SQLite

Check-in [e144b81f69]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:New mutex implementation for both Unix and windows. (CVS 4291)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: e144b81f699ca991cc4fa12a487156391db0b367
User & Date: drh 2007-08-24 20:46:59.000
Context
2007-08-25
03:59
Bug fix in the implementation of recursive mutexes using non-recursive pthreads mutexes. Ticket #2588. (CVS 4292) (check-in: 7d24c3a5a7 user: drh tags: trunk)
2007-08-24
20:46
New mutex implementation for both Unix and windows. (CVS 4291) (check-in: e144b81f69 user: drh tags: trunk)
18:32
fix cleanup by removing sqlite3.pc (generated by 'configure') on 'make distclean', too (CVS 4290) (check-in: 3c90864835 user: rse tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/mutex.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for
** use by the SQLite core.
**
** $Id: mutex.c,v 1.8 2007/08/22 02:56:44 drh Exp $
*/
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality must be provided by the
** application that links against the SQLite library.
*/
#ifndef SQLITE_MUTEX_APPDEF







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for
** use by the SQLite core.
**
** $Id: mutex.c,v 1.9 2007/08/24 20:46:59 drh Exp $
*/
/*
** If SQLITE_MUTEX_APPDEF is defined, then this whole module is
** omitted and equivalent functionality must be provided by the
** application that links against the SQLite library.
*/
#ifndef SQLITE_MUTEX_APPDEF
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
** Figure out what version of the code to use
*/
#define SQLITE_MUTEX_NOOP 1   /* The default */
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif
#if 0
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREAD
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_WIN
#endif
#endif



#ifdef SQLITE_MUTEX_NOOP
/************************ No-op Mutex Implementation **********************
**







<







<







30
31
32
33
34
35
36

37
38
39
40
41
42
43

44
45
46
47
48
49
50
** Figure out what version of the code to use
*/
#define SQLITE_MUTEX_NOOP 1   /* The default */
#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_NOOP_DEBUG
#endif

#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_PTHREAD
#endif
#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN
# undef SQLITE_MUTEX_NOOP
# define SQLITE_MUTEX_WIN

#endif



#ifdef SQLITE_MUTEX_NOOP
/************************ No-op Mutex Implementation **********************
**
211
212
213
214
215
216
217






































































































































































218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

#ifdef SQLITE_MUTEX_PTHREAD
/**************** Non-recursive Pthread Mutex Implementation *****************
**
** This implementation of mutexes is built using a version of pthreads that
** does not have native support for recursive mutexes.
*/







































































































































































/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mainMutex;  /* Mutex controlling the lock */
  pthread_mutex_t auxMutex;   /* Mutex controlling access to nRef and owner */
  int id;                     /* Mutex type */
  int nRef;                   /* Number of entrances */
  pthread_t owner;            /* Thread that is within this mutex */
};

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|
<
|
|
|







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

388
389
390
391
392
393
394
395
396
397

#ifdef SQLITE_MUTEX_PTHREAD
/**************** Non-recursive Pthread Mutex Implementation *****************
**
** This implementation of mutexes is built using a version of pthreads that
** does not have native support for recursive mutexes.
*/
#include <pthread.h>

/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
  int id;                    /* Mutex type */
  int nRef;                  /* Number of entrances */
  pthread_t owner;           /* Thread that is within this mutex */
};

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Three static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
  };
  sqlite3_mutex *p;
  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
  assert( p );
  assert( p->nRef==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
  pthread_mutex_destroy(&p->mutex);
  sqlite3_free(p);
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread.  In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.  If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  pthread_t self = pthread_self();
  if( pthread_equal(p->owner, self) && p->nRef>0 ){
    p->nRef++;
  }else{
    pthread_mutex_lock(&p->mutex);
    assert( p->nRef==0 );
    p->owner = self;
    p->nRef = 1;
  }
}
int sqlite3_mutex_try(sqlite3_mutex *p){
  pthread_t self = pthread_self();
  int rc;
  if( pthread_equal(p->owner, self) && p->nRef>0 ){
    p->nRef++;
    rc = SQLITE_OK;
  }else if( pthread_mutex_lock(&p->mutex)==0 ){
    assert( p->nRef==0 );
    p->owner = self;
    p->nRef = 1;
    rc = SQLITE_OK;
  }else{
    rc = SQLITE_BUSY;
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){
  assert( pthread_equal(p->owner, pthread_self()) );
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    pthread_mutex_unlock(&p->mutex);
  }
}

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
  return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){
  return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif /* SQLITE_MUTEX_PTHREAD */

#ifdef SQLITE_MUTEX_WIN
/********************** Windows Mutex Implementation **********************
**
** This implementation of mutexes is built using the win32 API.
*/

/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  CRITICAL_SECTION mutex;    /* Mutex controlling the lock */

  int id;                    /* Mutex type */
  int nRef;                  /* Number of enterances */
  DWORD owner;               /* Thread holding this mutex */
};

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated.  SQLite
** will unwind its stack and return an error.  The argument
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277
278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296














297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){
  static sqlite3_mutex staticMutexes[] = {
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
    { PTHREAD_MUTEX_INITIALIZER, },
  };
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST: {

      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        pthread_mutex_init(&px->mainMutex, 0);
      }
      break;
    }
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3_malloc( sizeof(*p) );
      if( p ){
        px->id = iType;
        pthread_mutex_init(&px->auxMutex, 0);
        pthread_mutex_init(&px->mainMutex, 0);
        px->nRef = 0;
      }
      break;
    }
    default: {














      assert( iType-2 >= 0 );
      assert( iType-2 < count(staticMutexes) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
  assert( p );
  assert( p->nRef==0 );
  if( p->id==SQLITE_MUTEX_FAST ){
    pthread_mutex_destroy(&p->mainMutex);
  }else{
    assert( p->id==SQLITE_MUTEX_RECURSIVE );
    pthread_mutex_destroy(&p->auxMutex);
    pthread_mutex_destroy(&p->mainMutex);
  }
  sqlite3_free(p);
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread.  In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.  If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){
  if( p->id==SQLITE_MUTEX_RECURSIVE ){
    while(1){
      pthread_mutex_lock(&p->auxMutex);
      if( p->nRef==0 ){
        p->nRef++;
        p->owner = pthread_self();
        pthread_mutex_lock(&p->mainMutex);
        pthread_mutex_unlock(&p->auxMutex);
        break;
      }else if( pthread_equal(p->owner, pthread_self()) ){
        p->nRef++;
        pthread_mutex_unlock(&p->auxMutex);
        break;
      }else{
        pthread_mutex_unlock(&p->auxMutex);
        pthread_mutex_lock(&p->mainMutex);
        pthread_mutex_unlock(&p->mainMutex);
      }
    }
  }else{
    assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
    pthread_mutex_lock(&p->mutex);
    assert( (p->nRef = 1)!=0 );
    assert( (p->owner = pthread_self())==pthread_self() );
  }
}
int sqlite3_mutex_try(sqlite3_mutex *p){
  if( p->id==SQLITE_MUTEX_RECURSIVE ){
    pthread_mutex_lock(&p->auxMutex);

    if( p->nRef==0 ){
      p->nRef++;
      p->owner = pthread_self();
      pthread_mutex_lock(&p->mainMutex);
      pthread_mutex_unlock(&p->auxMutex);
    }else if( pthread_equal(p->owner, pthread_self()) ){
      p->nRef++;
      pthread_mutex_unlock(&p->auxMutex);
    }else{
      pthread_mutex_unlock(&p->auxMutex);
      return SQLITE_BUSY;
    }
  }else{
    assert( p->nRef==0 || pthread_equal(p->owner, pthread_self())==0 );
    if( pthread_mutex_trylock(&p->mutex) ){
      return SQLITE_BUSY;
    }
  }
  return SQLITE_OK;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *pMutex){
  if( p->id==SQLITE_MUTEX_RECURSIVE ){
    pthread_mutex_lock(&p->auxMutex);
    assert( p->nRef>0 );
    assert( pthread_equal(p->owner, pthread_self()) );
    p->nRef--;
    if( p->nRef<=0 ){
      pthread_mutex_unlock(&p->mainMutex);
    }
    pthread_mutex_unlock(&p->auxMutex);
  }else{
    assert( p->nRef==1 );
    assert( pthread_equal(p->owner, pthread_self()) );
    p->nRef = 0;
    pthread_mutex_unlock(&p->mutex);
  }
}

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){
  assert( p );
  return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
}
int sqlite3_mutex_notheld(sqlite3_mutex *pNotUsed){
  assert( p );
  return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
}
#endif /* SQLITE_MUTEX_PTHREAD */

#endif /* !defined(SQLITE_MUTEX_APPDEF) */







<
<
<
<
<
<

>

|
>



|
<
<
<
<
<
<
<
<
<
<




>
>
>
>
>
>
>
>
>
>
>
>
>
>

|

















<
<
<
|
<
|
<















<
<
|
<
<
|
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<

<
<
>
|
<
|
<
<
<
|
<
<
<
|
<

<
<
|
|
<
|








|
<
<
|
<
<
<
<
<
<
<
|
<
|
|
<







<
|

|
<
|

|


426
427
428
429
430
431
432






433
434
435
436
437
438
439
440
441










442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478



479

480

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495


496


497




498






499








500


501
502

503



504



505

506


507
508

509
510
511
512
513
514
515
516
517
518


519







520

521
522

523
524
525
526
527
528
529

530
531
532

533
534
535
536
537
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static 
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
sqlite3_mutex *sqlite3_mutex_alloc(int iType){






  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        InitializeCriticalSection(&p->mutex);










      }
      break;
    }
    default: {
      static sqlite3_mutex staticMutexes[4];
      static int isInit = 0;
      while( !isInit ){
        static long lock = 0;
        if( InterlockedIncrement(&lock)==1 ){
          int i;
          for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){
            InitializeCriticalSection(&staticMutexes[i].mutex);
          }
          isInit = 1;
        }else{
          Sleep(1);
        }
      }
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
void sqlite3_mutex_free(sqlite3_mutex *p){
  assert( p );
  assert( p->nRef==0 );



  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );

  DeleteCriticalSection(&p->mutex);

  sqlite3_free(p);
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread.  In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.  If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
void sqlite3_mutex_enter(sqlite3_mutex *p){


  EnterCriticalSection(&p->mutex);


  p->owner = GetCurrentThreadId(); 




  p->nRef++;






}








int sqlite3_mutex_try(sqlite3_mutex *p){


  int rc;
  if( TryEnterCriticalSection(&p->mutex) ){

    p->owner = GetCurrentThreadId();



    p->nRef++;



    rc = SQLITE_OK;

  }else{


    rc = SQLITE_BUSY;
  }

  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
void sqlite3_mutex_leave(sqlite3_mutex *p){


  assert( p->nRef>0 );







  assert( p->owner==GetCurrentThreadId() );

  p->nRef--;
  LeaveCriticalSection(&p->mutex);

}

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
int sqlite3_mutex_held(sqlite3_mutex *p){

  return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId());
}
int sqlite3_mutex_notheld(sqlite3_mutex *p){

  return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId();
}
#endif /* SQLITE_MUTEX_WIN */

#endif /* !defined(SQLITE_MUTEX_APPDEF) */