Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Changes In Branch wal2 Excluding Merge-Ins
This is equivalent to a diff from f619e40fb0 to 80e6ddd560
2025-03-22
| ||
16:14 | Add a mechanism to the configure script to allow certain client-specific builds to extend or override the configure options without having to edit sqlite-config.tcl, the goal being to reduce merge conflicts in those builds when updating sqlite-config.tcl from the canonical copy. (check-in: bafab4ee55 user: stephan tags: trunk) | |
14:29 | Merge the latest trunk changes into the reuse-schema branch. (Leaf check-in: e9496b1bbc user: drh tags: reuse-schema) | |
14:23 | Merge the latest trunk enhancements into the bedrock branch. (Leaf check-in: 4196efe83c user: drh tags: bedrock) | |
14:19 | Merge the latest trunk enhancements into the wal2 branch. (Leaf check-in: 80e6ddd560 user: drh tags: wal2) | |
14:12 | Merge the latest trunk enhancements into the begin-concurrent branch. (Leaf check-in: cb5e024b6a user: drh tags: begin-concurrent) | |
12:43 | Configure script internal cleanups and re-orgs. No functional changes. (check-in: f619e40fb0 user: stephan tags: trunk) | |
12:15 | In the autoconf bundle, do not strip binaries during installation, for parity with the canonical build and the legacy build. Discussed in forum post 9a67df63eda9925c. A potential TODO here is to add a configure flag which either enables or disables stripping. (check-in: 6d2e57bd34 user: stephan tags: trunk) | |
2025-03-15
| ||
20:28 | Merge the latest trunk enhancements into the wal2 branch. (check-in: c8d8f613ed user: drh tags: wal2) | |
Changes to Makefile.msc.
︙ | ︙ | |||
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | # TESTEXT = \ $(TOP)\ext\expert\sqlite3expert.c \ $(TOP)\ext\expert\test_expert.c \ $(TOP)\ext\misc\amatch.c \ $(TOP)\ext\misc\appendvfs.c \ $(TOP)\ext\misc\basexx.c \ $(TOP)\ext\misc\carray.c \ $(TOP)\ext\misc\cksumvfs.c \ $(TOP)\ext\misc\closure.c \ $(TOP)\ext\misc\csv.c \ $(TOP)\ext\misc\decimal.c \ $(TOP)\ext\misc\eval.c \ $(TOP)\ext\misc\explain.c \ | > | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 | # TESTEXT = \ $(TOP)\ext\expert\sqlite3expert.c \ $(TOP)\ext\expert\test_expert.c \ $(TOP)\ext\misc\amatch.c \ $(TOP)\ext\misc\appendvfs.c \ $(TOP)\ext\misc\basexx.c \ $(TOP)\ext\misc\bgckpt.c \ $(TOP)\ext\misc\carray.c \ $(TOP)\ext\misc\cksumvfs.c \ $(TOP)\ext\misc\closure.c \ $(TOP)\ext\misc\csv.c \ $(TOP)\ext\misc\decimal.c \ $(TOP)\ext\misc\eval.c \ $(TOP)\ext\misc\explain.c \ |
︙ | ︙ |
Added doc/wal2.md.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | Wal2 Mode Notes =============== ## Activating/Deactivating Wal2 Mode "Wal2" mode is very similar to "wal" mode. To change a database to wal2 mode, use the command: > PRAGMA journal_mode = wal2; It is not possible to change a database directly from "wal" mode to "wal2" mode. Instead, it must first be changed to rollback mode. So, to change a wal mode database to wal2 mode, the following two commands may be used: > PRAGMA journal_mode = delete; PRAGMA journal_mode = wal2; A database in wal2 mode may only be accessed by versions of SQLite compiled from this branch. Attempting to use any other version of SQLite results in an SQLITE_NOTADB error. A wal2 mode database may be changed back to rollback mode (making it accessible by all versions of SQLite) using: > PRAGMA journal_mode = delete; ## The Advantage of Wal2 Mode In legacy wal mode, when a writer writes data to the database, it doesn't modify the database file directly. Instead, it appends new data to the "<database>-wal" file. Readers read data from both the original database file and the "<database>-wal" file. At some point, data is copied from the "<database>-wal" file into the database file, after which the wal file can be deleted or overwritten. Copying data from the wal file into the database file is called a "checkpoint", and may be done explictly (either by "PRAGMA wal_checkpoint" or sqlite3_wal_checkpoint_v2()), or automatically (by configuring "PRAGMA wal_autocheckpoint" - this is the default). Checkpointers do not block writers, and writers do not block checkpointers. However, if a writer writes to the database while a checkpoint is ongoing, then the new data is appended to the end of the wal file. This means that, even following the checkpoint, the wal file cannot be overwritten or deleted, and so all subsequent transactions must also be appended to the wal file. The work of the checkpointer is not wasted - SQLite remembers which parts of the wal file have already been copied into the db file so that the next checkpoint does not have to do so again - but it does mean that the wal file may grow indefinitely if the checkpointer never gets a chance to finish without a writer appending to the wal file. There are also circumstances in which long-running readers may prevent a checkpointer from checkpointing the entire wal file - also causing the wal file to grow indefinitely in a busy system. Wal2 mode does not have this problem. In wal2 mode, wal files do not grow indefinitely even if the checkpointer never has a chance to finish uninterrupted. In wal2 mode, the system uses two wal files instead of one. The files are named "<database>-wal" and "<database>-wal2", where "<database>" is of course the name of the database file. When data is written to the database, the writer begins by appending the new data to the first wal file. Once the first wal file has grown large enough, writers switch to appending data to the second wal file. At this point the first wal file can be checkpointed (after which it can be overwritten). Then, once the second wal file has grown large enough and the first wal file has been checkpointed, writers switch back to the first wal file. And so on. ## Application Programming From the point of view of the user, the main differences between wal and wal2 mode are to do with checkpointing: * In wal mode, a checkpoint may be attempted at any time. In wal2 mode, the checkpointer has to wait until writers have switched to the "other" wal file before a checkpoint can take place. * In wal mode, the wal-hook (callback registered using sqlite3_wal_hook()) is invoked after a transaction is committed with the total number of pages in the wal file as an argument. In wal2 mode, the argument is either the total number of uncheckpointed pages in both wal files, or - if the "other" wal file is empty or already checkpointed - 0. Clients are recommended to use the same strategies for checkpointing wal2 mode databases as for wal databases - by registering a wal-hook using sqlite3_wal_hook() and attempting a checkpoint when the parameter exceeds a certain threshold. However, it should be noted that although the wal-hook is invoked after each transaction is committed to disk and database locks released, it is still invoked from within the sqlite3_step() call used to execute the "COMMIT" command. In BEGIN CONCURRENT systems, where the "COMMIT" is often protected by an application mutex, this may reduce concurrency. In such systems, instead of executing a checkpoint from within the wal-hook, a thread might defer this action until after the application mutex has been released. |
Added ext/misc/bgckpt.c.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | /* ** 2017-10-11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #if !defined(SQLITE_TEST) || defined(SQLITE_OS_UNIX) #include "sqlite3.h" #include <string.h> #include <pthread.h> /* ** API declarations. */ typedef struct Checkpointer Checkpointer; int sqlite3_bgckpt_create(const char *zFilename, Checkpointer **pp); int sqlite3_bgckpt_checkpoint(Checkpointer *p, int bBlock); void sqlite3_bgckpt_destroy(Checkpointer *p); struct Checkpointer { sqlite3 *db; /* Database handle */ pthread_t thread; /* Background thread */ pthread_mutex_t mutex; pthread_cond_t cond; int rc; /* Error from "PRAGMA wal_checkpoint" */ int bCkpt; /* True if checkpoint requested */ int bExit; /* True if exit requested */ }; static void *bgckptThreadMain(void *pCtx){ int rc = SQLITE_OK; Checkpointer *p = (Checkpointer*)pCtx; while( rc==SQLITE_OK ){ int bExit; pthread_mutex_lock(&p->mutex); if( p->bCkpt==0 && p->bExit==0 ){ pthread_cond_wait(&p->cond, &p->mutex); } p->bCkpt = 0; bExit = p->bExit; pthread_mutex_unlock(&p->mutex); if( bExit ) break; rc = sqlite3_exec(p->db, "PRAGMA wal_checkpoint", 0, 0, 0); if( rc==SQLITE_BUSY ){ rc = SQLITE_OK; } } pthread_mutex_lock(&p->mutex); p->rc = rc; pthread_mutex_unlock(&p->mutex); return 0; } void sqlite3_bgckpt_destroy(Checkpointer *p){ if( p ){ void *ret = 0; /* Signal the background thread to exit */ pthread_mutex_lock(&p->mutex); p->bExit = 1; pthread_cond_broadcast(&p->cond); pthread_mutex_unlock(&p->mutex); pthread_join(p->thread, &ret); sqlite3_close(p->db); sqlite3_free(p); } } int sqlite3_bgckpt_create(const char *zFilename, Checkpointer **pp){ Checkpointer *pNew = 0; int rc; pNew = (Checkpointer*)sqlite3_malloc(sizeof(Checkpointer)); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ memset(pNew, 0, sizeof(Checkpointer)); rc = sqlite3_open(zFilename, &pNew->db); } if( rc==SQLITE_OK ){ pthread_mutex_init(&pNew->mutex, 0); pthread_cond_init(&pNew->cond, 0); pthread_create(&pNew->thread, 0, bgckptThreadMain, (void*)pNew); } if( rc!=SQLITE_OK ){ sqlite3_bgckpt_destroy(pNew); pNew = 0; } *pp = pNew; return rc; } int sqlite3_bgckpt_checkpoint(Checkpointer *p, int bBlock){ int rc; pthread_mutex_lock(&p->mutex); rc = p->rc; if( rc==SQLITE_OK ){ p->bCkpt = 1; pthread_cond_broadcast(&p->cond); } pthread_mutex_unlock(&p->mutex); return rc; } #ifdef SQLITE_TEST #include "tclsqlite.h" const char *sqlite3ErrName(int rc); static void SQLITE_TCLAPI bgckpt_del(void * clientData){ Checkpointer *pCkpt = (Checkpointer*)clientData; sqlite3_bgckpt_destroy(pCkpt); } /* ** Tclcmd: $ckpt SUBCMD ... */ static int SQLITE_TCLAPI bgckpt_obj_cmd( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ Checkpointer *pCkpt = (Checkpointer*)clientData; const char *aCmd[] = { "checkpoint", "destroy", 0 }; int iCmd; if( objc<2 ){ Tcl_WrongNumArgs(interp, 1, objv, "SUBCMD ..."); return TCL_ERROR; } if( Tcl_GetIndexFromObj(interp, objv[1], aCmd, "sub-command", 0, &iCmd) ){ return TCL_ERROR; } switch( iCmd ){ case 0: { int rc; int bBlock = 0; if( objc>3 ){ Tcl_WrongNumArgs(interp, 2, objv, "?BLOCKING?"); return TCL_ERROR; } if( objc==3 && Tcl_GetBooleanFromObj(interp, objv[2], &bBlock) ){ return TCL_ERROR; } rc = sqlite3_bgckpt_checkpoint(pCkpt, bBlock); if( rc!=SQLITE_OK ){ Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3ErrName(rc), -1)); return TCL_ERROR; } break; } case 1: { Tcl_DeleteCommand(interp, Tcl_GetString(objv[0])); break; } } return TCL_OK; } /* ** Tclcmd: bgckpt CMDNAME FILENAME */ static int SQLITE_TCLAPI bgckpt_cmd( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ const char *zCmd; const char *zFilename; int rc; Checkpointer *pCkpt; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "CMDNAME FILENAME"); return TCL_ERROR; } zCmd = Tcl_GetString(objv[1]); zFilename = Tcl_GetString(objv[2]); rc = sqlite3_bgckpt_create(zFilename, &pCkpt); if( rc!=SQLITE_OK ){ Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite3ErrName(rc), -1)); return TCL_ERROR; } Tcl_CreateObjCommand(interp, zCmd, bgckpt_obj_cmd, (void*)pCkpt, bgckpt_del); Tcl_SetObjResult(interp, objv[1]); return TCL_OK; } int Bgckpt_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "bgckpt", bgckpt_cmd, 0, 0); return TCL_OK; } #endif /* SQLITE_TEST */ #else # include "tclsqlite.h" int Bgckpt_Init(Tcl_Interp *interp){ return TCL_OK; } #endif |
Changes to ext/wasm/api/sqlite3-worker1-promiser.c-pp.js.
︙ | ︙ | |||
331 332 333 334 335 336 337 | original: sqlite3Worker1Promiser }); //#if target=es6-module /** When built as a module, we export sqlite3Worker1Promiser.v2() instead of sqlite3Worker1Promise() because (A) its interface is more | | | | 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | original: sqlite3Worker1Promiser }); //#if target=es6-module /** When built as a module, we export sqlite3Worker1Promiser.v2() instead of sqlite3Worker1Promise() because (A) its interface is more conventional for ESM usage and (B) the ESM option export option for this API did not exist until v2 was created, so there's no backwards incompatibility. */ export default sqlite3Worker1Promiser.v2; //#endif /* target=es6-module */ //#else /* Built with the omit-oo1 flag. */ //#endif ifnot omit-oo1 |
Changes to ext/wasm/demo-worker1-promiser.c-pp.js.
︙ | ︙ | |||
111 112 113 114 115 116 117 | const mustNotReach = ()=>toss("This is not supposed to be reached."); await wtest('exec',{ sql: ["create table t(a,b)", "insert into t(a,b) values(1,2),(3,4),(5,6)" ].join(';'), resultRows: [], columnNames: [], | < | < < | 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | const mustNotReach = ()=>toss("This is not supposed to be reached."); await wtest('exec',{ sql: ["create table t(a,b)", "insert into t(a,b) values(1,2),(3,4),(5,6)" ].join(';'), resultRows: [], columnNames: [], countChanges: sqConfig.bigIntEnabled ? 64 : true }, function(ev){ ev = ev.result; T.assert(0===ev.resultRows.length) .assert(0===ev.columnNames.length) .assert(sqConfig.bigIntEnabled ? (3n===ev.changeCount) : (3===ev.changeCount)); }); await wtest('exec',{ sql: 'select a a, b b from t order by a', resultRows: [], columnNames: [], }, function(ev){ ev = ev.result; |
︙ | ︙ |
Changes to main.mk.
︙ | ︙ | |||
760 761 762 763 764 765 766 767 768 769 770 771 772 773 | # TESTSRC += \ $(TOP)/ext/expert/sqlite3expert.c \ $(TOP)/ext/expert/test_expert.c \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/appendvfs.c \ $(TOP)/ext/misc/basexx.c \ $(TOP)/ext/misc/carray.c \ $(TOP)/ext/misc/cksumvfs.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/csv.c \ $(TOP)/ext/misc/decimal.c \ $(TOP)/ext/misc/eval.c \ $(TOP)/ext/misc/explain.c \ | > | 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 | # TESTSRC += \ $(TOP)/ext/expert/sqlite3expert.c \ $(TOP)/ext/expert/test_expert.c \ $(TOP)/ext/misc/amatch.c \ $(TOP)/ext/misc/appendvfs.c \ $(TOP)/ext/misc/basexx.c \ $(TOP)/ext/misc/bgckpt.c \ $(TOP)/ext/misc/carray.c \ $(TOP)/ext/misc/cksumvfs.c \ $(TOP)/ext/misc/closure.c \ $(TOP)/ext/misc/csv.c \ $(TOP)/ext/misc/decimal.c \ $(TOP)/ext/misc/eval.c \ $(TOP)/ext/misc/explain.c \ |
︙ | ︙ |
Changes to src/btree.c.
︙ | ︙ | |||
3310 3311 3312 3313 3314 3315 3316 | if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>1 ){ goto page1_init_failed; } #else | | | | | | 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 | if( page1[18]>1 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>1 ){ goto page1_init_failed; } #else if( page1[18]>3 ){ pBt->btsFlags |= BTS_READ_ONLY; } if( page1[19]>3 ){ goto page1_init_failed; } /* If the read version is set to 2, this database should be accessed ** in WAL mode. If the log is not already open, open it now. Then ** return SQLITE_OK and return without populating BtShared.pPage1. ** The caller detects this and calls this function again. This is ** required as the version of page 1 currently in the page1 buffer ** may not be the latest version - there may be a newer one in the log ** file. */ if( page1[19]>=2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ int isOpen = 0; rc = sqlite3PagerOpenWal(pBt->pPager, (page1[19]==3), &isOpen); if( rc!=SQLITE_OK ){ goto page1_init_failed; }else{ setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1); if( isOpen==0 ){ releasePageOne(pPage1); return SQLITE_OK; |
︙ | ︙ | |||
11421 11422 11423 11424 11425 11426 11427 | ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. */ int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ BtShared *pBt = pBtree->pBt; int rc; /* Return code */ | | | 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 | ** "write version" (single byte at byte offset 19) fields in the database ** header to iVersion. */ int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ BtShared *pBt = pBtree->pBt; int rc; /* Return code */ assert( iVersion==1 || iVersion==2 || iVersion==3 ); /* If setting the version fields to 1, do not automatically open the ** WAL connection, even if the version fields are currently set to 2. */ pBt->btsFlags &= ~BTS_NO_WAL; if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 | ** a rollback transaction that switches from journal_mode=off ** to journal_mode=wal. */ assert( p->eLock>=RESERVED_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL ); } assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); break; case PAGER_WRITER_DBMOD: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( p->eLock>=EXCLUSIVE_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); assert( pPager->dbOrigSize<=pPager->dbHintSize ); break; case PAGER_WRITER_FINISHED: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); break; case PAGER_ERROR: /* There must be at least one outstanding reference to the pager if ** in ERROR state. Otherwise the pager should have already dropped | > > > | 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 | ** a rollback transaction that switches from journal_mode=off ** to journal_mode=wal. */ assert( p->eLock>=RESERVED_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || p->journalMode==PAGER_JOURNALMODE_WAL2 ); } assert( pPager->dbOrigSize==pPager->dbFileSize ); assert( pPager->dbOrigSize==pPager->dbHintSize ); break; case PAGER_WRITER_DBMOD: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( p->eLock>=EXCLUSIVE_LOCK ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || p->journalMode==PAGER_JOURNALMODE_WAL2 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); assert( pPager->dbOrigSize<=pPager->dbHintSize ); break; case PAGER_WRITER_FINISHED: assert( p->eLock==EXCLUSIVE_LOCK ); assert( pPager->errCode==SQLITE_OK ); assert( !pagerUseWal(pPager) ); assert( isOpen(p->jfd) || p->journalMode==PAGER_JOURNALMODE_OFF || p->journalMode==PAGER_JOURNALMODE_WAL || p->journalMode==PAGER_JOURNALMODE_WAL2 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) ); break; case PAGER_ERROR: /* There must be at least one outstanding reference to the pager if ** in ERROR state. Otherwise the pager should have already dropped |
︙ | ︙ | |||
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 | ** the database file, it will do so using an in-memory journal. */ int bDelete = !pPager->tempFile; assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL ); sqlite3OsClose(pPager->jfd); if( bDelete ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); } } } | > | 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 | ** the database file, it will do so using an in-memory journal. */ int bDelete = !pPager->tempFile; assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->journalMode==PAGER_JOURNALMODE_WAL || pPager->journalMode==PAGER_JOURNALMODE_WAL2 ); sqlite3OsClose(pPager->jfd); if( bDelete ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); } } } |
︙ | ︙ | |||
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 | */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); if( rc!=SQLITE_OK || changed ){ pager_reset(pPager); if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); } return rc; } #endif /* | > > > > | 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 | */ sqlite3WalEndReadTransaction(pPager->pWal); rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); if( rc!=SQLITE_OK || changed ){ pager_reset(pPager); if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); assert( pPager->journalMode==PAGER_JOURNALMODE_WAL || pPager->journalMode==PAGER_JOURNALMODE_WAL2 ); pPager->journalMode = sqlite3WalJournalMode(pPager->pWal); } return rc; } #endif /* |
︙ | ︙ | |||
3347 3348 3349 3350 3351 3352 3353 | rc = pagerPagecount(pPager, &nPage); if( rc ) return rc; if( nPage==0 ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); }else{ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); | | | | 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 | rc = pagerPagecount(pPager, &nPage); if( rc ) return rc; if( nPage==0 ){ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); }else{ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); rc = sqlite3PagerOpenWal(pPager, 0, 0); } }else if( pPager->journalMode>=PAGER_JOURNALMODE_WAL ){ pPager->journalMode = PAGER_JOURNALMODE_DELETE; } } } return rc; } #endif |
︙ | ︙ | |||
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 | SQLITE_PTRSIZE + /* Space to hold a pointer */ 4 + /* Database prefix */ (u64)nPathname + 1 + /* database filename */ (u64)nUriByte + /* query parameters */ (u64)nPathname + 8 + 1 + /* Journal filename */ #ifndef SQLITE_OMIT_WAL (u64)nPathname + 4 + 1 + /* WAL filename */ #endif 3 /* Terminator */ ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3DbFree(0, zPathname); return SQLITE_NOMEM_BKPT; | > | 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 | SQLITE_PTRSIZE + /* Space to hold a pointer */ 4 + /* Database prefix */ (u64)nPathname + 1 + /* database filename */ (u64)nUriByte + /* query parameters */ (u64)nPathname + 8 + 1 + /* Journal filename */ #ifndef SQLITE_OMIT_WAL (u64)nPathname + 4 + 1 + /* WAL filename */ nPathname + 5 + 1 + /* Second WAL filename */ #endif 3 /* Terminator */ ); assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); if( !pPtr ){ sqlite3DbFree(0, zPathname); return SQLITE_NOMEM_BKPT; |
︙ | ︙ | |||
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 | pPager->zWal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename, pPager->zWal); pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); #endif }else{ pPager->zWal = 0; } #endif (void)pPtr; /* Suppress warning about unused pPtr value */ if( nPathname ) sqlite3DbFree(0, zPathname); | > > | 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 | pPager->zWal = (char*)pPtr; memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; #ifdef SQLITE_ENABLE_8_3_NAMES sqlite3FileSuffix3(zFilename, pPager->zWal); pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); #endif memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; memcpy(pPtr, "-wal2", 5); pPtr += 5 + 1; }else{ pPager->zWal = 0; } #endif (void)pPtr; /* Suppress warning about unused pPtr value */ if( nPathname ) sqlite3DbFree(0, zPathname); |
︙ | ︙ | |||
7343 7344 7345 7346 7347 7348 7349 | /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */ || eMode==PAGER_JOURNALMODE_OFF /* 2 */ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */ | > | | 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 | /* The eMode parameter is always valid */ assert( eMode==PAGER_JOURNALMODE_DELETE /* 0 */ || eMode==PAGER_JOURNALMODE_PERSIST /* 1 */ || eMode==PAGER_JOURNALMODE_OFF /* 2 */ || eMode==PAGER_JOURNALMODE_TRUNCATE /* 3 */ || eMode==PAGER_JOURNALMODE_MEMORY /* 4 */ || eMode==PAGER_JOURNALMODE_WAL /* 5 */ || eMode==PAGER_JOURNALMODE_WAL2 /* 6 */ ); /* This routine is only called from the OP_JournalMode opcode, and ** the logic there will never allow a temporary file to be changed ** to WAL mode. */ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); |
︙ | ︙ | |||
7377 7378 7379 7380 7381 7382 7383 7384 7385 | */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); assert( isOpen(pPager->fd) || pPager->exclusiveMode ); | > | > > | 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 | */ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); assert( (PAGER_JOURNALMODE_WAL2 & 5)==4 ); assert( isOpen(pPager->fd) || pPager->exclusiveMode ); if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 && eMode!=PAGER_JOURNALMODE_WAL2 /* TODO: fix this if possible */ ){ /* In this case we would like to delete the journal file. If it is ** not possible, then that is not a problem. Deleting the journal file ** here is an optimization only. ** ** Before deleting the journal file, obtain a RESERVED lock on the ** database file. This ensures that the journal file is not deleted ** while it is in use by some other client. |
︙ | ︙ | |||
7554 7555 7556 7557 7558 7559 7560 | /* ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in ** exclusive-locking mode when this function is called, take an EXCLUSIVE ** lock on the database file and use heap-memory to store the wal-index ** in. Otherwise, use the normal shared-memory. */ | | | | 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 | /* ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in ** exclusive-locking mode when this function is called, take an EXCLUSIVE ** lock on the database file and use heap-memory to store the wal-index ** in. Otherwise, use the normal shared-memory. */ static int pagerOpenWal(Pager *pPager, int bWal2){ int rc = SQLITE_OK; assert( pPager->pWal==0 && pPager->tempFile==0 ); assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); /* If the pager is already in exclusive-mode, the WAL module will use ** heap-memory for the wal-index instead of the VFS shared-memory ** implementation. Take the exclusive lock now, before opening the WAL ** file, to make sure this is safe. */ if( pPager->exclusiveMode ){ rc = pagerExclusiveLock(pPager); } /* Open the connection to the log file. If this operation fails, ** (e.g. due to malloc() failure), return an error code. */ if( rc==SQLITE_OK ){ rc = sqlite3WalOpen(pPager->pVfs, pPager->fd, pPager->zWal, pPager->exclusiveMode, pPager->journalSizeLimit, bWal2, &pPager->pWal ); } pagerFixMaplimit(pPager); return rc; } |
︙ | ︙ | |||
7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 | ** ** If the pager is open on a temp-file (or in-memory database), or if ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK ** without doing anything. */ int sqlite3PagerOpenWal( Pager *pPager, /* Pager object */ int *pbOpen /* OUT: Set to true if call is a no-op */ ){ int rc = SQLITE_OK; /* Return code */ assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pbOpen ); assert( pPager->eState==PAGER_READER || !pbOpen ); assert( pbOpen==0 || *pbOpen==0 ); assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); if( !pPager->tempFile && !pPager->pWal ){ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; /* Close any rollback journal previously open */ sqlite3OsClose(pPager->jfd); | > | | | 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 | ** ** If the pager is open on a temp-file (or in-memory database), or if ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK ** without doing anything. */ int sqlite3PagerOpenWal( Pager *pPager, /* Pager object */ int bWal2, /* Open in wal2 mode if not already open */ int *pbOpen /* OUT: Set to true if call is a no-op */ ){ int rc = SQLITE_OK; /* Return code */ assert( assert_pager_state(pPager) ); assert( pPager->eState==PAGER_OPEN || pbOpen ); assert( pPager->eState==PAGER_READER || !pbOpen ); assert( pbOpen==0 || *pbOpen==0 ); assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); if( !pPager->tempFile && !pPager->pWal ){ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; /* Close any rollback journal previously open */ sqlite3OsClose(pPager->jfd); rc = pagerOpenWal(pPager, bWal2); if( rc==SQLITE_OK ){ pPager->journalMode = bWal2?PAGER_JOURNALMODE_WAL2:PAGER_JOURNALMODE_WAL; pPager->eState = PAGER_OPEN; } }else{ *pbOpen = 1; } return rc; |
︙ | ︙ | |||
7641 7642 7643 7644 7645 7646 7647 | ** EXCLUSIVE lock on the database file. If this cannot be obtained, an ** error (SQLITE_BUSY) is returned and the log connection is not closed. ** If successful, the EXCLUSIVE lock is not released before returning. */ int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ int rc = SQLITE_OK; | | > > | | 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 | ** EXCLUSIVE lock on the database file. If this cannot be obtained, an ** error (SQLITE_BUSY) is returned and the log connection is not closed. ** If successful, the EXCLUSIVE lock is not released before returning. */ int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ int rc = SQLITE_OK; assert( pPager->journalMode==PAGER_JOURNALMODE_WAL || pPager->journalMode==PAGER_JOURNALMODE_WAL2 ); /* If the log file is not already open, but does exist in the file-system, ** it may need to be checkpointed before the connection can switch to ** rollback mode. Open it now so this can happen. */ if( !pPager->pWal ){ int logexists = 0; rc = pagerLockDb(pPager, SHARED_LOCK); if( rc==SQLITE_OK ){ rc = sqlite3OsAccess( pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists ); } if( rc==SQLITE_OK && logexists ){ rc = pagerOpenWal(pPager, 0); } } /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on ** the database file, the log and log-summary files will be deleted. */ if( rc==SQLITE_OK && pPager->pWal ){ |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
78 79 80 81 82 83 84 85 | #define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ #define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ #define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ #define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ #define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ #define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ #define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ | > | | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | #define PAGER_JOURNALMODE_QUERY (-1) /* Query the value of journalmode */ #define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ #define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ #define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ #define PAGER_JOURNALMODE_TRUNCATE 3 /* Commit by truncating journal */ #define PAGER_JOURNALMODE_MEMORY 4 /* In-memory journal file */ #define PAGER_JOURNALMODE_WAL 5 /* Use write-ahead logging */ #define PAGER_JOURNALMODE_WAL2 6 /* Use write-ahead logging mode 2 */ #define isWalMode(x) ((x)==PAGER_JOURNALMODE_WAL || (x)==PAGER_JOURNALMODE_WAL2) /* ** The argument to this macro is a file descriptor (type sqlite3_file*). ** Return 0 if it is not open, or non-zero (but not 1) if it is. ** ** This is so that expressions can be written as: ** |
︙ | ︙ | |||
187 188 189 190 191 192 193 | int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); int sqlite3PagerSharedLock(Pager *pPager); #ifndef SQLITE_OMIT_WAL int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); int sqlite3PagerWalSupported(Pager *pPager); int sqlite3PagerWalCallback(Pager *pPager); | | | 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint); int sqlite3PagerSharedLock(Pager *pPager); #ifndef SQLITE_OMIT_WAL int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); int sqlite3PagerWalSupported(Pager *pPager); int sqlite3PagerWalCallback(Pager *pPager); int sqlite3PagerOpenWal(Pager *pPager, int, int *pisOpen); int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); # ifdef SQLITE_ENABLE_SNAPSHOT int sqlite3PagerSnapshotGet(Pager*, sqlite3_snapshot **ppSnapshot); int sqlite3PagerSnapshotOpen(Pager*, sqlite3_snapshot *pSnapshot); int sqlite3PagerSnapshotRecover(Pager *pPager); int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot); void sqlite3PagerSnapshotUnlock(Pager *pPager); |
︙ | ︙ |
Changes to src/pragma.c.
︙ | ︙ | |||
286 287 288 289 290 291 292 | ** defined in pager.h. This function returns the associated lowercase ** journal-mode name. */ const char *sqlite3JournalModename(int eMode){ static char * const azModeName[] = { "delete", "persist", "off", "truncate", "memory" #ifndef SQLITE_OMIT_WAL | | > | 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | ** defined in pager.h. This function returns the associated lowercase ** journal-mode name. */ const char *sqlite3JournalModename(int eMode){ static char * const azModeName[] = { "delete", "persist", "off", "truncate", "memory" #ifndef SQLITE_OMIT_WAL , "wal", "wal2" #endif }; assert( PAGER_JOURNALMODE_DELETE==0 ); assert( PAGER_JOURNALMODE_PERSIST==1 ); assert( PAGER_JOURNALMODE_OFF==2 ); assert( PAGER_JOURNALMODE_TRUNCATE==3 ); assert( PAGER_JOURNALMODE_MEMORY==4 ); assert( PAGER_JOURNALMODE_WAL==5 ); assert( PAGER_JOURNALMODE_WAL2==6 ); assert( eMode>=0 && eMode<=ArraySize(azModeName) ); if( eMode==ArraySize(azModeName) ) return 0; return azModeName[eMode]; } /* |
︙ | ︙ |
Changes to src/test_tclsh.c.
︙ | ︙ | |||
86 87 88 89 90 91 92 93 94 95 96 97 98 99 | #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) extern int TestSession_Init(Tcl_Interp*); #endif extern int Md5_Init(Tcl_Interp*); extern int Fts5tcl_Init(Tcl_Interp *); extern int SqliteRbu_Init(Tcl_Interp*); extern int Sqlitetesttcl_Init(Tcl_Interp*); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) extern int Sqlitetestfts3_Init(Tcl_Interp *interp); #endif #ifdef SQLITE_ENABLE_ZIPVFS extern int Zipvfs_Init(Tcl_Interp*); #endif extern int TestExpert_Init(Tcl_Interp*); | > | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) extern int TestSession_Init(Tcl_Interp*); #endif extern int Md5_Init(Tcl_Interp*); extern int Fts5tcl_Init(Tcl_Interp *); extern int SqliteRbu_Init(Tcl_Interp*); extern int Sqlitetesttcl_Init(Tcl_Interp*); extern int Bgckpt_Init(Tcl_Interp*); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) extern int Sqlitetestfts3_Init(Tcl_Interp *interp); #endif #ifdef SQLITE_ENABLE_ZIPVFS extern int Zipvfs_Init(Tcl_Interp*); #endif extern int TestExpert_Init(Tcl_Interp*); |
︙ | ︙ | |||
155 156 157 158 159 160 161 162 163 164 165 166 167 168 | SqlitetestSyscall_Init(interp); #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) TestSession_Init(interp); #endif Fts5tcl_Init(interp); SqliteRbu_Init(interp); Sqlitetesttcl_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif TestExpert_Init(interp); Sqlitetest_window_Init(interp); Sqlitetestvdbecov_Init(interp); | > > | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | SqlitetestSyscall_Init(interp); #if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK) TestSession_Init(interp); #endif Fts5tcl_Init(interp); SqliteRbu_Init(interp); Sqlitetesttcl_Init(interp); Bgckpt_Init(interp); #if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4) Sqlitetestfts3_Init(interp); #endif TestExpert_Init(interp); Sqlitetest_window_Init(interp); Sqlitetestvdbecov_Init(interp); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 | eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; pPager = sqlite3BtreePager(pBt); eOld = sqlite3PagerGetJournalMode(pPager); if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; assert( sqlite3BtreeHoldsMutex(pBt) ); if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; #ifndef SQLITE_OMIT_WAL zFilename = sqlite3PagerFilename(pPager, 1); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ | > | | | > > > > > | > > > > | > | > > | 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 | eNew = pOp->p3; assert( eNew==PAGER_JOURNALMODE_DELETE || eNew==PAGER_JOURNALMODE_TRUNCATE || eNew==PAGER_JOURNALMODE_PERSIST || eNew==PAGER_JOURNALMODE_OFF || eNew==PAGER_JOURNALMODE_MEMORY || eNew==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL2 || eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( p->readOnly==0 ); pBt = db->aDb[pOp->p1].pBt; pPager = sqlite3BtreePager(pBt); eOld = sqlite3PagerGetJournalMode(pPager); if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; assert( sqlite3BtreeHoldsMutex(pBt) ); if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; #ifndef SQLITE_OMIT_WAL zFilename = sqlite3PagerFilename(pPager, 1); /* Do not allow a transition to journal_mode=WAL for a database ** in temporary storage or if the VFS does not support shared memory */ if( isWalMode(eNew) && (sqlite3Strlen30(zFilename)==0 /* Temp file */ || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ ){ eNew = eOld; } if( eNew!=eOld && (isWalMode(eNew) || isWalMode(eOld)) ){ /* Prevent changing directly to wal2 from wal mode. And vice versa. */ if( isWalMode(eNew) && isWalMode(eOld) ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "cannot change from %s to %s mode", sqlite3JournalModename(eOld), sqlite3JournalModename(eNew) ); goto abort_due_to_error; } /* Prevent switching into or out of wal/wal2 mode mid-transaction */ if( !db->autoCommit || db->nVdbeRead>1 ){ rc = SQLITE_ERROR; sqlite3VdbeError(p, "cannot change %s wal mode from within a transaction", (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); goto abort_due_to_error; }else{ if( isWalMode(eOld) ){ /* If leaving WAL mode, close the log file. If successful, the call ** to PagerCloseWal() checkpoints and deletes the write-ahead-log ** file. An EXCLUSIVE lock may still be held on the database file ** after a successful return. */ rc = sqlite3PagerCloseWal(pPager, db); if( rc==SQLITE_OK ){ sqlite3PagerSetJournalMode(pPager, eNew); } }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ /* Cannot transition directly from MEMORY to WAL. Use mode OFF ** as an intermediate */ sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); } /* Open a transaction on the database file. Regardless of the journal ** mode, this transaction always uses a rollback journal. */ assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); if( rc==SQLITE_OK ){ /* 1==rollback, 2==wal, 3==wal2 */ rc = sqlite3BtreeSetVersion(pBt, 1 + isWalMode(eNew) + (eNew==PAGER_JOURNALMODE_WAL2) ); } } } #endif /* ifndef SQLITE_OMIT_WAL */ if( rc ) eNew = eOld; eNew = sqlite3PagerSetJournalMode(pPager, eNew); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
2946 2947 2948 2949 2950 2951 2952 | ** journal modes use a super-journal and which do not */ static const u8 aMJNeeded[] = { /* DELETE */ 1, /* PERSIST */ 1, /* OFF */ 0, /* TRUNCATE */ 1, /* MEMORY */ 0, | | > | 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 | ** journal modes use a super-journal and which do not */ static const u8 aMJNeeded[] = { /* DELETE */ 1, /* PERSIST */ 1, /* OFF */ 0, /* TRUNCATE */ 1, /* MEMORY */ 0, /* WAL */ 0, /* WAL2 */ 0 }; Pager *pPager; /* Pager associated with pBt */ needXcommit = 1; sqlite3BtreeEnter(pBt); pPager = sqlite3BtreePager(pBt); if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
97 98 99 100 101 102 103 | ** being considered valid at the same time and being checkpointing together ** following a crash. ** ** READER ALGORITHM ** ** To read a page from the database (call it page number P), a reader ** first checks the WAL to see if it contains page P. If so, then the | | | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | ** being considered valid at the same time and being checkpointing together ** following a crash. ** ** READER ALGORITHM ** ** To read a page from the database (call it page number P), a reader ** first checks the WAL to see if it contains page P. If so, then the ** last valid instance of page P that is followed by a commit frame ** or is a commit frame itself becomes the value read. If the WAL ** contains no copies of page P that are valid and which are a commit ** frame or are followed by a commit frame, then page P is read from ** the database file. ** ** To start a read transaction, the reader records the index of the last ** valid frame in the WAL. The reader uses this recorded "mxFrame" value |
︙ | ︙ | |||
232 233 234 235 236 237 238 | ** ** Note that entries are added in order of increasing K. Hence, one ** reader might be using some value K0 and a second reader that started ** at a later time (after additional transactions were added to the WAL ** and to the wal-index) might be using a different value K1, where K1>K0. ** Both readers can use the same hash table and mapping section to get ** the correct result. There may be entries in the hash table with | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | < | | > | | 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | ** ** Note that entries are added in order of increasing K. Hence, one ** reader might be using some value K0 and a second reader that started ** at a later time (after additional transactions were added to the WAL ** and to the wal-index) might be using a different value K1, where K1>K0. ** Both readers can use the same hash table and mapping section to get ** the correct result. There may be entries in the hash table with ** K>K0, but to the first reader those entries will appear to be unused ** slots in the hash table and so the first reader will get an answer as ** if no values greater than K0 had ever been inserted into the hash table ** in the first place - which is what reader one wants. Meanwhile, the ** second reader using K1 will see additional values that were inserted ** later, which is exactly what reader two wants. ** ** When a rollback occurs, the value of K is decreased. Hash table entries ** that correspond to frames greater than the new K value are removed ** from the hash table at this point. */ /* ** WAL2 NOTES ** ** This file also contains the implementation of "wal2" mode - activated ** using "PRAGMA journal_mode = wal2". Wal2 mode is very similar to wal ** mode, except that it uses two wal files instead of one. Under some ** circumstances, wal2 mode provides more concurrency than legacy wal ** mode. ** ** THE PROBLEM WAL2 SOLVES: ** ** In legacy wal mode, if a writer wishes to write to the database while ** a checkpoint is ongoing, it may append frames to the existing wal file. ** This means that after the checkpoint has finished, the wal file consists ** of a large block of checkpointed frames, followed by a block of ** uncheckpointed frames. In a deployment that features a high volume of ** write traffic, this may mean that the wal file is never completely ** checkpointed. And so grows indefinitely. ** ** An alternative is to use "PRAGMA wal_checkpoint=RESTART" or similar to ** force a complete checkpoint of the wal file. But this must: ** ** 1) Wait on all existing readers to finish, ** 2) Wait on any existing writer, and then block all new writers, ** 3) Do the checkpoint, ** 4) Wait on any new readers that started during steps 2 and 3. Writers ** are still blocked during this step. ** ** This means that in order to avoid the wal file growing indefinitely ** in a busy system, writers must periodically pause to allow a checkpoint ** to complete. In a system with long running readers, such pauses may be ** for a non-trivial amount of time. ** ** OVERVIEW OF SOLUTION ** ** Wal2 mode uses two wal files. After writers have grown the first wal ** file to a pre-configured size, they begin appending transactions to ** the second wal file. Once all existing readers are reading snapshots ** new enough to include the entire first wal file, a checkpointer can ** checkpoint it. ** ** Meanwhile, writers are writing transactions to the second wal file. ** Once that wal file has grown larger than the pre-configured size, each ** new writer checks if: ** ** * the first wal file has been checkpointed, and if so, if ** * there are no readers still reading from the first wal file (once ** it has been checkpointed, new readers read only from the second ** wal file). ** ** If both these conditions are true, the writer may switch back to the ** first wal file. Eventually, a checkpointer can checkpoint the second ** wal file, and so on. ** ** The wal file that writers are currently appending to (the one they ** don't have to check the above two criteria before writing to) is called ** the "current" wal file. ** ** The first wal file takes the same name as the wal file in legacy wal ** mode systems - "<db>-wal". The second is named "<db>-wal2". ** ** CHECKPOINTS ** ** The "pre-configured size" mentioned above is the value set by ** "PRAGMA journal_size_limit". Or, if journal_size_limit is not set, ** 1000 pages. ** ** There is only a single type of checkpoint in wal2 mode (no "truncate", ** "restart" etc.), and it always checkpoints the entire contents of a single ** wal file. A wal file cannot be checkpointed until after a writer has written ** the first transaction into the other wal file and all readers are reading a ** snapshot that includes at least one transaction from the other wal file. ** ** The wal-hook, if one is registered, is invoked after a write-transaction ** is committed, just as it is in legacy wal mode. The integer parameter ** passed to the wal-hook is the total number of uncheckpointed frames in both ** wal files. Except, the parameter is set to zero if there is no frames ** that may be checkpointed. This happens in two scenarios: ** ** 1. The "other" wal file (the one that the writer did not just append to) ** is completely empty, or ** ** 2. The "other" wal file (the one that the writer did not just append to) ** has already been checkpointed. ** ** ** WAL FILE FORMAT ** ** The file format used for each wal file in wal2 mode is the same as for ** legacy wal mode. Except, the file format field is set to 3021000 ** instead of 3007000. ** ** WAL-INDEX FORMAT ** ** The wal-index format is also very similar. Even though there are two ** wal files, there is still a single wal-index shared-memory area (*-shm ** file with the default unix or win32 VFS). The wal-index header is the ** same size, with the following exceptions it has the same format: ** ** * The version field is set to 3021000 instead of 3007000. ** ** * An unused 32-bit field in the legacy wal-index header is ** now used to store (a) a single bit indicating which of the ** two wal files writers should append to and (b) the number ** of frames in the second wal file (31 bits). ** ** The first hash table in the wal-index contains entries corresponding ** to the first HASHTABLE_NPAGE_ONE frames stored in the first wal file. ** The second hash table in the wal-index contains entries indexing the ** first HASHTABLE_NPAGE frames in the second wal file. The third hash ** table contains the next HASHTABLE_NPAGE frames in the first wal file, ** and so on. ** ** LOCKS ** ** Read-locks are simpler than for legacy wal mode. There are no locking ** slots that contain frame numbers. Instead, there are four distinct ** combinations of read locks a reader may hold: ** ** WAL_LOCK_PART1: "part" lock on first wal, none of second. ** WAL_LOCK_PART1_FULL2: "part" lock on first wal, "full" of second. ** WAL_LOCK_PART2: no lock on first wal, "part" lock on second. ** WAL_LOCK_PART2_FULL1: "full" lock on first wal, "part" lock on second. ** ** When a reader reads the wal-index header as part of opening a read ** transaction, it takes a "part" lock on the current wal file. "Part" ** because the wal file may grow while the read transaction is active, in ** which case the reader would be reading only part of the wal file. ** A part lock prevents a checkpointer from checkpointing the wal file ** on which it is held. ** ** If there is data in the non-current wal file that has not been ** checkpointed, the reader takes a "full" lock on that wal file. A ** "full" lock indicates that the reader is using the entire wal file. ** A full lock prevents a writer from overwriting the wal file on which ** it is held, but does not prevent a checkpointer from checkpointing ** it. ** ** There is still a single WRITER and a single CHECKPOINTER lock. The ** recovery procedure still takes the same exclusive lock on the entire ** range of SQLITE_SHM_NLOCK shm-locks. This works because the read-locks ** above use four of the six read-locking slots used by legacy wal mode. ** ** STARTUP/RECOVERY ** ** The read and write version fields of the database header in a wal2 ** database are set to 0x03, instead of 0x02 as in legacy wal mode. ** ** The wal file format used in wal2 mode is the same as the format used ** in legacy wal mode. However, in order to support recovery, there are two ** differences in the way wal file header fields are populated, as follows: ** ** * When the first wal file is first created, the "nCkpt" field in ** the wal file header is set to 0. Thereafter, each time the writer ** switches wal file, it sets the nCkpt field in the new wal file ** header to ((nCkpt0 + 1) & 0x0F), where nCkpt0 is the value in ** the previous wal file header. This means that the first wal file ** always has an even value in the nCkpt field, and the second wal ** file always has an odd value. ** ** * When a writer switches wal file, it sets the salt values in the ** new wal file to a copy of the checksum for the final frame in ** the previous wal file. ** ** Recovery proceeds as follows: ** ** 1. Each wal file is recovered separately. Except, if the first wal ** file does not exist or is zero bytes in size, the second wal file ** is truncated to zero bytes before it is "recovered". ** ** 2. If both wal files contain valid headers, then the nCkpt fields ** are compared to see which of the two wal files is older. If the ** salt keys in the second wal file match the final frame checksum ** in the older wal file, then both wal files are used. Otherwise, ** the newer wal file is ignored. ** ** 3. Or, if only one or neither of the wal files has a valid header, ** then only a single or no wal files are recovered into the ** reconstructed wal-index. ** ** Refer to header comments for walIndexRecover() for further details. */ #ifndef SQLITE_OMIT_WAL #include "wal.h" /* ** Trace output macros */ #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) int sqlite3WalTrace = 0; # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X #else # define WALTRACE(X) #endif /* ** Both the wal-file and the wal-index contain version fields ** indicating the current version of the system. If a client ** reads the header of a wal file (as part of recovery), or the ** wal-index (as part of opening a read transaction) and (a) the ** header checksum is correct but (b) the version field is not ** recognized, the operation fails with SQLITE_CANTOPEN. ** ** Currently, clients support both version-1 ("journal_mode=wal") and ** version-2 ("journal_mode=wal2"). Legacy clients may support version-1 ** only. */ #define WAL_VERSION1 3007000 /* For "journal_mode=wal" */ #define WAL_VERSION2 3021000 /* For "journal_mode=wal2" */ /* ** Index numbers for various locking bytes. WAL_NREADER is the number ** of available reader locks and should be at least 3. The default ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. ** ** Technically, the various VFSes are free to implement these locks however |
︙ | ︙ | |||
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | #define WAL_WRITE_LOCK 0 #define WAL_ALL_BUT_WRITE 1 #define WAL_CKPT_LOCK 1 #define WAL_RECOVER_LOCK 2 #define WAL_READ_LOCK(I) (3+(I)) #define WAL_NREADER (SQLITE_SHM_NLOCK-3) /* Object declarations */ typedef struct WalIndexHdr WalIndexHdr; typedef struct WalIterator WalIterator; typedef struct WalCkptInfo WalCkptInfo; /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object followed by one instance of the WalCkptInfo object. ** For all versions of SQLite through 3.10.0 and probably beyond, ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and ** the total header size is 136 bytes. ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was ** added in 3.7.1 when support for 64K pages was added. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | #define WAL_WRITE_LOCK 0 #define WAL_ALL_BUT_WRITE 1 #define WAL_CKPT_LOCK 1 #define WAL_RECOVER_LOCK 2 #define WAL_READ_LOCK(I) (3+(I)) #define WAL_NREADER (SQLITE_SHM_NLOCK-3) /* ** Values that may be stored in Wal.readLock in wal2 mode. ** ** In wal mode, the Wal.readLock member is set to -1 when no read-lock ** is held, or else is the index of the read-mark on which a lock is ** held. ** ** In wal2 mode, a value of -1 still indicates that no read-lock is held. ** And a non-zero value still represents the index of the read-mark on ** which a lock is held. There are two differences: ** ** 1. wal2 mode never uses read-mark 0. ** ** 2. locks on each read-mark have a different interpretation, as ** indicated by the symbolic names below. */ #define WAL_LOCK_NONE -1 #define WAL_LOCK_PART1 1 #define WAL_LOCK_PART1_FULL2 2 #define WAL_LOCK_PART2_FULL1 3 #define WAL_LOCK_PART2 4 /* ** This constant is used in wal2 mode only. ** ** In wal2 mode, when committing a transaction, if the current wal file ** is sufficiently large and there are no conflicting locks held, the ** writer writes the new transaction into the start of the other wal ** file. Usually, "sufficiently large" is defined by the value configured ** using "PRAGMA journal_size_limit". However, if no such value has been ** configured, sufficiently large defaults to WAL_DEFAULT_WALSIZE frames. */ #define WAL_DEFAULT_WALSIZE 1000 /* Object declarations */ typedef struct WalIndexHdr WalIndexHdr; typedef struct WalIterator WalIterator; typedef struct WalCkptInfo WalCkptInfo; /* ** The following object holds a copy of the wal-index header content. ** ** The actual header in the wal-index consists of two copies of this ** object followed by one instance of the WalCkptInfo object. ** For all versions of SQLite through 3.10.0 and probably beyond, ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and ** the total header size is 136 bytes. ** ** The szPage value can be any power of 2 between 512 and 32768, inclusive. ** Or it can be 1 to represent a 65536-byte page. The latter case was ** added in 3.7.1 when support for 64K pages was added. ** ** WAL2 mode notes: Member variable mxFrame2 is only used in wal2 mode ** (when iVersion is set to WAL_VERSION2). The lower 31 bits store ** the maximum frame number in file *-wal2. The most significant bit ** is a flag - set if clients are currently appending to *-wal2, clear ** otherwise. */ struct WalIndexHdr { u32 iVersion; /* Wal-index version */ u32 mxFrame2; /* See "WAL2 mode notes" above */ u32 iChange; /* Counter incremented each transaction */ u8 isInit; /* 1 when initialized */ u8 bigEndCksum; /* True if checksums in WAL are big-endian */ u16 szPage; /* Database page size in bytes. 1==64K */ u32 mxFrame; /* Index of last valid frame in each WAL */ u32 nPage; /* Size of database in pages */ u32 aFrameCksum[2]; /* Checksum of last frame in log */ u32 aSalt[2]; /* Two salt values copied from WAL header */ u32 aCksum[2]; /* Checksum over all prior fields */ }; /* ** The following macros and functions are get/set methods for the maximum ** frame numbers and current wal file values stored in the WalIndexHdr ** structure. These are helpful because of the unorthodox way in which ** the values are stored in wal2 mode (see above). They are equivalent ** to functions with the following signatures. ** ** u32 walidxGetMxFrame(WalIndexHdr*, int iWal); // get mxFrame ** void walidxSetMxFrame(WalIndexHdr*, int iWal, u32 val); // set mxFrame ** int walidxGetFile(WalIndexHdr*) // get file ** void walidxSetFile(WalIndexHdr*, int val); // set file */ #define walidxGetMxFrame(pHdr, iWal) \ ((iWal) ? ((pHdr)->mxFrame2 & 0x7FFFFFFF) : (pHdr)->mxFrame) static void walidxSetMxFrame(WalIndexHdr *pHdr, int iWal, u32 mxFrame){ if( iWal ){ pHdr->mxFrame2 = (pHdr->mxFrame2 & 0x80000000) | mxFrame; }else{ pHdr->mxFrame = mxFrame; } assert( walidxGetMxFrame(pHdr, iWal)==mxFrame ); } #define walidxGetFile(pHdr) (int)((pHdr)->mxFrame2 >> 31) #define walidxSetFile(pHdr, iWal) ( \ (pHdr)->mxFrame2 = ((pHdr)->mxFrame2 & 0x7FFFFFFF) | (((u32)(iWal))<<31) \ ) /* ** Argument is a pointer to a Wal structure. Return true if the current ** cache of the wal-index header indicates "journal_mode=wal2" mode, or ** false otherwise. */ #define isWalMode2(pWal) ((pWal)->hdr.iVersion==WAL_VERSION2) /* ** A copy of the following object occurs in the wal-index immediately ** following the second copy of the WalIndexHdr. This object stores ** information used by checkpoint. ** ** nBackfill is the number of frames in the WAL that have been written ** back into the database. (We call the act of moving content from WAL to |
︙ | ︙ | |||
507 508 509 510 511 512 513 | ** This is usually set to 1 whenever the WRITER lock is held. However, ** if it is set to 2, then the WRITER lock is held but must be released ** by walHandleException() if a SEH exception is thrown. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ | | > > > | 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 | ** This is usually set to 1 whenever the WRITER lock is held. However, ** if it is set to 2, then the WRITER lock is held but must be released ** by walHandleException() if a SEH exception is thrown. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *apWalFd[2]; /* File handle for "*-wal" and "*-wal2" */ u32 iCallback; /* Value to pass to log callback (or 0) */ i64 mxWalSize; /* Truncate WAL to this size upon reset */ int nWiData; /* Size of array apWiData */ int szFirstBlock; /* Size of first block written to WAL file */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u32 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 syncFlags; /* Flags to use to sync header writes */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ u8 truncateOnCommit; /* True to truncate WAL file on commit */ u8 syncHeader; /* Fsync the WAL header if true */ u8 padToSectorBoundary; /* Pad transactions out to the next sector */ u8 bShmUnreliable; /* SHM content is read-only and unreliable */ WalIndexHdr hdr; /* Wal-index header for current transaction */ u32 minFrame; /* Ignore wal frames before this one */ u32 iReCksum; /* On commit, recalculate checksums from here */ const char *zWalName; /* Name of WAL file */ const char *zWalName2; /* Name of second WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_USE_SEH u32 lockMask; /* Mask of locks held */ void *pFree; /* Pointer to sqlite3_free() if exception thrown */ u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ int iSysErrno; /* System error code following exception */ #endif #ifdef SQLITE_DEBUG int nSehTry; /* Number of nested SEH_TRY{} blocks */ u8 lockError; /* True if a locking error has occurred */ #endif #ifdef SQLITE_ENABLE_SNAPSHOT WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ int bGetSnapshot; /* Transaction opened for sqlite3_get_snapshot() */ #endif int bClosing; /* Set to true at start of sqlite3WalClose() */ int bWal2; /* bWal2 flag passed to WalOpen() */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT sqlite3 *db; #endif }; /* ** Candidate values for Wal.exclusiveMode. |
︙ | ︙ | |||
824 825 826 827 828 829 830 | } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); | < | 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 | } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it |
︙ | ︙ | |||
943 944 945 946 947 948 949 | */ static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); const int nCksum = offsetof(WalIndexHdr, aCksum); assert( pWal->writeLock ); pWal->hdr.isInit = 1; | | | 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 | */ static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); const int nCksum = offsetof(WalIndexHdr, aCksum); assert( pWal->writeLock ); pWal->hdr.isInit = 1; assert( pWal->hdr.iVersion==WAL_VERSION1||pWal->hdr.iVersion==WAL_VERSION2 ); walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); /* Possible TSAN false-positive. See tag-20200519-1 */ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); walShmBarrier(pWal); memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); } |
︙ | ︙ | |||
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 | pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; } }else if( NEVER(rc==SQLITE_OK) ){ rc = SQLITE_ERROR; } return rc; } /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) ); assert( iHash>=0 ); return iHash; } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); SEH_INJECT_FAULT; if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* ** Remove entries from the hash table that point to WAL slots greater ** than pWal->hdr.mxFrame. ** ** This function is called whenever pWal->hdr.mxFrame is decreased due ** to a rollback or savepoint. ** ** At most only the hash table containing pWal->hdr.mxFrame needs to be ** updated. Any later hash tables will be automatically cleared when ** pWal->hdr.mxFrame advances to the point where those hash tables are ** actually needed. */ static void walCleanupHash(Wal *pWal){ WalHashLoc sLoc; /* Hash table location */ int iLimit = 0; /* Zero values greater than this */ int nByte; /* Number of bytes to zero in aPgno[] */ int i; /* Used to iterate through aHash[] */ assert( pWal->writeLock ); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 | pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; } }else if( NEVER(rc==SQLITE_OK) ){ rc = SQLITE_ERROR; } return rc; } static u32 walExternalEncode(int iWal, u32 iFrame){ u32 iRet; if( iWal ){ iRet = HASHTABLE_NPAGE_ONE + iFrame; iRet += ((iFrame-1) / HASHTABLE_NPAGE) * HASHTABLE_NPAGE; }else{ iRet = iFrame; iFrame += HASHTABLE_NPAGE - HASHTABLE_NPAGE_ONE; iRet += ((iFrame-1) / HASHTABLE_NPAGE) * HASHTABLE_NPAGE; } return iRet; } /* ** Parameter iExternal is an external frame identifier. This function ** transforms it to a wal file number (0 or 1) and frame number within ** this wal file (reported via output parameter *piRead). */ static int walExternalDecode(u32 iExternal, u32 *piRead){ int iHash = (iExternal+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1)/HASHTABLE_NPAGE; if( 0==(iHash & 0x01) ){ /* A frame in wal file 0 */ *piRead = (iExternal <= HASHTABLE_NPAGE_ONE) ? iExternal : iExternal - (iHash/2) * HASHTABLE_NPAGE; return 0; } *piRead = iExternal - HASHTABLE_NPAGE_ONE - ((iHash-1)/2) * HASHTABLE_NPAGE; return 1; } /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) ); assert( iHash>=0 ); return iHash; } /* ** Return the index of the hash-table corresponding to frame iFrame of wal ** file iWal. */ static int walFramePage2(int iWal, u32 iFrame){ int iRet; assert( iWal==0 || iWal==1 ); assert( iFrame>0 ); if( iWal==0 ){ iRet = 2*((iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1)/HASHTABLE_NPAGE); }else{ iRet = 1 + 2 * ((iFrame-1) / HASHTABLE_NPAGE); } return iRet; } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); SEH_INJECT_FAULT; if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } static u32 walFramePgno2(Wal *pWal, int iWal, u32 iFrame){ return walFramePgno(pWal, walExternalEncode(iWal, iFrame)); } /* ** Remove entries from the hash table that point to WAL slots greater ** than pWal->hdr.mxFrame. ** ** This function is called whenever pWal->hdr.mxFrame is decreased due ** to a rollback or savepoint. ** ** At most only the hash table containing pWal->hdr.mxFrame needs to be ** updated. Any later hash tables will be automatically cleared when ** pWal->hdr.mxFrame advances to the point where those hash tables are ** actually needed. */ static void walCleanupHash(Wal *pWal){ WalHashLoc sLoc; /* Hash table location */ int iLimit = 0; /* Zero values greater than this */ int nByte; /* Number of bytes to zero in aPgno[] */ int i; /* Used to iterate through aHash[] */ int iWal = walidxGetFile(&pWal->hdr); u32 mxFrame = walidxGetMxFrame(&pWal->hdr, iWal); u32 iExternal; if( isWalMode2(pWal) ){ iExternal = walExternalEncode(iWal, mxFrame); }else{ assert( iWal==0 ); iExternal = mxFrame; } assert( pWal->writeLock ); testcase( mxFrame==HASHTABLE_NPAGE_ONE-1 ); testcase( mxFrame==HASHTABLE_NPAGE_ONE ); testcase( mxFrame==HASHTABLE_NPAGE_ONE+1 ); if( mxFrame==0 ) return; /* Obtain pointers to the hash-table and page-number array containing ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed ** that the page said hash-table and array reside on is already mapped.(1) */ assert( pWal->nWiData>walFramePage(iExternal) ); assert( pWal->apWiData[walFramePage(iExternal)] ); i = walHashGet(pWal, walFramePage(iExternal), &sLoc); if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ /* Zero all hash-table entries that correspond to frame numbers greater ** than pWal->hdr.mxFrame. */ iLimit = iExternal - sLoc.iZero; assert( iLimit>0 ); for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i]>iLimit ){ sLoc.aHash[i] = 0; } } |
︙ | ︙ | |||
1285 1286 1287 1288 1289 1290 1291 | } assert( sLoc.aHash[iKey]==j+1 ); } } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } | < | > | > > > > > > > | | | 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 | } assert( sLoc.aHash[iKey]==j+1 ); } } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } /* ** Set an entry in the wal-index that will map database page number ** pPage into WAL frame iFrame. */ static int walIndexAppend(Wal *pWal, int iWal, u32 iFrame, u32 iPage){ int rc; /* Return code */ WalHashLoc sLoc; /* Wal-index hash table location */ u32 iExternal; if( isWalMode2(pWal) ){ iExternal = walExternalEncode(iWal, iFrame); }else{ assert( iWal==0 ); iExternal = iFrame; } rc = walHashGet(pWal, walFramePage(iExternal), &sLoc); /* Assuming the wal-index file was successfully mapped, populate the ** page number array and hash table entry. */ if( rc==SQLITE_OK ){ int iKey; /* Hash table key */ int idx; /* Value to write to hash-table slot */ int nCollide; /* Number of hash collisions */ idx = iExternal - sLoc.iZero; assert( idx <= HASHTABLE_NSLOT/2 + 1 ); /* If this is the first entry to be added to this hash-table, zero the ** entire hash table and aPgno[] array before proceeding. */ if( idx==1 ){ int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); |
︙ | ︙ | |||
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 | } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } return rc; } /* ** Recover the wal-index by reading the write-ahead log file. ** ** This routine first tries to establish an exclusive lock on the ** wal-index to prevent other threads/processes from doing anything ** with the WAL or wal-index while recovery is running. The ** WAL_RECOVER_LOCK is also held so that other threads will know ** that this thread is running recovery. If unable to establish ** the necessary locks, this routine returns SQLITE_BUSY. */ static int walIndexRecover(Wal *pWal){ int rc; /* Return Code */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < > > > > | | < < < < | < < < < < < < < < < < < | < < < | < | < < < | | < < < < < < < > > | < < < < < | < < < < < < < < < | < | < | < < < | < < < < < < > | < < < | < | | < < < < < < > | < < | | < < < < > > > > > | < > | | < | | < | < < < < < < < < < | | < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < | > > > > > > > > > > > | > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > | > > | | | | | | | | | | < | | | > | < > | > > > > > > | | | > < | > > | 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 | } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } return rc; } /* ** Recover a single wal file - *-wal if iWal==0, or *-wal2 if iWal==1. */ static int walIndexRecoverOne(Wal *pWal, int iWal, u32 *pnCkpt, int *pbZero){ i64 nSize; /* Size of log file */ u32 aFrameCksum[2] = {0, 0}; int rc; sqlite3_file *pWalFd = pWal->apWalFd[iWal]; assert( iWal==0 || iWal==1 ); memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); sqlite3_randomness(8, pWal->hdr.aSalt); rc = sqlite3OsFileSize(pWalFd, &nSize); if( rc==SQLITE_OK ){ if( nSize>WAL_HDRSIZE ){ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ u32 *aPrivate = 0; /* Heap copy of *-shm pg being populated */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int szFrame; /* Number of bytes in buffer aFrame[] */ u8 *aData; /* Pointer to data part of aFrame buffer */ int szPage; /* Page size according to the log */ u32 magic; /* Magic value read from WAL header */ u32 version; /* Magic value read from WAL header */ int isValid; /* True if this frame is valid */ int iPg; /* Current 32KB wal-index page */ int iLastFrame; /* Last frame in wal, based on size alone */ int iLastPg; /* Last shm page used by this wal */ /* Read in the WAL header. */ rc = sqlite3OsRead(pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ return rc; } /* If the database page size is not a power of two, or is greater than ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid ** data. Similarly, if the 'magic' value is invalid, ignore the whole ** WAL file. */ magic = sqlite3Get4byte(&aBuf[0]); szPage = sqlite3Get4byte(&aBuf[8]); if( (magic&0xFFFFFFFE)!=WAL_MAGIC || szPage&(szPage-1) || szPage>SQLITE_MAX_PAGE_SIZE || szPage<512 ){ return SQLITE_OK; } pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); pWal->szPage = szPage; /* Verify that the WAL header checksum is correct */ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum ); if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) ){ return SQLITE_OK; } memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); *pnCkpt = sqlite3Get4byte(&aBuf[12]); /* Verify that the version number on the WAL format is one that ** are able to understand */ version = sqlite3Get4byte(&aBuf[4]); if( version!=WAL_VERSION1 && version!=WAL_VERSION2 ){ return SQLITE_CANTOPEN_BKPT; } pWal->hdr.iVersion = version; /* Malloc a buffer to read frames into. */ szFrame = szPage + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); SEH_FREE_ON_ERROR(0, aFrame); if( !aFrame ){ return SQLITE_NOMEM_BKPT; } aData = &aFrame[WAL_FRAME_HDRSIZE]; aPrivate = (u32*)&aData[szPage]; /* Read all frames from the log file. */ iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; if( version==WAL_VERSION2 ){ iLastPg = walFramePage2(iWal, iLastFrame); }else{ iLastPg = walFramePage(iLastFrame); } for(iPg=iWal; iPg<=iLastPg; iPg+=(version==WAL_VERSION2 ? 2 : 1)){ u32 *aShare; int iFrame; /* Index of last frame read */ int iLast; int iFirst; int nHdr, nHdr32; rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); assert( aShare!=0 || rc!=SQLITE_OK ); if( aShare==0 ) break; SEH_SET_ON_ERROR(iPg, aShare); pWal->apWiData[iPg] = aPrivate; if( iWal ){ assert( version==WAL_VERSION2 ); iFirst = 1 + (iPg/2)*HASHTABLE_NPAGE; iLast = iFirst + HASHTABLE_NPAGE - 1; }else{ int i2 = (version==WAL_VERSION2) ? (iPg/2) : iPg; iLast = HASHTABLE_NPAGE_ONE+i2*HASHTABLE_NPAGE; iFirst = 1 + (i2==0?0:HASHTABLE_NPAGE_ONE+(i2-1)*HASHTABLE_NPAGE); } iLast = MIN(iLast, iLastFrame); for(iFrame=iFirst; iFrame<=iLast; iFrame++){ i64 iOffset = walFrameOffset(iFrame, szPage); u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWalFd, aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); if( !isValid ) break; rc = walIndexAppend(pWal, iWal, iFrame, pgno); if( NEVER(rc!=SQLITE_OK) ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ pWal->hdr.mxFrame = iFrame; pWal->hdr.nPage = nTruncate; pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; } } pWal->apWiData[iPg] = aShare; SEH_SET_ON_ERROR(0, 0); nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); nHdr32 = nHdr / sizeof(u32); #ifndef SQLITE_SAFER_WALINDEX_RECOVERY /* Memcpy() should work fine here, on all reasonable implementations. ** Technically, memcpy() might change the destination to some ** intermediate value before setting to the final value, and that might ** cause a concurrent reader to malfunction. Memcpy() is allowed to ** do that, according to the spec, but no memcpy() implementation that ** we know of actually does that, which is why we say that memcpy() ** is safe for this. Memcpy() is certainly a lot faster. */ memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); #else /* In the event that some platform is found for which memcpy() ** changes the destination to some intermediate value before ** setting the final value, this alternative copy routine is ** provided. */ { int i; for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ if( aShare[i]!=aPrivate[i] ){ /* Atomic memory operations are not required here because if ** the value needs to be changed, that means it is not being ** accessed concurrently. */ aShare[i] = aPrivate[i]; } } } #endif SEH_INJECT_FAULT; if( iFrame<=iLast ) break; } SEH_FREE_ON_ERROR(aFrame, 0); sqlite3_free(aFrame); }else if( pbZero ){ *pbZero = 1; } } pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; return rc; } static int walOpenWal2(Wal *pWal){ int rc = SQLITE_OK; if( !isOpen(pWal->apWalFd[1]) ){ int f = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); rc = sqlite3OsOpen(pWal->pVfs, pWal->zWalName2, pWal->apWalFd[1], f, &f); } return rc; } static int walTruncateWal2(Wal *pWal){ int bIs; int rc; assert( !isOpen(pWal->apWalFd[1]) ); rc = sqlite3OsAccess(pWal->pVfs, pWal->zWalName2, SQLITE_ACCESS_EXISTS, &bIs); if( rc==SQLITE_OK && bIs ){ rc = walOpenWal2(pWal); if( rc==SQLITE_OK ){ rc = sqlite3OsTruncate(pWal->apWalFd[1], 0); sqlite3OsClose(pWal->apWalFd[1]); } } return rc; } /* ** Recover the wal-index by reading the write-ahead log file. ** ** This routine first tries to establish an exclusive lock on the ** wal-index to prevent other threads/processes from doing anything ** with the WAL or wal-index while recovery is running. The ** WAL_RECOVER_LOCK is also held so that other threads will know ** that this thread is running recovery. If unable to establish ** the necessary locks, this routine returns SQLITE_BUSY. */ static int walIndexRecover(Wal *pWal){ int rc; /* Return Code */ int iLock; /* Lock offset to lock for checkpoint */ u32 nCkpt1 = 0xFFFFFFFF; u32 nCkpt2 = 0xFFFFFFFF; int bZero = 0; WalIndexHdr hdr; /* Obtain an exclusive lock on all byte in the locking range not already ** locked by the caller. The caller is guaranteed to have locked the ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. ** If successful, the same bytes that are locked here are unlocked before ** this function returns. */ assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); assert( pWal->writeLock ); iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); if( rc ){ return rc; } WALTRACE(("WAL%p: recovery begin...\n", pWal)); /* Recover the *-wal file. If a valid version-1 header is recovered ** from it, do not open the *-wal2 file. Even if it exists. ** ** Otherwise, if the *-wal2 file exists or if the "wal2" flag was ** specified when sqlite3WalOpen() was called, open and recover ** the *-wal2 file. Except, if the *-wal file was zero bytes in size, ** truncate the *-wal2 to zero bytes in size. ** ** After this block has run, if the *-wal2 file is open the system ** starts up in VERSION2 mode. In this case pWal->hdr contains the ** wal-index header considering only *-wal2. Stack variable hdr ** contains the wal-index header considering only *-wal. The hash ** tables are populated for both. ** ** Or, if the *-wal2 file is not open, start up in VERSION1 mode. ** pWal->hdr is already populated. */ rc = walIndexRecoverOne(pWal, 0, &nCkpt1, &bZero); assert( pWal->hdr.iVersion==0 || pWal->hdr.iVersion==WAL_VERSION1 || pWal->hdr.iVersion==WAL_VERSION2 ); if( rc==SQLITE_OK && bZero ){ rc = walTruncateWal2(pWal); } if( rc==SQLITE_OK && pWal->hdr.iVersion!=WAL_VERSION1 ){ int bOpen = 1; sqlite3_vfs *pVfs = pWal->pVfs; if( pWal->hdr.iVersion==0 && pWal->bWal2==0 ){ rc = sqlite3OsAccess(pVfs, pWal->zWalName2, SQLITE_ACCESS_EXISTS, &bOpen); } if( rc==SQLITE_OK && bOpen ){ rc = walOpenWal2(pWal); if( rc==SQLITE_OK ){ hdr = pWal->hdr; rc = walIndexRecoverOne(pWal, 1, &nCkpt2, 0); } } } if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo; if( isOpen(pWal->apWalFd[1]) ){ /* The case where *-wal2 may follow *-wal */ if( nCkpt2<=0x0F && nCkpt2==nCkpt1+1 ){ if( pWal->hdr.mxFrame && sqlite3Get4byte((u8*)(&pWal->hdr.aSalt[0]))==hdr.aFrameCksum[0] && sqlite3Get4byte((u8*)(&pWal->hdr.aSalt[1]))==hdr.aFrameCksum[1] ){ walidxSetFile(&pWal->hdr, 1); walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame); walidxSetMxFrame(&pWal->hdr, 0, hdr.mxFrame); }else{ pWal->hdr = hdr; } }else /* When *-wal may follow *-wal2 */ if( (nCkpt2==0x0F && nCkpt1==0) || (nCkpt2<0x0F && nCkpt2==nCkpt1-1) ){ if( hdr.mxFrame && sqlite3Get4byte((u8*)(&hdr.aSalt[0]))==pWal->hdr.aFrameCksum[0] && sqlite3Get4byte((u8*)(&hdr.aSalt[1]))==pWal->hdr.aFrameCksum[1] ){ SWAP(WalIndexHdr, pWal->hdr, hdr); walidxSetMxFrame(&pWal->hdr, 1, hdr.mxFrame); }else{ walidxSetFile(&pWal->hdr, 1); walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame); walidxSetMxFrame(&pWal->hdr, 0, 0); } }else /* Fallback */ if( nCkpt1<=nCkpt2 ){ pWal->hdr = hdr; }else{ walidxSetFile(&pWal->hdr, 1); walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame); walidxSetMxFrame(&pWal->hdr, 0, 0); } pWal->hdr.iVersion = WAL_VERSION2; }else{ pWal->hdr.iVersion = WAL_VERSION1; } walIndexWriteHdr(pWal); /* Reset the checkpoint-header. This is safe because this thread is ** currently holding locks that exclude all other writers and ** checkpointers. Then set the values of read-mark slots 1 through N. */ pInfo = walCkptInfo(pWal); memset((void*)pInfo, 0, sizeof(WalCkptInfo)); if( 0==isWalMode2(pWal) ){ int i; pInfo->nBackfillAttempted = pWal->hdr.mxFrame; pInfo->aReadMark[0] = 0; for(i=1; i<WAL_NREADER; i++){ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ if( i==1 && pWal->hdr.mxFrame ){ pInfo->aReadMark[i] = pWal->hdr.mxFrame; }else{ pInfo->aReadMark[i] = READMARK_NOT_USED; } walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc!=SQLITE_BUSY ){ break; } } } /* If more than one frame was recovered from the log file, report an ** event via sqlite3_log(). This is to help with identifying performance ** problems caused by applications routinely shutting down without ** checkpointing the log file. */ if( pWal->hdr.nPage ){ if( isWalMode2(pWal) ){ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, "recovered (%d,%d) frames from WAL files %s[2] (wal2 mode)", walidxGetMxFrame(&pWal->hdr, 0), walidxGetMxFrame(&pWal->hdr, 1), pWal->zWalName ); }else{ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, "recovered %d frames from WAL file %s", pWal->hdr.mxFrame, pWal->zWalName ); } } } WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); return rc; } /* ** Close an open wal-index and wal files. */ static void walIndexClose(Wal *pWal, int isDelete){ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ int i; for(i=0; i<pWal->nWiData; i++){ sqlite3_free((void *)pWal->apWiData[i]); pWal->apWiData[i] = 0; } } if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ sqlite3OsShmUnmap(pWal->pDbFd, isDelete); } sqlite3OsClose(pWal->apWalFd[0]); sqlite3OsClose(pWal->apWalFd[1]); } /* ** Open a connection to the WAL file zWalName. The database file must ** already be opened on connection pDbFd. The buffer that zWalName points ** to must remain valid for the lifetime of the returned Wal* handle. ** |
︙ | ︙ | |||
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 | */ int sqlite3WalOpen( sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ sqlite3_file *pDbFd, /* The open database file */ const char *zWalName, /* Name of the WAL file */ int bNoShm, /* True to run in heap-memory mode */ i64 mxWalSize, /* Truncate WAL to this size on reset */ Wal **ppWal /* OUT: Allocated Wal handle */ ){ int rc; /* Return Code */ Wal *pRet; /* Object to allocate and return */ int flags; /* Flags passed to OsOpen() */ assert( zWalName && zWalName[0] ); assert( pDbFd ); /* Verify the values of various constants. Any changes to the values ** of these constants would result in an incompatible on-disk format ** for the -shm file. Any change that causes one of these asserts to | > > | 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 | */ int sqlite3WalOpen( sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ sqlite3_file *pDbFd, /* The open database file */ const char *zWalName, /* Name of the WAL file */ int bNoShm, /* True to run in heap-memory mode */ i64 mxWalSize, /* Truncate WAL to this size on reset */ int bWal2, /* True to open in wal2 mode */ Wal **ppWal /* OUT: Allocated Wal handle */ ){ int rc; /* Return Code */ Wal *pRet; /* Object to allocate and return */ int flags; /* Flags passed to OsOpen() */ int nByte; /* Bytes of space to allocate */ assert( zWalName && zWalName[0] ); assert( pDbFd ); /* Verify the values of various constants. Any changes to the values ** of these constants would result in an incompatible on-disk format ** for the -shm file. Any change that causes one of these asserts to |
︙ | ︙ | |||
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 | #ifdef WIN_SHM_BASE assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif #ifdef UNIX_SHM_BASE assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif /* Allocate an instance of struct Wal to return. */ *ppWal = 0; | > | | > | > > | | < | 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 | #ifdef WIN_SHM_BASE assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif #ifdef UNIX_SHM_BASE assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); #endif nByte = sizeof(Wal) + pVfs->szOsFile*2; /* Allocate an instance of struct Wal to return. */ *ppWal = 0; pRet = (Wal*)sqlite3MallocZero(nByte); if( !pRet ){ return SQLITE_NOMEM_BKPT; } pRet->pVfs = pVfs; pRet->apWalFd[0] = (sqlite3_file*)((char*)pRet+sizeof(Wal)); pRet->apWalFd[1] = (sqlite3_file*)((char*)pRet+sizeof(Wal)+pVfs->szOsFile); pRet->pDbFd = pDbFd; pRet->readLock = WAL_LOCK_NONE; pRet->mxWalSize = mxWalSize; pRet->zWalName = zWalName; pRet->syncHeader = 1; pRet->padToSectorBoundary = 1; pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); pRet->bWal2 = bWal2; pRet->zWalName2 = &zWalName[sqlite3Strlen30(zWalName)+1]; /* Open a file handle on the first write-ahead log file. */ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); rc = sqlite3OsOpen(pVfs, zWalName, pRet->apWalFd[0], flags, &flags); if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ pRet->readOnly = WAL_RDONLY; } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3_free(pRet); }else{ int iDC = sqlite3OsDeviceCharacteristics(pDbFd); if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ pRet->padToSectorBoundary = 0; } |
︙ | ︙ | |||
1932 1933 1934 1935 1936 1937 1938 | */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Construct a WalInterator object that can be used to loop over all | | | | | | > > > > > > > > > > > | | > > > > | > > < | > > > > > > > > > | > | | | | | | | | | 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 | */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Construct a WalInterator object that can be used to loop over all ** pages in wal file iWal following frame nBackfill in ascending order. Frames ** nBackfill or earlier may be included - excluding them is an optimization ** only. The caller must hold the checkpoint lock. ** ** On success, make *pp point to the newly allocated WalIterator object ** and return SQLITE_OK. Otherwise, return an error code. If this routine ** returns an error, the final value of *pp is undefined. ** ** The calling routine should invoke walIteratorFree() to destroy the ** WalIterator object when it has finished with it. */ static int walIteratorInit( Wal *pWal, int iWal, u32 nBackfill, WalIterator **pp ){ WalIterator *p; /* Return value */ int nSegment; /* Number of segments to merge */ u32 iLast; /* Last frame in log */ sqlite3_int64 nByte; /* Number of bytes to allocate */ int i; /* Iterator variable */ int iLastSeg; /* Last hash table to iterate though */ ht_slot *aTmp; /* Temp space used by merge-sort */ int rc = SQLITE_OK; /* Return Code */ int iMode = isWalMode2(pWal) ? 2 : 1; assert( isWalMode2(pWal) || iWal==0 ); assert( 0==isWalMode2(pWal) || nBackfill==0 ); /* This routine only runs while holding the checkpoint lock. And ** it only runs if there is actually content in the log (mxFrame>0). */ iLast = walidxGetMxFrame(&pWal->hdr, iWal); assert( pWal->ckptLock && iLast>0 ); if( iMode==2 ){ iLastSeg = walFramePage2(iWal, iLast); }else{ iLastSeg = walFramePage(iLast); } nSegment = 1 + (iLastSeg/iMode); /* Allocate space for the WalIterator object. */ nByte = SZ_WALITERATOR(nSegment) + iLast*sizeof(ht_slot); p = (WalIterator *)sqlite3_malloc64(nByte + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) ); if( !p ){ return SQLITE_NOMEM_BKPT; } memset(p, 0, nByte); p->nSegment = nSegment; aTmp = (ht_slot*)&(((u8*)p)[nByte]); SEH_FREE_ON_ERROR(0, p); i = iMode==2 ? iWal : walFramePage(nBackfill+1); for(; rc==SQLITE_OK && i<=iLastSeg; i+=iMode){ WalHashLoc sLoc; rc = walHashGet(pWal, i, &sLoc); if( rc==SQLITE_OK ){ int j; /* Counter variable */ int nEntry; /* Number of entries in this segment */ ht_slot *aIndex; /* Sorted index for this segment */ u32 iZero; if( iMode==2 ){ walExternalDecode(sLoc.iZero+1, &iZero); iZero--; assert( iZero==0 || i>=2 ); }else{ iZero = sLoc.iZero; } if( i==iLastSeg ){ nEntry = (int)(iLast - iZero); }else{ nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); } aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; iZero++; for(j=0; j<nEntry; j++){ aIndex[j] = (ht_slot)j; } walMergesort((u32*)sLoc.aPgno, aTmp, aIndex, &nEntry); p->aSegment[i/iMode].iZero = iZero; p->aSegment[i/iMode].nEntry = nEntry; p->aSegment[i/iMode].aIndex = aIndex; p->aSegment[i/iMode].aPgno = (u32*)sLoc.aPgno; } } if( rc!=SQLITE_OK ){ SEH_FREE_ON_ERROR(p, 0); walIteratorFree(p); p = 0; } |
︙ | ︙ | |||
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 | ** new wal-index header. It should be passed a pseudo-random value (i.e. ** one obtained from sqlite3_randomness()). */ static void walRestartHdr(Wal *pWal, u32 salt1){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); memcpy(&pWal->hdr.aSalt[1], &salt1, 4); walIndexWriteHdr(pWal); AtomicStore(&pInfo->nBackfill, 0); pInfo->nBackfillAttempted = 0; pInfo->aReadMark[1] = 0; for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; assert( pInfo->aReadMark[0]==0 ); } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 | ** new wal-index header. It should be passed a pseudo-random value (i.e. ** one obtained from sqlite3_randomness()). */ static void walRestartHdr(Wal *pWal, u32 salt1){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int i; /* Loop counter */ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ assert( isWalMode2(pWal)==0 ); pWal->nCkpt++; pWal->hdr.mxFrame = 0; sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); memcpy(&pWal->hdr.aSalt[1], &salt1, 4); walIndexWriteHdr(pWal); AtomicStore(&pInfo->nBackfill, 0); pInfo->nBackfillAttempted = 0; pInfo->aReadMark[1] = 0; for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; assert( pInfo->aReadMark[0]==0 ); } /* ** This function is used in wal2 mode. ** ** This function is called when writer pWal is just about to start ** writing out frames. Parameter iApp is the current wal file. The "other" wal ** file (wal file !iApp) has been fully checkpointed. This function returns ** SQLITE_OK if there are no readers preventing the writer from switching to ** the other wal file. Or SQLITE_BUSY if there are. */ static int wal2RestartOk(Wal *pWal, int iApp){ /* The other wal file (wal file !iApp) can be overwritten if there ** are no readers reading from it - no "full" or "partial" locks. ** Technically speaking it is not possible for any reader to hold ** a "part" lock, as this would have prevented the file from being ** checkpointed. But checking anyway doesn't hurt. The following ** is equivalent to: ** ** if( iApp==0 ) eLock = WAL_LOCK_PART1_FULL2; ** if( iApp==1 ) eLock = WAL_LOCK_PART1; */ int eLock = 1 + (iApp==0); assert( WAL_LOCK_PART1==1 ); assert( WAL_LOCK_PART1_FULL2==2 ); assert( WAL_LOCK_PART2_FULL1==3 ); assert( WAL_LOCK_PART2==4 ); assert( iApp!=0 || eLock==WAL_LOCK_PART1_FULL2 ); assert( iApp!=1 || eLock==WAL_LOCK_PART1 ); return walLockExclusive(pWal, WAL_READ_LOCK(eLock), 3); } static void wal2RestartFinished(Wal *pWal, int iApp){ walUnlockExclusive(pWal, WAL_READ_LOCK(1 + (iApp==0)), 3); } /* ** This function is used in wal2 mode. ** ** This function is called when a checkpointer wishes to checkpoint wal ** file iCkpt. It takes the required lock and, if successful, returns ** SQLITE_OK. Otherwise, an SQLite error code (e.g. SQLITE_BUSY). If this ** function returns SQLITE_OK, it is the responsibility of the caller ** to invoke wal2CheckpointFinished() to release the lock. */ static int wal2CheckpointOk(Wal *pWal, int iCkpt){ int eLock = 1 + (iCkpt*2); assert( WAL_LOCK_PART1==1 ); assert( WAL_LOCK_PART1_FULL2==2 ); assert( WAL_LOCK_PART2_FULL1==3 ); assert( WAL_LOCK_PART2==4 ); assert( iCkpt!=0 || eLock==WAL_LOCK_PART1 ); assert( iCkpt!=1 || eLock==WAL_LOCK_PART2_FULL1 ); return walLockExclusive(pWal, WAL_READ_LOCK(eLock), 2); } static void wal2CheckpointFinished(Wal *pWal, int iCkpt){ walUnlockExclusive(pWal, WAL_READ_LOCK(1 + (iCkpt*2)), 2); } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page |
︙ | ︙ | |||
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 | WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ szPage = walPagesize(pWal); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pInfo = walCkptInfo(pWal); | > > > > | > > > > > > > > > > > | | | | > | | | | | | | | | | | | | | | | > | > | | | | > > | | | < > | | > < > | > > > > > > | | > | | > | | | | | | < > > | > > | | 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 | WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ u32 mxPage; /* Max database page to write */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ int bWal2 = isWalMode2(pWal); /* True for wal2 connections */ int iCkpt = bWal2 ? !walidxGetFile(&pWal->hdr) : 0; mxSafeFrame = walidxGetMxFrame(&pWal->hdr, iCkpt); szPage = walPagesize(pWal); testcase( szPage<=32768 ); testcase( szPage>=65536 ); pInfo = walCkptInfo(pWal); if( (bWal2==1 && pInfo->nBackfill==0 && mxSafeFrame) || (bWal2==0 && pInfo->nBackfill<mxSafeFrame) ){ sqlite3_file *pWalFd = pWal->apWalFd[iCkpt]; mxPage = pWal->hdr.nPage; /* If this is a wal2 system, check for a reader holding a lock ** preventing this checkpoint operation. If one is found, return ** early. */ if( bWal2 ){ rc = wal2CheckpointOk(pWal, iCkpt); if( rc!=SQLITE_OK ) return rc; } /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); /* If this is a wal system (not wal2), compute in mxSafeFrame the index ** of the last frame of the WAL that is safe to write into the database. ** Frames beyond mxSafeFrame might overwrite database pages that are in ** use by active readers and thus cannot be backfilled from the WAL. */ if( bWal2==0 ){ mxSafeFrame = pWal->hdr.mxFrame; mxPage = pWal->hdr.nPage; for(i=1; i<WAL_NREADER; i++){ u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; if( mxSafeFrame>y ){ assert( y<=pWal->hdr.mxFrame ); rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); }else if( rc==SQLITE_BUSY ){ mxSafeFrame = y; xBusy = 0; }else{ goto walcheckpoint_out; } } } } /* Allocate the iterator */ if( bWal2 || pInfo->nBackfill<mxSafeFrame ){ assert( bWal2==0 || pInfo->nBackfill==0 ); rc = walIteratorInit(pWal, iCkpt, pInfo->nBackfill, &pIter); assert( rc==SQLITE_OK || pIter==0 ); } if( pIter && (bWal2 || (rc = walBusyLock(pWal, xBusy, pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK )){ u32 nBackfill = pInfo->nBackfill; assert( bWal2==0 || nBackfill==0 ); pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; /* Sync the wal file being checkpointed to disk */ rc = sqlite3OsSync(pWalFd, CKPT_SYNC_FLAGS(sync_flags)); /* If the database may grow as a result of this checkpoint, hint ** about the eventual size of the db file to the VFS layer. */ if( rc==SQLITE_OK ){ i64 nReq = ((i64)mxPage * szPage); i64 nSize; /* Current size of database file */ sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); if( rc==SQLITE_OK && nSize<nReq ){ i64 mx = pWal->hdr.mxFrame + (bWal2?walidxGetMxFrame(&pWal->hdr,1):0); if( (nSize+65536+mx*szPage)<nReq ){ /* If the size of the final database is larger than the current ** database plus the amount of data in the wal file, plus the ** maximum size of the pending-byte page (65536 bytes), then ** must be corruption somewhere. Or in the case of wal2 mode, ** plus the amount of data in both wal files. */ rc = SQLITE_CORRUPT_BKPT; }else{ sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); } } } /* Iterate through the contents of the WAL, copying data to the db file */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ i64 iOffset; assert( bWal2==1 || walFramePgno(pWal, iFrame)==iDbpage ); assert( bWal2==0 || walFramePgno2(pWal, iCkpt, iFrame)==iDbpage ); SEH_INJECT_FAULT; if( AtomicLoad(&db->u1.isInterrupted) ){ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; break; } if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ assert( bWal2==0 || iDbpage>mxPage ); continue; } iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; WALTRACE(("WAL%p: checkpoint frame %d of wal %d to db page %d\n", pWal, (int)iFrame, iCkpt, (int)iDbpage )); /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ rc = sqlite3OsRead(pWalFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; iOffset = (iDbpage-1)*(i64)szPage; testcase( IS_BIG_INT(iOffset) ); rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); if( rc!=SQLITE_OK ) break; } sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); /* If work was actually accomplished, truncate the db file, sync the wal ** file and set WalCkptInfo.nBackfill to indicate so. */ if( rc==SQLITE_OK && (bWal2 || mxSafeFrame==walIndexHdr(pWal)->mxFrame) ){ if( !bWal2 ){ i64 szDb = pWal->hdr.nPage*(i64)szPage; testcase( IS_BIG_INT(szDb) ); rc = sqlite3OsTruncate(pWal->pDbFd, szDb); } if( rc==SQLITE_OK ){ rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); } } if( rc==SQLITE_OK ){ AtomicStore(&pInfo->nBackfill, (bWal2 ? 1 : mxSafeFrame)); SEH_INJECT_FAULT; } /* Release the reader lock held while backfilling */ if( bWal2==0 ){ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); } } if( rc==SQLITE_BUSY ){ /* Reset the return code so as not to report a checkpoint failure ** just because there are active readers. */ rc = SQLITE_OK; } if( bWal2 ) wal2CheckpointFinished(pWal, iCkpt); } /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the ** entire wal file has been copied into the database file, then block ** until all readers have finished using the wal file. This ensures that ** the next process to write to the database restarts the wal file. */ if( bWal2==0 && rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ assert( pWal->writeLock ); SEH_INJECT_FAULT; if( pInfo->nBackfill<pWal->hdr.mxFrame ){ rc = SQLITE_BUSY; }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ u32 salt1; sqlite3_randomness(4, &salt1); |
︙ | ︙ | |||
2359 2360 2361 2362 2363 2364 2365 | ** writer clients should see that the entire log file has been ** checkpointed and behave accordingly. This seems unsafe though, ** as it would leave the system in a state where the contents of ** the wal-index header do not match the contents of the ** file-system. To avoid this, update the wal-index header to ** indicate that the log file contains zero valid frames. */ walRestartHdr(pWal, salt1); | | > | | | | | | | | | | > | 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 | ** writer clients should see that the entire log file has been ** checkpointed and behave accordingly. This seems unsafe though, ** as it would leave the system in a state where the contents of ** the wal-index header do not match the contents of the ** file-system. To avoid this, update the wal-index header to ** indicate that the log file contains zero valid frames. */ walRestartHdr(pWal, salt1); rc = sqlite3OsTruncate(pWal->apWalFd[0], 0); } walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); } } } walcheckpoint_out: SEH_FREE_ON_ERROR(pIter, 0); walIteratorFree(pIter); return rc; } /* ** If the WAL file is currently larger than nMax bytes in size, truncate ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. */ static void walLimitSize(Wal *pWal, i64 nMax){ if( isWalMode2(pWal)==0 ){ i64 sz; int rx; sqlite3BeginBenignMalloc(); rx = sqlite3OsFileSize(pWal->apWalFd[0], &sz); if( rx==SQLITE_OK && (sz > nMax ) ){ rx = sqlite3OsTruncate(pWal->apWalFd[0], nMax); } sqlite3EndBenignMalloc(); if( rx ){ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); } } } #ifdef SQLITE_USE_SEH /* ** This is the "standard" exception handler used in a few places to handle ** an exception thrown by reading from the *-shm mapping after it has become |
︙ | ︙ | |||
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 | u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ assert( walAssertLockmask(pWal) ); /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ if( zBuf!=0 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) ){ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } | > > > | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > < > | 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 | u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ assert( walAssertLockmask(pWal) ); pWal->bClosing = 1; /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ if( zBuf!=0 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) ){ int i; if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } for(i=0; rc==SQLITE_OK && i<2; i++){ rc = sqlite3WalCheckpoint(pWal, db, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 ); if( rc==SQLITE_OK ){ int bPersist = -1; sqlite3OsFileControlHint( pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist ); if( bPersist!=1 ){ /* Try to delete the WAL file if the checkpoint completed and ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal ** mode (!bPersist) */ isDelete = 1; }else if( pWal->mxWalSize>=0 ){ /* Try to truncate the WAL file to zero bytes if the checkpoint ** completed and fsynced (rc==SQLITE_OK) and we are in persistent ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a ** non-negative value (pWal->mxWalSize>=0). Note that we truncate ** to zero bytes as truncating to the journal_size_limit might ** leave a corrupt WAL file on disk. */ walLimitSize(pWal, 0); } } if( isWalMode2(pWal)==0 ) break; SEH_TRY { walCkptInfo(pWal)->nBackfill = 0; walidxSetFile(&pWal->hdr, !walidxGetFile(&pWal->hdr)); pWal->writeLock = 1; walIndexWriteHdr(pWal); pWal->writeLock = 0; } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } } walIndexClose(pWal, isDelete); if( isDelete ){ sqlite3BeginBenignMalloc(); sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); sqlite3OsDelete(pWal->pVfs, pWal->zWalName2, 0); sqlite3EndBenignMalloc(); } WALTRACE(("WAL%p: closed\n", pWal)); sqlite3_free((void *)pWal->apWiData); sqlite3_free(pWal); } return rc; |
︙ | ︙ | |||
2721 2722 2723 2724 2725 2726 2727 | } } /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ | | > > | 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 | } } /* If the header is read successfully, check the version number to make ** sure the wal-index was not constructed with some future format that ** this version of SQLite cannot understand. */ if( badHdr==0 && pWal->hdr.iVersion!=WAL_VERSION1 && pWal->hdr.iVersion!=WAL_VERSION2 ){ rc = SQLITE_CANTOPEN_BKPT; } if( pWal->bShmUnreliable ){ if( rc!=SQLITE_OK ){ walIndexClose(pWal, 0); pWal->bShmUnreliable = 0; assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); |
︙ | ︙ | |||
2830 2831 2832 2833 2834 2835 2836 | ** into pWal->hdr. */ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); /* Make sure some writer hasn't come in and changed the WAL file out ** from under us, then disconnected, while we were not looking. */ | | | | 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 | ** into pWal->hdr. */ memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); /* Make sure some writer hasn't come in and changed the WAL file out ** from under us, then disconnected, while we were not looking. */ rc = sqlite3OsFileSize(pWal->apWalFd[0], &szWal); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( szWal<WAL_HDRSIZE ){ /* If the wal file is too small to contain a wal-header and the ** wal-index header has mxFrame==0, then it must be safe to proceed ** reading the database file only. However, the page cache cannot ** be trusted, as a read/write connection may have connected, written ** the db, run a checkpoint, truncated the wal file and disconnected ** since this client's last read transaction. */ *pChanged = 1; rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); goto begin_unreliable_shm_out; } /* Check the salt keys at the start of the wal file still match. */ rc = sqlite3OsRead(pWal->apWalFd[0], aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ goto begin_unreliable_shm_out; } if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ /* Some writer has wrapped the WAL file while we were not looking. ** Return WAL_RETRY which will cause the in-memory WAL-index to be ** rebuilt. */ |
︙ | ︙ | |||
2884 2885 2886 2887 2888 2889 2890 | iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ | | | 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 | iOffset+szFrame<=szWal; iOffset+=szFrame ){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->apWalFd[0], aFrame, szFrame, iOffset); if( rc!=SQLITE_OK ) break; if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; /* If nTruncate is non-zero, then a complete transaction has been ** appended to this wal file. Set rc to WAL_RETRY and break out of ** the loop. */ if( nTruncate ){ |
︙ | ︙ | |||
3002 3003 3004 3005 3006 3007 3008 | static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ int rc = SQLITE_OK; /* Return code */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int nBlockTmout = 0; #endif | | | 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 | static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ int rc = SQLITE_OK; /* Return code */ #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int nBlockTmout = 0; #endif assert( pWal->readLock==WAL_LOCK_NONE ); /* Not currently locked */ /* useWal may only be set for read/write connections */ assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); /* Take steps to avoid spinning forever if there is a protocol error. ** ** Circumstances that cause a RETRY should only last for the briefest |
︙ | ︙ | |||
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 | } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); SEH_INJECT_FAULT; { u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ u32 mxFrame; /* Wal frame to lock to */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 | } } assert( pWal->nWiData>0 ); assert( pWal->apWiData[0]!=0 ); pInfo = walCkptInfo(pWal); SEH_INJECT_FAULT; if( isWalMode2(pWal) ){ /* This connection needs a "part" lock on the current wal file and, ** unless pInfo->nBackfill is set to indicate that it has already been ** checkpointed, a "full" lock on the other wal file. */ int iWal = walidxGetFile(&pWal->hdr); int nBackfill = pInfo->nBackfill || walidxGetMxFrame(&pWal->hdr, !iWal)==0; int eLock = 1 + (iWal*2) + (nBackfill==iWal); assert( nBackfill==0 || nBackfill==1 ); assert( iWal==0 || iWal==1 ); assert( iWal!=0 || nBackfill!=1 || eLock==WAL_LOCK_PART1 ); assert( iWal!=0 || nBackfill!=0 || eLock==WAL_LOCK_PART1_FULL2 ); assert( iWal!=1 || nBackfill!=1 || eLock==WAL_LOCK_PART2 ); assert( iWal!=1 || nBackfill!=0 || eLock==WAL_LOCK_PART2_FULL1 ); rc = walLockShared(pWal, WAL_READ_LOCK(eLock)); if( rc!=SQLITE_OK ){ return (rc==SQLITE_BUSY ? WAL_RETRY : rc); } walShmBarrier(pWal); if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ walUnlockShared(pWal, WAL_READ_LOCK(eLock)); return WAL_RETRY; }else{ pWal->readLock = eLock; } assert( pWal->minFrame==0 && walFramePage(pWal->minFrame)==0 ); }else { u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ u32 mxFrame; /* Wal frame to lock to */ if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame #ifdef SQLITE_ENABLE_SNAPSHOT && ((pWal->bGetSnapshot==0 && pWal->pSnapshot==0) || pWal->hdr.mxFrame==0) #endif ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. */ |
︙ | ︙ | |||
3279 3280 3281 3282 3283 3284 3285 | if( rc!=SQLITE_OK ) break; assert( i - sLoc.iZero - 1 >=0 ); pgno = sLoc.aPgno[i-sLoc.iZero-1]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; | | | 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 | if( rc!=SQLITE_OK ) break; assert( i - sLoc.iZero - 1 >=0 ); pgno = sLoc.aPgno[i-sLoc.iZero-1]; iDbOff = (i64)(pgno-1) * szPage; if( iDbOff+szPage<=szDb ){ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; rc = sqlite3OsRead(pWal->apWalFd[0], pBuf1, szPage, iWalOff); if( rc==SQLITE_OK ){ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); } if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ break; |
︙ | ︙ | |||
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 | ** ** SQLITE_OK is returned if successful, or an SQLite error code if an ** error occurs. It is not an error if nBackfillAttempted cannot be ** decreased at all. */ int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(pWal->szPage); void *pBuf2 = sqlite3_malloc(pWal->szPage); if( pBuf1==0 || pBuf2==0 ){ | > > > | 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 | ** ** SQLITE_OK is returned if successful, or an SQLite error code if an ** error occurs. It is not an error if nBackfillAttempted cannot be ** decreased at all. */ int sqlite3WalSnapshotRecover(Wal *pWal){ int rc; /* Snapshots may not be used with wal2 mode databases. */ if( isWalMode2(pWal) ) return SQLITE_ERROR; assert( pWal->readLock>=0 ); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc==SQLITE_OK ){ void *pBuf1 = sqlite3_malloc(pWal->szPage); void *pBuf2 = sqlite3_malloc(pWal->szPage); if( pBuf1==0 || pBuf2==0 ){ |
︙ | ︙ | |||
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 | #endif assert( pWal->ckptLock==0 ); assert( pWal->nSehTry>0 ); #ifdef SQLITE_ENABLE_SNAPSHOT if( pSnapshot ){ if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ bChanged = 1; } /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint | > | 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 | #endif assert( pWal->ckptLock==0 ); assert( pWal->nSehTry>0 ); #ifdef SQLITE_ENABLE_SNAPSHOT if( pSnapshot ){ if( isWalMode2(pWal) ) return SQLITE_ERROR; if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ bChanged = 1; } /* It is possible that there is a checkpointer thread running ** concurrent with this code. If this is the case, it may be that the ** checkpointer has already determined that it will checkpoint |
︙ | ︙ | |||
3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 | do{ rc = walTryBeginRead(pWal, pChanged, 0, &cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); #ifdef SQLITE_ENABLE_SNAPSHOT if( rc==SQLITE_OK ){ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ /* At this point the client has a lock on an aReadMark[] slot holding ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr ** is populated with the wal-index header corresponding to the head | > > > > | 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 | do{ rc = walTryBeginRead(pWal, pChanged, 0, &cnt); }while( rc==WAL_RETRY ); testcase( (rc&0xff)==SQLITE_BUSY ); testcase( (rc&0xff)==SQLITE_IOERR ); testcase( rc==SQLITE_PROTOCOL ); testcase( rc==SQLITE_OK ); if( rc==SQLITE_OK && pWal->hdr.iVersion==WAL_VERSION2 ){ rc = walOpenWal2(pWal); } #ifdef SQLITE_ENABLE_SNAPSHOT if( rc==SQLITE_OK ){ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ /* At this point the client has a lock on an aReadMark[] slot holding ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr ** is populated with the wal-index header corresponding to the head |
︙ | ︙ | |||
3484 3485 3486 3487 3488 3489 3490 | ** Finish with a read transaction. All this does is release the ** read-lock. */ void sqlite3WalEndReadTransaction(Wal *pWal){ #ifndef SQLITE_ENABLE_SETLK_TIMEOUT assert( pWal->writeLock==0 || pWal->readLock<0 ); #endif | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < | > > | | < > > | > > > > > | < < > | | | | > > | < < | | | < < < < < < < < < < < < < < < < > | < < > > < < < < < > | < < < < < < | < | | | < < < > | < < | | < | | > > > | 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 | ** Finish with a read transaction. All this does is release the ** read-lock. */ void sqlite3WalEndReadTransaction(Wal *pWal){ #ifndef SQLITE_ENABLE_SETLK_TIMEOUT assert( pWal->writeLock==0 || pWal->readLock<0 ); #endif if( pWal->readLock!=WAL_LOCK_NONE ){ sqlite3WalEndWriteTransaction(pWal); walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = WAL_LOCK_NONE; } } /* Search hash table iHash for an entry matching page number ** pgno. Each call to this function searches a single hash table ** (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code might run concurrently to the code in walIndexAppend() ** that adds entries to the wal-index (and possibly to this hash ** table). This means the value just read from the hash ** slot (aHash[iKey]) may have been added before or after the ** current read transaction was opened. Values added after the ** read transaction was opened may have been written incorrectly - ** i.e. these slots may contain garbage data. However, we assume ** that any slots written before the current read transaction was ** opened remain unmodified. ** ** For the reasons above, the if(...) condition featured in the inner ** loop of the following block is more stringent that would be required ** if we had exclusive access to the hash-table: ** ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ static int walSearchHash( Wal *pWal, u32 iLast, int iHash, Pgno pgno, u32 *piRead ){ WalHashLoc sLoc; /* Hash table location */ int iKey; /* Hash slot index */ int nCollide; /* Number of hash collisions remaining */ int rc; /* Error code */ u32 iH; rc = walHashGet(pWal, iHash, &sLoc); if( rc!=SQLITE_OK ){ return rc; } nCollide = HASHTABLE_NSLOT; iKey = walHash(pgno); SEH_INJECT_FAULT; while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ u32 iFrame = iH + sLoc.iZero; if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ assert( iFrame>*piRead || CORRUPT_DB ); *piRead = iFrame; } if( (nCollide--)==0 ){ *piRead = 0; return SQLITE_CORRUPT_BKPT; } iKey = walNextHash(iKey); } return SQLITE_OK; } static int walSearchWal( Wal *pWal, int iWal, Pgno pgno, u32 *piRead ){ int rc = SQLITE_OK; int bWal2 = isWalMode2(pWal); u32 iLast = walidxGetMxFrame(&pWal->hdr, iWal); if( iLast ){ int iHash; int iMinHash = walFramePage(pWal->minFrame); u32 iExternal = bWal2 ? walExternalEncode(iWal, iLast) : iLast; assert( bWal2==0 || pWal->minFrame==0 ); for(iHash=walFramePage(iExternal); iHash>=iMinHash && *piRead==0; iHash-=(1+bWal2) ){ rc = walSearchHash(pWal, iExternal, iHash, pgno, piRead); if( rc!=SQLITE_OK ) break; } } return rc; } /* ** Search the wal file for page pgno. If found, set *piRead to the frame that ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead ** to zero. ** ** Return SQLITE_OK if successful, or an error code if an error occurs. If an ** error does occur, the final value of *piRead is undefined. */ static int walFindFrame( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ u32 *piRead /* OUT: Frame number (or zero) */ ){ int bWal2 = isWalMode2(pWal); int iApp = walidxGetFile(&pWal->hdr); int rc = SQLITE_OK; u32 iRead = 0; /* If !=0, WAL frame to return data from */ /* This routine is only be called from within a read transaction. Or, ** sometimes, as part of a rollback that occurs after an error reaquiring ** a read-lock in walRestartLog(). */ assert( pWal->readLock!=WAL_LOCK_NONE || pWal->lockError ); /* If this is a wal2 system, the client must have a partial-wal lock ** on wal file iApp. Or if it is a wal system, iApp==0 must be true. */ assert( bWal2==0 || iApp==1 || pWal->readLock==WAL_LOCK_PART1 || pWal->readLock==WAL_LOCK_PART1_FULL2 ); assert( bWal2==0 || iApp==0 || pWal->readLock==WAL_LOCK_PART2 || pWal->readLock==WAL_LOCK_PART2_FULL1 ); assert( bWal2 || iApp==0 ); /* Return early if read-lock 0 is held. */ if( (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ *piRead = 0; return SQLITE_OK; } /* Search the wal file that the client holds a partial lock on first */ rc = walSearchWal(pWal, iApp, pgno, &iRead); /* If the requested page was not found, no error has occured, and ** the client holds a full-wal lock on the other wal file, search it ** too. */ if( rc==SQLITE_OK && bWal2 && iRead==0 && ( pWal->readLock==WAL_LOCK_PART1_FULL2 || pWal->readLock==WAL_LOCK_PART2_FULL1 )){ rc = walSearchWal(pWal, !iApp, pgno, &iRead); } if( rc!=SQLITE_OK ) return rc; #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) if( iRead ){ u32 iFrame; int iWal = walExternalDecode(iRead, &iFrame); WALTRACE(("WAL%p: page %d @ frame %d wal %d\n",pWal,(int)pgno,iFrame,iWal)); }else{ WALTRACE(("WAL%p: page %d not found\n", pWal, (int)pgno)); } #endif #if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) && /*TODO*/ 0 /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. ** ** TODO: This is broken for wal2. */ { u32 iRead2 = 0; u32 iTest; assert( pWal->bShmUnreliable || pWal->minFrame>0 ); for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ if( walFramePgno(pWal, iTest)==pgno ){ iRead2 = iTest; |
︙ | ︙ | |||
3631 3632 3633 3634 3635 3636 3637 | /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ int sqlite3WalReadFrame( Wal *pWal, /* WAL handle */ | | > > > > > > > > > > > > > > | | | 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 | /* ** Read the contents of frame iRead from the wal file into buffer pOut ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an ** error code otherwise. */ int sqlite3WalReadFrame( Wal *pWal, /* WAL handle */ u32 iExternal, /* Frame to read */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ int sz; int iWal = 0; u32 iRead; i64 iOffset; /* Figure out the page size */ sz = pWal->hdr.szPage; sz = (sz&0xfe00) + ((sz&0x0001)<<16); testcase( sz<=32768 ); testcase( sz>=65536 ); if( isWalMode2(pWal) ){ /* Figure out which of the two wal files, and the frame within, that ** iExternal refers to. */ iWal = walExternalDecode(iExternal, &iRead); }else{ iRead = iExternal; } WALTRACE(("WAL%p: reading frame %d wal %d\n", pWal, iRead, iWal)); iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ return sqlite3OsRead(pWal->apWalFd[iWal], pOut, (nOut>sz?sz:nOut), iOffset); } /* ** Return the size of the database in pages (or zero, if unknown). */ Pgno sqlite3WalDbsize(Wal *pWal){ if( pWal && ALWAYS(pWal->readLock!=WAL_LOCK_NONE) ){ return pWal->hdr.nPage; } return 0; } /* |
︙ | ︙ | |||
3685 3686 3687 3688 3689 3690 3691 | assert( !memcmp(&pWal->hdr,(void*)pWal->apWiData[0],sizeof(WalIndexHdr)) ); return SQLITE_OK; } #endif /* Cannot start a write transaction without first holding a read ** transaction. */ | | | 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 | assert( !memcmp(&pWal->hdr,(void*)pWal->apWiData[0],sizeof(WalIndexHdr)) ); return SQLITE_OK; } #endif /* Cannot start a write transaction without first holding a read ** transaction. */ assert( pWal->readLock!=WAL_LOCK_NONE ); assert( pWal->writeLock==0 && pWal->iReCksum==0 ); if( pWal->readOnly ){ return SQLITE_READONLY; } /* Only one writer allowed at a time. Get the write lock. Return |
︙ | ︙ | |||
3748 3749 3750 3751 3752 3753 3754 | ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ | > > | > > > > < | < < > > > > | > > | | > > | | > > > | | | | | | | | | | | > > > > > > > > | > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > | 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 | ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( ALWAYS(pWal->writeLock) ){ int iWal = walidxGetFile(&pWal->hdr); Pgno iMax = walidxGetMxFrame(&pWal->hdr, iWal); Pgno iNew; Pgno iFrame; assert( isWalMode2(pWal) || iWal==0 ); SEH_TRY { /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); assert( walidxGetFile(&pWal->hdr)==iWal ); iNew = walidxGetMxFrame(&pWal->hdr, walidxGetFile(&pWal->hdr)); for(iFrame=iNew+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++){ /* This call cannot fail. Unless the page for which the page number ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). ** ** If the upper layer is doing a rollback, it is guaranteed that there ** are no outstanding references to any page other than page 1. And ** page 1 is never written to the log until the transaction is ** committed. As a result, the call to xUndo may not fail. */ Pgno pgno; if( isWalMode2(pWal) ){ pgno = walFramePgno2(pWal, iWal, iFrame); }else{ pgno = walFramePgno(pWal, iFrame); } assert( pgno!=1 ); rc = xUndo(pUndoCtx, pgno); } if( iMax!=iNew ) walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to ** "rollback" the write position of the WAL handle back to the current ** point in the event of a savepoint rollback (via WalSavepointUndo()). */ void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ int iWal = walidxGetFile(&pWal->hdr); assert( pWal->writeLock ); assert( isWalMode2(pWal) || iWal==0 ); aWalData[0] = walidxGetMxFrame(&pWal->hdr, iWal); aWalData[1] = pWal->hdr.aFrameCksum[0]; aWalData[2] = pWal->hdr.aFrameCksum[1]; aWalData[3] = isWalMode2(pWal) ? (u32)iWal : pWal->nCkpt; } /* ** Move the write position of the WAL back to the point identified by ** the values in the aWalData[] array. aWalData must point to an array ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated ** by a call to WalSavepoint(). */ int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ int rc = SQLITE_OK; int iWal = walidxGetFile(&pWal->hdr); u32 iCmp = isWalMode2(pWal) ? (u32)iWal : pWal->nCkpt; assert( pWal->writeLock ); assert( isWalMode2(pWal) || iWal==0 ); assert( aWalData[3]!=iCmp || aWalData[0]<=walidxGetMxFrame(&pWal->hdr,iWal) ); if( aWalData[3]!=iCmp ){ /* This savepoint was opened immediately after the write-transaction ** was started. Right after that, the writer decided to wrap around ** to the start of the log. Update the savepoint values to match. */ aWalData[0] = 0; aWalData[3] = iCmp; } if( aWalData[0]<walidxGetMxFrame(&pWal->hdr, iWal) ){ walidxSetMxFrame(&pWal->hdr, iWal, aWalData[0]); pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; SEH_TRY { walCleanupHash(pWal); } SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) } return rc; } /* ** This function is called just before writing a set of frames to the log ** file (see sqlite3WalFrames()). It checks to see if, instead of appending ** to the current log file, it is possible and desirable to switch to the ** other log file and write the new transaction to the start of it. ** If so, the wal-index header is updated accordingly - both in heap memory ** and in the *-shm file. ** ** SQLITE_OK is returned if no error is encountered (regardless of whether ** or not the wal-index header is modified). An SQLite error code is returned ** if an error occurs. */ static int walRestartLog(Wal *pWal){ int rc = SQLITE_OK; if( isWalMode2(pWal) ){ int iApp = walidxGetFile(&pWal->hdr); u32 nWalSize = WAL_DEFAULT_WALSIZE; if( pWal->mxWalSize>0 ){ /* mxWalSize is in bytes. Convert this to a number of frames. */ nWalSize = (pWal->mxWalSize-WAL_HDRSIZE+pWal->szPage+WAL_FRAME_HDRSIZE-1) / (pWal->szPage+WAL_FRAME_HDRSIZE); nWalSize = MAX(nWalSize, 1); } assert( iApp==0 || pWal->readLock==WAL_LOCK_PART2 || pWal->readLock==WAL_LOCK_PART2_FULL1 ); assert( iApp==1 || pWal->readLock==WAL_LOCK_PART1 || pWal->readLock==WAL_LOCK_PART1_FULL2 ); /* Switch to wal file !iApp if ** ** (a) Wal file iApp (the current wal file) contains >= nWalSize frames. ** (b) This client is not reading from wal file !iApp. ** (c) No other client is reading from wal file !iApp. ** ** Condition (b) guarantees that wal file !iApp is either empty or ** completely checkpointed. */ assert( (0*3)+1==WAL_LOCK_PART1 ); /* iApp==0 -> require WAL_LOCK_PART1 */ assert( (1*3)+1==WAL_LOCK_PART2 ); /* iApp==1 -> require WAL_LOCK_PART2 */ if( pWal->readLock==(iApp*3)+1 && walidxGetMxFrame(&pWal->hdr, iApp)>=nWalSize ){ rc = wal2RestartOk(pWal, iApp); if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); int iNew = !iApp; pWal->nCkpt++; walidxSetFile(&pWal->hdr, iNew); walidxSetMxFrame(&pWal->hdr, iNew, 0); sqlite3Put4byte((u8*)&pWal->hdr.aSalt[0], pWal->hdr.aFrameCksum[0]); sqlite3Put4byte((u8*)&pWal->hdr.aSalt[1], pWal->hdr.aFrameCksum[1]); walIndexWriteHdr(pWal); pInfo->nBackfill = 0; wal2RestartFinished(pWal, iApp); walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); pWal->readLock = iNew ? WAL_LOCK_PART2_FULL1 : WAL_LOCK_PART1_FULL2; rc = walLockShared(pWal, WAL_READ_LOCK(pWal->readLock)); }else if( rc==SQLITE_BUSY ){ rc = SQLITE_OK; } } }else if( pWal->readLock==0 ){ int cnt; volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ u32 salt1; sqlite3_randomness(4, &salt1); rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
3870 3871 3872 3873 3874 3875 3876 | walRestartHdr(pWal, salt1); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; } } walUnlockShared(pWal, WAL_READ_LOCK(0)); | | | 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 | walRestartHdr(pWal, salt1); walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); }else if( rc!=SQLITE_BUSY ){ return rc; } } walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = WAL_LOCK_NONE; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, &cnt); }while( rc==WAL_RETRY ); assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ testcase( (rc&0xff)==SQLITE_IOERR ); |
︙ | ︙ | |||
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 | PgHdr *pPage, /* The page of the frame to be written */ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ sqlite3_int64 iOffset /* Byte offset at which to write */ ){ int rc; /* Result code from subfunctions */ void *pData; /* Data actually written */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ pData = pPage->pData; walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); if( rc ) return rc; /* Write the page data */ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); return rc; } /* ** This function is called as part of committing a transaction within which ** one or more frames have been overwritten. It updates the checksums for ** all frames written to the wal file by the current transaction starting ** with the earliest to have been overwritten. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int walRewriteChecksums(Wal *pWal, u32 iLast){ | > > > > > > > > > > > > < > > | | | | 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 | PgHdr *pPage, /* The page of the frame to be written */ int nTruncate, /* The commit flag. Usually 0. >0 for commit */ sqlite3_int64 iOffset /* Byte offset at which to write */ ){ int rc; /* Result code from subfunctions */ void *pData; /* Data actually written */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int iWal = walidxGetFile(&p->pWal->hdr); int iFrame = 1 + (iOffset / (WAL_FRAME_HDRSIZE + p->pWal->szPage)); assert( p->pWal->apWalFd[iWal]==p->pFd ); WALTRACE(("WAL%p: page %d written to frame %d of wal %d\n", p->pWal, (int)pPage->pgno, iFrame, iWal )); } #endif pData = pPage->pData; walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); if( rc ) return rc; /* Write the page data */ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); return rc; } /* ** This function is called as part of committing a transaction within which ** one or more frames have been overwritten. It updates the checksums for ** all frames written to the wal file by the current transaction starting ** with the earliest to have been overwritten. ** ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. */ static int walRewriteChecksums(Wal *pWal, u32 iLast){ int rc = SQLITE_OK; /* Return code */ const int szPage = pWal->szPage;/* Database page size */ u8 *aBuf; /* Buffer to load data from wal file into */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ u32 iRead; /* Next frame to read from wal file */ i64 iCksumOff; sqlite3_file *pWalFd = pWal->apWalFd[walidxGetFile(&pWal->hdr)]; aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); if( aBuf==0 ) return SQLITE_NOMEM_BKPT; /* Find the checksum values to use as input for the recalculating the ** first checksum. If the first frame is frame 1 (implying that the current ** transaction restarted the wal file), these values must be read from the ** wal-file header. Otherwise, read them from the frame header of the ** previous frame. */ assert( pWal->iReCksum>0 ); if( pWal->iReCksum==1 ){ iCksumOff = 24; }else{ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; } rc = sqlite3OsRead(pWalFd, aBuf, sizeof(u32)*2, iCksumOff); pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); iRead = pWal->iReCksum; pWal->iReCksum = 0; for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ i64 iOff = walFrameOffset(iRead, szPage); rc = sqlite3OsRead(pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); if( rc==SQLITE_OK ){ u32 iPgno, nDbSize; iPgno = sqlite3Get4byte(aBuf); nDbSize = sqlite3Get4byte(&aBuf[4]); walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); rc = sqlite3OsWrite(pWalFd, aFrame, sizeof(aFrame), iOff); } } sqlite3_free(aBuf); return rc; } |
︙ | ︙ | |||
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 | PgHdr *pLast = 0; /* Last frame in list */ int nExtra = 0; /* Number of extra copies of last page */ int szFrame; /* The size of a single frame */ i64 iOffset; /* Next byte to write in WAL file */ WalWriter w; /* The writer */ u32 iFirst = 0; /* First frame that may be overwritten */ WalIndexHdr *pLive; /* Pointer to shared header */ assert( pList ); assert( pWal->writeLock ); /* If this frame set completes a transaction, then nTruncate>0. If ** nTruncate==0 then this frame set does not complete the transaction. */ assert( (isCommit!=0)==(nTruncate!=0) ); | > > < < < < < < < > | | > > > | > > > > > > > > | > > > > > > > > > > > > | < | | | | > > > | | 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 | PgHdr *pLast = 0; /* Last frame in list */ int nExtra = 0; /* Number of extra copies of last page */ int szFrame; /* The size of a single frame */ i64 iOffset; /* Next byte to write in WAL file */ WalWriter w; /* The writer */ u32 iFirst = 0; /* First frame that may be overwritten */ WalIndexHdr *pLive; /* Pointer to shared header */ int iApp; int bWal2 = isWalMode2(pWal); assert( pList ); assert( pWal->writeLock ); /* If this frame set completes a transaction, then nTruncate>0. If ** nTruncate==0 then this frame set does not complete the transaction. */ assert( (isCommit!=0)==(nTruncate!=0) ); pLive = (WalIndexHdr*)walIndexHdr(pWal); if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ /* if( isWalMode2(pWal)==0 ) */ iFirst = walidxGetMxFrame(pLive, walidxGetFile(pLive))+1; } /* See if it is possible to write these frames into the start of the ** log file, instead of appending to it at pWal->hdr.mxFrame. */ else if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ return rc; } /* If this is the first frame written into the log, write the WAL ** header to the start of the WAL file. See comments at the top of ** this source file for a description of the WAL header format. */ iApp = walidxGetFile(&pWal->hdr); iFrame = walidxGetMxFrame(&pWal->hdr, iApp); assert( iApp==0 || bWal2 ); #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} WALTRACE(("WAL%p: frame write begin. %d frames. iWal=%d. mxFrame=%d. %s\n", pWal, cnt, iApp, iFrame, isCommit ? "Commit" : "Spill")); } #endif if( iFrame==0 ){ u32 iCkpt = 0; u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ u32 aCksum[2]; /* Checksum for wal-header */ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); sqlite3Put4byte(&aWalHdr[4], pWal->hdr.iVersion); sqlite3Put4byte(&aWalHdr[8], szPage); if( bWal2 ){ if( walidxGetMxFrame(&pWal->hdr, !iApp)>0 ){ u8 aPrev[4]; rc = sqlite3OsRead(pWal->apWalFd[!iApp], aPrev, 4, 12); if( rc!=SQLITE_OK ){ return rc; } iCkpt = (sqlite3Get4byte(aPrev) + 1) & 0x0F; } }else{ iCkpt = pWal->nCkpt; } sqlite3Put4byte(&aWalHdr[12], iCkpt); memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); sqlite3Put4byte(&aWalHdr[24], aCksum[0]); sqlite3Put4byte(&aWalHdr[28], aCksum[1]); pWal->szPage = szPage; pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; pWal->hdr.aFrameCksum[0] = aCksum[0]; pWal->hdr.aFrameCksum[1] = aCksum[1]; pWal->truncateOnCommit = 1; rc = sqlite3OsWrite(pWal->apWalFd[iApp], aWalHdr, sizeof(aWalHdr), 0); WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); if( rc!=SQLITE_OK ){ return rc; } /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise ** an out-of-order write following a WAL restart could result in ** database corruption. See the ticket: ** ** https://sqlite.org/src/info/ff5be73dee */ if( pWal->syncHeader ){ rc = sqlite3OsSync(pWal->apWalFd[iApp], CKPT_SYNC_FLAGS(sync_flags)); if( rc ) return rc; } } if( (int)pWal->szPage!=szPage ){ return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ } /* Setup information needed to write frames into the WAL */ w.pWal = pWal; w.pFd = pWal->apWalFd[iApp]; w.iSyncPoint = 0; w.syncFlags = sync_flags; w.szPage = szPage; iOffset = walFrameOffset(iFrame+1, szPage); szFrame = szPage + WAL_FRAME_HDRSIZE; /* Write all frames into the log file exactly once */ for(p=pList; p; p=p->pDirty){ int nDbSize; /* 0 normally. Positive == commit flag */ /* Check if this page has already been written into the wal file by ** the current transaction. If so, overwrite the existing frame and ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that ** checksums must be recomputed when the transaction is committed. */ if( iFirst && (p->pDirty || isCommit==0) ){ u32 iWrite = 0; VVA_ONLY(rc =) walSearchWal(pWal, iApp, p->pgno, &iWrite); assert( rc==SQLITE_OK || iWrite==0 ); if( iWrite && bWal2 ){ walExternalDecode(iWrite, &iWrite); } if( iWrite>=iFirst ){ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; void *pData; if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ pWal->iReCksum = iWrite; } pData = p->pData; rc = sqlite3OsWrite(pWal->apWalFd[iApp], pData, szPage, iOff); if( rc ) return rc; p->flags &= ~PGHDR_WAL_APPEND; continue; } } iFrame++; |
︙ | ︙ | |||
4165 4166 4167 4168 4169 4170 4171 | ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. */ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ int bSync = 1; if( pWal->padToSectorBoundary ){ | | | 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 | ** boundary is crossed. Only the part of the WAL prior to the last ** sector boundary is synced; the part of the last frame that extends ** past the sector boundary is written after the sync. */ if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ int bSync = 1; if( pWal->padToSectorBoundary ){ int sectorSize = sqlite3SectorSize(w.pFd); w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; bSync = (w.iSyncPoint==iOffset); testcase( bSync ); while( iOffset<w.iSyncPoint ){ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); if( rc ) return rc; iOffset += szFrame; |
︙ | ︙ | |||
4201 4202 4203 4204 4205 4206 4207 | } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ | | | | | > > > > > > > > > | > | 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 | } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = walidxGetMxFrame(&pWal->hdr, iApp); for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; iFrame++; rc = walIndexAppend(pWal, iApp, iFrame, p->pgno); } assert( pLast!=0 || nExtra==0 ); while( rc==SQLITE_OK && nExtra>0 ){ iFrame++; nExtra--; rc = walIndexAppend(pWal, iApp, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); testcase( szPage<=32768 ); testcase( szPage>=65536 ); walidxSetMxFrame(&pWal->hdr, iApp, iFrame); if( isCommit ){ pWal->hdr.iChange++; pWal->hdr.nPage = nTruncate; } /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal); if( bWal2 ){ int iOther = !walidxGetFile(&pWal->hdr); if( walidxGetMxFrame(&pWal->hdr, iOther) && !walCkptInfo(pWal)->nBackfill ){ pWal->iCallback = walidxGetMxFrame(&pWal->hdr, 0); pWal->iCallback += walidxGetMxFrame(&pWal->hdr, 1); } }else{ pWal->iCallback = iFrame; } } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } |
︙ | ︙ | |||
4322 4323 4324 4325 4326 4327 4328 | ** file. ** ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the ** writer lock retried until either the busy-handler returns 0 or the ** lock is successfully obtained. */ | | | 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 | ** file. ** ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained ** immediately, and a busy-handler is configured, it is invoked and the ** writer lock retried until either the busy-handler returns 0 or the ** lock is successfully obtained. */ if( eMode!=SQLITE_CHECKPOINT_PASSIVE && isWalMode2(pWal)==0 ){ rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); if( rc==SQLITE_OK ){ pWal->writeLock = 1; }else if( rc==SQLITE_BUSY ){ eMode2 = SQLITE_CHECKPOINT_PASSIVE; xBusy2 = 0; rc = SQLITE_OK; |
︙ | ︙ | |||
4353 4354 4355 4356 4357 4358 4359 | if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ | | > > | > > > > > | > > > > > > > > | | > > > > | 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 | if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ sqlite3OsUnfetch(pWal->pDbFd, 0, 0); } } /* Copy data from the log to the database file. */ if( rc==SQLITE_OK ){ if( (walPagesize(pWal)!=nBuf) && ((pWal->hdr.mxFrame2 & 0x7FFFFFFF) || pWal->hdr.mxFrame) ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); } /* If no error occurred, set the output variables. */ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ if( pnLog ){ WalIndexHdr *pHdr = &pWal->hdr; *pnLog = walidxGetMxFrame(pHdr, 0) + walidxGetMxFrame(pHdr, 1); } SEH_INJECT_FAULT; if( pnCkpt ){ if( isWalMode2(pWal) ){ if( (int)(walCkptInfo(pWal)->nBackfill) ){ *pnCkpt = walidxGetMxFrame(&pWal->hdr,!walidxGetFile(&pWal->hdr)); }else{ *pnCkpt = 0; } }else{ *pnCkpt = walCkptInfo(pWal)->nBackfill; } } } } } SEH_EXCEPT( rc = walHandleException(pWal); ) if( isChanged && pWal->bClosing==0 ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. ** ** Except, do not do this if the wal is being closed. In this case ** the caller needs the wal-index header to check if the database is ** in wal2 mode and the "other" wal file also needs to be checkpointed. ** Besides, the pager cache will not be used again in this case. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } walDisableBlocking(pWal); sqlite3WalDb(pWal, 0); /* Release the locks. */ |
︙ | ︙ | |||
4445 4446 4447 4448 4449 4450 4451 | /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ #ifndef SQLITE_USE_SEH | | | | | > | 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 | /* pWal->readLock is usually set, but might be -1 if there was a ** prior error while attempting to acquire are read-lock. This cannot ** happen if the connection is actually in exclusive mode (as no xShmLock ** locks are taken in this case). Nor should the pager attempt to ** upgrade to exclusive-mode following such an error. */ #ifndef SQLITE_USE_SEH assert( pWal->readLock!=WAL_LOCK_NONE || pWal->lockError ); #endif assert( pWal->readLock!=WAL_LOCK_NONE || (op<=0 && pWal->exclusiveMode==0) ); if( op==0 ){ if( pWal->exclusiveMode ){ pWal->exclusiveMode = WAL_NORMAL_MODE; rc = walLockShared(pWal, WAL_READ_LOCK(pWal->readLock)); if( rc!=SQLITE_OK ){ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; } rc = pWal->exclusiveMode==WAL_NORMAL_MODE; }else{ /* Already in locking_mode=NORMAL */ rc = 0; } |
︙ | ︙ | |||
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 | ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; static const u32 aZero[4] = { 0, 0, 0, 0 }; assert( pWal->readLock>=0 && pWal->writeLock==0 ); if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ *ppSnapshot = 0; return SQLITE_ERROR; } | > > > | 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 | ** every other subsystem, so the WAL module can put whatever it needs ** in the object. */ int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ int rc = SQLITE_OK; WalIndexHdr *pRet; static const u32 aZero[4] = { 0, 0, 0, 0 }; /* Snapshots may not be used with wal2 mode databases. */ if( isWalMode2(pWal) ) return SQLITE_ERROR; assert( pWal->readLock>=0 && pWal->writeLock==0 ); if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ *ppSnapshot = 0; return SQLITE_ERROR; } |
︙ | ︙ | |||
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 | ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; SEH_TRY { rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted ){ | > > > > | 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 | ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER ** lock is released before returning. */ int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ int rc; /* Snapshots may not be used with wal2 mode databases. */ if( isWalMode2(pWal) ) return SQLITE_ERROR; SEH_TRY { rc = walLockShared(pWal, WAL_CKPT_LOCK); if( rc==SQLITE_OK ){ WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted ){ |
︙ | ︙ | |||
4603 4604 4605 4606 4607 4608 4609 | return (pWal ? pWal->szPage : 0); } #endif /* Return the sqlite3_file object for the WAL file */ sqlite3_file *sqlite3WalFile(Wal *pWal){ | | > > > > > > > > | 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 | return (pWal ? pWal->szPage : 0); } #endif /* Return the sqlite3_file object for the WAL file */ sqlite3_file *sqlite3WalFile(Wal *pWal){ return pWal->apWalFd[0]; } /* ** Return the journal mode used by this Wal object. */ int sqlite3WalJournalMode(Wal *pWal){ assert( pWal ); return (isWalMode2(pWal) ? PAGER_JOURNALMODE_WAL2 : PAGER_JOURNALMODE_WAL); } #endif /* #ifndef SQLITE_OMIT_WAL */ |
Changes to src/wal.h.
︙ | ︙ | |||
22 23 24 25 26 27 28 | /* Macros for extracting appropriate sync flags for either transaction ** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)): */ #define WAL_SYNC_FLAGS(X) ((X)&0x03) #define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03) #ifdef SQLITE_OMIT_WAL | | > | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | /* Macros for extracting appropriate sync flags for either transaction ** commits (WAL_SYNC_FLAGS(X)) or for checkpoint ops (CKPT_SYNC_FLAGS(X)): */ #define WAL_SYNC_FLAGS(X) ((X)&0x03) #define CKPT_SYNC_FLAGS(X) (((X)>>2)&0x03) #ifdef SQLITE_OMIT_WAL # define sqlite3WalOpen(w,x,y,z) 0 # define sqlite3WalLimit(x,y) # define sqlite3WalClose(v,w,x,y,z) 0 # define sqlite3WalBeginReadTransaction(y,z) 0 # define sqlite3WalEndReadTransaction(z) # define sqlite3WalDbsize(y) 0 # define sqlite3WalBeginWriteTransaction(y) 0 # define sqlite3WalEndWriteTransaction(x) 0 # define sqlite3WalUndo(x,y,z) 0 # define sqlite3WalSavepoint(y,z) # define sqlite3WalSavepointUndo(y,z) 0 # define sqlite3WalFrames(u,v,w,x,y,z) 0 # define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0 # define sqlite3WalCallback(z) 0 # define sqlite3WalExclusiveMode(y,z) 0 # define sqlite3WalHeapMemory(z) 0 # define sqlite3WalFramesize(z) 0 # define sqlite3WalFindFrame(x,y,z) 0 # define sqlite3WalFile(x) 0 # define sqlite3WalJournalMode(x) 0 # undef SQLITE_USE_SEH #else #define WAL_SAVEPOINT_NDATA 4 /* Connection to a write-ahead log (WAL) file. ** There is one object of this type for each pager. */ typedef struct Wal Wal; /* Open and close a connection to a write-ahead log. */ int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *,int,i64,int,Wal**); int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *); /* Set the limiting size of a WAL file. */ void sqlite3WalLimit(Wal*, i64); /* Used by readers to open (lock) and close (unlock) a snapshot. A ** snapshot is like a read-transaction. It is the state of the database |
︙ | ︙ | |||
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | ** stored in each frame (i.e. the db page-size when the WAL was created). */ int sqlite3WalFramesize(Wal *pWal); #endif /* Return the sqlite3_file object for the WAL file */ sqlite3_file *sqlite3WalFile(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int sqlite3WalWriteLock(Wal *pWal, int bLock); void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #ifdef SQLITE_USE_SEH int sqlite3WalSystemErrno(Wal*); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ | > > > | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | ** stored in each frame (i.e. the db page-size when the WAL was created). */ int sqlite3WalFramesize(Wal *pWal); #endif /* Return the sqlite3_file object for the WAL file */ sqlite3_file *sqlite3WalFile(Wal *pWal); /* Return the journal mode (WAL or WAL2) used by this Wal object. */ int sqlite3WalJournalMode(Wal *pWal); #ifdef SQLITE_ENABLE_SETLK_TIMEOUT int sqlite3WalWriteLock(Wal *pWal, int bLock); void sqlite3WalDb(Wal *pWal, sqlite3 *db); #endif #ifdef SQLITE_USE_SEH int sqlite3WalSystemErrno(Wal*); #endif #endif /* ifndef SQLITE_OMIT_WAL */ #endif /* SQLITE_WAL_H */ |
Changes to test/corruptA.test.
︙ | ︙ | |||
43 44 45 46 47 48 49 | # Corrupt the file header in various ways and make sure the corruption # is detected when opening the database file. # db close forcecopy test.db test.db-template set unreadable_version 02 | | | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # Corrupt the file header in various ways and make sure the corruption # is detected when opening the database file. # db close forcecopy test.db test.db-template set unreadable_version 02 ifcapable wal { set unreadable_version 04 } do_test corruptA-2.1 { forcecopy test.db-template test.db hexio_write test.db 19 $unreadable_version ;# the read format number sqlite3 db test.db catchsql {SELECT * FROM t1} } {1 {file is not a database}} |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
461 462 463 464 465 466 467 | # Define the coverage related test suites: # # coverage-wal # test_suite "coverage-wal" -description { Coverage tests for file wal.c. } -files { | > > | | | | | | | | < > > | 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | # Define the coverage related test suites: # # coverage-wal # test_suite "coverage-wal" -description { Coverage tests for file wal.c. } -files { wal2big.test wal2recover.test wal2rewrite.test wal2simple.test wal2snapshot.test wal2.test wal3.test wal4.test wal5.test wal64k.test wal6.test wal7.test wal8.test wal9.test walbak.test walbig.test walblock.test walcksum.test walfault.test walhook.test walmode.test walnoshm.test waloverwrite.test walpersist.test walprotocol2.test walprotocol.test walro2.test walrofault.test walro.test walshared.test walslow.test wal.test wal2savepoint.test wal2lock.test wal2recover2.test walvfs.test walfault2.test nockpt.test snapshot2.test snapshot3.test snapshot4.test snapshot_fault.test snapshot.test snapshot_up.test walcrash2.test walcrash3.test walcrash4.test walcrash.test wal2fault.test } test_suite "coverage-pager" -description { Coverage tests for file pager.c. } -files { pager1.test pager2.test pagerfault.test pagerfault2.test walfault.test walbak.test journal2.test tkt-9d68c883.test |
︙ | ︙ | |||
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | insert.test insert2.test insert3.test rollback.test select1.test select2.test select3.test } } test_suite "wal" -description { Run tests with journal_mode=WAL } -initialize { set ::G(savepoint6_iterations) 100 } -shutdown { unset -nocomplain ::G(savepoint6_iterations) } -files { savepoint.test savepoint2.test savepoint6.test trans.test avtrans.test | > > > > > > > > > > > > > > > > > | 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 | insert.test insert2.test insert3.test rollback.test select1.test select2.test select3.test } } test_suite "wal" -description { Run tests with journal_mode=WAL } -initialize { set ::G(savepoint6_iterations) 100 } -shutdown { unset -nocomplain ::G(savepoint6_iterations) } -files { savepoint.test savepoint2.test savepoint6.test trans.test avtrans.test fts3aa.test fts3ab.test fts3ac.test fts3ad.test fts3ae.test fts3af.test fts3ag.test fts3ah.test fts3ai.test fts3aj.test fts3ak.test fts3al.test fts3am.test fts3an.test fts3ao.test fts3b.test fts3c.test fts3d.test fts3e.test fts3query.test } test_suite "wal2" -description { Run tests with journal_mode=WAL2 } -initialize { set ::G(savepoint6_iterations) 100 } -shutdown { unset -nocomplain ::G(savepoint6_iterations) } -files { savepoint.test savepoint2.test savepoint6.test trans.test avtrans.test |
︙ | ︙ |
Changes to test/rdonly.test.
︙ | ︙ | |||
37 38 39 40 41 42 43 | # returns 1 if the database N of connection D is read-only, 0 if it is # read/write, or -1 if N is not the name of a database on connection D. # do_test rdonly-1.1.1 { sqlite3_db_readonly db main } {0} | | | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | # returns 1 if the database N of connection D is read-only, 0 if it is # read/write, or -1 if N is not the name of a database on connection D. # do_test rdonly-1.1.1 { sqlite3_db_readonly db main } {0} # Changes the write version from 1 to 4. Verify that the database # can be read but not written. # do_test rdonly-1.2 { db close hexio_get_int [hexio_read test.db 18 1] } 1 do_test rdonly-1.3 { hexio_write test.db 18 04 sqlite3 db test.db execsql { SELECT * FROM t1; } } {1} do_test rdonly-1.3.1 { sqlite3_db_readonly db main |
︙ | ︙ | |||
79 80 81 82 83 84 85 | # Now, after connection [db] has loaded the database schema, modify the # write-version of the file (and the change-counter, so that the # write-version is reloaded). This way, SQLite does not discover that # the database is read-only until after it is locked. # set ro_version 02 | | | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | # Now, after connection [db] has loaded the database schema, modify the # write-version of the file (and the change-counter, so that the # write-version is reloaded). This way, SQLite does not discover that # the database is read-only until after it is locked. # set ro_version 02 ifcapable wal { set ro_version 04 } do_test rdonly-1.6 { hexio_write test.db 18 $ro_version ; # write-version hexio_write test.db 24 11223344 ; # change-counter catchsql { INSERT INTO t1 VALUES(2); } } {1 {attempt to write a readonly database}} finish_test |
Changes to test/savepoint.test.
︙ | ︙ | |||
26 27 28 29 30 31 32 33 34 35 36 37 38 39 | do_test savepoint-1.1 { wal_set_journal_mode execsql { SAVEPOINT sp1; RELEASE sp1; } } {} do_test savepoint-1.2 { execsql { SAVEPOINT sp1; ROLLBACK TO sp1; } } {} do_test savepoint-1.3 { | > | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | do_test savepoint-1.1 { wal_set_journal_mode execsql { SAVEPOINT sp1; RELEASE sp1; } } {} wal_check_journal_mode savepoint-1.1 do_test savepoint-1.2 { execsql { SAVEPOINT sp1; ROLLBACK TO sp1; } } {} do_test savepoint-1.3 { |
︙ | ︙ | |||
803 804 805 806 807 808 809 | CREATE TABLE t3(a, b, UNIQUE(a, b)); ROLLBACK TO one; } } {} integrity_check savepoint-11.7 do_test savepoint-11.8 { execsql { ROLLBACK } | > | | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 | CREATE TABLE t3(a, b, UNIQUE(a, b)); ROLLBACK TO one; } } {} integrity_check savepoint-11.7 do_test savepoint-11.8 { execsql { ROLLBACK } db close sqlite3 db test.db file size test.db } {8192} do_test savepoint-11.9 { execsql { DROP TABLE IF EXISTS t1; DROP TABLE IF EXISTS t2; |
︙ | ︙ |
Changes to test/tester.tcl.
︙ | ︙ | |||
549 550 551 552 553 554 555 556 557 558 559 560 561 562 | # Create a test database # proc reset_db {} { catch {db close} forcedelete test.db forcedelete test.db-journal forcedelete test.db-wal sqlite3 db ./test.db set ::DB [sqlite3_connection_pointer db] if {[info exists ::SETUP_SQL]} { db eval $::SETUP_SQL } } reset_db | > | 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | # Create a test database # proc reset_db {} { catch {db close} forcedelete test.db forcedelete test.db-journal forcedelete test.db-wal forcedelete test.db-wal2 sqlite3 db ./test.db set ::DB [sqlite3_connection_pointer db] if {[info exists ::SETUP_SQL]} { db eval $::SETUP_SQL } } reset_db |
︙ | ︙ | |||
2307 2308 2309 2310 2311 2312 2313 | # Otherwise (if not running a WAL permutation) this is a no-op. # # wal_is_wal_mode # # Returns true if this test should be run in WAL mode. False otherwise. # proc wal_is_wal_mode {} { | | > > | > > > > | > > > > > > > > > | | 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 | # Otherwise (if not running a WAL permutation) this is a no-op. # # wal_is_wal_mode # # Returns true if this test should be run in WAL mode. False otherwise. # proc wal_is_wal_mode {} { if {[permutation] eq "wal"} { return 1 } if {[permutation] eq "wal2"} { return 2 } return 0 } proc wal_set_journal_mode {{db db}} { switch -- [wal_is_wal_mode] { 0 { } 1 { $db eval "PRAGMA journal_mode = WAL" } 2 { $db eval "PRAGMA journal_mode = WAL2" } } } proc wal_check_journal_mode {testname {db db}} { if { [wal_is_wal_mode] } { $db eval { SELECT * FROM sqlite_master } set expected "wal" if {[wal_is_wal_mode]==2} { set expected "wal2" } do_test $testname [list $db eval "PRAGMA main.journal_mode"] $expected } } proc wal_is_capable {} { ifcapable !wal { return 0 } if {[permutation]=="journaltest"} { return 0 } return 1 |
︙ | ︙ |
Changes to test/uri.test.
︙ | ︙ | |||
278 279 280 281 282 283 284 | CREATE TABLE aux.t2(a, b); PRAGMA main.journal_mode = WAL; PRAGMA aux.journal_mode = WAL; INSERT INTO t1 VALUES('x', 'y'); INSERT INTO t2 VALUES('x', 'y'); } lsort [array names ::T1] | | | | 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | CREATE TABLE aux.t2(a, b); PRAGMA main.journal_mode = WAL; PRAGMA aux.journal_mode = WAL; INSERT INTO t1 VALUES('x', 'y'); INSERT INTO t2 VALUES('x', 'y'); } lsort [array names ::T1] } {test.db1 test.db1-journal test.db1-wal test.db1-wal2} do_test 5.1.2 { lsort [array names ::T2] } {test.db2 test.db2-journal test.db2-wal test.db2-wal2} db close tvfs1 delete tvfs2 delete } #------------------------------------------------------------------------- |
︙ | ︙ |
Changes to test/wal.test.
︙ | ︙ | |||
1171 1172 1173 1174 1175 1176 1177 | 5 2048 1 6 4096 1 7 8192 1 8 16384 1 9 32768 1 10 65536 1 11 131072 0 | | | | | 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | 5 2048 1 6 4096 1 7 8192 1 8 16384 1 9 32768 1 10 65536 1 11 131072 0 12 1016 0 } { if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} { set works 0 } for {set pg 1} {$pg <= 3} {incr pg} { forcecopy testX.db test.db forcedelete test.db-wal # Check that the database now exists and consists of three pages. And # that there is no associated wal file. # do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0 do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1 do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3] do_test wal-18.2.$tn.$pg.4 { # Create a wal file that contains a single frame (database page # number $pg) with the commit flag set. The frame checksum is # correct, but the contents of the database page are corrupt. # # The page-size in the log file header is set to $pgsz. If the |
︙ | ︙ | |||
1220 1221 1222 1223 1224 1225 1226 | set fd [open test.db-wal w] fconfigure $fd -translation binary puts -nonewline $fd $walhdr puts -nonewline $fd $framehdr puts -nonewline $fd $framebody close $fd | | | | | 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 | set fd [open test.db-wal w] fconfigure $fd -translation binary puts -nonewline $fd $walhdr puts -nonewline $fd $framehdr puts -nonewline $fd $framebody close $fd file size test.db-wal } [wal_file_size 1 $pgsz] do_test wal-18.2.$tn.$pg.5 { sqlite3 db test.db set rc [catch { db one {PRAGMA integrity_check} } msg] expr { $rc!=0 || $msg!="ok" } } $works db close } } #------------------------------------------------------------------------- # The following test - wal-19.* - fixes a bug that was present during # development. |
︙ | ︙ |
Added test/wal2big.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # 2017 September 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # TESTRUNNER: slow # # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2big ifcapable !wal {finish_test ; return } do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 10000000; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<200000 ) INSERT INTO t1 SELECT random(), random(), random() FROM s; } {wal2 10000000} do_execsql_test 1.1 { WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s WHERE i<200000 ) INSERT INTO t1 SELECT random(), random(), random() FROM s; } do_test 1.2 { list [expr [file size test.db-wal]>10000000] \ [expr [file size test.db-wal2]>10000000] } {1 1} do_test 1.3 { sqlite3 db2 test.db execsql { SELECT count(*) FROM t1; PRAGMA integrity_check; } db2 } {400000 ok} do_test 1.4 { db2 close forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcecopy test.db-wal2 test.db2-wal2 sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; PRAGMA integrity_check; } } {400000 ok} finish_test |
Added test/wal2fault.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # 2010 May 03 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl source $testdir/lock_common.tcl ifcapable !wal {finish_test ; return } set testprefix wal2fault do_execsql_test 1.0 { CREATE TABLE t1(x,y); PRAGMA journal_mode = wal2; WITH s(i) AS ( SELECT 100 UNION ALL SELECT i-1 FROM s WHERE (i-1)>0 ) INSERT INTO t1 SELECT i, randomblob(i) FROM s; WITH s(i) AS ( SELECT 100 UNION ALL SELECT i-1 FROM s WHERE (i-1)>0 ) INSERT INTO t1 SELECT i, randomblob(i) FROM s; } {wal2} do_test 1.1 { expr [file size test.db-wal]>10000 } {1} faultsim_save_and_close do_faultsim_test 1 -prep { faultsim_restore_and_reopen execsql { PRAGMA journal_size_limit = 10000; SELECT count(*) FROM sqlite_master; } } -body { execsql { INSERT INTO t1 VALUES(1, 2); } } -test { faultsim_test_result {0 {}} } finish_test |
Added test/wal2lock.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | # 2018 December 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2lock ifcapable !wal {finish_test ; return } db close testvfs tvfs sqlite3 db test.db -vfs tvfs do_execsql_test 1.0 { PRAGMA journal_mode = wal2; CREATE TABLE y1(y, yy); CREATE INDEX y1y ON y1(y); CREATE INDEX y1yy ON y1(yy); INSERT INTO y1 VALUES(1, 2), (3, 4), (5, 6); } {wal2} tvfs script vfs_callback tvfs filter xShmLock set ::lock [list] proc vfs_callback {func file name lock} { lappend ::lock $lock return SQLITE_OK } do_execsql_test 1.1.1 { SELECT * FROM y1 } {1 2 3 4 5 6} do_test 1.1.2 { set ::lock } {{4 1 lock shared} {4 1 unlock shared}} set ::bFirst 1 proc vfs_callback {func file name lock} { if {$::bFirst} { set ::bFirst 0 return SQLITE_BUSY } return SQLITE_OK } do_execsql_test 1.2 { SELECT * FROM y1 } {1 2 3 4 5 6} set ::bFirst 1 proc vfs_callback {func file name lock} { if {$::bFirst} { set ::bFirst 0 return SQLITE_IOERR } return SQLITE_OK } do_catchsql_test 1.3 { SELECT * FROM y1 } {1 {disk I/O error}} puts "# Warning: This next test case causes SQLite to call xSleep(1) 100 times." puts "# Normally this equates to a delay of roughly 10 seconds, but if SQLite" puts "# is built on unix without HAVE_USLEEP defined, it may be much longer." proc vfs_callback {func file name lock} { return SQLITE_BUSY } do_catchsql_test 1.4 { SELECT * FROM y1 } {1 {locking protocol}} proc vfs_callback {func file name lock} { return SQLITE_OK } sqlite3 db2 test.db -vfs tvfs set ::bFirst 1 proc vfs_callback {func file name lock} { if {$::bFirst} { set ::bFirst 0 db2 eval { INSERT INTO y1 VALUES(7, 8) } } } do_execsql_test 1.5.1 { SELECT * FROM y1 } {1 2 3 4 5 6 7 8} do_execsql_test 1.5.2 { SELECT * FROM y1 } {1 2 3 4 5 6 7 8} db close db2 close tvfs delete finish_test |
Added test/wal2openclose.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | # 2017 September 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2openclose ifcapable !wal {finish_test ; return } do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); PRAGMA journal_mode = wal2; PRAGMA wal_autocheckpoint = 0; PRAGMA journal_size_limit = 75000; } {wal2 0 75000} do_test 1.1 { for {set ii 1} {$ii <= 200} {incr ii} { execsql { INSERT INTO t1 VALUES($ii, $ii, $ii); } } expr ([file size test.db-wal2] - 75000) > 30000 } {1} do_test 1.2 { db close list [file exists test.db-wal] [file exists test.db-wal2] } {0 0} sqlite3 db test.db do_execsql_test 1.3 { SELECT sum(c) FROM t1 } {20100} db close #------------------------------------------------------------------------- reset_db do_execsql_test 2.0 { CREATE TABLE t1(a, b, c); PRAGMA journal_mode = wal2; INSERT INTO t1 VALUES(1, 2, 3); } {wal2} db_save_and_close db_restore_and_reopen do_execsql_test 2.1 { SELECT * FROM t1; } {1 2 3} do_test 2.2 { sqlite3 db2 test.db db2 eval {INSERT INTO t1 VALUES(4, 5, 6)} db2 close } {} breakpoint db close sqlite3 db test.db do_execsql_test 2.2 { SELECT * FROM t1; } {1 2 3 4 5 6} finish_test |
Added test/wal2recover.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | # 2018 December 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2recover ifcapable !wal {finish_test ; return } proc db_copy {from to} { forcecopy $from $to forcecopy ${from}-wal ${to}-wal forcecopy ${from}-wal2 ${to}-wal2 } do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 15000; PRAGMA wal_autocheckpoint = 0; } {wal2 15000 0} do_test 1.1 { for {set i 1} {$i <= 1000} {incr i} { execsql { INSERT INTO t1 VALUES(random(), random(), random()) } db_copy test.db test.db2 sqlite3 db2 test.db set res [execsql { SELECT count(*) FROM t1; PRAGMA integrity_check; } db2] db2 close if {$res != [list $i ok]} { error "failure on iteration $i" } } set {} {} } {} #-------------------------------------------------------------------------- reset_db do_execsql_test 2.0 { CREATE TABLE t1(x UNIQUE); CREATE TABLE t2(x UNIQUE); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 10000; PRAGMA wal_autocheckpoint = 0; BEGIN; INSERT INTO t1 VALUES(randomblob(4000)); INSERT INTO t1 VALUES(randomblob(4000)); INSERT INTO t1 VALUES(randomblob(4000)); COMMIT; BEGIN; INSERT INTO t2 VALUES(randomblob(4000)); INSERT INTO t2 VALUES(randomblob(4000)); INSERT INTO t2 VALUES(randomblob(4000)); COMMIT; } {wal2 10000 0} do_test 2.0.1 { list [file size test.db] [file size test.db-wal] [file size test.db-wal2] } {5120 28328 28328} # Test recovery with both wal files intact. # do_test 2.1 { db_copy test.db test.db2 sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {3 3 ok} do_test 2.2 { db2 close db_copy test.db test.db2 hexio_write test.db2-wal 16 12345678 sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; } db2 } {0 3} do_test 2.3 { db2 close db_copy test.db test.db2 hexio_write test.db2-wal2 16 12345678 sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {3 0 ok} do_test 2.4 { db2 close db_copy test.db test.db2 forcecopy test.db-wal test.db2-wal2 sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {3 0 ok} do_test 2.5 { db2 close db_copy test.db test.db2 forcecopy test.db-wal test.db2-wal2 forcecopy test.db-wal2 test.db2-wal sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {3 3 ok} do_test 2.6 { db2 close db_copy test.db test.db2 forcecopy test.db-wal test.db2-wal2 close [open test.db-wal w] sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {3 0 ok} do_test 2.7 { db2 close db_copy test.db test.db2 forcedelete test.db2-wal sqlite3 db2 test.db2 execsql { SELECT count(*) FROM t1; SELECT count(*) FROM t2; PRAGMA integrity_check; } db2 } {0 0 ok} db2 close #------------------------------------------------------------------------- # reset_db do_execsql_test 3.0 { CREATE TABLE t1(a TEXT, b TEXT, c TEXT); CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 10000; PRAGMA wal_autocheckpoint = 0; PRAGMA cache_size = 5; } {wal2 10000 0} do_execsql_test 3.1 { WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 200) INSERT INTO t1 SELECT i, i, i FROM s; INSERT INTO t1 VALUES(201, 201, 201); } {} do_test 3.2 { list [file size test.db] [file size test.db-wal] [file size test.db-wal2] } {5120 15752 4224} do_test 3.3 { forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcecopy test.db-wal2 test.db2-wal2 sqlite3 db2 test.db2 execsql { PRAGMA journal_size_limit = 10000; PRAGMA wal_autocheckpoint = 0; PRAGMA cache_size = 5; BEGIN; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 200) INSERT INTO t1 SELECT i, i, i FROM s; } db2 list [file size test.db2] [file size test.db2-wal] [file size test.db2-wal2] } {5120 15752 23088} if {$tcl_platform(platform)!="windows"} { # These cannot be run under windows, as the *-shm file may not be read # while it is locked by the database connection. do_test 3.4 { set fd [open test.db2-shm] fconfigure $fd -translation binary set data [read $fd] close $fd set fd [open test.db-shm w] fconfigure $fd -translation binary puts -nonewline $fd $data close $fd execsql { WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 10) INSERT INTO t1 SELECT i, i, i FROM s; SELECT count(*) FROM t1; PRAGMA integrity_check; } } {211 ok} do_test 3.5 { list [file size test.db] [file size test.db-wal] [file size test.db-wal2] } {5120 15752 18896} } #------------------------------------------------------------------------- # reset_db do_execsql_test 4.0 { PRAGMA journal_mode = wal2; CREATE TABLE xyz(x, y, z); INSERT INTO xyz VALUES('x', 'y', 'z'); } {wal2} db close do_test 4.1 { close [open test.db-wal w] file mkdir test.db-wal2 sqlite3 db test.db catchsql { SELECT * FROM xyz } } {1 {unable to open database file}} db close file delete test.db-wal2 db2 close do_test 4.2 { sqlite3 db test.db execsql { INSERT INTO xyz VALUES('a', 'b', 'c'); } forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcedelete test.db2-wal2 file mkdir test.db2-wal2 sqlite3 db2 test.db2 catchsql { SELECT * FROM xyz } db2 } {1 {unable to open database file}} db2 close file delete test.db2-wal2 finish_test |
Added test/wal2recover2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | # 2018 December 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2recover2 ifcapable !wal {finish_test ; return } do_execsql_test 1.0 { CREATE TABLE t1(x); CREATE TABLE t2(x); WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t1 SELECT i FROM s; WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t2 SELECT i FROM s; PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 10000; } {wal2 10000} set ::L 1125750 set ::M 1126500 set ::H 1127250 do_execsql_test 1.1 { UPDATE t1 SET x=x+1; UPDATE t2 SET x=x+1 WHERE rowid<=750; SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } [list $H $M] do_test 1.2 { list [file size test.db] [file size test.db-wal] [file size test.db-wal2] } {31744 14704 7368} proc cksum {zIn data} { if {[string length $zIn]==0} { set s0 0 set s1 0 } else { set s0 [hexio_get_int [string range $zIn 0 7]] set s1 [hexio_get_int [string range $zIn 8 15]] } set n [expr [string length $data] / 8] for {set i 0} {$i < $n} {incr i 2} { set x0 [hexio_get_int -l [string range $data [expr $i*8] [expr $i*8+7]]] set x1 [hexio_get_int -l [string range $data [expr $i*8+8] [expr $i*8+8+7]]] set s0 [expr ($s0 + $x0 + $s1) & 0xFFFFFFFF] set s1 [expr ($s1 + $x1 + $s0) & 0xFFFFFFFF] } return "[hexio_render_int32 $s0][hexio_render_int32 $s1]" } proc fix_wal_cksums {file} { # Fix the checksum on the wal header. set data [hexio_read $file 0 32] set cksum [cksum {} [string range $data 0 47]] set salt [hexio_read $file 16 8] hexio_write $file 24 $cksum # Fix the checksums for all pages in the wal file. set pgsz [hexio_get_int [hexio_read $file 8 4]] set sz [file size $file] for {set off 32} {$off < $sz} {incr off [expr $pgsz+24]} { set e [hexio_read $file $off 8] set cksum [cksum $cksum $e] set p [hexio_read $file [expr $off+24] $pgsz] set cksum [cksum $cksum $p] hexio_write $file [expr $off+8] $salt hexio_write $file [expr $off+16] $cksum } } proc wal_incr_hdrfield {file field} { switch -- $field { nCkpt { set offset 12 } salt0 { set offset 16 } salt1 { set offset 20 } default { error "unknown field $field - should be \"nCkpt\", \"salt0\" or \"salt1\"" } } # Increment the value in the wal header. set v [hexio_get_int [hexio_read $file $offset 4]] incr v hexio_write $file $offset [hexio_render_int32 $v] # Fix various checksums fix_wal_cksums $file } proc wal_set_nckpt {file val} { # Increment the value in the wal header. hexio_write $file 12 [hexio_render_int32 $val] # Fix various checksums fix_wal_cksums $file } proc wal_set_follow {file prevfile} { set pgsz [hexio_get_int [hexio_read $prevfile 8 4]] set sz [file size $prevfile] set cksum [hexio_read $prevfile [expr $sz-$pgsz-8] 8] hexio_write $file 16 $cksum fix_wal_cksums $file } foreach {tn file field} { 1 test.db2-wal salt0 2 test.db2-wal salt1 3 test.db2-wal nCkpt 4 test.db2-wal2 salt0 5 test.db2-wal2 salt1 6 test.db2-wal2 nCkpt } { do_test 1.3.$tn { forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcecopy test.db-wal2 test.db2-wal2 wal_incr_hdrfield $file $field sqlite3 db2 test.db2 execsql { SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } db2 } [list $H $L] db2 close } do_test 1.4 { forcecopy test.db test.db2 forcecopy test.db-wal2 test.db2-wal forcedelete test.db2-wal2 sqlite3 db2 test.db2 execsql { SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } db2 } [list $L $M] do_test 1.5 { db2 close forcecopy test.db test.db2 forcecopy test.db-wal2 test.db2-wal forcecopy test.db-wal test.db2-wal2 sqlite3 db2 test.db2 execsql { SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } db2 } [list $H $M] db2 close foreach {tn file field} { 1 test.db2-wal salt0 2 test.db2-wal salt1 3 test.db2-wal2 salt0 4 test.db2-wal2 salt1 } { do_test 1.6.$tn { forcecopy test.db test.db2 forcecopy test.db-wal2 test.db2-wal forcecopy test.db-wal test.db2-wal2 wal_incr_hdrfield $file $field sqlite3 db2 test.db2 execsql { SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } db2 } [list $H $L] db2 close } foreach {tn nCkpt1 nCkpt2 res} [list \ 1 2 1 "$H $M" \ 2 2 2 "$L $M" \ 3 3 1 "$H $L" \ 4 15 14 "$H $M" \ 5 0 15 "$H $M" \ 6 1 15 "$L $M" \ ] { do_test 1.7.$tn { forcecopy test.db test.db2 forcecopy test.db-wal2 test.db2-wal forcecopy test.db-wal test.db2-wal2 wal_set_nckpt test.db2-wal2 $nCkpt2 wal_set_nckpt test.db2-wal $nCkpt1 wal_set_follow test.db2-wal test.db2-wal2 sqlite3 db2 test.db2 execsql { SELECT sum(x) FROM t1; SELECT sum(x) FROM t2; } db2 } $res db2 close } #------------------------------------------------------------------------- reset_db do_execsql_test 1.8.1 { PRAGMA autovacuum = 0; PRAGMA page_size = 4096; CREATE TABLE t1(x); CREATE TABLE t2(x); WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t1 SELECT i FROM s; WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t2 SELECT i FROM s; PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 10000; WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t2 SELECT i FROM s; } {wal2 10000} do_test 1.8.2 { list [file size test.db-wal] [file size test.db-wal2] } {24752 0} do_execsql_test 1.8.3 { PRAGMA user_version = 123 } do_test 1.8.4 { list [file size test.db-wal] [file size test.db-wal2] } {24752 4152} do_test 1.8.5 { hexio_write test.db-wal2 [expr 56+16] 0400 fix_wal_cksums test.db-wal2 } {} ifcapable oversize_cell_check { set msg {database disk image is malformed} } else { set msg {malformed database schema (?)} } do_test 1.8.6 { forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcecopy test.db-wal2 test.db2-wal2 sqlite3 db2 test.db2 catchsql { SELECT * FROM sqlite_master } db2 } [list 1 $msg] db2 close finish_test |
Added test/wal2recover3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # 2022 June 28 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2recover3 ifcapable !wal {finish_test ; return } do_execsql_test 1.0 { CREATE TABLE t1(x); CREATE TABLE t2(x); PRAGMA journal_mode = wal2; PRAGMA wal_autocheckpoint = 0; PRAGMA journal_size_limit = 10000; } {wal2 0 10000} do_execsql_test 1.1 { WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t1 SELECT i FROM s; WITH s(i) AS ( VALUES(1) UNION ALL SELECT i+1 FROM s WHERE i<1500 ) INSERT INTO t2 SELECT i FROM s; } db_save_and_close set fd [open sv_test.db-wal2 r+] seek $fd 4000 puts -nonewline $fd 0 close $fd db_restore_and_reopen do_execsql_test 1.2 { SELECT sql FROM sqlite_schema; } {{CREATE TABLE t1(x)} {CREATE TABLE t2(x)}} finish_test |
Added test/wal2rewrite.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | # 2017 September 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2rewrite ifcapable !wal {finish_test ; return } proc filesize {filename} { if {[file exists $filename]} { return [file size $filename] } return 0 } foreach {tn jrnlmode} { 1 wal 2 wal2 } { reset_db execsql "PRAGMA journal_mode = $jrnlmode" do_execsql_test $tn.1 { PRAGMA journal_size_limit = 10000; PRAGMA cache_size = 5; PRAGMA wal_autocheckpoint = 10; CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER, c BLOB); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); WITH s(i) AS ( SELECT 1 UNION SELECT i+1 FROM s WHERE i<10 ) INSERT INTO t1 SELECT i, i, randomblob(800) FROM s; } {10000 10} for {set i 0} {$i < 4} {incr i} { do_execsql_test $tn.$i.1 { UPDATE t1 SET c=randomblob(800) WHERE (b%10)==5 AND ($i%2) } do_execsql_test $tn.$i.2 { BEGIN; UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); UPDATE t1 SET b=b+10, c=randomblob(800); } execsql COMMIT do_test $tn.$i.3 { expr [filesize test.db-wal] < 100000 } 1 do_test $tn.$i.4 { expr [filesize test.db-wal2] < 100000 } 1 set sum [db eval {SELECT sum(b), md5sum(c) FROM t1}] do_test $tn.$i.5 { foreach f [glob -nocomplain test.db2*] {forcedelete $f} foreach f [glob -nocomplain test.db*] { forcecopy $f [string map {test.db test.db2} $f] } sqlite3 db2 test.db2 db2 eval {SELECT sum(b), md5sum(c) FROM t1} } $sum db2 close } } finish_test |
Added test/wal2rollback.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | # 2017 September 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2rollback ifcapable !wal {finish_test ; return } do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); CREATE TABLE t2(a, b, c); CREATE INDEX i1 ON t1(a); CREATE INDEX i2 ON t1(b); PRAGMA journal_mode = wal2; PRAGMA cache_size = 5; PRAGMA journal_size_limit = 10000; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s LIMIT 1000 ) INSERT INTO t1 SELECT i, i, randomblob(200) FROM s; } {wal2 10000} do_test 1.1 { expr [file size test.db-wal] > 10000 } 1 do_test 1.2 { execsql { BEGIN; UPDATE t1 SET b=b+1; INSERT INTO t2 VALUES(1,2,3); } expr [file size test.db-wal2] > 10000 } {1} breakpoint do_execsql_test 1.3 { ROLLBACK; SELECT * FROM t2; SELECT count(*) FROM t1 WHERE a=b; PRAGMA integrity_check; } {1000 ok} finish_test |
Added test/wal2savepoint.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | # 2018 December 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2savepoint ifcapable !wal {finish_test ; return } reset_prng_state do_execsql_test 1.0 { CREATE TABLE t1(a, b, c); CREATE INDEX t1a ON t1(a); CREATE INDEX t1b ON t1(b); CREATE INDEX t1c ON t1(c); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 15000; PRAGMA wal_autocheckpoint = 0; PRAGMA cache_size = 5; } {wal2 15000 0} do_execsql_test 1.1 { WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 200) INSERT INTO t1 SELECT random(), random(), random() FROM s; } {} do_test 1.2 { list [file size test.db] [file size test.db-wal] [file size test.db-wal2] } {5120 23088 0} do_execsql_test 1.3 { BEGIN; SAVEPOINT abc; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 100) INSERT INTO t1 SELECT random(), random(), random() FROM s; ROLLBACK TO abc; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 10) INSERT INTO t1 SELECT random(), random(), random() FROM s; COMMIT; SELECT count(*) FROM t1; PRAGMA integrity_check; } {210 ok} do_execsql_test 1.4 { BEGIN; SAVEPOINT abc; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 100) INSERT INTO t1 SELECT random(), random(), random() FROM s; ROLLBACK TO abc; WITH s(i) AS ( SELECT 1 UNION ALL SELECT i+1 FROM s where i < 10) INSERT INTO t1 SELECT random(), random(), random() FROM s; COMMIT; SELECT count(*) FROM t1; PRAGMA integrity_check; } {220 ok} finish_test |
Added test/wal2simple.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | # 2017 September 19 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2simple ifcapable !wal {finish_test ; return } #------------------------------------------------------------------------- # The following tests verify that a client can switch in and out of wal # and wal2 mode. But that it is not possible to change directly from wal # to wal2, or from wal2 to wal mode. # do_execsql_test 1.1.0 { PRAGMA journal_mode = wal2 } {wal2} execsql { SELECT * FROM sqlite_master} do_execsql_test 1.x { PRAGMA journal_mode; PRAGMA main.journal_mode; } {wal2 wal2} db close do_test 1.1.1 { file size test.db } {1024} do_test 1.1.2 { hexio_read test.db 18 2 } 0303 sqlite3 db test.db do_execsql_test 1.2.0 { SELECT * FROM sqlite_master; PRAGMA journal_mode = delete; } {delete} db close do_test 1.2.1 { file size test.db } {1024} do_test 1.2.2 { hexio_read test.db 18 2 } 0101 sqlite3 db test.db do_execsql_test 1.3.0 { SELECT * FROM sqlite_master; PRAGMA journal_mode = wal; } {wal} db close do_test 1.3.1 { file size test.db } {1024} do_test 1.3.2 { hexio_read test.db 18 2 } 0202 sqlite3 db test.db do_catchsql_test 1.4.0 { PRAGMA journal_mode = wal2; } {1 {cannot change from wal to wal2 mode}} do_execsql_test 1.4.1 { PRAGMA journal_mode = wal; PRAGMA journal_mode = delete; PRAGMA journal_mode = wal2; PRAGMA journal_mode = wal2; } {wal delete wal2 wal2} do_catchsql_test 1.4.2 { PRAGMA journal_mode = wal; } {1 {cannot change from wal2 to wal mode}} db close do_test 1.4.3 { hexio_read test.db 18 2 } 0303 #------------------------------------------------------------------------- # Test that recovery in wal2 mode works. # forcedelete test.db test.db-wal test.db-wal2 reset_db do_execsql_test 2.0 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 5000; } {wal2 5000} proc wal_hook {DB nm nFrame} { $DB eval { PRAGMA wal_checkpoint } } db wal_hook {wal_hook db} for {set i 1} {$i <= 200} {incr i} { execsql { INSERT INTO t1 VALUES(NULL, randomblob(100)) } set res [db eval { SELECT sum(a), md5sum(b) FROM t1 }] do_test 2.1.$i { foreach f [glob -nocomplain test.db2*] { forcedelete $f } forcecopy test.db test.db2 forcecopy test.db-wal test.db2-wal forcecopy test.db-wal2 test.db2-wal2 sqlite3 db2 test.db2 db2 eval { SELECT sum(a), md5sum(b) FROM t1 } } $res db2 close } #------------------------------------------------------------------------- reset_db do_execsql_test 3.0 { CREATE TABLE t1(x BLOB, y INTEGER PRIMARY KEY); CREATE INDEX i1 ON t1(x); PRAGMA cache_size = 5; PRAGMA journal_mode = wal2; } {wal2} do_test 3.1 { execsql BEGIN for {set i 1} {$i < 1000} {incr i} { execsql { INSERT INTO t1 VALUES(randomblob(800), $i) } } execsql COMMIT } {} do_execsql_test 3.2 { PRAGMA integrity_check; } {ok} #------------------------------------------------------------------------- catch { db close } foreach f [glob -nocomplain test.db*] { forcedelete $f } reset_db do_execsql_test 4.0 { CREATE TABLE t1(x, y); PRAGMA journal_mode = wal2; } {wal2} do_execsql_test 4.1 { SELECT * FROM t1; } {} do_execsql_test 4.2 { INSERT INTO t1 VALUES(1, 2); } {} do_execsql_test 4.3 { SELECT * FROM t1; } {1 2} do_test 4.4 { sqlite3 db2 test.db execsql { SELECT * FROM t1 } db2 } {1 2} do_test 4.5 { lsort [glob test.db*] } {test.db test.db-shm test.db-wal test.db-wal2} do_test 4.6 { db close db2 close sqlite3 db test.db execsql { SELECT * FROM t1 } } {1 2} do_execsql_test 4.7 { PRAGMA journal_size_limit = 4000; INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); INSERT INTO t1 VALUES(7, 8); INSERT INTO t1 VALUES(9, 10); INSERT INTO t1 VALUES(11, 12); INSERT INTO t1 VALUES(13, 14); INSERT INTO t1 VALUES(15, 16); INSERT INTO t1 VALUES(17, 18); SELECT * FROM t1; } {4000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18} do_test 4.8 { sqlite3 db2 test.db execsql { SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18} do_test 4.9 { db close db2 close lsort [glob test.db*] } {test.db} #------------------------------------------------------------------------- reset_db do_execsql_test 5.0 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c); CREATE INDEX i1 ON t1(b, c); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 4000; } {wal2 4000} proc wal_hook {DB nm nFrame} { $DB eval { PRAGMA wal_checkpoint } } db wal_hook [list wal_hook db] foreach js {4000 8000 12000} { foreach NROW [list 100 200 300 400 500 600 1000] { do_test 5.$js.$NROW.1 { db eval "DELETE FROM t1" db eval "PRAGMA journal_size_limit = $js" set nTotal 0 for {set i 0} {$i < $NROW} {incr i} { db eval { INSERT INTO t1 VALUES($i, $i, randomblob(abs(random()%50))) } incr nTotal $i } set {} {} } {} do_test 5.$js.$NROW.2 { sqlite3 db2 test.db db2 eval { PRAGMA integrity_check; SELECT count(*), sum(b) FROM t1; } } [list ok $NROW $nTotal] db2 close } } #------------------------------------------------------------------------- reset_db do_execsql_test 6.0 { CREATE TABLE tx(x); PRAGMA journal_mode = wal2; PRAGMA journal_size_limit = 3500; } {wal2 3500} do_test 6.1 { for {set i 0} {$i < 10} {incr i} { execsql "CREATE TABLE t$i (x);" } } {} do_test 6.2.1 { foreach f [glob -nocomplain test.db2*] { forcedelete $f } forcecopy test.db-wal2 test.db2-wal2 sqlite3 db2 test.db2 db2 eval { SELECT * FROM sqlite_master } } {} do_test 6.2.2 { db2 eval { PRAGMA journal_mode = wal2; SELECT * FROM sqlite_master; } } {wal2} do_test 6.3.1 { db2 close foreach f [glob -nocomplain test.db2*] { forcedelete $f } forcecopy test.db-wal2 test.db2-wal2 forcecopy test.db test.db2 sqlite3 db2 test.db2 db2 eval { SELECT * FROM sqlite_master } } {table tx tx 2 {CREATE TABLE tx(x)}} do_test 6.3.2 { db2 eval { PRAGMA journal_mode = wal2; SELECT * FROM sqlite_master; } } {wal2 table tx tx 2 {CREATE TABLE tx(x)}} do_test 6.4.1 { db2 close foreach f [glob -nocomplain test.db2*] { forcedelete $f } forcecopy test.db-wal2 test.db2-wal2 forcecopy test.db-wal test.db2-wal sqlite3 db2 test.db2 db2 eval { SELECT * FROM sqlite_master } } {} do_test 6.4.2 { db2 eval { PRAGMA journal_mode = wal2; SELECT * FROM sqlite_master; } } {wal2} db2 close #------------------------------------------------------------------------- reset_db sqlite3 db2 test.db do_execsql_test 7.0 { PRAGMA journal_size_limit = 10000; PRAGMA journal_mode = wal2; PRAGMA wal_autocheckpoint = 0; BEGIN; CREATE TABLE t1(a); INSERT INTO t1 VALUES( randomblob(8000) ); COMMIT; } {10000 wal2 0} do_test 7.1 { list [file size test.db-wal] [file size test.db-wal2] } {9464 0} # Connection db2 is holding a PART1 lock. # # 7.2.2: Test that the PART1 does not prevent db from switching to the # other wal file. # # 7.2.3: Test that the PART1 does prevent a checkpoint of test.db-wal. # # 7.2.4: Test that after the PART1 is released the checkpoint is possible. # do_test 7.2.1 { execsql { BEGIN; SELECT count(*) FROM t1; } db2 } {1} do_test 7.2.2 { execsql { INSERT INTO t1 VALUES( randomblob(800) ); INSERT INTO t1 VALUES( randomblob(800) ); } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {13656 3176 1024} do_test 7.2.3 { execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {13656 3176 1024} do_test 7.2.4 { execsql { END } db2 execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {13656 3176 11264} # Connection db2 is holding a PART2_FULL1 lock. # # 7.3.2: Test that the lock does not prevent checkpointing. # # 7.3.3: Test that the lock does prevent the writer from overwriting # test.db-wal. # # 7.3.4: Test that after the PART2_FULL1 is released the writer can # switch wal files and overwrite test.db-wal # db close db2 close sqlite3 db test.db sqlite3 db2 test.db do_test 7.3.1 { execsql { PRAGMA wal_autocheckpoint = 0; PRAGMA journal_size_limit = 10000; INSERT INTO t1 VALUES(randomblob(10000)); INSERT INTO t1 VALUES(randomblob(500)); } execsql { BEGIN; SELECT count(*) FROM t1; } db2 list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 3176 12288} do_test 7.3.2 { execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 3176 22528} do_test 7.3.3 { execsql { INSERT INTO t1 VALUES(randomblob(10000)); INSERT INTO t1 VALUES(randomblob(500)); } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 18896 22528} do_test 7.3.4 { execsql END db2 execsql { INSERT INTO t1 VALUES(randomblob(5000)); } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 18896 22528} # Connection db2 is holding a PART2 lock. # # 7.4.2: Test that the lock does not prevent writer switching to test.db-wal. # # 7.3.3: Test that the lock does prevent checkpointing of test.db-wal2. # # 7.3.4: Test that after the PART2 is released test.db-wal2 can be # checkpointed. # db close db2 close breakpoint sqlite3 db test.db sqlite3 db2 test.db do_test 7.4.1 { execsql { PRAGMA wal_autocheckpoint = 0; PRAGMA journal_size_limit = 10000; INSERT INTO t1 VALUES(randomblob(10000)); INSERT INTO t1 VALUES(randomblob(10000)); PRAGMA wal_checkpoint; } execsql { BEGIN; SELECT count(*) FROM t1; } db2 list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 50176} do_test 7.4.2 { execsql { INSERT INTO t1 VALUES(randomblob(5000)); } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 50176} do_test 7.4.3 { execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 50176} do_test 7.4.4 { execsql END db2 execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 60416} # Connection db2 is holding a PART1_FULL2 lock. # # 7.5.2: Test that the lock does not prevent a checkpoint of test.db-wal2. # # 7.5.3: Test that the lock does prevent the writer from overwriting # test.db-wal2. # # 7.5.4: Test that after the PART1_FULL2 lock is released, the writer # can switch to test.db-wal2. # db close db2 close sqlite3 db test.db sqlite3 db2 test.db do_test 7.5.1 { execsql { PRAGMA wal_autocheckpoint = 0; PRAGMA journal_size_limit = 10000; INSERT INTO t1 VALUES(randomblob(10000)); INSERT INTO t1 VALUES(randomblob(10000)); PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(randomblob(5000)); } execsql { BEGIN; SELECT count(*) FROM t1; } db2 list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 76800} do_test 7.5.2 { execsql { PRAGMA wal_checkpoint } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {12608 12608 87040} do_test 7.5.3.1 { execsql { INSERT INTO t1 VALUES(randomblob(5000)) } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {14704 12608 87040} do_test 7.5.3.2 { execsql { INSERT INTO t1 VALUES(randomblob(5000)) } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {22040 12608 87040} do_test 7.5.4 { execsql END db2 execsql { INSERT INTO t1 VALUES(randomblob(5000)) } list [file size test.db-wal] [file size test.db-wal2] [file size test.db] } {22040 12608 87040} #------------------------------------------------------------------------- reset_db do_execsql_test 8.0 { PRAGMA journal_size_limit = 10000; PRAGMA journal_mode = wal2; CREATE TABLE t1(x); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); BEGIN; INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); } {10000 wal2} sqlite3 db2 test.db do_execsql_test -db db2 8.1 { PRAGMA wal_checkpoint; } {0 50 13} do_execsql_test 8.2 { COMMIT; } db2 close #------------------------------------------------------------------------- reset_db do_execsql_test 9.0 { PRAGMA journal_size_limit = 10000; PRAGMA journal_mode = wal2; CREATE TABLE t1(x); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); } {10000 wal2} do_execsql_test 9.1 { PRAGMA wal_checkpoint; } {0 50 13} #------------------------------------------------------------------------- # Check that it is possible to do a non-PASSIVE checkpoint on a wal2 # db without blocking writers. # reset_db do_execsql_test 10.0 { PRAGMA journal_size_limit = 10000; PRAGMA journal_mode = wal2; CREATE TABLE t1(x); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); BEGIN; INSERT INTO t1 VALUES( hex( randomblob(5000) ) ); } {10000 wal2} sqlite3 db2 test.db do_execsql_test -db db2 10.1 { PRAGMA wal_checkpoint = FULL; } {0 50 13} do_execsql_test 10.2 { COMMIT; } finish_test |
Added test/wal2snapshot.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | # 2018 December 5 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL2" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix wal2snapshot ifcapable !wal {finish_test ; return } ifcapable !snapshot {finish_test; return} foreach {tn mode} {1 wal 2 wal2} { reset_db do_execsql_test $tn.1 "PRAGMA journal_mode = $mode" $mode do_execsql_test $tn.2 { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); BEGIN; } # Check that sqlite3_snapshot_get() is an error for a wal2 db. # if {$tn==1} { do_test 1.3 { set S [sqlite3_snapshot_get db main] sqlite3_snapshot_free $S } {} } else { do_test 2.3 { list [catch { sqlite3_snapshot_get db main } msg] $msg } {1 SQLITE_ERROR} } # Check that sqlite3_snapshot_recover() is an error for a wal2 db. # do_execsql_test $tn.4 COMMIT if {$tn==1} { do_test 1.5 { sqlite3_snapshot_recover db main } {} } else { do_test 2.5 { list [catch { sqlite3_snapshot_recover db main } msg] $msg } {1 SQLITE_ERROR} } # Check that sqlite3_snapshot_open() is an error for a wal2 db. # if {$tn==1} { do_test 1.6 { execsql BEGIN set SNAPSHOT [sqlite3_snapshot_get_blob db main] sqlite3_snapshot_open_blob db main $SNAPSHOT execsql COMMIT } {} } else { do_test 2.6.1 { execsql BEGIN set res [ list [catch { sqlite3_snapshot_open_blob db main $SNAPSHOT } msg] $msg ] execsql COMMIT set res } {1 SQLITE_ERROR} do_test 2.6.2 { execsql BEGIN execsql {SELECT * FROM sqlite_master} set res [ list [catch { sqlite3_snapshot_open_blob db main $SNAPSHOT } msg] $msg ] execsql COMMIT set res } {1 SQLITE_ERROR} } } finish_test |
Changes to test/walprotocol2.test.
︙ | ︙ | |||
81 82 83 84 85 86 87 | # proc lock_callback {method filename handle lock} { if {$lock=="0 1 lock exclusive"} { proc lock_callback {method filename handle lock} {} db2 eval { INSERT INTO x VALUES('x') } } } | | | 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | # proc lock_callback {method filename handle lock} { if {$lock=="0 1 lock exclusive"} { proc lock_callback {method filename handle lock} {} db2 eval { INSERT INTO x VALUES('x') } } } db timeout 1100 do_catchsql_test 2.4 { BEGIN EXCLUSIVE; } {0 {}} do_execsql_test 2.5 { SELECT * FROM x; COMMIT; } {z y x} |
︙ | ︙ |
Changes to tool/mkctimec.tcl.
︙ | ︙ | |||
386 387 388 389 390 391 392 393 394 395 396 397 398 399 | "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #elif defined(THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE), #else "THREADSAFE=1", #endif } proc trim_name {in} { set ret $in if {[string range $in 0 6]=="SQLITE_"} { set ret [string range $in 7 end] } return $ret | > > | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | "THREADSAFE=" CTIMEOPT_VAL(SQLITE_THREADSAFE), #elif defined(THREADSAFE) "THREADSAFE=" CTIMEOPT_VAL(THREADSAFE), #else "THREADSAFE=1", #endif } set options(WAL2) { "WAL2", } proc trim_name {in} { set ret $in if {[string range $in 0 6]=="SQLITE_"} { set ret [string range $in 7 end] } return $ret |
︙ | ︙ |