Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | :-) (CVS 104) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
e1bf96a467b739373191bf75e6a097fc |
User & Date: | drh 2000-06-21 13:59:11.000 |
Context
2000-06-21
| ||
14:00 | :-) (CVS 105) (check-in: 516f022206 user: drh tags: trunk) | |
13:59 | :-) (CVS 104) (check-in: e1bf96a467 user: drh tags: trunk) | |
2000-06-19
| ||
19:10 | :-) (CVS 103) (check-in: af14a5b3ba user: drh tags: trunk) | |
Changes
Changes to src/build.c.
︙ | ︙ | |||
29 30 31 32 33 34 35 | ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** | | | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ** DROP TABLE ** CREATE INDEX ** DROP INDEX ** creating expressions and ID lists ** COPY ** VACUUM ** ** $Id: build.c,v 1.19 2000/06/21 13:59:11 drh Exp $ */ #include "sqliteInt.h" /* ** This routine is called after a single SQL statement has been ** parsed and we want to execute the VDBE code to implement ** that statement. Prior action routines should have already |
︙ | ︙ | |||
147 148 149 150 151 152 153 | } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash table, but it is | | | | | 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | } /* ** Remove the given index from the index hash table, and free ** its memory structures. ** ** The index is removed from the database hash table, but it is ** not unlinked from the Table that is being indexed. Unlinking ** from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite *db, Index *pIndex){ int h; if( pIndex->zName ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; if( db->apIdxHash[h]==pIndex ){ db->apIdxHash[h] = pIndex->pHash; }else{ Index *p; for(p=db->apIdxHash[h]; p && p->pHash!=pIndex; p=p->pHash){} if( p && p->pHash==pIndex ){ p->pHash = pIndex->pHash; } } } sqliteFree(pIndex); } /* ** Remove the memory data structures associated with the given ** Table. No changes are made to disk by this routine. ** ** This routine just deletes the data structure. It does not unlink ** the table data structure from the hash table. But does it destroy ** memory structures of the indices associated with the table. */ void sqliteDeleteTable(sqlite *db, Table *pTable){ int i; |
︙ | ︙ | |||
508 509 510 511 512 513 514 | pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int)*pList->nId ); if( pIndex==0 ){ sqliteSetString(&pParse->zErrMsg, "out of memory", 0); pParse->nErr++; goto exit_create_index; } | | | | | | 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 + sizeof(int)*pList->nId ); if( pIndex==0 ){ sqliteSetString(&pParse->zErrMsg, "out of memory", 0); pParse->nErr++; goto exit_create_index; } pIndex->aiColumn = (int*)&pIndex[1]; pIndex->zName = (char*)&pIndex->aiColumn[pList->nId]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nId; /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error ** if any column is not found. */ for(i=0; i<pList->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break; } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has no column named ", pList->a[i].zName, 0); pParse->nErr++; sqliteFree(pIndex); goto exit_create_index; } pIndex->aiColumn[i] = j; } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( pParse->explain==0 ){ h = sqliteHashNoCase(pIndex->zName, 0) % N_HASH; |
︙ | ︙ | |||
586 587 588 589 590 591 592 | sqliteVdbeChangeP3(v, base+4, pTab->zName, 0); sqliteVdbeChangeP3(v, base+5, pStart->z, n); } lbl1 = sqliteVdbeMakeLabel(v); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Next, 0, lbl2, 0, lbl1); sqliteVdbeAddOp(v, OP_Key, 0, 0, 0, 0); | | | | | 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | sqliteVdbeChangeP3(v, base+4, pTab->zName, 0); sqliteVdbeChangeP3(v, base+5, pStart->z, n); } lbl1 = sqliteVdbeMakeLabel(v); lbl2 = sqliteVdbeMakeLabel(v); sqliteVdbeAddOp(v, OP_Next, 0, lbl2, 0, lbl1); sqliteVdbeAddOp(v, OP_Key, 0, 0, 0, 0); for(i=0; i<pIndex->nColumn; i++){ sqliteVdbeAddOp(v, OP_Field, 0, pIndex->aiColumn[i], 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIndex->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, lbl1, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, lbl2); sqliteVdbeAddOp(v, OP_Close, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Close, 0, 0, 0, 0); } |
︙ | ︙ | |||
830 831 832 833 834 835 836 | } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } | | | | | 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 | } sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, 0, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_FileField, pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, i, 0, 0, 0); } sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, end); } copy_cleanup: |
︙ | ︙ |
Changes to src/dbbe.c.
︙ | ︙ | |||
26 27 28 29 30 31 32 | ** sqlite and the code that does the actually reading and writing ** of information to the disk. ** ** This file uses GDBM as the database backend. It should be ** relatively simple to convert to a different database such ** as NDBM, SDBM, or BerkeleyDB. ** | | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** sqlite and the code that does the actually reading and writing ** of information to the disk. ** ** This file uses GDBM as the database backend. It should be ** relatively simple to convert to a different database such ** as NDBM, SDBM, or BerkeleyDB. ** ** $Id: dbbe.c,v 1.15 2000/06/21 13:59:11 drh Exp $ */ #include "sqliteInt.h" #include <gdbm.h> #include <sys/stat.h> #include <unistd.h> #include <ctype.h> #include <time.h> /* ** Information about each open disk file is an instance of this ** structure. There will only be one such structure for each ** disk file. If the VDBE opens the same file twice (as will happen ** for a self-join, for example) then two DbbeCursor structures are ** created but there is only a single BeFile structure with an ** nRef of 2. */ typedef struct BeFile BeFile; struct BeFile { char *zName; /* Name of the file */ GDBM_FILE dbf; /* The file itself */ |
︙ | ︙ | |||
83 84 85 86 87 88 89 | char **azTemp; /* Names of the temporary files */ struct rc4 rc4; /* The random number generator */ }; /* ** An cursor into a database file is an instance of the following structure. ** There can only be a single BeFile structure for each disk file, but | | | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | char **azTemp; /* Names of the temporary files */ struct rc4 rc4; /* The random number generator */ }; /* ** An cursor into a database file is an instance of the following structure. ** There can only be a single BeFile structure for each disk file, but ** there can be multiple DbbeCursor structures. Each DbbeCursor represents ** a cursor pointing to a particular part of the open BeFile. The ** BeFile.nRef field hold a count of the number of DbbeCursor structures ** associated with the same disk file. */ struct DbbeCursor { Dbbe *pBe; /* The database of which this record is a part */ BeFile *pFile; /* The database file for this table */ datum key; /* Most recently used key */ datum data; /* Most recent data */ int needRewind; /* Next key should be the first */ int readPending; /* The fetch hasn't actually been done yet */ }; |
︙ | ︙ | |||
222 223 224 225 226 227 228 | sqliteFree(pBe->azTemp); sqliteFree(pBe->apTemp); memset(pBe, 0, sizeof(*pBe)); sqliteFree(pBe); } /* | | > | | 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | sqliteFree(pBe->azTemp); sqliteFree(pBe->apTemp); memset(pBe, 0, sizeof(*pBe)); sqliteFree(pBe); } /* ** Translate the name of an SQL table (or index) into the name ** of a file that holds the key/data pairs for that table or ** index. Space to hold the filename is obtained from ** sqliteMalloc() and must be freed by the calling function. */ static char *sqliteFileOfTable(Dbbe *pBe, const char *zTable){ char *zFile = 0; int i; sqliteSetString(&zFile, pBe->zDir, "/", zTable, ".tbl", 0); if( zFile==0 ) return 0; |
︙ | ︙ | |||
265 266 267 268 269 270 271 | zBuf[j++] = zRandomChars[c]; } zBuf[j] = 0; } /* ** Open a new table cursor. Write a pointer to the corresponding | | | > | | | | | | | | | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | zBuf[j++] = zRandomChars[c]; } zBuf[j] = 0; } /* ** Open a new table cursor. Write a pointer to the corresponding ** DbbeCursor structure into *ppCursr. Return an integer success ** code: ** ** SQLITE_OK It worked! ** ** SQLITE_NOMEM sqliteMalloc() failed ** ** SQLITE_PERM Attempt to access a file for which file ** access permission is denied ** ** SQLITE_BUSY Another thread or process is already using ** the corresponding file and has that file locked. ** ** SQLITE_READONLY The current thread already has this file open ** readonly but you are trying to open for writing. ** (This can happen if a SELECT callback tries to ** do an UPDATE or DELETE.) ** ** If zTable is 0 or "", then a temporary database file is created and ** a cursor to that temporary file is opened. The temporary file ** will be deleted from the disk when it is closed. */ int sqliteDbbeOpenCursor( Dbbe *pBe, /* The database the table belongs to */ const char *zTable, /* The SQL name of the file to be opened */ int writeable, /* True to open for writing */ DbbeCursor **ppCursr /* Write the resulting table pointer here */ ){ char *zFile; /* Name of the table file */ DbbeCursor *pCursr; /* The new table cursor */ BeFile *pFile; /* The underlying data file for this table */ int rc = SQLITE_OK; /* Return value */ int rw_mask; /* Permissions mask for opening a table */ int mode; /* Mode for opening a table */ *ppCursr = 0; pCursr = sqliteMalloc( sizeof(*pCursr) ); if( pCursr==0 ) return SQLITE_NOMEM; if( zTable ){ zFile = sqliteFileOfTable(pBe, zTable); for(pFile=pBe->pOpen; pFile; pFile=pFile->pNext){ if( strcmp(pFile->zName,zFile)==0 ) break; } }else{ pFile = 0; |
︙ | ︙ | |||
372 373 374 375 376 377 378 | }else{ sqliteFree(zFile); pFile->nRef++; if( writeable && !pFile->writeable ){ rc = SQLITE_READONLY; } } | | | | | | | | | | | | | > > > > > | | | | | 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 | }else{ sqliteFree(zFile); pFile->nRef++; if( writeable && !pFile->writeable ){ rc = SQLITE_READONLY; } } pCursr->pBe = pBe; pCursr->pFile = pFile; pCursr->readPending = 0; pCursr->needRewind = 1; *ppCursr = pCursr; return rc; } /* ** Drop a table from the database. The file on the disk that corresponds ** to this table is deleted. */ void sqliteDbbeDropTable(Dbbe *pBe, const char *zTable){ char *zFile; /* Name of the table file */ zFile = sqliteFileOfTable(pBe, zTable); unlink(zFile); sqliteFree(zFile); } /* ** Reorganize a table to reduce search times and disk usage. */ void sqliteDbbeReorganizeTable(Dbbe *pBe, const char *zTable){ DbbeCursor *pCrsr; if( sqliteDbbeOpenCursor(pBe, zTable, 1, &pCrsr)!=SQLITE_OK ){ return; } if( pCrsr && pCrsr->pFile && pCrsr->pFile->dbf ){ gdbm_reorganize(pCrsr->pFile->dbf); } if( pCrsr ){ sqliteDbbeCloseCursor(pCrsr); } } /* ** Close a cursor previously opened by sqliteDbbeOpenCursor(). ** ** There can be multiple cursors pointing to the same open file. ** The underlying file is not closed until all cursors have been ** closed. This routine decrements the BeFile.nref field of the ** underlying file and closes the file when nref reaches 0. */ void sqliteDbbeCloseCursor(DbbeCursor *pCursr){ BeFile *pFile; Dbbe *pBe; if( pCursr==0 ) return; pFile = pCursr->pFile; pBe = pCursr->pBe; pFile->nRef--; if( pFile->dbf!=NULL ){ gdbm_sync(pFile->dbf); } if( pFile->nRef<=0 ){ if( pFile->dbf!=NULL ){ gdbm_close(pFile->dbf); |
︙ | ︙ | |||
441 442 443 444 445 446 447 | if( pFile->delOnClose ){ unlink(pFile->zName); } sqliteFree(pFile->zName); memset(pFile, 0, sizeof(*pFile)); sqliteFree(pFile); } | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 | if( pFile->delOnClose ){ unlink(pFile->zName); } sqliteFree(pFile->zName); memset(pFile, 0, sizeof(*pFile)); sqliteFree(pFile); } if( pCursr->key.dptr ) free(pCursr->key.dptr); if( pCursr->data.dptr ) free(pCursr->data.dptr); memset(pCursr, 0, sizeof(*pCursr)); sqliteFree(pCursr); } /* ** Clear the given datum */ static void datumClear(datum *p){ if( p->dptr ) free(p->dptr); p->dptr = 0; p->dsize = 0; } /* ** Fetch a single record from an open cursor. Return 1 on success ** and 0 on failure. */ int sqliteDbbeFetch(DbbeCursor *pCursr, int nKey, char *pKey){ datum key; key.dsize = nKey; key.dptr = pKey; datumClear(&pCursr->key); datumClear(&pCursr->data); if( pCursr->pFile && pCursr->pFile->dbf ){ pCursr->data = gdbm_fetch(pCursr->pFile->dbf, key); } return pCursr->data.dptr!=0; } /* ** Return 1 if the given key is already in the table. Return 0 ** if it is not. */ int sqliteDbbeTest(DbbeCursor *pCursr, int nKey, char *pKey){ datum key; int result = 0; key.dsize = nKey; key.dptr = pKey; if( pCursr->pFile && pCursr->pFile->dbf ){ result = gdbm_exists(pCursr->pFile->dbf, key); } return result; } /* ** Copy bytes from the current key or data into a buffer supplied by ** the calling function. Return the number of bytes copied. */ int sqliteDbbeCopyKey(DbbeCursor *pCursr, int offset, int size, char *zBuf){ int n; if( offset>=pCursr->key.dsize ) return 0; if( offset+size>pCursr->key.dsize ){ n = pCursr->key.dsize - offset; }else{ n = size; } memcpy(zBuf, &pCursr->key.dptr[offset], n); return n; } int sqliteDbbeCopyData(DbbeCursor *pCursr, int offset, int size, char *zBuf){ int n; if( pCursr->readPending && pCursr->pFile && pCursr->pFile->dbf ){ pCursr->data = gdbm_fetch(pCursr->pFile->dbf, pCursr->key); pCursr->readPending = 0; } if( offset>=pCursr->data.dsize ) return 0; if( offset+size>pCursr->data.dsize ){ n = pCursr->data.dsize - offset; }else{ n = size; } memcpy(zBuf, &pCursr->data.dptr[offset], n); return n; } /* ** Return a pointer to bytes from the key or data. The data returned ** is ephemeral. */ char *sqliteDbbeReadKey(DbbeCursor *pCursr, int offset){ if( offset<0 || offset>=pCursr->key.dsize ) return ""; return &pCursr->key.dptr[offset]; } char *sqliteDbbeReadData(DbbeCursor *pCursr, int offset){ if( pCursr->readPending && pCursr->pFile && pCursr->pFile->dbf ){ pCursr->data = gdbm_fetch(pCursr->pFile->dbf, pCursr->key); pCursr->readPending = 0; } if( offset<0 || offset>=pCursr->data.dsize ) return ""; return &pCursr->data.dptr[offset]; } /* ** Return the total number of bytes in either data or key. */ int sqliteDbbeKeyLength(DbbeCursor *pCursr){ return pCursr->key.dsize; } int sqliteDbbeDataLength(DbbeCursor *pCursr){ if( pCursr->readPending && pCursr->pFile && pCursr->pFile->dbf ){ pCursr->data = gdbm_fetch(pCursr->pFile->dbf, pCursr->key); pCursr->readPending = 0; } return pCursr->data.dsize; } /* ** Make is so that the next call to sqliteNextKey() finds the first ** key of the table. */ int sqliteDbbeRewind(DbbeCursor *pCursr){ pCursr->needRewind = 1; return SQLITE_OK; } /* ** Read the next key from the table. Return 1 on success. Return ** 0 if there are no more keys. */ int sqliteDbbeNextKey(DbbeCursor *pCursr){ datum nextkey; int rc; if( pCursr==0 || pCursr->pFile==0 || pCursr->pFile->dbf==0 ){ pCursr->readPending = 0; return 0; } if( pCursr->needRewind ){ nextkey = gdbm_firstkey(pCursr->pFile->dbf); pCursr->needRewind = 0; }else{ nextkey = gdbm_nextkey(pCursr->pFile->dbf, pCursr->key); } datumClear(&pCursr->key); datumClear(&pCursr->data); pCursr->key = nextkey; if( pCursr->key.dptr ){ pCursr->readPending = 1; rc = 1; }else{ pCursr->needRewind = 1; pCursr->readPending = 0; rc = 0; } return rc; } /* ** Get a new integer key. */ int sqliteDbbeNew(DbbeCursor *pCursr){ int iKey; datum key; int go = 1; int i; struct rc4 *pRc4; if( pCursr->pFile==0 || pCursr->pFile->dbf==0 ) return 1; pRc4 = &pCursr->pBe->rc4; while( go ){ iKey = 0; for(i=0; i<4; i++){ iKey = (iKey<<8) + rc4byte(pRc4); } key.dptr = (char*)&iKey; key.dsize = 4; go = gdbm_exists(pCursr->pFile->dbf, key); } return iKey; } /* ** Write an entry into the table. Overwrite any prior entry with the ** same key. */ int sqliteDbbePut(DbbeCursor *pCursr, int nKey,char *pKey,int nData,char *pData){ datum data, key; int rc; if( pCursr->pFile==0 || pCursr->pFile->dbf==0 ) return SQLITE_ERROR; data.dsize = nData; data.dptr = pData; key.dsize = nKey; key.dptr = pKey; rc = gdbm_store(pCursr->pFile->dbf, key, data, GDBM_REPLACE); if( rc ) rc = SQLITE_ERROR; datumClear(&pCursr->key); datumClear(&pCursr->data); return rc; } /* ** Remove an entry from a table, if the entry exists. */ int sqliteDbbeDelete(DbbeCursor *pCursr, int nKey, char *pKey){ datum key; int rc; datumClear(&pCursr->key); datumClear(&pCursr->data); if( pCursr->pFile==0 || pCursr->pFile->dbf==0 ) return SQLITE_ERROR; key.dsize = nKey; key.dptr = pKey; rc = gdbm_delete(pCursr->pFile->dbf, key); if( rc ) rc = SQLITE_ERROR; return rc; } /* ** Open a temporary file. The file should be deleted when closed. ** |
︙ | ︙ |
Changes to src/dbbe.h.
︙ | ︙ | |||
24 25 26 27 28 29 30 | ** This file defines the interface to the database backend (Dbbe). ** ** The database backend is designed to be as general as possible ** so that it can easily be replaced by a different backend. ** This library was originally designed to support the following ** backends: GDBM, NDBM, SDBM, Berkeley DB. ** | | | | | | | | > > > | | | | | | | | | | | | | | | | | | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | ** This file defines the interface to the database backend (Dbbe). ** ** The database backend is designed to be as general as possible ** so that it can easily be replaced by a different backend. ** This library was originally designed to support the following ** backends: GDBM, NDBM, SDBM, Berkeley DB. ** ** $Id: dbbe.h,v 1.6 2000/06/21 13:59:11 drh Exp $ */ #ifndef _SQLITE_DBBE_H_ #define _SQLITE_DBBE_H_ #include <stdio.h> /* ** The database backend supports two opaque structures. A Dbbe is ** a context for the entire set of tables forming a complete ** database. A DbbeCursor is a pointer into a single single table. ** ** Note that at this level, the term "table" can mean either an ** SQL table or an SQL index. In this module, a table stores a ** single arbitrary-length key and corresponding arbitrary-length ** data. The differences between tables and indices, and the ** segregation of data into various fields or columns is handled ** by software at higher layers. ** ** The DbbeCursor structure holds some state information, such as ** the key and data from the last retrieval. For this reason, ** the backend must allow the creation of multiple independent ** DbbeCursor structures for each table in the database. */ typedef struct Dbbe Dbbe; typedef struct DbbeCursor DbbeCursor; /* ** The 18 interface routines. */ /* Open a complete database */ Dbbe *sqliteDbbeOpen(const char *zName, int write, int create, char **pzErr); /* Close the whole database. */ void sqliteDbbeClose(Dbbe*); /* Open a cursor into particular file of a previously opened database. ** Create the file if it doesn't already exist and writeable!=0. zName ** is the base name of the file to be opened. This routine will add ** an appropriate path and extension to the filename to locate the ** actual file. ** ** If zName is 0 or "", then a temporary file is created that ** will be deleted when closed. */ int sqliteDbbeOpenCursor(Dbbe*, const char *zName, int writeable, DbbeCursor**); /* Delete a table from the database */ void sqliteDbbeDropTable(Dbbe*, const char *zTableName); /* Reorganize a table to speed access or reduce its disk usage */ void sqliteDbbeReorganizeTable(Dbbe*, const char *zTableName); /* Close a cursor */ void sqliteDbbeCloseCursor(DbbeCursor*); /* Fetch an entry from a table with the given key. Return 1 if ** successful and 0 if no such entry exists. */ int sqliteDbbeFetch(DbbeCursor*, int nKey, char *pKey); /* Return 1 if the given key is already in the table. Return 0 ** if it is not. */ int sqliteDbbeTest(DbbeCursor*, int nKey, char *pKey); /* Retrieve the key or data used for the last fetch. Only size ** bytes are read beginning with the offset-th byte. The return ** value is the actual number of bytes read. */ int sqliteDbbeCopyKey(DbbeCursor*, int offset, int size, char *zBuf); int sqliteDbbeCopyData(DbbeCursor*, int offset, int size, char *zBuf); /* Retrieve the key or data. The result is ephemeral. In other words, ** the result is stored in a buffer that might be overwritten on the next ** call to any DBBE routine. If the results are needed for longer than ** that, you must make a copy. */ char *sqliteDbbeReadKey(DbbeCursor*, int offset); char *sqliteDbbeReadData(DbbeCursor*, int offset); /* Return the length of the most recently fetched key or data. */ int sqliteDbbeKeyLength(DbbeCursor*); int sqliteDbbeDataLength(DbbeCursor*); /* Retrieve the next entry in the table. The first key is retrieved ** the first time this routine is called, or after a call to ** sqliteDbbeRewind(). The return value is 1 if there is another ** entry, or 0 if there are no more entries. */ int sqliteDbbeNextKey(DbbeCursor*); /* Make it so that the next call to sqliteDbbeNextKey() returns ** the first entry of the table. */ int sqliteDbbeRewind(DbbeCursor*); /* Get a new integer key for this table. */ int sqliteDbbeNew(DbbeCursor*); /* Write an entry into a table. If another entry already exists with ** the same key, the old entry is discarded first. */ int sqliteDbbePut(DbbeCursor*, int nKey, char *pKey, int nData, char *pData); /* Remove an entry from the table */ int sqliteDbbeDelete(DbbeCursor*, int nKey, char *pKey); /* Open a file suitable for temporary storage */ int sqliteDbbeOpenTempFile(Dbbe*, FILE**); /* Close a temporary file */ void sqliteDbbeCloseTempFile(Dbbe *, FILE *); |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle DELETE FROM statements. ** ** $Id: delete.c,v 1.6 2000/06/21 13:59:11 drh Exp $ */ #include "sqliteInt.h" /* ** Process a DELETE FROM statement. */ void sqliteDeleteFrom( |
︙ | ︙ | |||
64 65 66 67 68 69 70 | " may not be modified", 0); pParse->nErr++; goto delete_from_cleanup; } } pTab = pTabList->a[0].pTab; | | | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | " may not be modified", 0); pParse->nErr++; goto delete_from_cleanup; } } pTab = pTabList->a[0].pTab; /* Resolve the column names in all the expressions. */ if( pWhere ){ sqliteExprResolveInSelect(pParse, pWhere); if( sqliteExprResolveIds(pParse, pTabList, pWhere) ){ goto delete_from_cleanup; } if( sqliteExprCheck(pParse, pWhere, 0, 0) ){ |
︙ | ︙ | |||
113 114 115 116 117 118 119 | addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ int j; sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); | | | | | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base, 0, 0, 0); for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ int j; sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Field, base, pIdx->aiColumn[j], 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_DeleteIdx, base+i, 0, 0, 0); } } sqliteVdbeAddOp(v, OP_Delete, base, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_ListClose, 0, 0, 0, end); delete_from_cleanup: sqliteIdListDelete(pTabList); sqliteExprDelete(pWhere); return; } |
Changes to src/expr.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions. ** | | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions. ** ** $Id: expr.c,v 1.18 2000/06/21 13:59:11 drh Exp $ */ #include "sqliteInt.h" /* ** Walk an expression tree. Return 1 if the expression is constant ** and 0 if it involves variables. */ static int isConstant(Expr *p){ switch( p->op ){ case TK_ID: case TK_COLUMN: case TK_DOT: return 0; default: { if( p->pLeft && !isConstant(p->pLeft) ) return 0; if( p->pRight && !isConstant(p->pRight) ) return 0; if( p->pList ){ int i; |
︙ | ︙ | |||
54 55 56 57 58 59 60 | } /* ** Walk the expression tree and process operators of the form: ** ** expr IN (SELECT ...) ** | | | | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | } /* ** Walk the expression tree and process operators of the form: ** ** expr IN (SELECT ...) ** ** These operators have to be processed before column names are ** resolved because each such operator increments pParse->nTab ** to reserve cursor numbers for its own use. But pParse->nTab ** needs to be constant once we begin resolving column names. ** ** Actually, the processing of IN-SELECT is only started by this ** routine. This routine allocates a cursor number to the IN-SELECT ** and then moves on. The code generation is done by ** sqliteExprResolveIds() which must be called afterwards. */ void sqliteExprResolveInSelect(Parse *pParse, Expr *pExpr){ |
︙ | ︙ | |||
83 84 85 86 87 88 89 | } } } } /* ** This routine walks an expression tree and resolves references to | | | | | | | | | | | | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | } } } } /* ** This routine walks an expression tree and resolves references to ** table columns. Nodes of the form ID.ID or ID resolve into an ** index to the table in the table list and a column offset. The opcode ** for such nodes is changed to TK_COLUMN. The iTable value is changed ** to the index of the referenced table in pTabList plus the pParse->nTab ** value. The iColumn value is changed to the index of the column of the ** referenced table. ** ** We also check for instances of the IN operator. IN comes in two ** forms: ** ** expr IN (exprlist) ** and ** expr IN (SELECT ...) ** ** The first form is handled by creating a set holding the list ** of allowed values. The second form causes the SELECT to generate ** a temporary table. ** ** This routine also looks for scalar SELECTs that are part of an expression. ** If it finds any, it generates code to write the value of that select ** into a memory cell. ** ** Unknown columns or tables provoke an error. The function returns ** the number of errors seen and leaves an error message on pParse->zErrMsg. */ int sqliteExprResolveIds(Parse *pParse, IdList *pTabList, Expr *pExpr){ if( pExpr==0 ) return 0; switch( pExpr->op ){ /* A lone identifier */ case TK_ID: { int cnt = 0; /* Number of matches */ int i; /* Loop counter */ char *z = sqliteStrNDup(pExpr->token.z, pExpr->token.n); for(i=0; i<pTabList->nId; i++){ int j; Table *pTab = pTabList->a[i].pTab; if( pTab==0 ) continue; for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, z)==0 ){ cnt++; pExpr->iTable = i + pParse->nTab; pExpr->iColumn = j; } } } sqliteFree(z); if( cnt==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1, pExpr->token.z, pExpr->token.n, 0); pParse->nErr++; return 1; }else if( cnt>1 ){ sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1, pExpr->token.z, pExpr->token.n, 0); pParse->nErr++; return 1; } pExpr->op = TK_COLUMN; break; } /* A table name and column name: ID.ID */ case TK_DOT: { int cnt = 0; /* Number of matches */ int i; /* Loop counter */ Expr *pLeft, *pRight; /* Left and right subbranches of the expr */ char *zLeft, *zRight; /* Text of an identifier */ pLeft = pExpr->pLeft; |
︙ | ︙ | |||
172 173 174 175 176 177 178 | zTab = pTab->zName; } if( sqliteStrICmp(zTab, zLeft)!=0 ) continue; for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){ cnt++; pExpr->iTable = i + pParse->nTab; | | | | | | 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | zTab = pTab->zName; } if( sqliteStrICmp(zTab, zLeft)!=0 ) continue; for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, zRight)==0 ){ cnt++; pExpr->iTable = i + pParse->nTab; pExpr->iColumn = j; } } } sqliteFree(zLeft); sqliteFree(zRight); if( cnt==0 ){ sqliteSetNString(&pParse->zErrMsg, "no such column: ", -1, pLeft->token.z, pLeft->token.n, ".", 1, pRight->token.z, pRight->token.n, 0); pParse->nErr++; return 1; }else if( cnt>1 ){ sqliteSetNString(&pParse->zErrMsg, "ambiguous column name: ", -1, pLeft->token.z, pLeft->token.n, ".", 1, pRight->token.z, pRight->token.n, 0); pParse->nErr++; return 1; } sqliteExprDelete(pLeft); pExpr->pLeft = 0; sqliteExprDelete(pRight); pExpr->pRight = 0; pExpr->op = TK_COLUMN; break; } case TK_IN: { Vdbe *v = sqliteGetVdbe(pParse); if( v==0 ) return 1; if( sqliteExprResolveIds(pParse, pTabList, pExpr->pLeft) ){ |
︙ | ︙ | |||
259 260 261 262 263 264 265 | } break; } case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number | | | | | 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | } break; } case TK_SELECT: { /* This has to be a scalar SELECT. Generate code to put the ** value of this select in a memory cell and record the number ** of the memory cell in iColumn. */ pExpr->iColumn = pParse->nMem++; if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn) ){ return 1; } break; } /* For all else, just recursively walk the tree */ default: { |
︙ | ︙ | |||
351 352 353 354 355 356 357 | int id = sqliteFuncId(&pExpr->token); int n = pExpr->pList ? pExpr->pList->nExpr : 0; int no_such_func = 0; int too_many_args = 0; int too_few_args = 0; int is_agg = 0; int i; | | | 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | int id = sqliteFuncId(&pExpr->token); int n = pExpr->pList ? pExpr->pList->nExpr : 0; int no_such_func = 0; int too_many_args = 0; int too_few_args = 0; int is_agg = 0; int i; pExpr->iColumn = id; switch( id ){ case FN_Unknown: { no_such_func = 1; break; } case FN_Count: { no_such_func = !allowAgg; |
︙ | ︙ | |||
463 464 465 466 467 468 469 | case TK_ISNULL: op = OP_IsNull; break; case TK_NOTNULL: op = OP_NotNull; break; case TK_NOT: op = OP_Not; break; case TK_UMINUS: op = OP_Negative; break; default: break; } switch( pExpr->op ){ | | | | 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | case TK_ISNULL: op = OP_IsNull; break; case TK_NOTNULL: op = OP_NotNull; break; case TK_NOT: op = OP_Not; break; case TK_UMINUS: op = OP_Negative; break; default: break; } switch( pExpr->op ){ case TK_COLUMN: { if( pParse->useAgg ){ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg, 0, 0); }else{ sqliteVdbeAddOp(v, OP_Field, pExpr->iTable, pExpr->iColumn, 0, 0); } break; } case TK_INTEGER: { int i = atoi(pExpr->token.z); sqliteVdbeAddOp(v, OP_Integer, i, 0, 0, 0); break; |
︙ | ︙ | |||
558 559 560 561 562 563 564 | dest = sqliteVdbeCurrentAddr(v) + 2; sqliteVdbeAddOp(v, op, 0, dest, 0, 0); sqliteVdbeAddOp(v, OP_AddImm, -1, 0, 0, 0); break; } case TK_AGG_FUNCTION: { sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg, 0, 0); | | | | | 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 | dest = sqliteVdbeCurrentAddr(v) + 2; sqliteVdbeAddOp(v, op, 0, dest, 0, 0); sqliteVdbeAddOp(v, OP_AddImm, -1, 0, 0, 0); break; } case TK_AGG_FUNCTION: { sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg, 0, 0); if( pExpr->iColumn==FN_Avg ){ assert( pParse->iAggCount>=0 && pParse->iAggCount<pParse->nAgg ); sqliteVdbeAddOp(v, OP_AggGet, 0, pParse->iAggCount, 0, 0); sqliteVdbeAddOp(v, OP_Divide, 0, 0, 0, 0); } break; } case TK_FUNCTION: { int id = pExpr->iColumn; int op; int i; ExprList *pList = pExpr->pList; if( id==FN_Fcnt ){ sqliteVdbeAddOp(v, OP_Fcnt, 0, 0, 0, 0); break; } op = id==FN_Min ? OP_Min : OP_Max; for(i=0; i<pList->nExpr; i++){ sqliteExprCode(pParse, pList->a[i].pExpr); if( i>0 ){ sqliteVdbeAddOp(v, op, 0, 0, 0, 0); } } break; } case TK_SELECT: { sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0, 0, 0); break; } case TK_IN: { int addr; sqliteVdbeAddOp(v, OP_Integer, 1, 0, 0, 0); sqliteExprCode(pParse, pExpr->pLeft); addr = sqliteVdbeCurrentAddr(v); |
︙ | ︙ | |||
860 861 862 863 864 865 866 | int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ int i; AggExpr *aAgg; int nErr = 0; if( pExpr==0 ) return 0; switch( pExpr->op ){ | | | | | | 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){ int i; AggExpr *aAgg; int nErr = 0; if( pExpr==0 ) return 0; switch( pExpr->op ){ case TK_COLUMN: { aAgg = pParse->aAgg; for(i=0; i<pParse->nAgg; i++){ if( aAgg[i].isAgg ) continue; if( aAgg[i].pExpr->iTable==pExpr->iTable && aAgg[i].pExpr->iColumn==pExpr->iColumn ){ break; } } if( i>=pParse->nAgg ){ i = appendAggInfo(pParse); if( i<0 ) return 1; pParse->aAgg[i].isAgg = 0; pParse->aAgg[i].pExpr = pExpr; } pExpr->iAgg = i; break; } case TK_AGG_FUNCTION: { if( pExpr->iColumn==FN_Count || pExpr->iColumn==FN_Avg ){ if( pParse->iAggCount>=0 ){ i = pParse->iAggCount; }else{ i = appendAggInfo(pParse); if( i<0 ) return 1; pParse->aAgg[i].isAgg = 1; pParse->aAgg[i].pExpr = 0; pParse->iAggCount = i; } if( pExpr->iColumn==FN_Count ){ pExpr->iAgg = i; break; } } aAgg = pParse->aAgg; for(i=0; i<pParse->nAgg; i++){ if( !aAgg[i].isAgg ) continue; |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements. ** | | | | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements. ** ** $Id: insert.c,v 1.11 2000/06/21 13:59:12 drh Exp $ */ #include "sqliteInt.h" /* ** This routine is call to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST) ** insert into TABLE (IDLIST) select ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all columns for the table is substituted. The IDLIST ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. ** ** The pList parameter holds EXPRLIST in the first form of the INSERT ** statement above, and pSelect is NULL. For the second form, pList is ** NULL and pSelect is a pointer to the select statement used to generate ** data for the insert. */ void sqliteInsert( Parse *pParse, /* Parser context */ Token *pTableName, /* Name of table into which we are inserting */ ExprList *pList, /* List of values to be inserted */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn /* Column names corresponding to IDLIST. */ ){ Table *pTab; /* The table to insert into */ char *zTab; /* Name of the table into which we are inserting */ int i, j, idx; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int srcTab; /* Date comes from this temporary cursor if >=0 */ int nColumn; /* Number of columns in the data */ int base; /* First available cursor */ int iCont, iBreak; /* Beginning and end of the loop over srcTab */ /* Locate the table into which we will be inserting new information. */ zTab = sqliteTableNameFromToken(pTableName); pTab = sqliteFindTable(pParse->db, zTab); |
︙ | ︙ | |||
92 93 94 95 96 97 98 | if( pSelect ){ int rc; srcTab = pParse->nTab++; sqliteVdbeAddOp(v, OP_Open, srcTab, 1, 0, 0); rc = sqliteSelect(pParse, pSelect, SRT_Table, srcTab); if( rc ) goto insert_cleanup; assert( pSelect->pEList ); | | | | | | | | | | | | | | | | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | if( pSelect ){ int rc; srcTab = pParse->nTab++; sqliteVdbeAddOp(v, OP_Open, srcTab, 1, 0, 0); rc = sqliteSelect(pParse, pSelect, SRT_Table, srcTab); if( rc ) goto insert_cleanup; assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; }else{ srcTab = -1; assert( pList ); nColumn = pList->nExpr; } /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ if( pColumn==0 && nColumn!=pTab->nCol ){ char zNum1[30]; char zNum2[30]; sprintf(zNum1,"%d", nColumn); sprintf(zNum2,"%d", pTab->nCol); sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has ", zNum2, " columns but ", zNum1, " values were supplied", 0); pParse->nErr++; goto insert_cleanup; } if( pColumn!=0 && nColumn!=pColumn->nId ){ char zNum1[30]; char zNum2[30]; sprintf(zNum1,"%d", nColumn); sprintf(zNum2,"%d", pColumn->nId); sqliteSetString(&pParse->zErrMsg, zNum1, " values for ", zNum2, " columns", 0); pParse->nErr++; goto insert_cleanup; } /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. */ if( pColumn ){ for(i=0; i<pColumn->nId; i++){ pColumn->a[i].idx = -1; } for(i=0; i<pColumn->nId; i++){ for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ pColumn->a[i].idx = j; break; } } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName, " has no column named ", pColumn->a[i].zName, 0); pParse->nErr++; goto insert_cleanup; } } } /* Open cursors into the table that is received the new data and |
︙ | ︙ | |||
175 176 177 178 179 180 181 | /* Create a new entry in the table and fill it with data. */ sqliteVdbeAddOp(v, OP_New, 0, 0, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; i<pTab->nCol; i++){ | | | | | | 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | /* Create a new entry in the table and fill it with data. */ sqliteVdbeAddOp(v, OP_New, 0, 0, 0, 0); if( pTab->pIndex ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; i<pTab->nCol; i++){ if( pColumn==0 ){ j = i; }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==i ) break; } } if( pColumn && j>=pColumn->nId ){ char *zDflt = pTab->aCol[i].zDflt; if( zDflt==0 ){ sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0); }else{ sqliteVdbeAddOp(v, OP_String, 0, 0, zDflt, 0); } }else if( srcTab>=0 ){ |
︙ | ︙ | |||
205 206 207 208 209 210 211 | /* Create appropriate entries for the new data row in all indices ** of the table. */ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } | | | | | | | | | | 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* Create appropriate entries for the new data row in all indices ** of the table. */ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ if( pIdx->pNext ){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); } for(i=0; i<pIdx->nColumn; i++){ int idx = pIdx->aiColumn[i]; if( pColumn==0 ){ j = idx; }else{ for(j=0; j<pColumn->nId; j++){ if( pColumn->a[j].idx==idx ) break; } } if( pColumn && j>=pColumn->nId ){ char *zDflt = pTab->aCol[idx].zDflt; if( zDflt==0 ){ sqliteVdbeAddOp(v, OP_Null, 0, 0, 0, 0); }else{ sqliteVdbeAddOp(v, OP_String, 0, 0, zDflt, 0); } }else if( srcTab>=0 ){ sqliteVdbeAddOp(v, OP_Field, srcTab, idx, 0, 0); }else{ sqliteExprCode(pParse, pList->a[j].pExpr); } } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, idx+base, 0, 0, 0); } /* The bottom of the loop, if the data source is a SELECT statement */ if( srcTab>=0 ){ sqliteVdbeAddOp(v, OP_Goto, 0, iCont, 0, 0); sqliteVdbeAddOp(v, OP_Noop, 0, 0, 0, iBreak); } insert_cleanup: if( pList ) sqliteExprListDelete(pList); if( pSelect ) sqliteSelectDelete(pSelect); sqliteIdListDelete(pColumn); } |
Changes to src/main.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.13 2000/06/21 13:59:12 drh Exp $ */ #include "sqliteInt.h" /* ** This is the callback routine for the code that initializes the ** database. Each callback contains text of a CREATE TABLE or ** CREATE INDEX statement that must be parsed to yield the internal |
︙ | ︙ | |||
86 87 88 89 90 91 92 | ** type text, -- Either "table" or "index" ** name text, -- Name of table or index ** tbl_name text, -- Associated table ** sql text -- The CREATE statement for this object ** ); ** ** The sqlite_master table contains a single entry for each table | | | | | | | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | ** type text, -- Either "table" or "index" ** name text, -- Name of table or index ** tbl_name text, -- Associated table ** sql text -- The CREATE statement for this object ** ); ** ** The sqlite_master table contains a single entry for each table ** and each index. The "type" column tells whether the entry is ** a table or index. The "name" column is the name of the object. ** The "tbl_name" is the name of the associated table. For tables, ** the tbl_name column is always the same as name. For indices, the ** tbl_name column contains the name of the table that the index ** indexes. Finally, the "sql" column contains the complete text of ** the CREATE TABLE or CREATE INDEX statement that originally created ** the table or index. ** ** The following program invokes its callback on the SQL for each ** table then goes back and invokes the callback on the ** SQL for each index. The callback will invoke the ** parser to build the internal representation of the |
︙ | ︙ |
Changes to src/parse.y.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** ************************************************************************* ** This file contains SQLite's grammar for SQL. Process this file ** using the lemon parser generator to generate C code that runs ** the parser. Lemon will also generate a header file containing ** numeric codes for all of the tokens. ** ** @(#) $Id: parse.y,v 1.23 2000/06/21 13:59:12 drh Exp $ */ %token_prefix TK_ %token_type {Token} %extra_argument {Parse *pParse} %syntax_error { sqliteSetString(&pParse->zErrMsg,"syntax error",0); pParse->sErrToken = TOKEN; |
︙ | ︙ | |||
46 47 48 49 50 51 52 | input ::= cmdlist. // These are extra tokens used by the lexer but never seen by the // parser. We put them in a rule so that the parser generator will // add them to the parse.h output file. // input ::= END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION | | | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | input ::= cmdlist. // These are extra tokens used by the lexer but never seen by the // parser. We put them in a rule so that the parser generator will // add them to the parse.h output file. // input ::= END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION UMINUS COLUMN AGG_FUNCTION. // A list of commands is zero or more commands // cmdlist ::= ecmd. cmdlist ::= cmdlist SEMI ecmd. ecmd ::= explain cmd. {sqliteExec(pParse);} ecmd ::= cmd. {sqliteExec(pParse);} |
︙ | ︙ | |||
246 247 248 249 250 251 252 | cmd ::= UPDATE id(X) SET setlist(Y) where_opt(Z). {sqliteUpdate(pParse,&X,Y,Z);} setlist(A) ::= id(X) EQ expr(Y) COMMA setlist(Z). {A = sqliteExprListAppend(Z,Y,&X);} setlist(A) ::= id(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);} | | | | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | cmd ::= UPDATE id(X) SET setlist(Y) where_opt(Z). {sqliteUpdate(pParse,&X,Y,Z);} setlist(A) ::= id(X) EQ expr(Y) COMMA setlist(Z). {A = sqliteExprListAppend(Z,Y,&X);} setlist(A) ::= id(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);} cmd ::= INSERT INTO id(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. {sqliteInsert(pParse, &X, Y, 0, F);} cmd ::= INSERT INTO id(X) inscollist_opt(F) select(S). {sqliteInsert(pParse, &X, 0, S, F);} %type itemlist {ExprList*} %destructor itemlist {sqliteExprListDelete($$);} %type item {Expr*} %destructor item {sqliteExprDelete($$);} |
︙ | ︙ | |||
274 275 276 277 278 279 280 | item(A) ::= MINUS FLOAT(X). { A = sqliteExpr(TK_UMINUS, 0, 0, 0); A->pLeft = sqliteExpr(TK_FLOAT, 0, 0, &X); } item(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);} item(A) ::= NULL. {A = sqliteExpr(TK_NULL, 0, 0, 0);} | | | | | | | | | | 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | item(A) ::= MINUS FLOAT(X). { A = sqliteExpr(TK_UMINUS, 0, 0, 0); A->pLeft = sqliteExpr(TK_FLOAT, 0, 0, &X); } item(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);} item(A) ::= NULL. {A = sqliteExpr(TK_NULL, 0, 0, 0);} %type inscollist_opt {IdList*} %destructor inscollist_opt {sqliteIdListDelete($$);} %type inscollist {IdList*} %destructor inscollist {sqliteIdListDelete($$);} inscollist_opt(A) ::= . {A = 0;} inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} inscollist(A) ::= inscollist(X) COMMA id(Y). {A = sqliteIdListAppend(X,&Y);} inscollist(A) ::= id(Y). {A = sqliteIdListAppend(0,&Y);} %left OR. %left AND. %right NOT. %left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN. %left GT GE LT LE. %left PLUS MINUS. |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements. ** ** $Id: select.c,v 1.25 2000/06/21 13:59:12 drh Exp $ */ #include "sqliteInt.h" /* ** Allocate a new Select structure and return a pointer to that ** structure. */ |
︙ | ︙ | |||
82 83 84 85 86 87 88 | } /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** The pEList is used to determine the values for each column in the | | | | | | | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | } /* ** This routine generates the code for the inside of the inner loop ** of a SELECT. ** ** The pEList is used to determine the values for each column in the ** result row. Except if pEList==NULL, then we just read nColumn ** elements from the srcTab table. */ static int selectInnerLoop( Parse *pParse, /* The parser context */ ExprList *pEList, /* List of values being extracted */ int srcTab, /* Pull data from this table */ int nColumn, /* Number of columns in the source table */ ExprList *pOrderBy, /* If not NULL, sort results using this key */ int distinct, /* If >=0, make sure results are distinct */ int eDest, /* How to dispose of the results */ int iParm, /* An argument to the disposal method */ int iContinue, /* Jump here to continue with next row */ int iBreak /* Jump here to break out of the inner loop */ ){ Vdbe *v = pParse->pVdbe; int i; /* Pull the requested columns. */ if( pEList ){ for(i=0; i<pEList->nExpr; i++){ sqliteExprCode(pParse, pEList->a[i].pExpr); } nColumn = pEList->nExpr; }else{ for(i=0; i<nColumn; i++){ sqliteVdbeAddOp(v, OP_Field, srcTab, i, 0, 0); } } /* If the current result is not distinct, skip the rest ** of the processing for the current row. */ |
︙ | ︙ | |||
131 132 133 134 135 136 137 | } /* If there is an ORDER BY clause, then store the results ** in a sorter. */ if( pOrderBy ){ char *zSortOrder; | | | | | | | | | | | 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | } /* If there is an ORDER BY clause, then store the results ** in a sorter. */ if( pOrderBy ){ char *zSortOrder; sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0, 0, 0); zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 ); if( zSortOrder==0 ) return 1; for(i=0; i<pOrderBy->nExpr; i++){ zSortOrder[i] = pOrderBy->a[i].sortOrder ? '-' : '+'; sqliteExprCode(pParse, pOrderBy->a[i].pExpr); } zSortOrder[pOrderBy->nExpr] = 0; sqliteVdbeAddOp(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, 0); sqliteFree(zSortOrder); sqliteVdbeAddOp(v, OP_SortPut, 0, 0, 0, 0); }else /* In this mode, write each query result to the key of the temporary ** table iParm. */ if( eDest==SRT_Union ){ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_String, iParm, 0, "", 0); sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0); }else /* Store the result as data using a unique key. */ if( eDest==SRT_Table ){ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_New, iParm, 0, 0, 0); sqliteVdbeAddOp(v, OP_Pull, 1, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0); }else /* Construct a record from the query result, but instead of ** saving that record, use it as a key to delete elements from ** the temporary table iParm. */ if( eDest==SRT_Except ){ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_Delete, iParm, 0, 0, 0); }else /* If we are creating a set for an "expr IN (SELECT ...)" construct, ** then there should be a single item on the stack. Write this ** item into the set table with bogus data. */ if( eDest==SRT_Set ){ assert( nColumn==1 ); sqliteVdbeAddOp(v, OP_String, 0, 0, "", 0); sqliteVdbeAddOp(v, OP_Put, iParm, 0, 0, 0); }else /* If this is a scalar select that is part of an expression, then ** store the results in the appropriate memory cell and break out ** of the scan loop. */ if( eDest==SRT_Mem ){ assert( nColumn==1 ); sqliteVdbeAddOp(v, OP_MemStore, iParm, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, iBreak, 0, 0); }else /* If none of the above, send the data to the callback function. */ { sqliteVdbeAddOp(v, OP_Callback, nColumn, 0, 0, 0); } return 0; } /* ** If the inner loop was generated using a non-null pOrderBy argument, ** then the results were placed in a sorter. After the loop is terminated ** we need to run the sorter and output the results. The following ** routine generates the code needed to do that. */ static void generateSortTail(Vdbe *v, int nColumn){ int end = sqliteVdbeMakeLabel(v); int addr; sqliteVdbeAddOp(v, OP_Sort, 0, 0, 0, 0); addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end, 0, 0); sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_Goto, 0, addr, 0, 0); sqliteVdbeAddOp(v, OP_SortClose, 0, 0, 0, end); } /* ** Generate code that will tell the VDBE how many columns there ** are in the result and the name for each column. This information |
︙ | ︙ | |||
236 237 238 239 240 241 242 | Expr *p; if( pEList->a[i].zName ){ char *zName = pEList->a[i].zName; sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0); continue; } p = pEList->a[i].pExpr; | | | | | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | Expr *p; if( pEList->a[i].zName ){ char *zName = pEList->a[i].zName; sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0); continue; } p = pEList->a[i].pExpr; if( p->op!=TK_COLUMN || pTabList==0 ){ char zName[30]; sprintf(zName, "column%d", i+1); sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0); }else{ if( pTabList->nId>1 ){ char *zName = 0; Table *pTab = pTabList->a[p->iTable].pTab; char *zTab; zTab = pTabList->a[p->iTable].zAlias; if( zTab==0 ) zTab = pTab->zName; sqliteSetString(&zName, zTab, ".", pTab->aCol[p->iColumn].zName, 0); sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0); sqliteFree(zName); }else{ Table *pTab = pTabList->a[0].pTab; char *zName = pTab->aCol[p->iColumn].zName; sqliteVdbeAddOp(v, OP_ColumnName, i, 0, zName, 0); } } } } /* |
︙ | ︙ | |||
277 278 279 280 281 282 283 | } return z; } /* ** For the given SELECT statement, do two things. ** | | | | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | } return z; } /* ** For the given SELECT statement, do two things. ** ** (1) Fill in the pTabList->a[].pTab fields in the IdList that ** defines the set of tables that should be scanned. ** ** (2) If the columns to be extracted variable (pEList) is NULL ** (meaning that a "*" was used in the SQL statement) then ** create a fake pEList containing the names of all columns ** of all tables. ** ** Return 0 on success. If there are problems, leave an error message |
︙ | ︙ | |||
334 335 336 337 338 339 340 | } return 0; } /* ** This routine associates entries in an ORDER BY expression list with ** columns in a result. For each ORDER BY expression, the opcode of | | | 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | } return 0; } /* ** This routine associates entries in an ORDER BY expression list with ** columns in a result. For each ORDER BY expression, the opcode of ** the top-level node is changed to TK_COLUMN and the iColumn value of ** the top-level node is filled in with column number and the iTable ** value of the top-level node is filled with iTable parameter. ** ** If there are prior SELECT clauses, they are processed first. A match ** in an earlier SELECT takes precedence over a later SELECT. ** ** Any entry that does not match is flagged as an error. The number |
︙ | ︙ | |||
386 387 388 389 390 391 392 | } sqliteFree(zLabel); } if( match==0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){ match = 1; } if( match ){ | | | | 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | } sqliteFree(zLabel); } if( match==0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){ match = 1; } if( match ){ pE->op = TK_COLUMN; pE->iColumn = j; pE->iTable = iTable; pOrderBy->a[i].done = 1; break; } } if( !match && mustComplete ){ char zBuf[30]; |
︙ | ︙ | |||
626 627 628 629 630 631 632 | int eDest, /* One of: SRT_Callback Mem Set Union Except */ int iParm /* Save result in this memory location, if >=0 */ ){ int i; WhereInfo *pWInfo; Vdbe *v; int isAgg = 0; /* True for select lists like "count(*)" */ | | | 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 | int eDest, /* One of: SRT_Callback Mem Set Union Except */ int iParm /* Save result in this memory location, if >=0 */ ){ int i; WhereInfo *pWInfo; Vdbe *v; int isAgg = 0; /* True for select lists like "count(*)" */ ExprList *pEList; /* List of columns to extract. NULL means "*" */ IdList *pTabList; /* List of tables to select from */ Expr *pWhere; /* The WHERE clause. May be NULL */ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ Expr *pHaving; /* The HAVING clause. May be NULL */ int isDistinct; /* True if the DISTINCT keyword is present */ int distinct; /* Table to use for the distinct set */ |
︙ | ︙ | |||
665 666 667 668 669 670 671 | ** errors before this routine starts. */ if( pParse->nErr>0 ) return 1; sqliteParseInfoReset(pParse); /* Look up every table in the table list and create an appropriate ** columnlist in pEList if there isn't one already. (The parser leaves | | | 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | ** errors before this routine starts. */ if( pParse->nErr>0 ) return 1; sqliteParseInfoReset(pParse); /* Look up every table in the table list and create an appropriate ** columnlist in pEList if there isn't one already. (The parser leaves ** a NULL in the p->pEList if the SQL said "SELECT * FROM ...") */ if( fillInColumnList(pParse, p) ){ return 1; } pEList = p->pEList; /* Allocate a temporary table to use for the DISTINCT set, if |
︙ | ︙ | |||
720 721 722 723 724 725 726 | } if( pHaving ) sqliteExprResolveInSelect(pParse, pHaving); /* At this point, we should have allocated all the cursors that we ** need to handle subquerys and temporary tables. From here on we ** are committed to keeping the same value for pParse->nTab. ** | | | 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | } if( pHaving ) sqliteExprResolveInSelect(pParse, pHaving); /* At this point, we should have allocated all the cursors that we ** need to handle subquerys and temporary tables. From here on we ** are committed to keeping the same value for pParse->nTab. ** ** Resolve the column names and do a semantics check on all the expressions. */ for(i=0; i<pEList->nExpr; i++){ if( sqliteExprResolveIds(pParse, pTabList, pEList->a[i].pExpr) ){ return 1; } if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){ return 1; |
︙ | ︙ | |||
902 903 904 905 906 907 908 | sqliteVdbeAddOp(v, OP_AggIncr, 1, i, 0, 0); continue; } assert( pE->op==TK_AGG_FUNCTION ); assert( pE->pList!=0 && pE->pList->nExpr==1 ); sqliteExprCode(pParse, pE->pList->a[0].pExpr); sqliteVdbeAddOp(v, OP_AggGet, 0, i, 0, 0); | | | 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | sqliteVdbeAddOp(v, OP_AggIncr, 1, i, 0, 0); continue; } assert( pE->op==TK_AGG_FUNCTION ); assert( pE->pList!=0 && pE->pList->nExpr==1 ); sqliteExprCode(pParse, pE->pList->a[0].pExpr); sqliteVdbeAddOp(v, OP_AggGet, 0, i, 0, 0); switch( pE->iColumn ){ case FN_Min: op = OP_Min; break; case FN_Max: op = OP_Max; break; case FN_Avg: op = OP_Add; break; case FN_Sum: op = OP_Add; break; } sqliteVdbeAddOp(v, op, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_AggSet, 0, i, 0, 0); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains code to implement the "sqlite" command line ** utility for accessing SQLite databases. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains code to implement the "sqlite" command line ** utility for accessing SQLite databases. ** ** $Id: shell.c,v 1.15 2000/06/21 13:59:12 drh Exp $ */ #include <stdlib.h> #include <string.h> #include <stdio.h> #include "sqlite.h" #include <unistd.h> #include <ctype.h> |
︙ | ︙ | |||
132 133 134 135 136 137 138 | char separator[20]; /* Separator character for MODE_List */ int colWidth[30]; /* Width of each column when in column mode */ }; /* ** These are the allowed modes. */ | | | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | char separator[20]; /* Separator character for MODE_List */ int colWidth[30]; /* Width of each column when in column mode */ }; /* ** These are the allowed modes. */ #define MODE_Line 0 /* One column per line. Blank line between records */ #define MODE_Column 1 /* One record per line in neat columns */ #define MODE_List 2 /* One record per line with a separator */ #define MODE_Html 3 /* Generate an XHTML table */ #define MODE_Insert 4 /* Generate SQL "insert" statements */ /* ** Number of elements in an array |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
19 20 21 22 23 24 25 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | > > > | > > > > > > > > > > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.25 2000/06/21 13:59:12 drh Exp $ */ #include "sqlite.h" #include "dbbe.h" #include "vdbe.h" #include "parse.h" #include <gdbm.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> /* ** If memory allocation problems are found, recompile with ** ** -DMEMORY_DEBUG=1 ** ** to enable some sanity checking on malloc() and free(). To ** check for memory leaks, recompile with ** ** -DMEMORY_DEBUG=2 ** ** and a line of text will be written to standard error for ** each malloc() and free(). This output can be analyzed ** by an AWK script to determine if there are any leaks. */ #ifdef MEMORY_DEBUG # define sqliteMalloc(X) sqliteMalloc_(X,__FILE__,__LINE__) # define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) # define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) # define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) # define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) void sqliteStrRealloc(char**); |
︙ | ︙ | |||
54 55 56 57 58 59 60 | #ifdef MEMORY_DEBUG int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite_nFree; /* Number of sqliteFree() calls */ int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ #endif /* | | | | | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | #ifdef MEMORY_DEBUG int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite_nFree; /* Number of sqliteFree() calls */ int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ #endif /* ** The number of entries in the in-memory hash array holding the ** database schema. */ #define N_HASH 51 /* ** Name of the master database table. The master database table ** is a special table that holds the names and attributes of all ** user tables and indices. */ #define MASTER_NAME "sqlite_master" /* ** A convenience macro that returns the number of elements in ** an array. */ #define ArraySize(X) (sizeof(X)/sizeof(X[0])) /* ** Integer identifiers for built-in SQL functions. */ #define FN_Unknown 0 #define FN_Count 1 #define FN_Min 2 #define FN_Max 3 #define FN_Sum 4 #define FN_Avg 5 |
︙ | ︙ | |||
110 111 112 113 114 115 116 | Dbbe *pBe; /* The backend driver */ int flags; /* Miscellanous flags */ Table *apTblHash[N_HASH]; /* All tables of the database */ Index *apIdxHash[N_HASH]; /* All indices of the database */ }; /* | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > | | | | | | | | | | | | | 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 | Dbbe *pBe; /* The backend driver */ int flags; /* Miscellanous flags */ Table *apTblHash[N_HASH]; /* All tables of the database */ Index *apIdxHash[N_HASH]; /* All indices of the database */ }; /* ** Possible values for the sqlite.flags. */ #define SQLITE_VdbeTrace 0x00000001 #define SQLITE_Initialized 0x00000002 /* ** information about each column of an SQL table is held in an instance ** of this structure. */ struct Column { char *zName; /* Name of this column */ char *zDflt; /* Default value of this column */ int notNull; /* True if there is a NOT NULL constraint */ }; /* ** Each SQL table is represented in memory by ** an instance of the following structure. */ struct Table { char *zName; /* Name of the table */ Table *pHash; /* Next table with same hash on zName */ int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ int readOnly; /* True if this table should not be written by the user */ Index *pIndex; /* List of SQL indexes on this table. */ }; /* ** Each SQL index is represented in memory by and ** instance of the following structure. ** ** The columns of the table that are to be indexed are described ** by the aiColumn[] field of this structure. For example, suppose ** we have the following table and index: ** ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); ** CREATE INDEX Ex2 ON Ex1(c3,c1); ** ** In the Table structure describing Ex1, nCol==3 because there are ** three columns in the table. In the Index structure describing ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. ** The second column to be indexed (c1) has an index of 0 in ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. */ struct Index { char *zName; /* Name of this index */ Index *pHash; /* Next index with the same hash on zName */ int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ Table *pTable; /* The SQL table being indexed */ int isUnique; /* True if keys must all be unique */ Index *pNext; /* The next index associated with the same table */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. */ struct Token { char *z; /* Text of the token */ int n; /* Number of characters in this token */ }; /* ** Each node of an expression in the parse tree is an instance ** of this structure */ struct Expr { int op; /* Operation performed by this node */ Expr *pLeft, *pRight; /* Left and right subnodes */ ExprList *pList; /* A list of expressions used as a function argument */ Token token; /* An operand token */ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the ** iColumn-th field of the iTable-th table. When ** op==TK_FUNCTION, iColumn holds the function id */ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull ** result from the iAgg-th element of the aggregator */ Select *pSelect; /* When the expression is a sub-select */ }; /* ** A list of expressions. Each expression may optionally have a ** name. An expr/name combination can be used in several ways, such ** as the list of "expr AS ID" fields following a "SELECT" or in the |
︙ | ︙ | |||
205 206 207 208 209 210 211 | ** A list of identifiers. */ struct IdList { int nId; /* Number of identifiers on the list */ struct { char *zName; /* Text of the identifier. */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ | | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | ** A list of identifiers. */ struct IdList { int nId; /* Number of identifiers on the list */ struct { char *zName; /* Text of the identifier. */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ int idx; /* Index in some Table.aCol[] of a column named zName */ } *a; /* One entry for each identifier on the list */ }; /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of |
︙ | ︙ | |||
239 240 241 242 243 244 245 | ExprList *pEList; /* The fields of the result */ IdList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ int op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ | | | 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | ExprList *pEList; /* The fields of the result */ IdList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ int op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ Select *pPrior; /* Prior select in a compound select statement */ }; /* ** The results of a select can be distributed in several ways. */ #define SRT_Callback 1 /* Invoke a callback with each row of result */ #define SRT_Mem 2 /* Store result in a memory cell */ |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** ** $Id: update.c,v 1.8 2000/06/21 13:59:12 drh Exp $ */ #include "sqliteInt.h" /* ** Process an UPDATE statement. */ void sqliteUpdate( |
︙ | ︙ | |||
44 45 46 47 48 49 50 | WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ int nIdx; /* Number of indices that need updating */ int base; /* Index of first available table cursor */ Index **apIdx = 0; /* An array of indices that need updating too */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the | | | | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ int nIdx; /* Number of indices that need updating */ int base; /* Index of first available table cursor */ Index **apIdx = 0; /* An array of indices that need updating too */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ /* Locate the table which we want to update. This table has to be ** put in an IdList structure because some of the subroutines we ** will be calling are designed to work with multiple tables and expect ** an IdList* parameter instead of just a Table* parameger. */ pTabList = sqliteIdListAppend(0, pTableName); |
︙ | ︙ | |||
73 74 75 76 77 78 79 | } } pTab = pTabList->a[0].pTab; aXRef = sqliteMalloc( sizeof(int) * pTab->nCol ); if( aXRef==0 ) goto update_cleanup; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; | | | | | 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | } } pTab = pTabList->a[0].pTab; aXRef = sqliteMalloc( sizeof(int) * pTab->nCol ); if( aXRef==0 ) goto update_cleanup; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* Resolve the column names in all the expressions in both the ** WHERE clause and in the new values. Also find the column index ** for each column to be updated in the pChanges array. */ if( pWhere ){ sqliteExprResolveInSelect(pParse, pWhere); } for(i=0; i<pChanges->nExpr; i++){ sqliteExprResolveInSelect(pParse, pChanges->a[i].pExpr); } |
︙ | ︙ | |||
105 106 107 108 109 110 111 | for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ aXRef[j] = i; break; } } if( j>=pTab->nCol ){ | | | | | | | | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | for(j=0; j<pTab->nCol; j++){ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ aXRef[j] = i; break; } } if( j>=pTab->nCol ){ sqliteSetString(&pParse->zErrMsg, "no such column: ", pChanges->a[i].zName, 0); pParse->nErr++; goto update_cleanup; } } /* Allocate memory for the array apIdx[] and fill it pointers to every ** index that needs to be updated. Indices only need updating if their ** key includes one of the columns named in pChanges. */ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ for(i=0; i<pIdx->nColumn; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ) break; } if( i<pIdx->nColumn ) nIdx++; } apIdx = sqliteMalloc( sizeof(Index*) * nIdx ); if( apIdx==0 ) goto update_cleanup; for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ for(i=0; i<pIdx->nColumn; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ) break; } if( i<pIdx->nColumn ) apIdx[nIdx++] = pIdx; } /* Begin generating code. */ v = sqliteGetVdbe(pParse); if( v==0 ) goto update_cleanup; |
︙ | ︙ | |||
161 162 163 164 165 166 167 | base = pParse->nTab; sqliteVdbeAddOp(v, OP_Open, base, 1, pTab->zName, 0); for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Open, base+i+1, 1, apIdx[i]->zName, 0); } /* Loop over every record that needs updating. We have to load | | | | | | | | | 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | base = pParse->nTab; sqliteVdbeAddOp(v, OP_Open, base, 1, pTab->zName, 0); for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Open, base+i+1, 1, apIdx[i]->zName, 0); } /* Loop over every record that needs updating. We have to load ** the old data for each record to be updated because some columns ** might not change and we will need to copy the old value. ** Also, the old data is needed to delete the old index entires. */ end = sqliteVdbeMakeLabel(v); addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end, 0, 0); sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base, 0, 0, 0); /* Delete the old indices for the current record. */ for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Dup, 0, 0, 0, 0); pIdx = apIdx[i]; for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Field, base, pIdx->aiColumn[j], 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_DeleteIdx, base+i+1, 0, 0, 0); } /* Compute a completely new data for this record. */ for(i=0; i<pTab->nCol; i++){ j = aXRef[i]; if( j<0 ){ sqliteVdbeAddOp(v, OP_Field, base, i, 0, 0); }else{ sqliteExprCode(pParse, pChanges->a[j].pExpr); } } /* Insert new index entries that correspond to the new data */ for(i=0; i<nIdx; i++){ sqliteVdbeAddOp(v, OP_Dup, pTab->nCol, 0, 0, 0); /* The KEY */ pIdx = apIdx[i]; for(j=0; j<pIdx->nColumn; j++){ sqliteVdbeAddOp(v, OP_Dup, j+pTab->nCol-pIdx->aiColumn[j], 0, 0, 0); } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_PutIdx, base+i+1, 0, 0, 0); } /* Write the new data back into the database. */ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0, 0, 0); sqliteVdbeAddOp(v, OP_Put, base, 0, 0, 0); |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** | | | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id: util.c,v 1.13 2000/06/21 13:59:12 drh Exp $ */ #include "sqliteInt.h" #include <stdarg.h> #include <ctype.h> #ifdef MEMORY_DEBUG |
︙ | ︙ | |||
356 357 358 359 360 361 362 | h = h<<3 ^ h ^ UpperToLower[c]; } if( h<0 ) h = -h; return h; } /* | | | 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | h = h<<3 ^ h ^ UpperToLower[c]; } if( h<0 ) h = -h; return h; } /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. */ int sqliteStrICmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
37 38 39 40 41 42 43 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** | | > > > > > > | | | | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | ** inplicit conversion from one type to the other occurs as necessary. ** ** Most of the code in this file is taken up by the sqliteVdbeExec() ** function which does the work of interpreting a VDBE program. ** But other routines are also provided to help in building up ** a program instruction by instruction. ** ** $Id: vdbe.c,v 1.34 2000/06/21 13:59:13 drh Exp $ */ #include "sqliteInt.h" #include <unistd.h> /* ** SQL is translated into a sequence of instructions to be ** executed by a virtual machine. Each instruction is an instance ** of the following structure. */ typedef struct VdbeOp Op; /* ** A cursor is a pointer into a database file. The database file ** can represent either an SQL table or an SQL index. Each file is ** a bag of key/data pairs. The cursor can loop over all key/data ** pairs (in an arbitrary order) or it can retrieve a particular ** key/data pair given a copy of the key. ** ** Every cursor that the virtual machine has open is represented by an ** instance of the following structure. */ struct Cursor { DbbeCursor *pCursor; /* The cursor structure of the backend */ int index; /* The next index to extract */ int keyAsData; /* The OP_Field command works on key instead of data */ }; typedef struct Cursor Cursor; /* ** A sorter builds a list of elements to be sorted. Each element of ** the list is an instance of the following structure. */ typedef struct Sorter Sorter; struct Sorter { |
︙ | ︙ | |||
113 114 115 116 117 118 119 | #define STK_Null 0x0001 /* Value is NULL */ #define STK_Str 0x0002 /* Value is a string */ #define STK_Int 0x0004 /* Value is an integer */ #define STK_Real 0x0008 /* Value is a real number */ #define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[*] */ /* | | | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | #define STK_Null 0x0001 /* Value is NULL */ #define STK_Str 0x0002 /* Value is a string */ #define STK_Int 0x0004 /* Value is an integer */ #define STK_Real 0x0008 /* Value is a real number */ #define STK_Dyn 0x0010 /* Need to call sqliteFree() on zStack[*] */ /* ** An Agg structure describes an Aggregator. Each Agg consists of ** zero or more Aggregator elements (AggElem). Each AggElem contains ** a key and one or more values. The values are used in processing ** aggregate functions in a SELECT. The key is used to implement ** the GROUP BY clause of a select. */ typedef struct Agg Agg; typedef struct AggElem AggElem; struct Agg { int nMem; /* Number of values stored in each AggElem */ AggElem *pCurrent; /* The AggElem currently in focus */ int nElem; /* The number of AggElems */ int nHash; /* Number of slots in apHash[] */ AggElem **apHash; /* A hash array for looking up AggElems by zKey */ AggElem *pFirst; /* A list of all AggElems */ }; struct AggElem { char *zKey; /* The key to this AggElem */ AggElem *pHash; /* Next AggElem with the same hash on zKey */ AggElem *pNext; /* Next AggElem in a list of them all */ Mem aMem[1]; /* The values for this AggElem */ }; /* ** A Set structure is used for quick testing to see if a value ** is part of a small set. Sets are used to implement code like ** this: ** x.y IN ('hi','hoo','hum') */ typedef struct Set Set; typedef struct SetElem SetElem; struct Set { SetElem *pAll; /* All elements of this set */ SetElem *apHash[41]; /* A hash array for all elements in this set */ }; struct SetElem { SetElem *pHash; /* Next element with the same hash on zKey */ SetElem *pNext; /* Next element in a list of them all */ char zKey[1]; /* Value of this key */ }; |
︙ | ︙ | |||
171 172 173 174 175 176 177 | int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ int nStackAlloc; /* Size of the stack */ Stack *aStack; /* The operand stack, except string values */ char **zStack; /* Text or binary values of the stack */ char **azColName; /* Becomes the 4th parameter to callbacks */ | | | | 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | int nLabelAlloc; /* Number of slots allocated in aLabel[] */ int *aLabel; /* Space to hold the labels */ int tos; /* Index of top of stack */ int nStackAlloc; /* Size of the stack */ Stack *aStack; /* The operand stack, except string values */ char **zStack; /* Text or binary values of the stack */ char **azColName; /* Becomes the 4th parameter to callbacks */ int nCursor; /* Number of slots in aCsr[] */ Cursor *aCsr; /* On element of this array for each open cursor */ int nList; /* Number of slots in apList[] */ FILE **apList; /* An open file for each list */ int nSort; /* Number of slots in apSort[] */ Sorter **apSort; /* An open sorter list */ FILE *pFile; /* At most one open file handler */ int nField; /* Number of file fields */ char **azField; /* Data for each file field */ |
︙ | ︙ | |||
390 391 392 393 394 395 396 | sqliteFree(pElem); } sqliteFree(p->apHash); memset(p, 0, sizeof(*p)); } /* | | | | 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | sqliteFree(pElem); } sqliteFree(p->apHash); memset(p, 0, sizeof(*p)); } /* ** Add the given AggElem to the hash array */ static void AggEnhash(Agg *p, AggElem *pElem){ int h = sqliteHashNoCase(pElem->zKey, 0) % p->nHash; pElem->pHash = p->apHash[h]; p->apHash[h] = pElem; } /* ** Change the size of the hash array to the amount given. */ static void AggRehash(Agg *p, int nHash){ int size; AggElem *pElem; if( p->nHash==nHash ) return; size = nHash * sizeof(AggElem*); p->apHash = sqliteRealloc(p->apHash, size ); |
︙ | ︙ | |||
630 631 632 633 634 635 636 | } return 0; } /* ** Clean up the VM after execution. ** | | | | | | | | | | 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | } return 0; } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, list, and/or ** sorters that were left open. */ static void Cleanup(Vdbe *p){ int i; PopStack(p, p->tos+1); sqliteFree(p->azColName); p->azColName = 0; for(i=0; i<p->nCursor; i++){ if( p->aCsr[i].pCursor ){ sqliteDbbeCloseCursor(p->aCsr[i].pCursor); p->aCsr[i].pCursor = 0; } } sqliteFree(p->aCsr); p->aCsr = 0; p->nCursor = 0; for(i=0; i<p->nMem; i++){ if( p->aMem[i].s.flags & STK_Dyn ){ sqliteFree(p->aMem[i].z); } } sqliteFree(p->aMem); p->aMem = 0; |
︙ | ︙ | |||
782 783 784 785 786 787 788 | int sqliteVdbeList( Vdbe *p, /* The VDBE */ sqlite_callback xCallback, /* The callback */ void *pArg, /* 1st argument to callback */ char **pzErrMsg /* Error msg written here */ ){ int i, rc; | | | | | | | | | | 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 | int sqliteVdbeList( Vdbe *p, /* The VDBE */ sqlite_callback xCallback, /* The callback */ void *pArg, /* 1st argument to callback */ char **pzErrMsg /* Error msg written here */ ){ int i, rc; char *azValue[6]; char zAddr[20]; char zP1[20]; char zP2[20]; static char *azColumnNames[] = { "addr", "opcode", "p1", "p2", "p3", 0 }; if( xCallback==0 ) return 0; azValue[0] = zAddr; azValue[2] = zP1; azValue[3] = zP2; azValue[5] = 0; rc = SQLITE_OK; /* if( pzErrMsg ){ *pzErrMsg = 0; } */ for(i=0; rc==SQLITE_OK && i<p->nOp; i++){ sprintf(zAddr,"%d",i); sprintf(zP1,"%d", p->aOp[i].p1); sprintf(zP2,"%d", p->aOp[i].p2); azValue[4] = p->aOp[i].p3; azValue[1] = zOpName[p->aOp[i].opcode]; if( xCallback(pArg, 5, azValue, azColumnNames) ){ rc = SQLITE_ABORT; } } return rc; } /* |
︙ | ︙ | |||
1488 1489 1490 1491 1492 1493 1494 | p->aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** | | | 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 | p->aStack[tos].flags = STK_Real; } break; } /* Opcode: Not * * * ** ** Interpret the top of the stack as a boolean value. Replace it ** with its complement. */ case OP_Not: { int tos = p->tos; if( p->tos<0 ) goto not_enough_stack; Integerify(p, tos); Release(p, tos); |
︙ | ︙ | |||
1672 1673 1674 1675 1676 1677 1678 | p->aStack[p->tos].flags = STK_Str|STK_Dyn; p->zStack[p->tos] = zNewKey; break; } /* Opcode: Open P1 P2 P3 ** | | | < < < < < < > > > > > > | > | | | | | | | | | | | | | | | | | < | | | | 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | p->aStack[p->tos].flags = STK_Str|STK_Dyn; p->zStack[p->tos] = zNewKey; break; } /* Opcode: Open P1 P2 P3 ** ** Open a new cursor for the database file named P3. Give the ** cursor an identifier P1. The P1 values need not be ** contiguous but all P1 values should be small integers. It is ** an error for P1 to be negative. ** ** Open readonly if P2==0 and for reading and writing if P2!=0. ** The file is created if it does not already exist and P2!=0. ** If there is already another cursor opened with identifier P1, ** then the old cursor is closed first. All cursors are ** automatically closed when the VDBE finishes execution. ** ** If P3 is null or an empty string, a temporary database file ** is created. This temporary database file is automatically ** deleted when the cursor is closed. */ case OP_Open: { int i = pOp->p1; if( i<0 ) goto bad_instruction; if( i>=p->nCursor ){ int j; p->aCsr = sqliteRealloc( p->aCsr, (i+1)*sizeof(Cursor) ); if( p->aCsr==0 ){ p->nCursor = 0; goto no_mem; } for(j=p->nCursor; j<=i; j++) p->aCsr[j].pCursor = 0; p->nCursor = i+1; }else if( p->aCsr[i].pCursor ){ sqliteDbbeCloseCursor(p->aCsr[i].pCursor); } rc = sqliteDbbeOpenCursor(p->pBe, pOp->p3, pOp->p2,&p->aCsr[i].pCursor); switch( rc ){ case SQLITE_BUSY: { sqliteSetString(pzErrMsg,"table ", pOp->p3, " is locked", 0); break; } case SQLITE_PERM: { sqliteSetString(pzErrMsg, pOp->p2 ? "write" : "read", " permission denied for table ", pOp->p3, 0); break; } case SQLITE_READONLY: { sqliteSetString(pzErrMsg,"table ", pOp->p3, " is readonly", 0); break; } case SQLITE_NOMEM: { goto no_mem; } } p->aCsr[i].index = 0; p->aCsr[i].keyAsData = 0; break; } /* Opcode: Close P1 * * ** ** Close a cursor previously opened as P1. If P1 is not ** currently open, this instruction is a no-op. */ case OP_Close: { int i = pOp->p1; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ sqliteDbbeCloseCursor(p->aCsr[i].pCursor); p->aCsr[i].pCursor = 0; } break; } /* Opcode: Fetch P1 * * ** ** Pop the top of the stack and use its value as a key to fetch ** a record from cursor P1. The key/data pair is held ** in the P1 cursor until needed. */ case OP_Fetch: { int i = pOp->p1; int tos = p->tos; if( tos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ if( p->aStack[tos].flags & STK_Int ){ sqliteDbbeFetch(p->aCsr[i].pCursor, sizeof(int), (char*)&p->aStack[tos].i); }else{ if( Stringify(p, tos) ) goto no_mem; sqliteDbbeFetch(p->aCsr[i].pCursor, p->aStack[tos].n, p->zStack[tos]); } p->nFetch++; } PopStack(p, 1); break; } |
︙ | ︙ | |||
1783 1784 1785 1786 1787 1788 1789 | p->aStack[i].flags = STK_Int; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a key. If a record with that key | | | | | | | | | | | | | | | | | | | > > | | > > > > > | | | | | | | | | | > | | | | | | | | | | | | | | > | > | | | > > > > > > > > | > | | | | | | | | | | > | | < | | | | | | | | > | | > > | > > | < | | | | | | | | > | | | 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 | p->aStack[i].flags = STK_Int; break; } /* Opcode: Distinct P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in file P1, then jump to P2. If the record ** does already exist, then fall thru. The record is not retrieved. ** The key is not popped from the stack. ** ** This operation is similar to NotFound except that this operation ** does not pop the key from the stack. */ /* Opcode: Found P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does exist in file P1, then jump to P2. If the record ** does not exist, then fall thru. The record is not retrieved. ** The key is popped from the stack. */ /* Opcode: NotFound P1 P2 * ** ** Use the top of the stack as a key. If a record with that key ** does not exist in file P1, then jump to P2. If the record ** does exist, then fall thru. The record is not retrieved. ** The key is popped from the stack. ** ** The difference between this operation and Distinct is that ** Distinct does not pop the key from the stack. */ case OP_Distinct: case OP_NotFound: case OP_Found: { int i = pOp->p1; int tos = p->tos; int alreadyExists = 0; if( tos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor ){ if( p->aStack[tos].flags & STK_Int ){ alreadyExists = sqliteDbbeTest(p->aCsr[i].pCursor, sizeof(int), (char*)&p->aStack[tos].i); }else{ if( Stringify(p, tos) ) goto no_mem; alreadyExists = sqliteDbbeTest(p->aCsr[i].pCursor,p->aStack[tos].n, p->zStack[tos]); } } if( pOp->opcode==OP_Found ){ if( alreadyExists ) pc = pOp->p2 - 1; }else{ if( !alreadyExists ) pc = pOp->p2 - 1; } if( pOp->opcode!=OP_Distinct ){ PopStack(p, 1); } break; } /* Opcode: New P1 * * ** ** Get a new integer key not previous used by the database file ** associated with cursor P1 and push it onto the stack. */ case OP_New: { int i = pOp->p1; int v; if( i<0 || i>=p->nCursor || p->aCsr[i].pCursor==0 ){ v = 0; }else{ v = sqliteDbbeNew(p->aCsr[i].pCursor); } NeedStack(p, p->tos+1); p->tos++; p->aStack[p->tos].i = v; p->aStack[p->tos].flags = STK_Int; break; } /* Opcode: Put P1 * * ** ** Write an entry into the database file P1. A new entry is ** created if it doesn't already exist, or the data for an existing ** entry is overwritten. The data is the value on the top of the ** stack. The key is the next value down on the stack. The stack ** is popped twice by this instruction. */ case OP_Put: { int tos = p->tos; int nos = p->tos-1; int i = pOp->p1; if( nos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( (p->aStack[nos].flags & STK_Int)==0 ){ if( Stringify(p, nos) ) goto no_mem; nKey = p->aStack[nos].n; zKey = p->zStack[nos]; }else{ nKey = sizeof(int); zKey = (char*)&p->aStack[nos].i; } sqliteDbbePut(p->aCsr[i].pCursor, nKey, zKey, p->aStack[tos].n, p->zStack[tos]); } PopStack(p, 2); break; } /* Opcode: Delete P1 * * ** ** The top of the stack is a key. Remove this key and its data ** from database file P1. Then pop the stack to discard the key. */ case OP_Delete: { int tos = p->tos; int i = pOp->p1; if( tos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor!=0 ){ char *zKey; int nKey; if( p->aStack[tos].flags & STK_Int ){ nKey = sizeof(int); zKey = (char*)&p->aStack[tos].i; }else{ if( Stringify(p, tos) ) goto no_mem; nKey = p->aStack[tos].n; zKey = p->zStack[tos]; } sqliteDbbeDelete(p->aCsr[i].pCursor, nKey, zKey); } PopStack(p, 1); break; } /* Opcode: KeyAsData P1 P2 * ** ** Turn the key-as-data mode for cursor P1 either on (if P2==1) or ** off (if P2==0). In key-as-data mode, the OP_Fetch opcode pulls ** data off of the key rather than the data. This is useful for ** processing compound selects. */ case OP_KeyAsData: { int i = pOp->p1; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor!=0 ){ p->aCsr[i].keyAsData = pOp->p2; } break; } /* Opcode: Field P1 P2 * ** ** Interpret the data in the most recent fetch from cursor P1 ** is a structure built using the MakeRecord instruction. ** Push onto the stack the value of the P2-th field of that ** structure. ** ** The value pushed is just a pointer to the data in the cursor. ** The value will go away the next time a record is fetched from P1, ** or when P1 is closed. Make a copy of the string (using ** "Concat 1 0 0") if it needs to persist longer than that. ** ** If the KeyAsData opcode has previously executed on this cursor, ** then the field might be extracted from the key rather than the ** data. ** ** Viewed from a higher level, this instruction retrieves the ** data from a single column in a particular row of an SQL table ** file. Perhaps the name of this instruction should be ** "Column" instead of "Field"... */ case OP_Field: { int *pAddr; int amt; int i = pOp->p1; int p2 = pOp->p2; int tos = ++p->tos; DbbeCursor *pCrsr; char *z; if( NeedStack(p, tos) ) goto no_mem; if( i>=0 && i<p->nCursor && (pCrsr = p->aCsr[i].pCursor)!=0 ){ if( p->aCsr[i].keyAsData ){ amt = sqliteDbbeKeyLength(pCrsr); if( amt<=sizeof(int)*(p2+1) ){ p->aStack[tos].flags = STK_Null; break; } pAddr = (int*)sqliteDbbeReadKey(pCrsr, sizeof(int)*p2); if( *pAddr==0 ){ p->aStack[tos].flags = STK_Null; break; } z = sqliteDbbeReadKey(pCrsr, *pAddr); }else{ amt = sqliteDbbeDataLength(pCrsr); if( amt<=sizeof(int)*(p2+1) ){ p->aStack[tos].flags = STK_Null; break; } pAddr = (int*)sqliteDbbeReadData(pCrsr, sizeof(int)*p2); if( *pAddr==0 ){ p->aStack[tos].flags = STK_Null; break; } z = sqliteDbbeReadData(pCrsr, *pAddr); } p->zStack[tos] = z; p->aStack[tos].n = strlen(z) + 1; p->aStack[tos].flags = STK_Str; } break; } /* Opcode: Key P1 * * ** ** Push onto the stack an integer which is the first 4 bytes of the ** the key to the current entry in a sequential scan of the database ** file P1. The sequential scan should have been started using the ** Next opcode. */ case OP_Key: { int i = pOp->p1; int tos = ++p->tos; DbbeCursor *pCrsr; if( NeedStack(p, p->tos) ) goto no_mem; if( i>=0 && i<p->nCursor && (pCrsr = p->aCsr[i].pCursor)!=0 ){ char *z = sqliteDbbeReadKey(pCrsr, 0); if( p->aCsr[i].keyAsData ){ p->zStack[tos] = z; p->aStack[tos].flags = STK_Str; p->aStack[tos].n = sqliteDbbeKeyLength(pCrsr); }else{ memcpy(&p->aStack[tos].i, z, sizeof(int)); p->aStack[tos].flags = STK_Int; } } break; } /* Opcode: Rewind P1 * * ** ** The next use of the Key or Field or Next instruction for P1 ** will refer to the first entry in the database file. */ case OP_Rewind: { int i = pOp->p1; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor!=0 ){ sqliteDbbeRewind(p->aCsr[i].pCursor); } break; } /* Opcode: Next P1 P2 * ** ** Advance P1 to the next key/data pair in the file. Or, if there are no ** more key/data pairs, rewind P1 and jump to location P2. */ case OP_Next: { int i = pOp->p1; if( i>=0 && i<p->nCursor && p->aCsr[i].pCursor!=0 ){ if( sqliteDbbeNextKey(p->aCsr[i].pCursor)==0 ){ pc = pOp->p2 - 1; }else{ p->nFetch++; } } break; } /* Opcode: ResetIdx P1 * * ** ** Begin treating the current data in cursor P1 as a bunch of integer ** keys to records of a (separate) SQL table file. This instruction ** causes the new NextIdx instruction push the first integer table ** key in the data. */ case OP_ResetIdx: { int i = pOp->p1; if( i>=0 && i<p->nCursor ){ p->aCsr[i].index = 0; } break; } /* Opcode: NextIdx P1 P2 * ** ** The P1 cursor points to an SQL index. The data from the most ** recent fetch on that cursor consists of a bunch of integers where ** each integer is the key to a record in an SQL table file. ** This instruction grabs the next integer table key from the data ** of P1 and pushes that integer onto the stack. The first time ** this instruction is executed after a fetch, the first integer ** table key is pushed. Subsequent integer table keys are pushed ** in each subsequent execution of this instruction. ** ** If there are no more integer table keys in the data of P1 ** when this instruction is executed, then nothing gets pushed and ** there is an immediate jump to instruction P2. */ case OP_NextIdx: { int i = pOp->p1; int tos = ++p->tos; DbbeCursor *pCrsr; if( NeedStack(p, p->tos) ) goto no_mem; p->zStack[tos] = 0; if( i>=0 && i<p->nCursor && (pCrsr = p->aCsr[i].pCursor)!=0 ){ int *aIdx; int nIdx; int j; nIdx = sqliteDbbeDataLength(pCrsr)/sizeof(int); aIdx = (int*)sqliteDbbeReadData(pCrsr, 0); for(j=p->aCsr[i].index; j<nIdx; j++){ if( aIdx[j]!=0 ){ p->aStack[tos].i = aIdx[j]; p->aStack[tos].flags = STK_Int; break; } } if( j>=nIdx ){ j = -1; pc = pOp->p2 - 1; PopStack(p, 1); } p->aCsr[i].index = j+1; } break; } /* Opcode: PutIdx P1 * * ** ** The top of the stack hold an SQL index key (probably made using the ** MakeKey instruction) and next on stack holds an integer which ** the key to an SQL table entry. Locate the record in cursor P1 ** that has the same key as on the TOS. Create a new record if ** necessary. Then append the integer table key to the data for that ** record and write it back to the P1 file. */ case OP_PutIdx: { int i = pOp->p1; int tos = p->tos; int nos = tos - 1; DbbeCursor *pCrsr; if( nos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && (pCrsr = p->aCsr[i].pCursor)!=0 ){ int r; int newVal; Integerify(p, nos); newVal = p->aStack[nos].i; if( Stringify(p, tos) ) goto no_mem; r = sqliteDbbeFetch(pCrsr, p->aStack[tos].n, p->zStack[tos]); if( r==0 ){ /* Create a new record for this index */ sqliteDbbePut(pCrsr, p->aStack[tos].n, p->zStack[tos], sizeof(int), (char*)&newVal); }else{ /* Extend the existing record */ int nIdx; int *aIdx; nIdx = sqliteDbbeDataLength(pCrsr)/sizeof(int); aIdx = sqliteMalloc( sizeof(int)*(nIdx+1) ); if( aIdx==0 ) goto no_mem; sqliteDbbeCopyData(pCrsr, 0, nIdx*sizeof(int), (char*)aIdx); aIdx[nIdx] = newVal; sqliteDbbePut(pCrsr, p->aStack[tos].n, p->zStack[tos], sizeof(int)*(nIdx+1), (char*)aIdx); sqliteFree(aIdx); } } PopStack(p, 2); break; } /* Opcode: DeleteIdx P1 * * ** ** The top of the stack is a key and next on stack is integer ** which is the key to a record in an SQL table. ** Locate the record in the cursor P1 (P1 represents an SQL index) ** that has the same key as the top of stack. Then look through ** the integer table-keys contained in the data of the P1 record. ** Remove the integer table-key that matches the NOS and write the ** revised data back to P1 with the same key. ** ** If this routine removes the very last integer table-key from ** the P1 data, then the corresponding P1 record is deleted. */ case OP_DeleteIdx: { int i = pOp->p1; int tos = p->tos; int nos = tos - 1; DbbeCursor *pCrsr; if( nos<0 ) goto not_enough_stack; if( i>=0 && i<p->nCursor && (pCrsr = p->aCsr[i].pCursor)!=0 ){ int *aIdx; int nIdx; int j; int r; int oldVal; Integerify(p, nos); oldVal = p->aStack[nos].i; if( Stringify(p, tos) ) goto no_mem; r = sqliteDbbeFetch(pCrsr, p->aStack[tos].n, p->zStack[tos]); if( r==0 ) break; nIdx = sqliteDbbeDataLength(pCrsr)/sizeof(int); aIdx = (int*)sqliteDbbeReadData(pCrsr, 0); for(j=0; j<nIdx && aIdx[j]!=oldVal; j++){} if( j>=nIdx ) break; aIdx[j] = aIdx[nIdx-1]; if( nIdx==1 ){ sqliteDbbeDelete(pCrsr, p->aStack[tos].n, p->zStack[tos]); }else{ sqliteDbbePut(pCrsr, p->aStack[tos].n, p->zStack[tos], sizeof(int)*(nIdx-1), (char*)aIdx); } } PopStack(p, 2); break; } /* Opcode: Destroy * * P3 ** ** Drop the disk file whose name is P3. All key/data pairs in ** the file are deleted and the file itself is removed ** from the disk. */ case OP_Destroy: { sqliteDbbeDropTable(p->pBe, pOp->p3); break; } /* Opcode: Reorganize * * P3 ** ** Compress, optimize, and tidy up the GDBM file named by P3. */ case OP_Reorganize: { sqliteDbbeReorganizeTable(p->pBe, pOp->p3); break; } /* Opcode: ListOpen P1 * * ** ** Open a file used for temporary storage of integer table keys. P1 ** will server as a handle to this temporary file for future ** interactions. If another temporary file with the P1 handle is ** already opened, the prior file is closed and a new one opened ** in its place. */ case OP_ListOpen: { int i = pOp->p1; |
︙ | ︙ | |||
2256 2257 2258 2259 2260 2261 2262 | } break; } /* Opcode: ListRead P1 P2 * ** ** Attempt to read an integer from temporary storage buffer P1 | | | 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 | } break; } /* Opcode: ListRead P1 P2 * ** ** Attempt to read an integer from temporary storage buffer P1 ** and push it onto the stack. If the storage buffer is empty, ** push nothing but instead jump to P2. */ case OP_ListRead: { int i = pOp->p1; int val, amt; if( i<0 || i>=p->nList || p->apList[i]==0 ) goto bad_instruction; amt = fread(&val, sizeof(int), 1, p->apList[i]); |
︙ | ︙ | |||
2689 2690 2691 2692 2693 2694 2695 | pc = pOp->p2 - 1; break; } /* Opcode: FileField P1 * * ** ** Push onto the stack the P1-th field of the most recently read line | | | 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 | pc = pOp->p2 - 1; break; } /* Opcode: FileField P1 * * ** ** Push onto the stack the P1-th field of the most recently read line ** from the input file. */ case OP_FileField: { int i = pOp->p1; char *z; if( NeedStack(p, p->tos+1) ) goto no_mem; if( i>=0 && i<p->nField && p->azField ){ z = p->azField[i]; |
︙ | ︙ | |||
2824 2825 2826 2827 2828 2829 2830 | } PopStack(p, 1); break; } /* Opcode: AggIncr P1 P2 * ** | | | | 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 | } PopStack(p, 1); break; } /* Opcode: AggIncr P1 P2 * ** ** Increase the integer value in the P2-th field of the aggregate ** element current in focus by an amount P1. */ case OP_AggIncr: { AggElem *pFocus = AggInFocus(p->agg); int i = pOp->p2; if( pFocus==0 ) goto no_mem; if( i>=0 && i<p->agg.nMem ){ Mem *pMem = &pFocus->aMem[i]; |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** | | | | | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. Also found here are subroutines ** to generate VDBE code to evaluate expressions. ** ** $Id: where.c,v 1.8 2000/06/21 13:59:13 drh Exp $ */ #include "sqliteInt.h" /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by an AND operator. */ typedef struct ExprInfo ExprInfo; struct ExprInfo { Expr *p; /* Pointer to the subexpression */ int indexable; /* True if this subexprssion is usable by an index */ int idxLeft; /* p->pLeft is a column in this table number. -1 if ** p->pLeft is not the column of any table */ int idxRight; /* p->pRight is a column in this table number. -1 if ** p->pRight is not the column of any table */ unsigned prereqLeft; /* Tables referenced by p->pLeft */ unsigned prereqRight; /* Tables referenced by p->pRight */ }; /* ** Determine the number of elements in an array. */ |
︙ | ︙ | |||
90 91 92 93 94 95 96 | ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entry in the table list. This is the ** same as pParse->nTab. */ static int exprTableUsage(int base, Expr *p){ unsigned int mask = 0; if( p==0 ) return 0; | | | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | ** "base" is the cursor number (the value of the iTable field) that ** corresponds to the first entry in the table list. This is the ** same as pParse->nTab. */ static int exprTableUsage(int base, Expr *p){ unsigned int mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ return 1<< (p->iTable - base); } if( p->pRight ){ mask = exprTableUsage(base, p->pRight); } if( p->pLeft ){ mask |= exprTableUsage(base, p->pLeft); |
︙ | ︙ | |||
120 121 122 123 124 125 126 | Expr *pExpr = pInfo->p; pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft); pInfo->prereqRight = exprTableUsage(base, pExpr->pRight); pInfo->indexable = 0; pInfo->idxLeft = -1; pInfo->idxRight = -1; if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ | | | | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | Expr *pExpr = pInfo->p; pInfo->prereqLeft = exprTableUsage(base, pExpr->pLeft); pInfo->prereqRight = exprTableUsage(base, pExpr->pRight); pInfo->indexable = 0; pInfo->idxLeft = -1; pInfo->idxRight = -1; if( pExpr->op==TK_EQ && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ if( pExpr->pRight->op==TK_COLUMN ){ pInfo->idxRight = pExpr->pRight->iTable - base; pInfo->indexable = 1; } if( pExpr->pLeft->op==TK_COLUMN ){ pInfo->idxLeft = pExpr->pLeft->iTable - base; pInfo->indexable = 1; } } } /* |
︙ | ︙ | |||
221 222 223 224 225 226 227 | Index *pIdx; Index *pBestIdx = 0; /* Do a search for usable indices. Leave pBestIdx pointing to ** the most specific usable index. ** ** "Most specific" means that pBestIdx is the usable index that | | | | | | | | | | | | | | | | 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | Index *pIdx; Index *pBestIdx = 0; /* Do a search for usable indices. Leave pBestIdx pointing to ** the most specific usable index. ** ** "Most specific" means that pBestIdx is the usable index that ** has the largest value for nColumn. A usable index is one for ** which there are subexpressions to compute every column of the ** index. */ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; int columnMask = 0; if( pIdx->nColumn>32 ) continue; for(j=0; j<nExpr; j++){ if( aExpr[j].idxLeft==idx && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ int iColumn = aExpr[j].p->pLeft->iColumn; int k; for(k=0; k<pIdx->nColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<<k; break; } } } if( aExpr[j].idxRight==idx && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ int iColumn = aExpr[j].p->pRight->iColumn; int k; for(k=0; k<pIdx->nColumn; k++){ if( pIdx->aiColumn[k]==iColumn ){ columnMask |= 1<<k; break; } } } } if( columnMask + 1 == (1<<pIdx->nColumn) ){ if( pBestIdx==0 || pBestIdx->nColumn<pIdx->nColumn ){ pBestIdx = pIdx; } } } aIdx[i] = pBestIdx; loopMask |= 1<<idx; } |
︙ | ︙ | |||
293 294 295 296 297 298 299 | ** scan of the table. */ sqliteVdbeAddOp(v, OP_Next, base+idx, brk, 0, cont); haveKey = 0; }else{ /* Case 2: We do have a usable index in pIdx. */ | | | | | | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | ** scan of the table. */ sqliteVdbeAddOp(v, OP_Next, base+idx, brk, 0, cont); haveKey = 0; }else{ /* Case 2: We do have a usable index in pIdx. */ for(j=0; j<pIdx->nColumn; j++){ for(k=0; k<nExpr; k++){ if( aExpr[k].p==0 ) continue; if( aExpr[k].idxLeft==idx && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pRight); aExpr[k].p = 0; break; } if( aExpr[k].idxRight==idx && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] ){ sqliteExprCode(pParse, aExpr[k].p->pLeft); aExpr[k].p = 0; break; } } } sqliteVdbeAddOp(v, OP_MakeKey, pIdx->nColumn, 0, 0, 0); sqliteVdbeAddOp(v, OP_Fetch, base+pTabList->nId+i, 0, 0, 0); sqliteVdbeAddOp(v, OP_NextIdx, base+pTabList->nId+i, brk, 0, cont); if( i==pTabList->nId-1 && pushKey ){ haveKey = 1; }else{ sqliteVdbeAddOp(v, OP_Fetch, idx, 0, 0, 0); haveKey = 0; |
︙ | ︙ |
Changes to test/delete.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the DELETE FROM statement. # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the DELETE FROM statement. # # $Id: delete.test,v 1.6 2000/06/21 13:59:13 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Try to delete from a non-existant table. # do_test delete-1.1 { |
︙ | ︙ | |||
68 69 70 71 72 73 74 | # Semantic errors in the WHERE clause # do_test delete-4.1 { execsql {CREATE TABLE table2(f1 int, f2 int)} set v [catch {execsql {DELETE FROM table2 WHERE f3=5}} msg] lappend v $msg | | | 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | # Semantic errors in the WHERE clause # do_test delete-4.1 { execsql {CREATE TABLE table2(f1 int, f2 int)} set v [catch {execsql {DELETE FROM table2 WHERE f3=5}} msg] lappend v $msg } {1 {no such column: f3}} do_test delete-4.2 { set v [catch {execsql {DELETE FROM table2 WHERE xyzzy(f1+4)}} msg] lappend v $msg } {1 {no such function: xyzzy}} finish_test |
Changes to test/in.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the IN and BETWEEN operator. # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the IN and BETWEEN operator. # # $Id: in.test,v 1.3 2000/06/21 13:59:13 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Generate the test data we will need for the first squences of tests. # do_test in-1.0 { |
︙ | ︙ | |||
102 103 104 105 106 107 108 | do_test in-2.10 { set v [catch {execsql {SELECT a FROM t1 WHERE min(0,b IN (a,30))}} msg] lappend v $msg } {1 {right-hand side of IN operator must be constant}} do_test in-2.11 { set v [catch {execsql {SELECT a FROM t1 WHERE c IN (10,20)}} msg] lappend v $msg | | | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | do_test in-2.10 { set v [catch {execsql {SELECT a FROM t1 WHERE min(0,b IN (a,30))}} msg] lappend v $msg } {1 {right-hand side of IN operator must be constant}} do_test in-2.11 { set v [catch {execsql {SELECT a FROM t1 WHERE c IN (10,20)}} msg] lappend v $msg } {1 {no such column: c}} # Testing the IN operator where the right-hand side is a SELECT # do_test in-3.1 { execsql { SELECT a FROM t1 WHERE b IN (SELECT b FROM t1 WHERE a<5) |
︙ | ︙ |
Changes to test/select1.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # # $Id: select1.test,v 1.6 2000/06/21 13:59:13 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Try to select on a non-existant table. # do_test select1-1.1 { |
︙ | ︙ | |||
45 46 47 48 49 50 51 | set v [catch {execsql {SELECT * FROM test2, test1}} msg] lappend v $msg } {1 {no such table: test2}} execsql {INSERT INTO test1(f1,f2) VALUES(11,22)} | | | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | set v [catch {execsql {SELECT * FROM test2, test1}} msg] lappend v $msg } {1 {no such table: test2}} execsql {INSERT INTO test1(f1,f2) VALUES(11,22)} # Make sure the columns are extracted correctly. # do_test select1-1.4 { execsql {SELECT f1 FROM test1} } {11} do_test select1-1.5 { execsql {SELECT f2 FROM test1} } {22} |
︙ | ︙ | |||
240 241 242 243 244 245 246 | set v [catch {execsql {SELECT max(f1) FROM test1 ORDER BY f2}} msg] lappend v $msg } {0 33} execsql {CREATE TABLE test2(t1 test, t2 text)} execsql {INSERT INTO test2 VALUES('abc','xyz')} | | | 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | set v [catch {execsql {SELECT max(f1) FROM test1 ORDER BY f2}} msg] lappend v $msg } {0 33} execsql {CREATE TABLE test2(t1 test, t2 text)} execsql {INSERT INTO test2 VALUES('abc','xyz')} # Check for column naming # do_test select1-6.1 { set v [catch {execsql2 {SELECT f1 FROM test1 ORDER BY f2}} msg] lappend v $msg } {0 {f1 11 f1 33}} do_test select1-6.2 { set v [catch {execsql2 {SELECT f1 as xyzzy FROM test1 ORDER BY f2}} msg] |
︙ | ︙ | |||
276 277 278 279 280 281 282 | ORDER BY f2}} msg] lappend v $msg } {0 {A.f1 11 test2.t1 abc A.f1 33 test2.t1 abc}} do_test select1-6.8 { set v [catch {execsql2 {SELECT A.f1, f1 FROM test1 as A, test1 as B ORDER BY f2}} msg] lappend v $msg | | | | | 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | ORDER BY f2}} msg] lappend v $msg } {0 {A.f1 11 test2.t1 abc A.f1 33 test2.t1 abc}} do_test select1-6.8 { set v [catch {execsql2 {SELECT A.f1, f1 FROM test1 as A, test1 as B ORDER BY f2}} msg] lappend v $msg } {1 {ambiguous column name: f1}} do_test select1-6.8b { set v [catch {execsql2 {SELECT A.f1, B.f1 FROM test1 as A, test1 as B ORDER BY f2}} msg] lappend v $msg } {1 {ambiguous column name: f2}} do_test select1-6.8c { set v [catch {execsql2 {SELECT A.f1, f1 FROM test1 as A, test1 as A ORDER BY f2}} msg] lappend v $msg } {1 {ambiguous column name: A.f1}} do_test select1-6.9 { set v [catch {execsql2 {SELECT A.f1, B.f1 FROM test1 as A, test1 as B ORDER BY A.f1, B.f1}} msg] lappend v $msg } {0 {A.f1 11 B.f1 11 A.f1 11 B.f1 33 A.f1 33 B.f1 11 A.f1 33 B.f1 33}} finish_test |
Changes to test/select2.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # # $Id: select2.test,v 1.7 2000/06/21 13:59:13 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a table with some data # execsql {CREATE TABLE tbl1(f1 int, f2 int)} |
︙ | ︙ | |||
102 103 104 105 106 107 108 | } {500} do_test select2-3.2c { execsql {SELECT f1 FROM tbl2 WHERE f2=1000} } {500} do_test select2-3.2d { set t1 [lindex [time {execsql {SELECT f1 FROM tbl2 WHERE 1000=f2}} 1] 0] set t2 [lindex [time {execsql {SELECT f1 FROM tbl2 WHERE f2=1000}} 1] 0] | | | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | } {500} do_test select2-3.2c { execsql {SELECT f1 FROM tbl2 WHERE f2=1000} } {500} do_test select2-3.2d { set t1 [lindex [time {execsql {SELECT f1 FROM tbl2 WHERE 1000=f2}} 1] 0] set t2 [lindex [time {execsql {SELECT f1 FROM tbl2 WHERE f2=1000}} 1] 0] expr {$t1*0.8<$t2 && $t2*0.8<$t1} } {1} # Make sure queries run faster with an index than without # do_test select2-3.3 { set t1 [lindex [time {execsql {SELECT f1 from tbl2 WHERE f2==2000}} 1] 0] execsql {DROP INDEX idx1} set t2 [lindex [time {execsql {SELECT f1 FROM tbl2 WHERE f2==2000}} 1] 0] expr {$t1*25 < $t2} } {1} finish_test |
Changes to test/select5.test.
︙ | ︙ | |||
20 21 22 23 24 25 26 | # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing aggregate functions and the # GROUP BY and HAVING clauses of SELECT statements. # | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing aggregate functions and the # GROUP BY and HAVING clauses of SELECT statements. # # $Id: select5.test,v 1.4 2000/06/21 13:59:13 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Build some test data # set fd [open data1.txt w] |
︙ | ︙ | |||
62 63 64 65 66 67 68 | # Some error messages associated with aggregates and GROUP BY # do_test select5-2.1 { set v [catch {execsql { SELECT y, count(*) FROM t1 GROUP BY z ORDER BY y }} msg] lappend v $msg | | | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | # Some error messages associated with aggregates and GROUP BY # do_test select5-2.1 { set v [catch {execsql { SELECT y, count(*) FROM t1 GROUP BY z ORDER BY y }} msg] lappend v $msg } {1 {no such column: z}} do_test select5-2.2 { set v [catch {execsql { SELECT y, count(*) FROM t1 GROUP BY z(y) ORDER BY y }} msg] lappend v $msg } {1 {no such function: z}} do_test select5-2.3 { |
︙ | ︙ | |||
86 87 88 89 90 91 92 | lappend v $msg } {1 {no such function: z}} do_test select5-2.5 { set v [catch {execsql { SELECT y, count(*) FROM t1 GROUP BY y HAVING count(*)<z ORDER BY y }} msg] lappend v $msg | | | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | lappend v $msg } {1 {no such function: z}} do_test select5-2.5 { set v [catch {execsql { SELECT y, count(*) FROM t1 GROUP BY y HAVING count(*)<z ORDER BY y }} msg] lappend v $msg } {1 {no such column: z}} # Get the Agg function to rehash in vdbe.c # do_test select5-3.1 { execsql { SELECT x, count(*), avg(y) FROM t1 GROUP BY x HAVING x<4 ORDER BY x } |
︙ | ︙ |
Changes to test/update.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the UPDATE statement. # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the UPDATE statement. # # $Id: update.test,v 1.4 2000/06/21 13:59:14 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Try to update an non-existent table # do_test update-1.1 { |
︙ | ︙ | |||
50 51 52 53 54 55 56 | for {set i 1} {$i<=10} {incr i} { set sql "INSERT INTO test1 VALUES($i,[expr {int(pow(2,$i))}])" execsql $sql } execsql {SELECT * FROM test1 ORDER BY f1} } {1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 10 1024} | | | | | | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | for {set i 1} {$i<=10} {incr i} { set sql "INSERT INTO test1 VALUES($i,[expr {int(pow(2,$i))}])" execsql $sql } execsql {SELECT * FROM test1 ORDER BY f1} } {1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 10 1024} # Unknown column name in an expression # do_test update-3.2 { set v [catch {execsql {UPDATE test1 SET f1=f3*2 WHERE f2==32}} msg] lappend v $msg } {1 {no such column: f3}} do_test update-3.3 { set v [catch {execsql {UPDATE test1 SET f1=test2.f1*2 WHERE f2==32}} msg] lappend v $msg } {1 {no such column: test2.f1}} do_test update-3.4 { set v [catch {execsql {UPDATE test1 SET f3=f1*2 WHERE f2==32}} msg] lappend v $msg } {1 {no such column: f3}} # Actually do some updates # do_test update-3.5 { execsql {UPDATE test1 SET f2=f2*3} execsql {SELECT * FROM test1 ORDER BY f1} } {1 6 2 12 3 24 4 48 5 96 6 192 7 384 8 768 9 1536 10 3072} |
︙ | ︙ | |||
113 114 115 116 117 118 119 | # Error messages # do_test update-4.1 { set v [catch {execsql { UPDATE test1 SET x=11 WHERE f1=1025 }} msg] lappend v $msg | | | | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | # Error messages # do_test update-4.1 { set v [catch {execsql { UPDATE test1 SET x=11 WHERE f1=1025 }} msg] lappend v $msg } {1 {no such column: x}} do_test update-4.2 { set v [catch {execsql { UPDATE test1 SET f1=x(11) WHERE f1=1025 }} msg] lappend v $msg } {1 {no such function: x}} do_test update-4.3 { set v [catch {execsql { UPDATE test1 SET f1=11 WHERE x=1025 }} msg] lappend v $msg } {1 {no such column: x}} do_test update-4.4 { set v [catch {execsql { UPDATE test1 SET f1=11 WHERE x(f1)=1025 }} msg] lappend v $msg } {1 {no such function: x}} finish_test |
Changes to www/c_interface.tcl.
1 2 3 | # # Run this Tcl script to generate the sqlite.html file. # | | | 1 2 3 4 5 6 7 8 9 10 11 | # # Run this Tcl script to generate the sqlite.html file. # set rcsid {$Id: c_interface.tcl,v 1.5 2000/06/21 13:59:14 drh Exp $} puts {<html> <head> <title>The C language interface to the SQLite library</title> </head> <body bgcolor=white> <h1 align=center> |
︙ | ︙ | |||
84 85 86 87 88 89 90 | pointer to an opaque <b>sqlite</b> structure. This pointer will be the first argument to all subsequent SQLite function calls that deal with the same database. NULL is returned if the open fails for any reason.</p> <h2>Closing the database</h2> | | | 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | pointer to an opaque <b>sqlite</b> structure. This pointer will be the first argument to all subsequent SQLite function calls that deal with the same database. NULL is returned if the open fails for any reason.</p> <h2>Closing the database</h2> <p>To close an SQLite database, call the <b>sqlite_close()</b> function passing it the sqlite structure pointer that was obtained from a prior call to <b>sqlite_open</b>. <h2>Executing SQL statements</h2> <p>The <b>sqlite_exec()</b> function is used to process SQL statements and queries. This function requires 5 parameters as follows:</p> |
︙ | ︙ | |||
142 143 144 145 146 147 148 149 150 151 152 153 154 155 | argv[i] == 0 </pre></blockquote> <p>The names of the columns are contained in the fourth argument.</p> <p>The callback function should normally return 0. If the callback function returns non-zero, the query is immediately aborted and <b>sqlite_exec()</b> will return SQLITE_ABORT.</p> <h2>Testing for a complete SQL statement</h2> <p>The last interface routine to SQLite is a convenience function used to test whether or not a string forms a complete SQL statement. If the <b>sqlite_complete()</b> function returns true when its input is a string, then the argument forms a complete SQL statement. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | argv[i] == 0 </pre></blockquote> <p>The names of the columns are contained in the fourth argument.</p> <p>The callback function should normally return 0. If the callback function returns non-zero, the query is immediately aborted and <b>sqlite_exec()</b> will return SQLITE_ABORT.</p> <p>The <b>sqlite_exec()</b> function returns an integer to indicate success or failure of the operation. The following are possible return values:</p> <blockquote> <dl> <dt>SQLITE_OK</dt> <dd><p>This value is returned if everything worked and there were no errors. </p></dd> <dt>SQLITE_INTERNAL</dt> <dd><p>This value indicates that an internal consistency check within the SQLite library failed. This can only happen if there is a bug in the SQLite library. If you ever get an SQLITE_INTERNAL reply from an <b>sqlite_exec()</b> call, please report the problem on the SQLite mailing list. </p></dd> <dt>SQLITE_ERROR</dt> <dd><p>This return value indicates that there was an error in the SQL that was passed into the <b>sqlite_exec()</b>. </p></dd> <dt>SQLITE_PERM</dt> <dd><p>This return value says that the access permissions on one of the GDBM files is such that the file cannot be opened. </p></dd> <dt>SQLITE_ABORT</dt> <dd><p>This value is returned if the callback function returns non-zero. </p></dd> <dt>SQLITE_BUSY</dt> <dd><p>This return code indicates that one of the underlying GDBM files is locked because it is currently being accessed by another thread or process. GDBM allows mutiple readers of the same file, but only one writer. So multiple processes can query an SQLite database at once. But only a single process can write to an SQLite database at one time. If an attempt is made to write to an SQLite database that another process is currently reading, the write is not performed and <b>sqlite_exec()</b> returns SQLITE_BUSY. Similarly, an attempt to read an SQLite database that is currently being written by another process will return SQLITE_BUSY. In both cases, the write or query attempt can be retried after the other process finishes.</p> <p>Note that locking is done at the file level. One process can write to table ABC (for example) while another process simultaneously reads from a different table XYZ. But you cannot have two processes reading and writing table ABC at the same time. </p></dd> <dt>SQLITE_NOMEM</dt> <dd><p>This value is returned if a call to <b>malloc()</b> fails. </p></dd> <dt>SQLITE_READONLY</dt> <dd><p>This return code indicates that an attempt was made to write to a database file that was originally opened for reading only. This can happen if the callback from a query attempts to update the table being queried. </p></dd> </dl> </blockquote> <h2>Testing for a complete SQL statement</h2> <p>The last interface routine to SQLite is a convenience function used to test whether or not a string forms a complete SQL statement. If the <b>sqlite_complete()</b> function returns true when its input is a string, then the argument forms a complete SQL statement. |
︙ | ︙ |
Changes to www/sqlite.tcl.
1 2 3 | # # Run this Tcl script to generate the sqlite.html file. # | | | 1 2 3 4 5 6 7 8 9 10 11 | # # Run this Tcl script to generate the sqlite.html file. # set rcsid {$Id: sqlite.tcl,v 1.9 2000/06/21 13:59:14 drh Exp $} puts {<html> <head> <title>sqlite: A program of interacting with SQLite databases</title> </head> <body bgcolor=white> <h1 align=center> |
︙ | ︙ | |||
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | .dump Dump database in a text format .exit Exit this program .explain Set output mode suitable for EXPLAIN .header ON|OFF Turn display of headers on or off .help Show this message .indices TABLE Show names of all indices on TABLE .mode MODE Set mode to one of "line", "column", "list", or "html" .output FILENAME Send output to FILENAME .output stdout Send output to the screen .schema ?TABLE? Show the CREATE statements .separator STRING Change separator string for "list" mode .tables List names all tables in the database .width NUM NUM ... Set column widths for "column" mode sqlite> } puts { <h2>Changing Output Formats</h2> <p>The sqlite program is able to show the results of a query | > | | | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | .dump Dump database in a text format .exit Exit this program .explain Set output mode suitable for EXPLAIN .header ON|OFF Turn display of headers on or off .help Show this message .indices TABLE Show names of all indices on TABLE .mode MODE Set mode to one of "line", "column", "list", or "html" .mode insert TABLE Generate SQL insert statements for TABLE .output FILENAME Send output to FILENAME .output stdout Send output to the screen .schema ?TABLE? Show the CREATE statements .separator STRING Change separator string for "list" mode .tables List names all tables in the database .width NUM NUM ... Set column widths for "column" mode sqlite> } puts { <h2>Changing Output Formats</h2> <p>The sqlite program is able to show the results of a query in five different formats: "line", "column", "list", "html", and "insert". You can use the ".mode" dot command to switch between these three output formats.</p> <p>The default output mode is "list". In list mode, each record of a query result is written on one line of output and each column within that record is separated by a specific separator string. The default separator is a pipe symbol ("|"). List mode is especially useful when you are going to send the output of a query to another program (such as AWK) for additional processing.</p>} Code { sqlite> (((.mode list))) sqlite> (((select * from tbl1;))) |
︙ | ︙ | |||
192 193 194 195 196 197 198 | sqlite> (((select * from tbl1;))) hello, 10 goodbye, 20 sqlite> } puts { | | | | | 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | sqlite> (((select * from tbl1;))) hello, 10 goodbye, 20 sqlite> } puts { <p>In "line" mode, each column in a row of the database is shown on a line by itself. Each line consists of the column name, an equal sign and the column data. Successive records are separated by a blank line. Here is an example of line mode output:</p>} Code { sqlite> (((.mode line))) sqlite> (((select * from tbl1;))) one = hello |
︙ | ︙ | |||
259 260 261 262 263 264 265 266 267 268 269 270 271 272 | sqlite> (((select * from tbl1;))) hello 10 goodbye 20 sqlite> } puts { <p>The last output mode is "html". In this mode, sqlite writes the results of the query as an XHTML table. The beginning <TABLE> and the ending </TABLE> are not written, but all of the intervening <TR>s, <TH>s, and <TD>s are. The html output mode is envisioned as being useful for CGI.</p> } | > > > > > | 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 | sqlite> (((select * from tbl1;))) hello 10 goodbye 20 sqlite> } puts { <p>Another useful output mode is "insert". In insert mode, the output is formatted to look like SQL INSERT statements. You can use insert mode to generate text that can later be used to input data into a different database.</p> <p>The last output mode is "html". In this mode, sqlite writes the results of the query as an XHTML table. The beginning <TABLE> and the ending </TABLE> are not written, but all of the intervening <TR>s, <TH>s, and <TD>s are. The html output mode is envisioned as being useful for CGI.</p> } |
︙ | ︙ |