SQLite

Changes On Branch broken-on-arm
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch broken-on-arm Excluding Merge-Ins

This is equivalent to a diff from c0fa0c0e to f10130ed

2014-03-04
04:12
Refactor the sqlite3VdbeRecordCompare() routine used to compare btree records. Create fast-track special case routines to handle the common cases more quickly. This gives a significant performance boost. (check-in: 3325ad5b user: drh tags: trunk)
04:04
Fix more instances of assuming 'char' is signed. And, make sure to never shift a signed integer. (Closed-Leaf check-in: f10130ed user: drh tags: broken-on-arm)
00:15
Do not assume that 'char' is signed. Make it explicit. (check-in: 979da752 user: drh tags: broken-on-arm)
2014-03-03
21:59
Refactor the sqlite3VdbeRecordCompare() routine used to compare btree records. Create a couple of fast-track routines to handle the common cases of a string with BINARY collation or integer values as the left-most column. This gives a significant performance boost in common use. Oops: This build does not work on the Beaglebone where "char" defaults to unsigned. (check-in: aec5473a user: drh tags: broken-on-arm)
17:48
Merge latest trunk changes. (check-in: 1d603564 user: dan tags: experimental)
17:36
Change an OP_SCopy into an OP_Copy in a case where the destination might be used after the source has changed. (check-in: c0fa0c0e user: drh tags: trunk)
16:48
Change the "explain_i" tcl test command so that xterm color codes are only added if the output is actually a terminal. (check-in: 559835e5 user: dan tags: trunk)

Changes to src/btree.c.

4543
4544
4545
4546
4547
4548
4549

4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569










4570
4571
4572
4573
4574
4575
4576
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;


  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && pCur->validNKey 
   && pCur->apPage[0]->intKey 
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( pCur->atLast && pCur->info.nKey<intKey ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }











  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );







>




















>
>
>
>
>
>
>
>
>
>







4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && pCur->validNKey 
   && pCur->apPage[0]->intKey 
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( pCur->atLast && pCur->info.nKey<intKey ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    assert( pIdxKey->default_rc==1 
         || pIdxKey->default_rc==0 
         || pIdxKey->default_rc==-1
    );
  }else{
    xRecordCompare = 0; /* Not actually used.  Avoids a compiler warning. */
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          btreeParseCellPtr(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{







|






|




















|







4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          btreeParseCellPtr(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite3Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
          sqlite3_free(pCellKey);
        }
        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{

Changes to src/sqliteInt.h.

1582
1583
1584
1585
1586
1587
1588



1589
1590
1591
1592
1593
1594


1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
** Records are used to store the content of a table row and to store
** the key of an index.  A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled
** into its constituent fields.



*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
  u16 nField;         /* Number of entries in apMem[] */
  u8 flags;           /* Boolean settings.  UNPACKED_... below */
  Mem *aMem;          /* Values */


};

/*
** Allowed values of UnpackedRecord.flags
*/
#define UNPACKED_INCRKEY       0x01  /* Make this key an epsilon larger */
#define UNPACKED_PREFIX_MATCH  0x02  /* A prefix match is considered OK */

/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure.  For example, suppose







>
>
>




|

>
>


<
<
<
<
<







1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601





1602
1603
1604
1605
1606
1607
1608
** Records are used to store the content of a table row and to store
** the key of an index.  A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled
** into its constituent fields.
**
** The r1 and r2 member variables are only used by the optimized comparison
** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
  u16 nField;         /* Number of entries in apMem[] */
  i8 default_rc;      /* Comparison result if keys are equal */
  Mem *aMem;          /* Values */
  int r1;             /* Value to return if (lhs > rhs) */
  int r2;             /* Value to return if (rhs < lhs) */
};







/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure.  For example, suppose

Changes to src/vdbe.c.

3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

    /* The next line of code computes as follows, only faster:
    **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
    **     r.flags = UNPACKED_INCRKEY;
    **   }else{
    **     r.flags = 0;
    **   }
    */
    r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLT)));
    assert( oc!=OP_SeekGT || r.flags==UNPACKED_INCRKEY );
    assert( oc!=OP_SeekLE || r.flags==UNPACKED_INCRKEY );
    assert( oc!=OP_SeekGE || r.flags==0 );
    assert( oc!=OP_SeekLT || r.flags==0 );

    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);







|

|


|
|
|
|
|







3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

    /* The next line of code computes as follows, only faster:
    **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
    **     r.default_rc = -1;
    **   }else{
    **     r.default_rc = +1;
    **   }
    */
    r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
    assert( oc!=OP_SeekGT || r.default_rc==-1 );
    assert( oc!=OP_SeekLE || r.default_rc==-1 );
    assert( oc!=OP_SeekGE || r.default_rc==+1 );
    assert( oc!=OP_SeekLT || r.default_rc==+1 );

    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741

3742
3743
3744
3745
3746
3747
3748
    for(ii=0; ii<r.nField; ii++){
      assert( memIsValid(&r.aMem[ii]) );
      ExpandBlob(&r.aMem[ii]);
#ifdef SQLITE_DEBUG
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }
    r.flags = UNPACKED_PREFIX_MATCH;
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    ); 
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
    pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
  }

  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
    for(ii=0; ii<r.nField; ii++){
      if( r.aMem[ii].flags & MEM_Null ){
        pc = pOp->p2 - 1; VdbeBranchTaken(1,2);







<









<

>







3723
3724
3725
3726
3727
3728
3729

3730
3731
3732
3733
3734
3735
3736
3737
3738

3739
3740
3741
3742
3743
3744
3745
3746
3747
    for(ii=0; ii<r.nField; ii++){
      assert( memIsValid(&r.aMem[ii]) );
      ExpandBlob(&r.aMem[ii]);
#ifdef SQLITE_DEBUG
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }

    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    ); 
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);

  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
    for(ii=0; ii<r.nField; ii++){
      if( r.aMem[ii].flags & MEM_Null ){
        pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.flags = UNPACKED_PREFIX_MATCH;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr);







|







4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr);
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
  assert( pC->deferredMoveto==0 );
  assert( pOp->p5==0 || pOp->p5==1 );
  assert( pOp->p4type==P4_INT32 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p4.i;
  if( pOp->opcode<OP_IdxLT ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
    r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
    r.flags = UNPACKED_PREFIX_MATCH;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);







|


|







4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
  assert( pC->deferredMoveto==0 );
  assert( pOp->p5==0 || pOp->p5==1 );
  assert( pOp->p4type==P4_INT32 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p4.i;
  if( pOp->opcode<OP_IdxLT ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
    r.default_rc = -1;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
    r.default_rc = 0;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);

Changes to src/vdbe.h.

207
208
209
210
211
212
213
214
215



216
217
218
219
220
221
222
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);




#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
** each VDBE opcode.







|

>
>
>







207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe*, int, u8);
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,const UnpackedRecord*,int);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,const UnpackedRecord*,int);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on
** each VDBE opcode.

Changes to src/vdbeInt.h.

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);







|







387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,const UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);

Changes to src/vdbeaux.c.

2938
2939
2940
2941
2942
2943
2944








2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}









/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem.  Return the number of bytes read.
*/ 
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x;
  u32 y;
  int i;
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* NULL */
      pMem->flags = MEM_Null;
      break;
    }
    case 1: { /* 1-byte signed integer */
      pMem->u.i = (signed char)buf[0];
      pMem->flags = MEM_Int;
      return 1;
    }
    case 2: { /* 2-byte signed integer */
      i = 256*(signed char)buf[0] | buf[1];
      pMem->u.i = (i64)i;
      pMem->flags = MEM_Int;
      return 2;
    }
    case 3: { /* 3-byte signed integer */
      i = 65536*(signed char)buf[0] | (buf[1]<<8) | buf[2];
      pMem->u.i = (i64)i;
      pMem->flags = MEM_Int;
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      y = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
      pMem->u.i = (i64)*(int*)&y;
      pMem->flags = MEM_Int;
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      x = 256*(signed char)buf[0] + buf[1];
      y = ((unsigned)buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
      x = (x<<32) | y;
      pMem->u.i = *(i64*)&x;
      pMem->flags = MEM_Int;
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
      /* Verify that integers and floating point values use the same
      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
      ** defined that 64-bit floating point values really are mixed
      ** endian.
      */
      static const u64 t1 = ((u64)0x3ff00000)<<32;
      static const double r1 = 1.0;
      u64 t2 = t1;
      swapMixedEndianFloat(t2);
      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
      x = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
      y = ((unsigned)buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
      x = (x<<32) | y;
      if( serial_type==6 ){
        pMem->u.i = *(i64*)&x;
        pMem->flags = MEM_Int;
      }else{
        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
        swapMixedEndianFloat(x);







>
>
>
>
>
>
>
>











<








|




<
|




<
|




|





<
<
<
|

















|
|







2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963

2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976

2977
2978
2979
2980
2981

2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992



2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}

/* Input "x" is a sequence of unsigned characters that represent a
** big-endian integer.  Return the equivalent native integer
*/
#define ONE_BYTE_INT(x)    ((i8)(x)[0])
#define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
#define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
#define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])

/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem.  Return the number of bytes read.
*/ 
u32 sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x;
  u32 y;

  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* NULL */
      pMem->flags = MEM_Null;
      break;
    }
    case 1: { /* 1-byte signed integer */
      pMem->u.i = ONE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      return 1;
    }
    case 2: { /* 2-byte signed integer */

      pMem->u.i = TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      return 2;
    }
    case 3: { /* 3-byte signed integer */

      pMem->u.i = THREE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      y = FOUR_BYTE_UINT(buf);
      pMem->u.i = (i64)*(int*)&y;
      pMem->flags = MEM_Int;
      return 4;
    }
    case 5: { /* 6-byte signed integer */



      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
      /* Verify that integers and floating point values use the same
      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
      ** defined that 64-bit floating point values really are mixed
      ** endian.
      */
      static const u64 t1 = ((u64)0x3ff00000)<<32;
      static const double r1 = 1.0;
      u64 t2 = t1;
      swapMixedEndianFloat(t2);
      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
      x = FOUR_BYTE_UINT(buf);
      y = FOUR_BYTE_UINT(buf+4);
      x = (x<<32) | y;
      if( serial_type==6 ){
        pMem->u.i = *(i64*)&x;
        pMem->flags = MEM_Int;
      }else{
        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
        swapMixedEndianFloat(x);
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126

3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
  const unsigned char *aKey = (const unsigned char *)pKey;
  int d; 
  u32 idx;                        /* Offset in aKey[] to read from */
  u16 u;                          /* Unsigned loop counter */
  u32 szHdr;
  Mem *pMem = p->aMem;

  p->flags = 0;
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}


/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** Key1 and Key2 do not have to contain the same number of fields.
** The key with fewer fields is usually compares less than the 
** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
** and the common prefixes are equal, then key1 is less than key2.
** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
** equal, then the keys are considered to be equal and
** the parts beyond the common prefix are ignored.
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  u32 d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;







|




















>

|
<
|
|
|
|
|
<
<
<
<
<
<
<
<

|

|







3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

3132
3133
3134
3135
3136








3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
  const unsigned char *aKey = (const unsigned char *)pKey;
  int d; 
  u32 idx;                        /* Offset in aKey[] to read from */
  u16 u;                          /* Unsigned loop counter */
  u32 szHdr;
  Mem *pMem = p->aMem;

  p->default_rc = 0;
  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
  idx = getVarint32(aKey, szHdr);
  d = szHdr;
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
}

#if SQLITE_DEBUG
/*
** This function compares two index or table record keys in the same way

** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
** this function deserializes and compares values using the
** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
** in assert() statements to ensure that the optimized code in
** sqlite3VdbeRecordCompare() returns results with these two primitives.








*/
static int vdbeRecordCompareDebug(
  int nKey1, const void *pKey1, /* Left key */
  const UnpackedRecord *pPKey2  /* Right key */
){
  u32 d1;            /* Offset into aKey[] of next data element */
  u32 idx1;          /* Offset into aKey[] of next header element */
  u32 szHdr1;        /* Number of bytes in header */
  int i = 0;
  int rc = 0;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
3213
3214
3215
3216
3217
3218
3219
3220




3221



































3222













3223




3224






3225
































3226

3227


3228
3229

3230



3231





3232






3233




3234
3235
3236
3237






























































































































































































































































































































































































































3238
3239
3240
3241
3242
3243
3244
  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. If the UNPACKED_INCRKEY




  ** flag is set, then break the tie by treating key2 as larger.



































  ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes













  ** are considered to be equal.  Otherwise, the longer key is the 




  ** larger.  As it happens, the pPKey2 will always be the longer






  ** if there is a difference.
































  */

  assert( rc==0 );


  if( pPKey2->flags & UNPACKED_INCRKEY ){
    rc = -1;

  }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){



    /* Leave rc==0 */





  }else if( idx1<szHdr1 ){






    rc = 1;




  }
  return rc;
}
 































































































































































































































































































































































































































/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.







|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
|
>
>
|
|
>
|
>
>
>
|
>
>
>
>
>
|
>
>
>
>
>
>
|
>
>
>
>



|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the the default_rc
  ** value.  */
  return pPKey2->default_rc;
}
#endif

/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than 
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(
  const Mem *pMem1,
  const Mem *pMem2,
  const CollSeq *pColl
){
  if( pMem1->enc==pColl->enc ){
    /* The strings are already in the correct encoding.  Call the
     ** comparison function directly */
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    memset(&c1, 0, sizeof(c1));
    memset(&c2, 0, sizeof(c2));
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
    sqlite3VdbeMemRelease(&c1);
    sqlite3VdbeMemRelease(&c2);
    return rc;
  }
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;

  f1 = pMem1->flags;
  f2 = pMem2->flags;
  combined_flags = f1|f2;
  assert( (combined_flags & MEM_RowSet)==0 );
 
  /* If one value is NULL, it is less than the other. If both values
  ** are NULL, return 0.
  */
  if( combined_flags&MEM_Null ){
    return (f2&MEM_Null) - (f1&MEM_Null);
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
    return 0;
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
      return 1;
    }
    if( (f2 & MEM_Str)==0 ){
      return -1;
    }

    assert( pMem1->enc==pMem2->enc );
    assert( pMem1->enc==SQLITE_UTF8 || 
            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );

    /* The collation sequence must be defined at this point, even if
    ** the user deletes the collation sequence after the vdbe program is
    ** compiled (this was not always the case).
    */
    assert( !pColl || pColl->xCmp );

    if( pColl ){
      return vdbeCompareMemString(pMem1, pMem2, pColl);
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }
  return rc;
}


/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive 
** except 7. The second points to a buffer containing an integer value
** serialized according to serial_type. This function deserializes
** and returns the value.
*/
static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
  u32 y;
  assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
  switch( serial_type ){
    case 0:
    case 1:
      return ONE_BYTE_INT(aKey);
    case 2:
      return TWO_BYTE_INT(aKey);
    case 3:
      return THREE_BYTE_INT(aKey);
    case 4: {
      y = FOUR_BYTE_UINT(aKey);
      return (i64)*(int*)&y;
    }
    case 5: {
      return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
    }
    case 6: {
      u64 x = FOUR_BYTE_UINT(aKey);
      x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
      return (i64)*(i64*)&x;
    }
  }

  return (serial_type - 8);
}

/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
** or positive integer if key1 is less than, equal to or 
** greater than key2.  The {nKey1, pKey1} key must be a blob
** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all 
** fields that appear in both keys are equal, then pPKey2->default_rc is 
** returned.
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  const UnpackedRecord *pPKey2,   /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  int szHdr1;                     /* Size of record header in bytes */
  u32 idx1;                       /* Offset of first type in header */
  int rc = 0;                     /* Return value */
  Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
  KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  Mem mem1;

  /* If bSkip is true, then the caller has already determined that the first
  ** two elements in the keys are equal. Fix the various stack variables so
  ** that this routine begins comparing at the second field. */
  if( bSkip ){
    u32 s1;
    idx1 = 1 + getVarint32(&aKey1[1], s1);
    szHdr1 = aKey1[0];
    d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
    i = 1;
    pRhs++;
  }else{
    idx1 = getVarint32(aKey1, szHdr1);
    d1 = szHdr1;
    i = 0;
  }

  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
  assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField 
       || CORRUPT_DB );
  assert( pPKey2->pKeyInfo->aSortOrder!=0 );
  assert( pPKey2->pKeyInfo->nField>0 );
  assert( idx1<=szHdr1 || CORRUPT_DB );
  do{
    u32 serial_type;

    /* RHS is an integer */
    if( pRhs->flags & MEM_Int ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.r<rhs ){
          rc = -1;
        }else if( mem1.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
        }
      }
    }

    /* RHS is real */
    else if( pRhs->flags & MEM_Real ){
      serial_type = aKey1[idx1];
      if( serial_type>=12 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
        }
      }
    }

    /* RHS is a string */
    else if( pRhs->flags & MEM_Str ){
      getVarint32(&aKey1[idx1], serial_type);
      if( serial_type<12 ){
        rc = -1;
      }else if( !(serial_type & 0x01) ){
        rc = +1;
      }else{
        mem1.n = (serial_type - 12) / 2;
        if( (d1+mem1.n) > (unsigned)nKey1 ){
          rc = 1;                /* Corruption */
        }else if( pKeyInfo->aColl[i] ){
          mem1.enc = pKeyInfo->enc;
          mem1.db = pKeyInfo->db;
          mem1.flags = MEM_Str;
          mem1.z = (char*)&aKey1[d1];
          rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]);
        }else{
          int nCmp = MIN(mem1.n, pRhs->n);
          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
          if( rc==0 ) rc = mem1.n - pRhs->n; 
        }
      }
    }

    /* RHS is a blob */
    else if( pRhs->flags & MEM_Blob ){
      getVarint32(&aKey1[idx1], serial_type);
      if( serial_type<12 || (serial_type & 0x01) ){
        rc = -1;
      }else{
        int nStr = (serial_type - 12) / 2;
        if( (d1+nStr) > (unsigned)nKey1 ){
          rc = 1;                /* Corruption */
        }else{
          int nCmp = MIN(nStr, pRhs->n);
          rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
          if( rc==0 ) rc = nStr - pRhs->n;
        }
      }
    }

    /* RHS is null */
    else{
      serial_type = aKey1[idx1];
      rc = (serial_type!=0);
    }

    if( rc!=0 ){
      if( pKeyInfo->aSortOrder[i] ){
        rc = -rc;
      }
      assert( CORRUPT_DB 
          || (rc<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
          || (rc>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
      );
      assert( mem1.zMalloc==0 );  /* See comment below */
      return rc;
    }

    i++;
    pRhs++;
    d1 += sqlite3VdbeSerialTypeLen(serial_type);
    idx1 += sqlite3VarintLen(serial_type);
  }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );

  /* No memory allocation is ever used on mem1.  Prove this using
  ** the following assert().  If the assert() fails, it indicates a
  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
  assert( mem1.zMalloc==0 );

  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || pPKey2->default_rc==vdbeRecordCompareDebug(nKey1, pKey1, pPKey2) 
  );
  return pPKey2->default_rc;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  const UnpackedRecord *pPKey2, /* Right key */
  int bSkip                     /* Ignored */
){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      break;
    }
    case 2: { /* 2-byte signed integer */
      lhs = TWO_BYTE_INT(aKey);
      break;
    }
    case 3: { /* 3-byte signed integer */
      lhs = THREE_BYTE_INT(aKey);
      break;
    }
    case 4: { /* 4-byte signed integer */
      y = FOUR_BYTE_UINT(aKey);
      lhs = (i64)*(int*)&y;
      break;
    }
    case 5: { /* 6-byte signed integer */
      lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
      break;
    }
    case 6: { /* 8-byte signed integer */
      x = FOUR_BYTE_UINT(aKey);
      x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
      lhs = *(i64*)&x;
      break;
    }
    case 8: 
      lhs = 0;
      break;
    case 9:
      lhs = 1;
      break;

    /* This case could be removed without changing the results of running
    ** this code. Including it causes gcc to generate a faster switch 
    ** statement (since the range of switch targets now starts at zero and
    ** is contiguous) but does not cause any duplicate code to be generated
    ** (as gcc is clever enough to combine the two like cases). Other 
    ** compilers might be similar.  */ 
    case 0: case 7:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);

    default:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
  }

  if( v>lhs ){
    res = pPKey2->r1;
  }else if( v<lhs ){
    res = pPKey2->r2;
  }else if( pPKey2->nField>1 ){
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
  }

  assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
       || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
       || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
       || CORRUPT_DB
  );
  return res;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  const UnpackedRecord *pPKey2, /* Right key */
  int bSkip
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
    int szHdr = aKey1[0];

    nStr = (serial_type-12) / 2;
    if( (szHdr + nStr) > nKey1 ) return 0;    /* Corruption */
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
      }
    }else if( res>0 ){
      res = pPKey2->r2;
    }else{
      res = pPKey2->r1;
    }
  }

  assert( (res==0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)==0)
       || (res<0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)<0)
       || (res>0 && vdbeRecordCompareDebug(nKey1, pKey1, pPKey2)>0)
       || CORRUPT_DB
  );
  return res;
}

/*
** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
** suitable for comparing serialized records to the unpacked record passed
** as the only argument.
*/
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
  /* varintRecordCompareInt() and varintRecordCompareString() both assume
  ** that the size-of-header varint that occurs at the start of each record
  ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
  ** also assumes that it is safe to overread a buffer by at least the 
  ** maximum possible legal header size plus 8 bytes. Because there is
  ** guaranteed to be at least 74 (but not 136) bytes of padding following each
  ** buffer passed to varintRecordCompareInt() this makes it convenient to
  ** limit the size of the header to 64 bytes in cases where the first field
  ** is an integer.
  **
  ** The easiest way to enforce this limit is to consider only records with
  ** 13 fields or less. If the first field is an integer, the maximum legal
  ** header size is (12*5 + 1 + 1) bytes.  */
  if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
    int flags = p->aMem[0].flags;
    if( p->pKeyInfo->aSortOrder[0] ){
      p->r1 = 1;
      p->r2 = -1;
    }else{
      p->r1 = -1;
      p->r2 = 1;
    }
    if( (flags & MEM_Int) ){
      return vdbeRecordCompareInt;
    }
    if( (flags & (MEM_Int|MEM_Real|MEM_Null|MEM_Blob))==0 
        && p->pKeyInfo->aColl[0]==0 
    ){
      return vdbeRecordCompareString;
    }
  }

  return sqlite3VdbeRecordCompare;
}

/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  VdbeCursor *pC,             /* The cursor to compare against */
  UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */
  int *res                    /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the say
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 







|
|
|









|










<
|







3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874

3875
3876
3877
3878
3879
3880
3881
3882
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  VdbeCursor *pC,                  /* The cursor to compare against */
  const UnpackedRecord *pUnpacked, /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 

Changes to src/vdbemem.c.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
  if( nByte>iLimit ){
    return SQLITE_TOOBIG;
  }

  return SQLITE_OK;
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
  int rc;
  int f1, f2;
  int combined_flags;

  f1 = pMem1->flags;
  f2 = pMem2->flags;
  combined_flags = f1|f2;
  assert( (combined_flags & MEM_RowSet)==0 );
 
  /* If one value is NULL, it is less than the other. If both values
  ** are NULL, return 0.
  */
  if( combined_flags&MEM_Null ){
    return (f2&MEM_Null) - (f1&MEM_Null);
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->r;
    }else if( (f1&MEM_Int)!=0 ){
      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }
    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;
    return 0;
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
      return 1;
    }
    if( (f2 & MEM_Str)==0 ){
      return -1;
    }

    assert( pMem1->enc==pMem2->enc );
    assert( pMem1->enc==SQLITE_UTF8 || 
            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );

    /* The collation sequence must be defined at this point, even if
    ** the user deletes the collation sequence after the vdbe program is
    ** compiled (this was not always the case).
    */
    assert( !pColl || pColl->xCmp );

    if( pColl ){
      if( pMem1->enc==pColl->enc ){
        /* The strings are already in the correct encoding.  Call the
        ** comparison function directly */
        return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
      }else{
        const void *v1, *v2;
        int n1, n2;
        Mem c1;
        Mem c2;
        memset(&c1, 0, sizeof(c1));
        memset(&c2, 0, sizeof(c2));
        sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
        sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
        v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
        n1 = v1==0 ? 0 : c1.n;
        v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
        n2 = v2==0 ? 0 : c2.n;
        rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
        sqlite3VdbeMemRelease(&c1);
        sqlite3VdbeMemRelease(&c2);
        return rc;
      }
    }
    /* If a NULL pointer was passed as the collate function, fall through
    ** to the blob case and use memcmp().  */
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }
  return rc;
}

/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







783
784
785
786
787
788
789

















































































































790
791
792
793
794
795
796
  if( nByte>iLimit ){
    return SQLITE_TOOBIG;
  }

  return SQLITE_OK;
}


















































































































/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
      nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
      pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
      if( pRec ){
        pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
        if( pRec->pKeyInfo ){
          assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
          assert( pRec->pKeyInfo->enc==ENC(db) );
          pRec->flags = UNPACKED_PREFIX_MATCH;
          pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].memType = MEM_Null;
            pRec->aMem[i].db = db;
          }
        }else{







<







942
943
944
945
946
947
948

949
950
951
952
953
954
955
      nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
      pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
      if( pRec ){
        pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
        if( pRec->pKeyInfo ){
          assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
          assert( pRec->pKeyInfo->enc==ENC(db) );

          pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
          for(i=0; i<nCol; i++){
            pRec->aMem[i].flags = MEM_Null;
            pRec->aMem[i].memType = MEM_Null;
            pRec->aMem[i].db = db;
          }
        }else{

Changes to src/vdbesort.c.

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    assert( r2->nField>0 );
    for(i=0; i<r2->nField; i++){
      if( r2->aMem[i].flags & MEM_Null ){
        *pRes = -1;
        return;
      }
    }
    r2->flags |= UNPACKED_PREFIX_MATCH;
  }

  *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/







|


|







405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    assert( r2->nField>0 );
    for(i=0; i<r2->nField; i++){
      if( r2->aMem[i].flags & MEM_Null ){
        *pRes = -1;
        return;
      }
    }
    assert( r2->default_rc==0 );
  }

  *pRes = sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0);
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/

Changes to src/where.c.

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.







|














|





|


|







1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.

Changes to test/analyze9.test.

322
323
324
325
326
327
328

329
330
331
332
333
334
335
#-------------------------------------------------------------------------
# The following tests experiment with adding corrupted records to the
# 'sample' column of the sqlite_stat4 table.
#
reset_db
sqlite3_db_config_lookaside db 0 0 0


do_execsql_test 7.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);







>







322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#-------------------------------------------------------------------------
# The following tests experiment with adding corrupted records to the
# 'sample' column of the sqlite_stat4 table.
#
reset_db
sqlite3_db_config_lookaside db 0 0 0

database_may_be_corrupt
do_execsql_test 7.1 {
  CREATE TABLE t1(a, b);
  CREATE INDEX i1 ON t1(a, b);
  INSERT INTO t1 VALUES(1, 1);
  INSERT INTO t1 VALUES(2, 2);
  INSERT INTO t1 VALUES(3, 3);
  INSERT INTO t1 VALUES(4, 4);
361
362
363
364
365
366
367


368
369
370
371
372
373
374

do_execsql_test 7.5 {
  ANALYZE;
  UPDATE sqlite_stat4 SET nlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 5;
} {5 5}



#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE t1(x TEXT);
  CREATE INDEX i1 ON t1(x);







>
>







362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

do_execsql_test 7.5 {
  ANALYZE;
  UPDATE sqlite_stat4 SET nlt = '0 0 0';
  ANALYZE sqlite_master;
  SELECT * FROM t1 WHERE a = 5;
} {5 5}

database_never_corrupt

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.1 {
  CREATE TABLE t1(x TEXT);
  CREATE INDEX i1 ON t1(x);

Changes to test/corruptG.test.

72
73
74
75
76
77
78
79
80
81
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to
  # force a buffer overread by a corrupt database file.  If we get an
  # incorrect answer from a corrupt database file, that is OK.  If the
  # result below changes, that just means that "undefined behavior" has
  # changed.
} {0 52}

finish_test







|


72
73
74
75
76
77
78
79
80
81
    SELECT rowid FROM t1 WHERE a='abc' and b='xyz123456789XYZ';
  }
  # The following test result is brittle.  The point above is to try to
  # force a buffer overread by a corrupt database file.  If we get an
  # incorrect answer from a corrupt database file, that is OK.  If the
  # result below changes, that just means that "undefined behavior" has
  # changed.
} {/0 .*/}

finish_test

Added test/corruptI.test.































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# 2014-01-20
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix corruptI

# Do not use a codec for tests in this file, as the database file is
# manipulated directly using tcl scripts (using the [hexio_write] command).
#
do_not_use_codec
database_may_be_corrupt

# Initialize the database.
#
do_execsql_test 1.1 {
  PRAGMA page_size=1024;
  PRAGMA auto_vacuum=0;
  CREATE TABLE t1(a);
  CREATE INDEX i1 ON t1(a);
  INSERT INTO t1 VALUES('a');
} {}
db close

do_test 1.2 {
  set offset [hexio_get_int [hexio_read test.db [expr 2*1024 + 8] 2]]
  set off [expr 2*1024 + $offset + 1]
  hexio_write test.db $off FF06

  breakpoint

  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE a = 10 }
} {1 {database disk image is malformed}}


finish_test

Changes to test/pragma.test.

1571
1572
1573
1574
1575
1576
1577


1578
1579
1580
1581
1582
1583
1584
do_test pragma-20.8 {
  catchsql {PRAGMA data_store_directory}
} {0 {}}

forcedelete data_dir
} ;# endif windows



do_test 21.1 {
  # Create a corrupt database in testerr.db. And a non-corrupt at test.db.
  #
  db close
  forcedelete test.db
  sqlite3 db test.db
  execsql { 







>
>







1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
do_test pragma-20.8 {
  catchsql {PRAGMA data_store_directory}
} {0 {}}

forcedelete data_dir
} ;# endif windows

database_may_be_corrupt

do_test 21.1 {
  # Create a corrupt database in testerr.db. And a non-corrupt at test.db.
  #
  db close
  forcedelete test.db
  sqlite3 db test.db
  execsql { 
1596
1597
1598
1599
1600
1601
1602





1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
} {100}

set mainerr {*** in database main ***
Multiple uses for byte 672 of page 15}
set auxerr {*** in database aux ***
Multiple uses for byte 672 of page 15}






do_test 22.2 {
  catch { db close }
  sqlite3 db testerr.db
  execsql { PRAGMA integrity_check }
} [list $mainerr]

do_test 22.3.1 {
  catch { db close }
  sqlite3 db test.db
  execsql { 
    ATTACH 'testerr.db' AS 'aux';
    PRAGMA integrity_check;
  }
} [list $auxerr]
do_test 22.3.2 {
  execsql { PRAGMA main.integrity_check; }
} {ok}
do_test 22.3.3 {
  execsql { PRAGMA aux.integrity_check; }
} [list $auxerr]

do_test 22.4.1 {
  catch { db close }
  sqlite3 db testerr.db
  execsql { 
    ATTACH 'test.db' AS 'aux';
    PRAGMA integrity_check;
  }
} [list $mainerr]
do_test 22.4.2 {
  execsql { PRAGMA main.integrity_check; }
} [list $mainerr]
do_test 22.4.3 {
  execsql { PRAGMA aux.integrity_check; }
} {ok}

db close
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db







>
>
>
>
>




|








|





|








|


|







1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
} {100}

set mainerr {*** in database main ***
Multiple uses for byte 672 of page 15}
set auxerr {*** in database aux ***
Multiple uses for byte 672 of page 15}

set mainerr {/{\*\*\* in database main \*\*\*
Multiple uses for byte 672 of page 15}.*/}
set auxerr {/{\*\*\* in database aux \*\*\*
Multiple uses for byte 672 of page 15}.*/}

do_test 22.2 {
  catch { db close }
  sqlite3 db testerr.db
  execsql { PRAGMA integrity_check }
} $mainerr

do_test 22.3.1 {
  catch { db close }
  sqlite3 db test.db
  execsql { 
    ATTACH 'testerr.db' AS 'aux';
    PRAGMA integrity_check;
  }
} $auxerr
do_test 22.3.2 {
  execsql { PRAGMA main.integrity_check; }
} {ok}
do_test 22.3.3 {
  execsql { PRAGMA aux.integrity_check; }
} $auxerr

do_test 22.4.1 {
  catch { db close }
  sqlite3 db testerr.db
  execsql { 
    ATTACH 'test.db' AS 'aux';
    PRAGMA integrity_check;
  }
} $mainerr
do_test 22.4.2 {
  execsql { PRAGMA main.integrity_check; }
} $mainerr
do_test 22.4.3 {
  execsql { PRAGMA aux.integrity_check; }
} {ok}

db close
forcedelete test.db test.db-wal test.db-journal
sqlite3 db test.db
1676
1677
1678
1679
1680
1681
1682

1683
    CREATE TABLE t2(x, y INTEGER REFERENCES t1);
  }
  db2 eval {
    PRAGMA foreign_key_list(t2);
  }
} {0 0 t1 y {} {NO ACTION} {NO ACTION} NONE}


finish_test







>

1683
1684
1685
1686
1687
1688
1689
1690
1691
    CREATE TABLE t2(x, y INTEGER REFERENCES t1);
  }
  db2 eval {
    PRAGMA foreign_key_list(t2);
  }
} {0 0 t1 y {} {NO ACTION} {NO ACTION} NONE}

database_never_corrupt
finish_test