SQLite

Check-in [11ca4ed8bf]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest trunk changes into the stat3-trunk branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | stat3-trunk
Files: files | file ages | folders
SHA1: 11ca4ed8bf850dae1a24b7182f70039f32bd8dd1
User & Date: drh 2011-09-13 19:09:28.865
Context
2011-09-16
19:29
Merge all the latest trunk changes into the experimental STAT3 branch. (check-in: 51908c8f2b user: drh tags: stat3-trunk)
2011-09-13
19:09
Merge the latest trunk changes into the stat3-trunk branch. (check-in: 11ca4ed8bf user: drh tags: stat3-trunk)
2011-09-11
10:14
Cleanup pdb/ilk files generated by the MSVC makefile. (check-in: a9db247b75 user: mistachkin tags: trunk)
2011-08-26
13:16
Merge the stat3-enhancement branch with trunk, but keep the resulting merge in a separate branch for now. (check-in: 63f2c7859f user: drh tags: stat3-trunk)
Changes
Unified Diff Show Whitespace Changes Patch
Changes to Makefile.in.
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
tclsqlite3$(TEXE):	tclsqlite-shell.lo libsqlite3.la
	$(LTLINK) -o $@ tclsqlite-shell.lo \
		 libsqlite3.la $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	sort -n -b -k 3 opcodes.h | $(NAWK) -f $(TOP)/mkopcodec.awk >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | $(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c







|







771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
tclsqlite3$(TEXE):	tclsqlite-shell.lo libsqlite3.la
	$(LTLINK) -o $@ tclsqlite-shell.lo \
		 libsqlite3.la $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	$(NAWK) -f $(TOP)/mkopcodec.awk opcodes.h >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | $(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c
Changes to Makefile.msc.
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
tclsqlite3.exe:	tclsqlite-shell.lo libsqlite3.lib
	$(LTLINK) tclsqlite-shell.lo \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)\mkopcodec.awk
	$(NAWK) "/#define OP_/ { print }" opcodes.h | sort /+45 | $(NAWK) -f $(TOP)\mkopcodec.awk > opcodes.c

opcodes.h:	parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk
	type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk > opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c







|







805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
tclsqlite3.exe:	tclsqlite-shell.lo libsqlite3.lib
	$(LTLINK) tclsqlite-shell.lo \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)\mkopcodec.awk
	$(NAWK) -f $(TOP)\mkopcodec.awk opcodes.h > opcodes.c

opcodes.h:	parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk
	type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk > opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
	$(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \
		-DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)

clean:
	del /Q *.lo *.lib *.obj sqlite3.exe libsqlite3.lib
	del /Q sqlite3.h opcodes.c opcodes.h
	del /Q lemon.exe lempar.c parse.*
	del /Q mkkeywordhash.exe keywordhash.h
	-rmdir /Q/S tsrc
	del /Q .target_source
	del /Q testfixture.exe testfixture.exp test.db
	del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def







|







934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
	$(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \
		-DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)

clean:
	del /Q *.lo *.ilk *.lib *.obj *.pdb sqlite3.exe libsqlite3.lib
	del /Q sqlite3.h opcodes.c opcodes.h
	del /Q lemon.exe lempar.c parse.*
	del /Q mkkeywordhash.exe keywordhash.h
	-rmdir /Q/S tsrc
	del /Q .target_source
	del /Q testfixture.exe testfixture.exp test.db
	del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
Changes to Makefile.vxworks.
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
	$(TCCX_SHARED) $(TCL_FLAGS) -c $(TOP)/src/tclsqlite.c



# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	sort -n -b -k 3 opcodes.h | $(NAWK) -f $(TOP)/mkopcodec.awk >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | \
		$(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#







|







513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
	$(TCCX_SHARED) $(TCL_FLAGS) -c $(TOP)/src/tclsqlite.c



# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	$(NAWK) -f $(TOP)/mkopcodec.awk opcodes.h >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | \
		$(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
Changes to main.mk.
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
	$(TCCX) $(TCL_FLAGS) -c $(TOP)/src/tclsqlite.c



# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	sort -n -b -k 3 opcodes.h | $(NAWK) -f $(TOP)/mkopcodec.awk >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | \
		$(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#







|







425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
	$(TCCX) $(TCL_FLAGS) -c $(TOP)/src/tclsqlite.c



# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)/mkopcodec.awk
	$(NAWK) -f $(TOP)/mkopcodec.awk opcodes.h >opcodes.c

opcodes.h:	parse.h $(TOP)/src/vdbe.c $(TOP)/mkopcodeh.awk
	cat parse.h $(TOP)/src/vdbe.c | \
		$(NAWK) -f $(TOP)/mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
Changes to mkopcodec.awk.
13
14
15
16
17
18
19

20
21
22
23
24

25
26



27
28
29
30
31
  print "/* See the mkopcodec.awk script for details. */"
  printf "#if !defined(SQLITE_OMIT_EXPLAIN)"
  printf    " || !defined(NDEBUG)"
  printf    " || defined(VDBE_PROFILE)"
  print     " || defined(SQLITE_DEBUG)"
  print "const char *sqlite3OpcodeName(int i){"
  print " static const char *const azName[] = { \"?\","

}
/define OP_/ {
  sub("OP_","",$2)
  i++
  printf "     /* %3d */ \"%s\",\n", $3, $2

}
END {



  print "  };"
  print "  return azName[i];"
  print "}"
  print "#endif"
}







>



|
|
>


>
>
>





13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  print "/* See the mkopcodec.awk script for details. */"
  printf "#if !defined(SQLITE_OMIT_EXPLAIN)"
  printf    " || !defined(NDEBUG)"
  printf    " || defined(VDBE_PROFILE)"
  print     " || defined(SQLITE_DEBUG)"
  print "const char *sqlite3OpcodeName(int i){"
  print " static const char *const azName[] = { \"?\","
  mx = 0
}
/define OP_/ {
  sub("OP_","",$2)
  i = $3+0
  label[i] = $2
  if( mx<i ) mx = i
}
END {
  for(i=1; i<=mx; i++){
    printf "     /* %3d */ \"%s\",\n", i, label[i]
  }
  print "  };"
  print "  return azName[i];"
  print "}"
  print "#endif"
}
Changes to src/btree.c.
652
653
654
655
656
657
658

659
660
661
662
663

664

665
666
667
668
669
670
671
672
673
674
675
676
677
  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  int bias,           /* Bias search to the high end */
  int *pRes           /* Write search results here */
){
  int rc;                    /* Status code */
  UnpackedRecord *pIdxKey;   /* Unpacked index key */
  char aSpace[150];          /* Temp space for pIdxKey - to avoid a malloc */


  if( pKey ){
    assert( nKey==(i64)(int)nKey );
    pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
                                      aSpace, sizeof(aSpace));

    if( pIdxKey==0 ) return SQLITE_NOMEM;

  }else{
    pIdxKey = 0;
  }
  rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
  if( pKey ){
    sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  }
  return rc;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 







>



|
|
>

>




|
|







652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  int bias,           /* Bias search to the high end */
  int *pRes           /* Write search results here */
){
  int rc;                    /* Status code */
  UnpackedRecord *pIdxKey;   /* Unpacked index key */
  char aSpace[150];          /* Temp space for pIdxKey - to avoid a malloc */
  char *pFree = 0;

  if( pKey ){
    assert( nKey==(i64)(int)nKey );
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
    );
    if( pIdxKey==0 ) return SQLITE_NOMEM;
    sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey, pIdxKey);
  }else{
    pIdxKey = 0;
  }
  rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
  if( pFree ){
    sqlite3DbFree(pCur->pKeyInfo->db, pFree);
  }
  return rc;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

  /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
  assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );

  /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
  assert( (flags & BTREE_SINGLE)==0 || isTempDb );

  /* The BTREE_SORTER flag is only used if SQLITE_OMIT_MERGE_SORT is undef */
#ifdef SQLITE_OMIT_MERGE_SORT
  assert( (flags & BTREE_SORTER)==0 );
#endif

  /* BTREE_SORTER is always on a BTREE_SINGLE, BTREE_OMIT_JOURNAL */
  assert( (flags & BTREE_SORTER)==0 ||
          (flags & (BTREE_SINGLE|BTREE_OMIT_JOURNAL))
                                        ==(BTREE_SINGLE|BTREE_OMIT_JOURNAL) );

  if( db->flags & SQLITE_NoReadlock ){
    flags |= BTREE_NO_READLOCK;
  }
  if( isMemdb ){
    flags |= BTREE_MEMORY;
    flags &= ~BTREE_SORTER;
  }
  if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
    vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
  }
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;







<
<
<
<
<
<
<
<
<
<





<







1733
1734
1735
1736
1737
1738
1739










1740
1741
1742
1743
1744

1745
1746
1747
1748
1749
1750
1751

  /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
  assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );

  /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
  assert( (flags & BTREE_SINGLE)==0 || isTempDb );











  if( db->flags & SQLITE_NoReadlock ){
    flags |= BTREE_NO_READLOCK;
  }
  if( isMemdb ){
    flags |= BTREE_MEMORY;

  }
  if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
    vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
  }
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;
2750
2751
2752
2753
2754
2755
2756
2757

2758

2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        btreeParseCellPtr(pPage, pCell, &info);
        if( info.iOverflow ){

          if( iFrom==get4byte(&pCell[info.iOverflow]) ){

            put4byte(&pCell[info.iOverflow], iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }







|
>
|
>



<







2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755

2756
2757
2758
2759
2760
2761
2762
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        btreeParseCellPtr(pPage, pCell, &info);
        if( info.iOverflow
         && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
         && iFrom==get4byte(&pCell[info.iOverflow])
        ){
            put4byte(&pCell[info.iOverflow], iTo);
            break;
          }

      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
3475
3476
3477
3478
3479
3480
3481
3482

3483
3484
3485
3486
3487
3488
3489
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && pBt->readOnly) ){
    return SQLITE_READONLY;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    return SQLITE_EMPTY;

  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;







|
>







3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && pBt->readOnly) ){
    return SQLITE_READONLY;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
4229
4230
4231
4232
4233
4234
4235



4236
4237
4238
4239
4240
4241
4242

  if( pCur->iPage>=0 ){
    int i;
    for(i=1; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;



  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;







>
>
>







4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239

  if( pCur->iPage>=0 ){
    int i;
    for(i=1; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }







|







4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      pCur->atLast = rc==SQLITE_OK ?1:0;
    }







|







4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      pCur->atLast = rc==SQLITE_OK ?1:0;
    }
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
    }
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->apPage[pCur->iPage] );
  assert( pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];







|
|
|


|







4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
    }
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
5182
5183
5184
5185
5186
5187
5188



5189
5190
5191
5192
5193
5194
5195
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  btreeParseCellPtr(pPage, pCell, &info);
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }



  ovflPgno = get4byte(&pCell[info.iOverflow]);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( ovflPgno==0 || nOvfl>0 );
  while( nOvfl-- ){
    Pgno iNext = 0;







>
>
>







5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  btreeParseCellPtr(pPage, pCell, &info);
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( ovflPgno==0 || nOvfl>0 );
  while( nOvfl-- ){
    Pgno iNext = 0;
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
    */
    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
    releasePage(pPage);
  }
  return rc;  
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  BtShared *pBt = p->pBt;
  int rc;
  sqlite3BtreeEnter(p);
  if( (pBt->openFlags&BTREE_SINGLE) ){
    pBt->nPage = 0;
    sqlite3PagerTruncateImage(pBt->pPager, 1);
    rc = newDatabase(pBt);
  }else{
    rc = btreeDropTable(p, iTable, piMoved);
  }
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** This function may only be called if the b-tree connection already







<


<
<
<
<
<

<







7284
7285
7286
7287
7288
7289
7290

7291
7292





7293

7294
7295
7296
7297
7298
7299
7300
    */
    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
    releasePage(pPage);
  }
  return rc;  
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){

  int rc;
  sqlite3BtreeEnter(p);





    rc = btreeDropTable(p, iTable, piMoved);

  sqlite3BtreeLeave(p);
  return rc;
}


/*
** This function may only be called if the b-tree connection already
7372
7373
7374
7375
7376
7377
7378





7379
7380
7381
7382
7383
7384
7385
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */





  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */







>
>
>
>
>







7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */

  if( pCur->pgnoRoot==0 ){
    *pnEntry = 0;
    return SQLITE_OK;
  }
  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */
Changes to src/btree.h.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
** pager.h.
*/
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_NO_READLOCK   2  /* Omit readlocks on readonly files */
#define BTREE_MEMORY        4  /* This is an in-memory DB */
#define BTREE_SINGLE        8  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED    16  /* Use of a hash implementation is OK */
#define BTREE_SORTER       32  /* Used as accumulator in external merge sort */

int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);
int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);







<







57
58
59
60
61
62
63

64
65
66
67
68
69
70
** pager.h.
*/
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_NO_READLOCK   2  /* Omit readlocks on readonly files */
#define BTREE_MEMORY        4  /* This is an in-memory DB */
#define BTREE_SINGLE        8  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED    16  /* Use of a hash implementation is OK */


int sqlite3BtreeClose(Btree*);
int sqlite3BtreeSetCacheSize(Btree*,int);
int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int);
int sqlite3BtreeSyncDisabled(Btree*);
int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite3BtreeGetPageSize(Btree*);
Changes to src/build.c.
2339
2340
2341
2342
2343
2344
2345

2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
*/
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter = iTab;            /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */

  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regIdxKey;                 /* Registers containing the index key */
  int regRecord;                 /* Register holding assemblied index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);

  /* Set bUseSorter to use OP_OpenSorter, or clear it to insert directly 
  ** into the index. The sorter is used unless either OMIT_MERGE_SORT is
  ** defined or the system is configured to store temp files in-memory. */
#ifdef SQLITE_OMIT_MERGE_SORT
  static const int bUseSorter = 0;
#else
  const int bUseSorter = !sqlite3TempInMemory(pParse->db);
#endif

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif








>








<
<
<
<
<
<
<
<
<







2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354









2355
2356
2357
2358
2359
2360
2361
*/
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter = iTab;            /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
  int regIdxKey;                 /* Registers containing the index key */
  int regRecord;                 /* Register holding assemblied index record */
  sqlite3 *db = pParse->db;      /* The database connection */
  int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);










#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

2381
2382
2383
2384
2385
2386
2387

2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398

2399
2400
2401
2402
2403
2404
2405
2406


2407





2408

2409




2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430
2431
2432
2433
2434
2435
2436
2437
2438
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO_HANDOFF);
  if( memRootPage>=0 ){
    sqlite3VdbeChangeP5(v, 1);
  }


  /* Open the sorter cursor if we are to use one. */
  if( bUseSorter ){
    iSorter = pParse->nTab++;
    sqlite3VdbeAddOp4(v, OP_OpenSorter, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
    sqlite3VdbeChangeP5(v, BTREE_SORTER);
  }

  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);

  regRecord = sqlite3GetTempReg(pParse);
  regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);

  if( bUseSorter ){
    sqlite3VdbeAddOp2(v, OP_IdxInsert, iSorter, regRecord);
    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
    sqlite3VdbeJumpHere(v, addr1);
    addr1 = sqlite3VdbeAddOp2(v, OP_Sort, iSorter, 0);


    sqlite3VdbeAddOp2(v, OP_RowKey, iSorter, regRecord);





  }






  if( pIndex->onError!=OE_None ){
    const int regRowid = regIdxKey + pIndex->nColumn;
    const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
    void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);

    /* The registers accessed by the OP_IsUnique opcode were allocated
    ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
    ** call above. Just before that function was freed they were released
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, bUseSorter);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);

  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_Next, iSorter, addr1+1);
  sqlite3VdbeJumpHere(v, addr1);

  sqlite3VdbeAddOp1(v, OP_Close, iTab);
  sqlite3VdbeAddOp1(v, OP_Close, iIdx);
  sqlite3VdbeAddOp1(v, OP_Close, iSorter);
}








>

<

|
|
<





>



|
|


|
>
>
|
>
>
>
>
>
|
>
|
>
>
>
>


















|

>

|







2373
2374
2375
2376
2377
2378
2379
2380
2381

2382
2383
2384

2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO_HANDOFF);
  if( memRootPage>=0 ){
    sqlite3VdbeChangeP5(v, 1);
  }

#ifndef SQLITE_OMIT_MERGE_SORT
  /* Open the sorter cursor if we are to use one. */

    iSorter = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
#endif


  /* Open the table. Loop through all rows of the table, inserting index
  ** records into the sorter. */
  sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  addr2 = addr1 + 1;
  regRecord = sqlite3GetTempReg(pParse);
  regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);

#ifndef SQLITE_OMIT_MERGE_SORT
  sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
    sqlite3VdbeJumpHere(v, addr1);
  addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
  if( pIndex->onError!=OE_None ){
    int j2 = sqlite3VdbeCurrentAddr(v) + 3;
    sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
    addr2 = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
    );
  }else{
    addr2 = sqlite3VdbeCurrentAddr(v);
  }
  sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#else
  if( pIndex->onError!=OE_None ){
    const int regRowid = regIdxKey + pIndex->nColumn;
    const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
    void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);

    /* The registers accessed by the OP_IsUnique opcode were allocated
    ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
    ** call above. Just before that function was freed they were released
    ** (made available to the compiler for reuse) using 
    ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
    ** opcode use the values stored within seems dangerous. However, since
    ** we can be sure that no other temp registers have been allocated
    ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
    */
    sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
    sqlite3HaltConstraint(
        pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
  }
  sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
#endif
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
  sqlite3VdbeJumpHere(v, addr1);

  sqlite3VdbeAddOp1(v, OP_Close, iTab);
  sqlite3VdbeAddOp1(v, OP_Close, iIdx);
  sqlite3VdbeAddOp1(v, OP_Close, iSorter);
}

Changes to src/ctime.c.
143
144
145
146
147
148
149



150
151
152
153
154
155
156
#endif
#ifdef SQLITE_INT64_TYPE
  "INT64_TYPE",
#endif
#ifdef SQLITE_LOCK_TRACE
  "LOCK_TRACE",
#endif



#ifdef SQLITE_MEMDEBUG
  "MEMDEBUG",
#endif
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
  "MIXED_ENDIAN_64BIT_FLOAT",
#endif
#ifdef SQLITE_NO_SYNC







>
>
>







143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#endif
#ifdef SQLITE_INT64_TYPE
  "INT64_TYPE",
#endif
#ifdef SQLITE_LOCK_TRACE
  "LOCK_TRACE",
#endif
#ifdef SQLITE_MAX_SCHEMA_RETRY
  "MAX_SCHEMA_RETRY=" CTIMEOPT_VAL(SQLITE_MAX_SCHEMA_RETRY),
#endif
#ifdef SQLITE_MEMDEBUG
  "MEMDEBUG",
#endif
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
  "MIXED_ENDIAN_64BIT_FLOAT",
#endif
#ifdef SQLITE_NO_SYNC
Changes to src/expr.c.
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
      AggInfo *pAggInfo = pExpr->pAggInfo;
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
      if( !pAggInfo->directMode ){
        assert( pCol->iMem>0 );
        inReg = pCol->iMem;
        break;
      }else if( pAggInfo->useSortingIdx ){
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
                              pCol->iSorterColumn, target);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){







|







2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
      AggInfo *pAggInfo = pExpr->pAggInfo;
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
      if( !pAggInfo->directMode ){
        assert( pCol->iMem>0 );
        inReg = pCol->iMem;
        break;
      }else if( pAggInfo->useSortingIdx ){
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
                              pCol->iSorterColumn, target);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iTable<0 ){
Changes to src/os_common.h.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch.  The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
#endif

#ifdef SQLITE_DEBUG
# ifndef SQLITE_DEBUG_OS_TRACE
#   define SQLITE_DEBUG_OS_TRACE 0
# endif
  int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
# define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
#else
# define OSTRACE(X)







|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch.  The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
#endif

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
# ifndef SQLITE_DEBUG_OS_TRACE
#   define SQLITE_DEBUG_OS_TRACE 0
# endif
  int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
# define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
#else
# define OSTRACE(X)
Changes to src/os_unix.c.
2521
2522
2523
2524
2525
2526
2527

2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  if( context->reserved ){
    *pResOut = 1;
    return SQLITE_OK;
  }
  unixEnterMutex(); /* Because pFile->pInode is shared across threads */
  
  /* Check if a thread in this process holds such a lock */







>




|







2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;
  afpLockingContext *context;
  
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );
  context = (afpLockingContext *) pFile->lockingContext;
  if( context->reserved ){
    *pResOut = 1;
    return SQLITE_OK;
  }
  unixEnterMutex(); /* Because pFile->pInode is shared across threads */
  
  /* Check if a thread in this process holds such a lock */
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
    }
  }
  
  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( eFileLock==SHARED_LOCK ){
    int lrc1, lrc2, lrc1Errno;
    long lk, mask;
    
    assert( pInode->nShared==0 );
    assert( pInode->eFileLock==0 );
        
    mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
    /* Now get the read-lock SHARED_LOCK */







|







2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
    }
  }
  
  /* If control gets to this point, then actually go ahead and make
  ** operating system calls for the specified lock.
  */
  if( eFileLock==SHARED_LOCK ){
    int lrc1, lrc2, lrc1Errno = 0;
    long lk, mask;
    
    assert( pInode->nShared==0 );
    assert( pInode->eFileLock==0 );
        
    mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
    /* Now get the read-lock SHARED_LOCK */
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
*/
int sqlite3_sync_count = 0;
int sqlite3_fullsync_count = 0;
#endif

/*
** We do not trust systems to provide a working fdatasync().  Some do.
** Others do no.  To be safe, we will stick with the (slower) fsync().
** If you know that your system does support fdatasync() correctly,
** then simply compile with -Dfdatasync=fdatasync
*/
#if !defined(fdatasync) && !defined(__linux__)
# define fdatasync fsync
#endif

/*
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
** only available on Mac OS X.  But that could change.







|
|


|







3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
*/
int sqlite3_sync_count = 0;
int sqlite3_fullsync_count = 0;
#endif

/*
** We do not trust systems to provide a working fdatasync().  Some do.
** Others do no.  To be safe, we will stick with the (slightly slower)
** fsync(). If you know that your system does support fdatasync() correctly,
** then simply compile with -Dfdatasync=fdatasync
*/
#if !defined(fdatasync)
# define fdatasync fsync
#endif

/*
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
** only available on Mac OS X.  But that could change.
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446

3447
3448
3449

3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
** proxying locking division.
*/
static int proxyFileControl(sqlite3_file*,int,void*);
#endif

/* 
** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 
** file-control operation.
**
** If the user has configured a chunk-size for this file, it could be
** that the file needs to be extended at this point. Otherwise, the
** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.

*/
static int fcntlSizeHint(unixFile *pFile, i64 nByte){
  { /* preserve indentation of removed "if" */

    i64 nSize;                    /* Required file size */
    i64 szChunk;                  /* Chunk size */
    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;

    szChunk = pFile->szChunk;
    if( szChunk==0 ){
      nSize = nByte;
    }else{
      nSize = ((nByte+szChunk-1) / szChunk) * szChunk;
    }
    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
      ** or an error number on  failure". See the manpage for details. */
      int err;







|
<
|
<
<
>


<
>

<




|
<
<
<
<
<







3436
3437
3438
3439
3440
3441
3442
3443

3444


3445
3446
3447

3448
3449

3450
3451
3452
3453
3454





3455
3456
3457
3458
3459
3460
3461
** proxying locking division.
*/
static int proxyFileControl(sqlite3_file*,int,void*);
#endif

/* 
** This function is called to handle the SQLITE_FCNTL_SIZE_HINT 
** file-control operation.  Enlarge the database to nBytes in size

** (rounded up to the next chunk-size).  If the database is already


** nBytes or larger, this routine is a no-op.
*/
static int fcntlSizeHint(unixFile *pFile, i64 nByte){

  if( pFile->szChunk>0 ){
    i64 nSize;                    /* Required file size */

    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;

    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;





    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
      ** or an error number on  failure". See the manpage for details. */
      int err;
3643
3644
3645
3646
3647
3648
3649

3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
** All other fields are read/write.  The unixShm.pFile->mutex must be held
** while accessing any read/write fields.
*/
struct unixShm {
  unixShmNode *pShmNode;     /* The underlying unixShmNode object */
  unixShm *pNext;            /* Next unixShm with the same unixShmNode */
  u8 hasMutex;               /* True if holding the unixShmNode mutex */

  u16 sharedMask;            /* Mask of shared locks held */
  u16 exclMask;              /* Mask of exclusive locks held */
#ifdef SQLITE_DEBUG
  u8 id;                     /* Id of this connection within its unixShmNode */
#endif
};

/*
** Constants used for locking
*/
#define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
#define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */







>


<
<
<







3636
3637
3638
3639
3640
3641
3642
3643
3644
3645



3646
3647
3648
3649
3650
3651
3652
** All other fields are read/write.  The unixShm.pFile->mutex must be held
** while accessing any read/write fields.
*/
struct unixShm {
  unixShmNode *pShmNode;     /* The underlying unixShmNode object */
  unixShm *pNext;            /* Next unixShm with the same unixShmNode */
  u8 hasMutex;               /* True if holding the unixShmNode mutex */
  u8 id;                     /* Id of this connection within its unixShmNode */
  u16 sharedMask;            /* Mask of shared locks held */
  u16 exclMask;              /* Mask of exclusive locks held */



};

/*
** Constants used for locking
*/
#define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
#define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
4953
4954
4955
4956
4957
4958
4959



4960
4961
4962
4963
4964
4965
4966
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
#if SQLITE_ENABLE_LOCKING_STYLE
  int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
#endif




  /* If creating a master or main-file journal, this function will open
  ** a file-descriptor on the directory too. The first time unixSync()
  ** is called the directory file descriptor will be fsync()ed and close()d.
  */
  int syncDir = (isCreate && (
        eType==SQLITE_OPEN_MASTER_JOURNAL 







>
>
>







4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
#if SQLITE_ENABLE_LOCKING_STYLE
  int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
#endif
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  struct statfs fsInfo;
#endif

  /* If creating a master or main-file journal, this function will open
  ** a file-descriptor on the directory too. The first time unixSync()
  ** is called the directory file descriptor will be fsync()ed and close()d.
  */
  int syncDir = (isCreate && (
        eType==SQLITE_OPEN_MASTER_JOURNAL 
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
  osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  struct statfs fsInfo;
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);
    return SQLITE_IOERR_ACCESS;
  }
  if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;







<







5079
5080
5081
5082
5083
5084
5085

5086
5087
5088
5089
5090
5091
5092
  osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE

  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);
    return SQLITE_IOERR_ACCESS;
  }
  if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
    ** never use proxy, NULL means use proxy for non-local files only.  */
    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{
      struct statfs fsInfo;
      if( statfs(zPath, &fsInfo) == -1 ){
        /* In theory, the close(fd) call is sub-optimal. If the file opened
        ** with fd is a database file, and there are other connections open
        ** on that file that are currently holding advisory locks on it,
        ** then the call to close() will cancel those locks. In practice,
        ** we're assuming that statfs() doesn't fail very often. At least
        ** not while other file descriptors opened by the same process on







<







5102
5103
5104
5105
5106
5107
5108

5109
5110
5111
5112
5113
5114
5115
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
    ** never use proxy, NULL means use proxy for non-local files only.  */
    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{

      if( statfs(zPath, &fsInfo) == -1 ){
        /* In theory, the close(fd) call is sub-optimal. If the file opened
        ** with fd is a database file, and there are other connections open
        ** on that file that are currently holding advisory locks on it,
        ** then the call to close() will cancel those locks. In practice,
        ** we're assuming that statfs() doesn't fail very often. At least
        ** not while other file descriptors opened by the same process on
5850
5851
5852
5853
5854
5855
5856


5857
5858
5859
5860
5861
5862
5863
      int err = errno;
      if( pError ){
        *pError = err;
      }
      return SQLITE_IOERR;
    }
  }


#endif
#ifdef SQLITE_TEST
  /* simulate multiple hosts by creating unique hostid file paths */
  if( sqlite3_hostid_num != 0){
    pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
  }
#endif







>
>







5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
      int err = errno;
      if( pError ){
        *pError = err;
      }
      return SQLITE_IOERR;
    }
  }
#else
  UNUSED_PARAMETER(pError);
#endif
#ifdef SQLITE_TEST
  /* simulate multiple hosts by creating unique hostid file paths */
  if( sqlite3_hostid_num != 0){
    pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
  }
#endif
5942
5943
5944
5945
5946
5947
5948

5949
5950
5951
5952
5953
5954
5955
static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
  proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
  unixFile *conchFile = pCtx->conchFile;
  int rc = SQLITE_OK;
  int nTries = 0;
  struct timespec conchModTime;
  

  do {
    rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
    nTries ++;
    if( rc==SQLITE_BUSY ){
      /* If the lock failed (busy):
       * 1st try: get the mod time of the conch, wait 0.5s and try again. 
       * 2nd try: fail if the mod time changed or host id is different, wait 







>







5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
  proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; 
  unixFile *conchFile = pCtx->conchFile;
  int rc = SQLITE_OK;
  int nTries = 0;
  struct timespec conchModTime;
  
  memset(&conchModTime, 0, sizeof(conchModTime));
  do {
    rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
    nTries ++;
    if( rc==SQLITE_BUSY ){
      /* If the lock failed (busy):
       * 1st try: get the mod time of the conch, wait 0.5s and try again. 
       * 2nd try: fail if the mod time changed or host id is different, wait 
6173
6174
6175
6176
6177
6178
6179

6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
        }
      }
      conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
      
    end_takeconch:
      OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
      if( rc==SQLITE_OK && pFile->openFlags ){

        if( pFile->h>=0 ){
          robust_close(pFile, pFile->h, __LINE__);
        }
        pFile->h = -1;
        int fd = robust_open(pCtx->dbPath, pFile->openFlags,
                      SQLITE_DEFAULT_FILE_PERMISSIONS);
        OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
        if( fd>=0 ){
          pFile->h = fd;
        }else{
          rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
           during locking */







>




|







6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
        }
      }
      conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
      
    end_takeconch:
      OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
      if( rc==SQLITE_OK && pFile->openFlags ){
        int fd;
        if( pFile->h>=0 ){
          robust_close(pFile, pFile->h, __LINE__);
        }
        pFile->h = -1;
        fd = robust_open(pCtx->dbPath, pFile->openFlags,
                      SQLITE_DEFAULT_FILE_PERMISSIONS);
        OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
        if( fd>=0 ){
          pFile->h = fd;
        }else{
          rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
           during locking */
Changes to src/os_win.c.
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
  if( seekWinFile(pFile, nByte) ){
    rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate1", pFile->zPath);
  }else if( 0==SetEndOfFile(pFile->h) ){







|







1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  /* SetEndOfFile() returns non-zero when successful, or zero when it fails. */
  if( seekWinFile(pFile, nByte) ){
    rc = winLogError(SQLITE_IOERR_TRUNCATE, "winTruncate1", pFile->zPath);
  }else if( 0==SetEndOfFile(pFile->h) ){
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618


1619
1620
1621
1622
1623
1624
1625
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_CHUNK_SIZE: {
      pFile->szChunk = *(int *)pArg;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SIZE_HINT: {
      winFile *pFile = (winFile*)id;
      sqlite3_int64 oldSz;
      int rc = winFileSize(id, &oldSz);
      if( rc==SQLITE_OK ){
        sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
        if( newSz>oldSz ){
          SimulateIOErrorBenign(1);
          rc = winTruncate(id, newSz);
          SimulateIOErrorBenign(0);
        }
      }
      return rc;
    }


    case SQLITE_FCNTL_PERSIST_WAL: {
      int bPersist = *(int*)pArg;
      if( bPersist<0 ){
        *(int*)pArg = pFile->bPersistWal;
      }else{
        pFile->bPersistWal = bPersist!=0;
      }







|












>
>







1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_CHUNK_SIZE: {
      pFile->szChunk = *(int *)pArg;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SIZE_HINT: {
      if( pFile->szChunk>0 ){
      sqlite3_int64 oldSz;
      int rc = winFileSize(id, &oldSz);
      if( rc==SQLITE_OK ){
        sqlite3_int64 newSz = *(sqlite3_int64*)pArg;
        if( newSz>oldSz ){
          SimulateIOErrorBenign(1);
          rc = winTruncate(id, newSz);
          SimulateIOErrorBenign(0);
        }
      }
      return rc;
    }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_PERSIST_WAL: {
      int bPersist = *(int*)pArg;
      if( bPersist<0 ){
        *(int*)pArg = pFile->bPersistWal;
      }else{
        pFile->bPersistWal = bPersist!=0;
      }
Changes to src/pager.c.
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
  u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */
  u8 hasSeenStress;           /* pagerStress() called one or more times */
  u8 isSorter;                /* True for a PAGER_SORTER */

  /**************************************************************************
  ** The following block contains those class members that change during
  ** routine opertion.  Class members not in this block are either fixed
  ** when the pager is first created or else only change when there is a
  ** significant mode change (such as changing the page_size, locking_mode,
  ** or the journal_mode).  From another view, these class members describe







<







617
618
619
620
621
622
623

624
625
626
627
628
629
630
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
  u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */
  u8 hasSeenStress;           /* pagerStress() called one or more times */


  /**************************************************************************
  ** The following block contains those class members that change during
  ** routine opertion.  Class members not in this block are either fixed
  ** when the pager is first created or else only change when there is a
  ** significant mode change (such as changing the page_size, locking_mode,
  ** or the journal_mode).  From another view, these class members describe
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    assert( p->journalMode==PAGER_JOURNALMODE_OFF 
         || p->journalMode==PAGER_JOURNALMODE_MEMORY 
    );
    assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
    assert( pagerUseWal(p)==0 );
  }

  /* A sorter is a temp file that never spills to disk and always has
  ** the doNotSpill flag set
  */
  if( p->isSorter ){
    assert( p->tempFile );
    assert( p->doNotSpill );
    assert( p->fd->pMethods==0 );
  }

  /* If changeCountDone is set, a RESERVED lock or greater must be held
  ** on the file.
  */
  assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
  assert( p->eLock!=PENDING_LOCK );

  switch( p->eState ){







<
<
<
<
<
<
<
<
<







840
841
842
843
844
845
846









847
848
849
850
851
852
853
    assert( p->journalMode==PAGER_JOURNALMODE_OFF 
         || p->journalMode==PAGER_JOURNALMODE_MEMORY 
    );
    assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
    assert( pagerUseWal(p)==0 );
  }










  /* If changeCountDone is set, a RESERVED lock or greater must be held
  ** on the file.
  */
  assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
  assert( p->eLock!=PENDING_LOCK );

  switch( p->eState ){
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
  }else if( memDb ){
    pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
  }
  /* pPager->xBusyHandler = 0; */
  /* pPager->pBusyHandlerArg = 0; */
  pPager->xReiniter = xReinit;
  /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
#ifndef SQLITE_OMIT_MERGE_SORT
  if( flags & PAGER_SORTER ){
    pPager->doNotSpill = 1;
    pPager->isSorter = 1;
  }
#endif

  *ppPager = pPager;
  return SQLITE_OK;
}










<
<
<
<
<
<







4543
4544
4545
4546
4547
4548
4549






4550
4551
4552
4553
4554
4555
4556
  }else if( memDb ){
    pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
  }
  /* pPager->xBusyHandler = 0; */
  /* pPager->pBusyHandlerArg = 0; */
  pPager->xReiniter = xReinit;
  /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */







  *ppPager = pPager;
  return SQLITE_OK;
}



6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
/*
** Return true if this is an in-memory pager.
*/
int sqlite3PagerIsMemdb(Pager *pPager){
  return MEMDB;
}

#ifndef SQLITE_OMIT_MERGE_SORT
/*
** Return true if the pager has seen a pagerStress callback.
*/
int sqlite3PagerUnderStress(Pager *pPager){
  assert( pPager->isSorter );
  assert( pPager->doNotSpill );
  return pPager->hasSeenStress;
}
#endif

/*
** Check that there are at least nSavepoint savepoints open. If there are
** currently less than nSavepoints open, then open one or more savepoints
** to make up the difference. If the number of savepoints is already
** equal to nSavepoint, then this function is a no-op.
**
** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 







<
<
<
<
<
<
<
<
<
<
<







6087
6088
6089
6090
6091
6092
6093











6094
6095
6096
6097
6098
6099
6100
/*
** Return true if this is an in-memory pager.
*/
int sqlite3PagerIsMemdb(Pager *pPager){
  return MEMDB;
}












/*
** Check that there are at least nSavepoint savepoints open. If there are
** currently less than nSavepoints open, then open one or more savepoints
** to make up the difference. If the number of savepoints is already
** equal to nSavepoint, then this function is a no-op.
**
** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 
Changes to src/pager.h.
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
const char *sqlite3PagerFilename(Pager*);
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
sqlite3_file *sqlite3PagerFile(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
void *sqlite3PagerTempSpace(Pager*);
int sqlite3PagerIsMemdb(Pager*);
#ifndef SQLITE_OMIT_MERGE_SORT
int sqlite3PagerUnderStress(Pager*);
#endif

/* Functions used to truncate the database file. */
void sqlite3PagerTruncateImage(Pager*,Pgno);

#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
void *sqlite3PagerCodec(DbPage *);
#endif







<
<
<







152
153
154
155
156
157
158



159
160
161
162
163
164
165
const char *sqlite3PagerFilename(Pager*);
const sqlite3_vfs *sqlite3PagerVfs(Pager*);
sqlite3_file *sqlite3PagerFile(Pager*);
const char *sqlite3PagerJournalname(Pager*);
int sqlite3PagerNosync(Pager*);
void *sqlite3PagerTempSpace(Pager*);
int sqlite3PagerIsMemdb(Pager*);




/* Functions used to truncate the database file. */
void sqlite3PagerTruncateImage(Pager*,Pgno);

#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
void *sqlite3PagerCodec(DbPage *);
#endif
Changes to src/select.c.
415
416
417
418
419
420
421

422
423
424
425
426





427
428
429
430
431
432
433
434
  Select *pSelect,       /* The whole SELECT statement */
  int regData            /* Register holding data to be sorted */
){
  Vdbe *v = pParse->pVdbe;
  int nExpr = pOrderBy->nExpr;
  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  int regRecord = sqlite3GetTempReg(pParse);

  sqlite3ExprCacheClear(pParse);
  sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);





  sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;







>





>
>
>
>
>
|







415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
  Select *pSelect,       /* The whole SELECT statement */
  int regData            /* Register holding data to be sorted */
){
  Vdbe *v = pParse->pVdbe;
  int nExpr = pOrderBy->nExpr;
  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  int regRecord = sqlite3GetTempReg(pParse);
  int op;
  sqlite3ExprCacheClear(pParse);
  sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
  if( pSelect->selFlags & SF_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
889
890
891
892
893
894
895










896
897
898

899
900
901
902
903
904
905
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    regRowid = 0;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
  }










  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
  codeOffset(v, p, addrContinue);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);

  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);







>
>
>
>
>
>
>
>
>
>



>







895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
    regRowid = 0;
  }else{
    regRowid = sqlite3GetTempReg(pParse);
  }
  if( p->selFlags & SF_UseSorter ){
    int regSortOut = ++pParse->nMem;
    int ptab2 = pParse->nTab++;
    sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
    addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
    codeOffset(v, p, addrContinue);
    sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
    sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
    sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
  }else{
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
  codeOffset(v, p, addrContinue);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  }
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      testcase( eDest==SRT_Table );
      testcase( eDest==SRT_EphemTab );
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
944
945
946
947
948
949
950



951

952
953
954
955
956
957
958
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);



  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);

  sqlite3VdbeResolveLabel(v, addrBreak);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }
}

/*







>
>
>

>







961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, addrContinue);
  if( p->selFlags & SF_UseSorter ){
    sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
  }else{
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  }
  sqlite3VdbeResolveLabel(v, addrBreak);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }
}

/*
3910
3911
3912
3913
3914
3915
3916




3917
3918
3919
3920
3921
3922
3923
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);





  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);







>
>
>
>







3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
      p->addrOpenEphm[2] = -1;
    }

    if( pWInfo->eDistinct ){
      VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
     
      assert( addrDistinctIndex>0 );
      pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);

      assert( isDistinct );
      assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 
           || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 
      );
      distinct = -1;







|







3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
      p->addrOpenEphm[2] = -1;
    }

    if( pWInfo->eDistinct ){
      VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
     
      assert( addrDistinctIndex>=0 );
      pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);

      assert( isDistinct );
      assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 
           || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 
      );
      distinct = -1;
4004
4005
4006
4007
4008
4009
4010


4011
4012
4013
4014
4015
4016
4017
    int iBMem;          /* First Mem address for previous GROUP BY */
    int iUseFlag;       /* Mem address holding flag indicating that at least
                        ** one row of the input to the aggregator has been
                        ** processed */
    int iAbortFlag;     /* Mem address which causes query abort if positive */
    int groupBySort;    /* Rows come from source in GROUP BY order */
    int addrEnd;        /* End of processing for this SELECT */



    /* Remove any and all aliases between the result set and the
    ** GROUP BY clause.
    */
    if( pGroupBy ){
      int k;                        /* Loop counter */
      struct ExprList_item *pItem;  /* For looping over expression in a list */







>
>







4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
    int iBMem;          /* First Mem address for previous GROUP BY */
    int iUseFlag;       /* Mem address holding flag indicating that at least
                        ** one row of the input to the aggregator has been
                        ** processed */
    int iAbortFlag;     /* Mem address which causes query abort if positive */
    int groupBySort;    /* Rows come from source in GROUP BY order */
    int addrEnd;        /* End of processing for this SELECT */
    int sortPTab = 0;   /* Pseudotable used to decode sorting results */
    int sortOut = 0;    /* Output register from the sorter */

    /* Remove any and all aliases between the result set and the
    ** GROUP BY clause.
    */
    if( pGroupBy ){
      int k;                        /* Loop counter */
      struct ExprList_item *pItem;  /* For looping over expression in a list */
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
      int addrTopOfLoop;  /* Top of the input loop */
      int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
      int addrReset;      /* Subroutine for resetting the accumulator */
      int regReset;       /* Return address register for reset subroutine */

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OpenEphemeral instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
      iAbortFlag = ++pParse->nMem;







|




|







4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
      int addrTopOfLoop;  /* Top of the input loop */
      int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
      int addrReset;      /* Subroutine for resetting the accumulator */
      int regReset;       /* Return address register for reset subroutine */

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
      iAbortFlag = ++pParse->nMem;
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161



4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174



4175
4176
4177

4178
4179
4180
4181
4182
4183
4184
              sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
            }
            j++;
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);
        sqlite3ReleaseTempRange(pParse, regBase, nCol);
        sqlite3WhereEnd(pWInfo);



        sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort"));
        sAggInfo.useSortingIdx = 1;
        sqlite3ExprCacheClear(pParse);
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      sqlite3ExprCacheClear(pParse);



      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);

        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)pKeyInfo, P4_KEYINFO);







|



>
>
>
|












>
>
>


|
>







4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
              sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
            }
            j++;
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);
        sqlite3ReleaseTempRange(pParse, regBase, nCol);
        sqlite3WhereEnd(pWInfo);
        sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
        sortOut = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
        sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort"));
        sAggInfo.useSortingIdx = 1;
        sqlite3ExprCacheClear(pParse);
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      sqlite3ExprCacheClear(pParse);
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
      }
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
          if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)pKeyInfo, P4_KEYINFO);
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
      }

      /* Output the final row of result
      */







|







4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
      }

      /* Output the final row of result
      */
Changes to src/sqliteInt.h.
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef SQLITE_TEMP_STORE
# define SQLITE_TEMP_STORE 1
#endif

/*
** If all temporary storage is in-memory, then omit the external merge-sort
** logic since it is superfluous.
*/
#if SQLITE_TEMP_STORE==3 && !defined(SQLITE_OMIT_MERGE_SORT)
# define SQLITE_OMIT_MERGE_SORT
#endif

/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif







<
<
<
<
<
<
<
<







368
369
370
371
372
373
374








375
376
377
378
379
380
381
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
** on the command-line
*/
#ifndef SQLITE_TEMP_STORE
# define SQLITE_TEMP_STORE 1
#endif









/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif
1566
1567
1568
1569
1570
1571
1572

1573
1574
1575
1576
1577
1578
1579
*/
struct AggInfo {
  u8 directMode;          /* Direct rendering mode means take data directly
                          ** from source tables rather than from accumulators */
  u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
                          ** than the source table */
  int sortingIdx;         /* Cursor number of the sorting index */

  ExprList *pGroupBy;     /* The group by clause */
  int nSortingColumn;     /* Number of columns in the sorting index */
  struct AggInfo_col {    /* For each column used in source tables */
    Table *pTab;             /* Source table */
    int iTable;              /* Cursor number of the source table */
    int iColumn;             /* Column number within the source table */
    int iSorterColumn;       /* Column number in the sorting index */







>







1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
*/
struct AggInfo {
  u8 directMode;          /* Direct rendering mode means take data directly
                          ** from source tables rather than from accumulators */
  u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
                          ** than the source table */
  int sortingIdx;         /* Cursor number of the sorting index */
  int sortingIdxPTab;     /* Cursor number of pseudo-table */
  ExprList *pGroupBy;     /* The group by clause */
  int nSortingColumn;     /* Number of columns in the sorting index */
  struct AggInfo_col {    /* For each column used in source tables */
    Table *pTab;             /* Source table */
    int iTable;              /* Cursor number of the source table */
    int iColumn;             /* Column number within the source table */
    int iSorterColumn;       /* Column number in the sorting index */
2098
2099
2100
2101
2102
2103
2104

2105
2106
2107
2108
2109
2110
2111
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */



/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */







>







2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
*/
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_UseSorter       0x0040  /* Sort using a sorter */


/*
** The results of a select can be distributed in several ways.  The
** "SRT" prefix means "SELECT Result Type".
*/
#define SRT_Union        1  /* Store result as keys in an index */
Changes to src/test1.c.
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405

/*
** Fill the stack with a known bitpattern.
*/
static void prepStack(void){
  int i;
  u32 bigBuf[65536];
  for(i=0; i<sizeof(bigBuf); i++) bigBuf[i] = 0xdeadbeef;
  sqlite3_stack_baseline = (u8*)&bigBuf[65536];
}

/*
** Get the current stack depth.  Used for debugging only.
*/
u64 sqlite3StackDepth(void){







|







4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405

/*
** Fill the stack with a known bitpattern.
*/
static void prepStack(void){
  int i;
  u32 bigBuf[65536];
  for(i=0; i<sizeof(bigBuf)/sizeof(bigBuf[0]); i++) bigBuf[i] = 0xdeadbeef;
  sqlite3_stack_baseline = (u8*)&bigBuf[65536];
}

/*
** Get the current stack depth.  Used for debugging only.
*/
u64 sqlite3StackDepth(void){
Changes to src/test_thread.c.
278
279
280
281
282
283
284















285
286
287
288
289
290
291
  extern void Md5_Register(sqlite3*);

  UNUSED_PARAMETER(clientData);
  UNUSED_PARAMETER(objc);

  zFilename = Tcl_GetString(objv[2]);
  rc = sqlite3_open(zFilename, &db);















  Md5_Register(db);
  sqlite3_busy_handler(db, xBusy, 0);
  
  if( sqlite3TestMakePointerStr(interp, zBuf, db) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);

  return TCL_OK;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
  extern void Md5_Register(sqlite3*);

  UNUSED_PARAMETER(clientData);
  UNUSED_PARAMETER(objc);

  zFilename = Tcl_GetString(objv[2]);
  rc = sqlite3_open(zFilename, &db);
#ifdef SQLITE_HAS_CODEC
  if( db && objc>=4 ){
    const char *zKey;
    int nKey;
    zKey = Tcl_GetStringFromObj(objv[3], &nKey);
    rc = sqlite3_key(db, zKey, nKey);
    if( rc!=SQLITE_OK ){
      char *zErrMsg = sqlite3_mprintf("error %d: %s", rc, sqlite3_errmsg(db));
      sqlite3_close(db);
      Tcl_AppendResult(interp, zErrMsg, (char*)0);
      sqlite3_free(zErrMsg);
      return TCL_ERROR;
    }
  }
#endif
  Md5_Register(db);
  sqlite3_busy_handler(db, xBusy, 0);
  
  if( sqlite3TestMakePointerStr(interp, zBuf, db) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);

  return TCL_OK;
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

  rc = Tcl_GetIndexFromObjStruct(
      interp, objv[1], aSub, sizeof(aSub[0]), "sub-command", 0, &iIndex
  );
  if( rc!=TCL_OK ) return rc;
  pSub = &aSub[iIndex];

  if( objc!=(pSub->nArg+2) ){
    Tcl_WrongNumArgs(interp, 2, objv, pSub->zUsage);
    return TCL_ERROR;
  }

  return pSub->xProc(clientData, interp, objc, objv);
}








|







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

  rc = Tcl_GetIndexFromObjStruct(
      interp, objv[1], aSub, sizeof(aSub[0]), "sub-command", 0, &iIndex
  );
  if( rc!=TCL_OK ) return rc;
  pSub = &aSub[iIndex];

  if( objc<(pSub->nArg+2) ){
    Tcl_WrongNumArgs(interp, 2, objv, pSub->zUsage);
    return TCL_ERROR;
  }

  return pSub->xProc(clientData, interp, objc, objv);
}

Changes to src/vdbe.c.
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      sqlite3VdbeMemReleaseExternal(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );







|







669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      MemReleaseExt(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
2114
2115
2116
2117
2118
2119
2120

2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */

  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  MemSetTypeFlag(pDest, MEM_Null);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables







>











<







2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132

2133
2134
2135
2136
2137
2138
2139
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);

  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

2190
2191
2192
2193
2194
2195
2196
2197
2198
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( pC->pseudoTableReg>0 ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL */

  if( payloadSize==0 ){
    assert( pDest->flags&MEM_Null );
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }








|












|
>

|







2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( ALWAYS(pC->pseudoTableReg>0) ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL.  This can happen because of
  ** nullRow or because of a corrupt database. */
  if( payloadSize==0 ){
    MemSetTypeFlag(pDest, MEM_Null);
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

2291
2292
2293
2294
2295
2296
2297




2298


2299
2300
2301
2302
2303
2304
2305
2306
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;




        zIdx += getVarint32(zIdx, aType[i]);


        szField = sqlite3VdbeSerialTypeLen(aType[i]);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this







>
>
>
>
|
>
>
|







2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;
        if( zIdx[0]<0x80 ){
          t = zIdx[0];
          zIdx++;
        }else{
          zIdx += sqlite3GetVarint32(zIdx, &t);
        }
        aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      sqlite3VdbeMemReleaseExternal(pDest);
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      assert( pDest->flags&MEM_Null );
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.







|
















|







2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      MemReleaseExt(pDest);
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      MemSetTypeFlag(pDest, MEM_Null);
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( pCrsr ){
    rc = sqlite3BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;
  }
  pOut->u.i = nEntry;
  break;
}







|







2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( ALWAYS(pCrsr) ){
    rc = sqlite3BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;
  }
  pOut->u.i = nEntry;
  break;
}
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only values that
  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 
  ** SQLITE_EMPTY is only returned when attempting to open the table
  ** rooted at page 1 of a zero-byte database.  */
  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
  if( rc==SQLITE_EMPTY ){
    pCur->pCursor = 0;
    rc = SQLITE_OK;
  }

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;







|
|
<
<
|
<
<
<
<







3115
3116
3117
3118
3119
3120
3121
3122
3123


3124




3125
3126
3127
3128
3129
3130
3131
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */


  assert( rc==SQLITE_OK );





  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
/* Opcode: OpenAutoindex P1 P2 * P4 *
**
** This opcode works the same as OP_OpenEphemeral.  It has a
** different name to distinguish its use.  Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
/* Opcode: OpenSorter P1 P2 * P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_OpenSorter: 
case OP_OpenAutoindex: 
case OP_OpenEphemeral: {
  VdbeCursor *pCx;
  static const int vfsFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );
  assert( (pOp->opcode==OP_OpenSorter)==((pOp->p5 & BTREE_SORTER)!=0) );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);







<
<
<
<
<
<
<











<







3158
3159
3160
3161
3162
3163
3164







3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175

3176
3177
3178
3179
3180
3181
3182
/* Opcode: OpenAutoindex P1 P2 * P4 *
**
** This opcode works the same as OP_OpenEphemeral.  It has a
** different name to distinguish its use.  Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/







case OP_OpenAutoindex: 
case OP_OpenEphemeral: {
  VdbeCursor *pCx;
  static const int vfsFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );

  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3209
3210
3211
3212
3213
3214
3215











3216




3217
3218
3219



3220
3221
3222
3223
3224
3225
3226
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  pCx->isIndex = !pCx->isTable;











#ifndef SQLITE_OMIT_MERGE_SORT




  if( rc==SQLITE_OK && pOp->opcode==OP_OpenSorter ){
    rc = sqlite3VdbeSorterInit(db, pCx);
  }



#endif
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single







>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
|

<
>
>
>







3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226

3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  pCx->isIndex = !pCx->isTable;
  break;
}

/* Opcode: OpenSorter P1 P2 * P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;
#ifndef SQLITE_OMIT_MERGE_SORT
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
    rc = sqlite3VdbeSorterInit(db, pCx);

#else
  pOp->opcode = OP_OpenEphemeral;
  pc--;
#endif
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
**
** Open a new cursor that points to a fake table that contains a single
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( pC->pCursor!=0 ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];







|







3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( ALWAYS(pC->pCursor!=0) ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];
3517
3518
3519
3520
3521
3522
3523

3524
3525
3526
3527
3528
3529
3530
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int alreadyExists;
  VdbeCursor *pC;
  int res;

  UnpackedRecord *pIdxKey;
  UnpackedRecord r;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

#ifdef SQLITE_TEST
  sqlite3_found_count++;
#endif







>







3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  char *pFree;
  UnpackedRecord *pIdxKey;
  UnpackedRecord r;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

#ifdef SQLITE_TEST
  sqlite3_found_count++;
#endif
3544
3545
3546
3547
3548
3549
3550




3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
      r.aMem = pIn3;
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      r.flags = UNPACKED_PREFIX_MATCH;
      pIdxKey = &r;
    }else{




      assert( pIn3->flags & MEM_Blob );
      assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
      pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
                                        aTempRec, sizeof(aTempRec));
      if( pIdxKey==0 ){
        goto no_mem;
      }
      pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
    if( pOp->p4.i==0 ){
      sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
    }
    if( rc!=SQLITE_OK ){
      break;
    }
    alreadyExists = (res==0);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;







>
>
>
>


|
<
<
<
<




|







3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568




3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
      r.aMem = pIn3;
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      r.flags = UNPACKED_PREFIX_MATCH;
      pIdxKey = &r;
    }else{
      pIdxKey = sqlite3VdbeAllocUnpackedRecord(
          pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
      ); 
      if( pIdxKey==0 ) goto no_mem;
      assert( pIn3->flags & MEM_Blob );
      assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
      sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);




      pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
    if( pOp->p4.i==0 ){
      sqlite3DbFree(db, pFree);
    }
    if( rc!=SQLITE_OK ){
      break;
    }
    alreadyExists = (res==0);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  if( pCrsr!=0 ){
    res = 0;
    iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;







|







3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    res = 0;
    iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;
4064
4065
4066
4067
4068
4069
4070







































4071
4072
4073
4074
4075
4076
4077
** This is used by trigger programs.
*/
case OP_ResetCount: {
  sqlite3VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}








































/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
** This is used by trigger programs.
*/
case OP_ResetCount: {
  sqlite3VdbeSetChanges(db, p->nChange);
  p->nChange = 0;
  break;
}

/* Opcode: SorterCompare P1 P2 P3
**
** P1 is a sorter cursor. This instruction compares the record blob in 
** register P3 with the entry that the sorter cursor currently points to.
** If, excluding the rowid fields at the end, the two records are a match,
** fall through to the next instruction. Otherwise, jump to instruction P2.
*/
case OP_SorterCompare: {
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  pIn3 = &aMem[pOp->p3];
  rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: SorterData P1 P2 * * *
**
** Write into register P2 the current sorter data for sorter cursor P1.
*/
case OP_SorterData: {
  VdbeCursor *pC;
#ifndef SQLITE_OMIT_MERGE_SORT
  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( pC->isSorter );
  rc = sqlite3VdbeSorterRowkey(pC, pOut);
#else
  pOp->opcode = OP_RowKey;
  pc--;
#endif
  break;
}

/* Opcode: RowData P1 P2 * * *
**
** Write into register P2 the complete row data for cursor P1.
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
4098
4099
4100
4101
4102
4103
4104

4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];

  assert( pC->isTable || pOp->opcode==OP_RowKey );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );

  if( isSorter(pC) ){
    assert( pOp->opcode==OP_RowKey );
    rc = sqlite3VdbeSorterRowkey(pC, pOut);
    break;
  }

  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always







>
|




<
|
<
<
<
<
<







4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160

4161





4162
4163
4164
4165
4166
4167
4168

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->isSorter==0 );
  assert( pC->isTable || pOp->opcode!=OP_RowData );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );

  assert( !pC->isSorter );





  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  assert( sqlite3BtreeCursorIsValid(pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite3VdbeCursorMoveto() call is always
4214
4215
4216
4217
4218
4219
4220

4221
4222
4223
4224
4225
4226
4227
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;

  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *







>







4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  assert( pC->pCursor || pC->pVtabCursor );
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( pCrsr==0 ){
    res = 1;
  }else{
    rc = sqlite3BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;







|







4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( NEVER(pCrsr==0) ){
    res = 1;
  }else{
    rc = sqlite3BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;
4265
4266
4267
4268
4269
4270
4271




4272
4273
4274
4275
4276
4277
4278
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/




case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */







>
>
>
>







4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_SorterSort:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Sort;
#endif
case OP_Sort: {        /* jump */
#ifdef SQLITE_TEST
  sqlite3_sort_count++;
  sqlite3_search_count--;
#endif
  p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
  /* Fall through into OP_Rewind */
4289
4290
4291
4292
4293
4294
4295

4296
4297
4298

4299

4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321



4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335



4336
4337
4338
4339




4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352

4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363

4364
4365

4366
4367
4368
4369
4370
4371
4372
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  res = 1;
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(db, pC, &res);

  }else if( (pCrsr = pC->pCursor)!=0 ){

    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * * P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.



**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.



**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/




case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }

  if( isSorter(pC) ){
    assert( pOp->opcode==OP_Next );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{
    pCrsr = pC->pCursor;
    if( pCrsr==0 ){
      pC->nullRow = 1;
      break;
    }
    res = 1;
    assert( pC->deferredMoveto==0 );

    rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
                                sqlite3BtreePrevious(pCrsr, &res);

  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST







>



>
|
>














|







>
>
>














>
>
>




>
>
>
>



<









>

|


<
<
<
<
<


>
|
|
>







4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405

4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419





4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
  res = 1;
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(db, pC, &res);
  }else{
    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Next;
#endif
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;

  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{





    res = 1;
    assert( pC->deferredMoveto==0 );
    assert( pC->pCursor );
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
    rc = pOp->p4.xAdvance(pC->pCursor, &res);
  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
4385
4386
4387
4388
4389
4390
4391




4392
4393
4394
4395
4396
4397
4398
4399
4400

4401
4402
4403
4404
4405
4406
4407



4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419

4420
4421
4422
4423
4424
4425
4426
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/




case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){



      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3VdbeSorterWrite(db, pC, nKey);
      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
            ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
        );
        assert( pC->deferredMoveto==0 );
      }
      pC->cacheStatus = CACHE_STALE;
    }
  }

  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 







>
>
>
>









>







>
>
>


<
<




<



>







4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477


4478
4479
4480
4481

4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert:       /* in2 */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_IdxInsert;
#endif
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      if( isSorter(pC) ){
        rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
      }else{
      nKey = pIn2->n;
      zKey = pIn2->z;


        rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3, 
            ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
        );
        assert( pC->deferredMoveto==0 );

      pC->cacheStatus = CACHE_STALE;
    }
  }
  }
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
Changes to src/vdbe.h.
57
58
59
60
61
62
63

64
65
66
67
68
69
70
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */

  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */







>







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */
112
113
114
115
116
117
118

119
120
121
122
123
124
125
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */


/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.







>







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */
#define P4_ADVANCE  (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */

/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.
206
207
208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,char*,int);
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);


#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif


#ifndef NDEBUG







|
<

>







208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*);
sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);

int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif


#ifndef NDEBUG
Changes to src/vdbeInt.h.
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */

  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_OpenSorter cursors */

  /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches







>





|







55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool deferredMoveto;  /* A call to sqlite3BtreeMoveto() is needed */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */
  Bool isSorter;        /* True if a new-style sorter */
  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite3_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Result of last sqlite3BtreeMoveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
380
381
382
383
384
385
386



387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406

407
408

409
410
411
412
413
414
415
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);



int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
void sqlite3VdbeMemStoreType(Mem *pMem);

#ifdef SQLITE_OMIT_MERGE_SORT
# define sqlite3VdbeSorterInit(Y,Z)      SQLITE_OK
# define sqlite3VdbeSorterWrite(X,Y,Z)   SQLITE_OK
# define sqlite3VdbeSorterClose(Y,Z)
# define sqlite3VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite3VdbeSorterNext(X,Y,Z)    SQLITE_OK

#else
int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterWrite(sqlite3 *, VdbeCursor *, int);
void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(VdbeCursor *, Mem *);

int sqlite3VdbeSorterRewind(sqlite3 *, VdbeCursor *, int *);
int sqlite3VdbeSorterNext(sqlite3 *, VdbeCursor *, int *);

#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
  void sqlite3VdbeEnter(Vdbe*);
  void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)







>
>
>















>


<


>

|
>







381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);
#define MemReleaseExt(X)  \
  if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \
    sqlite3VdbeMemReleaseExternal(X);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
void sqlite3VdbeMemStoreType(Mem *pMem);

#ifdef SQLITE_OMIT_MERGE_SORT
# define sqlite3VdbeSorterInit(Y,Z)      SQLITE_OK
# define sqlite3VdbeSorterWrite(X,Y,Z)   SQLITE_OK
# define sqlite3VdbeSorterClose(Y,Z)
# define sqlite3VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite3VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);

void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
int sqlite3VdbeSorterRowkey(VdbeCursor *, Mem *);
int sqlite3VdbeSorterNext(sqlite3 *, VdbeCursor *, int *);
int sqlite3VdbeSorterRewind(sqlite3 *, VdbeCursor *, int *);
int sqlite3VdbeSorterWrite(sqlite3 *, VdbeCursor *, Mem *);
int sqlite3VdbeSorterCompare(VdbeCursor *, Mem *, int *);
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
  void sqlite3VdbeEnter(Vdbe*);
  void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)
Changes to src/vdbeaux.c.
429
430
431
432
433
434
435






436
437
438
439
440
441
442
    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif






    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }







>
>
>
>
>
>







429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }else if( opcode==OP_Next || opcode==OP_SorterNext ){
      pOp->p4.xAdvance = sqlite3BtreeNext;
      pOp->p4type = P4_ADVANCE;
    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite3BtreePrevious;
      pOp->p4type = P4_ADVANCE;
    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
934
935
936
937
938
939
940




941
942
943
944
945
946
947
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;




    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }







>
>
>
>







940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;
    }
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827

2828
2829

2830
2831
2832

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842

2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864

2865
2866
2867
2868
2869
2870


2871
2872


2873



















2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
      }
      return len;
    }
  }
  return 0;
}


/*
** Given the nKey-byte encoding of a record in pKey[], parse the
** record into a UnpackedRecord structure.  Return a pointer to
** that structure.

**
** The calling function might provide szSpace bytes of memory

** space at pSpace.  This space can be used to hold the returned
** VDbeParsedRecord structure if it is large enough.  If it is
** not big enough, space is obtained from sqlite3_malloc().

**
** The returned structure should be closed by a call to
** sqlite3VdbeDeleteUnpackedRecord().
*/ 
UnpackedRecord *sqlite3VdbeRecordUnpack(
  KeyInfo *pKeyInfo,     /* Information about the record format */
  int nKey,              /* Size of the binary record */
  const void *pKey,      /* The binary record */
  char *pSpace,          /* Unaligned space available to hold the object */
  int szSpace            /* Size of pSpace[] in bytes */

){
  const unsigned char *aKey = (const unsigned char *)pKey;
  UnpackedRecord *p;  /* The unpacked record that we will return */
  int nByte;          /* Memory space needed to hold p, in bytes */
  int d;
  u32 idx;
  u16 u;              /* Unsigned loop counter */
  u32 szHdr;
  Mem *pMem;
  int nOff;           /* Increase pSpace by this much to 8-byte align it */
  
  /*
  ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
  ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 
  ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
  */
  nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
  pSpace += nOff;
  szSpace -= nOff;
  nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
  if( nByte>szSpace ){
    p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);

    if( p==0 ) return 0;
    p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
  }else{
    p = (UnpackedRecord*)pSpace;
    p->flags = UNPACKED_NEED_DESTROY;
  }


  p->pKeyInfo = pKeyInfo;
  p->nField = pKeyInfo->nField + 1;


  p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];



















  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object.
*/
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
#ifdef SQLITE_DEBUG
  int i;
  Mem *pMem;

  assert( p!=0 );
  assert( p->flags & UNPACKED_NEED_DESTROY );
  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
    /* The unpacked record is always constructed by the
    ** sqlite3VdbeUnpackRecord() function above, which makes all
    ** strings and blobs static.  And none of the elements are
    ** ever transformed, so there is never anything to delete.
    */
    if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
  }
#endif
  if( p->flags & UNPACKED_NEED_FREE ){
    sqlite3DbFree(p->pKeyInfo->db, p);
  }
}

/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob







<

<
|
|
>

|
>
|
|
|
>

|
<

|
|
<
<
|
|
>

<
|
|
<
<
|
<
<
<

<
|




<
<

|
|
>
|
<

|
|

>
>


>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2826
2827
2828
2829
2830
2831
2832

2833

2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845

2846
2847
2848


2849
2850
2851
2852

2853
2854


2855



2856

2857
2858
2859
2860
2861


2862
2863
2864
2865
2866

2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914

























2915
2916
2917
2918
2919
2920
2921
      }
      return len;
    }
  }
  return 0;
}


/*

** This routine is used to allocate sufficient space for an UnpackedRecord
** structure large enough to be used with sqlite3VdbeRecordUnpack() if
** the first argument is a pointer to KeyInfo structure pKeyInfo.
**
** The space is either allocated using sqlite3DbMallocRaw() or from within
** the unaligned buffer passed via the second and third arguments (presumably
** stack space). If the former, then *ppFree is set to a pointer that should
** be eventually freed by the caller using sqlite3DbFree(). Or, if the 
** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
** before returning.
**
** If an OOM error occurs, NULL is returned.

*/ 
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
  KeyInfo *pKeyInfo,              /* Description of the record */


  char *pSpace,                   /* Unaligned space available */
  int szSpace,                    /* Size of pSpace[] in bytes */
  char **ppFree                   /* OUT: Caller should free this pointer */
){

  UnpackedRecord *p;              /* Unpacked record to return */
  int nOff;                       /* Increment pSpace by nOff to align it */


  int nByte;                      /* Number of bytes required for *p */



  

  /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
  ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift 
  ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
  */
  nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;


  nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
  if( nByte>szSpace+nOff ){
    p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
    *ppFree = (char *)p;
    if( !p ) return 0;

  }else{
    p = (UnpackedRecord*)&pSpace[nOff];
    *ppFree = 0;
  }

  p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
  p->pKeyInfo = pKeyInfo;
  p->nField = pKeyInfo->nField + 1;
  return p;
}

/*
** Given the nKey-byte encoding of a record in pKey[], populate the 
** UnpackedRecord structure indicated by the fourth argument with the
** contents of the decoded record.
*/ 
void sqlite3VdbeRecordUnpack(
  KeyInfo *pKeyInfo,     /* Information about the record format */
  int nKey,              /* Size of the binary record */
  const void *pKey,      /* The binary record */
  UnpackedRecord *p      /* Populate this structure before returning. */
){
  const unsigned char *aKey = (const unsigned char *)pKey;
  int d; 
  u32 idx;                        /* Offset in aKey[] to read from */
  u16 u;                          /* Unsigned loop counter */
  u32 szHdr;
  Mem *pMem = p->aMem;

  p->flags = 0;
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;

























}

/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob
Changes to src/vdbemem.c.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  testcase( p->flags & MEM_Agg );
  testcase( p->flags & MEM_Dyn );
  testcase( p->flags & MEM_RowSet );
  testcase( p->flags & MEM_Frame );
  if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
    if( p->flags&MEM_Agg ){
      sqlite3VdbeMemFinalize(p, p->u.pDef);
      assert( (p->flags & MEM_Agg)==0 );
      sqlite3VdbeMemRelease(p);
    }else if( p->flags&MEM_Dyn && p->xDel ){
      assert( (p->flags&MEM_RowSet)==0 );
      p->xDel((void *)p->z);
      p->xDel = 0;
    }else if( p->flags&MEM_RowSet ){
      sqlite3RowSetClear(p->u.pRowSet);
    }else if( p->flags&MEM_Frame ){
      sqlite3VdbeMemSetNull(p);
    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  sqlite3VdbeMemReleaseExternal(p);
  sqlite3DbFree(p->db, p->zMalloc);
  p->z = 0;
  p->zMalloc = 0;
  p->xDel = 0;
}

/*







<
<
<
<
<














<







|







267
268
269
270
271
272
273





274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );





    if( p->flags&MEM_Agg ){
      sqlite3VdbeMemFinalize(p, p->u.pDef);
      assert( (p->flags & MEM_Agg)==0 );
      sqlite3VdbeMemRelease(p);
    }else if( p->flags&MEM_Dyn && p->xDel ){
      assert( (p->flags&MEM_RowSet)==0 );
      p->xDel((void *)p->z);
      p->xDel = 0;
    }else if( p->flags&MEM_RowSet ){
      sqlite3RowSetClear(p->u.pRowSet);
    }else if( p->flags&MEM_Frame ){
      sqlite3VdbeMemSetNull(p);
    }
  }


/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  MemReleaseExt(p);
  sqlite3DbFree(p->db, p->zMalloc);
  p->z = 0;
  p->zMalloc = 0;
  p->xDel = 0;
}

/*
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemReleaseExternal(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( (pFrom->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemReleaseExternal(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);







|

















|







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  MemReleaseExt(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( (pFrom->flags & MEM_RowSet)==0 );
  MemReleaseExt(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);
Changes to src/vdbesort.c.
17
18
19
20
21
22
23

24
25
26
27
28
29
30

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_MERGE_SORT

typedef struct VdbeSorterIter VdbeSorterIter;


/*
** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
**
** As keys are added to the sorter, they are written to disk in a series
** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
** the same as the cache-size allowed for temporary databases. In order







>







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_MERGE_SORT

typedef struct VdbeSorterIter VdbeSorterIter;
typedef struct SorterRecord SorterRecord;

/*
** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
**
** As keys are added to the sorter, they are written to disk in a series
** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
** the same as the cache-size allowed for temporary databases. In order
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103




104
105
106
107
108
109
110
111
112
113
114
115
116
117
118











119
120
121
122
123
124
125
**     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
**
** In other words, each time we advance to the next sorter element, log2(N)
** key comparison operations are required, where N is the number of segments
** being merged (rounded up to the next power of 2).
*/
struct VdbeSorter {
  int nWorking;                   /* Start a new b-tree after this many pages */
  int nBtree;                     /* Current size of b-tree contents as PMA */
  int nTree;                      /* Used size of aTree/aIter (power of 2) */
  VdbeSorterIter *aIter;          /* Array of iterators to merge */
  int *aTree;                     /* Current state of incremental merge */
  i64 iWriteOff;                  /* Current write offset within file pTemp1 */
  i64 iReadOff;                   /* Current read offset within file pTemp1 */
  sqlite3_file *pTemp1;           /* PMA file 1 */
  int nPMA;                       /* Number of PMAs stored in pTemp1 */




};

/*
** The following type is an iterator for a PMA. It caches the current key in 
** variables nKey/aKey. If the iterator is at EOF, pFile==0.
*/
struct VdbeSorterIter {
  i64 iReadOff;                   /* Current read offset */
  i64 iEof;                       /* 1 byte past EOF for this iterator */
  sqlite3_file *pFile;            /* File iterator is reading from */
  int nAlloc;                     /* Bytes of space at aAlloc */
  u8 *aAlloc;                     /* Allocated space */
  int nKey;                       /* Number of bytes in key */
  u8 *aKey;                       /* Pointer to current key */
};












/* Minimum allowable value for the VdbeSorter.nWorking variable */
#define SORTER_MIN_WORKING 10

/* Maximum number of segments to merge in a single pass. */
#define SORTER_MAX_MERGE_COUNT 16








|
<







>
>
>
>















>
>
>
>
>
>
>
>
>
>
>







89
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
**     aTree[] = { X, 0   0, 6    0, 3, 5, 6 }
**
** In other words, each time we advance to the next sorter element, log2(N)
** key comparison operations are required, where N is the number of segments
** being merged (rounded up to the next power of 2).
*/
struct VdbeSorter {
  int nInMemory;                  /* Current size of pRecord list as PMA */

  int nTree;                      /* Used size of aTree/aIter (power of 2) */
  VdbeSorterIter *aIter;          /* Array of iterators to merge */
  int *aTree;                     /* Current state of incremental merge */
  i64 iWriteOff;                  /* Current write offset within file pTemp1 */
  i64 iReadOff;                   /* Current read offset within file pTemp1 */
  sqlite3_file *pTemp1;           /* PMA file 1 */
  int nPMA;                       /* Number of PMAs stored in pTemp1 */
  SorterRecord *pRecord;          /* Head of in-memory record list */
  int mnPmaSize;                  /* Minimum PMA size, in bytes */
  int mxPmaSize;                  /* Maximum PMA size, in bytes.  0==no limit */
  UnpackedRecord *pUnpacked;      /* Used to unpack keys */
};

/*
** The following type is an iterator for a PMA. It caches the current key in 
** variables nKey/aKey. If the iterator is at EOF, pFile==0.
*/
struct VdbeSorterIter {
  i64 iReadOff;                   /* Current read offset */
  i64 iEof;                       /* 1 byte past EOF for this iterator */
  sqlite3_file *pFile;            /* File iterator is reading from */
  int nAlloc;                     /* Bytes of space at aAlloc */
  u8 *aAlloc;                     /* Allocated space */
  int nKey;                       /* Number of bytes in key */
  u8 *aKey;                       /* Pointer to current key */
};

/*
** A structure to store a single record. All in-memory records are connected
** together into a linked list headed at VdbeSorter.pRecord using the 
** SorterRecord.pNext pointer.
*/
struct SorterRecord {
  void *pVal;
  int nVal;
  SorterRecord *pNext;
};

/* Minimum allowable value for the VdbeSorter.nWorking variable */
#define SORTER_MIN_WORKING 10

/* Maximum number of segments to merge in a single pass. */
#define SORTER_MAX_MERGE_COUNT 16

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180
181
182
*/
static int vdbeSorterIterNext(
  sqlite3 *db,                    /* Database handle (for sqlite3DbMalloc() ) */
  VdbeSorterIter *pIter           /* Iterator to advance */
){
  int rc;                         /* Return Code */
  int nRead;                      /* Number of bytes read */
  int nRec;                       /* Size of record in bytes */
  int iOff;                       /* Size of serialized size varint in bytes */

  nRead = pIter->iEof - pIter->iReadOff;
  if( nRead>5 ) nRead = 5;
  if( nRead<=0 ){
    /* This is an EOF condition */
    vdbeSorterIterZero(db, pIter);
    return SQLITE_OK;
  }

  rc = sqlite3OsRead(pIter->pFile, pIter->aAlloc, nRead, pIter->iReadOff);

  iOff = getVarint32(pIter->aAlloc, nRec);

  if( rc==SQLITE_OK && (iOff+nRec)>nRead ){
    int nRead2;                   /* Number of extra bytes to read */
    if( (iOff+nRec)>pIter->nAlloc ){
      int nNew = pIter->nAlloc*2;
      while( (iOff+nRec)>nNew ) nNew = nNew*2;
      pIter->aAlloc = sqlite3DbReallocOrFree(db, pIter->aAlloc, nNew);
      if( !pIter->aAlloc ) return SQLITE_NOMEM;
      pIter->nAlloc = nNew;
    }

    nRead2 = iOff + nRec - nRead;
    rc = sqlite3OsRead(
        pIter->pFile, &pIter->aAlloc[nRead], nRead2, pIter->iReadOff+nRead
    );
  }


  assert( nRec>0 || rc!=SQLITE_OK );
  pIter->iReadOff += iOff+nRec;
  pIter->nKey = nRec;
  pIter->aKey = &pIter->aAlloc[iOff];
  return rc;
}

/*







|
|










>

<
|














|
>
|







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
*/
static int vdbeSorterIterNext(
  sqlite3 *db,                    /* Database handle (for sqlite3DbMalloc() ) */
  VdbeSorterIter *pIter           /* Iterator to advance */
){
  int rc;                         /* Return Code */
  int nRead;                      /* Number of bytes read */
  int nRec = 0;                   /* Size of record in bytes */
  int iOff = 0;                   /* Size of serialized size varint in bytes */

  nRead = pIter->iEof - pIter->iReadOff;
  if( nRead>5 ) nRead = 5;
  if( nRead<=0 ){
    /* This is an EOF condition */
    vdbeSorterIterZero(db, pIter);
    return SQLITE_OK;
  }

  rc = sqlite3OsRead(pIter->pFile, pIter->aAlloc, nRead, pIter->iReadOff);
  if( rc==SQLITE_OK ){
  iOff = getVarint32(pIter->aAlloc, nRec);

    if( (iOff+nRec)>nRead ){
    int nRead2;                   /* Number of extra bytes to read */
    if( (iOff+nRec)>pIter->nAlloc ){
      int nNew = pIter->nAlloc*2;
      while( (iOff+nRec)>nNew ) nNew = nNew*2;
      pIter->aAlloc = sqlite3DbReallocOrFree(db, pIter->aAlloc, nNew);
      if( !pIter->aAlloc ) return SQLITE_NOMEM;
      pIter->nAlloc = nNew;
    }

    nRead2 = iOff + nRec - nRead;
    rc = sqlite3OsRead(
        pIter->pFile, &pIter->aAlloc[nRead], nRead2, pIter->iReadOff+nRead
    );
  }
  }

  assert( rc!=SQLITE_OK || nRec>0 );
  pIter->iReadOff += iOff+nRec;
  pIter->nKey = nRec;
  pIter->aKey = &pIter->aAlloc[iOff];
  return rc;
}

/*
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
** (i.e. if no IO error occurs), then *piOffset is set to the offset of
** the first byte past the end of the varint before returning. *piVal is
** set to the integer value read. If an error occurs, the final values of
** both *piOffset and *piVal are undefined.
*/
static int vdbeSorterReadVarint(
  sqlite3_file *pFile,            /* File to read from */
  i64 iEof,                       /* Total number of bytes in file */
  i64 *piOffset,                  /* IN/OUT: Read offset in pFile */
  i64 *piVal                      /* OUT: Value read from file */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  i64 iOff = *piOffset;           /* Offset in file to read from */
  int nRead = 9;                  /* Number of bytes to read from file */
  int rc;                         /* Return code */

  assert( iEof>iOff );
  if( (iEof-iOff)<nRead ){
    nRead = iEof-iOff;
  }

  rc = sqlite3OsRead(pFile, aVarint, nRead, iOff);
  if( rc==SQLITE_OK ){
    *piOffset += getVarint(aVarint, (u64 *)piVal);
  }

  return rc;
}








<





<


<
<
<
<
<
|







228
229
230
231
232
233
234

235
236
237
238
239

240
241





242
243
244
245
246
247
248
249
** (i.e. if no IO error occurs), then *piOffset is set to the offset of
** the first byte past the end of the varint before returning. *piVal is
** set to the integer value read. If an error occurs, the final values of
** both *piOffset and *piVal are undefined.
*/
static int vdbeSorterReadVarint(
  sqlite3_file *pFile,            /* File to read from */

  i64 *piOffset,                  /* IN/OUT: Read offset in pFile */
  i64 *piVal                      /* OUT: Value read from file */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  i64 iOff = *piOffset;           /* Offset in file to read from */

  int rc;                         /* Return code */






  rc = sqlite3OsRead(pFile, aVarint, 9, iOff);
  if( rc==SQLITE_OK ){
    *piOffset += getVarint(aVarint, (u64 *)piVal);
  }

  return rc;
}

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
















































277
278
279
280
281
282
283
  pIter->pFile = pSorter->pTemp1;
  pIter->iReadOff = iStart;
  pIter->nAlloc = 128;
  pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);
  if( !pIter->aAlloc ){
    rc = SQLITE_NOMEM;
  }else{
    i64 iEof = pSorter->iWriteOff;     /* EOF of file pSorter->pTemp1 */
    i64 nByte;                         /* Total size of PMA in bytes */
    rc = vdbeSorterReadVarint(pSorter->pTemp1, iEof, &pIter->iReadOff, &nByte);
    *pnByte += nByte;
    pIter->iEof = pIter->iReadOff + nByte;
  }
  if( rc==SQLITE_OK ){
    rc = vdbeSorterIterNext(db, pIter);
  }
  return rc;
}

















































/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/
static int vdbeSorterDoCompare(VdbeCursor *pCsr, int iOut){
  VdbeSorter *pSorter = pCsr->pSorter;







<

|









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







267
268
269
270
271
272
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
  pIter->pFile = pSorter->pTemp1;
  pIter->iReadOff = iStart;
  pIter->nAlloc = 128;
  pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);
  if( !pIter->aAlloc ){
    rc = SQLITE_NOMEM;
  }else{

    i64 nByte;                         /* Total size of PMA in bytes */
    rc = vdbeSorterReadVarint(pSorter->pTemp1, &pIter->iReadOff, &nByte);
    *pnByte += nByte;
    pIter->iEof = pIter->iReadOff + nByte;
  }
  if( rc==SQLITE_OK ){
    rc = vdbeSorterIterNext(db, pIter);
  }
  return rc;
}


/*
** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2, 
** size nKey2 bytes).  Argument pKeyInfo supplies the collation functions
** used by the comparison. If an error occurs, return an SQLite error code.
** Otherwise, return SQLITE_OK and set *pRes to a negative, zero or positive
** value, depending on whether key1 is smaller, equal to or larger than key2.
**
** If the bOmitRowid argument is non-zero, assume both keys end in a rowid
** field. For the purposes of the comparison, ignore it. Also, if bOmitRowid
** is true and key1 contains even a single NULL value, it is considered to
** be less than key2. Even if key2 also contains NULL values.
**
** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
** has been allocated and contains an unpacked record that is used as key2.
*/
static int vdbeSorterCompare(
  VdbeCursor *pCsr,               /* Cursor object (for pKeyInfo) */
  int bOmitRowid,                 /* Ignore rowid field at end of keys */
  void *pKey1, int nKey1,         /* Left side of comparison */
  void *pKey2, int nKey2,         /* Right side of comparison */
  int *pRes                       /* OUT: Result of comparison */
){
  KeyInfo *pKeyInfo = pCsr->pKeyInfo;
  VdbeSorter *pSorter = pCsr->pSorter;
  UnpackedRecord *r2 = pSorter->pUnpacked;
  int i;

  if( pKey2 ){
    sqlite3VdbeRecordUnpack(pKeyInfo, nKey2, pKey2, r2);
  }

  if( bOmitRowid ){
    r2->nField = pKeyInfo->nField;
    assert( r2->nField>0 );
    for(i=0; i<r2->nField; i++){
      if( r2->aMem[i].flags & MEM_Null ){
        *pRes = -1;
        return SQLITE_OK;
      }
    }
    r2->flags |= UNPACKED_PREFIX_MATCH;
  }

  *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
  return SQLITE_OK;
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/
static int vdbeSorterDoCompare(VdbeCursor *pCsr, int iOut){
  VdbeSorter *pSorter = pCsr->pSorter;
301
302
303
304
305
306
307
308
309
310
311
312
313


314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331





332
333

334



























335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352


353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371















372






























373
















































374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396



397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452



453
454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474



475
476
477
478
479
480
481
482
483
484
485


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506



507
508


509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
  p2 = &pSorter->aIter[i2];

  if( p1->pFile==0 ){
    iRes = i2;
  }else if( p2->pFile==0 ){
    iRes = i1;
  }else{
    char aSpace[150];
    UnpackedRecord *r1;

    r1 = sqlite3VdbeRecordUnpack(
        pCsr->pKeyInfo, p1->nKey, p1->aKey, aSpace, sizeof(aSpace)
    );


    if( r1==0 ) return SQLITE_NOMEM;

    if( sqlite3VdbeRecordCompare(p2->nKey, p2->aKey, r1)>=0 ){
      iRes = i1;
    }else{
      iRes = i2;
    }
    sqlite3VdbeDeleteUnpackedRecord(r1);
  }

  pSorter->aTree[iOut] = iRes;
  return SQLITE_OK;
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
*/
int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){





  assert( pCsr->pKeyInfo && pCsr->pBt );
  pCsr->pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter));

  return (pCsr->pSorter ? SQLITE_OK : SQLITE_NOMEM);



























}

/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){
    if( pSorter->aIter ){
      int i;
      for(i=0; i<pSorter->nTree; i++){
        vdbeSorterIterZero(db, &pSorter->aIter[i]);
      }
      sqlite3DbFree(db, pSorter->aIter);
    }
    if( pSorter->pTemp1 ){
      sqlite3OsCloseFree(pSorter->pTemp1);
    }


    sqlite3DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

/*
** Allocate space for a file-handle and open a temporary file. If successful,
** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK.
** Otherwise, set *ppFile to 0 and return an SQLite error code.
*/
static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){
  int dummy;
  return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile,
      SQLITE_OPEN_TEMP_JOURNAL |
      SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &dummy
  );
}















































/*
















































** Write the current contents of the b-tree to a PMA. Return SQLITE_OK
** if successful, or an SQLite error code otherwise.
**
** The format of a PMA is:
**
**     * A varint. This varint contains the total number of bytes of content
**       in the PMA (not including the varint itself).
**
**     * One or more records packed end-to-end in order of ascending keys. 
**       Each record consists of a varint followed by a blob of data (the 
**       key). The varint is the number of bytes in the blob of data.
*/
static int vdbeSorterBtreeToPMA(sqlite3 *db, VdbeCursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  VdbeSorter *pSorter = pCsr->pSorter;
  int res = 0;

  /* sqlite3BtreeFirst() cannot fail because sorter btrees are always held
  ** in memory and so an I/O error is not possible. */
  rc = sqlite3BtreeFirst(pCsr->pCursor, &res);
  if( NEVER(rc!=SQLITE_OK) || res ) return rc;
  assert( pSorter->nBtree>0 );





  /* If the first temporary PMA file has not been opened, open it now. */
  if( pSorter->pTemp1==0 ){
    rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
    assert( rc!=SQLITE_OK || pSorter->pTemp1 );
    assert( pSorter->iWriteOff==0 );
    assert( pSorter->nPMA==0 );
  }

  if( rc==SQLITE_OK ){
    i64 iWriteOff = pSorter->iWriteOff;
    void *aMalloc = 0;            /* Array used to hold a single record */
    int nMalloc = 0;              /* Allocated size of aMalloc[] in bytes */


    pSorter->nPMA++;
    for(
      rc = vdbeSorterWriteVarint(pSorter->pTemp1, pSorter->nBtree, &iWriteOff);
      rc==SQLITE_OK && res==0;
      rc = sqlite3BtreeNext(pCsr->pCursor, &res)
    ){
      i64 nKey;                   /* Size of this key in bytes */

      /* Write the size of the record in bytes to the output file */
      (void)sqlite3BtreeKeySize(pCsr->pCursor, &nKey);
      rc = vdbeSorterWriteVarint(pSorter->pTemp1, nKey, &iWriteOff);

      /* Make sure the aMalloc[] buffer is large enough for the record */
      if( rc==SQLITE_OK && nKey>nMalloc ){
        aMalloc = sqlite3DbReallocOrFree(db, aMalloc, nKey);
        if( !aMalloc ){ 
          rc = SQLITE_NOMEM; 
        }else{
          nMalloc = nKey;
        }
      }

      /* Write the record itself to the output file */
      if( rc==SQLITE_OK ){
        /* sqlite3BtreeKey() cannot fail because sorter btrees held in memory */
        rc = sqlite3BtreeKey(pCsr->pCursor, 0, nKey, aMalloc);
        if( ALWAYS(rc==SQLITE_OK) ){
          rc = sqlite3OsWrite(pSorter->pTemp1, aMalloc, nKey, iWriteOff);
          iWriteOff += nKey;
        }
      }

      if( rc!=SQLITE_OK ) break;
    }

    /* This assert verifies that unless an error has occurred, the size of 
    ** the PMA on disk is the same as the expected size stored in
    ** pSorter->nBtree. */ 
    assert( rc!=SQLITE_OK || pSorter->nBtree==(
          iWriteOff-pSorter->iWriteOff-sqlite3VarintLen(pSorter->nBtree)
    ));

    pSorter->iWriteOff = iWriteOff;



    sqlite3DbFree(db, aMalloc);
  }


  pSorter->nBtree = 0;
  return rc;
}

/*
** This function is called on a sorter cursor by the VDBE before each row 
** is inserted into VdbeCursor.pCsr. Argument nKey is the size of the key, in
** bytes, about to be inserted.
**
** If it is determined that the temporary b-tree accessed via VdbeCursor.pCsr
** is large enough, its contents are written to a sorted PMA on disk and the
** tree emptied. This prevents the b-tree (which must be small enough to
** fit entirely in the cache in order to support efficient inserts) from
** growing too large.
**
** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
*/
int sqlite3VdbeSorterWrite(sqlite3 *db, VdbeCursor *pCsr, int nKey){
  int rc = SQLITE_OK;             /* Return code */



  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){
    Pager *pPager = sqlite3BtreePager(pCsr->pBt);
    int nPage;                    /* Current size of temporary file in pages */

    /* Sorters never spill to disk */
    assert( sqlite3PagerFile(pPager)->pMethods==0 );

    /* Determine how many pages the temporary b-tree has grown to */
    sqlite3PagerPagecount(pPager, &nPage);



    /* If pSorter->nWorking is still zero, but the temporary file has been
    ** created in the file-system, then the most recent insert into the
    ** current b-tree segment probably caused the cache to overflow (it is
    ** also possible that sqlite3_release_memory() was called). So set the
    ** size of the working set to a little less than the current size of the 
    ** file in pages.  */
    if( pSorter->nWorking==0 && sqlite3PagerUnderStress(pPager) ){
      pSorter->nWorking = nPage-5;
      if( pSorter->nWorking<SORTER_MIN_WORKING ){
        pSorter->nWorking = SORTER_MIN_WORKING;
      }
    }

    /* If the number of pages used by the current b-tree segment is greater
    ** than the size of the working set (VdbeSorter.nWorking), start a new
    ** segment b-tree.  */
    if( pSorter->nWorking && nPage>=pSorter->nWorking ){
      BtCursor *p = pCsr->pCursor;/* Cursor structure to close and reopen */
      int iRoot;                  /* Root page of new tree */

      /* Copy the current contents of the b-tree into a PMA in sorted order.



      ** Close the currently open b-tree cursor. */
      rc = vdbeSorterBtreeToPMA(db, pCsr);


      sqlite3BtreeCloseCursor(p);

      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeDropTable(pCsr->pBt, 2, 0);
#ifdef SQLITE_DEBUG
        sqlite3PagerPagecount(pPager, &nPage);
        assert( rc!=SQLITE_OK || nPage==1 );
#endif
      }
      if( rc==SQLITE_OK ){
        rc = sqlite3BtreeCreateTable(pCsr->pBt, &iRoot, BTREE_BLOBKEY);
      }
      if( rc==SQLITE_OK ){
        assert( iRoot==2 );
        rc = sqlite3BtreeCursor(pCsr->pBt, iRoot, 1, pCsr->pKeyInfo, p);
      }
    }

    pSorter->nBtree += sqlite3VarintLen(nKey) + nKey;
  }
  return rc;
}

/*
** Helper function for sqlite3VdbeSorterRewind(). 
*/
static int vdbeSorterInitMerge(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Cursor handle for this sorter */
  i64 *pnByte                     /* Sum of bytes in all opened PMAs */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterator through aIter[] */
  i64 nByte = 0;                  /* Total bytes in all opened PMAs */

  /* Initialize the iterators. */
  for(i=0; rc==SQLITE_OK && i<SORTER_MAX_MERGE_COUNT; i++){
    VdbeSorterIter *pIter = &pSorter->aIter[i];
    rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte);
    pSorter->iReadOff = pIter->iEof;
    assert( pSorter->iReadOff<=pSorter->iWriteOff || rc!=SQLITE_OK );
    if( pSorter->iReadOff>=pSorter->iWriteOff ) break;
  }

  /* Initialize the aTree[] array. */
  for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){
    rc = vdbeSorterDoCompare(pCsr, i);
  }








|
|
|
|
|

>
>
|

|




<










>
>
>
>
>
|
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















>
>



















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|










|


<

<
|
<
<
|
>
|
>
>
>

|







|
|
|
>


<
|
|
<
<
<
|
<
<
|

<
<
<
<
<
<
<
<
<
<
<

<
<
<
|
|

|
|
<




|
|
|


|
>
>
>
|

>
|
|




|
<
<
<
<
<
<
<
<
<
<

|
|
>
>
>

|
<
|

|
|

<
|
|
>
>
|
|
<
<
<
|
<
|
<
|

<
<
<
<
<
<
<
<

|
>
>
>
|
<
>
>
|
|
|
<
|
|
|
<
<
<
|
<
<
|
<

|
<
<
<

















|



|
|







357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574

575


576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

597
598



599


600
601











602



603
604
605
606
607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630










631
632
633
634
635
636
637
638

639
640
641
642
643

644
645
646
647
648
649



650

651

652
653








654
655
656
657
658
659

660
661
662
663
664

665
666
667



668


669

670
671



672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
  p2 = &pSorter->aIter[i2];

  if( p1->pFile==0 ){
    iRes = i2;
  }else if( p2->pFile==0 ){
    iRes = i1;
  }else{
    int res;
    int rc;
    assert( pCsr->pSorter->pUnpacked!=0 );  /* allocated in vdbeSorterMerge() */
    rc = vdbeSorterCompare(
        pCsr, 0, p1->aKey, p1->nKey, p2->aKey, p2->nKey, &res
    );
    /* The vdbeSorterCompare() call cannot fail since pCsr->pSorter->pUnpacked
    ** has already been allocated. */
    assert( rc==SQLITE_OK );

    if( res<=0 ){
      iRes = i1;
    }else{
      iRes = i2;
    }

  }

  pSorter->aTree[iOut] = iRes;
  return SQLITE_OK;
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
*/
int sqlite3VdbeSorterInit(sqlite3 *db, VdbeCursor *pCsr){
  int pgsz;                       /* Page size of main database */
  int mxCache;                    /* Cache size */
  VdbeSorter *pSorter;            /* The new sorter */
  char *d;                        /* Dummy */

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );
  pCsr->pSorter = pSorter = sqlite3DbMallocZero(db, sizeof(VdbeSorter));
  if( pSorter==0 ){
    return SQLITE_NOMEM;
  }
  
  pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
  if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
  assert( pSorter->pUnpacked==(UnpackedRecord *)d );

  if( !sqlite3TempInMemory(db) ){
    pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
    pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
    mxCache = db->aDb[0].pSchema->cache_size;
    if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
    pSorter->mxPmaSize = mxCache * pgsz;
  }

  return SQLITE_OK;
}

/*
** Free the list of sorted records starting at pRecord.
*/
static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
  SorterRecord *p;
  SorterRecord *pNext;
  for(p=pRecord; p; p=pNext){
    pNext = p->pNext;
    sqlite3DbFree(db, p);
  }
}

/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;
  if( pSorter ){
    if( pSorter->aIter ){
      int i;
      for(i=0; i<pSorter->nTree; i++){
        vdbeSorterIterZero(db, &pSorter->aIter[i]);
      }
      sqlite3DbFree(db, pSorter->aIter);
    }
    if( pSorter->pTemp1 ){
      sqlite3OsCloseFree(pSorter->pTemp1);
    }
    vdbeSorterRecordFree(db, pSorter->pRecord);
    sqlite3DbFree(db, pSorter->pUnpacked);
    sqlite3DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

/*
** Allocate space for a file-handle and open a temporary file. If successful,
** set *ppFile to point to the malloc'd file-handle and return SQLITE_OK.
** Otherwise, set *ppFile to 0 and return an SQLite error code.
*/
static int vdbeSorterOpenTempFile(sqlite3 *db, sqlite3_file **ppFile){
  int dummy;
  return sqlite3OsOpenMalloc(db->pVfs, 0, ppFile,
      SQLITE_OPEN_TEMP_JOURNAL |
      SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &dummy
  );
}

/*
** Attemp to merge the two sorted lists p1 and p2 into a single list. If no
** error occurs set *ppOut to the head of the new list and return SQLITE_OK.
*/
static int vdbeSorterMerge(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* For pKeyInfo */
  SorterRecord *p1,               /* First list to merge */
  SorterRecord *p2,               /* Second list to merge */
  SorterRecord **ppOut            /* OUT: Head of merged list */
){
  int rc = SQLITE_OK;
  SorterRecord *pFinal = 0;
  SorterRecord **pp = &pFinal;
  void *pVal2 = p2 ? p2->pVal : 0;

  while( p1 && p2 ){
    int res;
    rc = vdbeSorterCompare(pCsr, 0, p1->pVal, p1->nVal, pVal2, p2->nVal, &res);
    if( rc!=SQLITE_OK ){
      *pp = 0;
      vdbeSorterRecordFree(db, p1);
      vdbeSorterRecordFree(db, p2);
      vdbeSorterRecordFree(db, pFinal);
      *ppOut = 0;
      return rc;
    }
    if( res<=0 ){
      *pp = p1;
      pp = &p1->pNext;
      p1 = p1->pNext;
      pVal2 = 0;
    }else{
      *pp = p2;
       pp = &p2->pNext;
      p2 = p2->pNext;
      if( p2==0 ) break;
      pVal2 = p2->pVal;
    }
  }
  *pp = p1 ? p1 : p2;

  *ppOut = pFinal;
  return SQLITE_OK;
}

/*
** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
** occurs.
*/
static int vdbeSorterSort(sqlite3 *db, VdbeCursor *pCsr){
  int rc = SQLITE_OK;
  int i;
  SorterRecord **aSlot;
  SorterRecord *p;
  VdbeSorter *pSorter = pCsr->pSorter;

  aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
  if( !aSlot ){
    return SQLITE_NOMEM;
  }

  p = pSorter->pRecord;
  while( p ){
    SorterRecord *pNext = p->pNext;
    p->pNext = 0;
    for(i=0; rc==SQLITE_OK && aSlot[i]; i++){
      rc = vdbeSorterMerge(db, pCsr, p, aSlot[i], &p);
      aSlot[i] = 0;
    }
    if( rc!=SQLITE_OK ){
      vdbeSorterRecordFree(db, pNext);
      break;
    }
    aSlot[i] = p;
    p = pNext;
  }

  p = 0;
  for(i=0; i<64; i++){
    if( rc==SQLITE_OK ){
      rc = vdbeSorterMerge(db, pCsr, p, aSlot[i], &p);
    }else{
      vdbeSorterRecordFree(db, aSlot[i]);
    }
  }
  pSorter->pRecord = p;

  sqlite3_free(aSlot);
  return rc;
}


/*
** Write the current contents of the in-memory linked-list to a PMA. Return
** SQLITE_OK if successful, or an SQLite error code otherwise.
**
** The format of a PMA is:
**
**     * A varint. This varint contains the total number of bytes of content
**       in the PMA (not including the varint itself).
**
**     * One or more records packed end-to-end in order of ascending keys. 
**       Each record consists of a varint followed by a blob of data (the 
**       key). The varint is the number of bytes in the blob of data.
*/
static int vdbeSorterListToPMA(sqlite3 *db, VdbeCursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  VdbeSorter *pSorter = pCsr->pSorter;



  if( pSorter->nInMemory==0 ){


    assert( pSorter->pRecord==0 );
    return rc;
  }

  rc = vdbeSorterSort(db, pCsr);

  /* If the first temporary PMA file has not been opened, open it now. */
  if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
    rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
    assert( rc!=SQLITE_OK || pSorter->pTemp1 );
    assert( pSorter->iWriteOff==0 );
    assert( pSorter->nPMA==0 );
  }

  if( rc==SQLITE_OK ){
    i64 iOff = pSorter->iWriteOff;
    SorterRecord *p;
    SorterRecord *pNext = 0;
    static const char eightZeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };

    pSorter->nPMA++;

    rc = vdbeSorterWriteVarint(pSorter->pTemp1, pSorter->nInMemory, &iOff);
    for(p=pSorter->pRecord; rc==SQLITE_OK && p; p=pNext){



      pNext = p->pNext;


      rc = vdbeSorterWriteVarint(pSorter->pTemp1, p->nVal, &iOff);












      if( rc==SQLITE_OK ){



        rc = sqlite3OsWrite(pSorter->pTemp1, p->pVal, p->nVal, iOff);
        iOff += p->nVal;
        }

      sqlite3DbFree(db, p);

    }

    /* This assert verifies that unless an error has occurred, the size of 
    ** the PMA on disk is the same as the expected size stored in
    ** pSorter->nInMemory. */ 
    assert( rc!=SQLITE_OK || pSorter->nInMemory==(
          iOff-pSorter->iWriteOff-sqlite3VarintLen(pSorter->nInMemory)
    ));

    pSorter->iWriteOff = iOff;
    if( rc==SQLITE_OK ){
      /* Terminate each file with 8 extra bytes so that from any offset
      ** in the file we can always read 9 bytes without a SHORT_READ error */
      rc = sqlite3OsWrite(pSorter->pTemp1, eightZeros, 8, iOff);
  }
    pSorter->pRecord = p;
  }

  return rc;
}

/*
** Add a record to the sorter.










*/
int sqlite3VdbeSorterWrite(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */

  SorterRecord *pNew;             /* New list element */

  assert( pSorter );
  pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n;


  pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord));
  if( pNew==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pNew->pVal = (void *)&pNew[1];
    memcpy(pNew->pVal, pVal->z, pVal->n);



    pNew->nVal = pVal->n;

    pNew->pNext = pSorter->pRecord;

    pSorter->pRecord = pNew;
      }









  /* See if the contents of the sorter should now be written out. They
  ** are written out when either of the following are true:
  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * cache-size), or

  **
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
  */
  if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (

        (pSorter->nInMemory>pSorter->mxPmaSize)
     || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
  )){



    rc = vdbeSorterListToPMA(db, pCsr);


    pSorter->nInMemory = 0;

      }




  return rc;
}

/*
** Helper function for sqlite3VdbeSorterRewind(). 
*/
static int vdbeSorterInitMerge(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Cursor handle for this sorter */
  i64 *pnByte                     /* Sum of bytes in all opened PMAs */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterator through aIter[] */
  i64 nByte = 0;                  /* Total bytes in all opened PMAs */

  /* Initialize the iterators. */
  for(i=0; i<SORTER_MAX_MERGE_COUNT; i++){
    VdbeSorterIter *pIter = &pSorter->aIter[i];
    rc = vdbeSorterIterInit(db, pSorter, pSorter->iReadOff, pIter, &nByte);
    pSorter->iReadOff = pIter->iEof;
    assert( rc!=SQLITE_OK || pSorter->iReadOff<=pSorter->iWriteOff );
    if( rc!=SQLITE_OK || pSorter->iReadOff>=pSorter->iWriteOff ) break;
  }

  /* Initialize the aTree[] array. */
  for(i=pSorter->nTree-1; rc==SQLITE_OK && i>0; i--){
    rc = vdbeSorterDoCompare(pCsr, i);
  }

571
572
573
574
575
576
577
578
579
580
581
582
583

584
585




586
587
588
589
590
591
592
  i64 iWrite2 = 0;                /* Write offset for pTemp2 */
  int nIter;                      /* Number of iterators used */
  int nByte;                      /* Bytes of space required for aIter/aTree */
  int N = 2;                      /* Power of 2 >= nIter */

  assert( pSorter );

  /* Write the current b-tree to a PMA. Close the b-tree cursor. */
  rc = vdbeSorterBtreeToPMA(db, pCsr);
  sqlite3BtreeCloseCursor(pCsr->pCursor);
  if( rc!=SQLITE_OK ) return rc;
  if( pSorter->nPMA==0 ){
    *pbEof = 1;

    return SQLITE_OK;
  }





  /* Allocate space for aIter[] and aTree[]. */
  nIter = pSorter->nPMA;
  if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
  assert( nIter>0 );
  while( N<nIter ) N += N;
  nByte = N * (sizeof(int) + sizeof(VdbeSorterIter));







|
|
|
<

|
>
|

>
>
>
>







714
715
716
717
718
719
720
721
722
723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  i64 iWrite2 = 0;                /* Write offset for pTemp2 */
  int nIter;                      /* Number of iterators used */
  int nByte;                      /* Bytes of space required for aIter/aTree */
  int N = 2;                      /* Power of 2 >= nIter */

  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */

  if( pSorter->nPMA==0 ){
    *pbEof = !pSorter->pRecord;
    assert( pSorter->aTree==0 );
    return vdbeSorterSort(db, pCsr);
  }

  /* Write the current b-tree to a PMA. Close the b-tree cursor. */
  rc = vdbeSorterListToPMA(db, pCsr);
  if( rc!=SQLITE_OK ) return rc;

  /* Allocate space for aIter[] and aTree[]. */
  nIter = pSorter->nPMA;
  if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
  assert( nIter>0 );
  while( N<nIter ) N += N;
  nByte = N * (sizeof(int) + sizeof(VdbeSorterIter));
666
667
668
669
670
671
672



673
674
675
676
677
678
679
680
681
682








683
684





















685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

























711
}

/*
** Advance to the next element in the sorter.
*/
int sqlite3VdbeSorterNext(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;



  int iPrev = pSorter->aTree[1];  /* Index of iterator to advance */
  int i;                          /* Index of aTree[] to recalculate */
  int rc;                         /* Return code */

  rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
  for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){
    rc = vdbeSorterDoCompare(pCsr, i);
  }

  *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);








  return rc;
}






















/*
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  VdbeSorterIter *pIter;

  pIter = &pSorter->aIter[ pSorter->aTree[1] ];

  /* Coverage testing note: As things are currently, this call will always
  ** succeed. This is because the memory cell passed by the VDBE layer 
  ** happens to be the same one as was used to assemble the keys before they
  ** were passed to the sorter - meaning it is always large enough for the
  ** largest key. But this could change very easily, so we leave the call
  ** to sqlite3VdbeMemGrow() in. */
  if( NEVER(sqlite3VdbeMemGrow(pOut, pIter->nKey, 0)) ){
    return SQLITE_NOMEM;
  }
  pOut->n = pIter->nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pIter->aKey, pIter->nKey);

  return SQLITE_OK;
}


























#endif /* #ifndef SQLITE_OMIT_MERGE_SORT */







>
>
>


<







>
>
>
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|

<
|
<
<
<
<
<
|
<


|

|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

871





872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
}

/*
** Advance to the next element in the sorter.
*/
int sqlite3VdbeSorterNext(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
  int iPrev = pSorter->aTree[1];  /* Index of iterator to advance */
  int i;                          /* Index of aTree[] to recalculate */


  rc = vdbeSorterIterNext(db, &pSorter->aIter[iPrev]);
  for(i=(pSorter->nTree+iPrev)/2; rc==SQLITE_OK && i>0; i=i/2){
    rc = vdbeSorterDoCompare(pCsr, i);
  }

  *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
  }else{
    SorterRecord *pFree = pSorter->pRecord;
    pSorter->pRecord = pFree->pNext;
    pFree->pNext = 0;
    vdbeSorterRecordFree(db, pFree);
    *pbEof = !pSorter->pRecord;
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Return a pointer to a buffer owned by the sorter that contains the 
** current key.
*/
static void *vdbeSorterRowkey(
  VdbeSorter *pSorter,            /* Sorter object */
  int *pnKey                      /* OUT: Size of current key in bytes */
){
  void *pKey;
  if( pSorter->aTree ){
    VdbeSorterIter *pIter;
    pIter = &pSorter->aIter[ pSorter->aTree[1] ];
    *pnKey = pIter->nKey;
    pKey = pIter->aKey;
  }else{
    *pnKey = pSorter->pRecord->nVal;
    pKey = pSorter->pRecord->pVal;
  }
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
int sqlite3VdbeSorterRowkey(VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */


  pKey = vdbeSorterRowkey(pSorter, &nKey);





  if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){

    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);

  return SQLITE_OK;
}

/*
** Compare the key in memory cell pVal with the key that the sorter cursor
** passed as the first argument currently points to. For the purposes of
** the comparison, ignore the rowid field at the end of each record.
**
** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
** Otherwise, set *pRes to a negative, zero or positive value if the
** key in pVal is smaller than, equal to or larger than the current sorter
** key.
*/
int sqlite3VdbeSorterCompare(
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int *pRes                       /* OUT: Result of comparison */
){
  int rc;
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  rc = vdbeSorterCompare(pCsr, 1, pVal->z, pVal->n, pKey, nKey, pRes);
  assert( rc!=SQLITE_OK || pVal->db->mallocFailed || (*pRes)<=0 );
  return rc;
}

#endif /* #ifndef SQLITE_OMIT_MERGE_SORT */
Changes to test/distinct.test.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  uplevel [list do_test $tn [list is_distinct_noop $sql] 0]
}

proc do_temptables_test {tn sql temptables} {
  uplevel [list do_test $tn [subst -novar {
    set ret ""
    db eval "EXPLAIN [set sql]" {
      if {$opcode == "OpenEphemeral"} { 
        if {$p5 != "10" && $p5!="00"} { error "p5 = $p5" }
        if {$p5 == "10"} {
          lappend ret hash
        } else {
          lappend ret btree
        }
      }







|







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  uplevel [list do_test $tn [list is_distinct_noop $sql] 0]
}

proc do_temptables_test {tn sql temptables} {
  uplevel [list do_test $tn [subst -novar {
    set ret ""
    db eval "EXPLAIN [set sql]" {
      if {$opcode == "OpenEphemeral" || $opcode == "SorterOpen"} { 
        if {$p5 != "10" && $p5!="00"} { error "p5 = $p5" }
        if {$p5 == "10"} {
          lappend ret hash
        } else {
          lappend ret btree
        }
      }
Changes to test/index4.test.
104
105
106
107
108
109
110














111
112
    DROP TABLE t1;
    CREATE TABLE t1(x);
  COMMIT;
  CREATE INDEX i1 ON t1(x); 
  PRAGMA integrity_check
} {ok}
















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    DROP TABLE t1;
    CREATE TABLE t1(x);
  COMMIT;
  CREATE INDEX i1 ON t1(x); 
  PRAGMA integrity_check
} {ok}

do_execsql_test 2.1 {
  BEGIN;
    CREATE TABLE t2(x);
    INSERT INTO t2 VALUES(14);
    INSERT INTO t2 VALUES(35);
    INSERT INTO t2 VALUES(15);
    INSERT INTO t2 VALUES(35);
    INSERT INTO t2 VALUES(16);
  COMMIT;
}
do_catchsql_test 2.2 {
  CREATE UNIQUE INDEX i3 ON t2(x);
} {1 {indexed columns are not unique}}


finish_test
Changes to test/misc3.test.
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        a INTEGER DEFAULT 54321,
        b TEXT DEFAULT "hello",
        c REAL DEFAULT 3.1415926
      );
      CREATE UNIQUE INDEX ex1i1 ON ex1(a);
      EXPLAIN REINDEX;
    }]
    regexp { IsUnique \d+ \d+ \d+ \d+ } $x
  } {1}
  if {[regexp {16} [db one {PRAGMA encoding}]]} {
    do_test misc3-6.11-utf16 {
      set x [execsql {
        EXPLAIN SELECT a+123456789012, b*4.5678, c FROM ex1 ORDER BY +a, b DESC
      }]
      set y [regexp { 123456789012 } $x]







|







266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        a INTEGER DEFAULT 54321,
        b TEXT DEFAULT "hello",
        c REAL DEFAULT 3.1415926
      );
      CREATE UNIQUE INDEX ex1i1 ON ex1(a);
      EXPLAIN REINDEX;
    }]
    regexp { SorterCompare \d+ \d+ \d+ } $x
  } {1}
  if {[regexp {16} [db one {PRAGMA encoding}]]} {
    do_test misc3-6.11-utf16 {
      set x [execsql {
        EXPLAIN SELECT a+123456789012, b*4.5678, c FROM ex1 ORDER BY +a, b DESC
      }]
      set y [regexp { 123456789012 } $x]
Changes to test/pager1.test.
2433
2434
2435
2436
2437
2438
2439

2440
2441
2442
2443
2444
2445
2446
  }
  db close
  sqlite3 db test.db
  execsql {
    BEGIN;
    INSERT INTO t1 VALUES(1, randomblob(10000));
  }

  file_control_sizehint_test db main 20971520; # 20MB
  execsql {
    PRAGMA cache_size = 10;
    INSERT INTO t1 VALUES(1, randomblob(10000));
    INSERT INTO t1 VALUES(2, randomblob(10000));
    INSERT INTO t1 SELECT x+2, randomblob(10000) from t1;
    INSERT INTO t1 SELECT x+4, randomblob(10000) from t1;







>







2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
  }
  db close
  sqlite3 db test.db
  execsql {
    BEGIN;
    INSERT INTO t1 VALUES(1, randomblob(10000));
  }
  file_control_chunksize_test db main 1024
  file_control_sizehint_test db main 20971520; # 20MB
  execsql {
    PRAGMA cache_size = 10;
    INSERT INTO t1 VALUES(1, randomblob(10000));
    INSERT INTO t1 VALUES(2, randomblob(10000));
    INSERT INTO t1 SELECT x+2, randomblob(10000) from t1;
    INSERT INTO t1 SELECT x+4, randomblob(10000) from t1;
Changes to test/server1.test.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  finish_test
  return
}

# The sample server implementation does not work right when memory
# management is enabled.
#
ifcapable memorymanage {
  finish_test
  return
}

# Create some data to work with
#
do_test server1-1.1 {







|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  finish_test
  return
}

# The sample server implementation does not work right when memory
# management is enabled.
#
ifcapable (memorymanage||mutex_noop) {
  finish_test
  return
}

# Create some data to work with
#
do_test server1-1.1 {
Changes to test/thread001.test.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  catchsql { DROP TABLE ab; }

  do_test thread001.$tn.0 {
    db close
    sqlite3_enable_shared_cache $shared_cache
    sqlite3_enable_shared_cache $shared_cache
  } $shared_cache
  sqlite3 db test.db -fullmutex 1

  set dbconfig ""
  if {$same_db} {
    set dbconfig [list set ::DB [sqlite3_connection_pointer db]]
  }

  # Set up a database and a schema. The database contains a single







|







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  catchsql { DROP TABLE ab; }

  do_test thread001.$tn.0 {
    db close
    sqlite3_enable_shared_cache $shared_cache
    sqlite3_enable_shared_cache $shared_cache
  } $shared_cache
  sqlite3 db test.db -fullmutex 1 -key xyzzy

  set dbconfig ""
  if {$same_db} {
    set dbconfig [list set ::DB [sqlite3_connection_pointer db]]
  }

  # Set up a database and a schema. The database contains a single
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    execsql { PRAGMA integrity_check }
  } {ok}

  set thread_program {
    #sqlthread parent {puts STARTING..}
    set needToClose 0
    if {![info exists ::DB]} {
      set ::DB [sqlthread open test.db]
      #sqlthread parent "puts \"OPEN $::DB\""
      set needToClose 1
    }
  
    for {set i 0} {$i < 100} {incr i} {
      # Test that the invariant is true.
      do_test t1 {







|







73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    execsql { PRAGMA integrity_check }
  } {ok}

  set thread_program {
    #sqlthread parent {puts STARTING..}
    set needToClose 0
    if {![info exists ::DB]} {
      set ::DB [sqlthread open test.db xyzzy]
      #sqlthread parent "puts \"OPEN $::DB\""
      set needToClose 1
    }
  
    for {set i 0} {$i < 100} {incr i} {
      # Test that the invariant is true.
      do_test t1 {
Changes to test/thread002.test.
12
13
14
15
16
17
18

19
20

21
22
23
24
25
26
27
#   This test attempts to deadlock SQLite in shared-cache mode.
#     
#
# $Id: thread002.test,v 1.9 2009/03/26 14:48:07 danielk1977 Exp $

set testdir [file dirname $argv0]


source $testdir/tester.tcl
if {[run_thread_tests]==0} { finish_test ; return }


db close
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]

set ::NTHREAD 10

do_test thread002.1 {







>


>







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#   This test attempts to deadlock SQLite in shared-cache mode.
#     
#
# $Id: thread002.test,v 1.9 2009/03/26 14:48:07 danielk1977 Exp $

set testdir [file dirname $argv0]

set do_not_use_codec 1
source $testdir/tester.tcl
if {[run_thread_tests]==0} { finish_test ; return }


db close
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]

set ::NTHREAD 10

do_test thread002.1 {
Changes to test/thread003.test.
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#
set nSecond 30
puts "Starting thread003.2 (should run for ~$nSecond seconds)"
do_test thread003.2 {
  foreach zFile {test.db test2.db} {
    set SCRIPT [format {
      set iEnd [expr {[clock_seconds] + %d}]
      set ::DB [sqlthread open %s]
  
      # Set the cache size to 15 pages per cache. 30 available globally.
      execsql { PRAGMA cache_size = 15 }
  
      while {[clock_seconds] < $iEnd} {
        set iQuery [expr {int(rand()*5000)}]
        execsql " SELECT * FROM t1 WHERE a = $iQuery "







|







76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#
set nSecond 30
puts "Starting thread003.2 (should run for ~$nSecond seconds)"
do_test thread003.2 {
  foreach zFile {test.db test2.db} {
    set SCRIPT [format {
      set iEnd [expr {[clock_seconds] + %d}]
      set ::DB [sqlthread open %s xyzzy]
  
      # Set the cache size to 15 pages per cache. 30 available globally.
      execsql { PRAGMA cache_size = 15 }
  
      while {[clock_seconds] < $iEnd} {
        set iQuery [expr {int(rand()*5000)}]
        execsql " SELECT * FROM t1 WHERE a = $iQuery "
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
set nSecond 30
puts "Starting thread003.3 (should run for ~$nSecond seconds)"
do_test thread003.3 {
  foreach zFile {test.db test2.db} {
    set SCRIPT [format {
      set iStart [clock_seconds]
      set iEnd [expr {[clock_seconds] + %d}]
      set ::DB [sqlthread open %s]
  
      # Set the cache size to 15 pages per cache. 30 available globally.
      execsql { PRAGMA cache_size = 15 }
  
      while {[clock_seconds] < $iEnd} {
        set iQuery [expr {int(rand()*5000)}]
        execsql "SELECT * FROM t1 WHERE a = $iQuery"







|







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
set nSecond 30
puts "Starting thread003.3 (should run for ~$nSecond seconds)"
do_test thread003.3 {
  foreach zFile {test.db test2.db} {
    set SCRIPT [format {
      set iStart [clock_seconds]
      set iEnd [expr {[clock_seconds] + %d}]
      set ::DB [sqlthread open %s xyzzy]
  
      # Set the cache size to 15 pages per cache. 30 available globally.
      execsql { PRAGMA cache_size = 15 }
  
      while {[clock_seconds] < $iEnd} {
        set iQuery [expr {int(rand()*5000)}]
        execsql "SELECT * FROM t1 WHERE a = $iQuery"
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
set nSecond 30
puts "Starting thread003.4 (should run for ~$nSecond seconds)"
unset -nocomplain finished(1)
unset -nocomplain finished(2)
do_test thread003.4 {
  thread_spawn finished(1) $thread_procs [format {
    set iEnd [expr {[clock_seconds] + %d}]
    set ::DB [sqlthread open test.db]

    # Set the cache size to 15 pages per cache. 30 available globally.
    execsql { PRAGMA cache_size = 15 }

    while {[clock_seconds] < $iEnd} {
      set iQuery [expr {int(rand()*5000)}]
      execsql "SELECT * FROM t1 WHERE a = $iQuery"







|







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
set nSecond 30
puts "Starting thread003.4 (should run for ~$nSecond seconds)"
unset -nocomplain finished(1)
unset -nocomplain finished(2)
do_test thread003.4 {
  thread_spawn finished(1) $thread_procs [format {
    set iEnd [expr {[clock_seconds] + %d}]
    set ::DB [sqlthread open test.db xyzzy]

    # Set the cache size to 15 pages per cache. 30 available globally.
    execsql { PRAGMA cache_size = 15 }

    while {[clock_seconds] < $iEnd} {
      set iQuery [expr {int(rand()*5000)}]
      execsql "SELECT * FROM t1 WHERE a = $iQuery"
Changes to test/wal5.test.
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    } {}
    do_test 2.3.$tn.2 { file_page_counts } {1 5 1 5}
    do_test 2.3.$tn.3 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2}
    do_test 2.3.$tn.4 { sql1 { INSERT INTO t1 VALUES(3, 4) } } {}
    do_test 2.3.$tn.5 { sql1 { INSERT INTO t2 VALUES(3, 4) } } {}
    do_test 2.3.$tn.6 { file_page_counts } {1 7 1 7}
    do_test 2.3.$tn.7 { code1 { do_wal_checkpoint db -mode full } } {1 7 5}
    do_test 2.3.$tn.8 { file_page_counts } {2 7 2 7}
  }

  # Check that checkpoints block on the correct locks. And respond correctly
  # if they cannot obtain those locks. There are three locks that a checkpoint
  # may block on (in the following order):
  #
  #   1. The writer lock: FULL and RESTART checkpoints block until any writer







|







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    } {}
    do_test 2.3.$tn.2 { file_page_counts } {1 5 1 5}
    do_test 2.3.$tn.3 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2}
    do_test 2.3.$tn.4 { sql1 { INSERT INTO t1 VALUES(3, 4) } } {}
    do_test 2.3.$tn.5 { sql1 { INSERT INTO t2 VALUES(3, 4) } } {}
    do_test 2.3.$tn.6 { file_page_counts } {1 7 1 7}
    do_test 2.3.$tn.7 { code1 { do_wal_checkpoint db -mode full } } {1 7 5}
    do_test 2.3.$tn.8 { file_page_counts } {1 7 2 7}
  }

  # Check that checkpoints block on the correct locks. And respond correctly
  # if they cannot obtain those locks. There are three locks that a checkpoint
  # may block on (in the following order):
  #
  #   1. The writer lock: FULL and RESTART checkpoints block until any writer
339
340
341
342
343
344
345


    do_test 3.$tn.6 { code3 { do_wal_checkpoint db3 } } {0 0 0}
  }
}


finish_test








>
339
340
341
342
343
344
345
346

    do_test 3.$tn.6 { code3 { do_wal_checkpoint db3 } } {0 0 0}
  }
}


finish_test

Changes to tool/lemon.c.
2518
2519
2520
2521
2522
2523
2524

2525
2526
2527
2528
2529
2530
2531

2532
2533
2534
2535
2536
2537
2538
  filesize = ftell(fp);
  rewind(fp);
  filebuf = (char *)malloc( filesize+1 );
  if( filebuf==0 ){
    ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
      filesize+1);
    gp->errorcnt++;

    return;
  }
  if( fread(filebuf,1,filesize,fp)!=filesize ){
    ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
      filesize);
    free(filebuf);
    gp->errorcnt++;

    return;
  }
  fclose(fp);
  filebuf[filesize] = 0;

  /* Make an initial pass through the file to handle %ifdef and %ifndef */
  preprocess_input(filebuf);







>







>







2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
  filesize = ftell(fp);
  rewind(fp);
  filebuf = (char *)malloc( filesize+1 );
  if( filebuf==0 ){
    ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
      filesize+1);
    gp->errorcnt++;
    fclose(fp);
    return;
  }
  if( fread(filebuf,1,filesize,fp)!=filesize ){
    ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
      filesize);
    free(filebuf);
    gp->errorcnt++;
    fclose(fp);
    return;
  }
  fclose(fp);
  filebuf[filesize] = 0;

  /* Make an initial pass through the file to handle %ifdef and %ifndef */
  preprocess_input(filebuf);
Changes to tool/spaceanal.tcl.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

# In-memory database for collecting statistics. This script loops through
# the tables and indices in the database being analyzed, adding a row for each
# to an in-memory database (for which the schema is shown below). It then
# queries the in-memory db to produce the space-analysis report.
#
sqlite3 mem :memory:
set tabledef\
{CREATE TABLE space_used(
   name clob,        -- Name of a table or index in the database file
   tblname clob,     -- Name of associated table
   is_index boolean, -- TRUE if it is an index, false for a table
   nentry int,       -- Number of entries in the BTree
   leaf_entries int, -- Number of leaf entries
   payload int,      -- Total amount of data stored in this table or index
   ovfl_payload int, -- Total amount of data stored on overflow pages







<
|







37
38
39
40
41
42
43

44
45
46
47
48
49
50
51

# In-memory database for collecting statistics. This script loops through
# the tables and indices in the database being analyzed, adding a row for each
# to an in-memory database (for which the schema is shown below). It then
# queries the in-memory db to produce the space-analysis report.
#
sqlite3 mem :memory:

set tabledef {CREATE TABLE space_used(
   name clob,        -- Name of a table or index in the database file
   tblname clob,     -- Name of associated table
   is_index boolean, -- TRUE if it is an index, false for a table
   nentry int,       -- Number of entries in the BTree
   leaf_entries int, -- Number of leaf entries
   payload int,      -- Total amount of data stored in this table or index
   ovfl_payload int, -- Total amount of data stored on overflow pages
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  if {$int_pages>0} {
    statline {Index pages used} $int_pages
  }
  statline {Primary pages used} $leaf_pages
  statline {Overflow pages used} $ovfl_pages
  statline {Total pages used} $total_pages
  if {$int_unused>0} {
    set int_unused_percent \
         [percent $int_unused [expr {$int_pages*$pageSize}] {of index space}]
    statline "Unused bytes on index pages" $int_unused $int_unused_percent
  }
  statline "Unused bytes on primary pages" $leaf_unused \
     [percent $leaf_unused [expr {$leaf_pages*$pageSize}] {of primary space}]
  statline "Unused bytes on overflow pages" $ovfl_unused \
     [percent $ovfl_unused [expr {$ovfl_pages*$pageSize}] {of overflow space}]
  statline "Unused bytes on all pages" $total_unused \
               [percent $total_unused $storage {of all space}]
  return 1
}

# Calculate the overhead in pages caused by auto-vacuum. 
#
# This procedure calculates and returns the number of pages used by the 
# auto-vacuum 'pointer-map'. If the database does not support auto-vacuum,







|
|


|
|
|
|
|
|







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  if {$int_pages>0} {
    statline {Index pages used} $int_pages
  }
  statline {Primary pages used} $leaf_pages
  statline {Overflow pages used} $ovfl_pages
  statline {Total pages used} $total_pages
  if {$int_unused>0} {
    set int_unused_percent [
         percent $int_unused [expr {$int_pages*$pageSize}] {of index space}]
    statline "Unused bytes on index pages" $int_unused $int_unused_percent
  }
  statline "Unused bytes on primary pages" $leaf_unused [
     percent $leaf_unused [expr {$leaf_pages*$pageSize}] {of primary space}]
  statline "Unused bytes on overflow pages" $ovfl_unused [
     percent $ovfl_unused [expr {$ovfl_pages*$pageSize}] {of overflow space}]
  statline "Unused bytes on all pages" $total_unused [
               percent $total_unused $storage {of all space}]
  return 1
}

# Calculate the overhead in pages caused by auto-vacuum. 
#
# This procedure calculates and returns the number of pages used by the 
# auto-vacuum 'pointer-map'. If the database does not support auto-vacuum,
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
Page size in bytes

    The number of bytes in a single page of the database file.  
    Usually 1024.

Number of pages in the whole file
}
puts \
"    The number of $pageSize-byte pages that go into forming the complete
    database"
puts \
{
Pages that store data

    The number of pages that store data, either as primary B*Tree pages or
    as overflow pages.  The number at the right is the data pages divided by
    the total number of pages in the file.

Pages on the freelist







<
|

|
<







447
448
449
450
451
452
453

454
455
456

457
458
459
460
461
462
463
Page size in bytes

    The number of bytes in a single page of the database file.  
    Usually 1024.

Number of pages in the whole file
}

puts "    The number of $pageSize-byte pages that go into forming the complete
    database"
puts {

Pages that store data

    The number of pages that store data, either as primary B*Tree pages or
    as overflow pages.  The number at the right is the data pages divided by
    the total number of pages in the file.

Pages on the freelist
Changes to tool/tostr.awk.
1
2
3
4
5
6
7
8
9
#!/usr/bin/awk
#
# Convert input text into a C string
#
{
  gsub(/\\/,"\\\\");
  gsub(/\"/,"\\\"");
  print "\"" $0 "\\n\"";
}





<



1
2
3
4
5

6
7
8
#!/usr/bin/awk
#
# Convert input text into a C string
#
{

  gsub(/\"/,"\\\"");
  print "\"" $0 "\\n\"";
}