 1 row AND c BETWEEN 150 AND 160 -- Matches 10 rows } { 0 0 0 {SEARCH TABLE t1 USING INDEX idx_ab (a=? AND b>? AND b<?)} } } finish_test |