SQLite

Check-in [e9f84ff3fe]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:More btree.c bug fixes. (CVS 1327)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: e9f84ff3fe45a014ab60fabbfd91d19e6d353477
User & Date: drh 2004-05-08 20:07:40.000
Context
2004-05-09
00:40
All tests in btree.test now pass (but only because I commented out the btree_integrity_check test.) (CVS 1328) (check-in: ee706e9c74 user: drh tags: trunk)
2004-05-08
20:07
More btree.c bug fixes. (CVS 1327) (check-in: e9f84ff3fe user: drh tags: trunk)
10:56
Get the code back to the point where it will compile the btree.c tests. Move the default key comparison routine from btree.c into vdbeaux.c. Commented out code in vdbe.c that will need to be fixed. (CVS 1326) (check-in: 2bca92240b user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.115 2004/05/08 10:56:11 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.116 2004/05/08 20:07:40 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229





230
231
232
233
234
235
236
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
  u32 notUsed;
  struct Btree *pBt;             /* Pointer back to BTree structure */
  unsigned char *aData;          /* Pointer back to the start of the page */
  u8 isInit;                     /* True if previously initialized */
  u8 idxShift;                   /* True if Cell indices have changed */
  u8 isOverfull;                 /* Some aCell[] do not fit on page */
  u8 intKey;                     /* True if intkey flag is set */
  u8 leaf;                       /* True if leaf flag is set */
  u8 zeroData;                   /* True if zero data flag is set */
  u8 hdrOffset;                  /* 100 for page 1.  0 otherwise */
  Pgno pgno;                     /* Page number for this page */
  MemPage *pParent;              /* The parent of this page.  NULL for root */
  int idxParent;                 /* Index in pParent->aCell[] of this node */
  int nFree;                     /* Number of free bytes on the page */
  int nCell;                     /* Number of entries on this page */
  int nCellAlloc;                /* Number of slots allocated in aCell[] */
  unsigned char **aCell;         /* Pointer to start of each cell */





};

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/







<
<







<
<





>
>
>
>
>







207
208
209
210
211
212
213


214
215
216
217
218
219
220


221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
  u32 notUsed;


  u8 isInit;                     /* True if previously initialized */
  u8 idxShift;                   /* True if Cell indices have changed */
  u8 isOverfull;                 /* Some aCell[] do not fit on page */
  u8 intKey;                     /* True if intkey flag is set */
  u8 leaf;                       /* True if leaf flag is set */
  u8 zeroData;                   /* True if zero data flag is set */
  u8 hdrOffset;                  /* 100 for page 1.  0 otherwise */


  int idxParent;                 /* Index in pParent->aCell[] of this node */
  int nFree;                     /* Number of free bytes on the page */
  int nCell;                     /* Number of entries on this page */
  int nCellAlloc;                /* Number of slots allocated in aCell[] */
  unsigned char **aCell;         /* Pointer to start of each cell */
  struct Btree *pBt;             /* Pointer back to BTree structure */

  unsigned char *aData;          /* Pointer back to the start of the page */
  Pgno pgno;                     /* Page number for this page */
  MemPage *pParent;              /* The parent of this page.  NULL for root */
};

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
594
595
596
597
598
599
600
601
602
603
604
605
606
607

608
609
610
611
612
613
614
615


616
617
618
619
620
621
622
  int pageSize;
  int sumCell = 0;       /* Total size of all cells */

  assert( pPage->pBt!=0 );
  assert( pParent==0 || pParent->pBt==pPage->pBt );
  assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
  assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
  assert( pPage->isInit==0 || pPage->pParent==pParent );
  if( pPage->isInit ) return SQLITE_OK;
  assert( pPage->pParent==0 );
  pPage->pParent = pParent;
  if( pParent ){
    sqlite3pager_ref(pParent->aData);
  }

  pPage->nCell = pPage->nCellAlloc = 0;
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  c = data[hdr];
  pPage->intKey = (c & PTF_INTKEY)!=0;
  pPage->zeroData = (c & PTF_ZERODATA)!=0;
  pPage->leaf = (c & PTF_LEAF)!=0;


  pageSize = pPage->pBt->pageSize;

  /* Initialize the cell count and cell pointers */
  pc = get2byte(&data[hdr+3]);
  while( pc>0 ){
    if( pc>=pageSize ) return SQLITE_CORRUPT;
    if( pPage->nCell>pageSize ) return SQLITE_CORRUPT;







|
<
|
|
<


>








>
>







595
596
597
598
599
600
601
602

603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
  int pageSize;
  int sumCell = 0;       /* Total size of all cells */

  assert( pPage->pBt!=0 );
  assert( pParent==0 || pParent->pBt==pPage->pBt );
  assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
  assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
  assert( pPage->pParent==0 || pPage->pParent==pParent );

  if( pPage->pParent==0 && pParent!=0 ){
    pPage->pParent = pParent;

    sqlite3pager_ref(pParent->aData);
  }
  if( pPage->isInit ) return SQLITE_OK;
  pPage->nCell = pPage->nCellAlloc = 0;
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  c = data[hdr];
  pPage->intKey = (c & PTF_INTKEY)!=0;
  pPage->zeroData = (c & PTF_ZERODATA)!=0;
  pPage->leaf = (c & PTF_LEAF)!=0;
  pPage->isOverfull = 0;
  pPage->idxShift = 0;
  pageSize = pPage->pBt->pageSize;

  /* Initialize the cell count and cell pointers */
  pc = get2byte(&data[hdr+3]);
  while( pc>0 ){
    if( pc>=pageSize ) return SQLITE_CORRUPT;
    if( pPage->nCell>pageSize ) return SQLITE_CORRUPT;
663
664
665
666
667
668
669


670
671
672
673
674
675
676
677
678
679
680
681
682
683
684



685
686
687
688
689
690
691
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  Btree *pBt = pPage->pBt;
  int hdr = pPage->hdrOffset;
  int first;



  assert( sqlite3pager_iswriteable(data) );
  memset(&data[hdr], 0, pBt->pageSize - hdr);
  data[hdr] = flags;
  first = hdr + 6 + 4*((flags&PTF_LEAF)==0);
  put2byte(&data[hdr+1], first);
  put2byte(&data[first+2], pBt->pageSize - first);
  sqliteFree(pPage->aCell);
  pPage->aCell = 0;
  pPage->nCell = 0;
  pPage->nCellAlloc = 0;
  pPage->nFree = pBt->pageSize - first;
  pPage->intKey = (flags & PTF_INTKEY)!=0;
  pPage->leaf = (flags & PTF_LEAF)!=0;
  pPage->zeroData = (flags & PTF_ZERODATA)!=0;
  pPage->hdrOffset = hdr;



}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){







>
>















>
>
>







665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  Btree *pBt = pPage->pBt;
  int hdr = pPage->hdrOffset;
  int first;

  assert( sqlite3pager_pagenumber(data)==pPage->pgno );
  assert( &data[pBt->pageSize] == (unsigned char*)pPage );
  assert( sqlite3pager_iswriteable(data) );
  memset(&data[hdr], 0, pBt->pageSize - hdr);
  data[hdr] = flags;
  first = hdr + 6 + 4*((flags&PTF_LEAF)==0);
  put2byte(&data[hdr+1], first);
  put2byte(&data[first+2], pBt->pageSize - first);
  sqliteFree(pPage->aCell);
  pPage->aCell = 0;
  pPage->nCell = 0;
  pPage->nCellAlloc = 0;
  pPage->nFree = pBt->pageSize - first;
  pPage->intKey = (flags & PTF_INTKEY)!=0;
  pPage->leaf = (flags & PTF_LEAF)!=0;
  pPage->zeroData = (flags & PTF_ZERODATA)!=0;
  pPage->hdrOffset = hdr;
  pPage->isOverfull = 0;
  pPage->idxShift = 0;
  pPage->isInit = 1;
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
997
998
999
1000
1001
1002
1003


















1004
1005
1006
1007
1008
1009
1010
      releasePage(pPage);
      pCur->pPage = 0;
      pCur->isValid = 0;
      pCur->status = SQLITE_ABORT;
    }
  }
}



















/*
** Rollback the transaction in progress.  All cursors will be
** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
      releasePage(pPage);
      pCur->pPage = 0;
      pCur->isValid = 0;
      pCur->status = SQLITE_ABORT;
    }
  }
}

#ifdef SQLITE_TEST
/*
** Print debugging information about all cursors to standard output.
*/
void sqlite3BtreeCursorList(Btree *pBt){
  BtCursor *pCur;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    MemPage *pPage = pCur->pPage;
    char *zMode = pCur->wrFlag ? "rw" : "ro";
    printf("CURSOR %08x rooted at %4d(%s) currently at %d.%d%s\n",
       (int)pCur, pCur->pgnoRoot, zMode,
       pPage ? pPage->pgno : 0, pCur->idx,
       pCur->isValid ? "" : " eof"
    );
  }
}
#endif

/*
** Rollback the transaction in progress.  All cursors will be
** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
1532
1533
1534
1535
1536
1537
1538
1539
1540

1541
1542
1543
1544
1545
1546
1547
** for the table rooted on page 1, sometime the real root page
** is empty except for the right-pointer.  In such cases the
** virtual root page is the page that the right-pointer of page
** 1 is pointing to.
*/
static int isRootPage(MemPage *pPage){
  MemPage *pParent = pPage->pParent;
  assert( pParent==0 || pParent->isInit );
  if( pParent==0 || (pParent->pgno==1 && pParent->nCell==0) ) return 1;

  return 0;
}

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer







|
|
>







1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
** for the table rooted on page 1, sometime the real root page
** is empty except for the right-pointer.  In such cases the
** virtual root page is the page that the right-pointer of page
** 1 is pointing to.
*/
static int isRootPage(MemPage *pPage){
  MemPage *pParent = pPage->pParent;
  if( pParent==0 ) return 1;
  if( pParent->pgno>1 ) return 0;
  if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
  return 0;
}

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
2306
2307
2308
2309
2310
2311
2312








2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331

2332

2333
2334
2335
2336
2337
2338
2339
    assert( idx>pPage->hdrOffset && idx<pPage->pBt->pageSize );
    put2byte(&pPage->aData[idxFrom], idx);
    idxFrom = idx;
  }
  put2byte(&pPage->aData[idxFrom], 0);
}









/*
** Move the content of the page at pFrom over to pTo.  The pFrom->aCell[]
** pointers that point into pFrom->aData[] must be adjusted to point
** into pTo->aData[] instead.  But some pFrom->aCell[] entries might
** not point to pFrom->aData[].  Those are unchanged.
**
** Over this operation completes, the meta data for pFrom is zeroed.
*/
static void copyPage(MemPage *pTo, MemPage *pFrom){
  uptr from, to;
  int i;
  int pageSize;
  int ofst;

  assert( pTo->hdrOffset==0 );
  ofst = pFrom->hdrOffset;
  pageSize = pTo->pBt->pageSize;
  sqliteFree(pTo->aCell);
  memcpy(pTo->aData, &pFrom->aData[ofst], pageSize - ofst + sizeof(MemPage));

  memset(pFrom, 0, sizeof(MemPage));

  assert( pTo->aData[5]<155 );
  pTo->aData[5] += ofst;
  pTo->isOverfull = pFrom->isOverfull;
  to = Addr(pTo->aData);
  from = Addr(&pFrom->aData[ofst]);
  for(i=0; i<pTo->nCell; i++){
    uptr x = Addr(pTo->aCell[i]);







>
>
>
>
>
>
>
>








|







|

|
>
|
>







2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
    assert( idx>pPage->hdrOffset && idx<pPage->pBt->pageSize );
    put2byte(&pPage->aData[idxFrom], idx);
    idxFrom = idx;
  }
  put2byte(&pPage->aData[idxFrom], 0);
}

/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif

/*
** Move the content of the page at pFrom over to pTo.  The pFrom->aCell[]
** pointers that point into pFrom->aData[] must be adjusted to point
** into pTo->aData[] instead.  But some pFrom->aCell[] entries might
** not point to pFrom->aData[].  Those are unchanged.
**
** Over this operation completes, the meta data for pFrom is zeroed.
*/
static void movePage(MemPage *pTo, MemPage *pFrom){
  uptr from, to;
  int i;
  int pageSize;
  int ofst;

  assert( pTo->hdrOffset==0 );
  ofst = pFrom->hdrOffset;
  pageSize = pFrom->pBt->pageSize;
  sqliteFree(pTo->aCell);
  memcpy(pTo->aData, &pFrom->aData[ofst], pageSize - ofst);
  memcpy(pTo, pFrom, offsetof(MemPage, aData));
  pFrom->isInit = 0;
  pFrom->aCell = 0;
  assert( pTo->aData[5]<155 );
  pTo->aData[5] += ofst;
  pTo->isOverfull = pFrom->isOverfull;
  to = Addr(pTo->aData);
  from = Addr(&pFrom->aData[ofst]);
  for(i=0; i<pTo->nCell; i++){
    uptr x = Addr(pTo->aCell[i]);
2404
2405
2406
2407
2408
2409
2410

2411
2412
2413
2414
2415
2416
2417
  int idx;                     /* Index of pPage in pParent->aCell[] */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc;                      /* The return code */
  int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */

  MemPage *apOld[NB];          /* pPage and up to two siblings */
  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  MemPage *apNew[NB+1];        /* pPage and up to NB siblings after balancing */
  Pgno pgnoNew[NB+1];          /* Page numbers for each page in apNew[] */
  int idxDiv[NB];              /* Indices of divider cells in pParent */
  u8 *apDiv[NB];               /* Divider cells in pParent */







>







2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
  int idx;                     /* Index of pPage in pParent->aCell[] */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc;                      /* The return code */
  int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  MemPage *extraUnref = 0;     /* Unref this page if not zero */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  MemPage *apNew[NB+1];        /* pPage and up to NB siblings after balancing */
  Pgno pgnoNew[NB+1];          /* Page numbers for each page in apNew[] */
  int idxDiv[NB];              /* Indices of divider cells in pParent */
  u8 *apDiv[NB];               /* Divider cells in pParent */
2506
2507
2508
2509
2510
2511
2512
2513

2514
2515
2516

2517
2518
2519
2520
2521

2522
2523
2524
2525
2526
2527
2528
    ** page an empty page with rightChild pointing to the new
    ** child.  Then fall thru to the code below which will cause
    ** the overfull child page to be split.
    */
    rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
    if( rc ) return rc;
    assert( sqlite3pager_iswriteable(pChild->aData) );
    copyPage(pChild, pPage);

    pChild->pParent = pPage;
    pChild->idxParent = 0;
    sqlite3pager_ref(pPage->aData);

    pChild->isOverfull = 1;
    zeroPage(pPage, pPage->aData[pPage->hdrOffset] & ~PTF_LEAF);
    put4byte(&pPage->aData[pPage->hdrOffset+6], pChild->pgno);
    pParent = pPage;
    pPage = pChild;

  }
  rc = sqlite3pager_write(pParent->aData);
  if( rc ) return rc;
  assert( pParent->isInit );
  
  /*
  ** Find the cell in the parent page whose left child points back







|
>

<

>

|



>







2543
2544
2545
2546
2547
2548
2549
2550
2551
2552

2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
    ** page an empty page with rightChild pointing to the new
    ** child.  Then fall thru to the code below which will cause
    ** the overfull child page to be split.
    */
    rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
    if( rc ) return rc;
    assert( sqlite3pager_iswriteable(pChild->aData) );
    movePage(pChild, pPage);
    assert( pChild->aData[0]==pPage->aData[pPage->hdrOffset] );
    pChild->pParent = pPage;

    sqlite3pager_ref(pPage->aData);
    pChild->idxParent = 0;
    pChild->isOverfull = 1;
    zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
    put4byte(&pPage->aData[pPage->hdrOffset+6], pChild->pgno);
    pParent = pPage;
    pPage = pChild;
    extraUnref = pChild;
  }
  rc = sqlite3pager_write(pParent->aData);
  if( rc ) return rc;
  assert( pParent->isInit );
  
  /*
  ** Find the cell in the parent page whose left child points back
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598


2599
2600
2601
2602
2603
2604
2605
2606
  /*
  ** Make copies of the content of pPage and its siblings into aOld[].
  ** The rest of this function will use data from the copies rather
  ** that the original pages since the original pages will be in the
  ** process of being overwritten.
  */
  for(i=0; i<nOld; i++){
    apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)];
    memset(apCopy[i], 0, sizeof(MemPage));
    apCopy[i]->aData = &((u8*)apCopy)[-pBt->pageSize];


    copyPage(apCopy[i], apOld[i]);
  }

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into aTemp[] and remove the the divider Cells from pParent.
  **







|
<
|
>
>
|







2628
2629
2630
2631
2632
2633
2634
2635

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
  /*
  ** Make copies of the content of pPage and its siblings into aOld[].
  ** The rest of this function will use data from the copies rather
  ** that the original pages since the original pages will be in the
  ** process of being overwritten.
  */
  for(i=0; i<nOld; i++){
    MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-sizeof(MemPage)];

    p->aData = &((u8*)p)[-pBt->pageSize];
    p->aCell = 0;
    p->hdrOffset = 0;
    movePage(p, apOld[i]);
  }

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into aTemp[] and remove the the divider Cells from pParent.
  **
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627

2628
2629
2630
2631
2632
2633
2634
2635
    MemPage *pOld = apCopy[i];
    for(j=0; j<pOld->nCell; j++){
      apCell[nCell] = pOld->aCell[j];
      szCell[nCell] = cellSize(pOld, apCell[nCell]);
      nCell++;
    }
    if( i<nOld-1 ){
      szCell[nCell] = cellSize(pParent, apDiv[i]) - leafCorrection;
      memcpy(aTemp[i], apDiv[i], szCell[nCell] + leafCorrection);
      apCell[nCell] = &aTemp[i][leafCorrection];
      dropCell(pParent, nxDiv, szCell[nCell]);

      assert( get4byte(&apCell[nCell][2])==pgnoOld[i] );
      if( !pOld->leaf ){
        assert( leafCorrection==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(&apCell[nCell][2], &pOld->aData[pOld->hdrOffset+6], 4);
      }else{
        assert( leafCorrection==4 );







|
|


>
|







2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
    MemPage *pOld = apCopy[i];
    for(j=0; j<pOld->nCell; j++){
      apCell[nCell] = pOld->aCell[j];
      szCell[nCell] = cellSize(pOld, apCell[nCell]);
      nCell++;
    }
    if( i<nOld-1 ){
      szCell[nCell] = cellSize(pParent, apDiv[i]);
      memcpy(aTemp[i], apDiv[i], szCell[nCell]);
      apCell[nCell] = &aTemp[i][leafCorrection];
      dropCell(pParent, nxDiv, szCell[nCell]);
      szCell[nCell] -= leafCorrection;
      assert( get4byte(&aTemp[i][2])==pgnoOld[i] );
      if( !pOld->leaf ){
        assert( leafCorrection==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(&apCell[nCell][2], &pOld->aData[pOld->hdrOffset+6], 4);
      }else{
        assert( leafCorrection==4 );
2673
2674
2675
2676
2677
2678
2679

2680
2681
2682
2683
2684
2685
2686
2687

2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  assert( pPage->pgno>1 );
  pageFlags = pPage->aData[0];
  for(i=0; i<k; i++){

    if( i<nOld ){
      apNew[i] = apOld[i];
      pgnoNew[i] = pgnoOld[i];
      apOld[i] = 0;
      sqlite3pager_write(apNew[i]);
    }else{
      rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
      if( rc ) goto balance_cleanup;

    }
    nNew++;
    zeroPage(apNew[i], pageFlags);
    apNew[i]->isInit = 1;
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    rc = freePage(apOld[i]);
    if( rc ) goto balance_cleanup;
    sqlite3pager_unref(apOld[i]->aData);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in accending order.  This helps to
  ** keep entries in the disk file in order so that a scan







>

|


|

|

>


|
<







|







2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733

2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  assert( pPage->pgno>1 );
  pageFlags = pPage->aData[0];
  for(i=0; i<k; i++){
    MemPage *pNew;
    if( i<nOld ){
      pNew = apNew[i] = apOld[i];
      pgnoNew[i] = pgnoOld[i];
      apOld[i] = 0;
      sqlite3pager_write(pNew->aData);
    }else{
      rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]);
      if( rc ) goto balance_cleanup;
      apNew[i] = pNew;
    }
    nNew++;
    zeroPage(pNew, pageFlags);

  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    rc = freePage(apOld[i]);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in accending order.  This helps to
  ** keep entries in the disk file in order so that a scan
2786
2787
2788
2789
2790
2791
2792


2793

2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809

2810
2811
2812
2813
2814
2815
2816
    reparentChildPages(apNew[i]);
  }
  reparentChildPages(pParent);

  /*
  ** balance the parent page.
  */


  rc = balance(pParent);


  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
    if( apCopy[i] ){
      releasePage(apCopy[i]->pParent);
      sqliteFree(apCopy[i]->aCell);
    }
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }
  releasePage(pParent);

  return rc;
}

/*
** This routine checks all cursors that point to the same table
** as pCur points to.  If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED.  If all







>
>

>








<







>







2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846

2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
    reparentChildPages(apNew[i]);
  }
  reparentChildPages(pParent);

  /*
  ** balance the parent page.
  */
  assert( pPage->isInit );
  assert( pParent->isInit );
  rc = balance(pParent);
  

  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
    if( apCopy[i] ){

      sqliteFree(apCopy[i]->aCell);
    }
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }
  releasePage(pParent);
  releasePage(extraUnref);
  return rc;
}

/*
** This routine checks all cursors that point to the same table
** as pCur points to.  If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED.  If all
2954
2955
2956
2957
2958
2959
2960

2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973

2974
2975

2976
2977
2978
2979
2980
2981
2982
    ** next Cell after the one to be deleted is guaranteed to exist and
    ** to be a leaf so we can use it.
    */
    BtCursor leafCur;
    unsigned char *pNext;
    int szNext;
    int notUsed;

    getTempCursor(pCur, &leafCur);
    rc = sqlite3BtreeNext(&leafCur, &notUsed);
    if( rc!=SQLITE_OK ){
      if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
      return rc;
    }
    rc = sqlite3pager_write(leafCur.pPage->aData);
    if( rc ) return rc;
    dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
    pNext = leafCur.pPage->aCell[leafCur.idx];
    szNext = cellSize(leafCur.pPage, pNext);
    insertCell(pPage, pCur->idx, &pNext[-4], szNext+4);
    put4byte(&pNext[-2], pgnoChild);

    rc = balance(pPage);
    if( rc ) return rc;

    dropCell(leafCur.pPage, leafCur.idx, szNext);
    rc = balance(leafCur.pPage);
    releaseTempCursor(&leafCur);
  }else{
    dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
    rc = balance(pPage);
  }







>











|

>


>







2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
    ** next Cell after the one to be deleted is guaranteed to exist and
    ** to be a leaf so we can use it.
    */
    BtCursor leafCur;
    unsigned char *pNext;
    int szNext;
    int notUsed;
    unsigned char tempbuf[4];
    getTempCursor(pCur, &leafCur);
    rc = sqlite3BtreeNext(&leafCur, &notUsed);
    if( rc!=SQLITE_OK ){
      if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
      return rc;
    }
    rc = sqlite3pager_write(leafCur.pPage->aData);
    if( rc ) return rc;
    dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
    pNext = leafCur.pPage->aCell[leafCur.idx];
    szNext = cellSize(leafCur.pPage, pNext);
    memcpy(tempbuf, &pNext[-2], 4);
    put4byte(&pNext[-2], pgnoChild);
    insertCell(pPage, pCur->idx, &pNext[-4], szNext+4);
    rc = balance(pPage);
    if( rc ) return rc;
    memcpy(&pNext[-2], tempbuf, 4);
    dropCell(leafCur.pPage, leafCur.idx, szNext);
    rc = balance(leafCur.pPage);
    releaseTempCursor(&leafCur);
  }else{
    dropCell(pPage, pCur->idx, cellSize(pPage, pCell));
    rc = balance(pPage);
  }
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174




3175
3176
3177
3178
3179
3180
3181
** Print a disassembly of the given page on standard output.  This routine
** is used for debugging and testing only.
*/
#ifdef SQLITE_TEST
int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
  int rc;
  MemPage *pPage;
  int i, j;
  int nFree;
  u16 idx;
  int hdr;
  unsigned char *data;
  char range[20];
  unsigned char payload[20];

  rc = getPage(pBt, (Pgno)pgno, &pPage);
  if( rc ){
    return rc;
  }
  hdr = pPage->hdrOffset;
  data = pPage->aData;




  printf("PAGE %d:  flags=0x%02x  frag=%d\n", pgno,
    data[hdr], data[hdr+5]);
  i = 0;
  assert( hdr == (pgno==1 ? 100 : 0) );
  idx = get2byte(&data[hdr+3]);
  while( idx>0 && idx<=pBt->pageSize ){
    u64 nData, nKey;







|













>
>
>
>







3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
** Print a disassembly of the given page on standard output.  This routine
** is used for debugging and testing only.
*/
#ifdef SQLITE_TEST
int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
  int rc;
  MemPage *pPage;
  int i, j, c;
  int nFree;
  u16 idx;
  int hdr;
  unsigned char *data;
  char range[20];
  unsigned char payload[20];

  rc = getPage(pBt, (Pgno)pgno, &pPage);
  if( rc ){
    return rc;
  }
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  c = data[hdr];
  pPage->intKey = (c & PTF_INTKEY)!=0;
  pPage->zeroData = (c & PTF_ZERODATA)!=0;
  pPage->leaf = (c & PTF_LEAF)!=0;
  printf("PAGE %d:  flags=0x%02x  frag=%d\n", pgno,
    data[hdr], data[hdr+5]);
  i = 0;
  assert( hdr == (pgno==1 ? 100 : 0) );
  idx = get2byte(&data[hdr+3]);
  while( idx>0 && idx<=pBt->pageSize ){
    u64 nData, nKey;
Changes to src/btree.h.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.40 2004/05/08 08:23:23 danielk1977 Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.41 2004/05/08 20:07:40 drh Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
90
91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
int sqlite3BtreeKeyCompare(BtCursor *, const void *, int, int, int *);

char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot);
struct Pager *sqlite3BtreePager(Btree*);

#ifdef SQLITE_TEST
int sqlite3BtreeCursorDump(BtCursor*, int*);

int sqlite3BtreeFlags(BtCursor*);
int sqlite3BtreePageDump(Btree*, int, int recursive);
#endif


#endif /* _BTREE_H_ */










>






<
<
<
90
91
92
93
94
95
96
97
98
99
100
101
102
103



int sqlite3BtreeKeyCompare(BtCursor *, const void *, int, int, int *);

char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot);
struct Pager *sqlite3BtreePager(Btree*);

#ifdef SQLITE_TEST
int sqlite3BtreeCursorDump(BtCursor*, int*);
void sqlite3BtreeCursorList(Btree*);
int sqlite3BtreeFlags(BtCursor*);
int sqlite3BtreePageDump(Btree*, int, int recursive);
#endif


#endif /* _BTREE_H_ */



Changes to src/pager.c.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.104 2004/05/08 08:23:28 danielk1977 Exp $
*/
#include "os.h"         /* Must be first to enable large file support */
#include "sqliteInt.h"
#include "pager.h"
#include <assert.h>
#include <string.h>








|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.105 2004/05/08 20:07:40 drh Exp $
*/
#include "os.h"         /* Must be first to enable large file support */
#include "sqliteInt.h"
#include "pager.h"
#include <assert.h>
#include <string.h>

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120




1121
1122
1123
1124
1125
1126
1127
1128
1129
*/
Pgno sqlite3pager_pagenumber(void *pData){
  PgHdr *p = DATA_TO_PGHDR(pData);
  return p->pgno;
}

/*
** Increment the reference count for a page.  If the page is
** currently on the freelist (the reference count is zero) then
** remove it from the freelist.




*/
#define page_ref(P)   ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
static void _page_ref(PgHdr *pPg){
  if( pPg->nRef==0 ){
    /* The page is currently on the freelist.  Remove it. */
    if( pPg==pPg->pPager->pFirstSynced ){
      PgHdr *p = pPg->pNextFree;
      while( p && p->needSync ){ p = p->pNextFree; }
      pPg->pPager->pFirstSynced = p;







|
|

>
>
>
>

<







1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126
1127
1128
1129
1130
1131
1132
*/
Pgno sqlite3pager_pagenumber(void *pData){
  PgHdr *p = DATA_TO_PGHDR(pData);
  return p->pgno;
}

/*
** The page_ref() function increments the reference count for a page.
** If the page is currently on the freelist (the reference count is zero) then
** remove it from the freelist.
**
** For non-test systems, page_ref() is a macro that calls _page_ref()
** online of the reference count is zero.  For test systems, page_ref()
** is a real function so that we can set breakpoints and trace it.
*/

static void _page_ref(PgHdr *pPg){
  if( pPg->nRef==0 ){
    /* The page is currently on the freelist.  Remove it. */
    if( pPg==pPg->pPager->pFirstSynced ){
      PgHdr *p = pPg->pNextFree;
      while( p && p->needSync ){ p = p->pNextFree; }
      pPg->pPager->pFirstSynced = p;
1139
1140
1141
1142
1143
1144
1145












1146
1147
1148
1149
1150
1151
1152
      pPg->pPager->pLast = pPg->pPrevFree;
    }
    pPg->pPager->nRef++;
  }
  pPg->nRef++;
  REFINFO(pPg);
}













/*
** Increment the reference count for a page.  The input pointer is
** a reference to the page data.
*/
int sqlite3pager_ref(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);







>
>
>
>
>
>
>
>
>
>
>
>







1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
      pPg->pPager->pLast = pPg->pPrevFree;
    }
    pPg->pPager->nRef++;
  }
  pPg->nRef++;
  REFINFO(pPg);
}
#ifdef SQLITE_TEST
  static void page_ref(PgHdr *pPg){
    if( pPg->nRef==0 ){
      _page_ref(pPg);
    }else{
      pPg->nRef++;
      REFINFO(pPg);
    }
  }
#else
# define page_ref(P)   ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
#endif

/*
** Increment the reference count for a page.  The input pointer is
** a reference to the page data.
*/
int sqlite3pager_ref(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    if( pPg->nRef<=0 ) continue;
    printf("PAGE %3d addr=0x%08x nRef=%d\n", 
       pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
  }
}
#endif










<
<
<
2231
2232
2233
2234
2235
2236
2237



  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    if( pPg->nRef<=0 ) continue;
    printf("PAGE %3d addr=0x%08x nRef=%d\n", 
       pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
  }
}
#endif



Changes to src/test3.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the btree.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test3.c,v 1.30 2004/05/08 08:23:39 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the btree.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test3.c,v 1.31 2004/05/08 20:07:40 drh Exp $
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
503
504
505
506
507
508
509























510
511
512
513
514
515
516
  zResult = sqlite3BtreeIntegrityCheck(pBt, aRoot, nRoot);
  if( zResult ){
    Tcl_AppendResult(interp, zResult, 0);
    sqliteFree(zResult); 
  }
  return TCL_OK;
}
























/*
** Usage:   btree_cursor ID TABLENUM WRITEABLE
**
** Create a new cursor.  Return the ID for the cursor.
*/
static int btree_cursor(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
  zResult = sqlite3BtreeIntegrityCheck(pBt, aRoot, nRoot);
  if( zResult ){
    Tcl_AppendResult(interp, zResult, 0);
    sqliteFree(zResult); 
  }
  return TCL_OK;
}

/*
** Usage:   btree_cursor_list ID
**
** Print information about all cursors to standard output for debugging.
*/
static int btree_cursor_list(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR;
  sqlite3BtreeCursorList(pBt);
  return SQLITE_OK;
}

/*
** Usage:   btree_cursor ID TABLENUM WRITEABLE
**
** Create a new cursor.  Return the ID for the cursor.
*/
static int btree_cursor(
1071
1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
     { "btree_keysize",            (Tcl_CmdProc*)btree_keysize            },
     { "btree_key",                (Tcl_CmdProc*)btree_key                },
     { "btree_data",               (Tcl_CmdProc*)btree_data               },
     { "btree_payload_size",       (Tcl_CmdProc*)btree_payload_size       },
     { "btree_first",              (Tcl_CmdProc*)btree_first              },
     { "btree_last",               (Tcl_CmdProc*)btree_last               },
     { "btree_cursor_dump",        (Tcl_CmdProc*)btree_cursor_dump        },

     { "btree_integrity_check",    (Tcl_CmdProc*)btree_integrity_check    },
     { "btree_breakpoint",         (Tcl_CmdProc*)btree_breakpoint         },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
  Tcl_LinkVar(interp, "pager_refinfo_enable", (char*)&pager3_refinfo_enable,
     TCL_LINK_INT);
  return TCL_OK;
}










>












<
<
<
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113



     { "btree_keysize",            (Tcl_CmdProc*)btree_keysize            },
     { "btree_key",                (Tcl_CmdProc*)btree_key                },
     { "btree_data",               (Tcl_CmdProc*)btree_data               },
     { "btree_payload_size",       (Tcl_CmdProc*)btree_payload_size       },
     { "btree_first",              (Tcl_CmdProc*)btree_first              },
     { "btree_last",               (Tcl_CmdProc*)btree_last               },
     { "btree_cursor_dump",        (Tcl_CmdProc*)btree_cursor_dump        },
     { "btree_cursor_list",        (Tcl_CmdProc*)btree_cursor_list        },
     { "btree_integrity_check",    (Tcl_CmdProc*)btree_integrity_check    },
     { "btree_breakpoint",         (Tcl_CmdProc*)btree_breakpoint         },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
  Tcl_LinkVar(interp, "pager_refinfo_enable", (char*)&pager3_refinfo_enable,
     TCL_LINK_INT);
  return TCL_OK;
}



Changes to test/btree.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is btree database backend
#
# $Id: btree.test,v 1.19 2004/05/08 10:56:20 drh Exp $


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Basic functionality.  Open and close a database.
#













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is btree database backend
#
# $Id: btree.test,v 1.20 2004/05/08 20:07:40 drh Exp $


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Basic functionality.  Open and close a database.
#
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840



841
842
843
844
845
846

847


848
849
850
851
852
853
854
855
856
857
858
859
860






861
862
863
864

865
866






867
868
869
870
871
872
873
874
875
876
877
878
  lindex [btree_pager_stats $::b1] 1
} {1}
do_test btree-10.2 {
  set ::c1 [btree_cursor $::b1 2 1]
  lindex [btree_pager_stats $::b1] 1
} {2}
do_test btree-10.3 {
  for {set i 1} {$i<=20} {incr i} {
    set key [format %03d $i]
    set data "*** $key *** $key *** $key *** $key ***"
    btree_insert $::c1 $key $data
  }
  select_keys $::c1
} {001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020}
#btree_page_dump $::b1 7
btree_page_dump $::b1 1
#btree_page_dump $::b1 6
do_test btree-10.4 {



  btree_move_to $::c1 011
  btree_delete $::c1
  select_keys $::c1
} {001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020}
#btree_tree_dump $::b1 2
#btree_pager_ref_dump $::b1

for {set i 1} {$i<=20} {incr i} {


  do_test btree-10.5.$i {
    btree_move_to $::c1 [format %03d $i]
    lindex [btree_pager_stats $::b1] 1
  } {2}
  #btree_pager_ref_dump $::b1
  #btree_tree_dump $::b1 2
}

# Create a tree with lots more pages
#
catch {unset ::data}
catch {unset ::key}
for {set i 21} {$i<=1000} {incr i} {






  do_test btree-11.1.$i.1 {
    set key [format %03d $i]
    set ::data "*** $key *** $key *** $key *** $key ***"
    btree_insert $::c1 $key $data

    btree_key $::c1
  } [format %03d $i]






  do_test btree-11.1.$i.2 {
    btree_data $::c1
  } $::data
  set ::key [format %03d [expr {$i/2}]]
  if {$::key=="011"} {set ::key 010}
  do_test btree-11.1.$i.3 {
    btree_move_to $::c1 $::key
    btree_key $::c1
  } $::key
}
catch {unset ::data}
catch {unset ::key}







|





|
<
|
<

>
>
>
|


|
<

>
|
>
>



|








|
>
>
>
>
>
>




>


>
>
>
>
>
>




|







823
824
825
826
827
828
829
830
831
832
833
834
835
836

837

838
839
840
841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
  lindex [btree_pager_stats $::b1] 1
} {1}
do_test btree-10.2 {
  set ::c1 [btree_cursor $::b1 2 1]
  lindex [btree_pager_stats $::b1] 1
} {2}
do_test btree-10.3 {
  for {set i 1} {$i<=30} {incr i} {
    set key [format %03d $i]
    set data "*** $key *** $key *** $key *** $key ***"
    btree_insert $::c1 $key $data
  }
  select_keys $::c1
} {001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030}

#btree_tree_dump $::b1 2

do_test btree-10.4 {
  # The divider entry is 012.  This is found by uncommenting the 
  # btree_tree_dump call above and looking at the tree.  If the page size
  # changes, this test will no longer work.
  btree_move_to $::c1 012
  btree_delete $::c1
  select_keys $::c1
} {001 002 003 004 005 006 007 008 009 010 011 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030}

#btree_pager_ref_dump $::b1
#btree_tree_dump $::b1 2
for {set i 1} {$i<=30} {incr i} {
  # Check the number of unreference pages.  This should be 3 in most cases,
  # but 2 when the cursor is pointing to the divider entry which is now 013.
  do_test btree-10.5.$i {
    btree_move_to $::c1 [format %03d $i]
    lindex [btree_pager_stats $::b1] 1
  } [expr {$i==13?2:3}]
  #btree_pager_ref_dump $::b1
  #btree_tree_dump $::b1 2
}

# Create a tree with lots more pages
#
catch {unset ::data}
catch {unset ::key}
for {set i 31} {$i<=1000} {incr i} {
if {$i==88} {
set pager_refinfo_enable 1
btree_tree_dump $b1 2
btree_pager_ref_dump $b1
btree_cursor_list $b1
}
  do_test btree-11.1.$i.1 {
    set key [format %03d $i]
    set ::data "*** $key *** $key *** $key *** $key ***"
    btree_insert $::c1 $key $data
    btree_move_to $::c1 $key
    btree_key $::c1
  } [format %03d $i]
if {$i==88} {
btree_pager_ref_dump $b1
btree_cursor_list $b1
btree_tree_dump $b1 2
exit
}
  do_test btree-11.1.$i.2 {
    btree_data $::c1
  } $::data
  set ::key [format %03d [expr {$i/2}]]
  if {$::key=="012"} {set ::key 013}
  do_test btree-11.1.$i.3 {
    btree_move_to $::c1 $::key
    btree_key $::c1
  } $::key
}
catch {unset ::data}
catch {unset ::key}