SQLite

Check-in [e9bf275cd9]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fix compiler warnings in fts5 code.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: e9bf275cd969eca6fb41384d3637528d6a19f819
User & Date: dan 2015-07-16 20:17:57.553
Context
2015-07-17
01:16
Avoid a harmless compiler warning. (check-in: 2288842b8f user: drh tags: trunk)
2015-07-16
20:24
Merge trunk changes, including fixes for compiler warnings in fts5 code, with this branch. (check-in: 7190d79ba4 user: dan tags: fts5-btree-index)
20:17
Fix compiler warnings in fts5 code. (check-in: e9bf275cd9 user: dan tags: trunk)
18:37
Fix harmless compiler warnings. (check-in: 9a592cf91c user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts5/fts5_expr.c.
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** A phrase. One or more terms that must appear in a contiguous sequence
** within a document for it to match.
*/
struct Fts5ExprPhrase {
  Fts5ExprNode *pNode;            /* FTS5_STRING node this phrase is part of */
  Fts5Buffer poslist;             /* Current position list */
  int nTerm;                      /* Number of entries in aTerm[] */
  Fts5ExprTerm aTerm[0];          /* Terms that make up this phrase */
};

/*
** If a NEAR() clump may only match a specific set of columns, then
** Fts5ExprNearset.pColset points to an object of the following type.
** Each entry in the aiCol[] array
*/
struct Fts5ExprColset {
  int nCol;
  int aiCol[1];
};

/*
** One or more phrases that must appear within a certain token distance of
** each other within each matching document.
*/
struct Fts5ExprNearset {
  int nNear;                      /* NEAR parameter */
  Fts5ExprColset *pColset;        /* Columns to search (NULL -> all columns) */
  int nPhrase;                    /* Number of entries in aPhrase[] array */
  Fts5ExprPhrase *apPhrase[0];    /* Array of phrase pointers */
};


/*
** Parse context.
*/
struct Fts5Parse {







|




















|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** A phrase. One or more terms that must appear in a contiguous sequence
** within a document for it to match.
*/
struct Fts5ExprPhrase {
  Fts5ExprNode *pNode;            /* FTS5_STRING node this phrase is part of */
  Fts5Buffer poslist;             /* Current position list */
  int nTerm;                      /* Number of entries in aTerm[] */
  Fts5ExprTerm aTerm[1];          /* Terms that make up this phrase */
};

/*
** If a NEAR() clump may only match a specific set of columns, then
** Fts5ExprNearset.pColset points to an object of the following type.
** Each entry in the aiCol[] array
*/
struct Fts5ExprColset {
  int nCol;
  int aiCol[1];
};

/*
** One or more phrases that must appear within a certain token distance of
** each other within each matching document.
*/
struct Fts5ExprNearset {
  int nNear;                      /* NEAR parameter */
  Fts5ExprColset *pColset;        /* Columns to search (NULL -> all columns) */
  int nPhrase;                    /* Number of entries in aPhrase[] array */
  Fts5ExprPhrase *apPhrase[1];    /* Array of phrase pointers */
};


/*
** Parse context.
*/
struct Fts5Parse {
Changes to ext/fts5/fts5_hash.c.
62
63
64
65
66
67
68
69
70







71
72
73
74
75
76
77
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[0];                   /* Nul-terminated entry key */
};








/*
** Allocate a new hash table.
*/
int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;







|

>
>
>
>
>
>
>







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  int iSzPoslist;                 /* Offset of space for 4-byte poslist size */
  int nData;                      /* Total bytes of data (incl. structure) */
  u8 bDel;                        /* Set delete-flag @ iSzPoslist */

  int iCol;                       /* Column of last value written */
  int iPos;                       /* Position of last value written */
  i64 iRowid;                     /* Rowid of last value written */
  char zKey[8];                   /* Nul-terminated entry key */
};

/*
** Size of Fts5HashEntry without the zKey[] array.
*/
#define FTS5_HASHENTRYSIZE (sizeof(Fts5HashEntry)-8)



/*
** Allocate a new hash table.
*/
int sqlite3Fts5HashNew(Fts5Hash **ppNew, int *pnByte){
  int rc = SQLITE_OK;
  Fts5Hash *pNew;
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    int nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, bByte, pToken, nToken);
    }

    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, sizeof(Fts5HashEntry));
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, p->zKey, nToken+1) );
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry);
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;







|










|





|







223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    ){
      break;
    }
  }

  /* If an existing hash entry cannot be found, create a new one. */
  if( p==0 ){
    int nByte = FTS5_HASHENTRYSIZE + (nToken+1) + 1 + 64;
    if( nByte<128 ) nByte = 128;

    if( (pHash->nEntry*2)>=pHash->nSlot ){
      int rc = fts5HashResize(pHash);
      if( rc!=SQLITE_OK ) return rc;
      iHash = fts5HashKey2(pHash->nSlot, bByte, pToken, nToken);
    }

    p = (Fts5HashEntry*)sqlite3_malloc(nByte);
    if( !p ) return SQLITE_NOMEM;
    memset(p, 0, FTS5_HASHENTRYSIZE);
    p->nAlloc = nByte;
    p->zKey[0] = bByte;
    memcpy(&p->zKey[1], pToken, nToken);
    assert( iHash==fts5HashKey(pHash->nSlot, p->zKey, nToken+1) );
    p->zKey[nToken+1] = '\0';
    p->nData = nToken+1 + 1 + FTS5_HASHENTRYSIZE;
    p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid);
    p->iSzPoslist = p->nData;
    p->nData += 1;
    p->iRowid = iRowid;
    p->pHashNext = pHash->aSlot[iHash];
    pHash->aSlot[iHash] = p;
    pHash->nEntry++;
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(*p) + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}







|







420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){
    if( memcmp(p->zKey, pTerm, nTerm)==0 && p->zKey[nTerm]==0 ) break;
  }

  if( p ){
    fts5HashAddPoslistSize(p);
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *ppDoclist = 0;
    *pnDoclist = 0;
  }

  return SQLITE_OK;
}
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (sizeof(*p) + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}








|







457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
    *pnDoclist = 0;
  }
}

Changes to ext/fts5/fts5_index.c.
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */
  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[0];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */







|







364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  Fts5StructureSegment *aSeg;     /* Array of segments. aSeg[0] is oldest. */
};
struct Fts5Structure {
  int nRef;                       /* Object reference count */
  u64 nWriteCounter;              /* Total leaves written to level 0 */
  int nSegment;                   /* Total segments in this structure */
  int nLevel;                     /* Number of levels in this index */
  Fts5StructureLevel aLevel[1];   /* Array of nLevel level objects */
};

/*
** An object of type Fts5SegWriter is used to write to segments.
*/
struct Fts5PageWriter {
  int pgno;                       /* Page number for this page */
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  nByte = (
      sizeof(Fts5Structure) +                    /* Main structure */
      sizeof(Fts5StructureLevel) * (nLevel)      /* aLevel[] array */
  );
  pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);

  if( pRet ){
    pRet->nRef = 1;
    pRet->nLevel = nLevel;
    pRet->nSegment = nSegment;







|







925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

  /* Read the total number of levels and segments from the start of the
  ** structure record.  */
  i += fts5GetVarint32(&pData[i], nLevel);
  i += fts5GetVarint32(&pData[i], nSegment);
  nByte = (
      sizeof(Fts5Structure) +                    /* Main structure */
      sizeof(Fts5StructureLevel) * (nLevel-1)    /* aLevel[] array */
  );
  pRet = (Fts5Structure*)sqlite3Fts5MallocZero(&rc, nByte);

  if( pRet ){
    pRet->nRef = 1;
    pRet->nLevel = nLevel;
    pRet->nSegment = nSegment;
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
** If an error has already occurred, this function is a no-op. 0 is 
** returned in this case.
*/
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
  u32 iSegid = 0;

  if( p->rc==SQLITE_OK ){
    if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
      p->rc = SQLITE_FULL;
    }else{
      while( iSegid==0 ){
        int iLvl, iSeg;
        sqlite3_randomness(sizeof(u32), (void*)&iSegid);
        iSegid = (iSegid % ((1 << FTS5_DATA_ID_B) - 2)) + 1;
        assert( iSegid>0 && iSegid<=65535 );
        for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
          for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
            if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
              iSegid = 0;
            }
          }
        }
      }
    }
  }

  return (int)iSegid;
}

/*
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );







|








|
<











|







3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082

3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
** any currently existing segment. If a free segment id cannot be found,
** SQLITE_FULL is returned.
**
** If an error has already occurred, this function is a no-op. 0 is 
** returned in this case.
*/
static int fts5AllocateSegid(Fts5Index *p, Fts5Structure *pStruct){
  int iSegid = 0;

  if( p->rc==SQLITE_OK ){
    if( pStruct->nSegment>=FTS5_MAX_SEGMENT ){
      p->rc = SQLITE_FULL;
    }else{
      while( iSegid==0 ){
        int iLvl, iSeg;
        sqlite3_randomness(sizeof(u32), (void*)&iSegid);
        iSegid = iSegid & ((1 << FTS5_DATA_ID_B)-1);

        for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
          for(iSeg=0; iSeg<pStruct->aLevel[iLvl].nSeg; iSeg++){
            if( iSegid==pStruct->aLevel[iLvl].aSeg[iSeg].iSegid ){
              iSegid = 0;
            }
          }
        }
      }
    }
  }

  return iSegid;
}

/*
** Discard all data currently cached in the hash-tables.
*/
static void fts5IndexDiscardData(Fts5Index *p){
  assert( p->pHash || p->nPendingData==0 );
Changes to ext/fts5/fts5_main.c.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
**   byte of the position list for the corresponding phrase.
*/
struct Fts5Sorter {
  sqlite3_stmt *pStmt;
  i64 iRowid;                     /* Current rowid */
  const u8 *aPoslist;             /* Position lists for current row */
  int nIdx;                       /* Number of entries in aIdx[] */
  int aIdx[0];                    /* Offsets into aPoslist for current row */
};


/*
** Virtual-table cursor object.
**
** iSpecial:







|







141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
**   byte of the position list for the corresponding phrase.
*/
struct Fts5Sorter {
  sqlite3_stmt *pStmt;
  i64 iRowid;                     /* Current rowid */
  const u8 *aPoslist;             /* Position lists for current row */
  int nIdx;                       /* Number of entries in aIdx[] */
  int aIdx[1];                    /* Offsets into aPoslist for current row */
};


/*
** Virtual-table cursor object.
**
** iSpecial:
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
  int nByte;
  int rc = SQLITE_OK;
  char *zSql;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * nPhrase;
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that







|







804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
  int nByte;
  int rc = SQLITE_OK;
  char *zSql;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that