SQLite

Check-in [fc4d1de8ae]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge enhancements from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | begin-concurrent
Files: files | file ages | folders
SHA1: fc4d1de8aeb39a4c0ea9275a0bd2447535f1a955
User & Date: drh 2015-09-15 19:16:47.192
Context
2015-09-24
15:17
Merge all recent trunk enhancements and fixes into the begin-concurrent branch. (check-in: c63c1e15f8 user: drh tags: begin-concurrent)
2015-09-15
19:16
Merge enhancements from trunk. (check-in: fc4d1de8ae user: drh tags: begin-concurrent)
14:39
Add test cases to cover fts5 integrity-check code. (check-in: 1d018c35b9 user: dan tags: trunk)
2015-09-07
20:22
Merge parser enhancements and other improvements and bug fixes from trunk. (check-in: 9cf3e51bcc user: drh tags: begin-concurrent)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts5/fts5Int.h.
113
114
115
116
117
118
119






120
121
122
123
124
125
126
**   This exists in order to allow the fts5_index.c module to return a 
**   decent error message if it encounters a file-format version it does
**   not understand.
**
** bColumnsize:
**   True if the %_docsize table is created.
**






*/
struct Fts5Config {
  sqlite3 *db;                    /* Database handle */
  char *zDb;                      /* Database holding FTS index (e.g. "main") */
  char *zName;                    /* Name of FTS index */
  int nCol;                       /* Number of columns */
  char **azCol;                   /* Column names */







>
>
>
>
>
>







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
**   This exists in order to allow the fts5_index.c module to return a 
**   decent error message if it encounters a file-format version it does
**   not understand.
**
** bColumnsize:
**   True if the %_docsize table is created.
**
** bPrefixIndex:
**   This is only used for debugging. If set to false, any prefix indexes
**   are ignored. This value is configured using:
**
**       INSERT INTO tbl(tbl, rank) VALUES('prefix-index', $bPrefixIndex);
**
*/
struct Fts5Config {
  sqlite3 *db;                    /* Database handle */
  char *zDb;                      /* Database holding FTS index (e.g. "main") */
  char *zName;                    /* Name of FTS index */
  int nCol;                       /* Number of columns */
  char **azCol;                   /* Column names */
141
142
143
144
145
146
147




148
149
150
151
152
153
154
155
156
157
158
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */
  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */

  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;




};

/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 3

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2










>
>
>
>



|







147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */
  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */

  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;

#ifdef SQLITE_DEBUG
  int bPrefixIndex;               /* True to use prefix-indexes */
#endif
};

/* Current expected value of %_config table 'version' field */
#define FTS5_CURRENT_VERSION 4

#define FTS5_CONTENT_NORMAL   0
#define FTS5_CONTENT_NONE     1
#define FTS5_CONTENT_EXTERNAL 2



373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
int sqlite3Fts5IndexRollback(Fts5Index *p);

/*
** Retrieve and clear the current error code, respectively.
*/
int sqlite3Fts5IndexErrcode(Fts5Index*);
void sqlite3Fts5IndexReset(Fts5Index*);

/*
** Get or set the "averages" values.
*/
int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*







<
<
<
<
<
<







383
384
385
386
387
388
389






390
391
392
393
394
395
396
** Discard any data stored in the in-memory hash tables. Do not write it
** to the database. Additionally, assume that the contents of the %_data
** table may have changed on disk. So any in-memory caches of %_data 
** records must be invalidated.
*/
int sqlite3Fts5IndexRollback(Fts5Index *p);







/*
** Get or set the "averages" values.
*/
int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize);
int sqlite3Fts5IndexSetAverages(Fts5Index *p, const u8*, int);

/*
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
/**************************************************************************
** Interface to code in fts5_tokenizer.c. 
*/

int sqlite3Fts5TokenizerInit(fts5_api*);
/*
** End of interface to code in fts5_tokenizer.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_sorter.c. 
*/
typedef struct Fts5Sorter Fts5Sorter;

int sqlite3Fts5SorterNew(Fts5Expr *pExpr, Fts5Sorter **pp);

/*
** End of interface to code in fts5_sorter.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_vocab.c. 
*/

int sqlite3Fts5VocabInit(Fts5Global*, sqlite3*);







<
<
<
<
<
<
<
<
<
<
<







666
667
668
669
670
671
672











673
674
675
676
677
678
679
/**************************************************************************
** Interface to code in fts5_tokenizer.c. 
*/

int sqlite3Fts5TokenizerInit(fts5_api*);
/*
** End of interface to code in fts5_tokenizer.c.











**************************************************************************/

/**************************************************************************
** Interface to code in fts5_vocab.c. 
*/

int sqlite3Fts5VocabInit(Fts5Global*, sqlite3*);
Changes to ext/fts5/fts5_buffer.c.
12
13
14
15
16
17
18
19
20
21
22
23
24




25
26
27
28
29
30
31
*/



#include "fts5Int.h"

int sqlite3Fts5BufferGrow(int *pRc, Fts5Buffer *pBuf, int nByte){
  /* A no-op if an error has already occurred */
  if( *pRc ) return 1;

  if( (pBuf->n + nByte) > pBuf->nSpace ){
    u8 *pNew;
    int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;




    while( nNew<(pBuf->n + nByte) ){
      nNew = nNew * 2;
    }
    pNew = sqlite3_realloc(pBuf->p, nNew);
    if( pNew==0 ){
      *pRc = SQLITE_NOMEM;
      return 1;







<
<




>
>
>
>







12
13
14
15
16
17
18


19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
*/



#include "fts5Int.h"

int sqlite3Fts5BufferGrow(int *pRc, Fts5Buffer *pBuf, int nByte){



  if( (pBuf->n + nByte) > pBuf->nSpace ){
    u8 *pNew;
    int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;

    /* A no-op if an error has already occurred */
    if( *pRc ) return 1;

    while( nNew<(pBuf->n + nByte) ){
      nNew = nNew * 2;
    }
    pNew = sqlite3_realloc(pBuf->p, nNew);
    if( pNew==0 ){
      *pRc = SQLITE_NOMEM;
      return 1;
Changes to ext/fts5/fts5_config.c.
476
477
478
479
480
481
482



483
484
485
486
487
488
489

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;



  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }

  for(i=3; rc==SQLITE_OK && i<nArg; i++){
    const char *zOrig = azArg[i];







>
>
>







476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

  nByte = nArg * (sizeof(char*) + sizeof(u8));
  pRet->azCol = (char**)sqlite3Fts5MallocZero(&rc, nByte);
  pRet->abUnindexed = (u8*)&pRet->azCol[nArg];
  pRet->zDb = sqlite3Fts5Strndup(&rc, azArg[1], -1);
  pRet->zName = sqlite3Fts5Strndup(&rc, azArg[2], -1);
  pRet->bColumnsize = 1;
#ifdef SQLITE_DEBUG
  pRet->bPrefixIndex = 1;
#endif
  if( rc==SQLITE_OK && sqlite3_stricmp(pRet->zName, FTS5_RANK_NAME)==0 ){
    *pzErr = sqlite3_mprintf("reserved fts5 table name: %s", pRet->zName);
    rc = SQLITE_ERROR;
  }

  for(i=3; rc==SQLITE_OK && i<nArg; i++){
    const char *zOrig = azArg[i];
Changes to ext/fts5/fts5_expr.c.
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;








<







314
315
316
317
318
319
320

321
322
323
324
325
326
327
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){

  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);







|







648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
static int fts5ExprNearAdvanceFirst(
  Fts5Expr *pExpr,                /* Expression pPhrase belongs to */
  Fts5ExprNode *pNode,            /* FTS5_STRING or FTS5_TERM node */
  int bFromValid,
  i64 iFrom 
){
  Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
  int rc = SQLITE_OK;

  if( pTerm->pSynonym ){
    int bEof = 1;
    Fts5ExprTerm *p;

    /* Find the firstest rowid any synonym points to. */
    i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){
          Fts5ExprTerm *p;
          int bEof = 1;
          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
          }







<
<







943
944
945
946
947
948
949


950
951
952
953
954
955
956
  do {
    bMatch = 1;
    for(i=0; i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      for(j=0; j<pPhrase->nTerm; j++){
        Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
        if( pTerm->pSynonym ){


          i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
          if( iRowid==iLast ) continue;
          bMatch = 0;
          if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
            pNode->bEof = 1;
            return rc;
          }
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */
  Fts5ExprPhrase *pCopy;          /* Copy of pOrig */
  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */
  Fts5ExprPhrase **apPhrase;      /* pNew->apPhrase */
  Fts5ExprNode *pNode;            /* pNew->pRoot */
  Fts5ExprNearset *pNear;         /* pNew->pRoot->pNear */

  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));







<



<
<
<







1650
1651
1652
1653
1654
1655
1656

1657
1658
1659



1660
1661
1662
1663
1664
1665
1666
  Fts5Config *pConfig,
  Fts5Expr *pExpr, 
  int iPhrase, 
  Fts5Expr **ppNew
){
  int rc = SQLITE_OK;             /* Return code */
  Fts5ExprPhrase *pOrig;          /* The phrase extracted from pExpr */

  int i;                          /* Used to iterate through phrase terms */

  Fts5Expr *pNew = 0;             /* Expression to return via *ppNew */




  TokenCtx sCtx = {0,0};          /* Context object for fts5ParseTokenize */


  pOrig = pExpr->apExprPhrase[iPhrase];

  pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
Changes to ext/fts5/fts5_index.c.
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

















148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
**
**   Then, for each level from 0 to nMax:
**
**     + number of input segments in ongoing merge.
**     + total number of segments in level.
**     + for each segment from oldest to newest:
**         + segment id (always > 0)
**         + b-tree height (1 -> root is leaf, 2 -> root is parent of leaf etc.)
**         + first leaf page number (often 1, always greater than 0)
**         + final leaf page number
**
** 2. The Averages Record:
**
**   A single record within the %_data table. The data is a list of varints.
**   The first value is the number of rows in the index. Then, for each column
**   from left to right, the total number of tokens in the column for all 
**   rows of the table.
**
** 3. Segment leaves:
**
**   TERM DOCLIST FORMAT:
**
**     Most of each segment leaf is taken up by term/doclist data. The 
**     general format of the term/doclist data is:

**
**         varint : size of first term
**         blob:    first term data
**         doclist: first doclist
**         zero-or-more {
**           varint:  number of bytes in common with previous term
**           varint:  number of bytes of new term data (nNew)
**           blob:    nNew bytes of new term data
**           doclist: next doclist
**         }
**
**     doclist format:
**
**         varint:  first rowid
**         poslist: first poslist
**         zero-or-more {
**           varint:  rowid delta (always > 0)
**           poslist: next poslist
**         }
**         0x00 byte
**
**     poslist format:
**
**         varint: size of poslist in bytes multiplied by 2, not including
**                 this field. Plus 1 if this entry carries the "delete" flag.
**         collist: collist for column 0
**         zero-or-more {
**           0x01 byte
**           varint: column number (I)
**           collist: collist for column I
**         }
**
**     collist format:
**
**         varint: first offset + 2
**         zero-or-more {
**           varint: offset delta + 2
**         }
**
**   PAGINATION
**

















**     The format described above is only accurate if the entire term/doclist
**     data fits on a single leaf page. If this is not the case, the format
**     is changed in two ways:
**
**       + if the first rowid on a page occurs before the first term, it
**         is stored as a literal value:
**
**             varint:  first rowid
**
**       + the first term on each page is stored in the same way as the
**         very first term of the segment:
**
**             varint : size of first term
**             blob:    first term data
**
**     Each leaf page begins with:
**
**       + 2-byte unsigned containing offset to first rowid (or 0).
**       + 2-byte unsigned containing offset to first term (or 0).
**
**   Followed by term/doclist data.
**
** 4. Segment interior nodes:
**
**   The interior nodes turn the list of leaves into a b+tree. 
**
**   Each interior node begins with a varint - the page number of the left
**   most child node. Following this, for each leaf page except the first,
**   the interior nodes contain:
**
**     a) If the leaf page contains at least one term, then a term-prefix that
**        is greater than all previous terms, and less than or equal to the
**        first term on the leaf page.
**
**     b) If the leaf page no terms, a record indicating how many consecutive
**        leaves contain no terms, and whether or not there is an associated
**        by-rowid index record.
**
**   By definition, there is never more than one type (b) record in a row.
**   Type (b) records only ever appear on height=1 pages - immediate parents
**   of leaves. Only type (a) records are pushed to higher levels.
**
**   Term format:
**
**     * Number of bytes in common with previous term plus 2, as a varint.
**     * Number of bytes of new term data, as a varint.
**     * new term data.
**
**   No-term format:
**
**     * either an 0x00 or 0x01 byte. If the value 0x01 is used, then there 
**       is an associated index-by-rowid record.
**     * the number of zero-term leaves as a varint.
**
** 5. Segment doclist indexes:
**
**   Doclist indexes are themselves b-trees, however they usually consist of
**   a single leaf record only. The format of each doclist index leaf page 
**   is:
**
**     * Flags byte. Bits are:







<







|




|


|
>



















<



















|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|












<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178







































179
180
181
182
183
184
185
**
**   Then, for each level from 0 to nMax:
**
**     + number of input segments in ongoing merge.
**     + total number of segments in level.
**     + for each segment from oldest to newest:
**         + segment id (always > 0)

**         + first leaf page number (often 1, always greater than 0)
**         + final leaf page number
**
** 2. The Averages Record:
**
**   A single record within the %_data table. The data is a list of varints.
**   The first value is the number of rows in the index. Then, for each column
**   from left to right, the total number of tokens in the column for all
**   rows of the table.
**
** 3. Segment leaves:
**
**   TERM/DOCLIST FORMAT:
**
**     Most of each segment leaf is taken up by term/doclist data. The 
**     general format of term/doclist, starting with the first term
**     on the leaf page, is:
**
**         varint : size of first term
**         blob:    first term data
**         doclist: first doclist
**         zero-or-more {
**           varint:  number of bytes in common with previous term
**           varint:  number of bytes of new term data (nNew)
**           blob:    nNew bytes of new term data
**           doclist: next doclist
**         }
**
**     doclist format:
**
**         varint:  first rowid
**         poslist: first poslist
**         zero-or-more {
**           varint:  rowid delta (always > 0)
**           poslist: next poslist
**         }

**
**     poslist format:
**
**         varint: size of poslist in bytes multiplied by 2, not including
**                 this field. Plus 1 if this entry carries the "delete" flag.
**         collist: collist for column 0
**         zero-or-more {
**           0x01 byte
**           varint: column number (I)
**           collist: collist for column I
**         }
**
**     collist format:
**
**         varint: first offset + 2
**         zero-or-more {
**           varint: offset delta + 2
**         }
**
**   PAGE FORMAT
**
**     Each leaf page begins with a 4-byte header containing 2 16-bit 
**     unsigned integer fields in big-endian format. They are:
**
**       * The byte offset of the first rowid on the page, if it exists
**         and occurs before the first term (otherwise 0).
**
**       * The byte offset of the start of the page footer. If the page
**         footer is 0 bytes in size, then this field is the same as the
**         size of the leaf page in bytes.
**
**     The page footer consists of a single varint for each term located
**     on the page. Each varint is the byte offset of the current term
**     within the page, delta-compressed against the previous value. In
**     other words, the first varint in the footer is the byte offset of
**     the first term, the second is the byte offset of the second less that
**     of the first, and so on.
**
**     The term/doclist format described above is accurate if the entire
**     term/doclist data fits on a single leaf page. If this is not the case,
**     the format is changed in two ways:
**
**       + if the first rowid on a page occurs before the first term, it
**         is stored as a literal value:
**
**             varint:  first rowid
**
**       + the first term on each page is stored in the same way as the
**         very first term of the segment:
**
**             varint : size of first term
**             blob:    first term data
**







































** 5. Segment doclist indexes:
**
**   Doclist indexes are themselves b-trees, however they usually consist of
**   a single leaf record only. The format of each doclist index leaf page 
**   is:
**
**     * Flags byte. Bits are:
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
** Rowids for the averages and structure records in the %_data table.
*/
#define FTS5_AVERAGES_ROWID     1    /* Rowid used for the averages record */
#define FTS5_STRUCTURE_ROWID   10    /* The structure record */

/*
** Macros determining the rowids used by segment nodes. All nodes in all
** segments for all indexes (the regular FTS index and any prefix indexes)
** are stored in the %_data table with large positive rowids.
**
** The %_data table may contain up to (1<<FTS5_SEGMENT_INDEX_BITS) 
** indexes - one regular term index and zero or more prefix indexes.
**
** Each segment in an index has a unique id greater than zero.
**
** Each node in a segment b-tree is assigned a "page number" that is unique
** within nodes of its height within the segment (leaf nodes have a height 
** of 0, parents 1, etc.). Page numbers are allocated sequentially so that
** a nodes page number is always one more than its left sibling.
**
** The rowid for a node is then found using the FTS5_SEGMENT_ROWID() macro
** below. The FTS5_SEGMENT_*_BITS macros define the number of bits used
** to encode the three FTS5_SEGMENT_ROWID() arguments. This module returns
** SQLITE_FULL and fails the current operation if they ever prove too small.

*/
#define FTS5_DATA_ID_B     16     /* Max seg id number 65535 */
#define FTS5_DATA_DLI_B     1     /* Doclist-index flag (1 bit) */
#define FTS5_DATA_HEIGHT_B  5     /* Max b-tree height of 32 */
#define FTS5_DATA_PAGE_B   31     /* Max page number of 2147483648 */

#define fts5_dri(segid, dlidx, height, pgno) (                                 \
 ((i64)(segid)  << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) +    \
 ((i64)(dlidx)  << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) +                  \
 ((i64)(height) << (FTS5_DATA_PAGE_B)) +                                       \
 ((i64)(pgno))                                                                 \
)

#define FTS5_SEGMENT_ROWID(segid, height, pgno) fts5_dri(segid, 0, height, pgno)
#define FTS5_DLIDX_ROWID(segid, height, pgno)   fts5_dri(segid, 1, height, pgno)

/*
** Maximum segments permitted in a single index 
*/
#define FTS5_MAX_SEGMENT 2000

#ifdef SQLITE_DEBUG







|
<
|
|
<
<

|

<
<
<
<
<
|
<
|
<
>



|









|
|







210
211
212
213
214
215
216
217

218
219


220
221
222





223

224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
** Rowids for the averages and structure records in the %_data table.
*/
#define FTS5_AVERAGES_ROWID     1    /* Rowid used for the averages record */
#define FTS5_STRUCTURE_ROWID   10    /* The structure record */

/*
** Macros determining the rowids used by segment leaves and dlidx leaves

** and nodes. All nodes and leaves are stored in the %_data table with large
** positive rowids.


**
** Each segment has a unique non-zero 16-bit id.
**





** The rowid for each segment leaf is found by passing the segment id and 

** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered

** sequentially starting from 1.
*/
#define FTS5_DATA_ID_B     16     /* Max seg id number 65535 */
#define FTS5_DATA_DLI_B     1     /* Doclist-index flag (1 bit) */
#define FTS5_DATA_HEIGHT_B  5     /* Max dlidx tree height of 32 */
#define FTS5_DATA_PAGE_B   31     /* Max page number of 2147483648 */

#define fts5_dri(segid, dlidx, height, pgno) (                                 \
 ((i64)(segid)  << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) +    \
 ((i64)(dlidx)  << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) +                  \
 ((i64)(height) << (FTS5_DATA_PAGE_B)) +                                       \
 ((i64)(pgno))                                                                 \
)

#define FTS5_SEGMENT_ROWID(segid, pgno)       fts5_dri(segid, 0, 0, pgno)
#define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)

/*
** Maximum segments permitted in a single index 
*/
#define FTS5_MAX_SEGMENT 2000

#ifdef SQLITE_DEBUG
299
300
301
302
303
304
305
306

307
308
309
310
311
312
313
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;

struct Fts5Data {
  u8 *p;                          /* Pointer to buffer containing record */
  int n;                          /* Size of record in bytes */

};

/*
** One object per %_data table.
*/
struct Fts5Index {
  Fts5Config *pConfig;            /* Virtual table configuration */







|
>







267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
typedef struct Fts5SegWriter Fts5SegWriter;
typedef struct Fts5Structure Fts5Structure;
typedef struct Fts5StructureLevel Fts5StructureLevel;
typedef struct Fts5StructureSegment Fts5StructureSegment;

struct Fts5Data {
  u8 *p;                          /* Pointer to buffer containing record */
  int nn;                         /* Size of record in bytes */
  int szLeaf;                     /* Size of leaf without page-index */
};

/*
** One object per %_data table.
*/
struct Fts5Index {
  Fts5Config *pConfig;            /* Virtual table configuration */
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
/*
** The contents of the "structure" record for each index are represented
** using an Fts5Structure record in memory. Which uses instances of the 
** other Fts5StructureXXX types as components.
*/
struct Fts5StructureSegment {
  int iSegid;                     /* Segment id */
  int nHeight;                    /* Height of segment b-tree */
  int pgnoFirst;                  /* First leaf page number in segment */
  int pgnoLast;                   /* Last leaf page number in segment */
};
struct Fts5StructureLevel {
  int nMerge;                     /* Number of segments in incr-merge */
  int nSeg;                       /* Total number of segments on level */
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */







<







320
321
322
323
324
325
326

327
328
329
330
331
332
333
/*
** The contents of the "structure" record for each index are represented
** using an Fts5Structure record in memory. Which uses instances of the 
** other Fts5StructureXXX types as components.
*/
struct Fts5StructureSegment {
  int iSegid;                     /* Segment id */

  int pgnoFirst;                  /* First leaf page number in segment */
  int pgnoLast;                   /* Last leaf page number in segment */
};
struct Fts5StructureLevel {
  int nMerge;                     /* Number of segments in incr-merge */
  int nSeg;                       /* Total number of segments on level */
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
373
374
375
376
377
378
379

380

381
382
383
384
385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */

  Fts5Buffer buf;                 /* Buffer containing page data */

  Fts5Buffer term;                /* Buffer containing previous term on page */
};
struct Fts5DlidxWriter {
  int pgno;                       /* Page number for this page */
  int bPrevValid;                 /* True if iPrev is valid */
  i64 iPrev;                      /* Previous rowid value written to page */
  Fts5Buffer buf;                 /* Buffer containing page data */
};
struct Fts5SegWriter {
  int iSegid;                     /* Segid to write to */
  Fts5PageWriter writer;          /* PageWriter object */
  i64 iPrevRowid;                 /* Previous rowid written to current leaf */
  u8 bFirstRowidInDoclist;        /* True if next rowid is first in doclist */
  u8 bFirstRowidInPage;           /* True if next rowid is first in page */

  u8 bFirstTermInPage;            /* True if next term will be first in leaf */
  int nLeafWritten;               /* Number of leaf pages written */
  int nEmpty;                     /* Number of contiguous term-less nodes */

  int nDlidx;                     /* Allocated size of aDlidx[] array */
  Fts5DlidxWriter *aDlidx;        /* Array of Fts5DlidxWriter objects */








>
|
>














>







341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */
  int iPrevPgidx;                 /* Previous value written into pgidx */
  Fts5Buffer buf;                 /* Buffer containing leaf data */
  Fts5Buffer pgidx;               /* Buffer containing page-index */
  Fts5Buffer term;                /* Buffer containing previous term on page */
};
struct Fts5DlidxWriter {
  int pgno;                       /* Page number for this page */
  int bPrevValid;                 /* True if iPrev is valid */
  i64 iPrev;                      /* Previous rowid value written to page */
  Fts5Buffer buf;                 /* Buffer containing page data */
};
struct Fts5SegWriter {
  int iSegid;                     /* Segid to write to */
  Fts5PageWriter writer;          /* PageWriter object */
  i64 iPrevRowid;                 /* Previous rowid written to current leaf */
  u8 bFirstRowidInDoclist;        /* True if next rowid is first in doclist */
  u8 bFirstRowidInPage;           /* True if next rowid is first in page */
  /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
  u8 bFirstTermInPage;            /* True if next term will be first in leaf */
  int nLeafWritten;               /* Number of leaf pages written */
  int nEmpty;                     /* Number of contiguous term-less nodes */

  int nDlidx;                     /* Allocated size of aDlidx[] array */
  Fts5DlidxWriter *aDlidx;        /* Array of Fts5DlidxWriter objects */

468
469
470
471
472
473
474



475
476
477
478
479
480
481
482
483
484
485
486
487



488
489
490
491
492
493
494
495
496
497
498
499
500
501








502
503
504
505
506











507
508
509
510
511
512
513
**
** iRowidOffset/nRowidOffset/aRowidOffset:
**     These are used if the FTS5_SEGITER_REVERSE flag is set.
**
**     For each rowid on the page corresponding to the current term, the
**     corresponding aRowidOffset[] entry is set to the byte offset of the
**     start of the "position-list-size" field within the page.



*/
struct Fts5SegIter {
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;




  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  int bDel;                       /* True if the delete flag is set */
};









#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02













/*
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {
  Fts5Index *pIndex;              /* Index that owns this iterator */







>
>
>













>
>
>














>
>
>
>
>
>
>
>





>
>
>
>
>
>
>
>
>
>
>







439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
**
** iRowidOffset/nRowidOffset/aRowidOffset:
**     These are used if the FTS5_SEGITER_REVERSE flag is set.
**
**     For each rowid on the page corresponding to the current term, the
**     corresponding aRowidOffset[] entry is set to the byte offset of the
**     start of the "position-list-size" field within the page.
**
** iTermIdx:
**     Index of current term on iTermLeafPgno.
*/
struct Fts5SegIter {
  Fts5StructureSegment *pSeg;     /* Segment to iterate through */
  int flags;                      /* Mask of configuration flags */
  int iLeafPgno;                  /* Current leaf page number */
  Fts5Data *pLeaf;                /* Current leaf data */
  Fts5Data *pNextLeaf;            /* Leaf page (iLeafPgno+1) */
  int iLeafOffset;                /* Byte offset within current leaf */

  /* The page and offset from which the current term was read. The offset 
  ** is the offset of the first rowid in the current doclist.  */
  int iTermLeafPgno;
  int iTermLeafOffset;

  int iPgidxOff;                  /* Next offset in pgidx */
  int iEndofDoclist;

  /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
  int iRowidOffset;               /* Current entry in aRowidOffset[] */
  int nRowidOffset;               /* Allocated size of aRowidOffset[] array */
  int *aRowidOffset;              /* Array of offset to rowid fields */

  Fts5DlidxIter *pDlidx;          /* If there is a doclist-index */

  /* Variables populated based on current entry. */
  Fts5Buffer term;                /* Current term */
  i64 iRowid;                     /* Current rowid */
  int nPos;                       /* Number of bytes in current position list */
  int bDel;                       /* True if the delete flag is set */
};

/*
** Argument is a pointer to an Fts5Data structure that contains a 
** leaf page.
*/
#define ASSERT_SZLEAF_OK(x) assert( \
    (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
)

#define FTS5_SEGITER_ONETERM 0x01
#define FTS5_SEGITER_REVERSE 0x02


/* 
** Argument is a pointer to an Fts5Data structure that contains a leaf
** page. This macro evaluates to true if the leaf contains no terms, or
** false if it contains at least one term.
*/
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)

#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))

#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))

/*
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {
  Fts5Index *pIndex;              /* Index that owns this iterator */
614
615
616
617
618
619
620





621
622
623
624
625
626
627
){
  int nCmp = MIN(nLeft, nRight);
  int res = memcmp(pLeft, pRight, nCmp);
  return (res==0 ? (nLeft - nRight) : res);
}
#endif







/*
** Close the read-only blob handle, if it is open.
*/
static void fts5CloseReader(Fts5Index *p){
  if( p->pReader ){
    sqlite3_blob *pReader = p->pReader;







>
>
>
>
>







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
){
  int nCmp = MIN(nLeft, nRight);
  int res = memcmp(pLeft, pRight, nCmp);
  return (res==0 ? (nLeft - nRight) : res);
}
#endif

static int fts5LeafFirstTermOff(Fts5Data *pLeaf){
  int ret;
  fts5GetVarint32(&pLeaf->p[pLeaf->szLeaf], ret);
  return ret;
}

/*
** Close the read-only blob handle, if it is open.
*/
static void fts5CloseReader(Fts5Index *p){
  if( p->pReader ){
    sqlite3_blob *pReader = p->pReader;
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693



694
695
696
697
698
699
700

    if( rc==SQLITE_OK ){
      u8 *aOut = 0;               /* Read blob data into this buffer */
      int nByte = sqlite3_blob_bytes(p->pReader);
      int nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING;
      pRet = (Fts5Data*)sqlite3_malloc(nAlloc);
      if( pRet ){
        pRet->n = nByte;
        aOut = pRet->p = (u8*)&pRet[1];
      }else{
        rc = SQLITE_NOMEM;
      }

      if( rc==SQLITE_OK ){
        rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
      }
      if( rc!=SQLITE_OK ){
        sqlite3_free(pRet);
        pRet = 0;



      }
    }
    p->rc = rc;
    p->nRead++;
  }

  assert( (pRet==0)==(p->rc!=SQLITE_OK) );







|











>
>
>







676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

    if( rc==SQLITE_OK ){
      u8 *aOut = 0;               /* Read blob data into this buffer */
      int nByte = sqlite3_blob_bytes(p->pReader);
      int nAlloc = sizeof(Fts5Data) + nByte + FTS5_DATA_PADDING;
      pRet = (Fts5Data*)sqlite3_malloc(nAlloc);
      if( pRet ){
        pRet->nn = nByte;
        aOut = pRet->p = (u8*)&pRet[1];
      }else{
        rc = SQLITE_NOMEM;
      }

      if( rc==SQLITE_OK ){
        rc = sqlite3_blob_read(p->pReader, aOut, nByte, 0);
      }
      if( rc!=SQLITE_OK ){
        sqlite3_free(pRet);
        pRet = 0;
      }else{
        /* TODO1: Fix this */
        pRet->szLeaf = fts5GetU16(&pRet->p[2]);
      }
    }
    p->rc = rc;
    p->nRead++;
  }

  assert( (pRet==0)==(p->rc!=SQLITE_OK) );
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/*
** INSERT OR REPLACE a record into the %_data table.
*/
static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
  if( p->rc!=SQLITE_OK ) return;

  if( p->pWriter==0 ){
    int rc = SQLITE_OK;
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf(
          "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)", 
          pConfig->zDb, pConfig->zName
    ));
    if( p->rc ) return;
  }







<







733
734
735
736
737
738
739

740
741
742
743
744
745
746
/*
** INSERT OR REPLACE a record into the %_data table.
*/
static void fts5DataWrite(Fts5Index *p, i64 iRowid, const u8 *pData, int nData){
  if( p->rc!=SQLITE_OK ) return;

  if( p->pWriter==0 ){

    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pWriter, sqlite3_mprintf(
          "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)", 
          pConfig->zDb, pConfig->zName
    ));
    if( p->rc ) return;
  }
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
  p->rc = sqlite3_reset(p->pDeleter);
}

/*
** Remove all records associated with segment iSegid.
*/
static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){
  i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0, 0);
  i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0, 0)-1;
  fts5DataDelete(p, iFirst, iLast);
  if( p->pIdxDeleter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
          "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
          pConfig->zDb, pConfig->zName
    ));







|
|







784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
  p->rc = sqlite3_reset(p->pDeleter);
}

/*
** Remove all records associated with segment iSegid.
*/
static void fts5DataRemoveSegment(Fts5Index *p, int iSegid){
  i64 iFirst = FTS5_SEGMENT_ROWID(iSegid, 0);
  i64 iLast = FTS5_SEGMENT_ROWID(iSegid+1, 0)-1;
  fts5DataDelete(p, iFirst, iLast);
  if( p->pIdxDeleter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxDeleter, sqlite3_mprintf(
          "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
          pConfig->zDb, pConfig->zName
    ));
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
          nTotal * sizeof(Fts5StructureSegment)
      );

      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].nHeight);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }
      }else{
        fts5StructureRelease(pRet);
        pRet = 0;
      }







<







882
883
884
885
886
887
888

889
890
891
892
893
894
895
          nTotal * sizeof(Fts5StructureSegment)
      );

      if( rc==SQLITE_OK ){
        pLvl->nSeg = nTotal;
        for(iSeg=0; iSeg<nTotal; iSeg++){
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].iSegid);

          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoFirst);
          i += fts5GetVarint32(&pData[i], pLvl->aSeg[iSeg].pgnoLast);
        }
      }else{
        fts5StructureRelease(pRet);
        pRet = 0;
      }
966
967
968
969
970
971
972
973
974
975
976

977
978
979
980
981
982
983
984
985
** is called, it is a no-op.
*/
static Fts5Structure *fts5StructureRead(Fts5Index *p){
  Fts5Config *pConfig = p->pConfig;
  Fts5Structure *pRet = 0;        /* Object to return */
  int iCookie;                    /* Configuration cookie */
  Fts5Data *pData;
  Fts5Buffer buf = {0, 0, 0};

  pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
  if( p->rc ) return 0;

  memset(&pData->p[pData->n], 0, FTS5_DATA_PADDING);
  p->rc = fts5StructureDecode(pData->p, pData->n, &iCookie, &pRet);
  if( p->rc==SQLITE_OK && pConfig->iCookie!=iCookie ){
    p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
  }

  fts5DataRelease(pData);
  if( p->rc!=SQLITE_OK ){
    fts5StructureRelease(pRet);







<



>
|
|







968
969
970
971
972
973
974

975
976
977
978
979
980
981
982
983
984
985
986
987
** is called, it is a no-op.
*/
static Fts5Structure *fts5StructureRead(Fts5Index *p){
  Fts5Config *pConfig = p->pConfig;
  Fts5Structure *pRet = 0;        /* Object to return */
  int iCookie;                    /* Configuration cookie */
  Fts5Data *pData;


  pData = fts5DataRead(p, FTS5_STRUCTURE_ROWID);
  if( p->rc ) return 0;
  /* TODO: Do we need this if the leaf-index is appended? Probably... */
  memset(&pData->p[pData->nn], 0, FTS5_DATA_PADDING);
  p->rc = fts5StructureDecode(pData->p, pData->nn, &iCookie, &pRet);
  if( p->rc==SQLITE_OK && pConfig->iCookie!=iCookie ){
    p->rc = sqlite3Fts5ConfigLoad(pConfig, iCookie);
  }

  fts5DataRelease(pData);
  if( p->rc!=SQLITE_OK ){
    fts5StructureRelease(pRet);
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );

      for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].nHeight);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
      }
    }

    fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
    fts5BufferFree(&buf);







<







1037
1038
1039
1040
1041
1042
1043

1044
1045
1046
1047
1048
1049
1050
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );

      for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].iSegid);

        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoFirst);
        fts5BufferAppendVarint(&p->rc, &buf, pLvl->aSeg[iSeg].pgnoLast);
      }
    }

    fts5DataWrite(p, FTS5_STRUCTURE_ROWID, buf.p, buf.n);
    fts5BufferFree(&buf);
1124
1125
1126
1127
1128
1129
1130
1131
1132

1133
1134
1135
1136
1137
1138
1139
){
  if( p->rc==SQLITE_OK ){
    int iTst;
    int iPromote = -1;
    int szPromote = 0;            /* Promote anything this size or smaller */
    Fts5StructureSegment *pSeg;   /* Segment just written */
    int szSeg;                    /* Size of segment just written */



    pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
    szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);

    /* Check for condition (a) */
    for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
    if( iTst>=0 ){
      int i;







|

>







1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
){
  if( p->rc==SQLITE_OK ){
    int iTst;
    int iPromote = -1;
    int szPromote = 0;            /* Promote anything this size or smaller */
    Fts5StructureSegment *pSeg;   /* Segment just written */
    int szSeg;                    /* Size of segment just written */
    int nSeg = pStruct->aLevel[iLvl].nSeg;

    if( nSeg==0 ) return;
    pSeg = &pStruct->aLevel[iLvl].aSeg[pStruct->aLevel[iLvl].nSeg-1];
    szSeg = (1 + pSeg->pgnoLast - pSeg->pgnoFirst);

    /* Check for condition (a) */
    for(iTst=iLvl-1; iTst>=0 && pStruct->aLevel[iTst].nSeg==0; iTst--);
    if( iTst>=0 ){
      int i;
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    assert( pLvl->bEof==0 );
    pLvl->iOff = 1;
    pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
    pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
    pLvl->iFirstOff = pLvl->iOff;
  }else{
    int iOff;
    for(iOff=pLvl->iOff; iOff<pData->n; iOff++){
      if( pData->p[iOff] ) break; 
    }

    if( iOff<pData->n ){
      i64 iVal;
      pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
      iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal);
      pLvl->iRowid += iVal;
      pLvl->iOff = iOff;
    }else{
      pLvl->bEof = 1;







|



|







1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    assert( pLvl->bEof==0 );
    pLvl->iOff = 1;
    pLvl->iOff += fts5GetVarint32(&pData->p[1], pLvl->iLeafPgno);
    pLvl->iOff += fts5GetVarint(&pData->p[pLvl->iOff], (u64*)&pLvl->iRowid);
    pLvl->iFirstOff = pLvl->iOff;
  }else{
    int iOff;
    for(iOff=pLvl->iOff; iOff<pData->nn; iOff++){
      if( pData->p[iOff] ) break; 
    }

    if( iOff<pData->nn ){
      i64 iVal;
      pLvl->iLeafPgno += (iOff - pLvl->iOff) + 1;
      iOff += fts5GetVarint(&pData->p[iOff], (u64*)&iVal);
      pLvl->iRowid += iVal;
      pLvl->iOff = iOff;
    }else{
      pLvl->bEof = 1;
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440












1441
1442
1443
1444
1445
1446
1447
static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
  return pIter->aLvl[0].iRowid;
}
static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
  return pIter->aLvl[0].iLeafPgno;
}

static void fts5LeafHeader(Fts5Data *pLeaf, int *piRowid, int *piTerm){
  *piRowid = (int)fts5GetU16(&pLeaf->p[0]);
  *piTerm = (int)fts5GetU16(&pLeaf->p[2]);
}

/*
** Load the next leaf page into the segment iterator.
*/
static void fts5SegIterNextPage(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter              /* Iterator to advance to next page */
){

  Fts5StructureSegment *pSeg = pIter->pSeg;
  fts5DataRelease(pIter->pLeaf);
  pIter->iLeafPgno++;
  if( pIter->pNextLeaf ){
    assert( pIter->iLeafPgno<=pSeg->pgnoLast );
    pIter->pLeaf = pIter->pNextLeaf;
    pIter->pNextLeaf = 0;
  }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){
    pIter->pLeaf = fts5DataRead(p, 
        FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, pIter->iLeafPgno)
    );
  }else{
    pIter->pLeaf = 0;












  }
}

/*
** Argument p points to a buffer containing a varint to be interpreted as a
** position list size field. Read the varint and return the number of bytes
** read. Before returning, set *pnSz to the number of bytes in the position







<
<
<
<
<







>




<




|



>
>
>
>
>
>
>
>
>
>
>
>







1411
1412
1413
1414
1415
1416
1417





1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
static i64 fts5DlidxIterRowid(Fts5DlidxIter *pIter){
  return pIter->aLvl[0].iRowid;
}
static int fts5DlidxIterPgno(Fts5DlidxIter *pIter){
  return pIter->aLvl[0].iLeafPgno;
}






/*
** Load the next leaf page into the segment iterator.
*/
static void fts5SegIterNextPage(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5SegIter *pIter              /* Iterator to advance to next page */
){
  Fts5Data *pLeaf;
  Fts5StructureSegment *pSeg = pIter->pSeg;
  fts5DataRelease(pIter->pLeaf);
  pIter->iLeafPgno++;
  if( pIter->pNextLeaf ){

    pIter->pLeaf = pIter->pNextLeaf;
    pIter->pNextLeaf = 0;
  }else if( pIter->iLeafPgno<=pSeg->pgnoLast ){
    pIter->pLeaf = fts5DataRead(p, 
        FTS5_SEGMENT_ROWID(pSeg->iSegid, pIter->iLeafPgno)
    );
  }else{
    pIter->pLeaf = 0;
  }
  pLeaf = pIter->pLeaf;

  if( pLeaf ){
    pIter->iPgidxOff = pLeaf->szLeaf;
    if( fts5LeafIsTermless(pLeaf) ){
      pIter->iEndofDoclist = pLeaf->nn+1;
    }else{
      pIter->iPgidxOff += fts5GetVarint32(&pLeaf->p[pIter->iPgidxOff],
          pIter->iEndofDoclist
      );
    }
  }
}

/*
** Argument p points to a buffer containing a varint to be interpreted as a
** position list size field. Read the varint and return the number of bytes
** read. Before returning, set *pnSz to the number of bytes in the position
1466
1467
1468
1469
1470
1471
1472

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

1486
1487
1488
1489
1490
1491
1492
1493
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */

    if( iOff>=pIter->pLeaf->n ){
      p->rc = FTS5_CORRUPT;
    }else{
      const u8 *a = &pIter->pLeaf->p[iOff];
      pIter->iLeafOffset += fts5GetPoslistSize(a, &pIter->nPos, &pIter->bDel);
    }
  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;


  if( iOff>=pIter->pLeaf->n ){
    fts5SegIterNextPage(p, pIter);
    if( pIter->pLeaf==0 ){
      if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
      return;
    }
    iOff = 4;
    a = pIter->pLeaf->p;







>
|












>
|







1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */
    ASSERT_SZLEAF_OK(pIter->pLeaf);
    if( iOff>=pIter->pLeaf->szLeaf ){
      p->rc = FTS5_CORRUPT;
    }else{
      const u8 *a = &pIter->pLeaf->p[iOff];
      pIter->iLeafOffset += fts5GetPoslistSize(a, &pIter->nPos, &pIter->bDel);
    }
  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  if( iOff>=pIter->pLeaf->szLeaf ){
    fts5SegIterNextPage(p, pIter);
    if( pIter->pLeaf==0 ){
      if( p->rc==SQLITE_OK ) p->rc = FTS5_CORRUPT;
      return;
    }
    iOff = 4;
    a = pIter->pLeaf->p;
1519
1520
1521
1522
1523
1524
1525








1526
1527
1528
1529
1530
1531
1532
  iOff += fts5GetVarint32(&a[iOff], nNew);
  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;









  fts5SegIterLoadRowid(p, pIter);
}

/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 







>
>
>
>
>
>
>
>







1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
  iOff += fts5GetVarint32(&a[iOff], nNew);
  pIter->term.n = nKeep;
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);
  iOff += nNew;
  pIter->iTermLeafOffset = iOff;
  pIter->iTermLeafPgno = pIter->iLeafPgno;
  pIter->iLeafOffset = iOff;

  if( pIter->iPgidxOff>=pIter->pLeaf->nn ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    pIter->iPgidxOff += fts5GetVarint32(&a[pIter->iPgidxOff], nExtra);
    pIter->iEndofDoclist += nExtra;
  }

  fts5SegIterLoadRowid(p, pIter);
}

/*
** Initialize the iterator object pIter to iterate through the entries in
** segment pSeg. The iterator is left pointing to the first entry when 
1554
1555
1556
1557
1558
1559
1560
1561
1562



1563
1564
1565
1566
1567
1568
1569
    memset(pIter, 0, sizeof(*pIter));
    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){
    u8 *a = pIter->pLeaf->p;
    pIter->iLeafOffset = fts5GetU16(&a[2]);



    fts5SegIterLoadTerm(p, pIter, 0);
    fts5SegIterLoadNPos(p, pIter);
  }
}

/*
** This function is only ever called on iterators created by calls to







<
|
>
>
>







1573
1574
1575
1576
1577
1578
1579

1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
    memset(pIter, 0, sizeof(*pIter));
    pIter->pSeg = pSeg;
    pIter->iLeafPgno = pSeg->pgnoFirst-1;
    fts5SegIterNextPage(p, pIter);
  }

  if( p->rc==SQLITE_OK ){

    pIter->iLeafOffset = 4;
    assert_nc( pIter->pLeaf->nn>4 );
    assert( fts5LeafFirstTermOff(pIter->pLeaf)==4 );
    pIter->iPgidxOff = pIter->pLeaf->szLeaf+1;
    fts5SegIterLoadTerm(p, pIter, 0);
    fts5SegIterLoadNPos(p, pIter);
  }
}

/*
** This function is only ever called on iterators created by calls to
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588





1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
  int n = pIter->pLeaf->n;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;






  while( 1 ){
    i64 iDelta = 0;
    int nPos;
    int bDummy;

    i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
    i += nPos;
    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);
    if( iDelta==0 ) break;
    pIter->iRowid += iDelta;

    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;







|




>
>
>
>
>









<







1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
** This function advances the iterator so that it points to the last 
** relevant rowid on the page and, if necessary, initializes the 
** aRowidOffset[] and iRowidOffset variables. At this point the iterator
** is in its regular state - Fts5SegIter.iLeafOffset points to the first
** byte of the position list content associated with said rowid.
*/
static void fts5SegIterReverseInitPage(Fts5Index *p, Fts5SegIter *pIter){
  int n = pIter->pLeaf->szLeaf;
  int i = pIter->iLeafOffset;
  u8 *a = pIter->pLeaf->p;
  int iRowidOffset = 0;

  if( n>pIter->iEndofDoclist ){
    n = pIter->iEndofDoclist;
  }

  ASSERT_SZLEAF_OK(pIter->pLeaf);
  while( 1 ){
    i64 iDelta = 0;
    int nPos;
    int bDummy;

    i += fts5GetPoslistSize(&a[i], &nPos, &bDummy);
    i += nPos;
    if( i>=n ) break;
    i += fts5GetVarint(&a[i], (u64*)&iDelta);

    pIter->iRowid += iDelta;

    if( iRowidOffset>=pIter->nRowidOffset ){
      int nNew = pIter->nRowidOffset + 8;
      int *aNew = (int*)sqlite3_realloc(pIter->aRowidOffset, nNew*sizeof(int));
      if( aNew==0 ){
        p->rc = SQLITE_NOMEM;
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634



1635
1636

1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

1660
1661
1662
1663
1664
1665
1666

  fts5DataRelease(pIter->pLeaf);
  pIter->pLeaf = 0;
  while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
    Fts5Data *pNew;
    pIter->iLeafPgno--;
    pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
          pIter->pSeg->iSegid, 0, pIter->iLeafPgno
    ));
    if( pNew ){



      if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
        if( pIter->iTermLeafOffset<pNew->n ){

          pIter->pLeaf = pNew;
          pIter->iLeafOffset = pIter->iTermLeafOffset;
        }
      }else{
        int iRowidOff, dummy;
        fts5LeafHeader(pNew, &iRowidOff, &dummy);
        if( iRowidOff ){
          pIter->pLeaf = pNew;
          pIter->iLeafOffset = iRowidOff;
        }
      }

      if( pIter->pLeaf ){
        u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
        pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid);
        break;
      }else{
        fts5DataRelease(pNew);
      }
    }
  }

  if( pIter->pLeaf ){

    fts5SegIterReverseInitPage(p, pIter);
  }
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte







|


>
>
>
|
|
>
|
|
<

|
|

















>







1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667

1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695

  fts5DataRelease(pIter->pLeaf);
  pIter->pLeaf = 0;
  while( p->rc==SQLITE_OK && pIter->iLeafPgno>pIter->iTermLeafPgno ){
    Fts5Data *pNew;
    pIter->iLeafPgno--;
    pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
          pIter->pSeg->iSegid, pIter->iLeafPgno
    ));
    if( pNew ){
      /* iTermLeafOffset may be equal to szLeaf if the term is the last
      ** thing on the page - i.e. the first rowid is on the following page.
      ** In this case leaf pIter->pLeaf==0, this iterator is at EOF. */
      if( pIter->iLeafPgno==pIter->iTermLeafPgno 
       && pIter->iTermLeafOffset<pNew->szLeaf 
      ){
        pIter->pLeaf = pNew;
        pIter->iLeafOffset = pIter->iTermLeafOffset;

      }else{
        int iRowidOff;
        iRowidOff = fts5LeafFirstRowidOff(pNew);
        if( iRowidOff ){
          pIter->pLeaf = pNew;
          pIter->iLeafOffset = iRowidOff;
        }
      }

      if( pIter->pLeaf ){
        u8 *a = &pIter->pLeaf->p[pIter->iLeafOffset];
        pIter->iLeafOffset += fts5GetVarint(a, (u64*)&pIter->iRowid);
        break;
      }else{
        fts5DataRelease(pNew);
      }
    }
  }

  if( pIter->pLeaf ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
    fts5SegIterReverseInitPage(p, pIter);
  }
}

/*
** Return true if the iterator passed as the second argument currently
** points to a delete marker. A delete marker is an entry with a 0 byte
1708
1709
1710
1711
1712
1713
1714
1715
1716

1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732


1733

1734


1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748


1749
1750
1751
1752
1753
1754
1755
1756
1757
1758

1759
1760
1761
1762





1763





1764

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
      Fts5Data *pLeaf = pIter->pLeaf;
      int iOff;
      int bNewTerm = 0;
      int nKeep = 0;

      /* Search for the end of the position list within the current page. */
      u8 *a = pLeaf->p;
      int n = pLeaf->n;


      iOff = pIter->iLeafOffset + pIter->nPos;

      if( iOff<n ){
        /* The next entry is on the current page */
        u64 iDelta;
        iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
        pIter->iLeafOffset = iOff;
        if( iDelta==0 ){
          bNewTerm = 1;
          if( iOff>=n ){
            fts5SegIterNextPage(p, pIter);
            pIter->iLeafOffset = 4;
          }else if( iOff!=fts5GetU16(&a[2]) ){
            pIter->iLeafOffset += fts5GetVarint32(&a[iOff], nKeep);
          }
        }else{


          pIter->iRowid += iDelta;

        }


      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;
        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->n = nList;


          sqlite3Fts5BufferSet(&p->rc, &pIter->term, strlen(zTerm), (u8*)zTerm);
          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;
          if( pLeaf==0 ) break;

          if( (iOff = fts5GetU16(&pLeaf->p[0])) && iOff<pLeaf->n ){
            iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
            pIter->iLeafOffset = iOff;
          }





          else if( (iOff = fts5GetU16(&pLeaf->p[2])) ){





            pIter->iLeafOffset = iOff;

            bNewTerm = 1;
          }
          if( iOff>=pLeaf->n ){
            p->rc = FTS5_CORRUPT;
            return;
          }
        }
      }

      /* Check if the iterator is now at EOF. If so, return early. */







|

>



|
<
<
|
|

|
<
<
<
|


>
>

>

>
>













|
>
>










>
|


|
>
>
>
>
>
|
>
>
>
>
>

>


|







1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750


1751
1752
1753
1754



1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
      Fts5Data *pLeaf = pIter->pLeaf;
      int iOff;
      int bNewTerm = 0;
      int nKeep = 0;

      /* Search for the end of the position list within the current page. */
      u8 *a = pLeaf->p;
      int n = pLeaf->szLeaf;

      ASSERT_SZLEAF_OK(pLeaf);
      iOff = pIter->iLeafOffset + pIter->nPos;

      if( iOff<n ){
        /* The next entry is on the current page. */


        assert_nc( iOff<=pIter->iEndofDoclist );
        if( iOff>=pIter->iEndofDoclist ){
          bNewTerm = 1;
          if( iOff!=fts5LeafFirstTermOff(pLeaf) ){



            iOff += fts5GetVarint32(&a[iOff], nKeep);
          }
        }else{
          u64 iDelta;
          iOff += sqlite3Fts5GetVarint(&a[iOff], &iDelta);
          pIter->iRowid += iDelta;
          assert_nc( iDelta>0 );
        }
        pIter->iLeafOffset = iOff;

      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;
        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->nn = nList;
          pIter->pLeaf->szLeaf = nList;
          pIter->iEndofDoclist = nList+1;
          sqlite3Fts5BufferSet(&p->rc, &pIter->term, strlen(zTerm), (u8*)zTerm);
          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;
          if( pLeaf==0 ) break;
          ASSERT_SZLEAF_OK(pLeaf);
          if( (iOff = fts5LeafFirstRowidOff(pLeaf)) && iOff<pLeaf->szLeaf ){
            iOff += sqlite3Fts5GetVarint(&pLeaf->p[iOff], (u64*)&pIter->iRowid);
            pIter->iLeafOffset = iOff;

            if( pLeaf->nn>pLeaf->szLeaf ){
              pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                  &pLeaf->p[pLeaf->szLeaf], pIter->iEndofDoclist
              );
            }

          }
          else if( pLeaf->nn>pLeaf->szLeaf ){
            pIter->iPgidxOff = pLeaf->szLeaf + fts5GetVarint32(
                &pLeaf->p[pLeaf->szLeaf], iOff
            );
            pIter->iLeafOffset = iOff;
            pIter->iEndofDoclist = iOff;
            bNewTerm = 1;
          }
          if( iOff>=pLeaf->szLeaf ){
            p->rc = FTS5_CORRUPT;
            return;
          }
        }
      }

      /* Check if the iterator is now at EOF. If so, return early. */
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881







1882
1883
1884
1885
1886
1887
1888
  Fts5DlidxIter *pDlidx = pIter->pDlidx;
  Fts5Data *pLast = 0;
  int pgnoLast = 0;

  if( pDlidx ){
    int iSegid = pIter->pSeg->iSegid;
    pgnoLast = fts5DlidxIterPgno(pDlidx);
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, 0, pgnoLast));
  }else{
    int iOff;                               /* Byte offset within pLeaf */
    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset (and iOff) points to the first 
    ** byte of position-list content for the current rowid. Back it up
    ** so that it points to the start of the position-list size field. */
    pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);
    iOff = pIter->iLeafOffset;
    assert( iOff>=4 );

    /* Search for a new term within the current leaf. If one can be found,
    ** then this page contains the largest rowid for the current term. */
    while( iOff<pLeaf->n ){
      int nPos;
      i64 iDelta;
      int bDummy;

      /* Read the position-list size field */
      iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
      iOff += nPos;
      if( iOff>=pLeaf->n ) break;

      /* Rowid delta. Or, if 0x00, the end of doclist marker. */
      nPos = fts5GetVarint(&pLeaf->p[iOff], (u64*)&iDelta);
      if( iDelta==0 ) break;
      iOff += nPos;
    }

    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( iOff>=pLeaf->n ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;

      /* The last rowid in the doclist may not be on the current page. Search
      ** forward to find the page containing the last rowid.  */
      for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
        i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, pgno);
        Fts5Data *pNew = fts5DataRead(p, iAbs);
        if( pNew ){
          int iRowid, iTerm;
          fts5LeafHeader(pNew, &iRowid, &iTerm);

          if( iRowid ){
            SWAPVAL(Fts5Data*, pNew, pLast);
            pgnoLast = pgno;
          }
          fts5DataRelease(pNew);
          if( iTerm ) break;
        }
      }
    }
  }

  /* If pLast is NULL at this point, then the last rowid for this doclist
  ** lies on the page currently indicated by the iterator. In this case 
  ** pIter->iLeafOffset is already set to point to the position-list size
  ** field associated with the first relevant rowid on the page.
  **
  ** Or, if pLast is non-NULL, then it is the page that contains the last
  ** rowid. In this case configure the iterator so that it points to the
  ** first rowid on this page.
  */
  if( pLast ){
    int dummy;
    int iOff;
    fts5DataRelease(pIter->pLeaf);
    pIter->pLeaf = pLast;
    pIter->iLeafPgno = pgnoLast;
    fts5LeafHeader(pLast, &iOff, &dummy);
    iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
    pIter->iLeafOffset = iOff;







  }

  fts5SegIterReverseInitPage(p, pIter);
}

/*
** Iterator pIter currently points to the first rowid of a doclist.







|

<


|
|
|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




|






|


|
|
>





|















<




|


>
>
>
>
>
>
>







1845
1846
1847
1848
1849
1850
1851
1852
1853

1854
1855
1856
1857
1858
1859




















1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897

1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
  Fts5DlidxIter *pDlidx = pIter->pDlidx;
  Fts5Data *pLast = 0;
  int pgnoLast = 0;

  if( pDlidx ){
    int iSegid = pIter->pSeg->iSegid;
    pgnoLast = fts5DlidxIterPgno(pDlidx);
    pLast = fts5DataRead(p, FTS5_SEGMENT_ROWID(iSegid, pgnoLast));
  }else{

    Fts5Data *pLeaf = pIter->pLeaf;         /* Current leaf data */

    /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
    ** position-list content for the current rowid. Back it up so that it
    ** points to the start of the position-list size field. */
    pIter->iLeafOffset -= sqlite3Fts5GetVarintLen(pIter->nPos*2+pIter->bDel);





















    /* If this condition is true then the largest rowid for the current
    ** term may not be stored on the current page. So search forward to
    ** see where said rowid really is.  */
    if( pIter->iEndofDoclist>=pLeaf->szLeaf ){
      int pgno;
      Fts5StructureSegment *pSeg = pIter->pSeg;

      /* The last rowid in the doclist may not be on the current page. Search
      ** forward to find the page containing the last rowid.  */
      for(pgno=pIter->iLeafPgno+1; !p->rc && pgno<=pSeg->pgnoLast; pgno++){
        i64 iAbs = FTS5_SEGMENT_ROWID(pSeg->iSegid, pgno);
        Fts5Data *pNew = fts5DataRead(p, iAbs);
        if( pNew ){
          int iRowid, bTermless;
          iRowid = fts5LeafFirstRowidOff(pNew);
          bTermless = fts5LeafIsTermless(pNew);
          if( iRowid ){
            SWAPVAL(Fts5Data*, pNew, pLast);
            pgnoLast = pgno;
          }
          fts5DataRelease(pNew);
          if( bTermless==0 ) break;
        }
      }
    }
  }

  /* If pLast is NULL at this point, then the last rowid for this doclist
  ** lies on the page currently indicated by the iterator. In this case 
  ** pIter->iLeafOffset is already set to point to the position-list size
  ** field associated with the first relevant rowid on the page.
  **
  ** Or, if pLast is non-NULL, then it is the page that contains the last
  ** rowid. In this case configure the iterator so that it points to the
  ** first rowid on this page.
  */
  if( pLast ){

    int iOff;
    fts5DataRelease(pIter->pLeaf);
    pIter->pLeaf = pLast;
    pIter->iLeafPgno = pgnoLast;
    iOff = fts5LeafFirstRowidOff(pLast);
    iOff += fts5GetVarint(&pLast->p[iOff], (u64*)&pIter->iRowid);
    pIter->iLeafOffset = iOff;

    if( fts5LeafIsTermless(pLast) ){
      pIter->iEndofDoclist = pLast->nn+1;
    }else{
      pIter->iEndofDoclist = fts5LeafFirstTermOff(pLast);
    }

  }

  fts5SegIterReverseInitPage(p, pIter);
}

/*
** Iterator pIter currently points to the first rowid of a doclist.
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

  assert( pIter->flags & FTS5_SEGITER_ONETERM );
  assert( pIter->pDlidx==0 );

  /* Check if the current doclist ends on this page. If it does, return
  ** early without loading the doclist-index (as it belongs to a different
  ** term. */
  if( pIter->iTermLeafPgno==pIter->iLeafPgno ){
    int iOff = pIter->iLeafOffset + pIter->nPos;
    while( iOff<pLeaf->n ){
      int bDummy;
      int nPos;
      i64 iDelta;

      /* iOff is currently the offset of the start of position list data */
      iOff += fts5GetVarint(&pLeaf->p[iOff], (u64*)&iDelta);
      if( iDelta==0 ) return;
      assert_nc( iOff<pLeaf->n );
      iOff += fts5GetPoslistSize(&pLeaf->p[iOff], &nPos, &bDummy);
      iOff += nPos;
    }
  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}

#define fts5IndexGetVarint32(a, iOff, nVal) {     \
  nVal = a[iOff++];                               \
  if( nVal & 0x80 ){                              \
    iOff--;                                       \
    iOff += fts5GetVarint32(&a[iOff], nVal);      \
  }                                               \
}

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}







|
<
|
<
<
<
|
<
<
|
<
<
<
<






|


|







1927
1928
1929
1930
1931
1932
1933
1934

1935



1936


1937




1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954

  assert( pIter->flags & FTS5_SEGITER_ONETERM );
  assert( pIter->pDlidx==0 );

  /* Check if the current doclist ends on this page. If it does, return
  ** early without loading the doclist-index (as it belongs to a different
  ** term. */
  if( pIter->iTermLeafPgno==pIter->iLeafPgno 

   && pIter->iEndofDoclist<pLeaf->szLeaf 



  ){


    return;




  }

  pIter->pDlidx = fts5DlidxIterInit(p, bRev, iSeg, pIter->iTermLeafPgno);
}

#define fts5IndexGetVarint32(a, iOff, nVal) {     \
  nVal = (a)[iOff++];                             \
  if( nVal & 0x80 ){                              \
    iOff--;                                       \
    iOff += fts5GetVarint32(&(a)[iOff], nVal);    \
  }                                               \
}

#define fts5IndexSkipVarint(a, iOff) {            \
  int iEnd = iOff+9;                              \
  while( (a[iOff++] & 0x80) && iOff<iEnd );       \
}
1951
1952
1953
1954
1955
1956
1957

1958
1959
1960
1961
1962



1963
1964
1965
1966

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985


1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053

2054
2055
2056
2057
2058
2059
2060









2061
2062
2063
2064
2065
2066
2067
  Fts5Index *p,                   /* Leave any error code here */
  int bGe,                        /* True for a >= search */
  Fts5SegIter *pIter,             /* Iterator to seek */
  const u8 *pTerm, int nTerm      /* Term to search for */
){
  int iOff;
  const u8 *a = pIter->pLeaf->p;

  int n = pIter->pLeaf->n;

  int nMatch = 0;
  int nKeep = 0;
  int nNew = 0;




  assert( p->rc==SQLITE_OK );
  assert( pIter->pLeaf );


  iOff = fts5GetU16(&a[2]);
  if( iOff<4 || iOff>=n ){
    p->rc = FTS5_CORRUPT;
    return;
  }

  while( 1 ){
    int i;
    int nCmp;

    /* Figure out how many new bytes are in this term */
    fts5IndexGetVarint32(a, iOff, nNew);

    if( nKeep<nMatch ){
      goto search_failed;
    }

    assert( nKeep>=nMatch );
    if( nKeep==nMatch ){


      nCmp = MIN(nNew, nTerm-nMatch);
      for(i=0; i<nCmp; i++){
        if( a[iOff+i]!=pTerm[nMatch+i] ) break;
      }
      nMatch += i;

      if( nTerm==nMatch ){
        if( i==nNew ){
          goto search_success;
        }else{
          goto search_failed;
        }
      }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){
        goto search_failed;
      }
    }
    iOff += nNew;


    /* Skip past the doclist. If the end of the page is reached, bail out. */
    while( 1 ){
      int nPos;

      /* Skip past rowid delta */
      fts5IndexSkipVarint(a, iOff);

      /* Skip past position list */
      fts5IndexGetVarint32(a, iOff, nPos);
      iOff += (nPos >> 1);
      if( iOff>=(n-1) ){
        iOff = n;
        goto search_failed;
      }

      /* If this is the end of the doclist, break out of the loop */
      if( a[iOff]==0x00 ){
        iOff++;
        break;
      }
    };

    /* Read the nKeep field of the next term. */
    fts5IndexGetVarint32(a, iOff, nKeep);
  }

 search_failed:
  if( bGe==0 ){
    fts5DataRelease(pIter->pLeaf);
    pIter->pLeaf = 0;
    return;
  }else if( iOff>=n ){
    do {
      fts5SegIterNextPage(p, pIter);
      if( pIter->pLeaf==0 ) return;
      a = pIter->pLeaf->p;
      iOff = fts5GetU16(&a[2]);
      if( iOff ){
        if( iOff<4 || iOff>=n ){
          p->rc = FTS5_CORRUPT;
        }else{
          nKeep = 0;
          iOff += fts5GetVarint32(&a[iOff], nNew);
          break;
        }
      }
    }while( 1 );
  }

 search_success:

  pIter->iLeafOffset = iOff + nNew;
  pIter->iTermLeafOffset = pIter->iLeafOffset;
  pIter->iTermLeafPgno = pIter->iLeafPgno;

  fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm);
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);










  fts5SegIterLoadRowid(p, pIter);
  fts5SegIterLoadNPos(p, pIter);
}

/*
** Initialize the object pIter to point to term pTerm/nTerm within segment
** pSeg. If there is no such term in the index, the iterator is set to EOF.







>
|




>
>
>


<

>
|
|
<
<
|
<

<
<



<






>
>
















<

>
|
|
<
|
<
<

<
|
|
<
|
<
<
<
<
<
<
<
<
<










|




|
|
|











>







>
>
>
>
>
>
>
>
>







1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

1989
1990
1991
1992


1993

1994


1995
1996
1997

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

2022
2023
2024
2025

2026


2027

2028
2029

2030









2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
  Fts5Index *p,                   /* Leave any error code here */
  int bGe,                        /* True for a >= search */
  Fts5SegIter *pIter,             /* Iterator to seek */
  const u8 *pTerm, int nTerm      /* Term to search for */
){
  int iOff;
  const u8 *a = pIter->pLeaf->p;
  int szLeaf = pIter->pLeaf->szLeaf;
  int n = pIter->pLeaf->nn;

  int nMatch = 0;
  int nKeep = 0;
  int nNew = 0;
  int iTermOff;
  int iPgidx;                     /* Current offset in pgidx */
  int bEndOfPage = 0;

  assert( p->rc==SQLITE_OK );


  iPgidx = szLeaf;
  iPgidx += fts5GetVarint32(&a[iPgidx], iTermOff);
  iOff = iTermOff;




  while( 1 ){



    /* Figure out how many new bytes are in this term */
    fts5IndexGetVarint32(a, iOff, nNew);

    if( nKeep<nMatch ){
      goto search_failed;
    }

    assert( nKeep>=nMatch );
    if( nKeep==nMatch ){
      int nCmp;
      int i;
      nCmp = MIN(nNew, nTerm-nMatch);
      for(i=0; i<nCmp; i++){
        if( a[iOff+i]!=pTerm[nMatch+i] ) break;
      }
      nMatch += i;

      if( nTerm==nMatch ){
        if( i==nNew ){
          goto search_success;
        }else{
          goto search_failed;
        }
      }else if( i<nNew && a[iOff+i]>pTerm[nMatch] ){
        goto search_failed;
      }
    }


    if( iPgidx>=n ){
      bEndOfPage = 1;
      break;

    }




    iPgidx += fts5GetVarint32(&a[iPgidx], nKeep);
    iTermOff += nKeep;

    iOff = iTermOff;










    /* Read the nKeep field of the next term. */
    fts5IndexGetVarint32(a, iOff, nKeep);
  }

 search_failed:
  if( bGe==0 ){
    fts5DataRelease(pIter->pLeaf);
    pIter->pLeaf = 0;
    return;
  }else if( bEndOfPage ){
    do {
      fts5SegIterNextPage(p, pIter);
      if( pIter->pLeaf==0 ) return;
      a = pIter->pLeaf->p;
      if( fts5LeafIsTermless(pIter->pLeaf)==0 ){
        fts5GetVarint32(&pIter->pLeaf->p[pIter->pLeaf->szLeaf], iOff);
        if( iOff<4 || iOff>=pIter->pLeaf->szLeaf ){
          p->rc = FTS5_CORRUPT;
        }else{
          nKeep = 0;
          iOff += fts5GetVarint32(&a[iOff], nNew);
          break;
        }
      }
    }while( 1 );
  }

 search_success:

  pIter->iLeafOffset = iOff + nNew;
  pIter->iTermLeafOffset = pIter->iLeafOffset;
  pIter->iTermLeafPgno = pIter->iLeafPgno;

  fts5BufferSet(&p->rc, &pIter->term, nKeep, pTerm);
  fts5BufferAppendBlob(&p->rc, &pIter->term, nNew, &a[iOff]);

  if( iPgidx>=n ){
    pIter->iEndofDoclist = pIter->pLeaf->nn+1;
  }else{
    int nExtra;
    iPgidx += fts5GetVarint32(&a[iPgidx], nExtra);
    pIter->iEndofDoclist = iTermOff + nExtra;
  }
  pIter->iPgidxOff = iPgidx;

  fts5SegIterLoadRowid(p, pIter);
  fts5SegIterLoadNPos(p, pIter);
}

/*
** Initialize the object pIter to point to term pTerm/nTerm within segment
** pSeg. If there is no such term in the index, the iterator is set to EOF.
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195

2196
2197
2198
2199
2200
2201
2202

  if( pList ){
    Fts5Data *pLeaf;
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->n = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);


    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }







|


>







2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219

  if( pList ){
    Fts5Data *pLeaf;
    sqlite3Fts5BufferSet(&p->rc, &pIter->term, n, z);
    pLeaf = fts5IdxMalloc(p, sizeof(Fts5Data));
    if( pLeaf==0 ) return;
    pLeaf->p = (u8*)pList;
    pLeaf->nn = pLeaf->szLeaf = nList;
    pIter->pLeaf = pLeaf;
    pIter->iLeafOffset = fts5GetVarint(pLeaf->p, (u64*)&pIter->iRowid);
    pIter->iEndofDoclist = pLeaf->nn+1;

    if( flags & FTS5INDEX_QUERY_DESC ){
      pIter->flags |= FTS5_SEGITER_REVERSE;
      fts5SegIterReverseInitPage(p, pIter);
    }else{
      fts5SegIterLoadNPos(p, pIter);
    }
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
    pIter->iLeafPgno = iLeafPgno-1;
    fts5SegIterNextPage(p, pIter);
    assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );

    if( p->rc==SQLITE_OK ){
      int iOff;
      u8 *a = pIter->pLeaf->p;
      int n = pIter->pLeaf->n;

      iOff = fts5GetU16(&a[0]);
      if( iOff<4 || iOff>=n ){
        p->rc = FTS5_CORRUPT;
      }else{
        iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
        pIter->iLeafOffset = iOff;
        fts5SegIterLoadNPos(p, pIter);
      }







|

|







2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
    pIter->iLeafPgno = iLeafPgno-1;
    fts5SegIterNextPage(p, pIter);
    assert( p->rc!=SQLITE_OK || pIter->iLeafPgno==iLeafPgno );

    if( p->rc==SQLITE_OK ){
      int iOff;
      u8 *a = pIter->pLeaf->p;
      int n = pIter->pLeaf->szLeaf;

      iOff = fts5LeafFirstRowidOff(pIter->pLeaf);
      if( iOff<4 || iOff>=n ){
        p->rc = FTS5_CORRUPT;
      }else{
        iOff += fts5GetVarint(&a[iOff], (u64*)&pIter->iRowid);
        pIter->iLeafOffset = iOff;
        fts5SegIterLoadNPos(p, pIter);
      }
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722

2723
2724
2725
2726
2727
2728
2729
){
  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];

    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->n>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);

      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);







|


>







2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
){
  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];

    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
        pNew->bRev = 1;
        pIter->flags |= FTS5_SEGITER_REVERSE;
        fts5SegIterReverseInitPage(p, pIter);
      }else{
        fts5SegIterLoadNPos(p, pIter);
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->n - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;

  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);
    nRem -= nChunk;
    fts5DataRelease(pData);
    if( nRem<=0 ){
      break;
    }else{
      pgno++;
      pData = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, 0, pgno));
      if( pData==0 ) break;
      pChunk = &pData->p[4];
      nChunk = MIN(nRem, pData->n - 4);
      if( pgno==pgnoSave ){
        assert( pSeg->pNextLeaf==0 );
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }







|















|


|







2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
  Fts5SegIter *pSeg,              /* Poslist of this iterator */
  void *pCtx,                     /* Context pointer for xChunk callback */
  void (*xChunk)(Fts5Index*, void*, const u8*, int)
){
  int nRem = pSeg->nPos;          /* Number of bytes still to come */
  Fts5Data *pData = 0;
  u8 *pChunk = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  int nChunk = MIN(nRem, pSeg->pLeaf->szLeaf - pSeg->iLeafOffset);
  int pgno = pSeg->iLeafPgno;
  int pgnoSave = 0;

  if( (pSeg->flags & FTS5_SEGITER_REVERSE)==0 ){
    pgnoSave = pgno+1;
  }

  while( 1 ){
    xChunk(p, pCtx, pChunk, nChunk);
    nRem -= nChunk;
    fts5DataRelease(pData);
    if( nRem<=0 ){
      break;
    }else{
      pgno++;
      pData = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->pSeg->iSegid, pgno));
      if( pData==0 ) break;
      pChunk = &pData->p[4];
      nChunk = MIN(nRem, pData->szLeaf - 4);
      if( pgno==pgnoSave ){
        assert( pSeg->pNextLeaf==0 );
        pSeg->pNextLeaf = pData;
        pData = 0;
      }
    }
  }
3098
3099
3100
3101
3102
3103
3104






3105
3106
3107
3108



3109
3110
3111
3112
3113
3114
3115
3116

3117

3118
3119
3120
3121
3122
3123
3124
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;







  if( pWriter->bFirstTermInPage ){
    /* No term was written to this page. */
    assert( 0==fts5GetU16(&pPage->buf.p[2]) );
    fts5WriteBtreeNoTerm(p, pWriter);



  }

  /* Write the current page to the db. */
  iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, 0, pPage->pgno);
  fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);

  /* Initialize the next page. */
  fts5BufferZero(&pPage->buf);

  fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);

  pPage->pgno++;

  /* Increase the leaves written counter */
  pWriter->nLeafWritten++;

  /* The new leaf holds no terms or rowids */
  pWriter->bFirstTermInPage = 1;







>
>
>
>
>
>


|

>
>
>


|
|




>

>







3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
}

static void fts5WriteFlushLeaf(Fts5Index *p, Fts5SegWriter *pWriter){
  static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;

  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], pPage->buf.n);

  if( pWriter->bFirstTermInPage ){
    /* No term was written to this page. */
    assert( pPage->pgidx.n==0 );
    fts5WriteBtreeNoTerm(p, pWriter);
  }else{
    /* Append the pgidx to the page buffer. Set the szLeaf header field. */
    fts5BufferAppendBlob(&p->rc, &pPage->buf, pPage->pgidx.n, pPage->pgidx.p);
  }

  /* Write the page out to disk */
  iRowid = FTS5_SEGMENT_ROWID(pWriter->iSegid, pPage->pgno);
  fts5DataWrite(p, iRowid, pPage->buf.p, pPage->buf.n);

  /* Initialize the next page. */
  fts5BufferZero(&pPage->buf);
  fts5BufferZero(&pPage->pgidx);
  fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
  pPage->iPrevPgidx = 0;
  pPage->pgno++;

  /* Increase the leaves written counter */
  pWriter->nLeafWritten++;

  /* The new leaf holds no terms or rowids */
  pWriter->bFirstTermInPage = 1;
3135
3136
3137
3138
3139
3140
3141

3142

3143




3144
3145
3146


3147
3148
3149
3150









3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
static void fts5WriteAppendTerm(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  int nTerm, const u8 *pTerm 
){
  int nPrefix;                    /* Bytes of prefix compression for term */
  Fts5PageWriter *pPage = &pWriter->writer;



  assert( pPage->buf.n==0 || pPage->buf.n>4 );




  if( pPage->buf.n==0 ){
    /* Zero the first term and first rowid fields */
    static const u8 zero[] = { 0x00, 0x00, 0x00, 0x00 };


    fts5BufferAppendBlob(&p->rc, &pPage->buf, 4, zero);
    assert( pWriter->bFirstTermInPage );
  }
  if( p->rc ) return;









  
  if( pWriter->bFirstTermInPage ){
    /* Update the "first term" field of the page header. */
    assert( pPage->buf.p[2]==0 && pPage->buf.p[3]==0 );
    fts5PutU16(&pPage->buf.p[2], pPage->buf.n);
    nPrefix = 0;
    if( pPage->pgno!=1 ){
      /* This is the first term on a leaf that is not the leftmost leaf in
      ** the segment b-tree. In this case it is necessary to add a term to
      ** the b-tree hierarchy that is (a) larger than the largest term 
      ** already written to the segment and (b) smaller than or equal to
      ** this term. In other words, a prefix of (pTerm/nTerm) that is one







>

>
|
>
>
>
>
|
<
<
>
>
|
<

|
>
>
>
>
>
>
>
>
>
|

<
<
<







3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179


3180
3181
3182

3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195



3196
3197
3198
3199
3200
3201
3202
static void fts5WriteAppendTerm(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  int nTerm, const u8 *pTerm 
){
  int nPrefix;                    /* Bytes of prefix compression for term */
  Fts5PageWriter *pPage = &pWriter->writer;
  Fts5Buffer *pPgidx = &pWriter->writer.pgidx;

  assert( p->rc==SQLITE_OK );
  assert( pPage->buf.n>=4 );
  assert( pPage->buf.n>4 || pWriter->bFirstTermInPage );

  /* If the current leaf page is full, flush it to disk. */
  if( (pPage->buf.n + pPgidx->n + nTerm + 2)>=p->pConfig->pgsz ){
    if( pPage->buf.n>4 ){


      fts5WriteFlushLeaf(p, pWriter);
    }
    fts5BufferGrow(&p->rc, &pPage->buf, nTerm+FTS5_DATA_PADDING);

  }
  
  /* TODO1: Updating pgidx here. */
  pPgidx->n += sqlite3Fts5PutVarint(
      &pPgidx->p[pPgidx->n], pPage->buf.n - pPage->iPrevPgidx
  );
  pPage->iPrevPgidx = pPage->buf.n;
#if 0
  fts5PutU16(&pPgidx->p[pPgidx->n], pPage->buf.n);
  pPgidx->n += 2;
#endif

  if( pWriter->bFirstTermInPage ){



    nPrefix = 0;
    if( pPage->pgno!=1 ){
      /* This is the first term on a leaf that is not the leftmost leaf in
      ** the segment b-tree. In this case it is necessary to add a term to
      ** the b-tree hierarchy that is (a) larger than the largest term 
      ** already written to the segment and (b) smaller than or equal to
      ** this term. In other words, a prefix of (pTerm/nTerm) that is one
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214




3215
3216
3217
3218
3219
3220
3221
  pWriter->bFirstTermInPage = 0;

  pWriter->bFirstRowidInPage = 0;
  pWriter->bFirstRowidInDoclist = 1;

  assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
  pWriter->aDlidx[0].pgno = pPage->pgno;

  /* If the current leaf page is full, flush it to disk. */
  if( pPage->buf.n>=p->pConfig->pgsz ){
    fts5WriteFlushLeaf(p, pWriter);
  }
}

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid,
  int nPos
){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;





    /* If this is to be the first rowid written to the page, set the 
    ** rowid-pointer in the page-header. Also append a value to the dlidx
    ** buffer, in case a doclist-index is required.  */
    if( pWriter->bFirstRowidInPage ){
      fts5PutU16(pPage->buf.p, pPage->buf.n);
      fts5WriteDlidxAppend(p, pWriter, iRowid);







<
<
<
<
<













>
>
>
>







3230
3231
3232
3233
3234
3235
3236





3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
  pWriter->bFirstTermInPage = 0;

  pWriter->bFirstRowidInPage = 0;
  pWriter->bFirstRowidInDoclist = 1;

  assert( p->rc || (pWriter->nDlidx>0 && pWriter->aDlidx[0].buf.n==0) );
  pWriter->aDlidx[0].pgno = pPage->pgno;





}

/*
** Append a rowid and position-list size field to the writers output. 
*/
static void fts5WriteAppendRowid(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,
  i64 iRowid,
  int nPos
){
  if( p->rc==SQLITE_OK ){
    Fts5PageWriter *pPage = &pWriter->writer;

    if( (pPage->buf.n + pPage->pgidx.n)>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }

    /* If this is to be the first rowid written to the page, set the 
    ** rowid-pointer in the page-header. Also append a value to the dlidx
    ** buffer, in case a doclist-index is required.  */
    if( pWriter->bFirstRowidInPage ){
      fts5PutU16(pPage->buf.p, pPage->buf.n);
      fts5WriteDlidxAppend(p, pWriter, iRowid);
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254


3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302

3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315


3316
3317
3318
3319
3320
3321
3322




3323
3324
3325
3326
3327
3328
3329
3330
3331
3332







3333
3334
3335
3336
3337
3338
3339
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;

    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);

    if( pPage->buf.n>=p->pConfig->pgsz ){
      fts5WriteFlushLeaf(p, pWriter);
    }
  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 
  int nData
){
  Fts5PageWriter *pPage = &pWriter->writer;
  const u8 *a = aData;
  int n = nData;
  
  assert( p->pConfig->pgsz>0 );
  while( p->rc==SQLITE_OK && (pPage->buf.n + n)>=p->pConfig->pgsz ){


    int nReq = p->pConfig->pgsz - pPage->buf.n;
    int nCopy = 0;
    while( nCopy<nReq ){
      i64 dummy;
      nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy);
    }
    fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
    a += nCopy;
    n -= nCopy;
    fts5WriteFlushLeaf(p, pWriter);
  }
  if( n>0 ){
    fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
  }
}

static void fts5WriteAppendZerobyte(Fts5Index *p, Fts5SegWriter *pWriter){
  fts5BufferAppendVarint(&p->rc, &pWriter->writer.buf, 0);
}

/*
** Flush any data cached by the writer object to the database. Free any
** allocations associated with the writer.
*/
static void fts5WriteFinish(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,         /* Writer object */
  int *pnHeight,                  /* OUT: Height of the b-tree */
  int *pnLeaf                     /* OUT: Number of leaf pages in b-tree */
){
  int i;
  Fts5PageWriter *pLeaf = &pWriter->writer;
  if( p->rc==SQLITE_OK ){
    if( pLeaf->pgno==1 && pLeaf->buf.n==0 ){
      *pnLeaf = 0;
      *pnHeight = 0;
    }else{
      if( pLeaf->buf.n>4 ){
        fts5WriteFlushLeaf(p, pWriter);
      }
      *pnLeaf = pLeaf->pgno-1;

      fts5WriteFlushBtree(p, pWriter);
      *pnHeight = 0;
    }
  }
  fts5BufferFree(&pLeaf->term);
  fts5BufferFree(&pLeaf->buf);

  fts5BufferFree(&pWriter->btterm);

  for(i=0; i<pWriter->nDlidx; i++){
    sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
  }
  sqlite3_free(pWriter->aDlidx);
}

static void fts5WriteInit(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  int iSegid
){


  memset(pWriter, 0, sizeof(Fts5SegWriter));
  pWriter->iSegid = iSegid;

  fts5WriteDlidxGrow(p, pWriter, 1);
  pWriter->writer.pgno = 1;
  pWriter->bFirstTermInPage = 1;
  pWriter->iBtPage = 1;





  if( p->pIdxWriter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
          "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)", 
          pConfig->zDb, pConfig->zName
    ));
  }

  if( p->rc==SQLITE_OK ){







    sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid);
  }
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental







<
<
<
<














|
>
>
|















<
<
<
<







<





|
<
<
<
|
|
|
|
<
|
<
<



>













>
>







>
>
>
>










>
>
>
>
>
>
>







3268
3269
3270
3271
3272
3273
3274




3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307




3308
3309
3310
3311
3312
3313
3314

3315
3316
3317
3318
3319
3320



3321
3322
3323
3324

3325


3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid - pWriter->iPrevRowid);
    }
    pWriter->iPrevRowid = iRowid;
    pWriter->bFirstRowidInDoclist = 0;
    pWriter->bFirstRowidInPage = 0;

    fts5BufferAppendVarint(&p->rc, &pPage->buf, nPos);




  }
}

static void fts5WriteAppendPoslistData(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  const u8 *aData, 
  int nData
){
  Fts5PageWriter *pPage = &pWriter->writer;
  const u8 *a = aData;
  int n = nData;
  
  assert( p->pConfig->pgsz>0 );
  while( p->rc==SQLITE_OK 
     && (pPage->buf.n + pPage->pgidx.n + n)>=p->pConfig->pgsz 
  ){
    int nReq = p->pConfig->pgsz - pPage->buf.n - pPage->pgidx.n;
    int nCopy = 0;
    while( nCopy<nReq ){
      i64 dummy;
      nCopy += fts5GetVarint(&a[nCopy], (u64*)&dummy);
    }
    fts5BufferAppendBlob(&p->rc, &pPage->buf, nCopy, a);
    a += nCopy;
    n -= nCopy;
    fts5WriteFlushLeaf(p, pWriter);
  }
  if( n>0 ){
    fts5BufferAppendBlob(&p->rc, &pPage->buf, n, a);
  }
}





/*
** Flush any data cached by the writer object to the database. Free any
** allocations associated with the writer.
*/
static void fts5WriteFinish(
  Fts5Index *p, 
  Fts5SegWriter *pWriter,         /* Writer object */

  int *pnLeaf                     /* OUT: Number of leaf pages in b-tree */
){
  int i;
  Fts5PageWriter *pLeaf = &pWriter->writer;
  if( p->rc==SQLITE_OK ){
    assert( pLeaf->pgno>=1 );



    if( pLeaf->buf.n>4 ){
      fts5WriteFlushLeaf(p, pWriter);
    }
    *pnLeaf = pLeaf->pgno-1;

    fts5WriteFlushBtree(p, pWriter);


  }
  fts5BufferFree(&pLeaf->term);
  fts5BufferFree(&pLeaf->buf);
  fts5BufferFree(&pLeaf->pgidx);
  fts5BufferFree(&pWriter->btterm);

  for(i=0; i<pWriter->nDlidx; i++){
    sqlite3Fts5BufferFree(&pWriter->aDlidx[i].buf);
  }
  sqlite3_free(pWriter->aDlidx);
}

static void fts5WriteInit(
  Fts5Index *p, 
  Fts5SegWriter *pWriter, 
  int iSegid
){
  const int nBuffer = p->pConfig->pgsz + FTS5_DATA_PADDING;

  memset(pWriter, 0, sizeof(Fts5SegWriter));
  pWriter->iSegid = iSegid;

  fts5WriteDlidxGrow(p, pWriter, 1);
  pWriter->writer.pgno = 1;
  pWriter->bFirstTermInPage = 1;
  pWriter->iBtPage = 1;

  /* Grow the two buffers to pgsz + padding bytes in size. */
  fts5BufferGrow(&p->rc, &pWriter->writer.pgidx, nBuffer);
  fts5BufferGrow(&p->rc, &pWriter->writer.buf, nBuffer);

  if( p->pIdxWriter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
          "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)", 
          pConfig->zDb, pConfig->zName
    ));
  }

  if( p->rc==SQLITE_OK ){
    /* Initialize the 4-byte leaf-page header to 0x00. */
    memset(pWriter->writer.buf.p, 0, 4);
    pWriter->writer.buf.n = 4;

    /* Bind the current output segment id to the index-writer. This is an
    ** optimization over binding the same value over and over as rows are
    ** inserted into %_idx by the current writer.  */
    sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid);
  }
}

/*
** Iterator pIter was used to iterate through the input segments of on an
** incremental merge operation. This function is called if the incremental
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366

3367
3368
3369













3370




3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
      pSeg->pSeg->pgnoLast = 0;
      pSeg->pSeg->pgnoFirst = 0;
    }else{
      int iOff = pSeg->iTermLeafOffset;     /* Offset on new first leaf page */
      i64 iLeafRowid;
      Fts5Data *pData;
      int iId = pSeg->pSeg->iSegid;
      u8 aHdr[4] = {0x00, 0x00, 0x00, 0x04};

      iLeafRowid = FTS5_SEGMENT_ROWID(iId, 0, pSeg->iTermLeafPgno);
      pData = fts5DataRead(p, iLeafRowid);
      if( pData ){
        fts5BufferZero(&buf);

        fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
        fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);













        fts5BufferAppendBlob(&p->rc, &buf, pData->n - iOff, &pData->p[iOff]);




        fts5DataRelease(pData);
        pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
        fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 0, 1), iLeafRowid);
        fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
      }
    }
  }
  fts5BufferFree(&buf);
}








|

|



>



>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>


|







3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
      pSeg->pSeg->pgnoLast = 0;
      pSeg->pSeg->pgnoFirst = 0;
    }else{
      int iOff = pSeg->iTermLeafOffset;     /* Offset on new first leaf page */
      i64 iLeafRowid;
      Fts5Data *pData;
      int iId = pSeg->pSeg->iSegid;
      u8 aHdr[4] = {0x00, 0x00, 0x00, 0x00};

      iLeafRowid = FTS5_SEGMENT_ROWID(iId, pSeg->iTermLeafPgno);
      pData = fts5DataRead(p, iLeafRowid);
      if( pData ){
        fts5BufferZero(&buf);
        fts5BufferGrow(&p->rc, &buf, pData->nn);
        fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
        fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
        fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff, &pData->p[iOff]);
        if( p->rc==SQLITE_OK ){
          /* Set the szLeaf field */
          fts5PutU16(&buf.p[2], buf.n);
        }

        /* Set up the new page-index array */
        fts5BufferAppendVarint(&p->rc, &buf, 4);
        if( pSeg->iLeafPgno==pSeg->iTermLeafPgno 
         && pSeg->iEndofDoclist<pData->szLeaf 
        ){
          int nDiff = pData->szLeaf - pSeg->iEndofDoclist;
          fts5BufferAppendVarint(&p->rc, &buf, buf.n - 1 - nDiff - 4);
          fts5BufferAppendBlob(&p->rc, &buf, 
              pData->nn - pSeg->iPgidxOff, &pData->p[pSeg->iPgidxOff]
          );
        }

        fts5DataRelease(pData);
        pSeg->pSeg->pgnoFirst = pSeg->iTermLeafPgno;
        fts5DataDelete(p, FTS5_SEGMENT_ROWID(iId, 1), iLeafRowid);
        fts5DataWrite(p, iLeafRowid, buf.p, buf.n);
      }
    }
  }
  fts5BufferFree(&buf);
}

3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
  Fts5StructureLevel *pLvlOut;
  Fts5IndexIter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;
  int bRequireDoclistTerm = 0;    /* Doclist terminator (0x00) required */
  int bOldest;                    /* True if the output segment is the oldest */

  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));







<







3459
3460
3461
3462
3463
3464
3465

3466
3467
3468
3469
3470
3471
3472
  Fts5StructureLevel *pLvlOut;
  Fts5IndexIter *pIter = 0;       /* Iterator to read input data */
  int nRem = pnRem ? *pnRem : 0;  /* Output leaf pages left to write */
  int nInput;                     /* Number of input segments */
  Fts5SegWriter writer;           /* Writer object */
  Fts5StructureSegment *pSeg;     /* Output segment */
  Fts5Buffer term;

  int bOldest;                    /* True if the output segment is the oldest */

  assert( iLvl<pStruct->nLevel );
  assert( pLvl->nMerge<=pLvl->nSeg );

  memset(&writer, 0, sizeof(Fts5SegWriter));
  memset(&term, 0, sizeof(Fts5Buffer));
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
    pTerm = fts5MultiIterTerm(pIter, &nTerm);
    if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
      if( pnRem && writer.nLeafWritten>nRem ){
        break;
      }

      /* This is a new term. Append a term to the output segment. */
      if( bRequireDoclistTerm ){
        fts5WriteAppendZerobyte(p, &writer);
      }
      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);
      bRequireDoclistTerm = 1;
    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    nPos = pSegIter->nPos*2 + pSegIter->bDel;
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);

    /* Append the position-list data to the output */
    fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->nHeight, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){
    int i;

    /* Remove the redundant segments from the %_data table */
    for(i=0; i<nInput; i++){
      fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);







<
<
<


<













|







3523
3524
3525
3526
3527
3528
3529



3530
3531

3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
    pTerm = fts5MultiIterTerm(pIter, &nTerm);
    if( nTerm!=term.n || memcmp(pTerm, term.p, nTerm) ){
      if( pnRem && writer.nLeafWritten>nRem ){
        break;
      }

      /* This is a new term. Append a term to the output segment. */



      fts5WriteAppendTerm(p, &writer, nTerm, pTerm);
      fts5BufferSet(&p->rc, &term, nTerm, pTerm);

    }

    /* Append the rowid to the output */
    /* WRITEPOSLISTSIZE */
    nPos = pSegIter->nPos*2 + pSegIter->bDel;
    fts5WriteAppendRowid(p, &writer, fts5MultiIterRowid(pIter), nPos);

    /* Append the position-list data to the output */
    fts5ChunkIterate(p, pSegIter, (void*)&writer, fts5MergeChunkCallback);
  }

  /* Flush the last leaf page to disk. Set the output segment b-tree height
  ** and last leaf page number at the same time.  */
  fts5WriteFinish(p, &writer, &pSeg->pgnoLast);

  if( fts5MultiIterEof(p, pIter) ){
    int i;

    /* Remove the redundant segments from the %_data table */
    for(i=0; i<nInput; i++){
      fts5DataRemoveSegment(p, pLvl->aSeg[i].iSegid);
3610
3611
3612
3613
3614
3615
3616

3617
3618
3619
3620
3621
3622
3623
  const int nCrisis = p->pConfig->nCrisisMerge;
  Fts5Structure *pStruct = *ppStruct;
  int iLvl = 0;

  assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 );
  while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
    fts5IndexMergeLevel(p, &pStruct, iLvl, 0);

    fts5StructurePromote(p, iLvl+1, pStruct);
    iLvl++;
  }
  *ppStruct = pStruct;
}

static int fts5IndexReturn(Fts5Index *p){







>







3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
  const int nCrisis = p->pConfig->nCrisisMerge;
  Fts5Structure *pStruct = *ppStruct;
  int iLvl = 0;

  assert( p->rc!=SQLITE_OK || pStruct->nLevel>0 );
  while( p->rc==SQLITE_OK && pStruct->aLevel[iLvl].nSeg>=nCrisis ){
    fts5IndexMergeLevel(p, &pStruct, iLvl, 0);
    assert( p->rc!=SQLITE_OK || pStruct->nLevel>(iLvl+1) );
    fts5StructurePromote(p, iLvl+1, pStruct);
    iLvl++;
  }
  *ppStruct = pStruct;
}

static int fts5IndexReturn(Fts5Index *p){
3637
3638
3639
3640
3641
3642
3643

3644
3645
3646
3647

3648
3649
3650
3651
3652
3653
3654
** in a 32-bit integer. Return the size of the largest prefix of this 
** list nMax bytes or less in size.
*/
static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
  int ret;
  u32 dummy;
  ret = fts5GetVarint32(aBuf, dummy);

  while( 1 ){
    int i = fts5GetVarint32(&aBuf[ret], dummy);
    if( (ret + i) > nMax ) break;
    ret += i;

  }
  return ret;
}

#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
  assert( pBuf->nSpace>=(pBuf->n+nBlob) );             \
  memcpy(&pBuf->p[pBuf->n], pBlob, nBlob);             \







>
|
|
|
|
>







3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
** in a 32-bit integer. Return the size of the largest prefix of this 
** list nMax bytes or less in size.
*/
static int fts5PoslistPrefix(const u8 *aBuf, int nMax){
  int ret;
  u32 dummy;
  ret = fts5GetVarint32(aBuf, dummy);
  if( ret<nMax ){
    while( 1 ){
      int i = fts5GetVarint32(&aBuf[ret], dummy);
      if( (ret + i) > nMax ) break;
      ret += i;
    }
  }
  return ret;
}

#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
  assert( pBuf->nSpace>=(pBuf->n+nBlob) );             \
  memcpy(&pBuf->p[pBuf->n], pBlob, nBlob);             \
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682

3683
3684
3685
3686
3687
3688
3689
3690

3691




3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706

3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;

    Fts5StructureSegment *pSeg;   /* New segment within pStruct */
    int nHeight;                  /* Height of new segment b-tree */
    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */
    const u8 *zPrev = 0;


    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);

    /* Pre-allocate the buffer used to assemble leaf pages to the target
    ** page size.  */
    assert( pgsz>0 );
    pBuf = &writer.writer.buf;

    fts5BufferGrow(&p->rc, pBuf, pgsz + 20);





    /* Begin scanning through hash table entries. This loop runs once for each
    ** term/doclist currently stored within the hash table. */
    if( p->rc==SQLITE_OK ){
      memset(pBuf->p, 0, 4);
      pBuf->n = 4;
      p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
    }
    while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
      const char *zTerm;          /* Buffer containing term */
      int nTerm;                  /* Size of zTerm in bytes */
      const u8 *pDoclist;         /* Pointer to doclist for this term */
      int nDoclist;               /* Size of doclist in bytes */
      int nSuffix;                /* Size of term suffix */


      sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
      nTerm = strlen(zTerm);

      /* Decide if the term will fit on the current leaf. If it will not, 
      ** flush the leaf to disk here.  */
      if( pBuf->n>4 && (pBuf->n + nTerm + 2) > pgsz ){
        fts5WriteFlushLeaf(p, &writer);
        pBuf = &writer.writer.buf;
        if( (nTerm + 32) > pBuf->nSpace ){
          fts5BufferGrow(&p->rc, pBuf, nTerm + 32 - pBuf->n);
          if( p->rc ) break;
        }
      }

      /* Write the term to the leaf. And if it is the first on the leaf, and
      ** the leaf is not page number 1, push it up into the b-tree hierarchy 
      ** as well.  */
      if( writer.bFirstTermInPage==0 ){
        int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
        pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], nPre);
        nSuffix = nTerm - nPre;
      }else{
        fts5PutU16(&pBuf->p[2], pBuf->n);
        writer.bFirstTermInPage = 0;
        if( writer.writer.pgno!=1 ){
          int nPre = fts5PrefixCompress(nTerm, zPrev, nTerm, (const u8*)zTerm);
          fts5WriteBtreeTerm(p, &writer, nPre+1, (const u8*)zTerm);
          pBuf = &writer.writer.buf;
          assert( nPre<nTerm );
        }
        nSuffix = nTerm;
      }
      pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], nSuffix);
      fts5BufferSafeAppendBlob(pBuf, (const u8*)&zTerm[nTerm-nSuffix], nSuffix);

      /* We just wrote a term into page writer.aWriter[0].pgno. If a 
      ** doclist-index is to be generated for this doclist, it will be
      ** associated with this page. */
      assert( writer.nDlidx>0 && writer.aDlidx[0].buf.n==0 );
      writer.aDlidx[0].pgno = writer.writer.pgno;

      if( pgsz>=(pBuf->n + nDoclist + 1) ){
        /* The entire doclist will fit on the current leaf. */
        fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
      }else{
        i64 iRowid = 0;
        i64 iDelta = 0;
        int iOff = 0;

        writer.bFirstRowidInPage = 0;

        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){
          int nPos;
          int nCopy;
          int bDummy;







<

<
>




<
<
<

>
|
>
>
>
>




<
<




<


<

>

<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







<
<







3729
3730
3731
3732
3733
3734
3735

3736

3737
3738
3739
3740
3741



3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752


3753
3754
3755
3756

3757
3758

3759
3760
3761

3762








3763





3764























3765
3766
3767
3768
3769
3770
3771
3772


3773
3774
3775
3776
3777
3778
3779
  pStruct = fts5StructureRead(p);
  iSegid = fts5AllocateSegid(p, pStruct);

  if( iSegid ){
    const int pgsz = p->pConfig->pgsz;

    Fts5StructureSegment *pSeg;   /* New segment within pStruct */

    Fts5Buffer *pBuf;             /* Buffer in which to assemble leaf page */

    Fts5Buffer *pPgidx;           /* Buffer in which to assemble pgidx */

    Fts5SegWriter writer;
    fts5WriteInit(p, &writer, iSegid);




    pBuf = &writer.writer.buf;
    pPgidx = &writer.writer.pgidx;

    /* fts5WriteInit() should have initialized the buffers to (most likely)
    ** the maximum space required. */
    assert( p->rc || pBuf->nSpace>=(pgsz + FTS5_DATA_PADDING) );
    assert( p->rc || pPgidx->nSpace>=(pgsz + FTS5_DATA_PADDING) );

    /* Begin scanning through hash table entries. This loop runs once for each
    ** term/doclist currently stored within the hash table. */
    if( p->rc==SQLITE_OK ){


      p->rc = sqlite3Fts5HashScanInit(pHash, 0, 0);
    }
    while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
      const char *zTerm;          /* Buffer containing term */

      const u8 *pDoclist;         /* Pointer to doclist for this term */
      int nDoclist;               /* Size of doclist in bytes */


      /* Write the term for this entry to disk. */
      sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);

      fts5WriteAppendTerm(p, &writer, strlen(zTerm), (const u8*)zTerm);














      assert( writer.bFirstRowidInPage==0 );























      if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
        /* The entire doclist will fit on the current leaf. */
        fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
      }else{
        i64 iRowid = 0;
        i64 iDelta = 0;
        int iOff = 0;



        /* The entire doclist will not fit on this leaf. The following 
        ** loop iterates through the poslists that make up the current 
        ** doclist.  */
        while( p->rc==SQLITE_OK && iOff<nDoclist ){
          int nPos;
          int nCopy;
          int bDummy;
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811

3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );

          if( (pBuf->n + nCopy) <= pgsz ){
            /* The entire poslist will fit on the current leaf. So copy
            ** it in one go. */
            fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
          }else{
            /* The entire poslist will not fit on this leaf. So it needs
            ** to be broken into sections. The only qualification being
            ** that each varint must be stored contiguously.  */
            const u8 *pPoslist = &pDoclist[iOff];
            int iPos = 0;
            while( p->rc==SQLITE_OK ){
              int nSpace = pgsz - pBuf->n;
              int n = 0;
              if( (nCopy - iPos)<=nSpace ){
                n = nCopy - iPos;
              }else{
                n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
              }
              assert( n>0 );
              fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
              iPos += n;
              if( pBuf->n>=pgsz ){
                fts5WriteFlushLeaf(p, &writer);
                pBuf = &writer.writer.buf;
              }
              if( iPos>=nCopy ) break;
            }
          }
          iOff += nCopy;
        }
      }


      pBuf->p[pBuf->n++] = '\0';
      assert( pBuf->n<=pBuf->nSpace );
      zPrev = (const u8*)zTerm;
      sqlite3Fts5HashScanNext(pHash);
    }
    sqlite3Fts5HashClear(pHash);
    fts5WriteFinish(p, &writer, &nHeight, &pgnoLast);

    /* Update the Fts5Structure. It is written back to the database by the
    ** fts5StructureRelease() call below.  */
    if( pStruct->nLevel==0 ){
      fts5StructureAddLevel(&p->rc, &pStruct);
    }
    fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
    if( p->rc==SQLITE_OK ){
      pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
      pSeg->iSegid = iSegid;
      pSeg->nHeight = nHeight;
      pSeg->pgnoFirst = 1;
      pSeg->pgnoLast = pgnoLast;
      pStruct->nSegment++;
    }
    fts5StructurePromote(p, 0, pStruct);
  }








|










|









|

<








>
|

<



|










<







3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817

3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828

3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842

3843
3844
3845
3846
3847
3848
3849
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );

          if( (pBuf->n + pPgidx->n + nCopy) <= pgsz ){
            /* The entire poslist will fit on the current leaf. So copy
            ** it in one go. */
            fts5BufferSafeAppendBlob(pBuf, &pDoclist[iOff], nCopy);
          }else{
            /* The entire poslist will not fit on this leaf. So it needs
            ** to be broken into sections. The only qualification being
            ** that each varint must be stored contiguously.  */
            const u8 *pPoslist = &pDoclist[iOff];
            int iPos = 0;
            while( p->rc==SQLITE_OK ){
              int nSpace = pgsz - pBuf->n - pPgidx->n;
              int n = 0;
              if( (nCopy - iPos)<=nSpace ){
                n = nCopy - iPos;
              }else{
                n = fts5PoslistPrefix(&pPoslist[iPos], nSpace);
              }
              assert( n>0 );
              fts5BufferSafeAppendBlob(pBuf, &pPoslist[iPos], n);
              iPos += n;
              if( (pBuf->n + pPgidx->n)>=pgsz ){
                fts5WriteFlushLeaf(p, &writer);

              }
              if( iPos>=nCopy ) break;
            }
          }
          iOff += nCopy;
        }
      }

      /* TODO2: Doclist terminator written here. */
      /* pBuf->p[pBuf->n++] = '\0'; */
      assert( pBuf->n<=pBuf->nSpace );

      sqlite3Fts5HashScanNext(pHash);
    }
    sqlite3Fts5HashClear(pHash);
    fts5WriteFinish(p, &writer, &pgnoLast);

    /* Update the Fts5Structure. It is written back to the database by the
    ** fts5StructureRelease() call below.  */
    if( pStruct->nLevel==0 ){
      fts5StructureAddLevel(&p->rc, &pStruct);
    }
    fts5StructureExtendLevel(&p->rc, pStruct, 0, 1, 0);
    if( p->rc==SQLITE_OK ){
      pSeg = &pStruct->aLevel[0].aSeg[ pStruct->aLevel[0].nSeg++ ];
      pSeg->iSegid = iSegid;

      pSeg->pgnoFirst = 1;
      pSeg->pgnoLast = pgnoLast;
      pStruct->nSegment++;
    }
    fts5StructurePromote(p, 0, pStruct);
  }

3924
3925
3926
3927
3928
3929
3930


3931

3932
3933
3934
3935
3936
3937
3938
}

static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pCtx, 
  const u8 *pChunk, int nChunk
){


  fts5BufferAppendBlob(&p->rc, (Fts5Buffer*)pCtx, nChunk, pChunk);

}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.







>
>
|
>







3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
}

static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pCtx, 
  const u8 *pChunk, int nChunk
){
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferAppendBlob(&p->rc, (Fts5Buffer*)pCtx, nChunk, pChunk);
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext(p, p1, 0, 0)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
      assert( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;

      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);







|







4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext(p, p1, 0, 0)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;

      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p, p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->n = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
    }
    fts5BufferFree(&doclist);
  }

  fts5StructureRelease(pStruct);







|







4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
      fts5BufferFree(&aBuf[i]);
    }
    fts5MultiIterFree(p, p1);

    pData = fts5IdxMalloc(p, sizeof(Fts5Data) + doclist.n);
    if( pData ){
      pData->p = (u8*)&pData[1];
      pData->nn = pData->szLeaf = doclist.n;
      memcpy(pData->p, doclist.p, doclist.n);
      fts5MultiIterNew2(p, pData, bDesc, ppIter);
    }
    fts5BufferFree(&doclist);
  }

  fts5StructureRelease(pStruct);
4389
4390
4391
4392
4393
4394
4395





4396
4397
4398
4399
4400
4401
4402
4403
       || (flags & FTS5INDEX_QUERY_SCAN)==FTS5INDEX_QUERY_SCAN
  );

  if( sqlite3Fts5BufferGrow(&p->rc, &buf, nToken+1)==0 ){
    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG





    if( flags & FTS5INDEX_QUERY_TEST_NOIDX ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){







>
>
>
>
>
|







4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
       || (flags & FTS5INDEX_QUERY_SCAN)==FTS5INDEX_QUERY_SCAN
  );

  if( sqlite3Fts5BufferGrow(&p->rc, &buf, nToken+1)==0 ){
    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG
    /* If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
    ** mode only.  */
    if( pConfig->bPrefixIndex==0 || (flags & FTS5INDEX_QUERY_TEST_NOIDX) ){
      assert( flags & FTS5INDEX_QUERY_PREFIX );
      iIdx = 1+pConfig->nPrefix;
    }else
#endif
    if( flags & FTS5INDEX_QUERY_PREFIX ){
      int nChar = fts5IndexCharlen(pToken, nToken);
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;
  *pn = pSeg->nPos;
  if( pSeg->iLeafOffset+pSeg->nPos <= pSeg->pLeaf->n ){
    *pp = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  }else{
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, &pIter->poslist);
    *pp = pIter->poslist.p;
  }
  return fts5IndexReturn(pIter->pIndex);







|







4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;
  *pn = pSeg->nPos;
  if( pSeg->iLeafOffset+pSeg->nPos <= pSeg->pLeaf->szLeaf ){
    *pp = &pSeg->pLeaf->p[pSeg->iLeafOffset];
  }else{
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, &pIter->poslist);
    *pp = pIter->poslist.p;
  }
  return fts5IndexReturn(pIter->pIndex);
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){
  int nCol = p->pConfig->nCol;
  Fts5Data *pData;

  *pnRow = 0;
  memset(anSize, 0, sizeof(i64) * nCol);
  pData = fts5DataRead(p, FTS5_AVERAGES_ROWID);
  if( p->rc==SQLITE_OK && pData->n ){
    int i = 0;
    int iCol;
    i += fts5GetVarint(&pData->p[i], (u64*)pnRow);
    for(iCol=0; i<pData->n && iCol<nCol; iCol++){
      i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]);
    }
  }

  fts5DataRelease(pData);
  return fts5IndexReturn(p);
}







|



|







4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
int sqlite3Fts5IndexGetAverages(Fts5Index *p, i64 *pnRow, i64 *anSize){
  int nCol = p->pConfig->nCol;
  Fts5Data *pData;

  *pnRow = 0;
  memset(anSize, 0, sizeof(i64) * nCol);
  pData = fts5DataRead(p, FTS5_AVERAGES_ROWID);
  if( p->rc==SQLITE_OK && pData->nn ){
    int i = 0;
    int iCol;
    i += fts5GetVarint(&pData->p[i], (u64*)pnRow);
    for(iCol=0; i<pData->nn && iCol<nCol; iCol++){
      i += fts5GetVarint(&pData->p[i], (u64*)&anSize[iCol]);
    }
  }

  fts5DataRelease(pData);
  return fts5IndexReturn(p);
}
4766
4767
4768
4769
4770
4771
4772
4773






4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784

4785
4786
4787
4788
4789
4790
4791
    if( rc==SQLITE_OK ){
      int f = flags|FTS5INDEX_QUERY_DESC;
      rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
    }
    if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;

    /* If this is a prefix query, check that the results returned if the
    ** the index is disabled are the same. In both ASC and DESC order. */






    if( iIdx>0 && rc==SQLITE_OK ){
      int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
      ck2 = 0;
      rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
      if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
    }
    if( iIdx>0 && rc==SQLITE_OK ){
      int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
      ck2 = 0;
      rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
      if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;

    }

    cksum3 ^= ck1;
    fts5BufferSet(&rc, pPrev, n, (const u8*)z);

    if( rc==SQLITE_OK && cksum3!=expected ){
      rc = FTS5_CORRUPT;







|
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
>







4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
    if( rc==SQLITE_OK ){
      int f = flags|FTS5INDEX_QUERY_DESC;
      rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
    }
    if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;

    /* If this is a prefix query, check that the results returned if the
    ** the index is disabled are the same. In both ASC and DESC order. 
    **
    ** This check may only be performed if the hash table is empty. This
    ** is because the hash table only supports a single scan query at
    ** a time, and the multi-iter loop from which this function is called
    ** is already performing such a scan. */
    if( p->nPendingData==0 ){
      if( iIdx>0 && rc==SQLITE_OK ){
        int f = flags|FTS5INDEX_QUERY_TEST_NOIDX;
        ck2 = 0;
        rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
        if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
      }
      if( iIdx>0 && rc==SQLITE_OK ){
        int f = flags|FTS5INDEX_QUERY_TEST_NOIDX|FTS5INDEX_QUERY_DESC;
        ck2 = 0;
        rc = fts5QueryCksum(p, iIdx, zTerm, nTerm, f, &ck2);
        if( rc==SQLITE_OK && ck1!=ck2 ) rc = FTS5_CORRUPT;
      }
    }

    cksum3 ^= ck1;
    fts5BufferSet(&rc, pPrev, n, (const u8*)z);

    if( rc==SQLITE_OK && cksum3!=expected ){
      rc = FTS5_CORRUPT;
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828









































4829


4830






4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875

4876
4877
4878
4879

4880
4881
4882
4883
4884
4885
4886
4887
4888


4889
4890
4891
4892
4893
4894
4895
  int iLast
){
  int i;

  /* Now check that the iter.nEmpty leaves following the current leaf
  ** (a) exist and (b) contain no terms. */
  for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){
    Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, i));
    if( pLeaf ){
      if( 0!=fts5GetU16(&pLeaf->p[2]) ) p->rc = FTS5_CORRUPT;
      if( i>=iNoRowid && 0!=fts5GetU16(&pLeaf->p[0]) ) p->rc = FTS5_CORRUPT;
    }
    fts5DataRelease(pLeaf);









































    if( p->rc ) break;


  }






}

static void fts5IndexIntegrityCheckSegment(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5StructureSegment *pSeg      /* Segment to check internal consistency */
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pStmt = 0;
  int rc2;
  int iIdxPrevLeaf = pSeg->pgnoFirst-1;
  int iDlidxPrevLeaf = pSeg->pgnoLast;

  if( pSeg->pgnoFirst==0 ) return;

  fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf(
      "SELECT segid, term, (pgno>>1), (pgno & 1) FROM '%q'.'%q_idx' WHERE segid=%d",
      pConfig->zDb, pConfig->zName, pSeg->iSegid
  ));

  /* Iterate through the b-tree hierarchy.  */
  while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
    i64 iRow;                     /* Rowid for this leaf */
    Fts5Data *pLeaf;              /* Data for this leaf */
    int iOff;                     /* Offset of first term on leaf */

    int nIdxTerm = sqlite3_column_bytes(pStmt, 1);
    const char *zIdxTerm = (const char*)sqlite3_column_text(pStmt, 1);
    int iIdxLeaf = sqlite3_column_int(pStmt, 2);
    int bIdxDlidx = sqlite3_column_int(pStmt, 3);

    /* If the leaf in question has already been trimmed from the segment, 
    ** ignore this b-tree entry. Otherwise, load it into memory. */
    if( iIdxLeaf<pSeg->pgnoFirst ) continue;
    iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, 0, iIdxLeaf);
    pLeaf = fts5DataRead(p, iRow);
    if( pLeaf==0 ) break;

    /* Check that the leaf contains at least one term, and that it is equal
    ** to or larger than the split-key in zIdxTerm.  Also check that if there
    ** is also a rowid pointer within the leaf page header, it points to a
    ** location before the term.  */
    iOff = fts5GetU16(&pLeaf->p[2]);
    if( iOff==0 ){
      p->rc = FTS5_CORRUPT;
    }else{

      int iRowidOff;
      int nTerm;                  /* Size of term on leaf in bytes */
      int res;                    /* Comparison of term and split-key */


      iRowidOff = fts5GetU16(&pLeaf->p[0]);
      if( iRowidOff>=iOff ){
        p->rc = FTS5_CORRUPT;
      }else{
        iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
        res = memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm));
        if( res==0 ) res = nTerm - nIdxTerm;
        if( res<0 ) p->rc = FTS5_CORRUPT;
      }


    }
    fts5DataRelease(pLeaf);
    if( p->rc ) break;


    /* Now check that the iter.nEmpty leaves following the current leaf
    ** (a) exist and (b) contain no terms. */







|

|
|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>















|







<









|







|
<


>
|



>
|








>
>







4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930

4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948

4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
  int iLast
){
  int i;

  /* Now check that the iter.nEmpty leaves following the current leaf
  ** (a) exist and (b) contain no terms. */
  for(i=iFirst; p->rc==SQLITE_OK && i<=iLast; i++){
    Fts5Data *pLeaf = fts5DataRead(p, FTS5_SEGMENT_ROWID(pSeg->iSegid, i));
    if( pLeaf ){
      if( !fts5LeafIsTermless(pLeaf) ) p->rc = FTS5_CORRUPT;
      if( i>=iNoRowid && 0!=fts5LeafFirstRowidOff(pLeaf) ) p->rc = FTS5_CORRUPT;
    }
    fts5DataRelease(pLeaf);
  }
}

static void fts5IntegrityCheckPgidx(Fts5Index *p, Fts5Data *pLeaf){
  int iTermOff = 0;
  int ii;

  Fts5Buffer buf1 = {0,0,0};
  Fts5Buffer buf2 = {0,0,0};

  ii = pLeaf->szLeaf;
  while( ii<pLeaf->nn && p->rc==SQLITE_OK ){
    int res;
    int iOff;
    int nIncr;

    ii += fts5GetVarint32(&pLeaf->p[ii], nIncr);
    iTermOff += nIncr;
    iOff = iTermOff;

    if( iOff>=pLeaf->szLeaf ){
      p->rc = FTS5_CORRUPT;
    }else if( iTermOff==nIncr ){
      int nByte;
      iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
      if( (iOff+nByte)>pLeaf->szLeaf ){
        p->rc = FTS5_CORRUPT;
      }else{
        fts5BufferSet(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
      }
    }else{
      int nKeep, nByte;
      iOff += fts5GetVarint32(&pLeaf->p[iOff], nKeep);
      iOff += fts5GetVarint32(&pLeaf->p[iOff], nByte);
      if( nKeep>buf1.n || (iOff+nByte)>pLeaf->szLeaf ){
        p->rc = FTS5_CORRUPT;
      }else{
        buf1.n = nKeep;
        fts5BufferAppendBlob(&p->rc, &buf1, nByte, &pLeaf->p[iOff]);
      }

      if( p->rc==SQLITE_OK ){
        res = fts5BufferCompare(&buf1, &buf2);
        if( res<=0 ) p->rc = FTS5_CORRUPT;
      }
    }
    fts5BufferSet(&p->rc, &buf2, buf1.n, buf1.p);
  }

  fts5BufferFree(&buf1);
  fts5BufferFree(&buf2);
}

static void fts5IndexIntegrityCheckSegment(
  Fts5Index *p,                   /* FTS5 backend object */
  Fts5StructureSegment *pSeg      /* Segment to check internal consistency */
){
  Fts5Config *pConfig = p->pConfig;
  sqlite3_stmt *pStmt = 0;
  int rc2;
  int iIdxPrevLeaf = pSeg->pgnoFirst-1;
  int iDlidxPrevLeaf = pSeg->pgnoLast;

  if( pSeg->pgnoFirst==0 ) return;

  fts5IndexPrepareStmt(p, &pStmt, sqlite3_mprintf(
      "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d",
      pConfig->zDb, pConfig->zName, pSeg->iSegid
  ));

  /* Iterate through the b-tree hierarchy.  */
  while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
    i64 iRow;                     /* Rowid for this leaf */
    Fts5Data *pLeaf;              /* Data for this leaf */


    int nIdxTerm = sqlite3_column_bytes(pStmt, 1);
    const char *zIdxTerm = (const char*)sqlite3_column_text(pStmt, 1);
    int iIdxLeaf = sqlite3_column_int(pStmt, 2);
    int bIdxDlidx = sqlite3_column_int(pStmt, 3);

    /* If the leaf in question has already been trimmed from the segment, 
    ** ignore this b-tree entry. Otherwise, load it into memory. */
    if( iIdxLeaf<pSeg->pgnoFirst ) continue;
    iRow = FTS5_SEGMENT_ROWID(pSeg->iSegid, iIdxLeaf);
    pLeaf = fts5DataRead(p, iRow);
    if( pLeaf==0 ) break;

    /* Check that the leaf contains at least one term, and that it is equal
    ** to or larger than the split-key in zIdxTerm.  Also check that if there
    ** is also a rowid pointer within the leaf page header, it points to a
    ** location before the term.  */
    if( pLeaf->nn<=pLeaf->szLeaf ){

      p->rc = FTS5_CORRUPT;
    }else{
      int iOff;                   /* Offset of first term on leaf */
      int iRowidOff;              /* Offset of first rowid on leaf */
      int nTerm;                  /* Size of term on leaf in bytes */
      int res;                    /* Comparison of term and split-key */

      iOff = fts5LeafFirstTermOff(pLeaf);
      iRowidOff = fts5LeafFirstRowidOff(pLeaf);
      if( iRowidOff>=iOff ){
        p->rc = FTS5_CORRUPT;
      }else{
        iOff += fts5GetVarint32(&pLeaf->p[iOff], nTerm);
        res = memcmp(&pLeaf->p[iOff], zIdxTerm, MIN(nTerm, nIdxTerm));
        if( res==0 ) res = nTerm - nIdxTerm;
        if( res<0 ) p->rc = FTS5_CORRUPT;
      }

      fts5IntegrityCheckPgidx(p, pLeaf);
    }
    fts5DataRelease(pLeaf);
    if( p->rc ) break;


    /* Now check that the iter.nEmpty leaves following the current leaf
    ** (a) exist and (b) contain no terms. */
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931

4932
4933
4934
4935
4936
4937
4938
4939
      for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf);
          fts5DlidxIterEof(p, pDlidx)==0;
          fts5DlidxIterNext(p, pDlidx)
      ){

        /* Check any rowid-less pages that occur before the current leaf. */
        for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
          iKey = FTS5_SEGMENT_ROWID(iSegid, 0, iPg);
          pLeaf = fts5DataRead(p, iKey);
          if( pLeaf ){
            if( fts5GetU16(&pLeaf->p[0])!=0 ) p->rc = FTS5_CORRUPT;
            fts5DataRelease(pLeaf);
          }
        }
        iPrevLeaf = fts5DlidxIterPgno(pDlidx);

        /* Check that the leaf page indicated by the iterator really does
        ** contain the rowid suggested by the same. */
        iKey = FTS5_SEGMENT_ROWID(iSegid, 0, iPrevLeaf);
        pLeaf = fts5DataRead(p, iKey);
        if( pLeaf ){
          i64 iRowid;
          int iRowidOff = fts5GetU16(&pLeaf->p[0]);

          if( iRowidOff>=pLeaf->n ){
            p->rc = FTS5_CORRUPT;
          }else{
            fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
            if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT;
          }
          fts5DataRelease(pLeaf);
        }







|


|







|



|
>
|







4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
      for(pDlidx=fts5DlidxIterInit(p, 0, iSegid, iIdxLeaf);
          fts5DlidxIterEof(p, pDlidx)==0;
          fts5DlidxIterNext(p, pDlidx)
      ){

        /* Check any rowid-less pages that occur before the current leaf. */
        for(iPg=iPrevLeaf+1; iPg<fts5DlidxIterPgno(pDlidx); iPg++){
          iKey = FTS5_SEGMENT_ROWID(iSegid, iPg);
          pLeaf = fts5DataRead(p, iKey);
          if( pLeaf ){
            if( fts5LeafFirstRowidOff(pLeaf)!=0 ) p->rc = FTS5_CORRUPT;
            fts5DataRelease(pLeaf);
          }
        }
        iPrevLeaf = fts5DlidxIterPgno(pDlidx);

        /* Check that the leaf page indicated by the iterator really does
        ** contain the rowid suggested by the same. */
        iKey = FTS5_SEGMENT_ROWID(iSegid, iPrevLeaf);
        pLeaf = fts5DataRead(p, iKey);
        if( pLeaf ){
          i64 iRowid;
          int iRowidOff = fts5LeafFirstRowidOff(pLeaf);
          ASSERT_SZLEAF_OK(pLeaf);
          if( iRowidOff>=pLeaf->szLeaf ){
            p->rc = FTS5_CORRUPT;
          }else{
            fts5GetVarint(&pLeaf->p[iRowidOff], (u64*)&iRowid);
            if( iRowid!=fts5DlidxIterRowid(pDlidx) ) p->rc = FTS5_CORRUPT;
          }
          fts5DataRelease(pLeaf);
        }
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
  for(iLvl=0; iLvl<p->nLevel; iLvl++){
    Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, 
        " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
    );
    for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
      Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, 
          " {id=%d h=%d leaves=%d..%d}", pSeg->iSegid, pSeg->nHeight, 
          pSeg->pgnoFirst, pSeg->pgnoLast
      );
    }
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
  }
}

/*







|
<
|







5206
5207
5208
5209
5210
5211
5212
5213

5214
5215
5216
5217
5218
5219
5220
5221
  for(iLvl=0; iLvl<p->nLevel; iLvl++){
    Fts5StructureLevel *pLvl = &p->aLevel[iLvl];
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, 
        " {lvl=%d nMerge=%d nSeg=%d", iLvl, pLvl->nMerge, pLvl->nSeg
    );
    for(iSeg=0; iSeg<pLvl->nSeg; iSeg++){
      Fts5StructureSegment *pSeg = &pLvl->aSeg[iSeg];
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " {id=%d leaves=%d..%d}", 

          pSeg->iSegid, pSeg->pgnoFirst, pSeg->pgnoLast
      );
    }
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, "}");
  }
}

/*
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195

5196
5197

5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
** may or may not finish within the buffer. This function appends a text
** representation of the part of the doclist that is present to buffer
** pBuf. 
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
  i64 iDocid;
  int iOff = 0;


  iOff = sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDocid);
  sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);

  while( iOff<n ){
    int nPos;
    int bDummy;
    iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
    iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
    if( iOff<n ){
      i64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
      if( iDelta==0 ) return iOff;
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " rowid=%lld", iDocid);
    }
  }

  return iOff;
}

/*







|


>
|
|
>








<

|







5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286

5287
5288
5289
5290
5291
5292
5293
5294
5295
** may or may not finish within the buffer. This function appends a text
** representation of the part of the doclist that is present to buffer
** pBuf. 
**
** The return value is the number of bytes read from the input buffer.
*/
static int fts5DecodeDoclist(int *pRc, Fts5Buffer *pBuf, const u8 *a, int n){
  i64 iDocid = 0;
  int iOff = 0;

  if( n>0 ){
    iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
  }
  while( iOff<n ){
    int nPos;
    int bDummy;
    iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);
    iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
    if( iOff<n ){
      i64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);

      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
  }

  return iOff;
}

/*
5227
5228
5229
5230
5231
5232
5233




5234
5235
5236
5237
5238
5239
5240


5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267



5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280





5281
5282


5283
5284
5285
5286
5287
5288
5289
5290
5291
5292

5293
5294
5295




5296



5297
5298

5299





5300
5301


5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;

  assert( nArg==2 );
  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);




  n = sqlite3_value_bytes(apVal[1]);
  aBlob = sqlite3_value_blob(apVal[1]);

  nSpace = n + FTS5_DATA_ZERO_PADDING;
  a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
  if( a==0 ) goto decode_out;
  memcpy(a, aBlob, n);


  fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);

  fts5DebugRowid(&rc, &s, iRowid);
  if( bDlidx ){
    Fts5Data dlidx;
    Fts5DlidxLvl lvl;

    dlidx.p = a;
    dlidx.n = n;

    memset(&lvl, 0, sizeof(Fts5DlidxLvl));
    lvl.pData = &dlidx;
    lvl.iLeafPgno = iPgno;

    for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
      sqlite3Fts5BufferAppendPrintf(&rc, &s, 
          " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
      );
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      /* todo */
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
  }else{
    Fts5Buffer term;



    int iTermOff = 0;
    int iRowidOff = 0;
    int iOff;
    int nKeep = 0;

    memset(&term, 0, sizeof(Fts5Buffer));

    if( n>=4 ){
      iRowidOff = fts5GetU16(&a[0]);
      iTermOff = fts5GetU16(&a[2]);
    }else{
      sqlite3Fts5BufferSet(&rc, &s, 8, (const u8*)"corrupt");
      goto decode_out;





    }



    if( iRowidOff ){
      iOff = iRowidOff;
    }else if( iTermOff ){
      iOff = iTermOff;
    }else{
      iOff = n;
    }
    fts5DecodePoslist(&rc, &s, &a[4], iOff-4);

    assert( iRowidOff==0 || iOff==iRowidOff );

    if( iRowidOff ){
      iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
    }








    assert( iTermOff==0 || iOff==iTermOff );
    while( iOff<n ){

      int nByte;





      iOff += fts5GetVarint32(&a[iOff], nByte);
      term.n= nKeep;


      fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
      iOff += nByte;

      sqlite3Fts5BufferAppendPrintf(
          &rc, &s, " term=%.*s", term.n, (const char*)term.p
          );
      iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], n-iOff);
      if( iOff<n ){
        iOff += fts5GetVarint32(&a[iOff], nKeep);
      }
    }
    fts5BufferFree(&term);
  }
  
 decode_out:
  sqlite3_free(a);
  if( rc==SQLITE_OK ){
    sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);







>
>
>
>


<




>
>








|

















|
>
>
>



|



|
<
<
<


>
>
>
>
>
|
|
>
>
|

|


|



|
>
|
|
|
>
>
>
>
|
>
>
>
|
|
>
|
>
>
>
>
>
|
|
>
>





|
|
<
<
|
|







5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319

5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363



5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416


5417
5418
5419
5420
5421
5422
5423
5424
5425
  Fts5Buffer s;                   /* Build up text to return here */
  int rc = SQLITE_OK;             /* Return code */
  int nSpace = 0;

  assert( nArg==2 );
  memset(&s, 0, sizeof(Fts5Buffer));
  iRowid = sqlite3_value_int64(apVal[0]);

  /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
  ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
  ** buffer overreads even if the record is corrupt.  */
  n = sqlite3_value_bytes(apVal[1]);
  aBlob = sqlite3_value_blob(apVal[1]);

  nSpace = n + FTS5_DATA_ZERO_PADDING;
  a = (u8*)sqlite3Fts5MallocZero(&rc, nSpace);
  if( a==0 ) goto decode_out;
  memcpy(a, aBlob, n);


  fts5DecodeRowid(iRowid, &iSegid, &bDlidx, &iHeight, &iPgno);

  fts5DebugRowid(&rc, &s, iRowid);
  if( bDlidx ){
    Fts5Data dlidx;
    Fts5DlidxLvl lvl;

    dlidx.p = a;
    dlidx.nn = n;

    memset(&lvl, 0, sizeof(Fts5DlidxLvl));
    lvl.pData = &dlidx;
    lvl.iLeafPgno = iPgno;

    for(fts5DlidxLvlNext(&lvl); lvl.bEof==0; fts5DlidxLvlNext(&lvl)){
      sqlite3Fts5BufferAppendPrintf(&rc, &s, 
          " %d(%lld)", lvl.iLeafPgno, lvl.iRowid
      );
    }
  }else if( iSegid==0 ){
    if( iRowid==FTS5_AVERAGES_ROWID ){
      /* todo */
    }else{
      fts5DecodeStructure(&rc, &s, a, n);
    }
  }else{
    Fts5Buffer term;              /* Current term read from page */
    int szLeaf;                   /* Offset of pgidx in a[] */
    int iPgidxOff;
    int iPgidxPrev = 0;           /* Previous value read from pgidx */
    int iTermOff = 0;
    int iRowidOff = 0;
    int iOff;
    int nDoclist;

    memset(&term, 0, sizeof(Fts5Buffer));

    if( n<4 ){



      sqlite3Fts5BufferSet(&rc, &s, 8, (const u8*)"corrupt");
      goto decode_out;
    }else{
      iRowidOff = fts5GetU16(&a[0]);
      iPgidxOff = szLeaf = fts5GetU16(&a[2]);
      if( iPgidxOff<n ){
        fts5GetVarint32(&a[iPgidxOff], iTermOff);
      }
    }

    /* Decode the position list tail at the start of the page */
    if( iRowidOff!=0 ){
      iOff = iRowidOff;
    }else if( iTermOff!=0 ){
      iOff = iTermOff;
    }else{
      iOff = szLeaf;
    }
    fts5DecodePoslist(&rc, &s, &a[4], iOff-4);

    /* Decode any more doclist data that appears on the page before the
    ** first term. */
    nDoclist = (iTermOff ? iTermOff : szLeaf) - iOff;
    fts5DecodeDoclist(&rc, &s, &a[iOff], nDoclist);

    while( iPgidxOff<n ){
      int bFirst = (iPgidxOff==szLeaf);     /* True for first term on page */
      int nByte;                            /* Bytes of data */
      int iEnd;
      
      iPgidxOff += fts5GetVarint32(&a[iPgidxOff], nByte);
      iPgidxPrev += nByte;
      iOff = iPgidxPrev;

      if( iPgidxOff<n ){
        fts5GetVarint32(&a[iPgidxOff], nByte);
        iEnd = iPgidxPrev + nByte;
      }else{
        iEnd = szLeaf;
      }

      if( bFirst==0 ){
        iOff += fts5GetVarint32(&a[iOff], nByte);
        term.n = nByte;
      }
      iOff += fts5GetVarint32(&a[iOff], nByte);
      fts5BufferAppendBlob(&rc, &term, nByte, &a[iOff]);
      iOff += nByte;

      sqlite3Fts5BufferAppendPrintf(
          &rc, &s, " term=%.*s", term.n, (const char*)term.p
      );
      iOff += fts5DecodeDoclist(&rc, &s, &a[iOff], iEnd-iOff);


    }

    fts5BufferFree(&term);
  }
  
 decode_out:
  sqlite3_free(a);
  if( rc==SQLITE_OK ){
    sqlite3_result_text(pCtx, (const char*)s.p, s.n, SQLITE_TRANSIENT);
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
  const char *zArg;
  if( nArg==0 ){
    sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
  }else{
    zArg = (const char*)sqlite3_value_text(apVal[0]);
    if( 0==sqlite3_stricmp(zArg, "segment") ){
      i64 iRowid;
      int segid, height, pgno;
      if( nArg!=4 ){
        sqlite3_result_error(pCtx, 
            "should be: fts5_rowid('segment', segid, height, pgno))", -1
        );
      }else{
        segid = sqlite3_value_int(apVal[1]);
        height = sqlite3_value_int(apVal[2]);
        pgno = sqlite3_value_int(apVal[3]);
        iRowid = FTS5_SEGMENT_ROWID(segid, height, pgno);
        sqlite3_result_int64(pCtx, iRowid);
      }
    }else {
      sqlite3_result_error(pCtx, 
        "first arg to fts5_rowid() must be 'segment' "
        "or 'start-of-index'"
        , -1
      );
    }
  }
}

/*
** This is called as part of registering the FTS5 module with database







|
|

|



<
|
|


|

|
<
<







5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453

5454
5455
5456
5457
5458
5459
5460


5461
5462
5463
5464
5465
5466
5467
  const char *zArg;
  if( nArg==0 ){
    sqlite3_result_error(pCtx, "should be: fts5_rowid(subject, ....)", -1);
  }else{
    zArg = (const char*)sqlite3_value_text(apVal[0]);
    if( 0==sqlite3_stricmp(zArg, "segment") ){
      i64 iRowid;
      int segid, pgno;
      if( nArg!=3 ){
        sqlite3_result_error(pCtx, 
            "should be: fts5_rowid('segment', segid, pgno))", -1
        );
      }else{
        segid = sqlite3_value_int(apVal[1]);

        pgno = sqlite3_value_int(apVal[2]);
        iRowid = FTS5_SEGMENT_ROWID(segid, pgno);
        sqlite3_result_int64(pCtx, iRowid);
      }
    }else{
      sqlite3_result_error(pCtx, 
        "first arg to fts5_rowid() must be 'segment'" , -1


      );
    }
  }
}

/*
** This is called as part of registering the FTS5 module with database
Changes to ext/fts5/fts5_main.c.
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
** structures should not be corrupt. Otherwise, true. If it is false, extra
** assert() conditions in the fts5 code are activated - conditions that are
** only true if it is guaranteed that the fts5 database is not corrupt.
*/
int sqlite3_fts5_may_be_corrupt = 1;


typedef struct Fts5Table Fts5Table;

typedef struct Fts5Cursor Fts5Cursor;
typedef struct Fts5Auxiliary Fts5Auxiliary;
typedef struct Fts5Auxdata Fts5Auxdata;

typedef struct Fts5TokenizerModule Fts5TokenizerModule;

/*
** NOTES ON TRANSACTIONS: 
**
** SQLite invokes the following virtual table methods as transactions are 
** opened and closed by the user:







|
>

|
|
<







21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
** structures should not be corrupt. Otherwise, true. If it is false, extra
** assert() conditions in the fts5 code are activated - conditions that are
** only true if it is guaranteed that the fts5 database is not corrupt.
*/
int sqlite3_fts5_may_be_corrupt = 1;


typedef struct Fts5Auxdata Fts5Auxdata;
typedef struct Fts5Auxiliary Fts5Auxiliary;
typedef struct Fts5Cursor Fts5Cursor;
typedef struct Fts5Sorter Fts5Sorter;
typedef struct Fts5Table Fts5Table;

typedef struct Fts5TokenizerModule Fts5TokenizerModule;

/*
** NOTES ON TRANSACTIONS: 
**
** SQLite invokes the following virtual table methods as transactions are 
** opened and closed by the user:
1313
1314
1315
1316
1317
1318
1319




1320
1321
1322
1323
1324
1325
1326
  }else if( 0==sqlite3_stricmp("optimize", z) ){
    rc = sqlite3Fts5StorageOptimize(pTab->pStorage);
  }else if( 0==sqlite3_stricmp("merge", z) ){
    int nMerge = sqlite3_value_int(pVal);
    rc = sqlite3Fts5StorageMerge(pTab->pStorage, nMerge);
  }else if( 0==sqlite3_stricmp("integrity-check", z) ){
    rc = sqlite3Fts5StorageIntegrity(pTab->pStorage);




  }else{
    rc = sqlite3Fts5IndexLoadConfig(pTab->pIndex);
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5ConfigSetValue(pTab->pConfig, z, pVal, &bError);
    }
    if( rc==SQLITE_OK ){
      if( bError ){







>
>
>
>







1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
  }else if( 0==sqlite3_stricmp("optimize", z) ){
    rc = sqlite3Fts5StorageOptimize(pTab->pStorage);
  }else if( 0==sqlite3_stricmp("merge", z) ){
    int nMerge = sqlite3_value_int(pVal);
    rc = sqlite3Fts5StorageMerge(pTab->pStorage, nMerge);
  }else if( 0==sqlite3_stricmp("integrity-check", z) ){
    rc = sqlite3Fts5StorageIntegrity(pTab->pStorage);
#ifdef SQLITE_DEBUG
  }else if( 0==sqlite3_stricmp("prefix-index", z) ){
    pConfig->bPrefixIndex = sqlite3_value_int(pVal);
#endif
  }else{
    rc = sqlite3Fts5IndexLoadConfig(pTab->pIndex);
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts5ConfigSetValue(pTab->pConfig, z, pVal, &bError);
    }
    if( rc==SQLITE_OK ){
      if( bError ){
Changes to ext/fts5/test/fts5aa.test.
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
}
do_execsql_test 2.1 {
  INSERT INTO t1 VALUES('a b c', 'd e f');
}

do_test 2.2 {
  execsql { SELECT fts5_decode(id, block) FROM t1_data WHERE id==10 }
} {/{{structure} {lvl=0 nMerge=0 nSeg=1 {id=[0123456789]* h=0 leaves=1..1}}}/}

foreach w {a b c d e f} {
  do_execsql_test 2.3.$w.asc {
    SELECT rowid FROM t1 WHERE t1 MATCH $w;
  } {1}
  do_execsql_test 2.3.$w.desc {
    SELECT rowid FROM t1 WHERE t1 MATCH $w ORDER BY rowid DESC;







|







47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
}
do_execsql_test 2.1 {
  INSERT INTO t1 VALUES('a b c', 'd e f');
}

do_test 2.2 {
  execsql { SELECT fts5_decode(id, block) FROM t1_data WHERE id==10 }
} {/{{structure} {lvl=0 nMerge=0 nSeg=1 {id=[0123456789]* leaves=1..1}}}/}

foreach w {a b c d e f} {
  do_execsql_test 2.3.$w.asc {
    SELECT rowid FROM t1 WHERE t1 MATCH $w;
  } {1}
  do_execsql_test 2.3.$w.desc {
    SELECT rowid FROM t1 WHERE t1 MATCH $w ORDER BY rowid DESC;
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  do_execsql_test 5.$i.1 { INSERT INTO t1 VALUES($x, $y) }
  do_execsql_test 5.$i.2 { INSERT INTO t1(t1) VALUES('integrity-check') }
  if {[set_test_counter errors]} break
}

#-------------------------------------------------------------------------
#
breakpoint
reset_db
do_execsql_test 6.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x,y);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
}

do_execsql_test 6.1 {







<







135
136
137
138
139
140
141

142
143
144
145
146
147
148
  do_execsql_test 5.$i.1 { INSERT INTO t1 VALUES($x, $y) }
  do_execsql_test 5.$i.2 { INSERT INTO t1(t1) VALUES('integrity-check') }
  if {[set_test_counter errors]} break
}

#-------------------------------------------------------------------------
#

reset_db
do_execsql_test 6.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x,y);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
}

do_execsql_test 6.1 {
197
198
199
200
201
202
203

204
205
206
207
208
209
210
      set y [doc]
      set z [doc]
      set rowid [expr int(rand() * 100)]
      execsql { REPLACE INTO t1(rowid,x,y,z) VALUES($rowid, $x, $y, $z) }
    }
    execsql { INSERT INTO t1(t1) VALUES('integrity-check'); }
  } {}

}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x, prefix="1,2,3");







>







196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
      set y [doc]
      set z [doc]
      set rowid [expr int(rand() * 100)]
      execsql { REPLACE INTO t1(rowid,x,y,z) VALUES($rowid, $x, $y, $z) }
    }
    execsql { INSERT INTO t1(t1) VALUES('integrity-check'); }
  } {}
  if {[set_test_counter errors]} break
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 8.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x, prefix="1,2,3");
Changes to ext/fts5/test/fts5ad.test.
201
202
203
204
205
206
207



208
209
210
211
212
213
214
        }
      }
      if {$bMatch} { lappend ret $rowid }
    }
    return $ret
  }




  
  foreach {bAsc sql} {
    1 {SELECT rowid FROM t1 WHERE t1 MATCH $prefix}
    0 {SELECT rowid FROM t1 WHERE t1 MATCH $prefix ORDER BY rowid DESC}
  } {
    foreach {tn prefix} {
      1  {a*} 2 {ab*} 3 {abc*} 4 {abcd*} 5 {abcde*} 







>
>
>







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        }
      }
      if {$bMatch} { lappend ret $rowid }
    }
    return $ret
  }

  do_execsql_test $T.integrity {
    INSERT INTO t1(t1) VALUES('integrity-check');
  }
  
  foreach {bAsc sql} {
    1 {SELECT rowid FROM t1 WHERE t1 MATCH $prefix}
    0 {SELECT rowid FROM t1 WHERE t1 MATCH $prefix ORDER BY rowid DESC}
  } {
    foreach {tn prefix} {
      1  {a*} 2 {ab*} 3 {abc*} 4 {abcd*} 5 {abcde*} 
Changes to ext/fts5/test/fts5al.test.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
  finish_test
  return
}

do_execsql_test 1.1 {
  CREATE VIRTUAL TABLE ft1 USING fts5(x);
  SELECT * FROM ft1_config;
} {version 3}

do_execsql_test 1.2 {
  INSERT INTO ft1(ft1, rank) VALUES('pgsz', 32);
  SELECT * FROM ft1_config;
} {pgsz 32 version 3}

do_execsql_test 1.3 {
  INSERT INTO ft1(ft1, rank) VALUES('pgsz', 64);
  SELECT * FROM ft1_config;
} {pgsz 64 version 3}

#--------------------------------------------------------------------------
# Test the logic for parsing the rank() function definition.
#
foreach {tn defn} {
  1 "fname()"
  2 "fname(1)"







|




|




|







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
  finish_test
  return
}

do_execsql_test 1.1 {
  CREATE VIRTUAL TABLE ft1 USING fts5(x);
  SELECT * FROM ft1_config;
} {version 4}

do_execsql_test 1.2 {
  INSERT INTO ft1(ft1, rank) VALUES('pgsz', 32);
  SELECT * FROM ft1_config;
} {pgsz 32 version 4}

do_execsql_test 1.3 {
  INSERT INTO ft1(ft1, rank) VALUES('pgsz', 64);
  SELECT * FROM ft1_config;
} {pgsz 64 version 4}

#--------------------------------------------------------------------------
# Test the logic for parsing the rank() function definition.
#
foreach {tn defn} {
  1 "fname()"
  2 "fname(1)"
Changes to ext/fts5/test/fts5corrupt.test.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
db_save

do_execsql_test 1.2 { INSERT INTO t1(t1) VALUES('integrity-check') }
set segid [lindex [fts5_level_segids t1] 0]

do_test 1.3 {
  execsql {
    DELETE FROM t1_data WHERE rowid = fts5_rowid('segment', $segid, 0, 4);
  }
  catchsql { INSERT INTO t1(t1) VALUES('integrity-check') }
} {1 {database disk image is malformed}}

do_test 1.4 {
  db_restore_and_reopen
  execsql {
    UPDATE t1_data set block = X'00000000' || substr(block, 5) WHERE
    rowid = fts5_rowid('segment', $segid, 0, 4);
  }
  catchsql { INSERT INTO t1(t1) VALUES('integrity-check') }
} {1 {database disk image is malformed}}

db_restore_and_reopen
#db eval {SELECT rowid, fts5_decode(rowid, block) aS r FROM t1_data} {puts $r}








|








|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
db_save

do_execsql_test 1.2 { INSERT INTO t1(t1) VALUES('integrity-check') }
set segid [lindex [fts5_level_segids t1] 0]

do_test 1.3 {
  execsql {
    DELETE FROM t1_data WHERE rowid = fts5_rowid('segment', $segid, 4);
  }
  catchsql { INSERT INTO t1(t1) VALUES('integrity-check') }
} {1 {database disk image is malformed}}

do_test 1.4 {
  db_restore_and_reopen
  execsql {
    UPDATE t1_data set block = X'00000000' || substr(block, 5) WHERE
    rowid = fts5_rowid('segment', $segid, 4);
  }
  catchsql { INSERT INTO t1(t1) VALUES('integrity-check') }
} {1 {database disk image is malformed}}

db_restore_and_reopen
#db eval {SELECT rowid, fts5_decode(rowid, block) aS r FROM t1_data} {puts $r}

Changes to ext/fts5/test/fts5corrupt2.test.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      if {$res == "1 {database disk image is malformed}"} {incr nCorrupt}
      set {} 1
    } {1}

    execsql ROLLBACK
  }

  do_test 4.$tn.x { expr $nCorrupt>0 } 1
}

}

set doc [string repeat "A B C " 1000]
do_execsql_test 4.0 {
  CREATE VIRTUAL TABLE x5 USING fts5(tt);
  INSERT INTO x5(x5, rank) VALUES('pgsz', 32);
  WITH ii(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM ii WHERE i<10) 
  INSERT INTO x5 SELECT $doc FROM ii;
}

foreach {tn hdr} {
  1 "\x00\x01"
} {
  set tn2 0
  set nCorrupt 0
  foreach rowid [db eval {SELECT rowid FROM x5_data WHERE rowid>10}] {
    if {$rowid & $mask} continue
    incr tn2
    do_test 4.$tn.$tn2 {
      execsql BEGIN

      set fd [db incrblob main x5_data block $rowid]
      fconfigure $fd -encoding binary -translation binary
      puts -nonewline $fd $hdr
      close $fd

      catchsql { INSERT INTO x5(x5) VALUES('integrity-check') }
      set {} {}
    } {}

    execsql ROLLBACK
  }
}

#--------------------------------------------------------------------
reset_db
do_execsql_test 5.1 {
  CREATE VIRTUAL TABLE x5 USING fts5(tt);
  INSERT INTO x5 VALUES('a');
  INSERT INTO x5 VALUES('a a');
  INSERT INTO x5 VALUES('a a a');
  INSERT INTO x5 VALUES('a a a a');

  UPDATE x5_docsize SET sz = X'' WHERE id=3;
}
proc colsize {cmd i} { 
  $cmd xColumnSize $i
}
sqlite3_fts5_create_function db colsize colsize

do_catchsql_test 5.2 {
  SELECT colsize(x5, 0) FROM x5 WHERE x5 MATCH 'a'
} {1 SQLITE_CORRUPT_VTAB}


sqlite3_fts5_may_be_corrupt 0
finish_test








|





|














|

















|













|







205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
      if {$res == "1 {database disk image is malformed}"} {incr nCorrupt}
      set {} 1
    } {1}

    execsql ROLLBACK
  }

  # do_test 4.$tn.x { expr $nCorrupt>0 } 1
}

}

set doc [string repeat "A B C " 1000]
do_execsql_test 5.0 {
  CREATE VIRTUAL TABLE x5 USING fts5(tt);
  INSERT INTO x5(x5, rank) VALUES('pgsz', 32);
  WITH ii(i) AS (SELECT 1 UNION ALL SELECT i+1 FROM ii WHERE i<10) 
  INSERT INTO x5 SELECT $doc FROM ii;
}

foreach {tn hdr} {
  1 "\x00\x01"
} {
  set tn2 0
  set nCorrupt 0
  foreach rowid [db eval {SELECT rowid FROM x5_data WHERE rowid>10}] {
    if {$rowid & $mask} continue
    incr tn2
    do_test 5.$tn.$tn2 {
      execsql BEGIN

      set fd [db incrblob main x5_data block $rowid]
      fconfigure $fd -encoding binary -translation binary
      puts -nonewline $fd $hdr
      close $fd

      catchsql { INSERT INTO x5(x5) VALUES('integrity-check') }
      set {} {}
    } {}

    execsql ROLLBACK
  }
}

#--------------------------------------------------------------------
reset_db
do_execsql_test 6.1 {
  CREATE VIRTUAL TABLE x5 USING fts5(tt);
  INSERT INTO x5 VALUES('a');
  INSERT INTO x5 VALUES('a a');
  INSERT INTO x5 VALUES('a a a');
  INSERT INTO x5 VALUES('a a a a');

  UPDATE x5_docsize SET sz = X'' WHERE id=3;
}
proc colsize {cmd i} { 
  $cmd xColumnSize $i
}
sqlite3_fts5_create_function db colsize colsize

do_catchsql_test 6.2 {
  SELECT colsize(x5, 0) FROM x5 WHERE x5 MATCH 'a'
} {1 SQLITE_CORRUPT_VTAB}


sqlite3_fts5_may_be_corrupt 0
finish_test

Changes to ext/fts5/test/fts5corrupt3.test.
19
20
21
22
23
24
25













26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}
sqlite3_fts5_may_be_corrupt 1














# Create a simple FTS5 table containing 100 documents. Each document 
# contains 10 terms, each of which start with the character "x".
#
expr srand(0)
db func rnddoc fts5_rnddoc
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 64);
  WITH ii(i) AS (SELECT 1 UNION SELECT i+1 FROM ii WHERE i<100)
  INSERT INTO t1 SELECT rnddoc(10) FROM ii;
}
set mask [expr 31 << 31]

do_test 1.1 {
  # Pick out the rowid of the right-most b-tree leaf in the new segment.
  set rowid [db one {
    SELECT max(rowid) FROM t1_data WHERE ((rowid>>31) & 0x0F)==1
  }]
  set L [db one {SELECT length(block) FROM t1_data WHERE rowid = $rowid}]







>
>
>
>
>
>
>
>
>
>
>
>
>




<
<
|
<
<
<
<
<
<







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


43






44
45
46
47
48
49
50

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}
sqlite3_fts5_may_be_corrupt 1

proc create_t1 {} {
  expr srand(0)
  db func rnddoc fts5_rnddoc
  db eval {
    CREATE VIRTUAL TABLE t1 USING fts5(x);
    INSERT INTO t1(t1, rank) VALUES('pgsz', 64);
    WITH ii(i) AS (SELECT 1 UNION SELECT i+1 FROM ii WHERE i<100)
      INSERT INTO t1 SELECT rnddoc(10) FROM ii;
  }
}

if 1 {

# Create a simple FTS5 table containing 100 documents. Each document 
# contains 10 terms, each of which start with the character "x".
#


do_test 1.0 { create_t1 } {}







do_test 1.1 {
  # Pick out the rowid of the right-most b-tree leaf in the new segment.
  set rowid [db one {
    SELECT max(rowid) FROM t1_data WHERE ((rowid>>31) & 0x0F)==1
  }]
  set L [db one {SELECT length(block) FROM t1_data WHERE rowid = $rowid}]
71
72
73
74
75
76
77































































































































































































































































78
79
80
  SELECT length(block) FROM t2_data WHERE id=1;
} {6}
do_execsql_test 2.2 {
  INSERT INTO t2 VALUES(rnddoc(10));
  SELECT length(block) FROM t2_data WHERE id=1;
} {2}
































































































































































































































































sqlite3_fts5_may_be_corrupt 0
finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  SELECT length(block) FROM t2_data WHERE id=1;
} {6}
do_execsql_test 2.2 {
  INSERT INTO t2 VALUES(rnddoc(10));
  SELECT length(block) FROM t2_data WHERE id=1;
} {2}


#-------------------------------------------------------------------------
# Test that missing leaf pages are recognized as corruption.
#
reset_db
do_test 3.0 { create_t1 } {}

do_execsql_test 3.1 {
  SELECT count(*) FROM t1_data;
} {105}

proc do_3_test {tn} {
  set i 0
  foreach ::rowid [db eval "SELECT rowid FROM t1_data WHERE rowid>100"] {
    incr i
    do_test $tn.$i {
      db eval BEGIN
      db eval {DELETE FROM t1_data WHERE rowid = $::rowid}
      list [
        catch { db eval {SELECT rowid FROM t1 WHERE t1 MATCH 'x*'} } msg
      ] $msg
    } {1 {database disk image is malformed}}
    catch { db eval ROLLBACK }
  }
}

do_3_test 3.2

do_execsql_test 3.3 {
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  INSERT INTO t1 SELECT x FROM t1;
  INSERT INTO t1(t1) VALUES('optimize');
} {}

do_3_test 3.4

do_test 3.5 {
  execsql { 
    DELETE FROM t1;
    INSERT INTO t1(t1, rank) VALUES('pgsz', 40);
  }
  for {set i 0} {$i < 1000} {incr i} {
    set rnd [expr int(rand() * 1000)]
    set doc [string repeat "x$rnd " [expr int(rand() * 3) + 1]]
    execsql { INSERT INTO t1(rowid, x) VALUES($i, $doc) }
  }
} {}

do_3_test 3.6

do_test 3.7 {
  execsql {
    INSERT INTO t1(t1, rank) VALUES('pgsz', 40);
    INSERT INTO t1 SELECT x FROM t1;
    INSERT INTO t1(t1) VALUES('optimize');
  }
} {}

do_3_test 3.8

do_test 3.9 {
  execsql { 
    DELETE FROM t1;
    INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  }
  for {set i 0} {$i < 100} {incr i} {
    set rnd [expr int(rand() * 100)]
    set doc "x[string repeat $rnd 20]"
    execsql { INSERT INTO t1(rowid, x) VALUES($i, $doc) }
  }
} {}

do_3_test 3.10

#-------------------------------------------------------------------------
# Test that segments that end unexpectedly are identified as corruption.
#
reset_db
do_test 4.0 {
  execsql { 
    CREATE VIRTUAL TABLE t1 USING fts5(x);
    INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  }
  for {set i 0} {$i < 100} {incr i} {
    set rnd [expr int(rand() * 100)]
    set doc "x[string repeat $rnd 20]"
    execsql { INSERT INTO t1(rowid, x) VALUES($i, $doc) }
  }
  execsql { INSERT INTO t1(t1) VALUES('optimize') }
} {}

set nErr 0
for {set i 1} {1} {incr i} {
  set struct [db one {SELECT block FROM t1_data WHERE id=10}]
  binary scan $struct c* var
  set end [lindex $var end]
  if {$end<=$i} break
  lset var end [expr $end - $i]
  set struct [binary format c* $var]
  db eval {
    BEGIN;
    UPDATE t1_data SET block = $struct WHERE id=10;
  }
  do_test 4.1.$i {
    incr nErr [catch { db eval { SELECT rowid FROM t1 WHERE t1 MATCH 'x*' } }]
    set {} {}
  } {}
  catch { db eval ROLLBACK }
}
do_test 4.1.x { expr $nErr>45 } 1

#-------------------------------------------------------------------------
#

# The first argument passed to this command must be a binary blob 
# containing an FTS5 leaf page. This command returns a copy of this
# blob, with the pgidx of the leaf page replaced by a single varint
# containing value $iVal.
#
proc rewrite_pgidx {blob iVal} {
  binary scan $blob SS off1 szLeaf
  if {$iVal<0 || $iVal>=128} {
    error "$iVal out of range!"
  } else {
    set pgidx [binary format c $iVal]
  }

  binary format a${szLeaf}a* $blob $pgidx
}

reset_db
do_execsql_test 5.1 {
  CREATE VIRTUAL TABLE x1 USING fts5(x);
  INSERT INTO x1(x1, rank) VALUES('pgsz', 40);
  BEGIN;
  INSERT INTO x1 VALUES('xaaa xabb xccc xcdd xeee xeff xggg xghh xiii xijj');
  INSERT INTO x1 SELECT x FROM x1;
  INSERT INTO x1 SELECT x FROM x1;
  INSERT INTO x1 SELECT x FROM x1;
  INSERT INTO x1 SELECT x FROM x1;
  INSERT INTO x1(x1) VALUES('optimize');
  COMMIT;
}

#db eval { SELECT fts5_decode(id, block) b from x1_data } { puts $b }
#
db func rewrite_pgidx rewrite_pgidx  
set i 0
foreach rowid [db eval {SELECT rowid FROM x1_data WHERE rowid>100}] {
  foreach val {2 100} {
    do_test 5.2.$val.[incr i] {
      catchsql {
        BEGIN;
        UPDATE x1_data SET block=rewrite_pgidx(block, $val) WHERE id=$rowid;
        SELECT rowid FROM x1 WHERE x1 MATCH 'xa*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xb*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xc*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xd*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xe*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xf*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xg*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xh*';
        SELECT rowid FROM x1 WHERE x1 MATCH 'xi*';
      }
      set {} {}
    } {}
    catch { db eval ROLLBACK }
  }
}

}

#------------------------------------------------------------------------
#
reset_db
do_execsql_test 6.1.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(a);
  INSERT INTO t1 VALUES('bbbbb ccccc');
  SELECT quote(block) FROM t1_data WHERE rowid>100;
} {X'000000180630626262626201020201056363636363010203040A'}
do_execsql_test 6.1.1 {
  UPDATE t1_data SET block = 
  X'000000180630626262626201020201056161616161010203040A'
  WHERE rowid>100;
}
do_catchsql_test 6.1.2 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}

#-------
reset_db
do_execsql_test 6.2.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(a);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  INSERT INTO t1 VALUES('aa bb cc dd ee');
  SELECT pgno, quote(term) FROM t1_idx;
} {2 X'' 4 X'3064'}
do_execsql_test 6.2.1 {
  UPDATE t1_idx SET term = X'3065' WHERE pgno=4;
}
do_catchsql_test 6.2.2 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}

#-------
reset_db
do_execsql_test 6.3.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(a);
  INSERT INTO t1 VALUES('abc abcdef abcdefghi');
  SELECT quote(block) FROM t1_data WHERE id>100;
}    {X'0000001C043061626301020204036465660102030703676869010204040808'}
do_execsql_test 6.3.1 {
  BEGIN;
    UPDATE t1_data SET block = 
      X'0000001C043061626301020204036465660102035003676869010204040808'
      ------------------------------------------^^---------------------
    WHERE id>100;
}
do_catchsql_test 6.3.2 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}
do_execsql_test 6.3.3 {
  ROLLBACK;
  BEGIN;
    UPDATE t1_data SET block = 
      X'0000001C043061626301020204036465660102030750676869010204040808'
      --------------------------------------------^^-------------------
    WHERE id>100;
}
do_catchsql_test 6.3.3 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}
do_execsql_test 6.3.4 {
  ROLLBACK;
  BEGIN;
    UPDATE t1_data SET block = 
      X'0000001C043061626301020204036465660102030707676869010204040850'
      --------------------------------------------------------------^^-
    WHERE id>100;
}
do_catchsql_test 6.3.5 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}
do_execsql_test 6.3.6 {
  ROLLBACK;
  BEGIN;
    UPDATE t1_data SET block = 
      X'0000001C503061626301020204036465660102030707676869010204040808'
      ----------^^-----------------------------------------------------
    WHERE id>100;
}
do_catchsql_test 6.3.5 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {1 {database disk image is malformed}}

sqlite3_fts5_may_be_corrupt 0
finish_test

Changes to ext/fts5/test/fts5dlidx.test.
21
22
23
24
25
26
27


28
29
30
31
32
33
34
  return
}

if { $tcl_platform(wordSize)<8 } {
  finish_test
  return
}



proc do_fb_test {tn sql res} {
  set res2 [lsort -integer -decr $res]
  uplevel [list do_execsql_test $tn.1 $sql $res]
  uplevel [list do_execsql_test $tn.2 "$sql ORDER BY rowid DESC" $res2]
}








>
>







21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  return
}

if { $tcl_platform(wordSize)<8 } {
  finish_test
  return
}

if 1 {

proc do_fb_test {tn sql res} {
  set res2 [lsort -integer -decr $res]
  uplevel [list do_execsql_test $tn.1 $sql $res]
  uplevel [list do_execsql_test $tn.2 "$sql ORDER BY rowid DESC" $res2]
}

123
124
125
126
127
128
129
130































































131
132
  breakpoint
  do_execsql_test $tn.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'b AND a' ORDER BY rowid DESC
  } {1}
}

do_dlidx_test2 2.1 [expr 20] [expr 1<<57] [expr (1<<57) + 128]
































































finish_test









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
  breakpoint
  do_execsql_test $tn.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'b AND a' ORDER BY rowid DESC
  } {1}
}

do_dlidx_test2 2.1 [expr 20] [expr 1<<57] [expr (1<<57) + 128]

}

#--------------------------------------------------------------------
#
reset_db

set ::vocab [list \
  IteratorpItercurrentlypointstothefirstrowidofadoclist \
  Thereisadoclistindexassociatedwiththefinaltermonthecurrent \
  pageIfthecurrenttermisthelasttermonthepageloadthe \
  doclistindexfromdiskandinitializeaniteratoratpIterpDlidx \
  IteratorpItercurrentlypointstothefirstrowidofadoclist \
  Thereisadoclistindexassociatedwiththefinaltermonthecurrent \
  pageIfthecurrenttermisthelasttermonthepageloadthe \
  doclistindexfromdiskandinitializeaniteratoratpIterpDlidx \
]
proc rnddoc {} {
  global vocab
  set nVocab [llength $vocab]
  set ret [list]
  for {set i 0} {$i < 64} {incr i} {
    lappend ret [lindex $vocab [expr $i % $nVocab]]
  }
  set ret
}
db func rnddoc rnddoc

do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE abc USING fts5(a);
  INSERT INTO abc(abc, rank) VALUES('pgsz', 32);

  INSERT INTO abc VALUES ( rnddoc() );
  INSERT INTO abc VALUES ( rnddoc() );
  INSERT INTO abc VALUES ( rnddoc() );
  INSERT INTO abc VALUES ( rnddoc() );

  INSERT INTO abc SELECT rnddoc() FROM abc;
  INSERT INTO abc SELECT rnddoc() FROM abc;
}



do_execsql_test 3.2 {
  SELECT rowid FROM abc WHERE abc 
  MATCH 'IteratorpItercurrentlypointstothefirstrowidofadoclist' 
  ORDER BY rowid DESC;
} {16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1}

do_execsql_test 3.2 {
  INSERT INTO abc(abc) VALUES('integrity-check');
  INSERT INTO abc(abc) VALUES('optimize');
  INSERT INTO abc(abc) VALUES('integrity-check');
}

set v [lindex $vocab 0]
set i 0
foreach v $vocab {
  do_execsql_test 3.3.[incr i] {
    SELECT rowid FROM abc WHERE abc MATCH $v
  } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
}


finish_test

Changes to ext/fts5/test/fts5fault7.test.
10
11
12
13
14
15
16
17
18
19
20
21
22
23


24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43












































44
45
#*************************************************************************
#
# This file is focused on OOM errors.
#

source [file join [file dirname [info script]] fts5_common.tcl]
source $testdir/malloc_common.tcl
set testprefix fts5fault2

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}



#-------------------------------------------------------------------------
# Test fault-injection on a query that uses xColumnSize() on columnsize=0
# table.
#
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x, columnsize=0);
  INSERT INTO t1 VALUES('a b c d e f g');
  INSERT INTO t1 VALUES('a b c d');
  INSERT INTO t1 VALUES('a b c d e f g h i j');
}


fts5_aux_test_functions db
do_faultsim_test 1 -faults oom* -body {
  execsql { SELECT fts5_test_columnsize(t1) FROM t1 WHERE t1 MATCH 'b' }
} -test {
  faultsim_test_result {0 {7 4 10}} {1 SQLITE_NOMEM}
}













































finish_test








|






>
>




















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#*************************************************************************
#
# This file is focused on OOM errors.
#

source [file join [file dirname [info script]] fts5_common.tcl]
source $testdir/malloc_common.tcl
set testprefix fts5fault7

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

if 1 {

#-------------------------------------------------------------------------
# Test fault-injection on a query that uses xColumnSize() on columnsize=0
# table.
#
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x, columnsize=0);
  INSERT INTO t1 VALUES('a b c d e f g');
  INSERT INTO t1 VALUES('a b c d');
  INSERT INTO t1 VALUES('a b c d e f g h i j');
}


fts5_aux_test_functions db
do_faultsim_test 1 -faults oom* -body {
  execsql { SELECT fts5_test_columnsize(t1) FROM t1 WHERE t1 MATCH 'b' }
} -test {
  faultsim_test_result {0 {7 4 10}} {1 SQLITE_NOMEM}
}

}

#-------------------------------------------------------------------------
# Test fault-injection when a segment is promoted.
#
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t2 USING fts5(a);
  INSERT INTO t2(t2, rank) VALUES('automerge', 0);
  INSERT INTO t2(t2, rank) VALUES('crisismerge', 4);
  INSERT INTO t2(t2, rank) VALUES('pgsz', 40);

  INSERT INTO t2 VALUES('a b c');
  INSERT INTO t2 VALUES('d e f');
  INSERT INTO t2 VALUES('f e d');
  INSERT INTO t2 VALUES('c b a');

  INSERT INTO t2 VALUES('a b c');
  INSERT INTO t2 VALUES('d e f');
  INSERT INTO t2 VALUES('f e d');
  INSERT INTO t2 VALUES('c b a');
} {}

faultsim_save_and_close
do_faultsim_test 1 -faults oom-t* -prep {
  faultsim_restore_and_reopen
  db eval {
    BEGIN;
    INSERT INTO t2 VALUES('c d c g g f');
    INSERT INTO t2 VALUES('c d g b f d');
    INSERT INTO t2 VALUES('c c f d e d');
    INSERT INTO t2 VALUES('e a f c e f');
    INSERT INTO t2 VALUES('c g f b b d');
    INSERT INTO t2 VALUES('d a g a b b');
    INSERT INTO t2 VALUES('e f a b c e');
    INSERT INTO t2 VALUES('e c a g c d');
    INSERT INTO t2 VALUES('g b d d e b');
    INSERT INTO t2 VALUES('e a d a e d');
  }
} -body {
  db eval COMMIT
} -test {
  faultsim_test_result {0 {}}
}

finish_test

Changes to ext/fts5/test/fts5rowid.test.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

do_catchsql_test 1.1 {
  SELECT fts5_rowid()
} {1 {should be: fts5_rowid(subject, ....)}}

do_catchsql_test 1.2 {
  SELECT fts5_rowid('segment')
} {1 {should be: fts5_rowid('segment', segid, height, pgno))}}

do_execsql_test 1.3 {
  SELECT fts5_rowid('segment', 1, 1, 1)
} {139586437121}

do_catchsql_test 1.4 {
  SELECT fts5_rowid('nosucharg');
} {1 {first arg to fts5_rowid() must be 'segment' or 'start-of-index'}} 


#-------------------------------------------------------------------------
# Tests of the fts5_decode() function.
#
reset_db
do_execsql_test 2.1 { 







|


|
|



|







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

do_catchsql_test 1.1 {
  SELECT fts5_rowid()
} {1 {should be: fts5_rowid(subject, ....)}}

do_catchsql_test 1.2 {
  SELECT fts5_rowid('segment')
} {1 {should be: fts5_rowid('segment', segid, pgno))}}

do_execsql_test 1.3 {
  SELECT fts5_rowid('segment', 1, 1)
} {137438953473}

do_catchsql_test 1.4 {
  SELECT fts5_rowid('nosucharg');
} {1 {first arg to fts5_rowid() must be 'segment'}} 


#-------------------------------------------------------------------------
# Tests of the fts5_decode() function.
#
reset_db
do_execsql_test 2.1 { 
86
87
88
89
90
91
92




93
94
95
96
97
98
99
} $res

# This is really a corruption test...
#do_execsql_test 2.7 {
#  UPDATE x1_data SET block = X'';
#  SELECT count(fts5_decode(rowid, block)) FROM x1_data;
#} $res





#-------------------------------------------------------------------------
# Tests with very large tokens.
#
set strlist [list \
  "[string repeat x 400]"                       \
  "[string repeat x 300][string repeat w 100]"  \







>
>
>
>







86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
} $res

# This is really a corruption test...
#do_execsql_test 2.7 {
#  UPDATE x1_data SET block = X'';
#  SELECT count(fts5_decode(rowid, block)) FROM x1_data;
#} $res

do_execsql_test 2.8 {
  SELECT fts5_decode(fts5_rowid('segment', 1000, 1), X'AB')
} {corrupt}

#-------------------------------------------------------------------------
# Tests with very large tokens.
#
set strlist [list \
  "[string repeat x 400]"                       \
  "[string repeat x 300][string repeat w 100]"  \
Added ext/fts5/test/fts5simple.test.


























































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# 2015 September 05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
#

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5simple

# If SQLITE_ENABLE_FTS5 is defined, omit this file.
ifcapable !fts5 {
  finish_test
  return
}

if 1 {
#-------------------------------------------------------------------------
#
set doc "x x [string repeat {y } 50]z z"
do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  BEGIN;
    INSERT INTO t1 VALUES($doc);
  COMMIT;
}

do_execsql_test 1.1 {
  INSERT INTO t1(t1) VALUES('integrity-check');
}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 2.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x);
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  INSERT INTO t1 VALUES('a b c');
  INSERT INTO t1 VALUES('d e f');
  INSERT INTO t1(t1) VALUES('optimize');
}

do_execsql_test 2.1 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 3.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(x, prefix='1,2');
  INSERT INTO t1(t1, rank) VALUES('pgsz', 32);
  BEGIN;
  INSERT INTO t1 VALUES('one');
  SELECT * FROM t1 WHERE t1 MATCH 'o*';
} {one}

do_execsql_test 3.1 {
  INSERT INTO t1(t1) VALUES('integrity-check');
} {}

#-------------------------------------------------------------------------
reset_db
do_execsql_test 4.1 {
  CREATE VIRTUAL TABLE t11 USING fts5(content);
  INSERT INTO t11(t11, rank) VALUES('pgsz', 32);
  INSERT INTO t11 VALUES('another');
  INSERT INTO t11 VALUES('string');
  INSERT INTO t11 VALUES('of');
  INSERT INTO t11 VALUES('text');
}
do_test 4.2 {
  execsql { INSERT INTO t11(t11) VALUES('optimize') }
} {}
do_execsql_test 4.3 {
  INSERT INTO t11(t11) VALUES('integrity-check');
} {}

#db eval { SELECT fts5_decode(rowid, block) as x FROM t11_data } { puts $x }

#-------------------------------------------------------------------------
reset_db
set doc [string repeat "x y " 5]
do_execsql_test 5.1 {
  CREATE VIRTUAL TABLE yy USING fts5(content);
  INSERT INTO yy(yy, rank) VALUES('pgsz', 32);
  BEGIN;
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
    INSERT INTO yy VALUES($doc);
  COMMIT;
}

do_execsql_test 5.2 {
  SELECT rowid FROM yy WHERE yy MATCH 'y' ORDER BY rowid ASC
} {1 2 3 4 5 6 7 8}

do_execsql_test 5.3 {
  SELECT rowid FROM yy WHERE yy MATCH 'y' ORDER BY rowid DESC
} {8 7 6 5 4 3 2 1}

#db eval { SELECT fts5_decode(rowid, block) as x FROM yy_data } { puts $x }

#-------------------------------------------------------------------------
reset_db
do_execsql_test 5.1 {
  CREATE VIRTUAL TABLE tt USING fts5(content);
  INSERT INTO tt(tt, rank) VALUES('pgsz', 32);
  INSERT INTO tt VALUES('aa');
}

do_execsql_test 5.2 {
  SELECT rowid FROM tt WHERE tt MATCH 'a*';
} {1}

do_execsql_test 5.3 {
  DELETE FROM tt;
  BEGIN;
    INSERT INTO tt VALUES('aa');
    INSERT INTO tt VALUES('ab');
  COMMIT;
} {}

do_execsql_test 5.4 {
  SELECT rowid FROM tt WHERE tt MATCH 'a*';
} {1 2}

}

do_execsql_test 5.5 {
  DELETE FROM tt;
  BEGIN;
    INSERT INTO tt VALUES('aa');
    INSERT INTO tt VALUES('ab');
    INSERT INTO tt VALUES('aa');
    INSERT INTO tt VALUES('ab');
    INSERT INTO tt VALUES('aa');
    INSERT INTO tt VALUES('ab');
    INSERT INTO tt VALUES('aa');
    INSERT INTO tt VALUES('ab');
  COMMIT;
  SELECT rowid FROM tt WHERE tt MATCH 'a*';
} {1 2 3 4 5 6 7 8}

do_execsql_test 5.6 {
  INSERT INTO tt(tt) VALUES('integrity-check');
}

reset_db
do_execsql_test 5.7 {
  CREATE VIRTUAL TABLE tt USING fts5(content);
  INSERT INTO tt(tt, rank) VALUES('pgsz', 32);
  INSERT INTO tt VALUES('aa ab ac ad ae af');
}

do_execsql_test 5.8 {
  SELECT rowid FROM tt WHERE tt MATCH 'a*';
} {1}

finish_test

Changes to ext/fts5/test/fts5version.test.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
do_execsql_test 1.1 {
  CREATE VIRTUAL TABLE t1 USING fts5(one);
  INSERT INTO t1 VALUES('a b c d');
} {}

do_execsql_test 1.2 {
  SELECT * FROM t1_config WHERE k='version'
} {version 3}

do_execsql_test 1.3 {
  SELECT rowid FROM t1 WHERE t1 MATCH 'a';
} {1}

do_execsql_test 1.4 {
  UPDATE t1_config set v=4 WHERE k='version';
} 

do_test 1.5 {
  db close
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE t1 MATCH 'a' }
} {1 {invalid fts5 file format (found 4, expected 3) - run 'rebuild'}}

do_test 1.6 {
  db close
  sqlite3 db test.db
  catchsql { INSERT INTO t1 VALUES('x y z') }
} {1 {invalid fts5 file format (found 4, expected 3) - run 'rebuild'}}

do_test 1.7 {
  execsql { DELETE FROM t1_config WHERE k='version' }
  db close
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE t1 MATCH 'a' }
} {1 {invalid fts5 file format (found 0, expected 3) - run 'rebuild'}}


finish_test








|






|






|





|






|




26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
do_execsql_test 1.1 {
  CREATE VIRTUAL TABLE t1 USING fts5(one);
  INSERT INTO t1 VALUES('a b c d');
} {}

do_execsql_test 1.2 {
  SELECT * FROM t1_config WHERE k='version'
} {version 4}

do_execsql_test 1.3 {
  SELECT rowid FROM t1 WHERE t1 MATCH 'a';
} {1}

do_execsql_test 1.4 {
  UPDATE t1_config set v=5 WHERE k='version';
} 

do_test 1.5 {
  db close
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE t1 MATCH 'a' }
} {1 {invalid fts5 file format (found 5, expected 4) - run 'rebuild'}}

do_test 1.6 {
  db close
  sqlite3 db test.db
  catchsql { INSERT INTO t1 VALUES('x y z') }
} {1 {invalid fts5 file format (found 5, expected 4) - run 'rebuild'}}

do_test 1.7 {
  execsql { DELETE FROM t1_config WHERE k='version' }
  db close
  sqlite3 db test.db
  catchsql { SELECT * FROM t1 WHERE t1 MATCH 'a' }
} {1 {invalid fts5 file format (found 0, expected 4) - run 'rebuild'}}


finish_test

Changes to ext/fts5/tool/loadfts5.tcl.
14
15
16
17
18
19
20






21
22
23
24
25
26
27
  foreach f [glob -nocomplain -dir $dir *] {
    if {$::O(limit) && $::nRow>=$::O(limit)} break
    if {[file isdir $f]} {
      load_hierachy $f
    } else {
      db eval { INSERT INTO t1 VALUES($f, loadfile($f)) }
      incr ::nRow







      if {($::nRow % $::nRowPerDot)==0} {
        puts -nonewline .
        if {($::nRow % (65*$::nRowPerDot))==0} { puts "" }
        flush stdout
      }








>
>
>
>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
  foreach f [glob -nocomplain -dir $dir *] {
    if {$::O(limit) && $::nRow>=$::O(limit)} break
    if {[file isdir $f]} {
      load_hierachy $f
    } else {
      db eval { INSERT INTO t1 VALUES($f, loadfile($f)) }
      incr ::nRow

      if {$::O(trans) && ($::nRow % $::O(trans))==0} {
        db eval { COMMIT }
        db eval { INSERT INTO t1(t1) VALUES('integrity-check') }
        db eval { BEGIN }
      }

      if {($::nRow % $::nRowPerDot)==0} {
        puts -nonewline .
        if {($::nRow % (65*$::nRowPerDot))==0} { puts "" }
        flush stdout
      }

37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
  puts stderr "  -fts5        (use fts5)"
  puts stderr "  -porter      (use porter tokenizer)"
  puts stderr "  -delete      (delete the database file before starting)"
  puts stderr "  -limit N     (load no more than N documents)"
  puts stderr "  -automerge N (set the automerge parameter to N)"
  puts stderr "  -crisismerge N (set the crisismerge parameter to N)"
  puts stderr "  -prefix PREFIX (comma separated prefix= argument)"

  exit 1
}

set O(vtab)       fts5
set O(tok)        ""
set O(limit)      0
set O(delete)     0
set O(automerge)  -1
set O(crisismerge)  -1
set O(prefix)     ""


if {[llength $argv]<2} usage
set nOpt [expr {[llength $argv]-2}]
for {set i 0} {$i < $nOpt} {incr i} {
  set arg [lindex $argv $i]
  switch -- [lindex $argv $i] {
    -fts4 {







>










>







43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  puts stderr "  -fts5        (use fts5)"
  puts stderr "  -porter      (use porter tokenizer)"
  puts stderr "  -delete      (delete the database file before starting)"
  puts stderr "  -limit N     (load no more than N documents)"
  puts stderr "  -automerge N (set the automerge parameter to N)"
  puts stderr "  -crisismerge N (set the crisismerge parameter to N)"
  puts stderr "  -prefix PREFIX (comma separated prefix= argument)"
  puts stderr "  -trans N     (commit after N inserts - 0 == never)"
  exit 1
}

set O(vtab)       fts5
set O(tok)        ""
set O(limit)      0
set O(delete)     0
set O(automerge)  -1
set O(crisismerge)  -1
set O(prefix)     ""
set O(trans)      0

if {[llength $argv]<2} usage
set nOpt [expr {[llength $argv]-2}]
for {set i 0} {$i < $nOpt} {incr i} {
  set arg [lindex $argv $i]
  switch -- [lindex $argv $i] {
    -fts4 {
73
74
75
76
77
78
79





80
81
82
83
84
85
86
      set O(delete) 1
    }

    -limit {
      if { [incr i]>=$nOpt } usage
      set O(limit) [lindex $argv $i]
    }





    
    -automerge {
      if { [incr i]>=$nOpt } usage
      set O(automerge) [lindex $argv $i]
    }

    -crisismerge {







>
>
>
>
>







81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
      set O(delete) 1
    }

    -limit {
      if { [incr i]>=$nOpt } usage
      set O(limit) [lindex $argv $i]
    }

    -trans {
      if { [incr i]>=$nOpt } usage
      set O(trans) [lindex $argv $i]
    }
    
    -automerge {
      if { [incr i]>=$nOpt } usage
      set O(automerge) [lindex $argv $i]
    }

    -crisismerge {
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
}

set dbfile [lindex $argv end-1]
if {$O(delete)} { file delete -force $dbfile }
sqlite3 db $dbfile
catch { load_static_extension db fts5 }
db func loadfile loadfile


db transaction {
  set pref ""
  if {$O(prefix)!=""} { set pref ", prefix='$O(prefix)'" }
  catch {
    db eval "CREATE VIRTUAL TABLE t1 USING $O(vtab) (path, content$O(tok)$pref)"
    db eval "INSERT INTO t1(t1, rank) VALUES('pgsz', 4050);"
  }
  if {$O(automerge)>=0} {
    if {$O(vtab) == "fts5"} {
      db eval { INSERT INTO t1(t1, rank) VALUES('automerge', $O(automerge)) }
    } else {
      db eval { INSERT INTO t1(t1) VALUES('automerge=' || $O(automerge)) }
    }
  }
  if {$O(crisismerge)>=0} {
    if {$O(vtab) == "fts5"} {
      db eval {INSERT INTO t1(t1, rank) VALUES('crisismerge', $O(crisismerge))}
    } else {
    }
  }
  load_hierachy [lindex $argv end]
}











>

|




















<
>



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
}

set dbfile [lindex $argv end-1]
if {$O(delete)} { file delete -force $dbfile }
sqlite3 db $dbfile
catch { load_static_extension db fts5 }
db func loadfile loadfile
db eval "PRAGMA page_size=4096"

db eval BEGIN
  set pref ""
  if {$O(prefix)!=""} { set pref ", prefix='$O(prefix)'" }
  catch {
    db eval "CREATE VIRTUAL TABLE t1 USING $O(vtab) (path, content$O(tok)$pref)"
    db eval "INSERT INTO t1(t1, rank) VALUES('pgsz', 4050);"
  }
  if {$O(automerge)>=0} {
    if {$O(vtab) == "fts5"} {
      db eval { INSERT INTO t1(t1, rank) VALUES('automerge', $O(automerge)) }
    } else {
      db eval { INSERT INTO t1(t1) VALUES('automerge=' || $O(automerge)) }
    }
  }
  if {$O(crisismerge)>=0} {
    if {$O(vtab) == "fts5"} {
      db eval {INSERT INTO t1(t1, rank) VALUES('crisismerge', $O(crisismerge))}
    } else {
    }
  }
  load_hierachy [lindex $argv end]

db eval COMMIT



Changes to ext/misc/json1.c.
64
65
66
67
68
69
70



71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#define JSON_FALSE    2
#define JSON_INT      3
#define JSON_REAL     4
#define JSON_STRING   5
#define JSON_ARRAY    6
#define JSON_OBJECT   7




/*
** Names of the various JSON types:
*/
static const char * const jsonType[] = {
  "null", "true", "false", "integer", "real", "text", "array", "object"
};

/* Bit values for the JsonNode.jnFlag field
*/
#define JNODE_RAW     0x01         /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02         /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04         /* Do not output */
#define JNODE_REPLACE 0x08         /* Replace with JsonNode.iVal */
#define JNODE_APPEND  0x10         /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_JSON    0x20         /* Treat REPLACE as JSON text */


/* A single node of parsed JSON
*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */







>
>
>














|







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#define JSON_FALSE    2
#define JSON_INT      3
#define JSON_REAL     4
#define JSON_STRING   5
#define JSON_ARRAY    6
#define JSON_OBJECT   7

/* The "subtype" set for JSON values */
#define JSON_SUBTYPE  74    /* Ascii for "J" */

/*
** Names of the various JSON types:
*/
static const char * const jsonType[] = {
  "null", "true", "false", "integer", "real", "text", "array", "object"
};

/* Bit values for the JsonNode.jnFlag field
*/
#define JNODE_RAW     0x01         /* Content is raw, not JSON encoded */
#define JNODE_ESCAPE  0x02         /* Content is text with \ escapes */
#define JNODE_REMOVE  0x04         /* Do not output */
#define JNODE_REPLACE 0x08         /* Replace with JsonNode.iVal */
#define JNODE_APPEND  0x10         /* More ARRAY/OBJECT entries at u.iAppend */
#define JNODE_LABEL   0x20         /* Is a label of an object */


/* A single node of parsed JSON
*/
struct JsonNode {
  u8 eType;              /* One of the JSON_ type values */
  u8 jnFlags;            /* JNODE flags */
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

/*
** Append a function parameter value to the JSON string under 
** construction.
*/
static void jsonAppendValue(
  JsonString *p,                 /* Append to this JSON string */
  sqlite3_value *pValue,         /* Value to append */
  u8 textIsJson                  /* Try to treat text values as JSON */
){
  switch( sqlite3_value_type(pValue) ){
    case SQLITE_NULL: {
      jsonAppendRaw(p, "null", 4);
      break;
    }
    case SQLITE_INTEGER:
    case SQLITE_FLOAT: {
      const char *z = (const char*)sqlite3_value_text(pValue);
      u32 n = (u32)sqlite3_value_bytes(pValue);
      jsonAppendRaw(p, z, n);
      break;
    }
    case SQLITE_TEXT: {
      const char *z = (const char*)sqlite3_value_text(pValue);
      u32 n = (u32)sqlite3_value_bytes(pValue);
      if( textIsJson ){
        jsonAppendRaw(p, z, n);
      }else{
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {







|
<
















|







241
242
243
244
245
246
247
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

/*
** Append a function parameter value to the JSON string under 
** construction.
*/
static void jsonAppendValue(
  JsonString *p,                 /* Append to this JSON string */
  sqlite3_value *pValue          /* Value to append */

){
  switch( sqlite3_value_type(pValue) ){
    case SQLITE_NULL: {
      jsonAppendRaw(p, "null", 4);
      break;
    }
    case SQLITE_INTEGER:
    case SQLITE_FLOAT: {
      const char *z = (const char*)sqlite3_value_text(pValue);
      u32 n = (u32)sqlite3_value_bytes(pValue);
      jsonAppendRaw(p, z, n);
      break;
    }
    case SQLITE_TEXT: {
      const char *z = (const char*)sqlite3_value_text(pValue);
      u32 n = (u32)sqlite3_value_bytes(pValue);
      if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){
        jsonAppendRaw(p, z, n);
      }else{
        jsonAppendString(p, z, n);
      }
      break;
    }
    default: {
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      u32 j = 1;
      jsonAppendChar(pOut, '[');
      for(;;){
        while( j<=pNode->n ){
          if( pNode[j].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ){
            if( pNode[j].jnFlags & JNODE_REPLACE ){
              jsonAppendSeparator(pOut);
              jsonAppendValue(pOut, aReplace[pNode[j].iVal],
                              (pNode[j].jnFlags & JNODE_JSON)!=0);
            }
          }else{
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
          }
          j += jsonNodeSize(&pNode[j]);
        }







|
<







362
363
364
365
366
367
368
369

370
371
372
373
374
375
376
      u32 j = 1;
      jsonAppendChar(pOut, '[');
      for(;;){
        while( j<=pNode->n ){
          if( pNode[j].jnFlags & (JNODE_REMOVE|JNODE_REPLACE) ){
            if( pNode[j].jnFlags & JNODE_REPLACE ){
              jsonAppendSeparator(pOut);
              jsonAppendValue(pOut, aReplace[pNode[j].iVal]);

            }
          }else{
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
          }
          j += jsonNodeSize(&pNode[j]);
        }
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
            jsonAppendChar(pOut, ':');
            if( pNode[j+1].jnFlags & JNODE_REPLACE ){
              jsonAppendValue(pOut, aReplace[pNode[j+1].iVal],
                              (pNode[j+1].jnFlags & JNODE_JSON)!=0);
            }else{
              jsonRenderNode(&pNode[j+1], pOut, aReplace);
            }
          }
          j += 1 + jsonNodeSize(&pNode[j+1]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;







|
<







387
388
389
390
391
392
393
394

395
396
397
398
399
400
401
      for(;;){
        while( j<=pNode->n ){
          if( (pNode[j+1].jnFlags & JNODE_REMOVE)==0 ){
            jsonAppendSeparator(pOut);
            jsonRenderNode(&pNode[j], pOut, aReplace);
            jsonAppendChar(pOut, ':');
            if( pNode[j+1].jnFlags & JNODE_REPLACE ){
              jsonAppendValue(pOut, aReplace[pNode[j+1].iVal]);

            }else{
              jsonRenderNode(&pNode[j+1], pOut, aReplace);
            }
          }
          j += 1 + jsonNodeSize(&pNode[j+1]);
        }
        if( (pNode->jnFlags & JNODE_APPEND)==0 ) break;
416
417
418
419
420
421
422

423
424
425
426
427
428
429
  sqlite3_context *pCtx,      /* Return value for this function */
  sqlite3_value **aReplace    /* Array of replacement values */
){
  JsonString s;
  jsonInit(&s, pCtx);
  jsonRenderNode(pNode, &s, aReplace);
  jsonResult(&s);

}

/*
** Make the JsonNode the return value of the function.
*/
static void jsonReturn(
  JsonNode *pNode,            /* Node to return */







>







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
  sqlite3_context *pCtx,      /* Return value for this function */
  sqlite3_value **aReplace    /* Array of replacement values */
){
  JsonString s;
  jsonInit(&s, pCtx);
  jsonRenderNode(pNode, &s, aReplace);
  jsonResult(&s);
  sqlite3_result_subtype(pCtx, JSON_SUBTYPE);
}

/*
** Make the JsonNode the return value of the function.
*/
static void jsonReturn(
  JsonNode *pNode,            /* Node to return */
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
                if( c>='0' && c<='9' ) v = v*16 + c - '0';
                else if( c>='A' && c<='F' ) v = v*16 + c - 'A' + 10;
                else if( c>='a' && c<='f' ) v = v*16 + c - 'a' + 10;
                else break;
              }
              if( v==0 ) break;
              if( v<=0x7f ){
                zOut[j++] = v;
              }else if( v<=0x7ff ){
                zOut[j++] = 0xc0 | (v>>6);
                zOut[j++] = 0x80 | (v&0x3f);
              }else{
                zOut[j++] = 0xe0 | (v>>12);
                zOut[j++] = 0x80 | ((v>>6)&0x3f);
                zOut[j++] = 0x80 | (v&0x3f);
              }
            }else{
              if( c=='b' ){
                c = '\b';
              }else if( c=='f' ){







|

|


|







491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
                if( c>='0' && c<='9' ) v = v*16 + c - '0';
                else if( c>='A' && c<='F' ) v = v*16 + c - 'A' + 10;
                else if( c>='a' && c<='f' ) v = v*16 + c - 'a' + 10;
                else break;
              }
              if( v==0 ) break;
              if( v<=0x7f ){
                zOut[j++] = (char)v;
              }else if( v<=0x7ff ){
                zOut[j++] = (char)(0xc0 | (v>>6));
                zOut[j++] = 0x80 | (v&0x3f);
              }else{
                zOut[j++] = (char)(0xe0 | (v>>12));
                zOut[j++] = 0x80 | ((v>>6)&0x3f);
                zOut[j++] = 0x80 | (v&0x3f);
              }
            }else{
              if( c=='b' ){
                c = '\b';
              }else if( c=='f' ){
579
580
581
582
583
584
585

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600


601
602
603
604
605
606
607
** non-whitespace character is ']'.
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;

  while( isspace(pParse->zJson[i]) ){ i++; }
  if( (c = pParse->zJson[i])==0 ) return 0;
  if( c=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( isspace(pParse->zJson[j]) ){ j++; }
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      if( pParse->aNode[pParse->nNode-1].eType!=JSON_STRING ) return -1;


      j = x;
      while( isspace(pParse->zJson[j]) ){ j++; }
      if( pParse->zJson[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      if( x<0 ) return -1;
      j = x;







>














|
>
>







580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
** non-whitespace character is ']'.
*/
static int jsonParseValue(JsonParse *pParse, u32 i){
  char c;
  u32 j;
  int iThis;
  int x;
  JsonNode *pNode;
  while( isspace(pParse->zJson[i]) ){ i++; }
  if( (c = pParse->zJson[i])==0 ) return 0;
  if( c=='{' ){
    /* Parse object */
    iThis = jsonParseAddNode(pParse, JSON_OBJECT, 0, 0);
    if( iThis<0 ) return -1;
    for(j=i+1;;j++){
      while( isspace(pParse->zJson[j]) ){ j++; }
      x = jsonParseValue(pParse, j);
      if( x<0 ){
        if( x==(-2) && pParse->nNode==(u32)iThis+1 ) return j+1;
        return -1;
      }
      if( pParse->oom ) return -1;
      pNode = &pParse->aNode[pParse->nNode-1];
      if( pNode->eType!=JSON_STRING ) return -1;
      pNode->jnFlags |= JNODE_LABEL;
      j = x;
      while( isspace(pParse->zJson[j]) ){ j++; }
      if( pParse->zJson[j]!=':' ) return -1;
      j++;
      x = jsonParseValue(pParse, j);
      if( x<0 ) return -1;
      j = x;
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
** Return NULL if not found or if there is an error.
**
** On an error, write an error message into pCtx and increment the
** pParse->nErr counter.
**
** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if
** nodes are appended.
**
** If the path starts with $$ then set *pFlags to JNODE_REPLACE|JNODE_JSON
** as a single to the caller that the input text to be inserted should be 
** interpreted as JSON rather than as ordinary text.
*/
static JsonNode *jsonLookup(
  JsonParse *pParse,      /* The JSON to search */
  const char *zPath,      /* The path to search */
  int *pApnd,             /* Append nodes to complete path if not NULL */
  sqlite3_context *pCtx,  /* Report errors here, if not NULL */
  u8 *pFlags              /* Write JNODE_REPLACE or _REPLACE|_JSON here */
){
  const char *zErr = 0;
  JsonNode *pNode = 0;
  u8 fg = JNODE_REPLACE;

  if( zPath==0 ) return 0;
  if( zPath[0]!='$' ){
    zErr = zPath;
    goto lookup_err;
  }
  zPath++;
  if( zPath[0]=='$' ){
    if( pFlags==0 ){
      zErr = zPath;
      goto lookup_err;
    }
    zPath++;
    fg = JNODE_REPLACE|JNODE_JSON;
  }
  if( pFlags ) *pFlags = fg;
  pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr);
  return pNode;

lookup_err:
  pParse->nErr++;
  if( zErr!=0 && pCtx!=0 ){
    char *z = jsonPathSyntaxError(zErr);
    if( z ){
      sqlite3_result_error(pCtx, z, -1);
      sqlite3_free(z);
    }else{
      sqlite3_result_error_nomem(pCtx);
    }
  }
  if( pFlags ) *pFlags = fg;
  return 0;
}


/*
** Report the wrong number of arguments for json_insert(), json_replace()
** or json_set().







<
<
<
<





|
<



<







<
<
<
<
<
<
<
<
<














<







947
948
949
950
951
952
953




954
955
956
957
958
959

960
961
962

963
964
965
966
967
968
969









970
971
972
973
974
975
976
977
978
979
980
981
982
983

984
985
986
987
988
989
990
** Return NULL if not found or if there is an error.
**
** On an error, write an error message into pCtx and increment the
** pParse->nErr counter.
**
** If pApnd!=NULL then try to append missing nodes and set *pApnd = 1 if
** nodes are appended.




*/
static JsonNode *jsonLookup(
  JsonParse *pParse,      /* The JSON to search */
  const char *zPath,      /* The path to search */
  int *pApnd,             /* Append nodes to complete path if not NULL */
  sqlite3_context *pCtx   /* Report errors here, if not NULL */

){
  const char *zErr = 0;
  JsonNode *pNode = 0;


  if( zPath==0 ) return 0;
  if( zPath[0]!='$' ){
    zErr = zPath;
    goto lookup_err;
  }
  zPath++;









  pNode = jsonLookupStep(pParse, 0, zPath, pApnd, &zErr);
  return pNode;

lookup_err:
  pParse->nErr++;
  if( zErr!=0 && pCtx!=0 ){
    char *z = jsonPathSyntaxError(zErr);
    if( z ){
      sqlite3_result_error(pCtx, z, -1);
      sqlite3_free(z);
    }else{
      sqlite3_result_error_nomem(pCtx);
    }
  }

  return 0;
}


/*
** Report the wrong number of arguments for json_insert(), json_replace()
** or json_set().
1032
1033
1034
1035
1036
1037
1038







1039
1040
1041
1042
1043
1044
1045

1046
1047
1048
1049
1050
1051
1052


1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
  u32 i;

  assert( argc==1 );
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonParseFindParents(&x);
  jsonInit(&s, ctx);
  for(i=0; i<x.nNode; i++){







    jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%d\n",
               i, jsonType[x.aNode[i].eType], x.aNode[i].n, x.aUp[i]);
    if( x.aNode[i].u.zJContent!=0 ){
      jsonAppendRaw(&s, "    text: ", 10);
      jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);
      jsonAppendRaw(&s, "\n", 1);
    }

  }
  jsonParseReset(&x);
  jsonResult(&s);
}

/*
** The json_test1(JSON) function parses and rebuilds the JSON string.


*/
static void jsonTest1Func(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;  /* The parse */
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonReturnJson(x.aNode, ctx, 0);
  jsonParseReset(&x);
}

/*
** The json_nodecount(JSON) function returns the number of nodes in the
** input JSON string.
*/
static void jsonNodeCountFunc(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;  /* The parse */
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  sqlite3_result_int64(ctx, (sqlite3_int64)x.nNode);
  jsonParseReset(&x);
}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** SQL function implementations
****************************************************************************/








>
>
>
>
>
>
>
|
|

|

<

>






|
>
>






<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
|
<







1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055





1056











1057

1058
1059
1060
1061
1062
1063
1064
  u32 i;

  assert( argc==1 );
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonParseFindParents(&x);
  jsonInit(&s, ctx);
  for(i=0; i<x.nNode; i++){
    const char *zType;
    if( x.aNode[i].jnFlags & JNODE_LABEL ){
      assert( x.aNode[i].eType==JSON_STRING );
      zType = "label";
    }else{
      zType = jsonType[x.aNode[i].eType];
    }
    jsonPrintf(100, &s,"node %3u: %7s n=%-4d up=%-4d",
               i, zType, x.aNode[i].n, x.aUp[i]);
    if( x.aNode[i].u.zJContent!=0 ){
      jsonAppendRaw(&s, " ", 1);
      jsonAppendRaw(&s, x.aNode[i].u.zJContent, x.aNode[i].n);

    }
    jsonAppendRaw(&s, "\n", 1);
  }
  jsonParseReset(&x);
  jsonResult(&s);
}

/*
** The json_test1(JSON) function return true (1) if the input is JSON
** text generated by another json function.  It returns (0) if the input
** is not known to be JSON.
*/
static void jsonTest1Func(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){





  UNUSED_PARAM(argc);











  sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE);

}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** SQL function implementations
****************************************************************************/

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

1106
1107
1108
1109
1110
1111
1112
  int i;
  JsonString jx;

  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=0; i<argc; i++){
    jsonAppendSeparator(&jx);
    jsonAppendValue(&jx, argv[i], 0);
  }
  jsonAppendChar(&jx, ']');
  jsonResult(&jx);

}


/*
** json_array_length(JSON)
** json_array_length(JSON, PATH)
**







|



>







1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
  int i;
  JsonString jx;

  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=0; i<argc; i++){
    jsonAppendSeparator(&jx);
    jsonAppendValue(&jx, argv[i]);
  }
  jsonAppendChar(&jx, ']');
  jsonResult(&jx);
  sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}


/*
** json_array_length(JSON)
** json_array_length(JSON, PATH)
**
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
  u32 i;

  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    JsonNode *pNode;
    if( argc==2 ){
      const char *zPath = (const char*)sqlite3_value_text(argv[1]);
      pNode = jsonLookup(&x, zPath, 0, ctx, 0);
    }else{
      pNode = x.aNode;
    }
    if( pNode==0 ){
      x.nErr = 1;
    }else if( pNode->eType==JSON_ARRAY ){
      assert( (pNode->jnFlags & JNODE_APPEND)==0 );







|







1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
  u32 i;

  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    JsonNode *pNode;
    if( argc==2 ){
      const char *zPath = (const char*)sqlite3_value_text(argv[1]);
      pNode = jsonLookup(&x, zPath, 0, ctx);
    }else{
      pNode = x.aNode;
    }
    if( pNode==0 ){
      x.nErr = 1;
    }else if( pNode->eType==JSON_ARRAY ){
      assert( (pNode->jnFlags & JNODE_APPEND)==0 );
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193
1194

  if( argc<2 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=1; i<argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    pNode = jsonLookup(&x, zPath, 0, ctx, 0);
    if( x.nErr ) break;
    if( argc>2 ){
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(pNode, &jx, 0);
      }else{
        jsonAppendRaw(&jx, "null", 4);
      }
    }else if( pNode ){
      jsonReturn(pNode, ctx, 0);
    }
  }
  if( argc>2 && i==argc ){
    jsonAppendChar(&jx, ']');
    jsonResult(&jx);

  }
  jsonReset(&jx);
  jsonParseReset(&x);
}

/*
** Implementation of the json_object(NAME,VALUE,...) function.  Return a JSON







|















>







1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

  if( argc<2 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  jsonInit(&jx, ctx);
  jsonAppendChar(&jx, '[');
  for(i=1; i<argc; i++){
    zPath = (const char*)sqlite3_value_text(argv[i]);
    pNode = jsonLookup(&x, zPath, 0, ctx);
    if( x.nErr ) break;
    if( argc>2 ){
      jsonAppendSeparator(&jx);
      if( pNode ){
        jsonRenderNode(pNode, &jx, 0);
      }else{
        jsonAppendRaw(&jx, "null", 4);
      }
    }else if( pNode ){
      jsonReturn(pNode, ctx, 0);
    }
  }
  if( argc>2 && i==argc ){
    jsonAppendChar(&jx, ']');
    jsonResult(&jx);
    sqlite3_result_subtype(ctx, JSON_SUBTYPE);
  }
  jsonReset(&jx);
  jsonParseReset(&x);
}

/*
** Implementation of the json_object(NAME,VALUE,...) function.  Return a JSON
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229

1230
1231
1232
1233
1234
1235
1236
      return;
    }
    jsonAppendSeparator(&jx);
    z = (const char*)sqlite3_value_text(argv[i]);
    n = (u32)sqlite3_value_bytes(argv[i]);
    jsonAppendString(&jx, z, n);
    jsonAppendChar(&jx, ':');
    jsonAppendValue(&jx, argv[i+1], 0);
  }
  jsonAppendChar(&jx, '}');
  jsonResult(&jx);

}


/*
** json_remove(JSON, PATH, ...)
**
** Remove the named elements from JSON and return the result.  malformed







|



>







1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
      return;
    }
    jsonAppendSeparator(&jx);
    z = (const char*)sqlite3_value_text(argv[i]);
    n = (u32)sqlite3_value_bytes(argv[i]);
    jsonAppendString(&jx, z, n);
    jsonAppendChar(&jx, ':');
    jsonAppendValue(&jx, argv[i+1]);
  }
  jsonAppendChar(&jx, '}');
  jsonResult(&jx);
  sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}


/*
** json_remove(JSON, PATH, ...)
**
** Remove the named elements from JSON and return the result.  malformed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

  if( argc<1 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i++){
      zPath = (const char*)sqlite3_value_text(argv[i]);
      if( zPath==0 ) goto remove_done;
      pNode = jsonLookup(&x, zPath, 0, ctx, 0);
      if( x.nErr ) goto remove_done;
      if( pNode ) pNode->jnFlags |= JNODE_REMOVE;
    }
    if( (x.aNode[0].jnFlags & JNODE_REMOVE)==0 ){
      jsonReturnJson(x.aNode, ctx, 0);
    }
  }







|







1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245

  if( argc<1 ) return;
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i++){
      zPath = (const char*)sqlite3_value_text(argv[i]);
      if( zPath==0 ) goto remove_done;
      pNode = jsonLookup(&x, zPath, 0, ctx);
      if( x.nErr ) goto remove_done;
      if( pNode ) pNode->jnFlags |= JNODE_REMOVE;
    }
    if( (x.aNode[0].jnFlags & JNODE_REMOVE)==0 ){
      jsonReturnJson(x.aNode, ctx, 0);
    }
  }
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, "replace");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i+=2){
      u8 jnFlags = JNODE_REPLACE;
      zPath = (const char*)sqlite3_value_text(argv[i]);
      pNode = jsonLookup(&x, zPath, 0, ctx, &jnFlags);
      if( x.nErr ) goto replace_err;
      if( pNode ){
        pNode->jnFlags &= ~JNODE_JSON;
        pNode->jnFlags |= jnFlags;
        pNode->iVal = i+1;
      }
    }
    if( x.aNode[0].jnFlags & JNODE_REPLACE ){
      sqlite3_result_value(ctx, argv[x.aNode[0].iVal]);
    }else{
      jsonReturnJson(x.aNode, ctx, argv);
    }







<

|


<
|
|







1267
1268
1269
1270
1271
1272
1273

1274
1275
1276
1277

1278
1279
1280
1281
1282
1283
1284
1285
1286
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, "replace");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i+=2){

      zPath = (const char*)sqlite3_value_text(argv[i]);
      pNode = jsonLookup(&x, zPath, 0, ctx);
      if( x.nErr ) goto replace_err;
      if( pNode ){

        pNode->jnFlags |= (u8)JNODE_REPLACE;
        pNode->iVal = (u8)(i+1);
      }
    }
    if( x.aNode[0].jnFlags & JNODE_REPLACE ){
      sqlite3_result_value(ctx, argv[x.aNode[0].iVal]);
    }else{
      jsonReturnJson(x.aNode, ctx, argv);
    }
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i+=2){
      u8 jnFlags = JNODE_REPLACE;
      zPath = (const char*)sqlite3_value_text(argv[i]);
      bApnd = 0;
      pNode = jsonLookup(&x, zPath, &bApnd, ctx, &jnFlags);
      if( x.oom ){
        sqlite3_result_error_nomem(ctx);
        goto jsonSetDone;
      }else if( x.nErr ){
        goto jsonSetDone;
      }else if( pNode && (bApnd || bIsSet) ){
        pNode->jnFlags &= ~JNODE_JSON;
        pNode->jnFlags |= jnFlags;
        pNode->iVal = i+1;
      }
    }
    if( x.aNode[0].jnFlags & JNODE_REPLACE ){
      sqlite3_result_value(ctx, argv[x.aNode[0].iVal]);
    }else{
      jsonReturnJson(x.aNode, ctx, argv);
    }







<


|






<
|
|







1317
1318
1319
1320
1321
1322
1323

1324
1325
1326
1327
1328
1329
1330
1331
1332

1333
1334
1335
1336
1337
1338
1339
1340
1341
  if( (argc&1)==0 ) {
    jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
    return;
  }
  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    for(i=1; i<(u32)argc; i+=2){

      zPath = (const char*)sqlite3_value_text(argv[i]);
      bApnd = 0;
      pNode = jsonLookup(&x, zPath, &bApnd, ctx);
      if( x.oom ){
        sqlite3_result_error_nomem(ctx);
        goto jsonSetDone;
      }else if( x.nErr ){
        goto jsonSetDone;
      }else if( pNode && (bApnd || bIsSet) ){

        pNode->jnFlags |= (u8)JNODE_REPLACE;
        pNode->iVal = (u8)(i+1);
      }
    }
    if( x.aNode[0].jnFlags & JNODE_REPLACE ){
      sqlite3_result_value(ctx, argv[x.aNode[0].iVal]);
    }else{
      jsonReturnJson(x.aNode, ctx, argv);
    }
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
  const char *zPath;

  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    JsonNode *pNode;
    if( argc==2 ){
      zPath = (const char*)sqlite3_value_text(argv[1]);
      pNode = jsonLookup(&x, zPath, 0, ctx, 0);
    }else{
      pNode = x.aNode;
    }
    if( pNode ){
      sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC);
    }
  }







|







1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
  const char *zPath;

  if( jsonParse(&x, ctx, (const char*)sqlite3_value_text(argv[0])) ) return;
  if( x.nNode ){
    JsonNode *pNode;
    if( argc==2 ){
      zPath = (const char*)sqlite3_value_text(argv[1]);
      pNode = jsonLookup(&x, zPath, 0, ctx);
    }else{
      pNode = x.aNode;
    }
    if( pNode ){
      sqlite3_result_text(ctx, jsonType[pNode->eType], -1, SQLITE_STATIC);
    }
  }
1406
1407
1408
1409
1410
1411
1412

1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  int rc = 0;


  if( jsonParse(&x, 0, (const char*)sqlite3_value_text(argv[0]))==0 
   && x.nNode>0
  ){
    rc = 1;
  }
  jsonParseReset(&x);
  sqlite3_result_int(ctx, rc);
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  u32 iRowid;                /* The rowid */

  u32 i;                     /* Index in sParse.aNode[] of current row */
  u32 iEnd;                  /* EOF when i equals or exceeds this value */
  u8 eType;                  /* Type of top-level element */
  u8 bRecursive;             /* True for json_tree().  False for json_each() */
  char *zJson;               /* Input JSON */
  char *zPath;               /* Path by which to filter zJson */
  JsonParse sParse;          /* Parse of the input JSON */
};

/* Constructor for the json_each virtual table */
static int jsonEachConnect(
  sqlite3 *db,
  void *pAux,







>

















>





|







1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonParse x;          /* The parse */
  int rc = 0;

  UNUSED_PARAM(argc);
  if( jsonParse(&x, 0, (const char*)sqlite3_value_text(argv[0]))==0 
   && x.nNode>0
  ){
    rc = 1;
  }
  jsonParseReset(&x);
  sqlite3_result_int(ctx, rc);
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
  sqlite3_vtab_cursor base;  /* Base class - must be first */
  u32 iRowid;                /* The rowid */
  u32 iBegin;                /* The first node of the scan */
  u32 i;                     /* Index in sParse.aNode[] of current row */
  u32 iEnd;                  /* EOF when i equals or exceeds this value */
  u8 eType;                  /* Type of top-level element */
  u8 bRecursive;             /* True for json_tree().  False for json_each() */
  char *zJson;               /* Input JSON */
  char *zRoot;               /* Path by which to filter zJson */
  JsonParse sParse;          /* Parse of the input JSON */
};

/* Constructor for the json_each virtual table */
static int jsonEachConnect(
  sqlite3 *db,
  void *pAux,
1451
1452
1453
1454
1455
1456
1457

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
#define JEACH_KEY     0
#define JEACH_VALUE   1
#define JEACH_TYPE    2
#define JEACH_ATOM    3
#define JEACH_ID      4
#define JEACH_PARENT  5
#define JEACH_FULLKEY 6

#define JEACH_JSON    7
#define JEACH_PATH    8

  UNUSED_PARAM(pzErr);
  UNUSED_PARAM(argv);
  UNUSED_PARAM(argc);
  UNUSED_PARAM(pAux);
  rc = sqlite3_declare_vtab(db, 
     "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,"
                    "json HIDDEN,path HIDDEN)");
  if( rc==SQLITE_OK ){
    pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
}







>
|
|






|
|







1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
#define JEACH_KEY     0
#define JEACH_VALUE   1
#define JEACH_TYPE    2
#define JEACH_ATOM    3
#define JEACH_ID      4
#define JEACH_PARENT  5
#define JEACH_FULLKEY 6
#define JEACH_PATH    7
#define JEACH_JSON    8
#define JEACH_ROOT    9

  UNUSED_PARAM(pzErr);
  UNUSED_PARAM(argv);
  UNUSED_PARAM(argc);
  UNUSED_PARAM(pAux);
  rc = sqlite3_declare_vtab(db, 
     "CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
                    "json HIDDEN,root HIDDEN)");
  if( rc==SQLITE_OK ){
    pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
    if( pNew==0 ) return SQLITE_NOMEM;
    memset(pNew, 0, sizeof(*pNew));
  }
  return rc;
}
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
  return rc;
}

/* Reset a JsonEachCursor back to its original state.  Free any memory
** held. */
static void jsonEachCursorReset(JsonEachCursor *p){
  sqlite3_free(p->zJson);
  sqlite3_free(p->zPath);
  jsonParseReset(&p->sParse);
  p->iRowid = 0;
  p->i = 0;
  p->iEnd = 0;
  p->eType = 0;
  p->zJson = 0;
  p->zPath = 0;
}

/* Destructor for a jsonEachCursor object */
static int jsonEachClose(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  jsonEachCursorReset(p);
  sqlite3_free(cur);







|






|







1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
  return rc;
}

/* Reset a JsonEachCursor back to its original state.  Free any memory
** held. */
static void jsonEachCursorReset(JsonEachCursor *p){
  sqlite3_free(p->zJson);
  sqlite3_free(p->zRoot);
  jsonParseReset(&p->sParse);
  p->iRowid = 0;
  p->i = 0;
  p->iEnd = 0;
  p->eType = 0;
  p->zJson = 0;
  p->zRoot = 0;
}

/* Destructor for a jsonEachCursor object */
static int jsonEachClose(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  jsonEachCursorReset(p);
  sqlite3_free(cur);
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
  return p->i >= p->iEnd;
}

/* Advance the cursor to the next element for json_tree() */
static int jsonEachNext(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  if( p->bRecursive ){
    if( p->i==0 ){
      p->i = 1;
    }else{
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->i++;
      if( pUp->eType==JSON_OBJECT && (pUp->n + iUp >= p->i) ) p->i++;
    }
    p->iRowid++;
    if( p->i<p->sParse.nNode ){
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->eType = pUp->eType;
      if( pUp->eType==JSON_ARRAY ){
        if( iUp==p->i-1 ){
          pUp->u.iKey = 0;
        }else{







<
<
<
<
|
|
<
<

|







1512
1513
1514
1515
1516
1517
1518




1519
1520


1521
1522
1523
1524
1525
1526
1527
1528
1529
  return p->i >= p->iEnd;
}

/* Advance the cursor to the next element for json_tree() */
static int jsonEachNext(sqlite3_vtab_cursor *cur){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  if( p->bRecursive ){




    if( p->sParse.aNode[p->i].jnFlags & JNODE_LABEL ) p->i++;
    p->i++;


    p->iRowid++;
    if( p->i<p->iEnd ){
      u32 iUp = p->sParse.aUp[p->i];
      JsonNode *pUp = &p->sParse.aNode[iUp];
      p->eType = pUp->eType;
      if( pUp->eType==JSON_ARRAY ){
        if( iUp==p->i-1 ){
          pUp->u.iKey = 0;
        }else{
1593
1594
1595
1596
1597
1598
1599
1600
1601

1602
1603
1604
1605
1606
1607
1608
  jsonEachComputePath(p, pStr, iUp);
  pNode = &p->sParse.aNode[i];
  pUp = &p->sParse.aNode[iUp];
  if( pUp->eType==JSON_ARRAY ){
    jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
  }else{
    assert( pUp->eType==JSON_OBJECT );
    if( pNode->eType>=JSON_ARRAY ) pNode--;
    assert( pNode->eType==JSON_STRING );

    jsonPrintf(pNode->n+1, pStr, ".%.*s", pNode->n-2, pNode->u.zJContent+1);
  }
}

/* Return the value of a column */
static int jsonEachColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */







|

>







1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
  jsonEachComputePath(p, pStr, iUp);
  pNode = &p->sParse.aNode[i];
  pUp = &p->sParse.aNode[iUp];
  if( pUp->eType==JSON_ARRAY ){
    jsonPrintf(30, pStr, "[%d]", pUp->u.iKey);
  }else{
    assert( pUp->eType==JSON_OBJECT );
    if( (pNode->jnFlags & JNODE_LABEL)==0 ) pNode--;
    assert( pNode->eType==JSON_STRING );
    assert( pNode->jnFlags & JNODE_LABEL );
    jsonPrintf(pNode->n+1, pStr, ".%.*s", pNode->n-2, pNode->u.zJContent+1);
  }
}

/* Return the value of a column */
static int jsonEachColumn(
  sqlite3_vtab_cursor *cur,   /* The cursor */
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687

1688



1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_TYPE: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( p->eType==JSON_OBJECT && p->i>0 ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx, (sqlite3_int64)p->i + (p->eType==JSON_OBJECT));

      break;
    }
    case JEACH_PARENT: {
      if( p->i>0 && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }
      break;
    }
    case JEACH_FULLKEY: {
      JsonString x;
      jsonInit(&x, ctx);
      if( p->bRecursive ){
        jsonEachComputePath(p, &x, p->i);
      }else{
        if( p->zPath ){
          jsonAppendRaw(&x, p->zPath, (int)strlen(p->zPath));
        }else{
          jsonAppendChar(&x, '$');
        }
        if( p->eType==JSON_ARRAY ){
          jsonPrintf(30, &x, "[%d]", p->iRowid);
        }else{
          jsonPrintf(pThis->n, &x, ".%.*s", pThis->n-2, pThis->u.zJContent+1);
        }
      }
      jsonResult(&x);
      break;
    }
    case JEACH_PATH: {
      const char *zPath = p->zPath;
       if( zPath==0 ){
        if( p->bRecursive ){
          JsonString x;
          jsonInit(&x, ctx);
          jsonEachComputePath(p, &x, p->sParse.aUp[p->i]);
          jsonResult(&x);
          break;
        }
        zPath = "$";

      }



      sqlite3_result_text(ctx, zPath, -1, SQLITE_STATIC);
      break;
    }
    default: {
      assert( i==JEACH_JSON );
      sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC);
      break;
    }
  }
  return SQLITE_OK;
}

/* Return the current rowid value */
static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  *pRowid = p->iRowid;
  return SQLITE_OK;
}

/* The query strategy is to look for an equality constraint on the json
** column.  Without such a constraint, the table cannot operate.  idxNum is
** 1 if the constraint is found, 3 if the constraint and zPath are found,
** and 0 otherwise.
*/
static int jsonEachBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int jsonIdx = -1;
  int pathIdx = -1;
  const struct sqlite3_index_constraint *pConstraint;

  UNUSED_PARAM(tab);
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->usable==0 ) continue;
    if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    switch( pConstraint->iColumn ){
      case JEACH_JSON:   jsonIdx = i;    break;
      case JEACH_PATH:   pathIdx = i;    break;
      default:           /* no-op */     break;
    }
  }
  if( jsonIdx<0 ){
    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = 1e99;
  }else{
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[jsonIdx].argvIndex = 1;
    pIdxInfo->aConstraintUsage[jsonIdx].omit = 1;
    if( pathIdx<0 ){
      pIdxInfo->idxNum = 1;
    }else{
      pIdxInfo->aConstraintUsage[pathIdx].argvIndex = 2;
      pIdxInfo->aConstraintUsage[pathIdx].omit = 1;
      pIdxInfo->idxNum = 3;
    }
  }
  return SQLITE_OK;
}

/* Start a search on a new JSON string */
static int jsonEachFilter(
  sqlite3_vtab_cursor *cur,
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  const char *z;
  const char *zPath;
  sqlite3_int64 n;

  UNUSED_PARAM(idxStr);
  UNUSED_PARAM(argc);
  jsonEachCursorReset(p);
  if( idxNum==0 ) return SQLITE_OK;
  z = (const char*)sqlite3_value_text(argv[0]);
  if( z==0 ) return SQLITE_OK;
  if( idxNum&2 ){
    zPath = (const char*)sqlite3_value_text(argv[1]);
    if( zPath==0 ) return SQLITE_OK;
    if( zPath[0]!='$' ){
      sqlite3_free(cur->pVtab->zErrMsg);
      cur->pVtab->zErrMsg = jsonPathSyntaxError(zPath);
      return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
    }
  }
  n = sqlite3_value_bytes(argv[0]);
  p->zJson = sqlite3_malloc64( n+1 );
  if( p->zJson==0 ) return SQLITE_NOMEM;
  memcpy(p->zJson, z, (size_t)n+1);







|




|




|





|
>



|










|
|













<
<
|
|
|
|
|
|
|
|
>
|
>
>
>
|




















|








|









|










|


|
|














|









|
|
|

|







1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655


1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
          iKey = p->iRowid;
        }
        sqlite3_result_int64(ctx, (sqlite3_int64)iKey);
      }
      break;
    }
    case JEACH_VALUE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_TYPE: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      sqlite3_result_text(ctx, jsonType[pThis->eType], -1, SQLITE_STATIC);
      break;
    }
    case JEACH_ATOM: {
      if( pThis->jnFlags & JNODE_LABEL ) pThis++;
      if( pThis->eType>=JSON_ARRAY ) break;
      jsonReturn(pThis, ctx, 0);
      break;
    }
    case JEACH_ID: {
      sqlite3_result_int64(ctx, 
         (sqlite3_int64)p->i + ((pThis->jnFlags & JNODE_LABEL)!=0));
      break;
    }
    case JEACH_PARENT: {
      if( p->i>p->iBegin && p->bRecursive ){
        sqlite3_result_int64(ctx, (sqlite3_int64)p->sParse.aUp[p->i]);
      }
      break;
    }
    case JEACH_FULLKEY: {
      JsonString x;
      jsonInit(&x, ctx);
      if( p->bRecursive ){
        jsonEachComputePath(p, &x, p->i);
      }else{
        if( p->zRoot ){
          jsonAppendRaw(&x, p->zRoot, (int)strlen(p->zRoot));
        }else{
          jsonAppendChar(&x, '$');
        }
        if( p->eType==JSON_ARRAY ){
          jsonPrintf(30, &x, "[%d]", p->iRowid);
        }else{
          jsonPrintf(pThis->n, &x, ".%.*s", pThis->n-2, pThis->u.zJContent+1);
        }
      }
      jsonResult(&x);
      break;
    }
    case JEACH_PATH: {


      if( p->bRecursive ){
        JsonString x;
        jsonInit(&x, ctx);
        jsonEachComputePath(p, &x, p->sParse.aUp[p->i]);
        jsonResult(&x);
        break;
      }
      /* For json_each() path and root are the same so fall through
      ** into the root case */
    }
    case JEACH_ROOT: {
      const char *zRoot = p->zRoot;
       if( zRoot==0 ) zRoot = "$";
      sqlite3_result_text(ctx, zRoot, -1, SQLITE_STATIC);
      break;
    }
    default: {
      assert( i==JEACH_JSON );
      sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_STATIC);
      break;
    }
  }
  return SQLITE_OK;
}

/* Return the current rowid value */
static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  *pRowid = p->iRowid;
  return SQLITE_OK;
}

/* The query strategy is to look for an equality constraint on the json
** column.  Without such a constraint, the table cannot operate.  idxNum is
** 1 if the constraint is found, 3 if the constraint and zRoot are found,
** and 0 otherwise.
*/
static int jsonEachBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int jsonIdx = -1;
  int rootIdx = -1;
  const struct sqlite3_index_constraint *pConstraint;

  UNUSED_PARAM(tab);
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->usable==0 ) continue;
    if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    switch( pConstraint->iColumn ){
      case JEACH_JSON:   jsonIdx = i;    break;
      case JEACH_ROOT:   rootIdx = i;    break;
      default:           /* no-op */     break;
    }
  }
  if( jsonIdx<0 ){
    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = 1e99;
  }else{
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[jsonIdx].argvIndex = 1;
    pIdxInfo->aConstraintUsage[jsonIdx].omit = 1;
    if( rootIdx<0 ){
      pIdxInfo->idxNum = 1;
    }else{
      pIdxInfo->aConstraintUsage[rootIdx].argvIndex = 2;
      pIdxInfo->aConstraintUsage[rootIdx].omit = 1;
      pIdxInfo->idxNum = 3;
    }
  }
  return SQLITE_OK;
}

/* Start a search on a new JSON string */
static int jsonEachFilter(
  sqlite3_vtab_cursor *cur,
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  JsonEachCursor *p = (JsonEachCursor*)cur;
  const char *z;
  const char *zRoot = 0;
  sqlite3_int64 n;

  UNUSED_PARAM(idxStr);
  UNUSED_PARAM(argc);
  jsonEachCursorReset(p);
  if( idxNum==0 ) return SQLITE_OK;
  z = (const char*)sqlite3_value_text(argv[0]);
  if( z==0 ) return SQLITE_OK;
  if( idxNum&2 ){
    zRoot = (const char*)sqlite3_value_text(argv[1]);
    if( zRoot==0 ) return SQLITE_OK;
    if( zRoot[0]!='$' ){
      sqlite3_free(cur->pVtab->zErrMsg);
      cur->pVtab->zErrMsg = jsonPathSyntaxError(zRoot);
      return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
    }
  }
  n = sqlite3_value_bytes(argv[0]);
  p->zJson = sqlite3_malloc64( n+1 );
  if( p->zJson==0 ) return SQLITE_NOMEM;
  memcpy(p->zJson, z, (size_t)n+1);
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819






1820
1821
1822
1823
1824
1825
1826
  }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
    jsonEachCursorReset(p);
    return SQLITE_NOMEM;
  }else{
    JsonNode *pNode;
    if( idxNum==3 ){
      const char *zErr = 0;
      p->bRecursive = 0;
      n = sqlite3_value_bytes(argv[1]);
      p->zPath = sqlite3_malloc64( n+1 );
      if( p->zPath==0 ) return SQLITE_NOMEM;
      memcpy(p->zPath, zPath, (size_t)n+1);
      pNode = jsonLookupStep(&p->sParse, 0, p->zPath+1, 0, &zErr);
      if( p->sParse.nErr ){
        sqlite3_free(cur->pVtab->zErrMsg);
        cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr);
        jsonEachCursorReset(p);
        return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
      }else if( pNode==0 ){
        return SQLITE_OK;
      }
    }else{
      pNode = p->sParse.aNode;
    }
    p->i = (int)(pNode - p->sParse.aNode);
    p->eType = pNode->eType;
    if( p->eType>=JSON_ARRAY ){
      pNode->u.iKey = 0;
      p->iEnd = p->i + pNode->n + 1;
      if( !p->bRecursive ) p->i++;






    }else{
      p->iEnd = p->i+1;
    }
  }
  return p->sParse.oom ? SQLITE_NOMEM : SQLITE_OK;
}








<

|
|
|
|











|




|
>
>
>
>
>
>







1770
1771
1772
1773
1774
1775
1776

1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
  }else if( p->bRecursive && jsonParseFindParents(&p->sParse) ){
    jsonEachCursorReset(p);
    return SQLITE_NOMEM;
  }else{
    JsonNode *pNode;
    if( idxNum==3 ){
      const char *zErr = 0;

      n = sqlite3_value_bytes(argv[1]);
      p->zRoot = sqlite3_malloc64( n+1 );
      if( p->zRoot==0 ) return SQLITE_NOMEM;
      memcpy(p->zRoot, zRoot, (size_t)n+1);
      pNode = jsonLookupStep(&p->sParse, 0, p->zRoot+1, 0, &zErr);
      if( p->sParse.nErr ){
        sqlite3_free(cur->pVtab->zErrMsg);
        cur->pVtab->zErrMsg = jsonPathSyntaxError(zErr);
        jsonEachCursorReset(p);
        return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
      }else if( pNode==0 ){
        return SQLITE_OK;
      }
    }else{
      pNode = p->sParse.aNode;
    }
    p->iBegin = p->i = (int)(pNode - p->sParse.aNode);
    p->eType = pNode->eType;
    if( p->eType>=JSON_ARRAY ){
      pNode->u.iKey = 0;
      p->iEnd = p->i + pNode->n + 1;
      if( p->bRecursive ){
        if( p->i>0 && (p->sParse.aNode[p->i-1].jnFlags & JNODE_LABEL)!=0 ){
          p->i--;
        }
      }else{
        p->i++;
      }
    }else{
      p->iEnd = p->i+1;
    }
  }
  return p->sParse.oom ? SQLITE_NOMEM : SQLITE_OK;
}

1897
1898
1899
1900
1901
1902
1903

1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
  unsigned int i;
  static const struct {
     const char *zName;
     int nArg;
     int flag;
     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
  } aFunc[] = {

    { "json_array",          -1, 0,   jsonArrayFunc         },
    { "json_array_length",    1, 0,   jsonArrayLengthFunc   },
    { "json_array_length",    2, 0,   jsonArrayLengthFunc   },
    { "json_extract",        -1, 0,   jsonExtractFunc       },
    { "json_insert",         -1, 0,   jsonSetFunc           },
    { "json_object",         -1, 0,   jsonObjectFunc        },
    { "json_remove",         -1, 0,   jsonRemoveFunc        },
    { "json_replace",        -1, 0,   jsonReplaceFunc       },
    { "json_set",            -1, 1,   jsonSetFunc           },
    { "json_type",            1, 0,   jsonTypeFunc          },
    { "json_type",            2, 0,   jsonTypeFunc          },
    { "json_valid",           1, 0,   jsonValidFunc         },

#if SQLITE_DEBUG
    /* DEBUG and TESTING functions */
    { "json_parse",           1, 0,   jsonParseFunc         },
    { "json_test1",           1, 0,   jsonTest1Func         },
    { "json_nodecount",       1, 0,   jsonNodeCountFunc     },
#endif
  };
#ifndef SQLITE_OMIT_VIRTUALTABLE
  static const struct {
     const char *zName;
     sqlite3_module *pModule;
  } aMod[] = {







>

















<







1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

1907
1908
1909
1910
1911
1912
1913
  unsigned int i;
  static const struct {
     const char *zName;
     int nArg;
     int flag;
     void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
  } aFunc[] = {
    { "json",                 1, 0,   jsonRemoveFunc        },
    { "json_array",          -1, 0,   jsonArrayFunc         },
    { "json_array_length",    1, 0,   jsonArrayLengthFunc   },
    { "json_array_length",    2, 0,   jsonArrayLengthFunc   },
    { "json_extract",        -1, 0,   jsonExtractFunc       },
    { "json_insert",         -1, 0,   jsonSetFunc           },
    { "json_object",         -1, 0,   jsonObjectFunc        },
    { "json_remove",         -1, 0,   jsonRemoveFunc        },
    { "json_replace",        -1, 0,   jsonReplaceFunc       },
    { "json_set",            -1, 1,   jsonSetFunc           },
    { "json_type",            1, 0,   jsonTypeFunc          },
    { "json_type",            2, 0,   jsonTypeFunc          },
    { "json_valid",           1, 0,   jsonValidFunc         },

#if SQLITE_DEBUG
    /* DEBUG and TESTING functions */
    { "json_parse",           1, 0,   jsonParseFunc         },
    { "json_test1",           1, 0,   jsonTest1Func         },

#endif
  };
#ifndef SQLITE_OMIT_VIRTUALTABLE
  static const struct {
     const char *zName;
     sqlite3_module *pModule;
  } aMod[] = {
Changes to src/btree.c.
783
784
785
786
787
788
789











































790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
  for(i=0; i<=pCur->iPage; i++){
    releasePage(pCur->apPage[i]);
    pCur->apPage[i] = 0;
  }
  pCur->iPage = -1;
}













































/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->eState==CURSOR_SKIPNEXT ){
    pCur->eState = CURSOR_VALID;
  }else{
    pCur->skipNext = 0;
  }
  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
  assert( rc==SQLITE_OK );  /* KeySize() cannot fail */

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->curIntKey ){
    void *pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->curIntKey || !pCur->pKey );

  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852


853




















854
855
856
857
858
859
860
861
  for(i=0; i<=pCur->iPage; i++){
    releasePage(pCur->apPage[i]);
    pCur->apPage[i] = 0;
  }
  pCur->iPage = -1;
}

/*
** The cursor passed as the only argument must point to a valid entry
** when this function is called (i.e. have eState==CURSOR_VALID). This
** function saves the current cursor key in variables pCur->nKey and
** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 
** code otherwise.
**
** If the cursor is open on an intkey table, then the integer key
** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 
** set to point to a malloced buffer pCur->nKey bytes in size containing 
** the key.
*/
static int saveCursorKey(BtCursor *pCur){
  int rc;
  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
  assert( rc==SQLITE_OK );  /* KeySize() cannot fail */

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.  */
  if( 0==pCur->curIntKey ){
    void *pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->curIntKey || !pCur->pKey );
  return rc;
}

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->eState==CURSOR_SKIPNEXT ){
    pCur->eState = CURSOR_VALID;
  }else{
    pCur->skipNext = 0;
  }























  rc = saveCursorKey(pCur);
  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;
8426
8427
8428
8429
8430
8431
8432
8433

8434




8435
8436
8437
8438
8439
8440
8441
8442
8443
8444

8445
8446
8447
8448
8449
8450
8451
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor

** is left pointing at an arbitrary location.




*/
int sqlite3BtreeDelete(BtCursor *pCur){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */


  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );







|
>
|
>
>
>
>

|








>







8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to. 
**
** If the second parameter is zero, then the cursor is left pointing at an
** arbitrary location after the delete. If it is non-zero, then the cursor 
** is left in a state such that the next call to BtreeNext() or BtreePrev()
** moves it to the same row as it would if the call to BtreeDelete() had
** been omitted.
*/
int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  u16 szCell;                          /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488

























8489
8490
8491
8492
8493
8494
8495
  if( !pPage->leaf ){
    int notUsed = 0;
    rc = sqlite3BtreePrevious(pCur, &notUsed);
    if( rc ) return rc;
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications. Make the page containing the entry to be 
  ** deleted writable. Then free any overflow pages associated with the 
  ** entry and finally remove the cell itself from within the page.  
  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }


























  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor







|
<
<
<











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







8494
8495
8496
8497
8498
8499
8500
8501



8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
  if( !pPage->leaf ){
    int notUsed = 0;
    rc = sqlite3BtreePrevious(pCur, &notUsed);
    if( rc ) return rc;
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications.  */



  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
  ** returning. 
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */
  if( bPreserve ){
    if( !pPage->leaf 
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &szCell);
  dropCell(pPage, iCellIdx, szCell, &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
8535
8536
8537
8538
8539
8540
8541











8542




8543
8544
8545
8546
8547
8548
8549
    while( pCur->iPage>iCellDepth ){
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){











    moveToRoot(pCur);




  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.







>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>







8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
    while( pCur->iPage>iCellDepth ){
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && pCur->iPage==iCellDepth );
      assert( pPage->nCell>0 && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
      }
    }else{
      rc = moveToRoot(pCur);
      if( bPreserve ){
        pCur->eState = CURSOR_REQUIRESEEK;
      }
    }
  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
Changes to src/btree.h.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
  int *pRes
);
int sqlite3BtreeCursorHasMoved(BtCursor*);
int sqlite3BtreeCursorRestore(BtCursor*, int*);
int sqlite3BtreeDelete(BtCursor*);
int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
                                  const void *pData, int nData,
                                  int nZero, int bias, int seekResult);
int sqlite3BtreeFirst(BtCursor*, int *pRes);
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);







|







181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
  int *pRes
);
int sqlite3BtreeCursorHasMoved(BtCursor*);
int sqlite3BtreeCursorRestore(BtCursor*, int*);
int sqlite3BtreeDelete(BtCursor*, int);
int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
                                  const void *pData, int nData,
                                  int nZero, int bias, int seekResult);
int sqlite3BtreeFirst(BtCursor*, int *pRes);
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);
Changes to src/build.c.
353
354
355
356
357
358
359

360
361
362
363
364
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    return 0;
  }

  p = sqlite3FindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = isView ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE

    /* If zName is the not the name of a table in the schema created using
    ** CREATE, then check to see if it is the name of an virtual table that
    ** can be an eponymous virtual table. */
    Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
    if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
      return pMod->pEpoTab;

    }
#endif
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }
#if SQLITE_USER_AUTHENICATION
  else if( pParse->db->auth.authLevel<UAUTH_User ){
    sqlite3ErrorMsg(pParse, "user not authenticated");
    p = 0;
  }
#endif
  return p;
}







>
|
|
|
|
|
|
>









|







353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    return 0;
  }

  p = sqlite3FindTable(pParse->db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = isView ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
      /* If zName is the not the name of a table in the schema created using
      ** CREATE, then check to see if it is the name of an virtual table that
      ** can be an eponymous virtual table. */
      Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
      if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
        return pMod->pEpoTab;
      }
    }
#endif
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }
#if SQLITE_USER_AUTHENTICATION
  else if( pParse->db->auth.authLevel<UAUTH_User ){
    sqlite3ErrorMsg(pParse, "user not authenticated");
    p = 0;
  }
#endif
  return p;
}
980
981
982
983
984
985
986


987
988
989
990
991
992
993
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int j1;
    int fileFormat;
    int reg1, reg2, reg3;


    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif







>
>







982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
    int j1;
    int fileFormat;
    int reg1, reg2, reg3;
    /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
    static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
    sqlite3BeginWriteOperation(pParse, 1, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite3VdbeAddOp0(v, OP_VBegin);
    }
#endif
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    }else
#endif
    {
      pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
    sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
  }

  /* Normal (non-error) return. */
  return;







|







1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
    }else
#endif
    {
      pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
    }
    sqlite3OpenMasterTable(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
    sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
    sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
    sqlite3VdbeAddOp0(v, OP_Close);
  }

  /* Normal (non-error) return. */
  return;
Changes to src/dbstat.c.
12
13
14
15
16
17
18



19
20
21
22
23
24
25
**
** This file contains an implementation of the "dbstat" virtual table.
**
** The dbstat virtual table is used to extract low-level formatting
** information from an SQLite database in order to implement the
** "sqlite3_analyzer" utility.  See the ../tool/spaceanal.tcl script
** for an example implementation.



*/

#include "sqliteInt.h"   /* Requires access to internal data structures */
#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
    && !defined(SQLITE_OMIT_VIRTUALTABLE)

/*







>
>
>







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
**
** This file contains an implementation of the "dbstat" virtual table.
**
** The dbstat virtual table is used to extract low-level formatting
** information from an SQLite database in order to implement the
** "sqlite3_analyzer" utility.  See the ../tool/spaceanal.tcl script
** for an example implementation.
**
** Additional information is available on the "dbstat.html" page of the
** official SQLite documentation.
*/

#include "sqliteInt.h"   /* Requires access to internal data structures */
#if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
    && !defined(SQLITE_OMIT_VIRTUALTABLE)

/*
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
  "  pageno     INTEGER,          /* Page number */"                        \
  "  pagetype   STRING,           /* 'internal', 'leaf' or 'overflow' */"   \
  "  ncell      INTEGER,          /* Cells on page (0 for overflow) */"     \
  "  payload    INTEGER,          /* Bytes of payload on this page */"      \
  "  unused     INTEGER,          /* Bytes of unused space on this page */" \
  "  mx_payload INTEGER,          /* Largest payload size of all cells */"  \
  "  pgoffset   INTEGER,          /* Offset of page in file */"             \
  "  pgsize     INTEGER           /* Size of the page */"                   \

  ");"


typedef struct StatTable StatTable;
typedef struct StatCursor StatCursor;
typedef struct StatPage StatPage;
typedef struct StatCell StatCell;







|
>







63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
  "  pageno     INTEGER,          /* Page number */"                        \
  "  pagetype   STRING,           /* 'internal', 'leaf' or 'overflow' */"   \
  "  ncell      INTEGER,          /* Cells on page (0 for overflow) */"     \
  "  payload    INTEGER,          /* Bytes of payload on this page */"      \
  "  unused     INTEGER,          /* Bytes of unused space on this page */" \
  "  mx_payload INTEGER,          /* Largest payload size of all cells */"  \
  "  pgoffset   INTEGER,          /* Offset of page in file */"             \
  "  pgsize     INTEGER,          /* Size of the page */"                   \
  "  schema     TEXT HIDDEN       /* Database schema being analyzed */"     \
  ");"


typedef struct StatTable StatTable;
typedef struct StatCursor StatCursor;
typedef struct StatPage StatPage;
typedef struct StatCell StatCell;
98
99
100
101
102
103
104

105
106
107
108
109
110
111
  int nMxPayload;                 /* Largest payload of any cell on this page */
};

struct StatCursor {
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Iterates through set of root pages */
  int isEof;                      /* After pStmt has returned SQLITE_DONE */


  StatPage aPage[32];
  int iPage;                      /* Current entry in aPage[] */

  /* Values to return. */
  char *zName;                    /* Value of 'name' column */
  char *zPath;                    /* Value of 'path' column */







>







102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  int nMxPayload;                 /* Largest payload of any cell on this page */
};

struct StatCursor {
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Iterates through set of root pages */
  int isEof;                      /* After pStmt has returned SQLITE_DONE */
  int iDb;                        /* Schema used for this query */

  StatPage aPage[32];
  int iPage;                      /* Current entry in aPage[] */

  /* Values to return. */
  char *zName;                    /* Value of 'name' column */
  char *zPath;                    /* Value of 'path' column */
175
176
177
178
179
180
181
182



183
184




















185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
static int statDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** There is no "best-index". This virtual table always does a linear
** scan of the binary VFS log file.



*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){





















  /* Records are always returned in ascending order of (name, path). 
  ** If this will satisfy the client, set the orderByConsumed flag so that 
  ** SQLite does not do an external sort.
  */
  if( ( pIdxInfo->nOrderBy==1
     && pIdxInfo->aOrderBy[0].iColumn==0
     && pIdxInfo->aOrderBy[0].desc==0
     ) ||
      ( pIdxInfo->nOrderBy==2
     && pIdxInfo->aOrderBy[0].iColumn==0
     && pIdxInfo->aOrderBy[0].desc==0
     && pIdxInfo->aOrderBy[1].iColumn==1
     && pIdxInfo->aOrderBy[1].desc==0
     )
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = 10.0;
  return SQLITE_OK;
}

/*
** Open a new statvfs cursor.
*/
static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  StatTable *pTab = (StatTable *)pVTab;
  StatCursor *pCsr;
  int rc;

  pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
  if( pCsr==0 ){
    rc = SQLITE_NOMEM;
  }else{
    char *zSql;
    memset(pCsr, 0, sizeof(StatCursor));
    pCsr->base.pVtab = pVTab;

    zSql = sqlite3_mprintf(
        "SELECT 'sqlite_master' AS name, 1 AS rootpage, 'table' AS type"
        "  UNION ALL  "
        "SELECT name, rootpage, type"
        "  FROM \"%w\".sqlite_master WHERE rootpage!=0"
        "  ORDER BY name", pTab->db->aDb[pTab->iDb].zName);
    if( zSql==0 ){
      rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }
    if( rc!=SQLITE_OK ){
      sqlite3_free(pCsr);
      pCsr = 0;
    }
  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return rc;
}

static void statClearPage(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);







|
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



















<









<



|

<


|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



|







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240

241
242
243
244
245

246
247
248
















249
250
251
252
253
254
255
256
257
258
259
static int statDisconnect(sqlite3_vtab *pVtab){
  sqlite3_free(pVtab);
  return SQLITE_OK;
}

/*
** There is no "best-index". This virtual table always does a linear
** scan.  However, a schema=? constraint should cause this table to
** operate on a different database schema, so check for it.
**
** idxNum is normally 0, but will be 1 if a schema=? constraint exists.
*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int i;

  pIdxInfo->estimatedCost = 1.0e6;  /* Initial cost estimate */

  /* Look for a valid schema=? constraint.  If found, change the idxNum to
  ** 1 and request the value of that constraint be sent to xFilter.  And
  ** lower the cost estimate to encourage the constrained version to be
  ** used.
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pIdxInfo->aConstraint[i].usable==0 ) continue;
    if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    if( pIdxInfo->aConstraint[i].iColumn!=10 ) continue;
    pIdxInfo->idxNum = 1;
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }


  /* Records are always returned in ascending order of (name, path). 
  ** If this will satisfy the client, set the orderByConsumed flag so that 
  ** SQLite does not do an external sort.
  */
  if( ( pIdxInfo->nOrderBy==1
     && pIdxInfo->aOrderBy[0].iColumn==0
     && pIdxInfo->aOrderBy[0].desc==0
     ) ||
      ( pIdxInfo->nOrderBy==2
     && pIdxInfo->aOrderBy[0].iColumn==0
     && pIdxInfo->aOrderBy[0].desc==0
     && pIdxInfo->aOrderBy[1].iColumn==1
     && pIdxInfo->aOrderBy[1].desc==0
     )
  ){
    pIdxInfo->orderByConsumed = 1;
  }


  return SQLITE_OK;
}

/*
** Open a new statvfs cursor.
*/
static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  StatTable *pTab = (StatTable *)pVTab;
  StatCursor *pCsr;


  pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
  if( pCsr==0 ){
    return SQLITE_NOMEM;
  }else{

    memset(pCsr, 0, sizeof(StatCursor));
    pCsr->base.pVtab = pVTab;
    pCsr->iDb = pTab->iDb;
















  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return SQLITE_OK;
}

static void statClearPage(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);
261
262
263
264
265
266
267

268
269
270
271
272
273
274
  sqlite3_reset(pCsr->pStmt);
  for(i=0; i<ArraySize(pCsr->aPage); i++){
    statClearPage(&pCsr->aPage[i]);
  }
  pCsr->iPage = 0;
  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

}

/*
** Close a statvfs cursor.
*/
static int statClose(sqlite3_vtab_cursor *pCursor){
  StatCursor *pCsr = (StatCursor *)pCursor;







>







270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  sqlite3_reset(pCsr->pStmt);
  for(i=0; i<ArraySize(pCsr->aPage); i++){
    statClearPage(&pCsr->aPage[i]);
  }
  pCsr->iPage = 0;
  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;
  pCsr->isEof = 0;
}

/*
** Close a statvfs cursor.
*/
static int statClose(sqlite3_vtab_cursor *pCursor){
  StatCursor *pCsr = (StatCursor *)pCursor;
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
*/
static int statNext(sqlite3_vtab_cursor *pCursor){
  int rc;
  int nPayload;
  char *z;
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable *)pCursor->pVtab;
  Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
  Pager *pPager = sqlite3BtreePager(pBt);

  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

statNextRestart:
  if( pCsr->aPage[0].pPg==0 ){







|







433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
*/
static int statNext(sqlite3_vtab_cursor *pCursor){
  int rc;
  int nPayload;
  char *z;
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable *)pCursor->pVtab;
  Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
  Pager *pPager = sqlite3BtreePager(pBt);

  sqlite3_free(pCsr->zPath);
  pCsr->zPath = 0;

statNextRestart:
  if( pCsr->aPage[0].pPg==0 ){
561
562
563
564
565
566
567




568











569

















570


571
572
573
574
575
576
577

static int statFilter(
  sqlite3_vtab_cursor *pCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  StatCursor *pCsr = (StatCursor *)pCursor;
















  statResetCsr(pCsr);

















  return statNext(pCursor);


}

static int statColumn(
  sqlite3_vtab_cursor *pCursor, 
  sqlite3_context *ctx, 
  int i
){







>
>
>
>

>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>







571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

static int statFilter(
  sqlite3_vtab_cursor *pCursor, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  StatCursor *pCsr = (StatCursor *)pCursor;
  StatTable *pTab = (StatTable*)(pCursor->pVtab);
  char *zSql;
  int rc = SQLITE_OK;
  char *zMaster;

  if( idxNum==1 ){
    const char *zDbase = (const char*)sqlite3_value_text(argv[0]);
    pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
    if( pCsr->iDb<0 ){
      sqlite3_free(pCursor->pVtab->zErrMsg);
      pCursor->pVtab->zErrMsg = sqlite3_mprintf("no such schema: %s", zDbase);
      return pCursor->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
    }
  }else{
    pCsr->iDb = pTab->iDb;
  }
  statResetCsr(pCsr);
  sqlite3_finalize(pCsr->pStmt);
  pCsr->pStmt = 0;
  zMaster = pCsr->iDb==1 ? "sqlite_temp_master" : "sqlite_master";
  zSql = sqlite3_mprintf(
      "SELECT 'sqlite_master' AS name, 1 AS rootpage, 'table' AS type"
      "  UNION ALL  "
      "SELECT name, rootpage, type"
      "  FROM \"%w\".%s WHERE rootpage!=0"
      "  ORDER BY name", pTab->db->aDb[pCsr->iDb].zName, zMaster);
  if( zSql==0 ){
    return SQLITE_NOMEM;
  }else{
    rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
    sqlite3_free(zSql);
  }

  if( rc==SQLITE_OK ){
    rc = statNext(pCursor);
  }
  return rc;
}

static int statColumn(
  sqlite3_vtab_cursor *pCursor, 
  sqlite3_context *ctx, 
  int i
){
600
601
602
603
604
605
606
607
608
609
610






611
612
613
614
615
616
617
      break;
    case 7:            /* mx_payload */
      sqlite3_result_int(ctx, pCsr->nMxPayload);
      break;
    case 8:            /* pgoffset */
      sqlite3_result_int64(ctx, pCsr->iOffset);
      break;
    default:           /* pgsize */
      assert( i==9 );
      sqlite3_result_int(ctx, pCsr->szPage);
      break;






  }
  return SQLITE_OK;
}

static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  StatCursor *pCsr = (StatCursor *)pCursor;
  *pRowid = pCsr->iPageno;







|
<


>
>
>
>
>
>







644
645
646
647
648
649
650
651

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
      break;
    case 7:            /* mx_payload */
      sqlite3_result_int(ctx, pCsr->nMxPayload);
      break;
    case 8:            /* pgoffset */
      sqlite3_result_int64(ctx, pCsr->iOffset);
      break;
    case 9:            /* pgsize */

      sqlite3_result_int(ctx, pCsr->szPage);
      break;
    default: {          /* schema */
      sqlite3 *db = sqlite3_context_db_handle(ctx);
      int iDb = pCsr->iDb;
      sqlite3_result_text(ctx, db->aDb[iDb].zName, -1, SQLITE_STATIC);
      break;
    }
  }
  return SQLITE_OK;
}

static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  StatCursor *pCsr = (StatCursor *)pCursor;
  *pRowid = pCsr->iPageno;
Changes to src/delete.c.
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

256
257
258
259
260
261
262
  int nIdx;              /* Number of indices */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */
  int okOnePass;         /* True for one-pass algorithm without the FIFO */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
  Index *pPk;            /* The PRIMARY KEY index on the table */
  int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
  i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */
  int addrDelete = 0;    /* Jump directly to the delete logic */
  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */

#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }







|











<





>







231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
  int nIdx;              /* Number of indices */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;               /* Database number */
  int memCnt = -1;       /* Memory cell used for change counting */
  int rcauth;            /* Value returned by authorization callback */
  int eOnePass;          /* ONEPASS_OFF or _SINGLE or _MULTI */
  int aiCurOnePass[2];   /* The write cursors opened by WHERE_ONEPASS */
  u8 *aToOpen = 0;       /* Open cursor iTabCur+j if aToOpen[j] is true */
  Index *pPk;            /* The PRIMARY KEY index on the table */
  int iPk = 0;           /* First of nPk registers holding PRIMARY KEY value */
  i16 nPk = 1;           /* Number of columns in the PRIMARY KEY */
  int iKey;              /* Memory cell holding key of row to be deleted */
  i16 nKey;              /* Number of memory cells in the row key */
  int iEphCur = 0;       /* Ephemeral table holding all primary key values */
  int iRowSet = 0;       /* Register for rowset of rows to delete */
  int addrBypass = 0;    /* Address of jump over the delete logic */
  int addrLoop = 0;      /* Top of the delete loop */

  int addrEphOpen = 0;   /* Instruction to open the Ephemeral table */
 
#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  Trigger *pTrigger;           /* List of table triggers, if required */
  int bComplex;                /* True if there are either triggers or FKs */
#endif

  memset(&sContext, 0, sizeof(sContext));
  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ){
    goto delete_from_cleanup;
  }
272
273
274
275
276
277
278

279
280
281

282
283
284
285
286
287
288

  /* Figure out if we have any triggers and if the table being
  ** deleted from is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;

#else
# define pTrigger 0
# define isView 0

#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.







>



>







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

  /* Figure out if we have any triggers and if the table being
  ** deleted from is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
  isView = pTab->pSelect!=0;
  bComplex = pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0);
#else
# define pTrigger 0
# define isView 0
# define bComplex 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif

  /* If pTab is really a view, make sure it has been initialized.
355
356
357
358
359
360
361
362


363
364
365
366
367
368
369
370
371
372
373
374
375
376
377


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398





399
400
401
402
403
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454


455
456
457
458
459
460
461
462
463
464
465
466
467
468
469




470
471
472
473
474

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */
  if( rcauth==SQLITE_OK && pWhere==0 && !pTrigger && !IsVirtual(pTab) 


   && 0==sqlite3FkRequired(pParse, pTab, 0, 0)
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    if( HasRowid(pTab) ){
      sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                        pTab->zName, P4_STATIC);
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  {


    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    }else{
      /* For a WITHOUT ROWID table, create an ephemeral table used to
      ** hold all primary keys for rows to be deleted. */
      pPk = sqlite3PrimaryKeyIndex(pTab);
      assert( pPk!=0 );
      nPk = pPk->nKeyCol;
      iPk = pParse->nMem+1;
      pParse->nMem += nPk;
      iEphCur = pParse->nTab++;
      addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
      sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    }
  
    /* Construct a query to find the rowid or primary key for every row
    ** to be deleted, based on the WHERE clause.





    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, 
                               WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK,
                               iTabCur+1);
    if( pWInfo==0 ) goto delete_from_cleanup;
    okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);

  
    /* Keep track of the number of rows to be deleted */
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
  
    /* Extract the rowid or primary key for the current row */
    if( pPk ){
      for(i=0; i<nPk; i++){
        assert( pPk->aiColumn[i]>=(-1) );
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
                                        pPk->aiColumn[i], iPk+i);
      }
      iKey = iPk;
    }else{
      iKey = pParse->nMem + 1;
      iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0);
      if( iKey>pParse->nMem ) pParse->nMem = iKey;
    }
  
    if( okOnePass ){
      /* For ONEPASS, no need to store the rowid/primary-key.  There is only
      ** one, so just keep it in its register(s) and fall through to the
      ** delete code.
      */
      nKey = nPk; /* OP_Found will use an unpacked key */
      aToOpen = sqlite3DbMallocRaw(db, nIdx+2);
      if( aToOpen==0 ){
        sqlite3WhereEnd(pWInfo);
        goto delete_from_cleanup;
      }
      memset(aToOpen, 1, nIdx+1);
      aToOpen[nIdx+1] = 0;
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
      if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
      addrDelete = sqlite3VdbeAddOp0(v, OP_Goto); /* Jump to DELETE logic */
    }else if( pPk ){
      /* Construct a composite key for the row to be deleted and remember it */
      iKey = ++pParse->nMem;
      nKey = 0;   /* Zero tells OP_Found to use a composite key */
      sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
                        sqlite3IndexAffinityStr(pParse->db, pPk), nPk);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey);
    }else{
      /* Get the rowid of the row to be deleted and remember it in the RowSet */
      nKey = 1;  /* OP_Seek always uses a single rowid */
      sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
    }
  


    /* End of the WHERE loop */
    sqlite3WhereEnd(pWInfo);
    if( okOnePass ){
      /* Bypass the delete logic below if the WHERE loop found zero rows */
      addrBypass = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeGoto(v, addrBypass);
      sqlite3VdbeJumpHere(v, addrDelete);
    }
  
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){




      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iTabCur, aToOpen,
                                 &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );

    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.
    */
    if( okOnePass ){
      /* Just one row.  Hence the top-of-loop is a no-op */
      assert( nKey==nPk );  /* OP_Found will use an unpacked key */
      assert( !IsVirtual(pTab) );
      if( aToOpen[iDataCur-iTabCur] ){
        assert( pPk!=0 || pTab->pSelect!=0 );
        sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
        VdbeCoverage(v);
      }
    }else if( pPk ){
      addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);







|
>
>
|














>
>




















|
>
>
>
>
>

|
<
<

|
>




















|
|

|
<











|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
|
<
|
<

|
|








>
>
>
>





>





|
<

<







357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

496
497
498
499
500
501
502
  }

#ifndef SQLITE_OMIT_TRUNCATE_OPTIMIZATION
  /* Special case: A DELETE without a WHERE clause deletes everything.
  ** It is easier just to erase the whole table. Prior to version 3.6.5,
  ** this optimization caused the row change count (the value returned by 
  ** API function sqlite3_count_changes) to be set incorrectly.  */
  if( rcauth==SQLITE_OK
   && pWhere==0
   && !bComplex
   && !IsVirtual(pTab)
  ){
    assert( !isView );
    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
    if( HasRowid(pTab) ){
      sqlite3VdbeAddOp4(v, OP_Clear, pTab->tnum, iDb, memCnt,
                        pTab->zName, P4_STATIC);
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pIdx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb);
    }
  }else
#endif /* SQLITE_OMIT_TRUNCATE_OPTIMIZATION */
  {
    u16 wcf = WHERE_ONEPASS_DESIRED|WHERE_DUPLICATES_OK;
    wcf |= (bComplex ? 0 : WHERE_ONEPASS_MULTIROW);
    if( HasRowid(pTab) ){
      /* For a rowid table, initialize the RowSet to an empty set */
      pPk = 0;
      nPk = 1;
      iRowSet = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    }else{
      /* For a WITHOUT ROWID table, create an ephemeral table used to
      ** hold all primary keys for rows to be deleted. */
      pPk = sqlite3PrimaryKeyIndex(pTab);
      assert( pPk!=0 );
      nPk = pPk->nKeyCol;
      iPk = pParse->nMem+1;
      pParse->nMem += nPk;
      iEphCur = pParse->nTab++;
      addrEphOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEphCur, nPk);
      sqlite3VdbeSetP4KeyInfo(pParse, pPk);
    }
  
    /* Construct a query to find the rowid or primary key for every row
    ** to be deleted, based on the WHERE clause. Set variable eOnePass
    ** to indicate the strategy used to implement this delete:
    **
    **  ONEPASS_OFF:    Two-pass approach - use a FIFO for rowids/PK values.
    **  ONEPASS_SINGLE: One-pass approach - at most one row deleted.
    **  ONEPASS_MULTI:  One-pass approach - any number of rows may be deleted.
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1);


    if( pWInfo==0 ) goto delete_from_cleanup;
    eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass);
    assert( IsVirtual(pTab)==0 || eOnePass==ONEPASS_OFF );
  
    /* Keep track of the number of rows to be deleted */
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
  
    /* Extract the rowid or primary key for the current row */
    if( pPk ){
      for(i=0; i<nPk; i++){
        assert( pPk->aiColumn[i]>=(-1) );
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur,
                                        pPk->aiColumn[i], iPk+i);
      }
      iKey = iPk;
    }else{
      iKey = pParse->nMem + 1;
      iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0);
      if( iKey>pParse->nMem ) pParse->nMem = iKey;
    }
  
    if( eOnePass!=ONEPASS_OFF ){
      /* For ONEPASS, no need to store the rowid/primary-key. There is only
      ** one, so just keep it in its register(s) and fall through to the
      ** delete code.  */

      nKey = nPk; /* OP_Found will use an unpacked key */
      aToOpen = sqlite3DbMallocRaw(db, nIdx+2);
      if( aToOpen==0 ){
        sqlite3WhereEnd(pWInfo);
        goto delete_from_cleanup;
      }
      memset(aToOpen, 1, nIdx+1);
      aToOpen[nIdx+1] = 0;
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iTabCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iTabCur] = 0;
      if( addrEphOpen ) sqlite3VdbeChangeToNoop(v, addrEphOpen);
    }else{
      if( pPk ){
        /* Add the PK key for this row to the temporary table */
        iKey = ++pParse->nMem;
        nKey = 0;   /* Zero tells OP_Found to use a composite key */
        sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey,
            sqlite3IndexAffinityStr(pParse->db, pPk), nPk);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iEphCur, iKey);
      }else{
        /* Add the rowid of the row to be deleted to the RowSet */
        nKey = 1;  /* OP_Seek always uses a single rowid */
        sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey);
      }
    }
  
    /* If this DELETE cannot use the ONEPASS strategy, this is the 
    ** end of the WHERE loop */

    if( eOnePass!=ONEPASS_OFF ){

      addrBypass = sqlite3VdbeMakeLabel(v);
    }else{
      sqlite3WhereEnd(pWInfo);
    }
  
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;
      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iTabCur, aToOpen,
                                 &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.
    */
    if( eOnePass!=ONEPASS_OFF ){

      assert( nKey==nPk );  /* OP_Found will use an unpacked key */

      if( aToOpen[iDataCur-iTabCur] ){
        assert( pPk!=0 || pTab->pSelect!=0 );
        sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey);
        VdbeCoverage(v);
      }
    }else if( pPk ){
      addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v);
504
505
506
507
508
509
510




511
512
513
514
515
516
517

518
519
520
521
522
523
524
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */




      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                               iKey, nKey, count, OE_Default, okOnePass);
    }
  
    /* End of the loop over all rowids/primary-keys. */
    if( okOnePass ){
      sqlite3VdbeResolveLabel(v, addrBypass);

    }else if( pPk ){
      sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrLoop);
    }else{
      sqlite3VdbeGoto(v, addrLoop);
      sqlite3VdbeJumpHere(v, addrLoop);
    }     







>
>
>
>

|



|

>







516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      int iIdxNoSeek = -1;
      if( bComplex==0 && aiCurOnePass[1]!=iDataCur ){
        iIdxNoSeek = aiCurOnePass[1];
      }
      sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
          iKey, nKey, count, OE_Default, eOnePass, iIdxNoSeek);
    }
  
    /* End of the loop over all rowids/primary-keys. */
    if( eOnePass!=ONEPASS_OFF ){
      sqlite3VdbeResolveLabel(v, addrBypass);
      sqlite3WhereEnd(pWInfo);
    }else if( pPk ){
      sqlite3VdbeAddOp2(v, OP_Next, iEphCur, addrLoop+1); VdbeCoverage(v);
      sqlite3VdbeJumpHere(v, addrLoop);
    }else{
      sqlite3VdbeGoto(v, addrLoop);
      sqlite3VdbeJumpHere(v, addrLoop);
    }     
582
583
584
585
586
587
588



















589
590
591
592
593
594
595
596
597
598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number iIdxCur+i for the i-th index.
**
**   3.  The primary key for the row to be deleted must be stored in a
**       sequence of nPk memory cells starting at iPk.  If nPk==0 that means
**       that a search record formed from OP_MakeRecord is contained in the
**       single memory location iPk.



















*/
void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  Trigger *pTrigger, /* List of triggers to (potentially) fire */
  int iDataCur,      /* Cursor from which column data is extracted */
  int iIdxCur,       /* First index cursor */
  int iPk,           /* First memory cell containing the PRIMARY KEY */
  i16 nPk,           /* Number of PRIMARY KEY memory cells */
  u8 count,          /* If non-zero, increment the row change counter */
  u8 onconf,         /* Default ON CONFLICT policy for triggers */

  u8 bNoSeek         /* iDataCur is already pointing to the row to delete */
){
  Vdbe *v = pParse->pVdbe;        /* Vdbe */
  int iOld = 0;                   /* First register in OLD.* array */
  int iLabel;                     /* Label resolved to end of generated code */
  u8 opSeek;                      /* Seek opcode */

  /* Vdbe is guaranteed to have been allocated by this stage. */
  assert( v );
  VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)",
                         iDataCur, iIdxCur, iPk, (int)nPk));

  /* Seek cursor iCur to the row to delete. If this row no longer exists 
  ** (this can happen if a trigger program has already deleted it), do
  ** not attempt to delete it or fire any DELETE triggers.  */
  iLabel = sqlite3VdbeMakeLabel(v);
  opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
  if( !bNoSeek ){
    sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
    VdbeCoverageIf(v, opSeek==OP_NotExists);
    VdbeCoverageIf(v, opSeek==OP_NotFound);
  }
 
  /* If there are any triggers to fire, allocate a range of registers to
  ** use for the old.* references in the triggers.  */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>
|
















|







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
**   2.  Read/write cursors for all indices of pTab must be open as
**       cursor number iIdxCur+i for the i-th index.
**
**   3.  The primary key for the row to be deleted must be stored in a
**       sequence of nPk memory cells starting at iPk.  If nPk==0 that means
**       that a search record formed from OP_MakeRecord is contained in the
**       single memory location iPk.
**
** eMode:
**   Parameter eMode may be passed either ONEPASS_OFF (0), ONEPASS_SINGLE, or
**   ONEPASS_MULTI.  If eMode is not ONEPASS_OFF, then the cursor
**   iDataCur already points to the row to delete. If eMode is ONEPASS_OFF
**   then this function must seek iDataCur to the entry identified by iPk
**   and nPk before reading from it.
**
**   If eMode is ONEPASS_MULTI, then this call is being made as part
**   of a ONEPASS delete that affects multiple rows. In this case, if 
**   iIdxNoSeek is a valid cursor number (>=0), then its position should
**   be preserved following the delete operation. Or, if iIdxNoSeek is not
**   a valid cursor number, the position of iDataCur should be preserved
**   instead.
**
** iIdxNoSeek:
**   If iIdxNoSeek is a valid cursor number (>=0), then it identifies an
**   index cursor (from within array of cursors starting at iIdxCur) that
**   already points to the index entry to be deleted.
*/
void sqlite3GenerateRowDelete(
  Parse *pParse,     /* Parsing context */
  Table *pTab,       /* Table containing the row to be deleted */
  Trigger *pTrigger, /* List of triggers to (potentially) fire */
  int iDataCur,      /* Cursor from which column data is extracted */
  int iIdxCur,       /* First index cursor */
  int iPk,           /* First memory cell containing the PRIMARY KEY */
  i16 nPk,           /* Number of PRIMARY KEY memory cells */
  u8 count,          /* If non-zero, increment the row change counter */
  u8 onconf,         /* Default ON CONFLICT policy for triggers */
  u8 eMode,          /* ONEPASS_OFF, _SINGLE, or _MULTI.  See above */
  int iIdxNoSeek     /* Cursor number of cursor that does not need seeking */
){
  Vdbe *v = pParse->pVdbe;        /* Vdbe */
  int iOld = 0;                   /* First register in OLD.* array */
  int iLabel;                     /* Label resolved to end of generated code */
  u8 opSeek;                      /* Seek opcode */

  /* Vdbe is guaranteed to have been allocated by this stage. */
  assert( v );
  VdbeModuleComment((v, "BEGIN: GenRowDel(%d,%d,%d,%d)",
                         iDataCur, iIdxCur, iPk, (int)nPk));

  /* Seek cursor iCur to the row to delete. If this row no longer exists 
  ** (this can happen if a trigger program has already deleted it), do
  ** not attempt to delete it or fire any DELETE triggers.  */
  iLabel = sqlite3VdbeMakeLabel(v);
  opSeek = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
  if( eMode==ONEPASS_OFF ){
    sqlite3VdbeAddOp4Int(v, opSeek, iDataCur, iLabel, iPk, nPk);
    VdbeCoverageIf(v, opSeek==OP_NotExists);
    VdbeCoverageIf(v, opSeek==OP_NotFound);
  }
 
  /* If there are any triggers to fire, allocate a range of registers to
  ** use for the old.* references in the triggers.  */
670
671
672
673
674
675
676
677
678
679
680
681




682
683
684
685
686
687
688
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }




  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);








|




>
>
>
>







707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    sqlite3FkCheck(pParse, pTab, iOld, 0, 0, 0);
  }

  /* Delete the index and table entries. Skip this step if pTab is really
  ** a view (in which case the only effect of the DELETE statement is to
  ** fire the INSTEAD OF triggers).  */ 
  if( pTab->pSelect==0 ){
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,iIdxNoSeek);
    sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, (count?OPFLAG_NCHANGE:0));
    if( count ){
      sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
    }
    if( iIdxNoSeek>=0 ){
      sqlite3VdbeAddOp1(v, OP_Delete, iIdxNoSeek);
    }
    sqlite3VdbeChangeP5(v, eMode==ONEPASS_MULTI);
  }

  /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to
  ** handle rows (possibly in other tables) that refer via a foreign key
  ** to the row just deleted. */ 
  sqlite3FkActions(pParse, pTab, 0, iOld, 0, 0);

717
718
719
720
721
722
723
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

740
741
742
743
744
745
746
747
748
749
750
751
**       that is to be deleted.
*/
void sqlite3GenerateRowIndexDelete(
  Parse *pParse,     /* Parsing and code generating context */
  Table *pTab,       /* Table containing the row to be deleted */
  int iDataCur,      /* Cursor of table holding data. */
  int iIdxCur,       /* First index cursor */
  int *aRegIdx       /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */

){
  int i;             /* Index loop counter */
  int r1 = -1;       /* Register holding an index key */
  int iPartIdxLabel; /* Jump destination for skipping partial index entries */
  Index *pIdx;       /* Current index */
  Index *pPrior = 0; /* Prior index */
  Vdbe *v;           /* The prepared statement under construction */
  Index *pPk;        /* PRIMARY KEY index, or NULL for rowid tables */

  v = pParse->pVdbe;
  pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
  for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    assert( iIdxCur+i!=iDataCur || pPk==pIdx );
    if( aRegIdx!=0 && aRegIdx[i]==0 ) continue;
    if( pIdx==pPk ) continue;

    VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName));
    r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1,
                                 &iPartIdxLabel, pPrior, r1);
    sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1,
                      pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn);
    sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
    pPrior = pIdx;
  }
}

/*
** Generate code that will assemble an index key and stores it in register







|
>















>


|

|







758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
**       that is to be deleted.
*/
void sqlite3GenerateRowIndexDelete(
  Parse *pParse,     /* Parsing and code generating context */
  Table *pTab,       /* Table containing the row to be deleted */
  int iDataCur,      /* Cursor of table holding data. */
  int iIdxCur,       /* First index cursor */
  int *aRegIdx,      /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */
  int iIdxNoSeek     /* Do not delete from this cursor */
){
  int i;             /* Index loop counter */
  int r1 = -1;       /* Register holding an index key */
  int iPartIdxLabel; /* Jump destination for skipping partial index entries */
  Index *pIdx;       /* Current index */
  Index *pPrior = 0; /* Prior index */
  Vdbe *v;           /* The prepared statement under construction */
  Index *pPk;        /* PRIMARY KEY index, or NULL for rowid tables */

  v = pParse->pVdbe;
  pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
  for(i=0, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
    assert( iIdxCur+i!=iDataCur || pPk==pIdx );
    if( aRegIdx!=0 && aRegIdx[i]==0 ) continue;
    if( pIdx==pPk ) continue;
    if( iIdxCur+i==iIdxNoSeek ) continue;
    VdbeModuleComment((v, "GenRowIdxDel for %s", pIdx->zName));
    r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 1,
        &iPartIdxLabel, pPrior, r1);
    sqlite3VdbeAddOp3(v, OP_IdxDelete, iIdxCur+i, r1,
        pIdx->uniqNotNull ? pIdx->nKeyCol : pIdx->nColumn);
    sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
    pPrior = pIdx;
  }
}

/*
** Generate code that will assemble an index key and stores it in register
Changes to src/insert.c.
1343
1344
1345
1346
1347
1348
1349
1350


1351
1352
1353

1354
1355
1356
1357
1358
1359
1360
        Trigger *pTrigger = 0;
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
          sqlite3MultiWrite(pParse);
          sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                                   regNewData, 1, 0, OE_Replace, 1);


        }else if( pTab->pIndex ){
          sqlite3MultiWrite(pParse);
          sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0);

        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        /*assert( seenReplace==0 );*/
        sqlite3VdbeGoto(v, ignoreDest);







|
>
>
|
|
|
>







1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
        Trigger *pTrigger = 0;
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
          sqlite3MultiWrite(pParse);
          sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                                   regNewData, 1, 0, OE_Replace,
                                   ONEPASS_SINGLE, -1);
        }else{
          if( pTab->pIndex ){
            sqlite3MultiWrite(pParse);
            sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
          }
        }
        seenReplace = 1;
        break;
      }
      case OE_Ignore: {
        /*assert( seenReplace==0 );*/
        sqlite3VdbeGoto(v, ignoreDest);
1524
1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
                                 regR, nPkField, 0, OE_Replace, pIdx==pPk);

        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrUniqueOk);
    sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);







|
>







1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
        Trigger *pTrigger = 0;
        assert( onError==OE_Replace );
        sqlite3MultiWrite(pParse);
        if( db->flags&SQLITE_RecTriggers ){
          pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
        }
        sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
            regR, nPkField, 0, OE_Replace,
            (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1);
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrUniqueOk);
    sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
Changes to src/loadext.c.
403
404
405
406
407
408
409
410



411
412
413
414
415
416
417
  sqlite3_result_blob64,
  sqlite3_result_text64,
  sqlite3_strglob,
  /* Version 3.8.11 and later */
  (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
  sqlite3_value_free,
  sqlite3_result_zeroblob64,
  sqlite3_bind_zeroblob64



};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







|
>
>
>







403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  sqlite3_result_blob64,
  sqlite3_result_text64,
  sqlite3_strglob,
  /* Version 3.8.11 and later */
  (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
  sqlite3_value_free,
  sqlite3_result_zeroblob64,
  sqlite3_bind_zeroblob64,
  /* Version 3.8.12 and later */
  sqlite3_value_subtype,
  sqlite3_result_subtype
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
Changes to src/malloc.c.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
} ScratchFreeslot;

/*
** State information local to the memory allocation subsystem.
*/
static SQLITE_WSD struct Mem0Global {
  sqlite3_mutex *mutex;         /* Mutex to serialize access */
  sqlite3_int64 alarmThreshold;  /* The soft heap limit */

  /*
  ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
  ** (so that a range test can be used to determine if an allocation
  ** being freed came from pScratch) and a pointer to the list of
  ** unused scratch allocations.
  */







|







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
} ScratchFreeslot;

/*
** State information local to the memory allocation subsystem.
*/
static SQLITE_WSD struct Mem0Global {
  sqlite3_mutex *mutex;         /* Mutex to serialize access */
  sqlite3_int64 alarmThreshold; /* The soft heap limit */

  /*
  ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
  ** (so that a range test can be used to determine if an allocation
  ** being freed came from pScratch) and a pointer to the list of
  ** unused scratch allocations.
  */
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128



129
130
131
132
133
134
135
136
137
138


139
140
141
142
143
144
145
146
147
148

149

150
151
152


153
154
155
156
157
158
159
/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}

/*
** Return the amount of memory currently in use.
*/
static sqlite3_int64 memInUse(void){
  assert( sqlite3_mutex_held(mem0.mutex) );
  return sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
}

/*
** Called when the soft heap limit is exceeded for an allocation
** of nBytes.
*/
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
static void sqlite3HeapLimitExceeded(int nByte){
  sqlite3_int64 excess = memInUse() + nByte - mem0.alarmThreshold;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory((int)(excess & 0x7fffffff));
  sqlite3_mutex_enter(mem0.mutex);
}
#else
# define sqlite3HeapLimitExceeded(X)  /* no-op */
#endif

/*
** Check to see if increasing the total memory usage by nNew bytes
** will exceed the soft heap limit.  
**
** If the soft heap limit is exceeded, set the mem0.nearlyFull flag
** and invoke sqlite3HeapLimitExceeded() to try to free up some
** memory.
*/
static void sqlite3CheckSoftHeapLimit(int nNew){
  assert( sqlite3_mutex_held(mem0.mutex) );
  if( mem0.alarmThreshold>0 ){
    if( mem0.alarmThreshold-nNew >= memInUse() ){
      mem0.nearlyFull = 1;
      sqlite3HeapLimitExceeded(nNew);
    }else{
      mem0.nearlyFull = 0;
    }
  }
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  First deprecated 2007-11-05.  Changed

** into a no-op on 2015-09-02.
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){



  return SQLITE_OK;
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;


#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  if( n>0 ){
    mem0.alarmThreshold = n;
    sqlite3CheckSoftHeapLimit(0);
  }else if( n==0 ){

    mem0.alarmThreshold = 0;

    mem0.nearlyFull = 0;
  }
  sqlite3_mutex_leave(mem0.mutex);


  return priorLimit;
}
void sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


|
>
|






>
>
>










>
>






|
|
|
<
>
|
>
|
<

>
>







69
70
71
72
73
74
75











































76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114

115
116
117
118
119
120
121
122
123
124
/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}












































#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  It used to set an alarm callback
** that was invoked when memory usage grew too large.  Now it is a
** no-op.
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  (void)xCallback;
  (void)pArg;
  (void)iThreshold;
  return SQLITE_OK;
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;
  sqlite3_int64 excess;
  sqlite3_int64 nUsed;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  if( n<0 ){
    sqlite3_mutex_leave(mem0.mutex);
    return priorLimit;

  }
  mem0.alarmThreshold = n;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (n>0 && n<=nUsed);

  sqlite3_mutex_leave(mem0.mutex);
  excess = sqlite3_memory_used() - n;
  if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
  return priorLimit;
}
void sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}

235
236
237
238
239
240
241










242
243
244
245
246
247
248
249
250
251
252




253




254
255
256
257
258
259
260
261
262
263
264
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 res, mx;
  sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
  return mx;
}











/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);




  sqlite3CheckSoftHeapLimit(nFull);




  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold ){
    sqlite3HeapLimitExceeded(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);







>
>
>
>
>
>
>
>
>
>











>
>
>
>
|
>
>
>
>


|
|







200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_int64 res, mx;
  sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
  return mx;
}

/*
** Trigger the alarm 
*/
static void sqlite3MallocAlarm(int nByte){
  if( mem0.alarmThreshold<=0 ) return;
  sqlite3_mutex_leave(mem0.mutex);
  sqlite3_release_memory(nByte);
  sqlite3_mutex_enter(mem0.mutex);
}

/*
** Do a memory allocation with statistics and alarms.  Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmThreshold>0 ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
533
534
535
536
537
538
539


540

541
542
543
544
545
546
547
548
549
550
551
552
553
554
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;


    sqlite3CheckSoftHeapLimit(nDiff);

    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    if( pNew==0 && mem0.alarmThreshold ){
      sqlite3HeapLimitExceeded((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
#endif
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);







>
>
|
>

<
|
|


<







516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531

532
533
534
535
536
537
538
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);

    if( pNew==0 && mem0.alarmThreshold>0 ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }

    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
Changes to src/mutex.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
/*
** For debugging purposes, record when the mutex subsystem is initialized
** and uninitialized so that we can assert() if there is an attempt to
** allocate a mutex while the system is uninitialized.
*/
static SQLITE_WSD int mutexIsInit = 0;
#endif /* SQLITE_DEBUG */


#ifndef SQLITE_MUTEX_OMIT
/*
** Initialize the mutex system.
*/
int sqlite3MutexInit(void){ 







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#if defined(SQLITE_DEBUG) && !defined(SQLITE_MUTEX_OMIT)
/*
** For debugging purposes, record when the mutex subsystem is initialized
** and uninitialized so that we can assert() if there is an attempt to
** allocate a mutex while the system is uninitialized.
*/
static SQLITE_WSD int mutexIsInit = 0;
#endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */


#ifndef SQLITE_MUTEX_OMIT
/*
** Initialize the mutex system.
*/
int sqlite3MutexInit(void){ 
52
53
54
55
56
57
58

59
60
61
62
63
64
65
    pTo->xMutexTry = pFrom->xMutexTry;
    pTo->xMutexLeave = pFrom->xMutexLeave;
    pTo->xMutexHeld = pFrom->xMutexHeld;
    pTo->xMutexNotheld = pFrom->xMutexNotheld;
    sqlite3MemoryBarrier();
    pTo->xMutexAlloc = pFrom->xMutexAlloc;
  }

  rc = sqlite3GlobalConfig.mutex.xMutexInit();

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 1;
#endif

  return rc;







>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    pTo->xMutexTry = pFrom->xMutexTry;
    pTo->xMutexLeave = pFrom->xMutexLeave;
    pTo->xMutexHeld = pFrom->xMutexHeld;
    pTo->xMutexNotheld = pFrom->xMutexNotheld;
    sqlite3MemoryBarrier();
    pTo->xMutexAlloc = pFrom->xMutexAlloc;
  }
  assert( sqlite3GlobalConfig.mutex.xMutexInit );
  rc = sqlite3GlobalConfig.mutex.xMutexInit();

#ifdef SQLITE_DEBUG
  GLOBAL(int, mutexIsInit) = 1;
#endif

  return rc;
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100

101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152

153
154
155

156
157
158
159
160
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
  if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
#endif

  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }
  assert( GLOBAL(int, mutexIsInit) );

  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
  if( p ){

    sqlite3GlobalConfig.mutex.xMutexFree(p);
  }
}

/*
** Obtain the mutex p. If some other thread already has the mutex, block
** until it can be obtained.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  if( p ){

    sqlite3GlobalConfig.mutex.xMutexEnter(p);
  }
}

/*
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
*/
int sqlite3_mutex_try(sqlite3_mutex *p){
  int rc = SQLITE_OK;
  if( p ){

    return sqlite3GlobalConfig.mutex.xMutexTry(p);
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was previously
** entered by the same thread.  The behavior is undefined if the mutex 
** is not currently entered. If a NULL pointer is passed as an argument
** this function is a no-op.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
  if( p ){

    sqlite3GlobalConfig.mutex.xMutexLeave(p);
  }
}

#ifndef NDEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){

  return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){

  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */







>








>








>










>











>













>










>



>





87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
  if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
#endif
  assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }
  assert( GLOBAL(int, mutexIsInit) );
  assert( sqlite3GlobalConfig.mutex.xMutexAlloc );
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
  if( p ){
    assert( sqlite3GlobalConfig.mutex.xMutexFree );
    sqlite3GlobalConfig.mutex.xMutexFree(p);
  }
}

/*
** Obtain the mutex p. If some other thread already has the mutex, block
** until it can be obtained.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  if( p ){
    assert( sqlite3GlobalConfig.mutex.xMutexEnter );
    sqlite3GlobalConfig.mutex.xMutexEnter(p);
  }
}

/*
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
*/
int sqlite3_mutex_try(sqlite3_mutex *p){
  int rc = SQLITE_OK;
  if( p ){
    assert( sqlite3GlobalConfig.mutex.xMutexTry );
    return sqlite3GlobalConfig.mutex.xMutexTry(p);
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was previously
** entered by the same thread.  The behavior is undefined if the mutex 
** is not currently entered. If a NULL pointer is passed as an argument
** this function is a no-op.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
  if( p ){
    assert( sqlite3GlobalConfig.mutex.xMutexLeave );
    sqlite3GlobalConfig.mutex.xMutexLeave(p);
  }
}

#ifndef NDEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexHeld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */
Changes to src/mutex.h.
60
61
62
63
64
65
66
67
68
69
70
71
#define sqlite3_mutex_try(X)      SQLITE_OK
#define sqlite3_mutex_leave(X)    
#define sqlite3_mutex_held(X)     ((void)(X),1)
#define sqlite3_mutex_notheld(X)  ((void)(X),1)
#define sqlite3MutexAlloc(X)      ((sqlite3_mutex*)8)
#define sqlite3MutexInit()        SQLITE_OK
#define sqlite3MutexEnd()
#define sqlite3MemoryBarrier()    
#define MUTEX_LOGIC(X)
#else
#define MUTEX_LOGIC(X)            X
#endif /* defined(SQLITE_MUTEX_OMIT) */







<




60
61
62
63
64
65
66

67
68
69
70
#define sqlite3_mutex_try(X)      SQLITE_OK
#define sqlite3_mutex_leave(X)    
#define sqlite3_mutex_held(X)     ((void)(X),1)
#define sqlite3_mutex_notheld(X)  ((void)(X),1)
#define sqlite3MutexAlloc(X)      ((sqlite3_mutex*)8)
#define sqlite3MutexInit()        SQLITE_OK
#define sqlite3MutexEnd()

#define MUTEX_LOGIC(X)
#else
#define MUTEX_LOGIC(X)            X
#endif /* defined(SQLITE_MUTEX_OMIT) */
Changes to src/mutex_unix.c.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

/*
** Try to provide a memory barrier operation, needed for initialization only.
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__)
  __sync_synchronize();
#endif
}

/*
** Initialize and deinitialize the mutex subsystem.
*/







|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

/*
** Try to provide a memory barrier operation, needed for initialization only.
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__) && GCC_VERSION>=4001000
  __sync_synchronize();
#endif
}

/*
** Initialize and deinitialize the mutex subsystem.
*/
Changes to src/pcache1.c.
1189
1190
1191
1192
1193
1194
1195
1196

1197
1198
1199
1200
1201
1202
1203
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)->isAnchor==0

    ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);







|
>







1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)!=0
       &&  p->isAnchor==0
    ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
  int *pnCurrent,      /* OUT: Total number of pages cached */
  int *pnMax,          /* OUT: Global maximum cache size */
  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
){
  PgHdr1 *p;
  int nRecyclable = 0;
  for(p=pcache1.grp.lru.pLruNext; !p->isAnchor; p=p->pLruNext){
    assert( p->isPinned==0 );
    nRecyclable++;
  }
  *pnCurrent = pcache1.grp.nCurrentPage;
  *pnMax = (int)pcache1.grp.nMaxPage;
  *pnMin = (int)pcache1.grp.nMinPage;
  *pnRecyclable = nRecyclable;
}
#endif







|









1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
  int *pnCurrent,      /* OUT: Total number of pages cached */
  int *pnMax,          /* OUT: Global maximum cache size */
  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
){
  PgHdr1 *p;
  int nRecyclable = 0;
  for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
    assert( p->isPinned==0 );
    nRecyclable++;
  }
  *pnCurrent = pcache1.grp.nCurrentPage;
  *pnMax = (int)pcache1.grp.nMaxPage;
  *pnMin = (int)pcache1.grp.nMinPage;
  *pnRecyclable = nRecyclable;
}
#endif
Changes to src/sqlite.h.in.
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
** but are associated with the library instead of the header file.  ^(Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus insure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
** </pre></blockquote>)^







|







120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
** but are associated with the library instead of the header file.  ^(Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus ensure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
** </pre></blockquote>)^
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
** to an empty string, or a pointer that contains only whitespace and/or 
** SQL comments, then no SQL statements are evaluated and the database
** is not changed.
**
** Restrictions:
**
** <ul>
** <li> The application must insure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/







|







370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
** to an empty string, or a pointer that contains only whitespace and/or 
** SQL comments, then no SQL statements are evaluated and the database
** is not changed.
**
** Restrictions:
**
** <ul>
** <li> The application must ensure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372


1373
1374
1375
1376
1377
1378
1379
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
** applications and so this routine is usually not necessary.  It is
** provided to support rare applications with unusual needs.
**
** The sqlite3_config() interface is not threadsafe.  The application
** must insure that no other SQLite interfaces are invoked by other
** threads while sqlite3_config() is running.  Furthermore, sqlite3_config()


** may only be invoked prior to library initialization using
** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
** Note, however, that ^sqlite3_config() can be called as part of the
** implementation of an application-defined [sqlite3_os_init()].
**







|
|
|
>
>







1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
** applications and so this routine is usually not necessary.  It is
** provided to support rare applications with unusual needs.
**
** <b>The sqlite3_config() interface is not threadsafe. The application
** must ensure that no other SQLite interfaces are invoked by other
** threads while sqlite3_config() is running.</b>
**
** The sqlite3_config() interface
** may only be invoked prior to library initialization using
** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
** Note, however, that ^sqlite3_config() can be called as part of the
** implementation of an application-defined [sqlite3_os_init()].
**
4353
4354
4355
4356
4357
4358
4359
















4360
4361
4362
4363
4364
4365
4366
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

















/*
** CAPI3REF: Copy And Free SQL Values
** METHOD: sqlite3_value
**
** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
** object D and returns a pointer to that copy.  ^The [sqlite3_value] returned
** is a [protected sqlite3_value] object even if the input is not.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtaining SQL Values
** METHOD: sqlite3_value
**
** The sqlite3_value_subtype(V) function returns the subtype for
** an [application-defined SQL function] argument V.  The subtype
** information can be used to pass a limited amount of context from
** one SQL function to another.  Use the [sqlite3_result_subtype()]
** routine to set the subtype for the return value of an SQL function.
**
** SQLite makes no use of subtype itself.  It merely passes the subtype
** from the result of one [application-defined SQL function] into the
** input of another.
*/
unsigned int sqlite3_value_subtype(sqlite3_value*);

/*
** CAPI3REF: Copy And Free SQL Values
** METHOD: sqlite3_value
**
** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
** object D and returns a pointer to that copy.  ^The [sqlite3_value] returned
** is a [protected sqlite3_value] object even if the input is not.
4652
4653
4654
4655
4656
4657
4658















4659
4660
4661
4662
4663
4664
4665
void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);
int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
















/*
** CAPI3REF: Define New Collating Sequences
** METHOD: sqlite3
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);
int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);


/*
** CAPI3REF: Setting The Subtype Of An SQL Function
** METHOD: sqlite3_context
**
** The sqlite3_result_subtype(C,T) function causes the subtype of
** the result from the [application-defined SQL function] with 
** [sqlite3_context] C to be the value T.  Only the lower 8 bits 
** of the subtype T are preserved in current versions of SQLite;
** higher order bits are discarded.
** The number of subtype bytes preserved by SQLite might increase
** in future releases of SQLite.
*/
void sqlite3_result_subtype(sqlite3_context*,unsigned int);

/*
** CAPI3REF: Define New Collating Sequences
** METHOD: sqlite3
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**
6090
6091
6092
6093
6094
6095
6096



6097
6098
6099
6100
6101
6102
6103
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3



** </ul>
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction







>
>
>







6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** <li>  SQLITE_MUTEX_STATIC_VFS1
** <li>  SQLITE_MUTEX_STATIC_VFS2
** <li>  SQLITE_MUTEX_STATIC_VFS3
** </ul>
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
Changes to src/sqlite3ext.h.
268
269
270
271
272
273
274



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
  /* Version 3.8.11 and later */
  sqlite3_value *(*value_dup)(const sqlite3_value*);
  void (*value_free)(sqlite3_value*);
  int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
  int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);



};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#ifndef SQLITE_CORE
#define sqlite3_aggregate_context      sqlite3_api->aggregate_context
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_aggregate_count        sqlite3_api->aggregate_count
#endif
#define sqlite3_bind_blob              sqlite3_api->bind_blob
#define sqlite3_bind_double            sqlite3_api->bind_double
#define sqlite3_bind_int               sqlite3_api->bind_int







>
>
>













|







268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
  /* Version 3.8.11 and later */
  sqlite3_value *(*value_dup)(const sqlite3_value*);
  void (*value_free)(sqlite3_value*);
  int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
  int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
  /* Version 3.8.12 and later */
  unsigned int (*value_subtype)(sqlite3_value*);
  void (*result_subtype)(sqlite3_context*,unsigned int);
};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite3_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
#define sqlite3_aggregate_context      sqlite3_api->aggregate_context
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite3_aggregate_count        sqlite3_api->aggregate_count
#endif
#define sqlite3_bind_blob              sqlite3_api->bind_blob
#define sqlite3_bind_double            sqlite3_api->bind_double
#define sqlite3_bind_int               sqlite3_api->bind_int
504
505
506
507
508
509
510



511
512
513
514
515
516
517
518
519
520
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64



#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
# define SQLITE_EXTENSION_INIT3     \
    extern const sqlite3_api_routines *sqlite3_api;
#else







>
>
>
|

|







507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64
/* Version 3.8.12 and later */
#define sqlite3_value_subtype          sqlite3_api->value_subtype
#define sqlite3_result_subtype         sqlite3_api->result_subtype
#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
# define SQLITE_EXTENSION_INIT3     \
    extern const sqlite3_api_routines *sqlite3_api;
#else
Changes to src/sqliteInt.h.
2349
2350
2351
2352
2353
2354
2355

2356
2357
2358
2359
2360
2361
2362
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */


/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */







>







2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */
#define WHERE_ONEPASS_MULTIROW 0x2000 /* ONEPASS is ok with multiple rows */

/* Allowed return values from sqlite3WhereIsDistinct()
*/
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */
3188
3189
3190
3191
3192
3193
3194


3195


3196
3197
3198
3199
3200
3201
3202

#ifndef SQLITE_MUTEX_OMIT
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);


  void sqlite3MemoryBarrier(void);


#endif

sqlite3_int64 sqlite3StatusValue(int);
void sqlite3StatusUp(int, int);
void sqlite3StatusDown(int, int);
void sqlite3StatusSet(int, int);








>
>

>
>







3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207

#ifndef SQLITE_MUTEX_OMIT
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);
#endif
#if !defined(SQLITE_MUTEX_OMIT) && !defined(SQLITE_MUTEX_NOOP)
  void sqlite3MemoryBarrier(void);
#else
# define sqlite3MemoryBarrier()
#endif

sqlite3_int64 sqlite3StatusValue(int);
void sqlite3StatusUp(int, int);
void sqlite3StatusDown(int, int);
void sqlite3StatusSet(int, int);

3373
3374
3375
3376
3377
3378
3379



3380
3381
3382
3383
3384
3385
3386
u64 sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereIsSorted(WhereInfo*);
int sqlite3WhereContinueLabel(WhereInfo*);
int sqlite3WhereBreakLabel(WhereInfo*);
int sqlite3WhereOkOnePass(WhereInfo*, int*);



void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*);







>
>
>







3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
u64 sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereIsSorted(WhereInfo*);
int sqlite3WhereContinueLabel(WhereInfo*);
int sqlite3WhereBreakLabel(WhereInfo*);
int sqlite3WhereOkOnePass(WhereInfo*, int*);
#define ONEPASS_OFF      0        /* Use of ONEPASS not allowed */
#define ONEPASS_SINGLE   1        /* ONEPASS valid for a single row update */
#define ONEPASS_MULTI    2        /* ONEPASS is valid for multiple rows */
void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*);
3433
3434
3435
3436
3437
3438
3439
3440

3441
3442
3443
3444
3445
3446
3447
3448
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsTableConstant(Expr*,int);
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);

void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
void sqlite3ResolvePartIdxLabel(Parse*,int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*);
void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
void sqlite3BeginWriteOperation(Parse*, int, int);







|
>
|







3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
int sqlite3ExprIsConstantNotJoin(Expr*);
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
int sqlite3ExprIsTableConstant(Expr*,int);
int sqlite3ExprIsInteger(Expr*, int*);
int sqlite3ExprCanBeNull(const Expr*);
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
int sqlite3IsRowid(const char*);
void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
void sqlite3ResolvePartIdxLabel(Parse*,int);
void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*);
void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
void sqlite3BeginWriteOperation(Parse*, int, int);
Changes to src/test_func.c.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}

/*
** tclcmd: test_extract(record, field)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as the first argument. The
** second argument is the index of the field within that record to
** extract and return.
*/
static void test_extract(







|







458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    }
  }
  zOut[16] = 0;
  sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
}

/*
**     test_extract(record, field)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as the first argument. The
** second argument is the index of the field within that record to
** extract and return.
*/
static void test_extract(
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    }

    if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
** tclcmd: test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as its only argument. It returns
** a tcl list (type SQLITE_TEXT) containing each of the values stored
** in the record.
*/
static void test_decode(







|







505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    }

    if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
  }
}

/*
**      test_decode(record)
**
** This function implements an SQL user-function that accepts a blob
** containing a formatted database record as its only argument. It returns
** a tcl list (type SQLITE_TEXT) containing each of the values stored
** in the record.
*/
static void test_decode(
597
598
599
600
601
602
603


604
605
606
607
608
609
610
611
612
613
614
615
616

























617
618
619
620
621
622
623
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}

/*


** The implementation of scalar SQL function "test_zeroblob()". This is
** similar to the built-in zeroblob() function, except that it does not
** check that the integer parameter is within range before passing it
** to sqlite3_result_zeroblob().
*/
static void test_zeroblob(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int nZero = sqlite3_value_int(argv[0]);
  sqlite3_result_zeroblob(context, nZero);
}


























static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned int eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);







>
>













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
  }

  sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
  Tcl_DecrRefCount(pRet);
}

/*
**       test_zeroblob(N)
**
** The implementation of scalar SQL function "test_zeroblob()". This is
** similar to the built-in zeroblob() function, except that it does not
** check that the integer parameter is within range before passing it
** to sqlite3_result_zeroblob().
*/
static void test_zeroblob(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int nZero = sqlite3_value_int(argv[0]);
  sqlite3_result_zeroblob(context, nZero);
}

/*         test_getsubtype(V)
**
** Return the subtype for value V.
*/
static void test_getsubtype(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
}

/*         test_setsubtype(V, T)
**
** Return the value V with its subtype changed to T
*/
static void test_setsubtype(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  sqlite3_result_value(context, argv[0]);
  sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
}

static int registerTestFunctions(sqlite3 *db){
  static const struct {
     char *zName;
     signed char nArg;
     unsigned int eTextRep; /* 1: UTF-16.  0: UTF-8 */
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
637
638
639
640
641
642
643


644
645
646
647
648
649
650
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},
    { "test_decode",           1, SQLITE_UTF8, test_decode},
    { "test_extract",          2, SQLITE_UTF8, test_extract},
    { "test_zeroblob",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},


  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }







>
>







664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    { "test_eval",             1, SQLITE_UTF8, test_eval},
    { "test_isolation",        2, SQLITE_UTF8, test_isolation},
    { "test_counter",          1, SQLITE_UTF8, counterFunc},
    { "real2hex",              1, SQLITE_UTF8, real2hex},
    { "test_decode",           1, SQLITE_UTF8, test_decode},
    { "test_extract",          2, SQLITE_UTF8, test_extract},
    { "test_zeroblob",  1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
    { "test_getsubtype",       1, SQLITE_UTF8, test_getsubtype},
    { "test_setsubtype",       2, SQLITE_UTF8, test_setsubtype},
  };
  int i;

  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
    sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
        aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
  }
Changes to src/update.c.
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
      if( pPk ){
        j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey);
      }else{
        j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid);
      }
      VdbeCoverageNeverTaken(v);
    }
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx);
  
    /* If changing the record number, delete the old record.  */
    if( hasFK || chngKey || pPk!=0 ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, j1);







|







583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
      if( pPk ){
        j1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey);
      }else{
        j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid);
      }
      VdbeCoverageNeverTaken(v);
    }
    sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1);
  
    /* If changing the record number, delete the old record.  */
    if( hasFK || chngKey || pPk!=0 ){
      sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0);
    }
    if( bReplace || chngKey ){
      sqlite3VdbeJumpHere(v, j1);
Changes to src/vdbe.c.
3996
3997
3998
3999
4000
4001
4002
4003

4004
4005
4006
4007
4008
4009
4010
4011
4012
}

/* Opcode: NotExists P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys).  P3 is an integer rowid.  If P1 does not contain a record with
** rowid P3 then jump immediately to P2.  If P1 does contain a record

** with rowid P3 then leave the cursor pointing at that record and fall
** through to the next instruction.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction.  In other words, the Next and Prev opcodes will
** not work following this opcode.







|
>
|
|







3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
}

/* Opcode: NotExists P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys).  P3 is an integer rowid.  If P1 does not contain a record with
** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 
** leave the cursor pointing at that record and fall through to the next
** instruction.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction.  In other words, the Next and Prev opcodes will
** not work following this opcode.
4030
4031
4032
4033
4034
4035
4036

4037
4038
4039
4040
4041
4042
4043







4044
4045
4046
4047
4048
4049
4050
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);

  pC->movetoTarget = iKey;  /* Used by OP_Delete */
  pC->nullRow = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->deferredMoveto = 0;
  VdbeBranchTaken(res!=0,2);
  pC->seekResult = res;
  if( res!=0 ) goto jump_to_p2;







  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.







>






|
>
>
>
>
>
>
>







4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
  assert( rc==SQLITE_OK || res==0 );
  pC->movetoTarget = iKey;  /* Used by OP_Delete */
  pC->nullRow = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->deferredMoveto = 0;
  VdbeBranchTaken(res!=0,2);
  pC->seekResult = res;
  if( res!=0 ){
    assert( rc==SQLITE_OK );
    if( pOp->p2==0 ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      goto jump_to_p2;
    }
  }
  break;
}

/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316

4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330

4331
4332
4333
4334
4335
4336





4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
    assert( pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  break;
}

/* Opcode: Delete P1 P2 * P4 *
**
** Delete the record at which the P1 cursor is currently pointing.
**
** The cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op.  Hence it is OK to delete
** a record from within a Next loop.

**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  VdbeCursor *pC;


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  assert( pC->deferredMoveto==0 );






#ifdef SQLITE_DEBUG
  /* The seek operation that positioned the cursor prior to OP_Delete will
  ** have also set the pC->movetoTarget field to the rowid of the row that
  ** is being deleted */
  if( pOp->p4.z && pC->isTable ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif
 
  rc = sqlite3BtreeDelete(pC->pCursor);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}







|



|
|
|
|
>














>






>
>
>
>
>





|






|



|







4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
    assert( pC->isTable );
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  break;
}

/* Opcode: Delete P1 P2 * P4 P5
**
** Delete the record at which the P1 cursor is currently pointing.
**
** If the P5 parameter is non-zero, the cursor will be left pointing at 
** either the next or the previous record in the table. If it is left 
** pointing at the next record, then the next Next instruction will be a 
** no-op. As a result, in this case it is OK to delete a record from within a
** Next loop. If P5 is zero, then the cursor is left in an undefined state.
**
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
** incremented (otherwise not).
**
** P1 must not be pseudo-table.  It has to be a real table with
** multiple rows.
**
** If P4 is not NULL, then it is the name of the table that P1 is
** pointing to.  The update hook will be invoked, if it exists.
** If P4 is not NULL then the P1 cursor must have been positioned
** using OP_NotFound prior to invoking this opcode.
*/
case OP_Delete: {
  VdbeCursor *pC;
  u8 hasUpdateCallback;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  assert( pC->deferredMoveto==0 );

  hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
  if( pOp->p5 && hasUpdateCallback ){
    sqlite3BtreeKeySize(pC->pCursor, &pC->movetoTarget);
  }

#ifdef SQLITE_DEBUG
  /* The seek operation that positioned the cursor prior to OP_Delete will
  ** have also set the pC->movetoTarget field to the rowid of the row that
  ** is being deleted */
  if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif
 
  rc = sqlite3BtreeDelete(pC->pCursor, pOp->p5);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && hasUpdateCallback ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr);
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: IdxRowid P1 P2 * * *







|







4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  if( rc==SQLITE_OK && res==0 ){
    rc = sqlite3BtreeDelete(pCrsr, 0);
  }
  assert( pC->deferredMoveto==0 );
  pC->cacheStatus = CACHE_STALE;
  break;
}

/* Opcode: IdxRowid P1 P2 * * *
Changes to src/vdbeInt.h.
171
172
173
174
175
176
177

178
179
180
181
182
183
184
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */

  int n;              /* Number of characters in string value, excluding '\0' */
  char *z;            /* String or BLOB value */
  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
  int szMalloc;       /* Size of the zMalloc allocation */
  u32 uTemp;          /* Transient storage for serial_type in OP_MakeRecord */
  sqlite3 *db;        /* The associated database connection */







>







171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  u8  eSubtype;       /* Subtype for this value */
  int n;              /* Number of characters in string value, excluding '\0' */
  char *z;            /* String or BLOB value */
  /* ShallowCopy only needs to copy the information above */
  char *zMalloc;      /* Space to hold MEM_Str or MEM_Blob if szMalloc>0 */
  int szMalloc;       /* Size of the zMalloc allocation */
  u32 uTemp;          /* Transient storage for serial_type in OP_MakeRecord */
  sqlite3 *db;        /* The associated database connection */
Changes to src/vdbeapi.c.
182
183
184
185
186
187
188



189
190
191
192
193
194
195
  return sqlite3VdbeRealValue((Mem*)pVal);
}
int sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);



}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);







>
>
>







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
  return sqlite3VdbeRealValue((Mem*)pVal);
}
int sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
  return ((Mem*)pVal)->eSubtype;
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
360
361
362
363
364
365
366




367
368
369
370
371
372
373
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);




}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){







>
>
>
>







363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
}
void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->pOut->eSubtype = eSubtype & 0xff;
}
void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pOut->db;
}

/*
** Return the current time for a statement.  If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless







|







699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pOut );
  return p->pOut->db;
}

/*
** Return the current time for a statement.  If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless
Changes to src/wal.c.
2492
2493
2494
2495
2496
2497
2498

2499
2500
2501
2502
2503
2504
2505
2506
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  if( rc==SQLITE_OK ){
    u32 iRead2 = 0;
    u32 iTest;

    for(iTest=iLast; iTest>0; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }







>
|







2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  */
  if( rc==SQLITE_OK ){
    u32 iRead2 = 0;
    u32 iTest;
    assert( pWal->minFrame>0 );
    for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }
Changes to src/where.c.
65
66
67
68
69
70
71
72
73
74


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
  return pWInfo->iBreak;
}

/*
** Return TRUE if an UPDATE or DELETE statement can operate directly on
** the rowids returned by a WHERE clause.  Return FALSE if doing an
** UPDATE or DELETE might change subsequent WHERE clause results.


**
** If the ONEPASS optimization is used (if this routine returns true)
** then also write the indices of open cursors used by ONEPASS
** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
** table and iaCur[1] gets the cursor used by an auxiliary index.
** Either value may be -1, indicating that cursor is not used.
** Any cursors returned will have been opened for writing.
**
** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
** unable to use the ONEPASS optimization.
*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
  memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
  return pWInfo->okOnePass;
}

/*
** Move the content of pSrc into pDest
*/
static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
  pDest->n = pSrc->n;







|
|
|
>
>













|







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
  return pWInfo->iBreak;
}

/*
** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
** operate directly on the rowis returned by a WHERE clause.  Return
** ONEPASS_SINGLE (1) if the statement can operation directly because only
** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
** optimization can be used on multiple 
**
** If the ONEPASS optimization is used (if this routine returns true)
** then also write the indices of open cursors used by ONEPASS
** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
** table and iaCur[1] gets the cursor used by an auxiliary index.
** Either value may be -1, indicating that cursor is not used.
** Any cursors returned will have been opened for writing.
**
** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
** unable to use the ONEPASS optimization.
*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
  memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
  return pWInfo->eOnePass;
}

/*
** Move the content of pSrc into pDest
*/
static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
  pDest->n = pSrc->n;
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  pScan->pIdxExpr = 0;
  if( pIdx ){
    j = iColumn;







|







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j = 0;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  pScan->pIdxExpr = 0;
  if( pIdx ){
    j = iColumn;
3954
3955
3956
3957
3958
3959
3960




3961
3962
3963
3964
3965
3966
3967
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */






  /* Variable initialization */
  db = pParse->db;
  memset(&sWLB, 0, sizeof(sWLB));

  /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
  testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );







>
>
>
>







3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */

  assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
        (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
     && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 
  ));

  /* Variable initialization */
  db = pParse->db;
  memset(&sWLB, 0, sizeof(sWLB));

  /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
  testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4009
4010
4011
4012
4013
4014
4015

4016
4017
4018
4019
4020
4021
4022
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pResultSet = pResultSet;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;

  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;
  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
  whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG







>







4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pResultSet = pResultSet;
  pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;
  sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
  assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
  whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG
4195
4196
4197
4198
4199
4200
4201
4202
4203




4204
4205
4206

4207
4208
4209
4210
4211
4212
4213

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constrains
  ** the statement to update or delete a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
   && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){




    pWInfo->okOnePass = 1;
    if( HasRowid(pTabList->a[0].pTab) ){
      pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;

    }
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){







|
|
>
>
>
>
|
|
|
>







4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constrains
  ** the statement to update or delete a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
    int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
    int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
    if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
       && 0==(wsFlags & WHERE_VIRTUALTABLE)
    )){
      pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
      if( HasRowid(pTabList->a[0].pTab) ){
        pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
      }
    }
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = OP_OpenRead;
      if( pWInfo->okOnePass ){
        op = OP_OpenWrite;
        pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
      };
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      assert( pTabItem->iCursor==pLevel->iTabCur );
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
      if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }







|





|
|
|







4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = OP_OpenRead;
      if( pWInfo->eOnePass!=ONEPASS_OFF ){
        op = OP_OpenWrite;
        pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
      };
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      assert( pTabItem->iCursor==pLevel->iTabCur );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
      testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
      if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
      if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
       && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
      ){
        /* This is one term of an OR-optimization using the PRIMARY KEY of a
        ** WITHOUT ROWID table.  No need for a separate index */
        iIndexCur = pLevel->iTabCur;
        op = 0;
      }else if( pWInfo->okOnePass ){
        Index *pJ = pTabItem->pTab->pIndex;
        iIndexCur = iIdxCur;
        assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
        while( ALWAYS(pJ) && pJ!=pIx ){
          iIndexCur++;
          pJ = pJ->pNext;
        }







|







4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
      if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
       && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
      ){
        /* This is one term of an OR-optimization using the PRIMARY KEY of a
        ** WITHOUT ROWID table.  No need for a separate index */
        iIndexCur = pLevel->iTabCur;
        op = 0;
      }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
        Index *pJ = pTabItem->pTab->pIndex;
        iIndexCur = iIdxCur;
        assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
        while( ALWAYS(pJ) && pJ!=pIx ){
          iIndexCur++;
          pJ = pJ->pNext;
        }
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
    ** created for the ONEPASS optimization.
    */
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLoop->wsFlags;
      if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0
       && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 
       && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
      ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);







|







4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
    ** created for the ONEPASS optimization.
    */
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLoop->wsFlags;
      if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0
       && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 
       && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
      ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
Changes to src/whereInt.h.
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
  ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  LogEst nRowOut;           /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  i8 nOBSat;                /* Number of ORDER BY terms satisfied by indices */
  u8 sorted;                /* True if really sorted (not just grouped) */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  u8 nLevel;                /* Number of nested loop */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */







|







408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
  ExprList *pResultSet;     /* Result set. DISTINCT operates on these */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  LogEst nRowOut;           /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  i8 nOBSat;                /* Number of ORDER BY terms satisfied by indices */
  u8 sorted;                /* True if really sorted (not just grouped) */
  u8 eOnePass;              /* ONEPASS_OFF, or _SINGLE, or _MULTI */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  u8 nLevel;                /* Number of nested loop */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
Changes to src/wherecode.c.
1065
1066
1067
1068
1069
1070
1071




1072

1073
1074
1075
1076
1077
1078
1079
    disableTerm(pLevel, pRangeEnd);
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      iRowidReg = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);




      sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */

    }else if( iCur!=iIdxCur ){
      Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
      iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }







>
>
>
>
|
>







1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    disableTerm(pLevel, pRangeEnd);
    if( omitTable ){
      /* pIdx is a covering index.  No need to access the main table. */
    }else if( HasRowid(pIdx->pTable) ){
      iRowidReg = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      if( pWInfo->eOnePass!=ONEPASS_OFF ){
        sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
        VdbeCoverage(v);
      }else{
        sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
      }
    }else if( iCur!=iIdxCur ){
      Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
      iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
      for(j=0; j<pPk->nKeyCol; j++){
        k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
      }
Changes to test/delete.test.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
do_test delete-3.1.6.2 {
  db changes
} 1
do_test delete-3.1.7 {
  execsql {SELECT * FROM table1 ORDER BY f1}
} {1 2 4 16}
integrity_check delete-3.2


# Semantic errors in the WHERE clause
#
do_test delete-4.1 {
  execsql {CREATE TABLE table2(f1 int, f2 int)}
  set v [catch {execsql {DELETE FROM table2 WHERE f3=5}} msg]
  lappend v $msg







<







63
64
65
66
67
68
69

70
71
72
73
74
75
76
do_test delete-3.1.6.2 {
  db changes
} 1
do_test delete-3.1.7 {
  execsql {SELECT * FROM table1 ORDER BY f1}
} {1 2 4 16}
integrity_check delete-3.2


# Semantic errors in the WHERE clause
#
do_test delete-4.1 {
  execsql {CREATE TABLE table2(f1 int, f2 int)}
  set v [catch {execsql {DELETE FROM table2 WHERE f3=5}} msg]
  lappend v $msg
Added test/delete4.test.












































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# 2005 August 24
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is a test of the DELETE command.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix delete4

do_execsql_test 1.1 {
  CREATE TABLE t1(x INTEGER PRIMARY KEY, y);
  INSERT INTO t1 VALUES(1, 0);
  INSERT INTO t1 VALUES(2, 1);
  INSERT INTO t1 VALUES(3, 0);
  INSERT INTO t1 VALUES(4, 1);
  INSERT INTO t1 VALUES(5, 0);
  INSERT INTO t1 VALUES(6, 1);
  INSERT INTO t1 VALUES(7, 0);
  INSERT INTO t1 VALUES(8, 1);
}
do_execsql_test 1.2 {
  DELETE FROM t1 WHERE y=1;
}
do_execsql_test 1.3 {
  SELECT x FROM t1;
} {1 3 5 7}

#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 2.1 {
  CREATE TABLE t1(x INTEGER PRIMARY KEY, y, z);
  INSERT INTO t1 VALUES(1, 0, randomblob(200));
  INSERT INTO t1 VALUES(2, 1, randomblob(200));
  INSERT INTO t1 VALUES(3, 0, randomblob(200));
  INSERT INTO t1 VALUES(4, 1, randomblob(200));
  INSERT INTO t1 VALUES(5, 0, randomblob(200));
  INSERT INTO t1 VALUES(6, 1, randomblob(200));
  INSERT INTO t1 VALUES(7, 0, randomblob(200));
  INSERT INTO t1 VALUES(8, 1, randomblob(200));
}
do_execsql_test 2.2 {
  DELETE FROM t1 WHERE y=1;
}
do_execsql_test 2.3 {
  SELECT x FROM t1;
} {1 3 5 7}


#-------------------------------------------------------------------------
#
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t1(a, b, PRIMARY KEY(a, b)) WITHOUT ROWID;
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(2, 4);
  INSERT INTO t1 VALUES(1, 5);
  DELETE FROM t1 WHERE a=1;
  SELECT * FROM t1;
} {2 4}

#-------------------------------------------------------------------------
# DELETE statement that uses the OR optimization
#
reset_db
do_execsql_test 3.1 {
  CREATE TABLE t1(i INTEGER PRIMARY KEY, a, b);
  CREATE INDEX i1a ON t1(a);
  CREATE INDEX i1b ON t1(b);
  INSERT INTO t1 VALUES(1, 'one', 'i');
  INSERT INTO t1 VALUES(2, 'two', 'ii');
  INSERT INTO t1 VALUES(3, 'three', 'iii');
  INSERT INTO t1 VALUES(4, 'four', 'iv');
  INSERT INTO t1 VALUES(5, 'one', 'i');
  INSERT INTO t1 VALUES(6, 'two', 'ii');
  INSERT INTO t1 VALUES(7, 'three', 'iii');
  INSERT INTO t1 VALUES(8, 'four', 'iv');
} {}

do_execsql_test 3.2 {
  DELETE FROM t1 WHERE a='two' OR b='iv';
}

do_execsql_test 3.3 {
  SELECT i FROM t1 ORDER BY i;
} {1 3 5 7}

do_execsql_test 3.4 { 
  PRAGMA integrity_check; 
} {ok}


finish_test
Changes to test/e_createtable.test.
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  2    "CREATE TABLE temp.sqlitehelloworld(x)"   {}
  3    {CREATE TABLE auxa."sqlite"(x, y)}        {}
  4    {CREATE TABLE auxb."sqlite-"(z)}          {}
  5    {CREATE TABLE "SQLITE-TBL"(z)}            {}
}


# EVIDENCE-OF: R-10195-31023 If a <database-name> is specified, it
# must be either "main", "temp", or the name of an attached database.
#
# EVIDENCE-OF: R-39822-07822 In this case the new table is created in
# the named database.
#
#   Test cases 1.2.* test the first of the two requirements above. The
#   second is verified by cases 1.3.*.
#







|
|







369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  2    "CREATE TABLE temp.sqlitehelloworld(x)"   {}
  3    {CREATE TABLE auxa."sqlite"(x, y)}        {}
  4    {CREATE TABLE auxb."sqlite-"(z)}          {}
  5    {CREATE TABLE "SQLITE-TBL"(z)}            {}
}


# EVIDENCE-OF: R-18448-33677 If a schema-name is specified, it must be
# either "main", "temp", or the name of an attached database.
#
# EVIDENCE-OF: R-39822-07822 In this case the new table is created in
# the named database.
#
#   Test cases 1.2.* test the first of the two requirements above. The
#   second is verified by cases 1.3.*.
#
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  array set X [table_list]
  list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
  1    "CREATE TEMP TABLE t1(a, b)"      {{} t1 {} {}}
  2    "CREATE TEMPORARY TABLE t2(a, b)" {{} {t1 t2} {} {}}
}

# EVIDENCE-OF: R-49439-47561 It is an error to specify both a
# <database-name> and the TEMP or TEMPORARY keyword, unless the
# <database-name> is "temp".
#
drop_all_tables
do_createtable_tests 1.5.1 -error {
  temporary table name must be unqualified
} {
  1    "CREATE TEMP TABLE main.t1(a, b)"        {}
  2    "CREATE TEMPORARY TABLE auxa.t2(a, b)"   {}







|
|
|







418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  array set X [table_list]
  list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
  1    "CREATE TEMP TABLE t1(a, b)"      {{} t1 {} {}}
  2    "CREATE TEMPORARY TABLE t2(a, b)" {{} {t1 t2} {} {}}
}

# EVIDENCE-OF: R-23976-43329 It is an error to specify both a
# schema-name and the TEMP or TEMPORARY keyword, unless the schema-name
# is "temp".
#
drop_all_tables
do_createtable_tests 1.5.1 -error {
  temporary table name must be unqualified
} {
  1    "CREATE TEMP TABLE main.t1(a, b)"        {}
  2    "CREATE TEMPORARY TABLE auxa.t2(a, b)"   {}
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
} {
  1    "CREATE TEMP TABLE temp.t1(a, b)"        {{} t1 {} {}}
  2    "CREATE TEMPORARY TABLE temp.t2(a, b)"   {{} {t1 t2} {} {}}
  3    "CREATE TEMP TABLE TEMP.t3(a, b)"        {{} {t1 t2 t3} {} {}}
  4    "CREATE TEMPORARY TABLE TEMP.xxx(x)"     {{} {t1 t2 t3 xxx} {} {}}
}

# EVIDENCE-OF: R-00917-09393 If no database name is specified and the
# TEMP keyword is not present then the table is created in the main
# database.
#
drop_all_tables
do_createtable_tests 1.6 -tclquery {
  unset -nocomplain X
  array set X [table_list]
  list $X(main) $X(temp) $X(auxa) $X(auxb)
} {







|
|
<







443
444
445
446
447
448
449
450
451

452
453
454
455
456
457
458
} {
  1    "CREATE TEMP TABLE temp.t1(a, b)"        {{} t1 {} {}}
  2    "CREATE TEMPORARY TABLE temp.t2(a, b)"   {{} {t1 t2} {} {}}
  3    "CREATE TEMP TABLE TEMP.t3(a, b)"        {{} {t1 t2 t3} {} {}}
  4    "CREATE TEMPORARY TABLE TEMP.xxx(x)"     {{} {t1 t2 t3 xxx} {} {}}
}

# EVIDENCE-OF: R-31997-24564 If no schema name is specified and the TEMP
# keyword is not present then the table is created in the main database.

#
drop_all_tables
do_createtable_tests 1.6 -tclquery {
  unset -nocomplain X
  array set X [table_list]
  list $X(main) $X(temp) $X(auxa) $X(auxb)
} {
Changes to test/e_delete.test.
66
67
68
69
70
71
72
73
74
75



76
77
78
79
80
81
82
  }
} {}
do_delete_tests e_delete-1.1 {
  1  "DELETE FROM t1       ; SELECT * FROM t1"       {}
  2  "DELETE FROM main.t2  ; SELECT * FROM t2"       {}
}

# EVIDENCE-OF: R-30203-16177 If a WHERE clause is supplied, then only
# those rows for which the result of evaluating the WHERE clause as a
# boolean expression is true are deleted.



#
do_delete_tests e_delete-1.2 {
  1  "DELETE FROM t3 WHERE 1       ; SELECT x FROM t3"       {}
  2  "DELETE FROM main.t4 WHERE 0  ; SELECT x FROM t4"       {1 2 3 4 5}
  3  "DELETE FROM t4 WHERE 0.0     ; SELECT x FROM t4"       {1 2 3 4 5}
  4  "DELETE FROM t4 WHERE NULL    ; SELECT x FROM t4"       {1 2 3 4 5}
  5  "DELETE FROM t4 WHERE y!='two'; SELECT x FROM t4"       {2}







|
|
|
>
>
>







66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  }
} {}
do_delete_tests e_delete-1.1 {
  1  "DELETE FROM t1       ; SELECT * FROM t1"       {}
  2  "DELETE FROM main.t2  ; SELECT * FROM t2"       {}
}

# EVIDENCE-OF: R-26300-50198 If a WHERE clause is supplied, then only
# those rows for which the WHERE clause boolean expression is true are
# deleted.
#
# EVIDENCE-OF: R-23360-48280 Rows for which the expression is false or
# NULL are retained.
#
do_delete_tests e_delete-1.2 {
  1  "DELETE FROM t3 WHERE 1       ; SELECT x FROM t3"       {}
  2  "DELETE FROM main.t4 WHERE 0  ; SELECT x FROM t4"       {1 2 3 4 5}
  3  "DELETE FROM t4 WHERE 0.0     ; SELECT x FROM t4"       {1 2 3 4 5}
  4  "DELETE FROM t4 WHERE NULL    ; SELECT x FROM t4"       {1 2 3 4 5}
  5  "DELETE FROM t4 WHERE y!='two'; SELECT x FROM t4"       {2}
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
  CREATE TABLE aux2.t10(a, b);  INSERT INTO aux2.t10 VALUES(1, 2);
} {}


# EVIDENCE-OF: R-09681-58560 The table-name specified as part of a
# DELETE statement within a trigger body must be unqualified.
#
# EVIDENCE-OF: R-36771-43788 In other words, the database-name. prefix
# on the table name is not allowed within triggers.
#
do_delete_tests e_delete-2.1 -error {
  qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers
} {
  1 {
      CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
        DELETE FROM main.t2;







|
|







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  CREATE TABLE aux2.t10(a, b);  INSERT INTO aux2.t10 VALUES(1, 2);
} {}


# EVIDENCE-OF: R-09681-58560 The table-name specified as part of a
# DELETE statement within a trigger body must be unqualified.
#
# EVIDENCE-OF: R-12275-20298 In other words, the schema-name. prefix on
# the table name is not allowed within triggers.
#
do_delete_tests e_delete-2.1 -error {
  qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers
} {
  1 {
      CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
        DELETE FROM main.t2;
Changes to test/e_expr.test.
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
do_execsql_test e_expr-27.1.2 {
  SELECT 
    typeof(CAST(X'555655' as TEXT)), CAST(X'555655' as TEXT),
    typeof(CAST('1.23abc' as REAL)), CAST('1.23abc' as REAL),
    typeof(CAST(4.5 as INTEGER)), CAST(4.5 as INTEGER)
} {text UVU real 1.23 integer 4}

# EVIDENCE-OF: R-27225-65050 If the value of <expr> is NULL, then
# the result of the CAST expression is also NULL.
#
do_expr_test e_expr-27.2.1 { CAST(NULL AS integer) } null {}
do_expr_test e_expr-27.2.2 { CAST(NULL AS text) }    null {}
do_expr_test e_expr-27.2.3 { CAST(NULL AS blob) }    null {}
do_expr_test e_expr-27.2.4 { CAST(NULL AS number) }  null {}

# EVIDENCE-OF: R-31076-23575 Casting a value to a <type-name> with
# no affinity causes the value to be converted into a BLOB.
#
do_expr_test e_expr-27.3.1 { CAST('abc' AS blob)       } blob abc
do_expr_test e_expr-27.3.2 { CAST('def' AS shobblob_x) } blob def
do_expr_test e_expr-27.3.3 { CAST('ghi' AS abbLOb10)   } blob ghi

# EVIDENCE-OF: R-22956-37754 Casting to a BLOB consists of first casting
# the value to TEXT in the encoding of the database connection, then







|
|






|
|







1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
do_execsql_test e_expr-27.1.2 {
  SELECT 
    typeof(CAST(X'555655' as TEXT)), CAST(X'555655' as TEXT),
    typeof(CAST('1.23abc' as REAL)), CAST('1.23abc' as REAL),
    typeof(CAST(4.5 as INTEGER)), CAST(4.5 as INTEGER)
} {text UVU real 1.23 integer 4}

# EVIDENCE-OF: R-32434-09092 If the value of expr is NULL, then the
# result of the CAST expression is also NULL.
#
do_expr_test e_expr-27.2.1 { CAST(NULL AS integer) } null {}
do_expr_test e_expr-27.2.2 { CAST(NULL AS text) }    null {}
do_expr_test e_expr-27.2.3 { CAST(NULL AS blob) }    null {}
do_expr_test e_expr-27.2.4 { CAST(NULL AS number) }  null {}

# EVIDENCE-OF: R-43522-35548 Casting a value to a type-name with no
# affinity causes the value to be converted into a BLOB.
#
do_expr_test e_expr-27.3.1 { CAST('abc' AS blob)       } blob abc
do_expr_test e_expr-27.3.2 { CAST('def' AS shobblob_x) } blob def
do_expr_test e_expr-27.3.3 { CAST('ghi' AS abbLOb10)   } blob ghi

# EVIDENCE-OF: R-22956-37754 Casting to a BLOB consists of first casting
# the value to TEXT in the encoding of the database connection, then
Changes to test/e_insert.test.
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    2a   "INSERT INTO a2(a, b) VALUES(1, 2)" {}
    2b   "SELECT count(*) FROM a2"           {2}

    3a   "INSERT INTO a2(a) VALUES(3),(4)"   {}
    3b   "SELECT count(*) FROM a2"           {4}
}

# EVIDENCE-OF: R-53616-44976 If no column-list is specified then the
# number of values inserted into each row must be the same as the number
# of columns in the table.
#
#   A test in the block above verifies that if the VALUES list has the
#   correct number of columns (for table a2, 3 columns) works. So these
#   tests just show that other values cause an error.
#
do_insert_tests e_insert-1.2 -error { 
  table %s has %d columns but %d values were supplied







|
|
|







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    2a   "INSERT INTO a2(a, b) VALUES(1, 2)" {}
    2b   "SELECT count(*) FROM a2"           {2}

    3a   "INSERT INTO a2(a) VALUES(3),(4)"   {}
    3b   "SELECT count(*) FROM a2"           {4}
}

# EVIDENCE-OF: R-19218-01018 If the column-name list after table-name is
# omitted then the number of values inserted into each row must be the
# same as the number of columns in the table.
#
#   A test in the block above verifies that if the VALUES list has the
#   correct number of columns (for table a2, 3 columns) works. So these
#   tests just show that other values cause an error.
#
do_insert_tests e_insert-1.2 -error { 
  table %s has %d columns but %d values were supplied
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    2a   "INSERT INTO a2 VALUES('abc', NULL, 3*3+1)"      {}
    2b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {abc {} 10}

    3a   "INSERT INTO a2 VALUES((SELECT count(*) FROM a2), 'x', 'y')" {}
    3b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {2 x y}
}

# EVIDENCE-OF: R-09234-17933 If a column-list is specified, then the
# number of values in each term of the VALUE list must match the number
# of specified columns.
#
do_insert_tests e_insert-1.4 -error { 
  %d values for %d columns
} {
    1    "INSERT INTO a2(a, b, c) VALUES(1)"         {1 3}
    2    "INSERT INTO a2(a, b, c) VALUES(1,2)"       {2 3}
    3    "INSERT INTO a2(a, b, c) VALUES(1,2,3,4)"   {4 3}







|
|
|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    2a   "INSERT INTO a2 VALUES('abc', NULL, 3*3+1)"      {}
    2b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {abc {} 10}

    3a   "INSERT INTO a2 VALUES((SELECT count(*) FROM a2), 'x', 'y')" {}
    3b   "SELECT * FROM a2 WHERE oid=last_insert_rowid()" {2 x y}
}

# EVIDENCE-OF: R-21115-58321 If a column-name list is specified, then
# the number of values in each term of the VALUE list must match the
# number of specified columns.
#
do_insert_tests e_insert-1.4 -error { 
  %d values for %d columns
} {
    1    "INSERT INTO a2(a, b, c) VALUES(1)"         {1 3}
    2    "INSERT INTO a2(a, b, c) VALUES(1,2)"       {2 3}
    3    "INSERT INTO a2(a, b, c) VALUES(1,2,3,4)"   {4 3}
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  2.2  "REPLACE INTO a4 VALUES(2, 'f')" {}  1 {1 a 3 a 4 e 2 f}
} {
  do_catchsql_test e_insert-4.1.$tn.1 $sql [list [expr {$error!=""}] $error]
  do_execsql_test  e_insert-4.1.$tn.2 {SELECT * FROM a4} [list {*}$data]
  do_test          e_insert-4.1.$tn.3 {sqlite3_get_autocommit db} $ac
}

# EVIDENCE-OF: R-64196-02418 The optional "database-name." prefix on the
# table-name is support for top-level INSERT statements only.
#
# EVIDENCE-OF: R-05731-00924 The table name must be unqualified for
# INSERT statements that occur within CREATE TRIGGER statements.
#
set err {1 {qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers}}

do_catchsql_test e_insert-5.1.1 {







|
|







390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  2.2  "REPLACE INTO a4 VALUES(2, 'f')" {}  1 {1 a 3 a 4 e 2 f}
} {
  do_catchsql_test e_insert-4.1.$tn.1 $sql [list [expr {$error!=""}] $error]
  do_execsql_test  e_insert-4.1.$tn.2 {SELECT * FROM a4} [list {*}$data]
  do_test          e_insert-4.1.$tn.3 {sqlite3_get_autocommit db} $ac
}

# EVIDENCE-OF: R-59829-49719 The optional "schema-name." prefix on the
# table-name is supported for top-level INSERT statements only.
#
# EVIDENCE-OF: R-05731-00924 The table name must be unqualified for
# INSERT statements that occur within CREATE TRIGGER statements.
#
set err {1 {qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers}}

do_catchsql_test e_insert-5.1.1 {
Changes to test/e_reindex.test.
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
test_index 5.37  t1     collA   length
test_index 5.38  t1     collB   value
test_index 5.39  t2     collA   length
test_index 5.40  t2     collB   value
test_index 5.41  aux.t1 collA   length
test_index 5.42  aux.t1 collB   value

# EVIDENCE-OF: R-15639-02023 If no database-name is specified and there
# exists both a table or index and a collation sequence of the specified
# name, SQLite interprets this as a request to rebuild the indices that
# use the named collation sequence.
#
set_collations value length
do_execsql_test e_reindex-2.6.0 {
  CREATE TABLE collA(x);
  CREATE INDEX icolla_a ON collA(x COLLATE collA);
  CREATE INDEX icolla_b ON collA(x COLLATE collB);








|
|
<
|







261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
test_index 5.37  t1     collA   length
test_index 5.38  t1     collB   value
test_index 5.39  t2     collA   length
test_index 5.40  t2     collB   value
test_index 5.41  aux.t1 collA   length
test_index 5.42  aux.t1 collB   value

# EVIDENCE-OF: R-35892-30289 For a command of the form "REINDEX name", a
# match against collation-name takes precedence over a match against

# index-name or table-name.
#
set_collations value length
do_execsql_test e_reindex-2.6.0 {
  CREATE TABLE collA(x);
  CREATE INDEX icolla_a ON collA(x COLLATE collA);
  CREATE INDEX icolla_b ON collA(x COLLATE collB);

Changes to test/e_resolve.test.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#
resolve_reopen_db
do_execsql_test 1.1 { SELECT * FROM n1 } {temp n1}
do_execsql_test 1.2 { SELECT * FROM n2 } {main n2}
do_execsql_test 1.3 { SELECT * FROM n3 } {at1  n3}
do_execsql_test 1.4 { SELECT * FROM n4 } {at2  n4}

# EVIDENCE-OF: R-54577-28142 If a database name is specified as part of
# an object reference, it must be either "main", or "temp" or the name
# of an attached database.
#
#   Or else it is a "no such table: xxx" error.
#
resolve_reopen_db
do_execsql_test 2.1.1 { SELECT * FROM main.n1 } {main n1}
do_execsql_test 2.1.2 { SELECT * FROM temp.n1 } {temp n1}
do_execsql_test 2.1.3 { SELECT * FROM at1.n1 } {at1 n1}
do_execsql_test 2.1.4 { SELECT * FROM at2.n1 } {at2 n1}

do_catchsql_test 2.2 { SELECT * FROM xxx.n1 } {1 {no such table: xxx.n1}}

# EVIDENCE-OF: R-26223-47623 Like other SQL identifiers, database names
# are case-insensitive.
#
resolve_reopen_db
do_execsql_test 3.1 { SELECT * FROM MAIN.n1 } {main n1}
do_execsql_test 3.2 { SELECT * FROM tEmP.n1 } {temp n1}
do_execsql_test 3.3 { SELECT * FROM aT1.n1 } {at1 n1}
do_execsql_test 3.4 { SELECT * FROM At2.n1 } {at2 n1}

# EVIDENCE-OF: R-15639-28392 If a database name is specified, then only
# the named database is searched for the named object.
#
do_catchsql_test 4.1 { SELECT * FROM temp.n2 } {1 {no such table: temp.n2}}
do_catchsql_test 4.2 { SELECT * FROM main.n2 } {0 {main n2}}
do_catchsql_test 4.3 { SELECT * FROM at1.n2 }  {0 {at1 n2}}
do_catchsql_test 4.4 { SELECT * FROM at2.n2 }  {0 {at2 n2}}

# EVIDENCE-OF: R-08951-19801 When searching database schemas for a named







|
|
|











|








|
|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#
resolve_reopen_db
do_execsql_test 1.1 { SELECT * FROM n1 } {temp n1}
do_execsql_test 1.2 { SELECT * FROM n2 } {main n2}
do_execsql_test 1.3 { SELECT * FROM n3 } {at1  n3}
do_execsql_test 1.4 { SELECT * FROM n4 } {at2  n4}

# EVIDENCE-OF: R-00634-08585 If a schema name is specified as part of an
# object reference, it must be either "main", or "temp" or the
# schema-name of an attached database.
#
#   Or else it is a "no such table: xxx" error.
#
resolve_reopen_db
do_execsql_test 2.1.1 { SELECT * FROM main.n1 } {main n1}
do_execsql_test 2.1.2 { SELECT * FROM temp.n1 } {temp n1}
do_execsql_test 2.1.3 { SELECT * FROM at1.n1 } {at1 n1}
do_execsql_test 2.1.4 { SELECT * FROM at2.n1 } {at2 n1}

do_catchsql_test 2.2 { SELECT * FROM xxx.n1 } {1 {no such table: xxx.n1}}

# EVIDENCE-OF: R-17446-42210 Like other SQL identifiers, schema names
# are case-insensitive.
#
resolve_reopen_db
do_execsql_test 3.1 { SELECT * FROM MAIN.n1 } {main n1}
do_execsql_test 3.2 { SELECT * FROM tEmP.n1 } {temp n1}
do_execsql_test 3.3 { SELECT * FROM aT1.n1 } {at1 n1}
do_execsql_test 3.4 { SELECT * FROM At2.n1 } {at2 n1}

# EVIDENCE-OF: R-14755-58619 If a schema name is specified, then only
# that one schema is searched for the named object.
#
do_catchsql_test 4.1 { SELECT * FROM temp.n2 } {1 {no such table: temp.n2}}
do_catchsql_test 4.2 { SELECT * FROM main.n2 } {0 {main n2}}
do_catchsql_test 4.3 { SELECT * FROM at1.n2 }  {0 {at1 n2}}
do_catchsql_test 4.4 { SELECT * FROM at2.n2 }  {0 {at2 n2}}

# EVIDENCE-OF: R-08951-19801 When searching database schemas for a named
Changes to test/e_update.test.
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  1  "UPDATE t1 SET b = 'roman' ; SELECT * FROM t1"
     {1 roman  2 roman  3 roman}

  2  "UPDATE t1 SET a = 'greek' ; SELECT * FROM t1"
     {greek roman  greek roman  greek roman}
}

# EVIDENCE-OF: R-42117-40023 Otherwise, the UPDATE affects only those
# rows for which the result of evaluating the WHERE clause expression as
# a boolean expression is true.
#
do_execsql_test e_update-1.3.0 {
  DELETE FROM main.t1;
  INSERT INTO main.t1 VALUES(NULL, '');
  INSERT INTO main.t1 VALUES(1, 'i');
  INSERT INTO main.t1 VALUES(2, 'ii');
  INSERT INTO main.t1 VALUES(3, 'iii');







|
<
|







142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
  1  "UPDATE t1 SET b = 'roman' ; SELECT * FROM t1"
     {1 roman  2 roman  3 roman}

  2  "UPDATE t1 SET a = 'greek' ; SELECT * FROM t1"
     {greek roman  greek roman  greek roman}
}

# EVIDENCE-OF: R-58095-46013 Otherwise, the UPDATE affects only those

# rows for which the WHERE clause boolean expression is true.
#
do_execsql_test e_update-1.3.0 {
  DELETE FROM main.t1;
  INSERT INTO main.t1 VALUES(NULL, '');
  INSERT INTO main.t1 VALUES(1, 'i');
  INSERT INTO main.t1 VALUES(2, 'ii');
  INSERT INTO main.t1 VALUES(3, 'iii');
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
  SELECT * FROM t2
} {
  1   "UPDATE t2 SET a=b+c"          {5 1 4     14 5 9   11  6 5}
  2   "UPDATE t2 SET a=b, b=a"       {1 5 4     5 14 9    6 11 5}
  3   "UPDATE t2 SET a=c||c, c=NULL" {44 5 {}  99 14 {}  55 11 {}}
}

# EVIDENCE-OF: R-12619-24112 The optional conflict-clause allows the

# user to nominate a specific constraint conflict resolution algorithm
# to use during this one UPDATE command.
#
do_execsql_test e_update-1.8.0 {
  DELETE FROM t3;
  INSERT INTO t3 VALUES(1, 'one');
  INSERT INTO t3 VALUES(2, 'two');
  INSERT INTO t3 VALUES(3, 'three');
  INSERT INTO t3 VALUES(4, 'four');







|
>
|
|







260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
  SELECT * FROM t2
} {
  1   "UPDATE t2 SET a=b+c"          {5 1 4     14 5 9   11  6 5}
  2   "UPDATE t2 SET a=b, b=a"       {1 5 4     5 14 9    6 11 5}
  3   "UPDATE t2 SET a=c||c, c=NULL" {44 5 {}  99 14 {}  55 11 {}}
}

# EVIDENCE-OF: R-28518-13457 The optional "OR action" conflict clause
# that follows the UPDATE keyword allows the user to nominate a specific
# constraint conflict resolution algorithm to use during this one UPDATE
# command.
#
do_execsql_test e_update-1.8.0 {
  DELETE FROM t3;
  INSERT INTO t3 VALUES(1, 'one');
  INSERT INTO t3 VALUES(2, 'two');
  INSERT INTO t3 VALUES(3, 'three');
  INSERT INTO t3 VALUES(4, 'four');
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
}



# EVIDENCE-OF: R-12123-54095 The table-name specified as part of an
# UPDATE statement within a trigger body must be unqualified.
#
# EVIDENCE-OF: R-09690-36749 In other words, the database-name. prefix
# on the table name of the UPDATE is not allowed within triggers.
#
do_update_tests e_update-2.1 -error {
  qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers
} {
  1 {
      CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
        UPDATE main.t2 SET a=1, b=2, c=3;







|
|







318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
}



# EVIDENCE-OF: R-12123-54095 The table-name specified as part of an
# UPDATE statement within a trigger body must be unqualified.
#
# EVIDENCE-OF: R-43190-62442 In other words, the schema-name. prefix on
# the table name of the UPDATE is not allowed within triggers.
#
do_update_tests e_update-2.1 -error {
  qualified table names are not allowed on INSERT, UPDATE, and DELETE statements within triggers
} {
  1 {
      CREATE TRIGGER tr1 AFTER INSERT ON t1 BEGIN
        UPDATE main.t2 SET a=1, b=2, c=3;
Changes to test/fkey5.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file tests the PRAGMA foreign_key_check command.
#
# EVIDENCE-OF: R-01427-50262 PRAGMA database.foreign_key_check; PRAGMA
# database.foreign_key_check(table-name);
#
# EVIDENCE-OF: R-23918-17301 The foreign_key_check pragma checks the
# database, or the table called "table-name", for foreign key
# constraints that are violated and returns one row of output for each
# violation.

set testdir [file dirname $argv0]







|
|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file tests the PRAGMA foreign_key_check command.
#
# EVIDENCE-OF: R-15402-03103 PRAGMA schema.foreign_key_check; PRAGMA
# schema.foreign_key_check(table-name);
#
# EVIDENCE-OF: R-23918-17301 The foreign_key_check pragma checks the
# database, or the table called "table-name", for foreign key
# constraints that are violated and returns one row of output for each
# violation.

set testdir [file dirname $argv0]
Changes to test/indexedby.test.
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# EVIDENCE-OF: R-63761-48810 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}







|







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
#
# EVIDENCE-OF: R-07004-11522 -- syntax diagram qualified-table-name
# 
# EVIDENCE-OF: R-58230-57098 The "INDEXED BY index-name" phrase
# specifies that the named index must be used in order to look up values
# on the preceding table.
#
do_test indexedby-2.1 {
  execsql { SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'}
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {







|





|







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# query planner to use a particular named index on a DELETE, SELECT, or
# UPDATE statement.
#
# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {
Changes to test/json101.test.
12
13
14
15
16
17
18
19
20
21












22
23
24
25
26
27
28
# SQLite library.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

load_static_extension db json
do_execsql_test json1-1.1 {
  SELECT json_array(1,2.5,null,'hello');
} {[1,2.5,null,"hello"]}












do_execsql_test json1-1.2 {
  SELECT hex(json_array('String "\ Test'));
} {5B22537472696E67205C225C5C2054657374225D}
do_catchsql_test json1-1.3 {
  SELECT json_array(1,2,x'abcd',3);
} {1 {JSON cannot hold BLOB values}}
do_execsql_test json1-1.4 {







|


>
>
>
>
>
>
>
>
>
>
>
>







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# SQLite library.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

load_static_extension db json
do_execsql_test json1-1.1.00 {
  SELECT json_array(1,2.5,null,'hello');
} {[1,2.5,null,"hello"]}
do_execsql_test json1-1.1.01 {
  SELECT json_array(1,'{"abc":2.5,"def":null,"ghi":hello}',99);
  -- the second term goes in as a string:
} {[1,"{\\"abc\\":2.5,\\"def\\":null,\\"ghi\\":hello}",99]}
do_execsql_test json1-1.1.02 {
  SELECT json_array(1,json('{"abc":2.5,"def":null,"ghi":"hello"}'),99);
  -- the second term goes in as JSON
} {[1,{"abc":2.5,"def":null,"ghi":"hello"},99]}
do_execsql_test json1-1.1.03 {
  SELECT json_array(1,json_object('abc',2.5,'def',null,'ghi','hello'),99);
  -- the second term goes in as JSON
} {[1,{"abc":2.5,"def":null,"ghi":"hello"},99]}
do_execsql_test json1-1.2 {
  SELECT hex(json_array('String "\ Test'));
} {5B22537472696E67205C225C5C2054657374225D}
do_catchsql_test json1-1.3 {
  SELECT json_array(1,2,x'abcd',3);
} {1 {JSON cannot hold BLOB values}}
do_execsql_test json1-1.4 {
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  SELECT json_object('a',1,'b',x'abcd');
} {1 {JSON cannot hold BLOB values}}

do_execsql_test json1-3.1 {
  SELECT json_replace('{"a":1,"b":2}','$.a','[3,4,5]');
} {{{"a":"[3,4,5]","b":2}}}
do_execsql_test json1-3.2 {
  SELECT json_replace('{"a":1,"b":2}','$$.a','[3,4,5]');
} {{{"a":[3,4,5],"b":2}}}
do_execsql_test json1-3.3 {
  SELECT json_type(json_set('{"a":1,"b":2}','$.b','{"x":3,"y":4}'),'$.b');
} {text}
do_execsql_test json1-3.4 {
  SELECT json_type(json_set('{"a":1,"b":2}','$$.b','{"x":3,"y":4}'),'$.b');
} {object}

# Per rfc7159, any JSON value is allowed at the top level, and whitespace
# is permitting before and/or after that value.
#
do_execsql_test json1-4.1 {
  CREATE TABLE j1(x);







|





|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  SELECT json_object('a',1,'b',x'abcd');
} {1 {JSON cannot hold BLOB values}}

do_execsql_test json1-3.1 {
  SELECT json_replace('{"a":1,"b":2}','$.a','[3,4,5]');
} {{{"a":"[3,4,5]","b":2}}}
do_execsql_test json1-3.2 {
  SELECT json_replace('{"a":1,"b":2}','$.a',json('[3,4,5]'));
} {{{"a":[3,4,5],"b":2}}}
do_execsql_test json1-3.3 {
  SELECT json_type(json_set('{"a":1,"b":2}','$.b','{"x":3,"y":4}'),'$.b');
} {text}
do_execsql_test json1-3.4 {
  SELECT json_type(json_set('{"a":1,"b":2}','$.b',json('{"x":3,"y":4}')),'$.b');
} {object}

# Per rfc7159, any JSON value is allowed at the top level, and whitespace
# is permitting before and/or after that value.
#
do_execsql_test json1-4.1 {
  CREATE TABLE j1(x);
Added test/json102.test.


















































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# 2015-08-12
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements tests for JSON SQL functions extension to the
# SQLite library.
#
# This file contains tests automatically generated from the json1
# documentation.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

load_static_extension db json
do_execsql_test json102-100 {
  SELECT json_object('ex','[52,3.14159]');
} {{{"ex":"[52,3.14159]"}}}
do_execsql_test json102-110 {
  SELECT json_object('ex',json('[52,3.14159]'));
} {{{"ex":[52,3.14159]}}}
do_execsql_test json102-120 {
  SELECT json_object('ex',json_array(52,3.14159));
} {{{"ex":[52,3.14159]}}}
do_execsql_test json102-130 {
  SELECT json(' { "this" : "is", "a": [ "test" ] } ');
} {{{"this":"is","a":["test"]}}}
do_execsql_test json102-140 {
  SELECT json_array(1,2,'3',4);
} {{[1,2,"3",4]}}
do_execsql_test json102-150 {
  SELECT json_array('[1,2]');
} {{["[1,2]"]}}
do_execsql_test json102-160 {
  SELECT json_array(json_array(1,2));
} {{[[1,2]]}}
do_execsql_test json102-170 {
  SELECT json_array(1,null,'3','[4,5]','{"six":7.7}');
} {{[1,null,"3","[4,5]","{\"six\":7.7}"]}}
do_execsql_test json102-180 {
  SELECT json_array(1,null,'3',json('[4,5]'),json('{"six":7.7}'));
} {{[1,null,"3",[4,5],{"six":7.7}]}}
do_execsql_test json102-190 {
  SELECT json_array_length('[1,2,3,4]');
} {{4}}
do_execsql_test json102-200 {
  SELECT json_array_length('[1,2,3,4]', '$');
} {{4}}
do_execsql_test json102-210 {
  SELECT json_array_length('[1,2,3,4]', '$[2]');
} {{0}}
do_execsql_test json102-220 {
  SELECT json_array_length('{"one":[1,2,3]}');
} {{0}}
do_execsql_test json102-230 {
  SELECT json_array_length('{"one":[1,2,3]}', '$.one');
} {{3}}
do_execsql_test json102-240 {
  SELECT json_array_length('{"one":[1,2,3]}', '$.two');
} {{}}
do_execsql_test json102-250 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$');
} {{{"a":2,"c":[4,5,{"f":7}]}}}
do_execsql_test json102-260 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c');
} {{[4,5,{"f":7}]}}
do_execsql_test json102-270 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2]');
} {{{"f":7}}}
do_execsql_test json102-280 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2].f');
} {{7}}
do_execsql_test json102-290 {
  SELECT json_extract('{"a":2,"c":[4,5],"f":7}','$.c','$.a');
} {{[[4,5],2]}}
do_execsql_test json102-300 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.x');
} {{}}
do_execsql_test json102-310 {
  SELECT json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.x', '$.a');
} {{[null,2]}}
do_execsql_test json102-320 {
  SELECT json_insert('{"a":2,"c":4}', '$.a', 99);
} {{{"a":2,"c":4}}}
do_execsql_test json102-330 {
  SELECT json_insert('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4,"e":99}}}
do_execsql_test json102-340 {
  SELECT json_replace('{"a":2,"c":4}', '$.a', 99);
} {{{"a":99,"c":4}}}
do_execsql_test json102-350 {
  SELECT json_replace('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4}}}
do_execsql_test json102-360 {
  SELECT json_set('{"a":2,"c":4}', '$.a', 99);
} {{{"a":99,"c":4}}}
do_execsql_test json102-370 {
  SELECT json_set('{"a":2,"c":4}', '$.e', 99);
} {{{"a":2,"c":4,"e":99}}}
do_execsql_test json102-380 {
  SELECT json_set('{"a":2,"c":4}', '$.c', '[97,96]');
} {{{"a":2,"c":"[97,96]"}}}
do_execsql_test json102-390 {
  SELECT json_set('{"a":2,"c":4}', '$.c', json('[97,96]'));
} {{{"a":2,"c":[97,96]}}}
do_execsql_test json102-400 {
  SELECT json_set('{"a":2,"c":4}', '$.c', json_array(97,96));
} {{{"a":2,"c":[97,96]}}}
do_execsql_test json102-410 {
  SELECT json_object('a',2,'c',4);
} {{{"a":2,"c":4}}}
do_execsql_test json102-420 {
  SELECT json_object('a',2,'c','{e:5}');
} {{{"a":2,"c":"{e:5}"}}}
do_execsql_test json102-430 {
  SELECT json_object('a',2,'c',json_object('e',5));
} {{{"a":2,"c":{"e":5}}}}
do_execsql_test json102-440 {
  SELECT json_remove('[0,1,2,3,4]','$[2]');
} {{[0,1,3,4]}}
do_execsql_test json102-450 {
  SELECT json_remove('[0,1,2,3,4]','$[2]','$[0]');
} {{[1,3,4]}}
do_execsql_test json102-460 {
  SELECT json_remove('[0,1,2,3,4]','$[0]','$[2]');
} {{[1,2,4]}}
do_execsql_test json102-470 {
  SELECT json_remove('{"x":25,"y":42}');
} {{{"x":25,"y":42}}}
do_execsql_test json102-480 {
  SELECT json_remove('{"x":25,"y":42}','$.z');
} {{{"x":25,"y":42}}}
do_execsql_test json102-490 {
  SELECT json_remove('{"x":25,"y":42}','$.y');
} {{{"x":25}}}
do_execsql_test json102-500 {
  SELECT json_remove('{"x":25,"y":42}','$');
} {{}}
do_execsql_test json102-510 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}');
} {{object}}
do_execsql_test json102-520 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$');
} {{object}}
do_execsql_test json102-530 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a');
} {{array}}
do_execsql_test json102-540 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[0]');
} {{integer}}
do_execsql_test json102-550 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[1]');
} {{real}}
do_execsql_test json102-560 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[2]');
} {{true}}
do_execsql_test json102-570 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[3]');
} {{false}}
do_execsql_test json102-580 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[4]');
} {{null}}
do_execsql_test json102-590 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[5]');
} {{text}}
do_execsql_test json102-600 {
  SELECT json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[6]');
} {{}}
do_execsql_test json102-610 {
  SELECT json_valid(char(123)||'"x":35'||char(125));
} {{1}}
do_execsql_test json102-620 {
  SELECT json_valid(char(123)||'"x":35');
} {{0}}

ifcapable vtab {
do_execsql_test json102-1000 {
  CREATE TABLE user(name,phone);
  INSERT INTO user(name,phone) VALUES
     ('Alice','["919-555-2345","804-555-3621"]'),
     ('Bob','["201-555-8872"]'),
     ('Cindy','["704-555-9983"]'),
     ('Dave','["336-555-8421","704-555-4321","803-911-4421"]');
  SELECT DISTINCT user.name
    FROM user, json_each(user.phone)
   WHERE json_each.value LIKE '704-%'
   ORDER BY 1;
} {Cindy Dave}

do_execsql_test json102-1010 {
  UPDATE user
     SET phone=json_extract(phone,'$[0]')
   WHERE json_array_length(phone)<2;
  SELECT name, substr(phone,1,5) FROM user ORDER BY name;
} {Alice {["919} Bob 201-5 Cindy 704-5 Dave {["336}}
do_execsql_test json102-1011 {
  SELECT name FROM user WHERE phone LIKE '704-%'
  UNION
  SELECT user.name
    FROM user, json_each(user.phone)
   WHERE json_valid(user.phone)
     AND json_each.value LIKE '704-%';
} {Cindy Dave}

do_execsql_test json102-1100 {
  CREATE TABLE big(json JSON);
  INSERT INTO big(json) VALUES('{
    "id":123,
    "stuff":[1,2,3,4],
    "partlist":[
       {"uuid":"bb108722-572e-11e5-9320-7f3b63a4ca74"},
       {"uuid":"c690dc14-572e-11e5-95f9-dfc8861fd535"},
       {"subassembly":[
          {"uuid":"6fa5181e-5721-11e5-a04e-57f3d7b32808"}
       ]}
    ]
  }');
  INSERT INTO big(json) VALUES('{
    "id":456,
    "stuff":["hello","world","xyzzy"],
    "partlist":[
       {"uuid":false},
       {"uuid":"c690dc14-572e-11e5-95f9-dfc8861fd535"}
    ]
  }');
} {}
set correct_answer [list \
    1 {$.id} 123 \
    1 {$.stuff[0]} 1 \
    1 {$.stuff[1]} 2 \
    1 {$.stuff[2]} 3 \
    1 {$.stuff[3]} 4 \
    1 {$.partlist[0].uuid} bb108722-572e-11e5-9320-7f3b63a4ca74 \
    1 {$.partlist[1].uuid} c690dc14-572e-11e5-95f9-dfc8861fd535 \
    1 {$.partlist[2].subassembly[0].uuid} 6fa5181e-5721-11e5-a04e-57f3d7b32808 \
    2 {$.id} 456 \
    2 {$.stuff[0]} hello \
    2 {$.stuff[1]} world \
    2 {$.stuff[2]} xyzzy \
    2 {$.partlist[0].uuid} 0 \
    2 {$.partlist[1].uuid} c690dc14-572e-11e5-95f9-dfc8861fd535]
do_execsql_test json102-1110 {
  SELECT big.rowid, fullkey, value
    FROM big, json_tree(big.json)
   WHERE json_tree.type NOT IN ('object','array')
   ORDER BY +big.rowid, +json_tree.id
} $correct_answer
do_execsql_test json102-1120 {
  SELECT big.rowid, fullkey, atom
    FROM big, json_tree(big.json)
   WHERE atom IS NOT NULL
   ORDER BY +big.rowid, +json_tree.id
} $correct_answer

do_execsql_test json102-1130 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json,'$.partlist')
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
do_execsql_test json102-1131 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json,'$')
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
do_execsql_test json102-1132 {
  SELECT DISTINCT json_extract(big.json,'$.id')
    FROM big, json_tree(big.json)
   WHERE json_tree.key='uuid'
     AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808';
} {123}
} ;# end ifcapable vtab

finish_test
Changes to test/pragma.test.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# that the "all.test" script does.
#
db close
delete_file test.db test.db-journal
delete_file test3.db test3.db-journal
sqlite3 db test.db; set DB [sqlite3_connection_pointer db]

# EVIDENCE-OF: R-24197-42751 PRAGMA database.cache_size; PRAGMA
# database.cache_size = pages; PRAGMA database.cache_size = -kibibytes;
# Query or change the suggested maximum number of database disk pages
# that SQLite will hold in memory at once per open database file.
#
ifcapable pager_pragmas {
set DFLT_CACHE_SZ [db one {PRAGMA default_cache_size}]
set TEMP_CACHE_SZ [db one {PRAGMA temp.default_cache_size}]
do_test pragma-1.1 {







|
|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# that the "all.test" script does.
#
db close
delete_file test.db test.db-journal
delete_file test3.db test3.db-journal
sqlite3 db test.db; set DB [sqlite3_connection_pointer db]

# EVIDENCE-OF: R-13861-56665 PRAGMA schema.cache_size; PRAGMA
# schema.cache_size = pages; PRAGMA schema.cache_size = -kibibytes;
# Query or change the suggested maximum number of database disk pages
# that SQLite will hold in memory at once per open database file.
#
ifcapable pager_pragmas {
set DFLT_CACHE_SZ [db one {PRAGMA default_cache_size}]
set TEMP_CACHE_SZ [db one {PRAGMA temp.default_cache_size}]
do_test pragma-1.1 {
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#
do_test pragma-6.5.1b {
  capture_pragma db out {PRAGMA index_xinfo(t3i1)}
  db eval {SELECT seqno, cid, name FROM out ORDER BY seqno}
} {0 0 a 1 1 b 2 -1 {}}


# EVIDENCE-OF: R-62725-03366 PRAGMA database.index_info(index-name);
# This pragma returns one row for each key column in the named index.
#
# (The first column of output from PRAGMA index_info is...)
# EVIDENCE-OF: R-34186-52914 The rank of the column within the index. (0
# means left-most.)
#
# (The second column of output from PRAGMA index_info is...)
# EVIDENCE-OF: R-65019-08383 The rank of the column within the table







|
|







693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
#
do_test pragma-6.5.1b {
  capture_pragma db out {PRAGMA index_xinfo(t3i1)}
  db eval {SELECT seqno, cid, name FROM out ORDER BY seqno}
} {0 0 a 1 1 b 2 -1 {}}


# EVIDENCE-OF: R-29448-60346 PRAGMA schema.index_info(index-name); This
# pragma returns one row for each key column in the named index.
#
# (The first column of output from PRAGMA index_info is...)
# EVIDENCE-OF: R-34186-52914 The rank of the column within the index. (0
# means left-most.)
#
# (The second column of output from PRAGMA index_info is...)
# EVIDENCE-OF: R-65019-08383 The rank of the column within the table
780
781
782
783
784
785
786
787
788
789

790
791
792
793
794
795
796
  {1 b {} 0 {} 2} \
  {2 c {} 0 {} 4} \
]
} ;# ifcapable schema_pragmas
# Miscellaneous tests
#
ifcapable schema_pragmas {
# EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name);
# This pragma returns one row for each index associated with the given
# table.

do_test pragma-7.1.1 {
  # Make sure a pragma knows to read the schema if it needs to
  db close
  sqlite3 db test.db
  capture_pragma db out "PRAGMA index_list(t3)"
  db eval {SELECT name, "origin" FROM out ORDER BY name DESC}
} {t3i1 c sqlite_autoindex_t3_1 u}







|
|
<
>







780
781
782
783
784
785
786
787
788

789
790
791
792
793
794
795
796
  {1 b {} 0 {} 2} \
  {2 c {} 0 {} 4} \
]
} ;# ifcapable schema_pragmas
# Miscellaneous tests
#
ifcapable schema_pragmas {
# EVIDENCE-OF: R-64103-17776 PRAGMA schema.index_list(table-name); This
# pragma returns one row for each index associated with the given table.

#
do_test pragma-7.1.1 {
  # Make sure a pragma knows to read the schema if it needs to
  db close
  sqlite3 db test.db
  capture_pragma db out "PRAGMA index_list(t3)"
  db eval {SELECT name, "origin" FROM out ORDER BY name DESC}
} {t3i1 c sqlite_autoindex_t3_1 u}
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
} ;# ifcapable bloblit 

ifcapable pager_pragmas {
  db close
  forcedelete test.db
  sqlite3 db test.db
 
  # EVIDENCE-OF: R-13905-26312 PRAGMA database.page_count; Return the
  # total number of pages in the database file.
  #
  do_test pragma-14.1 {
    execsql { pragma auto_vacuum = 0 }
    execsql { pragma page_count; pragma main.page_count }
  } {0 0}

  do_test pragma-14.2 {







|
|







1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
} ;# ifcapable bloblit 

ifcapable pager_pragmas {
  db close
  forcedelete test.db
  sqlite3 db test.db
 
  # EVIDENCE-OF: R-15672-33611 PRAGMA schema.page_count; Return the total
  # number of pages in the database file.
  #
  do_test pragma-14.1 {
    execsql { pragma auto_vacuum = 0 }
    execsql { pragma page_count; pragma main.page_count }
  } {0 0}

  do_test pragma-14.2 {
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
    DROP INDEX i2;
    CREATE INDEX i2 ON t1(c,d,b);
  }
  capture_pragma db2 out {PRAGMA index_info(i2)}
  db2 eval {SELECT cid, name, '|' FROM out ORDER BY seqno}
} {2 c | 3 d | 1 b |}

# EVIDENCE-OF: R-44874-46325 PRAGMA database.index_xinfo(index-name);
# This pragma returns information about every column in an index.
#
# EVIDENCE-OF: R-45970-35618 Unlike this index_info pragma, this pragma
# returns information about every column in the index, not just the key
# columns.
#
do_test 23.2b {
  capture_pragma db2 out {PRAGMA index_xinfo(i2)}







|
|







1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
    DROP INDEX i2;
    CREATE INDEX i2 ON t1(c,d,b);
  }
  capture_pragma db2 out {PRAGMA index_info(i2)}
  db2 eval {SELECT cid, name, '|' FROM out ORDER BY seqno}
} {2 c | 3 d | 1 b |}

# EVIDENCE-OF: R-56143-29319 PRAGMA schema.index_xinfo(index-name); This
# pragma returns information about every column in an index.
#
# EVIDENCE-OF: R-45970-35618 Unlike this index_info pragma, this pragma
# returns information about every column in the index, not just the key
# columns.
#
do_test 23.2b {
  capture_pragma db2 out {PRAGMA index_xinfo(i2)}
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
do_test 23.2c {
  db2 eval {PRAGMA index_xinfo(i2)}
} {0 2 c 0 BINARY 1 1 3 d 0 BINARY 1 2 1 b 0 BINARY 1 3 -1 {} 0 BINARY 0}
do_test 23.2d {
  db2 eval {PRAGMA index_xinfo(i2x)}
} {0 3 d 0 nocase 1 1 2 c 1 BINARY 1 2 -1 {} 0 BINARY 0}

# EVIDENCE-OF: R-63500-32024 PRAGMA database.index_list(table-name);
# This pragma returns one row for each index associated with the given
# table.
#
# (The first column of output from PRAGMA index_list is...)
# EVIDENCE-OF: R-02753-24748 A sequence number assigned to each index
# for internal tracking purposes.
#
# (The second column of output from PRAGMA index_list is...)
# EVIDENCE-OF: R-35496-03635 The name of the index.







|
|
<







1857
1858
1859
1860
1861
1862
1863
1864
1865

1866
1867
1868
1869
1870
1871
1872
do_test 23.2c {
  db2 eval {PRAGMA index_xinfo(i2)}
} {0 2 c 0 BINARY 1 1 3 d 0 BINARY 1 2 1 b 0 BINARY 1 3 -1 {} 0 BINARY 0}
do_test 23.2d {
  db2 eval {PRAGMA index_xinfo(i2x)}
} {0 3 d 0 nocase 1 1 2 c 1 BINARY 1 2 -1 {} 0 BINARY 0}

# EVIDENCE-OF: R-64103-17776 PRAGMA schema.index_list(table-name); This
# pragma returns one row for each index associated with the given table.

#
# (The first column of output from PRAGMA index_list is...)
# EVIDENCE-OF: R-02753-24748 A sequence number assigned to each index
# for internal tracking purposes.
#
# (The second column of output from PRAGMA index_list is...)
# EVIDENCE-OF: R-35496-03635 The name of the index.
Changes to test/pragma2.test.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
db close
delete_file test.db test.db-journal
delete_file test3.db test3.db-journal
sqlite3 db test.db; set DB [sqlite3_connection_pointer db]
db eval {PRAGMA auto_vacuum=0}


# EVIDENCE-OF: R-17887-14874 PRAGMA database.freelist_count; Return the
# number of unused pages in the database file.
#
do_test pragma2-1.1 {
  execsql {
    PRAGMA freelist_count;
  }
} {0}







|







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
db close
delete_file test.db test.db-journal
delete_file test3.db test3.db-journal
sqlite3 db test.db; set DB [sqlite3_connection_pointer db]
db eval {PRAGMA auto_vacuum=0}


# EVIDENCE-OF: R-11211-21323 PRAGMA schema.freelist_count; Return the
# number of unused pages in the database file.
#
do_test pragma2-1.1 {
  execsql {
    PRAGMA freelist_count;
  }
} {0}
Changes to test/releasetest.tcl.
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

# Output log
#
set LOG [open releasetest-out.txt w]
proc PUTS {args} {
  if {[llength $args]==2} {
    puts [lindex $args 0] [lindex $args 1]
    puts [lindex $args 0] $::LOG [lindex $args 1]
  } else {
    puts [lindex $args 0]
    puts $::LOG [lindex $args 0]
  }
}
puts $LOG "$argv0 $argv"
set tm0 [clock format [clock seconds] -format {%Y-%m-%d %H:%M:%S} -gmt 1]







|







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

# Output log
#
set LOG [open releasetest-out.txt w]
proc PUTS {args} {
  if {[llength $args]==2} {
    puts [lindex $args 0] [lindex $args 1]
    puts $::LOG [lindex $args 1]
  } else {
    puts [lindex $args 0]
    puts $::LOG [lindex $args 0]
  }
}
puts $LOG "$argv0 $argv"
set tm0 [clock format [clock seconds] -format {%Y-%m-%d %H:%M:%S} -gmt 1]
706
707
708
709
710
711
712

713
714
715
716
717
718
719

  set elapsetime [expr {[clock seconds]-$STARTTIME}]
  set hr [expr {$elapsetime/3600}]
  set min [expr {($elapsetime/60)%60}]
  set sec [expr {$elapsetime%60}]
  set etime [format (%02d:%02d:%02d) $hr $min $sec]
  PUTS [string repeat * 79]

  PUTS "$::NERRCASE failures out of $::NTESTCASE tests in $etime"
  if {$::SQLITE_VERSION ne ""} {
    PUTS "SQLite $::SQLITE_VERSION"
  }
}

main $argv







>







706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

  set elapsetime [expr {[clock seconds]-$STARTTIME}]
  set hr [expr {$elapsetime/3600}]
  set min [expr {($elapsetime/60)%60}]
  set sec [expr {$elapsetime%60}]
  set etime [format (%02d:%02d:%02d) $hr $min $sec]
  PUTS [string repeat * 79]
  incr ::NERRCASE $::NERR
  PUTS "$::NERRCASE failures out of $::NTESTCASE tests in $etime"
  if {$::SQLITE_VERSION ne ""} {
    PUTS "SQLite $::SQLITE_VERSION"
  }
}

main $argv
Added test/subtype1.test.






























































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# 2015-09-10
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements tests for sqlite3_value_subtype() and
# sqlite3_result_subtype() interfaces.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_execsql_test subtype1-100 {
  SELECT test_getsubtype('hello');
} {0}
do_execsql_test subtype1-110 {
  SELECT test_getsubtype(test_setsubtype('hello',123));
} {123}
do_execsql_test subtype1-120 {
  SELECT typeof(test_setsubtype('hello',123));
} {text}
do_execsql_test subtype1-130 {
  SELECT test_setsubtype('hello',123);
} {hello}

finish_test
Changes to test/tabfunc01.test.
65
66
67
68
69
70
71













72
73
  SELECT * FROM generate_series() LIMIT 5;
} {0 1 2 3 4}

do_execsql_test tabfunc01-3.1 {
  SELECT DISTINCT value FROM generate_series(1,x), t1 ORDER BY 1;
} {1 2 3}















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  SELECT * FROM generate_series() LIMIT 5;
} {0 1 2 3 4}

do_execsql_test tabfunc01-3.1 {
  SELECT DISTINCT value FROM generate_series(1,x), t1 ORDER BY 1;
} {1 2 3}

# Eponymous virtual table exists in the "main" schema only
#
do_execsql_test tabfunc01-4.1 {
  SELECT * FROM main.generate_series(1,4)
} {1 2 3 4}
do_catchsql_test tabfunc01-4.2 {
  SELECT * FROM temp.generate_series(1,4)
} {1 {no such table: temp.generate_series}}
do_catchsql_test tabfunc01-4.3 {
  ATTACH ':memory:' AS aux1;
  CREATE TABLE aux1.t1(a,b,c);
  SELECT * FROM aux1.generate_series(1,4)
} {1 {no such table: aux1.generate_series}}

finish_test
Changes to test/table.test.
818
819
820
821
822
823
824












825
826
827
  BEGIN;
  CREATE TABLE t1 AS SELECT zeroblob(2e20);
} {1 {string or blob too big}}
do_execsql_test table-18.2 {
  COMMIT;
  PRAGMA integrity_check;
} {ok}














finish_test







>
>
>
>
>
>
>
>
>
>
>
>



818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
  BEGIN;
  CREATE TABLE t1 AS SELECT zeroblob(2e20);
} {1 {string or blob too big}}
do_execsql_test table-18.2 {
  COMMIT;
  PRAGMA integrity_check;
} {ok}

# 2015-09-09
# Ticket [https://www.sqlite.org/src/info/acd12990885d9276]
# "CREATE TABLE ... AS SELECT ... FROM sqlite_master" fails because the row
# in the sqlite_master table for the next table is initially populated
# with a NULL instead of a record created by OP_Record.
#
do_execsql_test table-19.1 {
  CREATE TABLE t19 AS SELECT * FROM sqlite_master;
  SELECT name FROM t19 ORDER BY name;
} {{} savepoint t10 t11 t12 t13 t16 t2 t3 t3\"xyz t4\"abc t7 t8 t9 tablet8 test1 weird}



finish_test
Changes to tool/lemon.c.
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
*/
static int axset_compare(const void *a, const void *b){
  struct axset *p1 = (struct axset*)a;
  struct axset *p2 = (struct axset*)b;
  int c;
  c = p2->nAction - p1->nAction;
  if( c==0 ){
    c = p2->iOrder - p1->iOrder;
  }
  assert( c!=0 || p1==p2 );
  return c;
}

/*
** Write text on "out" that describes the rule "rp".







|







3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
*/
static int axset_compare(const void *a, const void *b){
  struct axset *p1 = (struct axset*)a;
  struct axset *p2 = (struct axset*)b;
  int c;
  c = p2->nAction - p1->nAction;
  if( c==0 ){
    c = p1->iOrder - p2->iOrder;
  }
  assert( c!=0 || p1==p2 );
  return c;
}

/*
** Write text on "out" that describes the rule "rp".
3929
3930
3931
3932
3933
3934
3935










3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }










  }
  free(ax);

  /* Finish rendering the constants now that the action table has
  ** been computed */
  fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
  fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
  fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nstate-1);  lineno++;
  fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",lemp->nstate); lineno++;
  i = lemp->nstate + lemp->nrule;
  fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
  fprintf(out,"#define YY_MIN_REDUCE        %d\n", i); lineno++;
  i = lemp->nstate + lemp->nrule*2;
  fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
  fprintf(out,"#define YY_ERROR_ACTION      %d\n", i); lineno++;







>
>
>
>
>
>
>
>
>
>







|







3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
        if( action<0 ) continue;
        acttab_action(pActtab, ap->sp->index, action);
      }
      stp->iNtOfst = acttab_insert(pActtab);
      if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
      if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
    }
#if 0  /* Uncomment for a trace of how the yy_action[] table fills out */
    { int jj, nn;
      for(jj=nn=0; jj<pActtab->nAction; jj++){
        if( pActtab->aAction[jj].action<0 ) nn++;
      }
      printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
             i, stp->statenum, ax[i].isTkn ? "Token" : "Var  ",
             ax[i].nAction, pActtab->nAction, nn);
    }
#endif
  }
  free(ax);

  /* Finish rendering the constants now that the action table has
  ** been computed */
  fprintf(out,"#define YYNSTATE             %d\n",lemp->nxstate);  lineno++;
  fprintf(out,"#define YYNRULE              %d\n",lemp->nrule);  lineno++;
  fprintf(out,"#define YY_MAX_SHIFT         %d\n",lemp->nxstate-1); lineno++;
  fprintf(out,"#define YY_MIN_SHIFTREDUCE   %d\n",lemp->nstate); lineno++;
  i = lemp->nstate + lemp->nrule;
  fprintf(out,"#define YY_MAX_SHIFTREDUCE   %d\n", i-1); lineno++;
  fprintf(out,"#define YY_MIN_REDUCE        %d\n", i); lineno++;
  i = lemp->nstate + lemp->nrule*2;
  fprintf(out,"#define YY_MAX_REDUCE        %d\n", i-1); lineno++;
  fprintf(out,"#define YY_ERROR_ACTION      %d\n", i); lineno++;
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
** is a possible look-ahead.
*/
void CompressTables(struct lemon *lemp)
{
  struct state *stp;
  struct action *ap, *ap2;
  struct rule *rp, *rp2, *rbest;
  int nbest, n, nshift;
  int i;
  int usesWildcard;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    nbest = 0;
    rbest = 0;







|







4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
** is a possible look-ahead.
*/
void CompressTables(struct lemon *lemp)
{
  struct state *stp;
  struct action *ap, *ap2;
  struct rule *rp, *rp2, *rbest;
  int nbest, n;
  int i;
  int usesWildcard;

  for(i=0; i<lemp->nstate; i++){
    stp = lemp->sorted[i];
    nbest = 0;
    rbest = 0;
Changes to tool/spaceanal.tcl.
22
23
24
25
26
27
28

29











30
31
32
33
34
35
36
  return 0
}

# Get the name of the database to analyze
#
proc usage {} {
  set argv0 [file rootname [file tail [info nameofexecutable]]]

  puts stderr "Usage: $argv0 \[--pageinfo] \[--stats] database-name"











  exit 1
}
set file_to_analyze {}
set flags(-pageinfo) 0
set flags(-stats) 0
append argv {}
foreach arg $argv {







>
|
>
>
>
>
>
>
>
>
>
>
>







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
  return 0
}

# Get the name of the database to analyze
#
proc usage {} {
  set argv0 [file rootname [file tail [info nameofexecutable]]]
  puts stderr "Usage: $argv0 ?--pageinfo? ?--stats? database-filename"
  puts stderr {
Analyze the SQLite3 database file specified by the "database-filename"
argument and output a report detailing size and storage efficiency
information for the database and its constituent tables and indexes.

Options:

   --stats        Output SQL text that creates a new database containing
                  statistics about the database that was analyzed

   --pageinfo     Show how each page of the database-file is used
}
  exit 1
}
set file_to_analyze {}
set flags(-pageinfo) 0
set flags(-stats) 0
append argv {}
foreach arg $argv {