Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add the shared schema/pager modifications. Very few tests so far. (CVS 2859) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
deeda0dc06c1595aedd8d06a0c4e88a8 |
User & Date: | danielk1977 2006-01-05 11:34:33.000 |
Context
2006-01-05
| ||
13:48 | Disable automatic invocation of sqlite3_release_memory() when a malloc() fails in those cases where the global mutex is held. (CVS 2860) (check-in: 6fdbb8b771 user: danielk1977 tags: trunk) | |
11:34 | Add the shared schema/pager modifications. Very few tests so far. (CVS 2859) (check-in: deeda0dc06 user: danielk1977 tags: trunk) | |
2006-01-04
| ||
21:40 | Bug fix in the IF NOT EXISTS logic. (CVS 2858) (check-in: cb9095ac52 user: drh tags: trunk) | |
Changes
Changes to main.mk.
︙ | ︙ | |||
451 452 453 454 455 456 457 458 459 460 461 462 463 464 | pragma.html: $(TOP)/www/pragma.tcl tclsh $(TOP)/www/pragma.tcl >pragma.html lockingv3.html: $(TOP)/www/lockingv3.tcl tclsh $(TOP)/www/lockingv3.tcl >lockingv3.html mingw.html: $(TOP)/www/mingw.tcl tclsh $(TOP)/www/mingw.tcl >mingw.html nulls.html: $(TOP)/www/nulls.tcl tclsh $(TOP)/www/nulls.tcl >nulls.html oldnews.html: $(TOP)/www/oldnews.tcl | > > > | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | pragma.html: $(TOP)/www/pragma.tcl tclsh $(TOP)/www/pragma.tcl >pragma.html lockingv3.html: $(TOP)/www/lockingv3.tcl tclsh $(TOP)/www/lockingv3.tcl >lockingv3.html sharedcache.html: $(TOP)/www/sharedcache.tcl tclsh $(TOP)/www/sharedcache.tcl >sharedcache.html mingw.html: $(TOP)/www/mingw.tcl tclsh $(TOP)/www/mingw.tcl >mingw.html nulls.html: $(TOP)/www/nulls.tcl tclsh $(TOP)/www/nulls.tcl >nulls.html oldnews.html: $(TOP)/www/oldnews.tcl |
︙ | ︙ | |||
531 532 533 534 535 536 537 538 539 540 541 542 543 544 | oldnews.html \ omitted.html \ opcode.html \ optimizer.html \ optoverview.html \ pragma.html \ quickstart.html \ speed.html \ sqlite.html \ support.html \ tclsqlite.html \ vdbe.html \ version3.html \ whentouse.html | > | 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | oldnews.html \ omitted.html \ opcode.html \ optimizer.html \ optoverview.html \ pragma.html \ quickstart.html \ sharedcache.html \ speed.html \ sqlite.html \ support.html \ tclsqlite.html \ vdbe.html \ version3.html \ whentouse.html |
︙ | ︙ |
Changes to src/alter.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that used to generate VDBE code ** that implements the ALTER TABLE command. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that used to generate VDBE code ** that implements the ALTER TABLE command. ** ** $Id: alter.c,v 1.14 2006/01/05 11:34:33 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** The code in this file only exists if we are not omitting the ** ALTER TABLE logic from the build. |
︙ | ︙ | |||
173 174 175 176 177 178 179 | ** table pTab has no temporary triggers, or is itself stored in the ** temporary database, NULL is returned. */ static char *whereTempTriggers(Parse *pParse, Table *pTab){ Trigger *pTrig; char *zWhere = 0; char *tmp = 0; | > > > > > > > | | | 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | ** table pTab has no temporary triggers, or is itself stored in the ** temporary database, NULL is returned. */ static char *whereTempTriggers(Parse *pParse, Table *pTab){ Trigger *pTrig; char *zWhere = 0; char *tmp = 0; const DbSchema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */ /* If the table is not located in the temp-db (in which case NULL is ** returned, loop through the tables list of triggers. For each trigger ** that is not part of the temp-db schema, add a clause to the WHERE ** expression being built up in zWhere. */ if( pTab->pSchema!=pTempSchema ){ for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){ if( pTrig->pSchema==pTempSchema ){ if( !zWhere ){ zWhere = sqlite3MPrintf("name=%Q", pTrig->name); }else{ tmp = zWhere; zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name); sqliteFree(tmp); } |
︙ | ︙ | |||
200 201 202 203 204 205 206 | ** the time the generated code is executed. This can be different from ** pTab->zName if this function is being called to code part of an ** "ALTER TABLE RENAME TO" statement. */ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){ Vdbe *v; char *zWhere; | | > | > | | | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | ** the time the generated code is executed. This can be different from ** pTab->zName if this function is being called to code part of an ** "ALTER TABLE RENAME TO" statement. */ static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){ Vdbe *v; char *zWhere; int iDb; /* Index of database containing pTab */ #ifndef SQLITE_OMIT_TRIGGER Trigger *pTrig; #endif v = sqlite3GetVdbe(pParse); if( !v ) return; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); assert( iDb>=0 ); #ifndef SQLITE_OMIT_TRIGGER /* Drop any table triggers from the internal schema. */ for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){ int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); assert( iTrigDb==iDb || iTrigDb==1 ); sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0); } #endif /* Drop the table and index from the internal schema */ sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0); /* Reload the table, index and permanent trigger schemas. */ |
︙ | ︙ | |||
259 260 261 262 263 264 265 | #endif if( sqlite3Tsd()->mallocFailed ) goto exit_rename_table; assert( pSrc->nSrc==1 ); pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase); if( !pTab ) goto exit_rename_table; | | | 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | #endif if( sqlite3Tsd()->mallocFailed ) goto exit_rename_table; assert( pSrc->nSrc==1 ); pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase); if( !pTab ) goto exit_rename_table; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); zDb = db->aDb[iDb].zName; /* Get a NULL terminated version of the new table name. */ zName = sqlite3NameFromToken(pName); if( !zName ) goto exit_rename_table; /* Check that a table or index named 'zName' does not already exist |
︙ | ︙ | |||
386 387 388 389 390 391 392 | Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ if( pParse->nErr ) return; pNew = pParse->pNewTable; assert( pNew ); | | | 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 | Column *pCol; /* The new column */ Expr *pDflt; /* Default value for the new column */ if( pParse->nErr ) return; pNew = pParse->pNewTable; assert( pNew ); iDb = sqlite3SchemaToIndex(pParse->db, pNew->pSchema); zDb = pParse->db->aDb[iDb].zName; zTab = pNew->zName; pCol = &pNew->aCol[pNew->nCol-1]; pDflt = pCol->pDflt; pTab = sqlite3FindTable(pParse->db, zTab, zDb); assert( pTab ); |
︙ | ︙ | |||
486 487 488 489 490 491 492 | Table *pNew; Table *pTab; Vdbe *v; int iDb; int i; int nAlloc; | < | | 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 | Table *pNew; Table *pTab; Vdbe *v; int iDb; int i; int nAlloc; /* Look up the table being altered. */ assert( pParse->pNewTable==0 ); if( sqlite3Tsd()->mallocFailed ) goto exit_begin_add_column; pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase); if( !pTab ) goto exit_begin_add_column; /* Make sure this is not an attempt to ALTER a view. */ if( pTab->pSelect ){ sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); goto exit_begin_add_column; } assert( pTab->addColOffset>0 ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Put a copy of the Table struct in Parse.pNewTable for the ** sqlite3AddColumn() function and friends to modify. */ pNew = (Table *)sqliteMalloc(sizeof(Table)); if( !pNew ) goto exit_begin_add_column; pParse->pNewTable = pNew; |
︙ | ︙ | |||
525 526 527 528 529 530 531 | memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); for(i=0; i<pNew->nCol; i++){ Column *pCol = &pNew->aCol[i]; pCol->zName = sqliteStrDup(pCol->zName); pCol->zType = 0; pCol->pDflt = 0; } | | | 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 | memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); for(i=0; i<pNew->nCol; i++){ Column *pCol = &pNew->aCol[i]; pCol->zName = sqliteStrDup(pCol->zName); pCol->zType = 0; pCol->pDflt = 0; } pNew->pSchema = pParse->db->aDb[iDb].pSchema; pNew->addColOffset = pTab->addColOffset; pNew->nRef = 1; /* Begin a transaction and increment the schema cookie. */ sqlite3BeginWriteOperation(pParse, 0, iDb); v = sqlite3GetVdbe(pParse); if( !v ) goto exit_begin_add_column; |
︙ | ︙ |
Changes to src/analyze.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2005 July 8 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2005 July 8 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code associated with the ANALYZE command. ** ** @(#) $Id: analyze.c,v 1.12 2006/01/05 11:34:33 danielk1977 Exp $ */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" /* ** This routine generates code that opens the sqlite_stat1 table on cursor ** iStatCur. |
︙ | ︙ | |||
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | int iIdxCur; /* Cursor number for index being analyzed */ int nCol; /* Number of columns in the index */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int addr; /* The address of an instruction */ v = sqlite3GetVdbe(pParse); if( pTab==0 || pTab->pIndex==0 ){ /* Do no analysis for tables that have no indices */ return; } #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, | > > > | > | | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | int iIdxCur; /* Cursor number for index being analyzed */ int nCol; /* Number of columns in the index */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int addr; /* The address of an instruction */ int iDb; /* Index of database containing pTab */ v = sqlite3GetVdbe(pParse); if( pTab==0 || pTab->pIndex==0 ){ /* Do no analysis for tables that have no indices */ return; } iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); assert( iDb>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, pParse->db->aDb[iDb].zName ) ){ return; } #endif iIdxCur = pParse->nTab; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ /* Open a cursor to the index to be analyzed */ assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) ); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); VdbeComment((v, "# %s", pIdx->zName)); sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, (char*)&pIdx->keyInfo, P3_KEYINFO); nCol = pIdx->nColumn; if( iMem+nCol*2>=pParse->nMem ){ pParse->nMem = iMem+nCol*2+1; } |
︙ | ︙ | |||
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | } /* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab++; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem; | > | | | 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | } /* ** Generate code that will do an analysis of an entire database */ static void analyzeDatabase(Parse *pParse, int iDb){ sqlite3 *db = pParse->db; DbSchema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab++; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, iStatCur, iMem); } loadAnalysis(pParse, iDb); } /* ** Generate code that will do an analysis of a single table in ** a database. */ static void analyzeTable(Parse *pParse, Table *pTab){ int iDb; int iStatCur; assert( pTab!=0 ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab++; openStatTable(pParse, iDb, iStatCur, pTab->zName); analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem); loadAnalysis(pParse, iDb); } |
︙ | ︙ | |||
357 358 359 360 361 362 363 | */ void sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; /* Clear any prior statistics */ | | | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | */ void sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; /* Clear any prior statistics */ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); } /* Check to make sure the sqlite_stat1 table existss */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; |
︙ | ︙ |
Changes to src/attach.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** ** $Id: attach.c,v 1.39 2006/01/05 11:34:33 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Resolve an expression that was part of an ATTACH or DETACH statement. This ** is slightly different from resolving a normal SQL expression, because simple ** identifiers are treated as strings, not possible column names or aliases. |
︙ | ︙ | |||
112 113 114 115 116 117 118 | if( aNew==0 ){ return; } } db->aDb = aNew; aNew = &db->aDb[db->nDb++]; memset(aNew, 0, sizeof(*aNew)); | | > > > > > | > | | > > < < < | 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 | if( aNew==0 ){ return; } } db->aDb = aNew; aNew = &db->aDb[db->nDb++]; memset(aNew, 0, sizeof(*aNew)); /* Open the database file. If the btree is successfully opened, use ** it to obtain the database schema. At this point the schema may ** or may not be initialised. */ rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt); if( rc==SQLITE_OK ){ aNew->pSchema = sqlite3SchemaGet(aNew->pBt); if( !aNew->pSchema ){ rc = SQLITE_NOMEM; } } aNew->zName = sqliteStrDup(zName); aNew->safety_level = 3; #if SQLITE_HAS_CODEC { extern int sqlite3CodecAttach(sqlite3*, int, void*, int); extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; |
︙ | ︙ |
Changes to src/auth.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** This file contains code used to implement the sqlite3_set_authorizer() ** API. This facility is an optional feature of the library. Embedded ** systems that do not need this facility may omit it by recompiling ** the library with -DSQLITE_OMIT_AUTHORIZATION=1 ** ** $Id: auth.c,v 1.23 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** All of the code in this file may be omitted by defining a single ** macro. */ |
︙ | ︙ | |||
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | sqlite3 *db = pParse->db; int rc; Table *pTab; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ const char *zDBase; /* Name of database being accessed */ TriggerStack *pStack; /* The stack of current triggers */ if( db->xAuth==0 ) return; if( pExpr->op==TK_AS ) return; assert( pExpr->op==TK_COLUMN ); for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break; } if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){ pTab = pTabList->a[iSrc].pTab; }else if( (pStack = pParse->trigStack)!=0 ){ /* This must be an attempt to read the NEW or OLD pseudo-tables | > > | 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | sqlite3 *db = pParse->db; int rc; Table *pTab; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ const char *zDBase; /* Name of database being accessed */ TriggerStack *pStack; /* The stack of current triggers */ int iDb; /* The index of the database the expression refers to */ if( db->xAuth==0 ) return; if( pExpr->op==TK_AS ) return; assert( pExpr->op==TK_COLUMN ); iDb = sqlite3SchemaToIndex(pParse->db, pExpr->pSchema); for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break; } if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){ pTab = pTabList->a[iSrc].pTab; }else if( (pStack = pParse->trigStack)!=0 ){ /* This must be an attempt to read the NEW or OLD pseudo-tables |
︙ | ︙ | |||
136 137 138 139 140 141 142 | zCol = pTab->aCol[pExpr->iColumn].zName; }else if( pTab->iPKey>=0 ){ assert( pTab->iPKey<pTab->nCol ); zCol = pTab->aCol[pTab->iPKey].zName; }else{ zCol = "ROWID"; } | | | | | 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | zCol = pTab->aCol[pExpr->iColumn].zName; }else if( pTab->iPKey>=0 ){ assert( pTab->iPKey<pTab->nCol ); zCol = pTab->aCol[pTab->iPKey].zName; }else{ zCol = "ROWID"; } assert( iDb<db->nDb ); zDBase = db->aDb[iDb].zName; rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, pParse->zAuthContext); if( rc==SQLITE_IGNORE ){ pExpr->op = TK_NULL; }else if( rc==SQLITE_DENY ){ if( db->nDb>2 || iDb!=0 ){ sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", zDBase, pTab->zName, zCol); }else{ sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol); } pParse->rc = SQLITE_AUTH; }else if( rc!=SQLITE_OK ){ |
︙ | ︙ |
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.279 2006/01/05 11:34:34 danielk1977 Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
345 346 347 348 349 350 351 352 353 354 355 356 357 358 | int minLeaf; /* Minimum local payload in a LEAFDATA table */ BusyHandler *pBusyHandler; /* Callback for when there is lock contention */ u8 inTransaction; /* Transaction state */ BtShared *pNext; /* Next in SqliteTsd.pBtree linked list */ int nRef; /* Number of references to this structure */ int nTransaction; /* Number of open transactions (read + write) */ BtLock *pLock; /* List of locks held on this shared-btree struct */ }; /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ | > > | 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | int minLeaf; /* Minimum local payload in a LEAFDATA table */ BusyHandler *pBusyHandler; /* Callback for when there is lock contention */ u8 inTransaction; /* Transaction state */ BtShared *pNext; /* Next in SqliteTsd.pBtree linked list */ int nRef; /* Number of references to this structure */ int nTransaction; /* Number of open transactions (read + write) */ BtLock *pLock; /* List of locks held on this shared-btree struct */ void *pSchema; void (*xFreeSchema)(void*); }; /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ |
︙ | ︙ | |||
378 379 380 381 382 383 384 | int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->aCell[] */ CellInfo info; /* A parse of the cell we are pointing at */ u8 wrFlag; /* True if writable */ | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->aCell[] */ CellInfo info; /* A parse of the cell we are pointing at */ u8 wrFlag; /* True if writable */ u8 eState; /* One of the CURSOR_XXX constants (see below) */ #ifndef SQLITE_OMIT_SHARED_CACHE void *pKey; i64 nKey; int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ #endif }; /* ** Potential values for BtCursor.eState. The first two values (VALID and ** INVALID) may occur in any build. The third (REQUIRESEEK) may only occur ** if sqlite was compiled without the OMIT_SHARED_CACHE symbol defined. ** ** CURSOR_VALID: ** Cursor points to a valid entry. getPayload() etc. may be called. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. ** ** CURSOR_REQUIRESEEK: ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to seek ** the cursor to the saved position. */ #define CURSOR_INVALID 0 #define CURSOR_VALID 1 #define CURSOR_REQUIRESEEK 2 /* ** The TRACE macro will print high-level status information about the ** btree operation when the global variable sqlite3_btree_trace is ** enabled. */ #if SQLITE_TEST # define TRACE(X) if( sqlite3_btree_trace )\ |
︙ | ︙ | |||
458 459 460 461 462 463 464 | #ifdef SQLITE_OMIT_SHARED_CACHE /* ** The functions queryTableLock(), lockTable() and unlockAllTables() ** manipulate entries in the BtShared.pLock linked list used to store ** shared-cache table level locks. If the library is compiled with the ** shared-cache feature disabled, then there is only ever one user | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > > > > > > > > > > > > > > > > > > > > | 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | #ifdef SQLITE_OMIT_SHARED_CACHE /* ** The functions queryTableLock(), lockTable() and unlockAllTables() ** manipulate entries in the BtShared.pLock linked list used to store ** shared-cache table level locks. If the library is compiled with the ** shared-cache feature disabled, then there is only ever one user ** of each BtShared structure and so this locking is not necessary. ** So define the lock related functions as no-ops. */ #define queryTableLock(a,b,c) SQLITE_OK #define lockTable(a,b,c) SQLITE_OK #define unlockAllTables(a) #define restoreCursorPosition(a,b) SQLITE_OK #define saveAllCursors(a,b,c) SQLITE_OK #else /* ** Save the current cursor position in the variables BtCursor.nKey ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. */ static int saveCursorPosition(BtCursor *pCur){ int rc = SQLITE_OK; assert( CURSOR_VALID==pCur->eState|| CURSOR_INVALID==pCur->eState ); assert( 0==pCur->pKey ); if( pCur->eState==CURSOR_VALID ){ rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); /* If this is an intKey table, then the above call to BtreeKeySize() ** stores the integer key in pCur->nKey. In this case this value is ** all that is required. Otherwise, if pCur is not open on an intKey ** table, then malloc space for and store the pCur->nKey bytes of key ** data. */ if( rc==SQLITE_OK && 0==pCur->pPage->intKey){ void *pKey = sqliteMalloc(pCur->nKey); if( pKey ){ rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); if( pKey ){ pCur->pKey = pKey; }else{ sqliteFree(pKey); } }else{ rc = SQLITE_NOMEM; } } assert( !pCur->pPage->intKey || !pCur->pKey ); /* Todo: Should we drop the reference to pCur->pPage here? */ if( rc==SQLITE_OK ){ pCur->eState = CURSOR_REQUIRESEEK; } } return rc; } /* ** Save the positions of all cursors except pExcept open on the table ** with root-page iRoot. Usually, this is called just before cursor ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). */ static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ BtCursor *p; if( sqlite3Tsd()->useSharedData ){ for(p=pBt->pCursor; p; p=p->pNext){ if( p!=pExcept && p->pgnoRoot==iRoot && p->eState==CURSOR_VALID ){ int rc = saveCursorPosition(p); if( SQLITE_OK!=rc ){ return rc; } } } } return SQLITE_OK; } /* ** Restore the cursor to the position it was in (or as close to as possible) ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). ** ** If the second argument argument - doSeek - is false, then instead of ** returning the cursor to it's saved position, any saved position is deleted ** and the cursor state set to CURSOR_INVALID. */ static int restoreCursorPosition(BtCursor *pCur, int doSeek){ int rc = SQLITE_OK; if( pCur->eState==CURSOR_REQUIRESEEK ){ assert( sqlite3Tsd()->useSharedData ); if( doSeek ){ rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip); }else{ pCur->eState = CURSOR_INVALID; } if( rc==SQLITE_OK ){ sqliteFree(pCur->pKey); pCur->pKey = 0; assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState ); } } return rc; } /* ** Query to see if btree handle p may obtain a lock of type eLock ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or ** SQLITE_BUSY if not. */ static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pIter; /* This is a no-op if the shared-cache is not enabled */ if( 0==sqlite3Tsd()->useSharedData ){ return SQLITE_OK; } /* This (along with lockTable()) is where the ReadUncommitted flag is ** dealt with. If the caller is querying for a read-lock and the flag is ** set, it is unconditionally granted - even if there are write-locks ** on the table. If a write-lock is requested, the ReadUncommitted flag ** is not considered. ** ** In function lockTable(), if a read-lock is demanded and the ** ReadUncommitted flag is set, no entry is added to the locks list ** (BtShared.pLock). ** ** To summarize: If the ReadUncommitted flag is set, then read cursors do ** not create or respect table locks. The locking procedure for a ** write-cursor does not change. */ if( !p->pSqlite || 0==(p->pSqlite->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK || iTab==1 ){ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->pBtree!=p && pIter->iTable==iTab && (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ return SQLITE_BUSY; } } } return SQLITE_OK; } /* ** Add a lock on the table with root-page iTable to the shared-btree used ** by Btree handle p. Parameter eLock must be either READ_LOCK or ** WRITE_LOCK. ** ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and ** SQLITE_NOMEM may also be returned. */ static int lockTable(Btree *p, Pgno iTable, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pLock = 0; BtLock *pIter; /* This is a no-op if the shared-cache is not enabled */ if( 0==sqlite3Tsd()->useSharedData ){ return SQLITE_OK; } assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); /* If the read-uncommitted flag is set and a read-lock is requested, ** return early without adding an entry to the BtShared.pLock list. See ** comment in function queryTableLock() for more info on handling ** the ReadUncommitted flag. */ if( (p->pSqlite) && (p->pSqlite->flags&SQLITE_ReadUncommitted) && (eLock==READ_LOCK) && iTable!=1 ){ return SQLITE_OK; } /* First search the list for an existing lock on this table. */ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->iTable==iTable && pIter->pBtree==p ){ pLock = pIter; break; } |
︙ | ︙ | |||
540 541 542 543 544 545 546 547 548 549 550 551 552 553 | /* ** Release all the table locks (locks obtained via calls to the lockTable() ** procedure) held by Btree handle p. */ static void unlockAllTables(Btree *p){ BtLock **ppIter = &p->pBt->pLock; while( *ppIter ){ BtLock *pLock = *ppIter; if( pLock->pBtree==p ){ *ppIter = pLock->pNext; sqliteFree(pLock); }else{ ppIter = &pLock->pNext; | > > > > > > > | 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 | /* ** Release all the table locks (locks obtained via calls to the lockTable() ** procedure) held by Btree handle p. */ static void unlockAllTables(Btree *p){ BtLock **ppIter = &p->pBt->pLock; /* If the shared-cache extension is not enabled, there should be no ** locks in the BtShared.pLock list, making this procedure a no-op. Assert ** that this is the case. */ assert( sqlite3Tsd()->useSharedData || 0==*ppIter ); while( *ppIter ){ BtLock *pLock = *ppIter; if( pLock->pBtree==p ){ *ppIter = pLock->pNext; sqliteFree(pLock); }else{ ppIter = &pLock->pNext; |
︙ | ︙ | |||
676 677 678 679 680 681 682 | sqlite3pager_unref(pPtrmap); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; return SQLITE_OK; } #endif /* SQLITE_OMIT_AUTOVACUUM */ | < < < < < < < < < < < < < < < < < < < < < | 855 856 857 858 859 860 861 862 863 864 865 866 867 868 | sqlite3pager_unref(pPtrmap); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; return SQLITE_OK; } #endif /* SQLITE_OMIT_AUTOVACUUM */ /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** This routine works only for pages that do not contain overflow cells. */ |
︙ | ︙ | |||
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 | int flags /* Options */ ){ BtShared *pBt; /* Shared part of btree structure */ Btree *p; /* Handle to return */ int rc; int nReserve; unsigned char zDbHeader[100]; SqliteTsd *pTsd = sqlite3Tsd(); /* Set the variable isMemdb to true for an in-memory database, or ** false for a file-based database. This symbol is only required if ** either of the shared-data or autovacuum features are compiled ** into the library. */ #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) | > > | 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 | int flags /* Options */ ){ BtShared *pBt; /* Shared part of btree structure */ Btree *p; /* Handle to return */ int rc; int nReserve; unsigned char zDbHeader[100]; #ifndef SQLITE_OMIT_SHARED_CACHE SqliteTsd *pTsd = sqlite3Tsd(); #endif /* Set the variable isMemdb to true for an in-memory database, or ** false for a file-based database. This symbol is only required if ** either of the shared-data or autovacuum features are compiled ** into the library. */ #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) |
︙ | ︙ | |||
1497 1498 1499 1500 1501 1502 1503 | #ifndef SQLITE_OMIT_SHARED_CACHE /* Add the new btree to the linked list starting at SqliteTsd.pBtree */ if( pTsd->useSharedData && zFilename && !isMemdb ){ pBt->pNext = pTsd->pBtree; pTsd->pBtree = pBt; } | < > < > > > > | 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 | #ifndef SQLITE_OMIT_SHARED_CACHE /* Add the new btree to the linked list starting at SqliteTsd.pBtree */ if( pTsd->useSharedData && zFilename && !isMemdb ){ pBt->pNext = pTsd->pBtree; pTsd->pBtree = pBt; } #endif pBt->nRef = 1; *ppBtree = p; return SQLITE_OK; } /* ** Close an open database and invalidate all cursors. */ int sqlite3BtreeClose(Btree *p){ BtShared *pBt = p->pBt; BtCursor *pCur; #ifndef SQLITE_OMIT_SHARED_CACHE SqliteTsd *pTsd = sqlite3Tsd(); #endif /* Drop any table-locks */ unlockAllTables(p); /* Close all cursors opened via this handle. */ pCur = pBt->pCursor; while( pCur ){ |
︙ | ︙ | |||
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 | } } #endif /* Close the pager and free the shared-btree structure */ assert( !pBt->pCursor ); sqlite3pager_close(pBt->pPager); sqliteFree(pBt); return SQLITE_OK; } /* ** Change the busy handler callback function. */ | > > > | 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 | } } #endif /* Close the pager and free the shared-btree structure */ assert( !pBt->pCursor ); sqlite3pager_close(pBt->pPager); if( pBt->xFreeSchema && pBt->pSchema ){ pBt->xFreeSchema(pBt->pSchema); } sqliteFree(pBt); return SQLITE_OK; } /* ** Change the busy handler callback function. */ |
︙ | ︙ | |||
2319 2320 2321 2322 2323 2324 2325 | BtShared *pBt = p->pBt; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; char *zMode = pCur->wrFlag ? "rw" : "ro"; sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", pCur, pCur->pgnoRoot, zMode, pPage ? pPage->pgno : 0, pCur->idx, | | | 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 | BtShared *pBt = p->pBt; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; char *zMode = pCur->wrFlag ? "rw" : "ro"; sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", pCur, pCur->pgnoRoot, zMode, pPage ? pPage->pgno : 0, pCur->idx, (pCur->eState==CURSOR_VALID) ? "" : " eof" ); } } #endif /* ** Rollback the transaction in progress. All cursors will be |
︙ | ︙ | |||
2528 2529 2530 2531 2532 2533 2534 | if( pBt->pPage1==0 ){ rc = lockBtreeWithRetry(p); if( rc!=SQLITE_OK ){ return rc; } } | | | 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 | if( pBt->pPage1==0 ){ rc = lockBtreeWithRetry(p); if( rc!=SQLITE_OK ){ return rc; } } pCur = sqliteMalloc( sizeof(*pCur) ); if( pCur==0 ){ rc = SQLITE_NOMEM; goto create_cursor_exception; } pCur->pgnoRoot = (Pgno)iTable; pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */ if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ |
︙ | ︙ | |||
2567 2568 2569 2570 2571 2572 2573 | memset(&pCur->info, 0, sizeof(pCur->info)); pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pCur->pPrev = 0; pBt->pCursor = pCur; | | | 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 | memset(&pCur->info, 0, sizeof(pCur->info)); pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pCur->pPrev = 0; pBt->pCursor = pCur; pCur->eState = CURSOR_INVALID; *ppCur = pCur; return SQLITE_OK; create_cursor_exception: if( pCur ){ releasePage(pCur->pPage); sqliteFree(pCur); |
︙ | ︙ | |||
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 | /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ BtShared *pBt = pCur->pBtree->pBt; if( pCur->pPrev ){ pCur->pPrev->pNext = pCur->pNext; }else{ pBt->pCursor = pCur->pNext; } if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; | > | 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 | /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ BtShared *pBt = pCur->pBtree->pBt; restoreCursorPosition(pCur, 0); if( pCur->pPrev ){ pCur->pPrev->pNext = pCur->pNext; }else{ pBt->pCursor = pCur->pNext; } if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; |
︙ | ︙ | |||
2666 2667 2668 2669 2670 2671 2672 | ** the key for the current entry. If the cursor is not pointing ** to a valid entry, *pSize is set to 0. ** ** For a table with the INTKEY flag set, this routine returns the key ** itself, not the number of bytes in the key. */ int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ | > > > | | | | | | > | > > > | | | | | | | > | | 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 | ** the key for the current entry. If the cursor is not pointing ** to a valid entry, *pSize is set to 0. ** ** For a table with the INTKEY flag set, this routine returns the key ** itself, not the number of bytes in the key. */ int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ int rc = restoreCursorPosition(pCur, 1); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); if( pCur->eState==CURSOR_INVALID ){ *pSize = 0; }else{ getCellInfo(pCur); *pSize = pCur->info.nKey; } } return rc; } /* ** Set *pSize to the number of bytes of data in the entry the ** cursor currently points to. Always return SQLITE_OK. ** Failure is not possible. If the cursor is not currently ** pointing to an entry (which can happen, for example, if ** the database is empty) then *pSize is set to 0. */ int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ int rc = restoreCursorPosition(pCur, 1); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); if( pCur->eState==CURSOR_INVALID ){ /* Not pointing at a valid entry - set *pSize to 0. */ *pSize = 0; }else{ getCellInfo(pCur); *pSize = pCur->info.nData; } } return rc; } /* ** Read payload information from the entry that the pCur cursor is ** pointing to. Begin reading the payload at "offset" and read ** a total of "amt" bytes. Put the result in zBuf. ** |
︙ | ︙ | |||
2718 2719 2720 2721 2722 2723 2724 | int rc; MemPage *pPage; BtShared *pBt; int ovflSize; u32 nKey; assert( pCur!=0 && pCur->pPage!=0 ); | | | 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 | int rc; MemPage *pPage; BtShared *pBt; int ovflSize; u32 nKey; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->eState==CURSOR_VALID ); pBt = pCur->pBtree->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); getCellInfo(pCur); aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; |
︙ | ︙ | |||
2794 2795 2796 2797 2798 2799 2800 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ | > > | | | | | | | | > > > > | | | | > > | 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 | ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ int rc = restoreCursorPosition(pCur, 1); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage!=0 ); if( pCur->pPage->intKey ){ return SQLITE_CORRUPT_BKPT; } assert( pCur->pPage->intKey==0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); } return rc; } /* ** Read part of the data associated with cursor pCur. Exactly ** "amt" bytes will be transfered into pBuf[]. The transfer ** begins at "offset". ** ** Return SQLITE_OK on success or an error code if anything goes ** wrong. An error is returned if "offset+amt" is larger than ** the available payload. */ int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ int rc = restoreCursorPosition(pCur, 1); if( rc==SQLITE_OK ){ assert( pCur->eState==CURSOR_VALID ); assert( pCur->pPage!=0 ); assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); rc = getPayload(pCur, offset, amt, pBuf, 1); } return rc; } /* ** Return a pointer to payload information from the entry that the ** pCur cursor is pointing to. The pointer is to the beginning of ** the key if skipKey==0 and it points to the beginning of data if ** skipKey==1. The number of bytes of available key/data is written |
︙ | ︙ | |||
2850 2851 2852 2853 2854 2855 2856 | ){ unsigned char *aPayload; MemPage *pPage; u32 nKey; int nLocal; assert( pCur!=0 && pCur->pPage!=0 ); | | | 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 | ){ unsigned char *aPayload; MemPage *pPage; u32 nKey; int nLocal; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->eState==CURSOR_VALID ); pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); getCellInfo(pCur); aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; if( pPage->intKey ){ |
︙ | ︙ | |||
2888 2889 2890 2891 2892 2893 2894 | ** The pointer returned is ephemeral. The key/data may move ** or be destroyed on the next call to any Btree routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ | > | | > > > | > > | | 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 | ** The pointer returned is ephemeral. The key/data may move ** or be destroyed on the next call to any Btree routine. ** ** These routines is used to get quick access to key and data ** in the common case where no overflow pages are used. */ const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ if( pCur->eState==CURSOR_VALID ){ return (const void*)fetchPayload(pCur, pAmt, 0); } return 0; } const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ if( pCur->eState==CURSOR_VALID ){ return (const void*)fetchPayload(pCur, pAmt, 1); } return 0; } /* ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page to move to. */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; MemPage *pNewPage; MemPage *pOldPage; BtShared *pBt = pCur->pBtree->pBt; assert( pCur->eState==CURSOR_VALID ); rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); if( rc ) return rc; pageIntegrity(pNewPage); pNewPage->idxParent = pCur->idx; pOldPage = pCur->pPage; pOldPage->idxShift = 0; releasePage(pOldPage); |
︙ | ︙ | |||
2952 2953 2954 2955 2956 2957 2958 | ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ MemPage *pParent; MemPage *pPage; int idxParent; | | | 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 | ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ MemPage *pParent; MemPage *pPage; int idxParent; assert( pCur->eState==CURSOR_VALID ); pPage = pCur->pPage; assert( pPage!=0 ); assert( !isRootPage(pPage) ); pageIntegrity(pPage); pParent = pPage->pParent; assert( pParent!=0 ); pageIntegrity(pParent); |
︙ | ︙ | |||
2977 2978 2979 2980 2981 2982 2983 2984 2985 | ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; BtShared *pBt = pCur->pBtree->pBt; rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); if( rc ){ | > | | | | | 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 | ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; BtShared *pBt = pCur->pBtree->pBt; restoreCursorPosition(pCur, 0); rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); if( rc ){ pCur->eState = CURSOR_INVALID; return rc; } releasePage(pCur->pPage); pageIntegrity(pRoot); pCur->pPage = pRoot; pCur->idx = 0; pCur->info.nSize = 0; if( pRoot->nCell==0 && !pRoot->leaf ){ Pgno subpage; assert( pRoot->pgno==1 ); subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); assert( subpage>0 ); pCur->eState = CURSOR_VALID; rc = moveToChild(pCur, subpage); } pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID); return rc; } /* ** Move the cursor down to the left-most leaf entry beneath the ** entry to which it is currently pointing. */ static int moveToLeftmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->eState==CURSOR_VALID ); while( !(pPage = pCur->pPage)->leaf ){ assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); pgno = get4byte(findCell(pPage, pCur->idx)); rc = moveToChild(pCur, pgno); if( rc ) return rc; } return SQLITE_OK; |
︙ | ︙ | |||
3030 3031 3032 3033 3034 3035 3036 | ** finds the right-most entry beneath the *page*. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; | | | | | | 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 | ** finds the right-most entry beneath the *page*. */ static int moveToRightmost(BtCursor *pCur){ Pgno pgno; int rc; MemPage *pPage; assert( pCur->eState==CURSOR_VALID ); while( !(pPage = pCur->pPage)->leaf ){ pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); pCur->idx = pPage->nCell; rc = moveToChild(pCur, pgno); if( rc ) return rc; } pCur->idx = pPage->nCell - 1; pCur->info.nSize = 0; return SQLITE_OK; } /* Move the cursor to the first entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; if( pCur->eState==CURSOR_INVALID ){ assert( pCur->pPage->nCell==0 ); *pRes = 1; return SQLITE_OK; } assert( pCur->pPage->nCell>0 ); *pRes = 0; rc = moveToLeftmost(pCur); return rc; } /* Move the cursor to the last entry in the table. Return SQLITE_OK ** on success. Set *pRes to 0 if the cursor actually points to something ** or set *pRes to 1 if the table is empty. */ int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; if( CURSOR_INVALID==pCur->eState ){ assert( pCur->pPage->nCell==0 ); *pRes = 1; return SQLITE_OK; } assert( pCur->eState==CURSOR_VALID ); *pRes = 0; rc = moveToRightmost(pCur); return rc; } /* Move the cursor so that it points to an entry near pKey/nKey. ** Return a success code. |
︙ | ︙ | |||
3113 3114 3115 3116 3117 3118 3119 | */ int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; assert( pCur->pPage ); assert( pCur->pPage->isInit ); | | | 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 | */ int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ int rc; rc = moveToRoot(pCur); if( rc ) return rc; assert( pCur->pPage ); assert( pCur->pPage->isInit ); if( pCur->eState==CURSOR_INVALID ){ *pRes = -1; assert( pCur->pPage->nCell==0 ); return SQLITE_OK; } for(;;){ int lwr, upr; Pgno chldPg; |
︙ | ︙ | |||
3205 3206 3207 3208 3209 3210 3211 | ** Return TRUE if the cursor is not pointing at an entry of the table. ** ** TRUE will be returned after a call to sqlite3BtreeNext() moves ** past the last entry in the table or sqlite3BtreePrev() moves past ** the first entry. TRUE is also returned if the table is empty. */ int sqlite3BtreeEof(BtCursor *pCur){ | > > > > | > > > > > > > > > > > > > | | | 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 | ** Return TRUE if the cursor is not pointing at an entry of the table. ** ** TRUE will be returned after a call to sqlite3BtreeNext() moves ** past the last entry in the table or sqlite3BtreePrev() moves past ** the first entry. TRUE is also returned if the table is empty. */ int sqlite3BtreeEof(BtCursor *pCur){ /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries ** have been deleted? This API will need to change to return an error code ** as well as the boolean result value. */ return (CURSOR_VALID!=pCur->eState); } /* ** Advance the cursor to the next entry in the database. If ** successful then set *pRes=0. If the cursor ** was already pointing to the last entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage = pCur->pPage; #ifndef SQLITE_OMIT_SHARED_CACHE rc = restoreCursorPosition(pCur, 1); if( rc!=SQLITE_OK ){ return rc; } if( pCur->skip>0 ){ pCur->skip = 0; *pRes = 0; return SQLITE_OK; } pCur->skip = 0; #endif assert( pRes!=0 ); if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; return SQLITE_OK; } assert( pPage->isInit ); assert( pCur->idx<pPage->nCell ); pCur->idx++; pCur->info.nSize = 0; if( pCur->idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ) return rc; rc = moveToLeftmost(pCur); *pRes = 0; return rc; } do{ if( isRootPage(pPage) ){ *pRes = 1; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } moveToParent(pCur); pPage = pCur->pPage; }while( pCur->idx>=pPage->nCell ); *pRes = 0; if( pPage->leafData ){ |
︙ | ︙ | |||
3271 3272 3273 3274 3275 3276 3277 | ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; Pgno pgno; MemPage *pPage; | > > > > > > | > > > > > > > > | | 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 | ** was already pointing to the first entry in the database before ** this routine was called, then set *pRes=1. */ int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; Pgno pgno; MemPage *pPage; #ifndef SQLITE_OMIT_SHARED_CACHE rc = restoreCursorPosition(pCur, 1); if( rc!=SQLITE_OK ){ return rc; } if( pCur->skip<0 ){ pCur->skip = 0; *pRes = 0; return SQLITE_OK; } pCur->skip = 0; #endif if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; return SQLITE_OK; } pPage = pCur->pPage; assert( pPage->isInit ); assert( pCur->idx>=0 ); if( !pPage->leaf ){ pgno = get4byte( findCell(pPage, pCur->idx) ); rc = moveToChild(pCur, pgno); if( rc ) return rc; rc = moveToRightmost(pCur); }else{ while( pCur->idx==0 ){ if( isRootPage(pPage) ){ pCur->eState = CURSOR_INVALID; *pRes = 1; return SQLITE_OK; } moveToParent(pCur); pPage = pCur->pPage; } pCur->idx--; |
︙ | ︙ | |||
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 | ** or delete might change the number of cells on a page or delete ** a page entirely and we do not want to leave any cursors ** pointing to non-existant pages or cells. */ static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){ BtCursor *p; for(p=pBt->pCursor; p; p=p->pNext){ if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; if( p->wrFlag==0 ) return SQLITE_LOCKED; if( p->pPage->pgno!=p->pgnoRoot ){ moveToRoot(p); } } return SQLITE_OK; } | > > | 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 | ** or delete might change the number of cells on a page or delete ** a page entirely and we do not want to leave any cursors ** pointing to non-existant pages or cells. */ static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){ BtCursor *p; for(p=pBt->pCursor; p; p=p->pNext){ u32 flags = (p->pBtree->pSqlite ? p->pBtree->pSqlite->flags : 0); if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; if( p->wrFlag==0 && flags&SQLITE_ReadUncommitted ) continue; if( p->wrFlag==0 ) return SQLITE_LOCKED; if( p->pPage->pgno!=p->pgnoRoot ){ moveToRoot(p); } } return SQLITE_OK; } |
︙ | ︙ | |||
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 | assert( !pBt->readOnly ); if( !pCur->wrFlag ){ return SQLITE_PERM; /* Cursor not open for writing */ } if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc); if( rc ) return rc; pPage = pCur->pPage; assert( pPage->intKey || nKey>=0 ); assert( pPage->leaf || !pPage->leafData ); TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", pCur->pgnoRoot, nKey, nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); if( newCell==0 ) return SQLITE_NOMEM; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); if( rc ) goto end_insert; assert( szNew==cellSizePtr(pPage, newCell) ); assert( szNew<=MX_CELL_SIZE(pBt) ); | > > > > > > > > | | 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 | assert( !pBt->readOnly ); if( !pCur->wrFlag ){ return SQLITE_PERM; /* Cursor not open for writing */ } if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } /* Save the positions of any other cursors open on this table */ restoreCursorPosition(pCur, 0); rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); if( rc ){ return rc; } rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc); if( rc ) return rc; pPage = pCur->pPage; assert( pPage->intKey || nKey>=0 ); assert( pPage->leaf || !pPage->leafData ); TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", pCur->pgnoRoot, nKey, nData, pPage->pgno, loc==0 ? "overwrite" : "new entry")); assert( pPage->isInit ); rc = sqlite3pager_write(pPage->aData); if( rc ) return rc; newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); if( newCell==0 ) return SQLITE_NOMEM; rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); if( rc ) goto end_insert; assert( szNew==cellSizePtr(pPage, newCell) ); assert( szNew<=MX_CELL_SIZE(pBt) ); if( loc==0 && CURSOR_VALID==pCur->eState ){ int szOld; assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); oldCell = findCell(pPage, pCur->idx); if( !pPage->leaf ){ memcpy(newCell, oldCell, 4); } szOld = cellSizePtr(pPage, oldCell); |
︙ | ︙ | |||
4999 5000 5001 5002 5003 5004 5005 | } if( !pCur->wrFlag ){ return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } | > > > > > > > > > | > | > | 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 | } if( !pCur->wrFlag ){ return SQLITE_PERM; /* Did not open this cursor for writing */ } if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ return SQLITE_LOCKED; /* The table pCur points to has a read lock */ } /* Restore the current cursor position (a no-op if the cursor is not in ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors ** open on the same table. Then call sqlite3pager_write() on the page ** that the entry will be deleted from. */ if( (rc = restoreCursorPosition(pCur, 1)) || (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (rc = sqlite3pager_write(pPage->aData)) ){ return rc; } /* Locate the cell within it's page and leave pCell pointing to the ** data. The clearCell() call frees any overflow pages associated with the ** cell. The cell itself is still intact. */ pCell = findCell(pPage, pCur->idx); if( !pPage->leaf ){ |
︙ | ︙ | |||
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 | ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. */ int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ int rc; unsigned char *pP1; BtShared *pBt = p->pBt; assert( idx>=0 && idx<=15 ); rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; *pMeta = get4byte(&pP1[36 + idx*4]); sqlite3pager_unref(pP1); /* If autovacuumed is disabled in this build but we are trying to ** access an autovacuumed database, then make the database readonly. */ #ifdef SQLITE_OMIT_AUTOVACUUM if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; #endif | > > > > > > > > > > > > | | 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 | ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. */ int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ int rc; unsigned char *pP1; BtShared *pBt = p->pBt; /* Reading a meta-data value requires a read-lock on page 1 (and hence ** the sqlite_master table. We grab this lock regardless of whether or ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page ** 1 is treated as a special case by queryTableLock() and lockTable()). */ rc = queryTableLock(p, 1, READ_LOCK); if( rc!=SQLITE_OK ){ return rc; } assert( idx>=0 && idx<=15 ); rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; *pMeta = get4byte(&pP1[36 + idx*4]); sqlite3pager_unref(pP1); /* If autovacuumed is disabled in this build but we are trying to ** access an autovacuumed database, then make the database readonly. */ #ifdef SQLITE_OMIT_AUTOVACUUM if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; #endif /* Grab the read-lock on page 1. */ rc = lockTable(p, 1, READ_LOCK); return rc; } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
︙ | ︙ | |||
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 | } /* ** Return the flag byte at the beginning of the page that the cursor ** is currently pointing to. */ int sqlite3BtreeFlags(BtCursor *pCur){ MemPage *pPage = pCur->pPage; return pPage ? pPage->aData[pPage->hdrOffset] : 0; } #ifdef SQLITE_DEBUG /* ** Print a disassembly of the given page on standard output. This routine | > > > | 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 | } /* ** Return the flag byte at the beginning of the page that the cursor ** is currently pointing to. */ int sqlite3BtreeFlags(BtCursor *pCur){ /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call ** restoreCursorPosition() here. */ MemPage *pPage = pCur->pPage; return pPage ? pPage->aData[pPage->hdrOffset] : 0; } #ifdef SQLITE_DEBUG /* ** Print a disassembly of the given page on standard output. This routine |
︙ | ︙ | |||
5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 | ** ** This routine is used for testing and debugging only. */ int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ int cnt, idx; MemPage *pPage = pCur->pPage; BtCursor tmpCur; pageIntegrity(pPage); assert( pPage->isInit ); getTempCursor(pCur, &tmpCur); while( upCnt-- ){ moveToParent(&tmpCur); } | > > > > > | 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 | ** ** This routine is used for testing and debugging only. */ int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ int cnt, idx; MemPage *pPage = pCur->pPage; BtCursor tmpCur; int rc = restoreCursorPosition(pCur, 1); if( rc!=SQLITE_OK ){ return rc; } pageIntegrity(pPage); assert( pPage->isInit ); getTempCursor(pCur, &tmpCur); while( upCnt-- ){ moveToParent(&tmpCur); } |
︙ | ︙ | |||
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 | } return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc); #endif return sqlite3pager_sync(pBt->pPager, zMaster, 0); } return SQLITE_OK; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Enable the shared pager and schema features. */ int sqlite3_enable_shared_cache(int enable){ SqliteTsd *pTsd = sqlite3Tsd(); | > > > > > > > > > > > > > > > > > > > > > > > > > | 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 | } return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc); #endif return sqlite3pager_sync(pBt->pPager, zMaster, 0); } return SQLITE_OK; } /* ** This function returns a pointer to a blob of memory associated with ** a single shared-btree. The memory is used by client code for it's own ** purposes (for example, to store a high-level schema associated with ** the shared-btree). The btree layer manages reference counting issues. ** ** The first time this is called on a shared-btree, nBytes bytes of memory ** are allocated, zeroed, and returned to the caller. For each subsequent ** call the nBytes parameter is ignored and a pointer to the same blob ** of memory returned. ** ** Just before the shared-btree is closed, the function passed as the ** xFree argument when the memory allocation was made is invoked on the ** blob of allocated memory. This function should not call sqliteFree() ** on the memory, the btree layer does that. */ void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ BtShared *pBt = p->pBt; if( !pBt->pSchema ){ pBt->pSchema = sqliteMalloc(nBytes); pBt->xFreeSchema = xFree; } return pBt->pSchema; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Enable the shared pager and schema features. */ int sqlite3_enable_shared_cache(int enable){ SqliteTsd *pTsd = sqlite3Tsd(); |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.67 2006/01/05 11:34:34 danielk1977 Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ |
︙ | ︙ | |||
72 73 74 75 76 77 78 79 80 81 82 83 84 85 | int sqlite3BtreeBeginStmt(Btree*); int sqlite3BtreeCommitStmt(Btree*); int sqlite3BtreeRollbackStmt(Btree*); int sqlite3BtreeCreateTable(Btree*, int*, int flags); int sqlite3BtreeIsInTrans(Btree*); int sqlite3BtreeIsInStmt(Btree*); int sqlite3BtreeSync(Btree*, const char *zMaster); const char *sqlite3BtreeGetFilename(Btree *); const char *sqlite3BtreeGetDirname(Btree *); const char *sqlite3BtreeGetJournalname(Btree *); int sqlite3BtreeCopyFile(Btree *, Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR | > | 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | int sqlite3BtreeBeginStmt(Btree*); int sqlite3BtreeCommitStmt(Btree*); int sqlite3BtreeRollbackStmt(Btree*); int sqlite3BtreeCreateTable(Btree*, int*, int flags); int sqlite3BtreeIsInTrans(Btree*); int sqlite3BtreeIsInStmt(Btree*); int sqlite3BtreeSync(Btree*, const char *zMaster); void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); const char *sqlite3BtreeGetFilename(Btree *); const char *sqlite3BtreeGetDirname(Btree *); const char *sqlite3BtreeGetJournalname(Btree *); int sqlite3BtreeCopyFile(Btree *, Btree *); /* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
18 19 20 21 22 23 24 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** | | | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ** CREATE INDEX ** DROP INDEX ** creating ID lists ** BEGIN TRANSACTION ** COMMIT ** ROLLBACK ** ** $Id: build.c,v 1.367 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** This routine is called when a new SQL statement is beginning to ** be parsed. Initialize the pParse structure as needed. |
︙ | ︙ | |||
168 169 170 171 172 173 174 | Table *p = 0; int i; assert( zName!=0 ); assert( (db->flags & SQLITE_Initialized) || db->init.busy ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; | | | 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | Table *p = 0; int i; assert( zName!=0 ); assert( (db->flags & SQLITE_Initialized) || db->init.busy ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); if( p ) break; } return p; } /* ** Locate the in-memory structure that describes a particular database |
︙ | ︙ | |||
223 224 225 226 227 228 229 230 | */ Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; assert( (db->flags & SQLITE_Initialized) || db->init.busy ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; | > > > | > | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | */ Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ Index *p = 0; int i; assert( (db->flags & SQLITE_Initialized) || db->init.busy ); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ DbSchema *pSchema = db->aDb[j].pSchema; if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; assert( pSchema || (j==1 && !db->aDb[1].pBt) ); if( pSchema ){ p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); } if( p ) break; } return p; } /* ** Reclaim the memory used by an index |
︙ | ︙ | |||
248 249 250 251 252 253 254 255 | ** ** The index is removed from the database hash tables but ** it is not unlinked from the Table that it indexes. ** Unlinking from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite3 *db, Index *p){ Index *pOld; | > | | < > | | 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | ** ** The index is removed from the database hash tables but ** it is not unlinked from the Table that it indexes. ** Unlinking from the Table must be done by the calling function. */ static void sqliteDeleteIndex(sqlite3 *db, Index *p){ Index *pOld; const char *zName = p->zName; assert( db!=0 && zName!=0 ); pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); assert( pOld==0 || pOld==p ); freeIndex(p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from ** the index hash table and free all memory structures associated ** with the index. */ void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ Index *pIndex; int len; Hash *pHash = &db->aDb[iDb].pSchema->idxHash; len = strlen(zIdxName); pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); if( pIndex ){ if( pIndex->pTable->pIndex==pIndex ){ pIndex->pTable->pIndex = pIndex->pNext; }else{ Index *p; for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} if( p && p->pNext==pIndex ){ |
︙ | ︙ | |||
304 305 306 307 308 309 310 | Hash temp2; int i, j; assert( iDb>=0 && iDb<db->nDb ); db->flags &= ~SQLITE_Initialized; for(i=iDb; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; | > | | | | | | | | | | | | | | | | | > | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 | Hash temp2; int i, j; assert( iDb>=0 && iDb<db->nDb ); db->flags &= ~SQLITE_Initialized; for(i=iDb; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ temp1 = pDb->pSchema->tblHash; temp2 = pDb->pSchema->trigHash; sqlite3HashInit(&pDb->pSchema->trigHash, SQLITE_HASH_STRING, 0); sqlite3HashClear(&pDb->pSchema->aFKey); sqlite3HashClear(&pDb->pSchema->idxHash); for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem)); } sqlite3HashClear(&temp2); sqlite3HashInit(&pDb->pSchema->tblHash, SQLITE_HASH_STRING, 0); for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); sqlite3DeleteTable(db, pTab); } sqlite3HashClear(&temp1); pDb->pSchema->pSeqTab = 0; DbClearProperty(db, i, DB_SchemaLoaded); } if( iDb>0 ) return; } assert( iDb==0 ); db->flags &= ~SQLITE_InternChanges; /* If one or more of the auxiliary database files has been closed, ** then remove then from the auxiliary database list. We take the |
︙ | ︙ | |||
429 430 431 432 433 434 435 | } assert( pTable->nRef==0 ); /* Delete all indices associated with this table */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; | | | | | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 | } assert( pTable->nRef==0 ); /* Delete all indices associated with this table */ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ pNext = pIndex->pNext; assert( pIndex->pSchema==pTable->pSchema ); sqliteDeleteIndex(db, pIndex); } #ifndef SQLITE_OMIT_FOREIGN_KEY /* Delete all foreign keys associated with this table. The keys ** should have already been unlinked from the db->aFKey hash table */ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ pNextFKey = pFKey->pNextFrom; assert( sqlite3SchemaToIndex(db, pTable->pSchema)<db->nDb ); assert( sqlite3HashFind(&pTable->pSchema->aFKey, pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); sqliteFree(pFKey); } #endif /* Delete the Table structure itself. */ |
︙ | ︙ | |||
471 472 473 474 475 476 477 | FKey *pF1, *pF2; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDb<db->nDb ); assert( zTabName && zTabName[0] ); pDb = &db->aDb[iDb]; | | | | | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | FKey *pF1, *pF2; Db *pDb; assert( db!=0 ); assert( iDb>=0 && iDb<db->nDb ); assert( zTabName && zTabName[0] ); pDb = &db->aDb[iDb]; p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); if( p ){ #ifndef SQLITE_OMIT_FOREIGN_KEY for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ int nTo = strlen(pF1->zTo) + 1; pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); if( pF2==pF1 ){ sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); }else{ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } if( pF2 ){ pF2->pNextTo = pF1->pNextTo; } } } |
︙ | ︙ | |||
730 731 732 733 734 735 736 | goto begin_table_error; } pTable->zName = zName; pTable->nCol = 0; pTable->aCol = 0; pTable->iPKey = -1; pTable->pIndex = 0; | | | | 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 | goto begin_table_error; } pTable->zName = zName; pTable->nCol = 0; pTable->aCol = 0; pTable->iPKey = -1; pTable->pIndex = 0; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nRef = 1; if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable); pParse->pNewTable = pTable; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ #ifndef SQLITE_OMIT_AUTOINCREMENT if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ pTable->pSchema->pSeqTab = pTable; } #endif /* Begin generating the code that will insert the table record into ** the SQLITE_MASTER table. Note in particular that we must go ahead ** and allocate the record number for the table entry now. Before any ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
︙ | ︙ | |||
1175 1176 1177 1178 1179 1180 1181 | ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ | | | 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 | ** This plan is not completely bullet-proof. It is possible for ** the schema to change multiple times and for the cookie to be ** set back to prior value. But schema changes are infrequent ** and the probability of hitting the same cookie value is only ** 1 chance in 2^32. So we're safe enough. */ void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){ sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0); sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0); } /* ** Measure the number of characters needed to output the given ** identifier. The number returned includes any quotes used ** but does not include the null terminator. |
︙ | ︙ | |||
1223 1224 1225 1226 1227 1228 1229 | } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ | | | 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 | } /* ** Generate a CREATE TABLE statement appropriate for the given ** table. Memory to hold the text of the statement is obtained ** from sqliteMalloc() and must be freed by the calling function. */ static char *createTableStmt(Table *p, int isTemp){ int i, k, n; char *zStmt; char *zSep, *zSep2, *zEnd, *z; Column *pCol; n = 0; for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ n += identLength(pCol->zName); |
︙ | ︙ | |||
1249 1250 1251 1252 1253 1254 1255 | zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqliteMallocRaw( n ); if( zStmt==0 ) return 0; | | | 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 | zSep = "\n "; zSep2 = ",\n "; zEnd = "\n)"; } n += 35 + 6*p->nCol; zStmt = sqliteMallocRaw( n ); if( zStmt==0 ) return 0; strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); k = strlen(zStmt); identPut(zStmt, &k, p->zName); zStmt[k++] = '('; for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ strcpy(&zStmt[k], zSep); k += strlen(&zStmt[k]); zSep = zSep2; |
︙ | ︙ | |||
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 | Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The final ')' token in the CREATE TABLE */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; sqlite3 *db = pParse->db; if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3Tsd()->mallocFailed ) { return; } p = pParse->pNewTable; if( p==0 ) return; assert( !db->init.busy || !pSelect ); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ | > > > | 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 | Parse *pParse, /* Parse context */ Token *pCons, /* The ',' token after the last column defn. */ Token *pEnd, /* The final ')' token in the CREATE TABLE */ Select *pSelect /* Select from a "CREATE ... AS SELECT" */ ){ Table *p; sqlite3 *db = pParse->db; int iDb; if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3Tsd()->mallocFailed ) { return; } p = pParse->pNewTable; if( p==0 ) return; assert( !db->init.busy || !pSelect ); iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ |
︙ | ︙ | |||
1383 1384 1385 1386 1387 1388 1389 | ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. */ if( pSelect ){ Table *pSelTab; sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | | | | | | | | | | | | | 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 | ** Once the SELECT has been coded by sqlite3Select(), it is in a ** suitable state to query for the column names and types to be used ** by the new table. */ if( pSelect ){ Table *pSelTab; sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0); pParse->nTab = 2; sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0); sqlite3VdbeAddOp(v, OP_Close, 1, 0); if( pParse->nErr==0 ){ pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); if( pSelTab==0 ) return; assert( p->aCol==0 ); p->nCol = pSelTab->nCol; p->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(0, pSelTab); } } /* Compute the complete text of the CREATE statement */ if( pSelect ){ zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema); }else{ n = pEnd->z - pParse->sNameToken.z + 1; zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z); } /* A slot for the record has already been allocated in the ** SQLITE_MASTER table. We just need to update that slot with all ** the information we've collected. The rowid for the preallocated ** slot is the 2nd item on the stack. The top of the stack is the ** root page for the new table (or a 0 if this is a view). */ sqlite3NestedParse(pParse, "UPDATE %Q.%s " "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q " "WHERE rowid=#1", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zType, p->zName, p->zName, zStmt ); sqliteFree(zStmt); sqlite3ChangeCookie(db, v, iDb); #ifndef SQLITE_OMIT_AUTOINCREMENT /* Check to see if we need to create an sqlite_sequence table for ** keeping track of autoincrement keys. */ if( p->autoInc ){ Db *pDb = &db->aDb[iDb]; if( pDb->pSchema->pSeqTab==0 ){ sqlite3NestedParse(pParse, "CREATE TABLE %Q.sqlite_sequence(name,seq)", pDb->zName ); } } #endif /* Reparse everything to update our internal data structures */ sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC); } /* Add the table to the in-memory representation of the database. */ if( db->init.busy && pParse->nErr==0 ){ Table *pOld; FKey *pFKey; DbSchema *pSchema = p->pSchema; pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); if( pOld ){ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ return; } #ifndef SQLITE_OMIT_FOREIGN_KEY for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ int nTo = strlen(pFKey->zTo) + 1; pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); } #endif pParse->pNewTable = 0; db->nTable++; db->flags |= SQLITE_InternChanges; #ifndef SQLITE_OMIT_ALTERTABLE |
︙ | ︙ | |||
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 | ){ Table *p; int n; const unsigned char *z; Token sEnd; DbFixer sFix; Token *pName; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); sqlite3SelectDelete(pSelect); return; } sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1, 0); p = pParse->pNewTable; if( p==0 || pParse->nErr ){ sqlite3SelectDelete(pSelect); return; } sqlite3TwoPartName(pParse, pName1, pName2, &pName); | > > | | 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 | ){ Table *p; int n; const unsigned char *z; Token sEnd; DbFixer sFix; Token *pName; int iDb; if( pParse->nVar>0 ){ sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); sqlite3SelectDelete(pSelect); return; } sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1, 0); p = pParse->pNewTable; if( p==0 || pParse->nErr ){ sqlite3SelectDelete(pSelect); return; } sqlite3TwoPartName(pParse, pName1, pName2, &pName); iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) && sqlite3FixSelect(&sFix, pSelect) ){ sqlite3SelectDelete(pSelect); return; } /* Make a copy of the entire SELECT statement that defines the view. |
︙ | ︙ | |||
1611 1612 1613 1614 1615 1616 1617 | if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(0, pSelTab); | | | > | > | > | | 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 | if( pSelTab ){ assert( pTable->aCol==0 ); pTable->nCol = pSelTab->nCol; pTable->aCol = pSelTab->aCol; pSelTab->nCol = 0; pSelTab->aCol = 0; sqlite3DeleteTable(0, pSelTab); pTable->pSchema->flags |= DB_UnresetViews; }else{ pTable->nCol = 0; nErr++; } sqlite3SelectDelete(pSel); } else { nErr++; } return nErr; } #endif /* SQLITE_OMIT_VIEW */ #ifndef SQLITE_OMIT_VIEW /* ** Clear the column names from every VIEW in database idx. */ static void sqliteViewResetAll(sqlite3 *db, int idx){ HashElem *i; if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ Table *pTab = sqliteHashData(i); if( pTab->pSelect ){ sqliteResetColumnNames(pTab); } } DbClearProperty(db, idx, DB_UnresetViews); } #else # define sqliteViewResetAll(A,B) #endif /* SQLITE_OMIT_VIEW */ /* ** This function is called by the VDBE to adjust the internal schema ** used by SQLite when the btree layer moves a table root page. The ** root-page of a table or index in database iDb has changed from iFrom ** to iTo. */ #ifndef SQLITE_OMIT_AUTOVACUUM void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ HashElem *pElem; Hash *pHash; pHash = &pDb->pSchema->tblHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Table *pTab = sqliteHashData(pElem); if( pTab->tnum==iFrom ){ pTab->tnum = iTo; return; } } pHash = &pDb->pSchema->idxHash; for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ Index *pIdx = sqliteHashData(pElem); if( pIdx->tnum==iFrom ){ pIdx->tnum = iTo; return; } } assert(0); |
︙ | ︙ | |||
1737 1738 1739 1740 1741 1742 1743 | int iLargest = 0; if( iDestroyed==0 || iTab<iDestroyed ){ iLargest = iTab; } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int iIdx = pIdx->tnum; | | | > > > | | > | 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 | int iLargest = 0; if( iDestroyed==0 || iTab<iDestroyed ){ iLargest = iTab; } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int iIdx = pIdx->tnum; assert( pIdx->pSchema==pTab->pSchema ); if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ iLargest = iIdx; } } if( iLargest==0 ){ return; }else{ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); destroyRootPage(pParse, iLargest, iDb); iDestroyed = iLargest; } } #endif } /* ** This routine is called to do the work of a DROP TABLE statement. ** pName is the name of the table to be dropped. |
︙ | ︙ | |||
1769 1770 1771 1772 1773 1774 1775 | if( pTab==0 ){ if( noErr ){ sqlite3ErrorClear(pParse); } goto exit_drop_table; } | | | | | 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 | if( pTab==0 ){ if( noErr ){ sqlite3ErrorClear(pParse); } goto exit_drop_table; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 && iDb<db->nDb ); #ifndef SQLITE_OMIT_AUTHORIZATION { int code; const char *zTab = SCHEMA_TABLE(iDb); const char *zDb = db->aDb[iDb].zName; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ goto exit_drop_table; } if( isView ){ if( !OMIT_TEMPDB && iDb==1 ){ code = SQLITE_DROP_TEMP_VIEW; }else{ |
︙ | ︙ | |||
1800 1801 1802 1803 1804 1805 1806 | goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif | | | 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 | goto exit_drop_table; } if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto exit_drop_table; } } #endif if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); goto exit_drop_table; } #ifndef SQLITE_OMIT_VIEW /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used ** on a table. |
︙ | ︙ | |||
1825 1826 1827 1828 1829 1830 1831 | /* Generate code to remove the table from the master table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ Trigger *pTrigger; | < | > | 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 | /* Generate code to remove the table from the master table ** on disk. */ v = sqlite3GetVdbe(pParse); if( v ){ Trigger *pTrigger; Db *pDb = &db->aDb[iDb]; sqlite3BeginWriteOperation(pParse, 0, iDb); /* Drop all triggers associated with the table being dropped. Code ** is generated to remove entries from sqlite_master and/or ** sqlite_temp_master if required. */ pTrigger = pTab->pTrigger; while( pTrigger ){ assert( pTrigger->pSchema==pTab->pSchema || pTrigger->pSchema==db->aDb[1].pSchema ); sqlite3DropTriggerPtr(pParse, pTrigger, 1); pTrigger = pTrigger->pNext; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* Remove any entries of the sqlite_sequence table associated with ** the table being dropped. This is done before the table is dropped |
︙ | ︙ | |||
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 | static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab; /* Btree cursor used for pTab */ int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ int addr1; /* Address of top of loop */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, | > | | | | | 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 | static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab; /* Btree cursor used for pTab */ int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ int addr1; /* Address of top of loop */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, pParse->db->aDb[iDb].zName ) ){ return; } #endif /* Ensure all the required collation sequences are available. This ** routine will invoke the collation-needed callback if necessary (and ** if one has been registered). */ if( sqlite3CheckIndexCollSeq(pParse, pIndex) ){ return; } v = sqlite3GetVdbe(pParse); if( v==0 ) return; if( memRootPage>=0 ){ sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0); tnum = 0; }else{ tnum = pIndex->tnum; sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb); } sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char*)&pIndex->keyInfo, P3_KEYINFO); sqlite3OpenTableForReading(v, iTab, iDb, pTab); addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); sqlite3GenerateIndexKey(v, pIndex, iTab); if( pIndex->onError!=OE_None ){ int curaddr = sqlite3VdbeCurrentAddr(v); int addr2 = curaddr+4; sqlite3VdbeChangeP2(v, curaddr-1, addr2); sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0); |
︙ | ︙ | |||
2138 2139 2140 2141 2142 2143 2144 | if( iDb<0 ) goto exit_create_index; #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the the table ** is a temp table. If so, set the database to 1. */ pTab = sqlite3SrcListLookup(pParse, pTblName); | | | | | | 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 | if( iDb<0 ) goto exit_create_index; #ifndef SQLITE_OMIT_TEMPDB /* If the index name was unqualified, check if the the table ** is a temp table. If so, set the database to 1. */ pTab = sqlite3SrcListLookup(pParse, pTblName); if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } #endif if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && sqlite3FixSrcList(&sFix, pTblName) ){ /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, pTblName->a[0].zDatabase); if( !pTab ) goto exit_create_index; assert( db->aDb[iDb].pSchema==pTab->pSchema ); }else{ assert( pName==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } pDb = &db->aDb[iDb]; if( pTab==0 || pParse->nErr ) goto exit_create_index; if( pTab->readOnly ){ sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); goto exit_create_index; |
︙ | ︙ | |||
2262 2263 2264 2265 2266 2267 2268 | pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1]; pIndex->keyInfo.aSortOrder = &pIndex->zName[nName+1]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = onError; pIndex->autoIndex = pName==0; | | | | 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 | pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1]; pIndex->keyInfo.aSortOrder = &pIndex->zName[nName+1]; strcpy(pIndex->zName, zName); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = onError; pIndex->autoIndex = pName==0; pIndex->pSchema = db->aDb[iDb].pSchema; /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Scan the names of the columns of the table to be indexed and ** load the column indices into the Index structure. Report an error |
︙ | ︙ | |||
2361 2362 2363 2364 2365 2366 2367 | } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( db->init.busy ){ Index *p; | | | 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 | } /* Link the new Index structure to its table and to the other ** in-memory database structures. */ if( db->init.busy ){ Index *p; p = sqlite3HashInsert(&pIndex->pSchema->idxHash, pIndex->zName, strlen(pIndex->zName)+1, pIndex); if( p ){ assert( p==pIndex ); /* Malloc must have failed */ goto exit_create_index; } db->flags |= SQLITE_InternChanges; if( pTblName!=0 ){ |
︙ | ︙ | |||
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 | ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; if( pParse->nErr || sqlite3Tsd()->mallocFailed ){ goto exit_drop_index; } assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; | > | 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 | ** This routine will drop an existing named index. This routine ** implements the DROP INDEX statement. */ void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ Index *pIndex; Vdbe *v; sqlite3 *db = pParse->db; int iDb; if( pParse->nErr || sqlite3Tsd()->mallocFailed ){ goto exit_drop_index; } assert( pName->nSrc==1 ); if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_drop_index; |
︙ | ︙ | |||
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 | goto exit_drop_index; } if( pIndex->autoIndex ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; | > | | | < | 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 | goto exit_drop_index; } if( pIndex->autoIndex ){ sqlite3ErrorMsg(pParse, "index associated with UNIQUE " "or PRIMARY KEY constraint cannot be dropped", 0); goto exit_drop_index; } iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_INDEX; Table *pTab = pIndex->pTable; const char *zDb = db->aDb[iDb].zName; const char *zTab = SCHEMA_TABLE(iDb); if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ goto exit_drop_index; } if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ goto exit_drop_index; } } #endif /* Generate code to remove the index and from the master table */ v = sqlite3GetVdbe(pParse); if( v ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE name=%Q", db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName ); sqlite3ChangeCookie(db, v, iDb); destroyRootPage(pParse, pIndex->tnum, iDb); |
︙ | ︙ | |||
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 | int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } if( db->flags & !db->autoCommit ){ rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to get a write lock on " "the temporary database file"); pParse->rc = rc; return 1; | > > > > > > | 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 | int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } /* db->aDb[1].pSchema = sqlite3SchemaGet(db->aDb[1].pBt); if( !db->aDb[1].pSchema ){ return SQLITE_NOMEM; } */ if( db->flags & !db->autoCommit ){ rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to get a write lock on " "the temporary database file"); pParse->rc = rc; return 1; |
︙ | ︙ | |||
2902 2903 2904 2905 2906 2907 2908 | if( iDb>=0 ){ assert( iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDb<32 ); mask = 1<<iDb; if( (pParse->cookieMask & mask)==0 ){ pParse->cookieMask |= mask; | | | 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 | if( iDb>=0 ){ assert( iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 || iDb==1 ); assert( iDb<32 ); mask = 1<<iDb; if( (pParse->cookieMask & mask)==0 ){ pParse->cookieMask |= mask; pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; if( !OMIT_TEMPDB && iDb==1 ){ sqlite3OpenTempDatabase(pParse); } } } } |
︙ | ︙ | |||
2967 2968 2969 2970 2971 2972 2973 | */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( pColl==0 || collationMatch(pColl,pIndex) ){ | > | | 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | */ #ifndef SQLITE_OMIT_REINDEX static void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){ Index *pIndex; /* An index associated with pTab */ for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( pColl==0 || collationMatch(pColl,pIndex) ){ int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3RefillIndex(pParse, pIndex, -1); } } } #endif /* |
︙ | ︙ | |||
2989 2990 2991 2992 2993 2994 2995 | int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ if( pDb==0 ) continue; | | | 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 | int iDb; /* The database index number */ sqlite3 *db = pParse->db; /* The database connection */ HashElem *k; /* For looping over tables in pDb */ Table *pTab; /* A table in the database */ for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ if( pDb==0 ) continue; for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ pTab = (Table*)sqliteHashData(k); reindexTable(pParse, pTab, pColl); } } } #endif |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** in order to generate code for DELETE FROM statements. ** ** $Id: delete.c,v 1.114 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Look up every table that is named in pSrc. If any table is not found, ** add an error message to pParse->zErrMsg and return NULL. If all tables ** are found, return a pointer to the last table. |
︙ | ︙ | |||
58 59 60 61 62 63 64 65 66 | /* ** Generate code that will open a table for reading. */ void sqlite3OpenTableForReading( Vdbe *v, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ Table *pTab /* The table to be opened */ ){ | > | | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | /* ** Generate code that will open a table for reading. */ void sqlite3OpenTableForReading( Vdbe *v, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab /* The table to be opened */ ){ sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); VdbeComment((v, "# %s", pTab->zName)); sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum); sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol); } /* |
︙ | ︙ | |||
91 92 93 94 95 96 97 98 99 100 101 102 103 104 | WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iCur; /* VDBE Cursor number for pTab */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */ NameContext sNC; /* Name context to resolve expressions in */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ int triggers_exist = 0; /* True if any triggers exist */ #endif sContext.pParse = 0; | > | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | WhereInfo *pWInfo; /* Information about the WHERE clause */ Index *pIdx; /* For looping over indices of the table */ int iCur; /* VDBE Cursor number for pTab */ sqlite3 *db; /* Main database structure */ AuthContext sContext; /* Authorization context */ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */ NameContext sNC; /* Name context to resolve expressions in */ int iDb; #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to delete from a view */ int triggers_exist = 0; /* True if any triggers exist */ #endif sContext.pParse = 0; |
︙ | ︙ | |||
130 131 132 133 134 135 136 | # undef isView # define isView 0 #endif if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ goto delete_from_cleanup; } | > | | | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | # undef isView # define isView 0 #endif if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ goto delete_from_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb<db->nDb ); zDb = db->aDb[iDb].zName; if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ goto delete_from_cleanup; } /* If pTab is really a view, make sure it has been initialized. */ if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
︙ | ︙ | |||
172 173 174 175 176 177 178 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | | | 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto delete_from_cleanup; } if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, triggers_exist, iDb); /* If we are trying to delete from a view, realize that view into ** a ephemeral table. */ if( isView ){ Select *pView = sqlite3SelectDup(pTab->pSelect); sqlite3Select(pParse, pView, SRT_VirtualTab, iCur, 0, 0, 0, 0); |
︙ | ︙ | |||
201 202 203 204 205 206 207 | if( pWhere==0 && !triggers_exist ){ if( db->flags & SQLITE_CountRows ){ /* If counting rows deleted, just count the total number of ** entries in the table. */ int endOfLoop = sqlite3VdbeMakeLabel(v); int addr; if( !isView ){ | | | > | | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | if( pWhere==0 && !triggers_exist ){ if( db->flags & SQLITE_CountRows ){ /* If counting rows deleted, just count the total number of ** entries in the table. */ int endOfLoop = sqlite3VdbeMakeLabel(v); int addr; if( !isView ){ sqlite3OpenTableForReading(v, iCur, iDb, pTab); } sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2); addr = sqlite3VdbeAddOp(v, OP_AddImm, 1, 0); sqlite3VdbeAddOp(v, OP_Next, iCur, addr); sqlite3VdbeResolveLabel(v, endOfLoop); sqlite3VdbeAddOp(v, OP_Close, iCur, 0); } if( !isView ){ sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb); if( !pParse->nested ){ sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC); } for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb); } } } /* The usual case: There is a WHERE clause so we have to scan through ** the table and pick which records to delete. */ |
︙ | ︙ | |||
268 269 270 271 272 273 274 | /* This is the beginning of the delete loop when there are ** row triggers. */ if( triggers_exist ){ addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end); if( !isView ){ sqlite3VdbeAddOp(v, OP_Dup, 0, 0); | | | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | /* This is the beginning of the delete loop when there are ** row triggers. */ if( triggers_exist ){ addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end); if( !isView ){ sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3OpenTableForReading(v, iCur, iDb, pTab); } sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); sqlite3VdbeAddOp(v, OP_RowData, iCur, 0); sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0); if( !isView ){ sqlite3VdbeAddOp(v, OP_Close, iCur, 0); |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used for analyzing expressions and ** for generating VDBE code that evaluates expressions in SQLite. ** ** $Id: expr.c,v 1.244 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** Return the 'affinity' of the expression pExpr if any. ** |
︙ | ︙ | |||
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | while( pNC && cnt==0 ){ ExprList *pEList; SrcList *pSrcList = pNC->pSrcList; if( pSrcList ){ for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ Table *pTab = pItem->pTab; Column *pCol; if( pTab==0 ) continue; assert( pTab->nCol>0 ); if( zTab ){ if( pItem->zAlias ){ char *zTabName = pItem->zAlias; if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; }else{ char *zTabName = pTab->zName; if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; | > | | | | 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 | while( pNC && cnt==0 ){ ExprList *pEList; SrcList *pSrcList = pNC->pSrcList; if( pSrcList ){ for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ Table *pTab = pItem->pTab; int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); Column *pCol; if( pTab==0 ) continue; assert( pTab->nCol>0 ); if( zTab ){ if( pItem->zAlias ){ char *zTabName = pItem->zAlias; if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; }else{ char *zTabName = pTab->zName; if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ continue; } } } if( 0==(cntTab++) ){ pExpr->iTable = pItem->iCursor; pExpr->pSchema = pTab->pSchema; pMatch = pItem; } for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ IdList *pUsing; cnt++; pExpr->iTable = pItem->iCursor; pMatch = pItem; pExpr->pSchema = pTab->pSchema; /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; pExpr->pColl = pTab->aCol[j].pColl; if( pItem->jointype & JT_NATURAL ){ /* If this match occurred in the left table of a natural join, ** then skip the right table to avoid a duplicate match */ |
︙ | ︙ | |||
917 918 919 920 921 922 923 | pTab = pTriggerStack->pTab; } if( pTab ){ int j; Column *pCol = pTab->aCol; | | | 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 | pTab = pTriggerStack->pTab; } if( pTab ){ int j; Column *pCol = pTab->aCol; pExpr->pSchema = pTab->pSchema; cntTab++; for(j=0; j < pTab->nCol; j++, pCol++) { if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ cnt++; pExpr->iColumn = j==pTab->iPKey ? -1 : j; pExpr->affinity = pTab->aCol[j].affinity; pExpr->pColl = pTab->aCol[j].pColl; |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** ** $Id: insert.c,v 1.152 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Set P3 of the most recently inserted opcode to a column affinity ** string for index pIdx. A column affinity string has one character ** for each column in the table, according to the affinity of the column: |
︙ | ︙ | |||
100 101 102 103 104 105 106 | ** Return non-zero if SELECT statement p opens the table with rootpage ** iTab in database iDb. This is used to see if a statement of the form ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary ** table for the results of the SELECT. ** ** No checking is done for sub-selects that are part of expressions. */ | | | | | 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | ** Return non-zero if SELECT statement p opens the table with rootpage ** iTab in database iDb. This is used to see if a statement of the form ** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary ** table for the results of the SELECT. ** ** No checking is done for sub-selects that are part of expressions. */ static int selectReadsTable(Select *p, DbSchema *pSchema, int iTab){ int i; struct SrcList_item *pItem; if( p->pSrc==0 ) return 0; for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){ if( pItem->pSelect ){ if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1; }else{ if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1; } } return 0; } /* ** This routine is call to handle SQL of the following forms: |
︙ | ︙ | |||
210 211 212 213 214 215 216 217 218 219 220 221 222 223 | int iSelectLoop = 0; /* Address of code that implements the SELECT */ int iCleanup = 0; /* Address of the cleanup code */ int iInsertBlock = 0; /* Address of the subroutine used to insert data */ int iCntMem = 0; /* Memory cell used for the row counter */ int newIdx = -1; /* Cursor for the NEW table */ Db *pDb; /* The database containing table being inserted into */ int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ #endif #ifndef SQLITE_OMIT_AUTOINCREMENT | > | 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | int iSelectLoop = 0; /* Address of code that implements the SELECT */ int iCleanup = 0; /* Address of the cleanup code */ int iInsertBlock = 0; /* Address of the subroutine used to insert data */ int iCntMem = 0; /* Memory cell used for the row counter */ int newIdx = -1; /* Cursor for the NEW table */ Db *pDb; /* The database containing table being inserted into */ int counterMem = 0; /* Memory cell holding AUTOINCREMENT counter */ int iDb; #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ #endif #ifndef SQLITE_OMIT_AUTOINCREMENT |
︙ | ︙ | |||
232 233 234 235 236 237 238 | assert( pTabList->nSrc==1 ); zTab = pTabList->a[0].zName; if( zTab==0 ) goto insert_cleanup; pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } | > | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | assert( pTabList->nSrc==1 ); zTab = pTabList->a[0].zName; if( zTab==0 ) goto insert_cleanup; pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDb<db->nDb ); pDb = &db->aDb[iDb]; zDb = pDb->zName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ goto insert_cleanup; } /* Figure out if we have any triggers and if the table being ** inserted into is a view |
︙ | ︙ | |||
281 282 283 284 285 286 287 | } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | | | | | 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); /* if there are row triggers, allocate a temp table for new.* references. */ if( triggers_exist ){ newIdx = pParse->nTab++; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell counterMem. Also ** remember the rowid of the sqlite_sequence table entry in memory cell ** counterRowid. */ if( pTab->autoInc ){ int iCur = pParse->nTab; int base = sqlite3VdbeCurrentAddr(v); counterRowid = pParse->nMem++; counterMem = pParse->nMem++; sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pDb->pSchema->pSeqTab->tnum); sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2); sqlite3VdbeAddOp(v, OP_Rewind, iCur, base+13); sqlite3VdbeAddOp(v, OP_Column, iCur, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); sqlite3VdbeAddOp(v, OP_Ne, 0x100, base+12); sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); sqlite3VdbeAddOp(v, OP_MemStore, counterRowid, 1); |
︙ | ︙ | |||
349 350 351 352 353 354 355 | ** should be written into a temporary table. Set to FALSE if each ** row of the SELECT can be written directly into the result table. ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ | | | 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | ** should be written into a temporary table. Set to FALSE if each ** row of the SELECT can be written directly into the result table. ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){ useTempTable = 1; } if( useTempTable ){ /* Generate the subroutine that SELECT calls to process each row of ** the result. Store the result in a temporary table */ |
︙ | ︙ | |||
680 681 682 683 684 685 686 | /* Update the sqlite_sequence table by storing the content of the ** counter value in memory counterMem back into the sqlite_sequence ** table. */ if( pTab->autoInc ){ int iCur = pParse->nTab; int base = sqlite3VdbeCurrentAddr(v); | | | | 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 | /* Update the sqlite_sequence table by storing the content of the ** counter value in memory counterMem back into the sqlite_sequence ** table. */ if( pTab->autoInc ){ int iCur = pParse->nTab; int base = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pDb->pSchema->pSeqTab->tnum); sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2); sqlite3VdbeAddOp(v, OP_MemLoad, counterRowid, 0); sqlite3VdbeAddOp(v, OP_NotNull, -1, base+7); sqlite3VdbeAddOp(v, OP_Pop, 1, 0); sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0); sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0); sqlite3VdbeAddOp(v, OP_MemLoad, counterMem, 0); |
︙ | ︙ | |||
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | void sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int base, /* Cursor number assigned to the table */ int op /* OP_OpenRead or OP_OpenWrite */ ){ int i; Index *pIdx; Vdbe *v = sqlite3GetVdbe(pParse); assert( v!=0 ); | > | > | | 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 | void sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int base, /* Cursor number assigned to the table */ int op /* OP_OpenRead or OP_OpenWrite */ ){ int i; int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); Index *pIdx; Vdbe *v = sqlite3GetVdbe(pParse); assert( v!=0 ); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); VdbeComment((v, "# %s", pTab->zName)); sqlite3VdbeAddOp(v, op, base, pTab->tnum); sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); VdbeComment((v, "# %s", pIdx->zName)); sqlite3VdbeOp3(v, op, i+base, pIdx->tnum, (char*)&pIdx->keyInfo, P3_KEYINFO); } if( pParse->nTab<=base+i ){ pParse->nTab = base+i; } } |
Changes to src/main.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.314 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> /* ** The following constant value is used by the SQLITE_BIGENDIAN and |
︙ | ︙ | |||
90 91 92 93 94 95 96 97 98 99 100 101 102 103 | /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ return db->nTotalChange; } /* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | /* ** Return the number of changes since the database handle was opened. */ int sqlite3_total_changes(sqlite3 *db){ return db->nTotalChange; } /* ** Free a schema structure. */ void sqlite3SchemaFree(void *p){ sqliteFree(p); } DbSchema *sqlite3SchemaGet(Btree *pBt){ DbSchema * p; if( pBt ){ p = (DbSchema *)sqlite3BtreeSchema(pBt,sizeof(DbSchema),sqlite3SchemaFree); }else{ p = (DbSchema *)sqliteMalloc(sizeof(DbSchema)); } if( p ){ sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1); } return p; } int sqlite3SchemaToIndex(sqlite3 *db, DbSchema *pSchema){ int i = -1000000; /* If pSchema is NULL, then return -1000000. This happens when code in ** expr.c is trying to resolve a reference to a transient table (i.e. one ** created by a sub-select). In this case the return value of this ** function should never be used. ** ** We return -1000000 instead of the more usual -1 simply because using ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much ** more likely to cause a segfault than -1 (of course there are assert() ** statements too, but it never hurts to play the odds). */ if( pSchema ){ for(i=0; i<db->nDb; i++){ if( db->aDb[i].pSchema==pSchema ){ break; } } assert( i>=0 &&i>=0 && i<db->nDb ); } return i; } /* ** Close an existing SQLite database */ int sqlite3_close(sqlite3 *db){ HashElem *i; int j; |
︙ | ︙ | |||
181 182 183 184 185 186 187 188 189 190 191 192 193 194 | } sqlite3Os.xLeaveMutex(); } #endif #endif db->magic = SQLITE_MAGIC_ERROR; sqliteFree(db); sqlite3MallocAllow(); return SQLITE_OK; } /* ** Rollback all database files. | > | 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | } sqlite3Os.xLeaveMutex(); } #endif #endif db->magic = SQLITE_MAGIC_ERROR; sqliteFree(db->aDb[1].pSchema); sqliteFree(db); sqlite3MallocAllow(); return SQLITE_OK; } /* ** Rollback all database files. |
︙ | ︙ | |||
635 636 637 638 639 640 641 | #endif #if TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } | | | 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 | #endif #if TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btree_flags); if( rc==SQLITE_OK ){ sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler); sqlite3BtreeSetCacheSize(*ppBtree, nCache); } return rc; } |
︙ | ︙ | |||
728 729 730 731 732 733 734 | ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb /* OUT: Returned database handle */ ){ sqlite3 *db; | | > > > | 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | ** is UTF-8 encoded. */ static int openDatabase( const char *zFilename, /* Database filename UTF-8 encoded */ sqlite3 **ppDb /* OUT: Returned database handle */ ){ sqlite3 *db; int rc; CollSeq *pColl; assert( !sqlite3Tsd()->mallocFailed ); /* Allocate the sqlite data structure */ db = sqliteMalloc( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; db->priorNewRowid = 0; db->magic = SQLITE_MAGIC_BUSY; db->nDb = 2; db->aDb = db->aDbStatic; db->enc = SQLITE_UTF8; db->autoCommit = 1; db->flags |= SQLITE_ShortColNames; sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); #if 0 for(i=0; i<db->nDb; i++){ sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1); } #endif /* Add the default collation sequence BINARY. BINARY works for both UTF-8 ** and UTF-16, so add a version for each to avoid any unnecessary ** conversions. The only error that can occur here is a malloc() failure. */ if( sqlite3_create_collation(db, "BINARY", SQLITE_UTF8, 0,binCollFunc) || sqlite3_create_collation(db, "BINARY", SQLITE_UTF16, 0,binCollFunc) || |
︙ | ︙ | |||
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 | /* Open the backend database driver */ rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, 0); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; #ifndef SQLITE_OMIT_TEMPDB db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; #endif | > > < | 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | /* Open the backend database driver */ rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt); if( rc!=SQLITE_OK ){ sqlite3Error(db, rc, 0); db->magic = SQLITE_MAGIC_CLOSED; goto opendb_out; } db->aDb[0].pSchema = sqlite3SchemaGet(db->aDb[0].pBt); db->aDb[1].pSchema = sqlite3SchemaGet(0); /* The default safety_level for the main database is 'full'; for the temp ** database it is 'NONE'. This matches the pager layer defaults. */ db->aDb[0].zName = "main"; db->aDb[0].safety_level = 3; #ifndef SQLITE_OMIT_TEMPDB db->aDb[1].zName = "temp"; db->aDb[1].safety_level = 1; #endif /* Register all built-in functions, but do not attempt to read the ** database schema yet. This is delayed until the first time the database ** is accessed. */ sqlite3RegisterBuiltinFunctions(db); sqlite3Error(db, SQLITE_OK, 0); |
︙ | ︙ |
Changes to src/pragma.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** ** $Id: pragma.c,v 1.108 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> /* Ignore this whole file if pragmas are disabled */ |
︙ | ︙ | |||
153 154 155 156 157 158 159 160 161 162 163 164 165 166 | { "empty_result_callbacks", SQLITE_NullCallback }, #ifndef SQLITE_OMIT_CHECK { "ignore_check_constraints", SQLITE_IgnoreChecks }, #endif /* The following is VERY experimental */ { "writable_schema", SQLITE_WriteSchema }, { "omit_readlock", SQLITE_NoReadlock }, }; int i; const struct sPragmaType *p; for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){ if( sqlite3StrICmp(zLeft, p->zName)==0 ){ sqlite3 *db = pParse->db; Vdbe *v; | > > > > | 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | { "empty_result_callbacks", SQLITE_NullCallback }, #ifndef SQLITE_OMIT_CHECK { "ignore_check_constraints", SQLITE_IgnoreChecks }, #endif /* The following is VERY experimental */ { "writable_schema", SQLITE_WriteSchema }, { "omit_readlock", SQLITE_NoReadlock }, /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted ** flag if there are any active statements. */ { "read_uncommitted", SQLITE_ReadUncommitted }, }; int i; const struct sPragmaType *p; for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){ if( sqlite3StrICmp(zLeft, p->zName)==0 ){ sqlite3 *db = pParse->db; Vdbe *v; |
︙ | ︙ | |||
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 | sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC); sqlite3VdbeAddOp(v, OP_MemInt, 0, 0); /* Initialize error count to 0 */ /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); /* Do an integrity check of the B-Tree */ | > > | | 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC); sqlite3VdbeAddOp(v, OP_MemInt, 0, 0); /* Initialize error count to 0 */ /* Do an integrity check on each database file */ for(i=0; i<db->nDb; i++){ HashElem *x; Hash *pTbls; int cnt = 0; if( OMIT_TEMPDB && i==1 ) continue; sqlite3CodeVerifySchema(pParse, i); /* Do an integrity check of the B-Tree */ pTbls = &db->aDb[i].pSchema->tblHash; for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0); cnt++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out; sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0); |
︙ | ︙ | |||
681 682 683 684 685 686 687 | sqlite3VdbeAddOp(v, OP_Concat, 0, 1); sqlite3VdbeAddOp(v, OP_Callback, 1, 0); sqlite3VdbeAddOp(v, OP_MemIncr, 0, 0); /* Make sure all the indices are constructed correctly. */ sqlite3CodeVerifySchema(pParse, i); | | | 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 | sqlite3VdbeAddOp(v, OP_Concat, 0, 1); sqlite3VdbeAddOp(v, OP_Callback, 1, 0); sqlite3VdbeAddOp(v, OP_MemIncr, 0, 0); /* Make sure all the indices are constructed correctly. */ sqlite3CodeVerifySchema(pParse, i); for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); sqlite3VdbeAddOp(v, OP_MemInt, 0, 1); |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_prepare() ** interface, and routines that contribute to loading the database schema ** from disk. ** ** $Id: prepare.c,v 1.13 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> /* ** Fill the InitData structure with an error message that indicates |
︙ | ︙ | |||
44 45 46 47 48 49 50 51 52 53 54 55 56 57 | ** for auxiliary database files. ** */ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb; assert( argc==4 ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[1]==0 || argv[3]==0 ){ corruptSchema(pData, 0); return 1; } | > > > > | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | ** for auxiliary database files. ** */ int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ InitData *pData = (InitData*)pInit; sqlite3 *db = pData->db; int iDb; if( sqlite3Tsd()->mallocFailed ){ return SQLITE_NOMEM; } assert( argc==4 ); if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ if( argv[1]==0 || argv[3]==0 ){ corruptSchema(pData, 0); return 1; } |
︙ | ︙ | |||
146 147 148 149 150 151 152 153 154 155 156 157 158 159 | ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDb<db->nDb ); /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; | > > > > > > > > > > > > > > > > | 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | ")" ; #else #define temp_master_schema 0 #endif assert( iDb>=0 && iDb<db->nDb ); if( 0==db->aDb[iDb].pSchema ){ DbSchema *pS = sqlite3BtreeSchema(db->aDb[iDb].pBt, sizeof(DbSchema), sqlite3SchemaFree); db->aDb[iDb].pSchema = pS; if( !pS ){ return SQLITE_NOMEM; }else if( pS->file_format!=0 ){ return SQLITE_OK; }else{ sqlite3HashInit(&pS->tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&pS->idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&pS->trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&pS->aFKey, SQLITE_HASH_STRING, 1); } } /* zMasterSchema and zInitScript are set to point at the master schema ** and initialisation script appropriate for the database being ** initialised. zMasterName is the name of the master table. */ if( !OMIT_TEMPDB && iDb==1 ){ zMasterSchema = temp_master_schema; |
︙ | ︙ | |||
222 223 224 225 226 227 228 | sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } | | | 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); sqlite3BtreeCloseCursor(curMain); return rc; } }else{ memset(meta, 0, sizeof(meta)); } pDb->pSchema->schema_cookie = meta[0]; /* If opening a non-empty database, check the text encoding. For the ** main database, set sqlite3.enc to the encoding of the main database. ** For an attached db, it is an error if the encoding is not the same ** as sqlite3.enc. */ if( meta[4] ){ /* text encoding */ |
︙ | ︙ | |||
256 257 258 259 260 261 262 | /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ | | | | | | 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | /* ** file_format==1 Version 3.0.0. ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants */ pDb->pSchema->file_format = meta[1]; if( pDb->pSchema->file_format==0 ){ pDb->pSchema->file_format = 1; } if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ sqlite3BtreeCloseCursor(curMain); sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); return SQLITE_ERROR; } /* Read the schema information out of the schema tables |
︙ | ︙ | |||
390 391 392 393 394 395 396 | for(iDb=0; allOk && iDb<db->nDb; iDb++){ Btree *pBt; pBt = db->aDb[iDb].pBt; if( pBt==0 ) continue; rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp); if( rc==SQLITE_OK ){ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); | | | 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | for(iDb=0; allOk && iDb<db->nDb; iDb++){ Btree *pBt; pBt = db->aDb[iDb].pBt; if( pBt==0 ) continue; rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp); if( rc==SQLITE_OK ){ rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){ allOk = 0; } sqlite3BtreeCloseCursor(curTemp); } } return allOk; } |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** ** $Id: select.c,v 1.284 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Allocate a new Select structure and return a pointer to that ** structure. |
︙ | ︙ | |||
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 | int base; Vdbe *v; int seekOp; ExprList *pEList, *pList, eList; struct ExprList_item eListItem; SrcList *pSrc; int brk; /* Check to see if this query is a simple min() or max() query. Return ** zero if it is not. */ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; pSrc = p->pSrc; if( pSrc->nSrc!=1 ) return 0; | > | 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 | int base; Vdbe *v; int seekOp; ExprList *pEList, *pList, eList; struct ExprList_item eListItem; SrcList *pSrc; int brk; int iDb; /* Check to see if this query is a simple min() or max() query. Return ** zero if it is not. */ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; pSrc = p->pSrc; if( pSrc->nSrc!=1 ) return 0; |
︙ | ︙ | |||
2259 2260 2261 2262 2263 2264 2265 | } /* Generating code to find the min or the max. Basically all we have ** to do is find the first or the last entry in the chosen index. If ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first ** or last entry in the main table. */ | > | | > | | 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 | } /* Generating code to find the min or the max. Basically all we have ** to do is find the first or the last entry in the chosen index. If ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first ** or last entry in the main table. */ iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3CodeVerifySchema(pParse, iDb); base = pSrc->a[0].iCursor; brk = sqlite3VdbeMakeLabel(v); computeLimitRegisters(pParse, p, brk); if( pSrc->a[0].pSelect==0 ){ sqlite3OpenTableForReading(v, base, iDb, pTab); } if( pIdx==0 ){ sqlite3VdbeAddOp(v, seekOp, base, 0); }else{ /* Even though the cursor used to open the index here is closed ** as soon as a single value has been read from it, allocate it ** using (pParse->nTab++) to prevent the cursor id from being ** reused. This is important for statements of the form ** "INSERT INTO x SELECT max() FROM x". */ int iIdx; iIdx = pParse->nTab++; assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, (char*)&pIdx->keyInfo, P3_KEYINFO); if( seekOp==OP_Rewind ){ sqlite3VdbeAddOp(v, OP_Null, 0, 0); sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); seekOp = OP_MoveGt; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.448 2006/01/05 11:34:34 danielk1977 Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. ** Setting NDEBUG makes the code smaller and run faster. So the following |
︙ | ︙ | |||
332 333 334 335 336 337 338 339 340 341 342 343 344 345 | ** Forward references to structures */ typedef struct AggInfo AggInfo; typedef struct AuthContext AuthContext; typedef struct CollSeq CollSeq; typedef struct Column Column; typedef struct Db Db; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct IdList IdList; typedef struct Index Index; typedef struct KeyClass KeyClass; | > | 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | ** Forward references to structures */ typedef struct AggInfo AggInfo; typedef struct AuthContext AuthContext; typedef struct CollSeq CollSeq; typedef struct Column Column; typedef struct Db Db; typedef struct DbSchema DbSchema; typedef struct Expr Expr; typedef struct ExprList ExprList; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct IdList IdList; typedef struct Index Index; typedef struct KeyClass KeyClass; |
︙ | ︙ | |||
363 364 365 366 367 368 369 370 371 372 373 374 | ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zName; /* Name of this database */ Btree *pBt; /* The B*Tree structure for this database file */ int schema_cookie; /* Database schema version number for this file */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash aFKey; /* Foreign keys indexed by to-table */ | > > > > > > > > > > > > | < < < < | < | | | | | 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zName; /* Name of this database */ Btree *pBt; /* The B*Tree structure for this database file */ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at synching data to disk */ int cache_size; /* Number of pages to use in the cache */ void *pAux; /* Auxiliary data. Usually NULL */ void (*xFreeAux)(void*); /* Routine to free pAux */ DbSchema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. */ struct DbSchema { int schema_cookie; /* Database schema version number for this file */ Hash tblHash; /* All tables indexed by name */ Hash idxHash; /* All (named) indices indexed by name */ Hash trigHash; /* All triggers indexed by name */ Hash aFKey; /* Foreign keys indexed by to-table */ Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ u8 file_format; /* Schema format version for this file */ u16 flags; /* Flags associated with this schema */ }; /* ** These macros can be used to test, set, or clear bits in the ** Db.flags field. */ #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) /* ** Allowed values for the DB.flags field. ** ** The DB_SchemaLoaded flag is set after the database schema has been ** read into internal hash tables. ** |
︙ | ︙ | |||
514 515 516 517 518 519 520 521 522 523 524 525 526 527 | /* result set is empty */ #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when ** accessing read-only databases */ #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ | > | 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | /* result set is empty */ #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when ** accessing read-only databases */ #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ |
︙ | ︙ | |||
668 669 670 671 672 673 674 | int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ Index *pIndex; /* List of SQL indexes on this table. */ int tnum; /* Root BTree node for this table (see note above) */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ u8 readOnly; /* True if this table should not be written by the user */ | | > | 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | int nCol; /* Number of columns in this table */ Column *aCol; /* Information about each column */ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ Index *pIndex; /* List of SQL indexes on this table. */ int tnum; /* Root BTree node for this table (see note above) */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ u8 readOnly; /* True if this table should not be written by the user */ // u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ u8 isTransient; /* True if automatically deleted when VDBE finishes */ u8 hasPrimKey; /* True if there exists a primary key */ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ u8 autoInc; /* True if the integer primary key is autoincrement */ int nRef; /* Number of pointers to this Table */ Trigger *pTrigger; /* List of SQL triggers on this table */ FKey *pFKey; /* Linked list of all foreign keys in this table */ char *zColAff; /* String defining the affinity of each column */ #ifndef SQLITE_OMIT_CHECK Expr *pCheck; /* The AND of all CHECK constraints */ #endif #ifndef SQLITE_OMIT_ALTERTABLE int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ #endif DbSchema *pSchema; }; /* ** Each foreign key constraint is an instance of the following structure. ** ** A foreign key is associated with two tables. The "from" table is ** the table that contains the REFERENCES clause that creates the foreign |
︙ | ︙ | |||
818 819 820 821 822 823 824 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ | | > | 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | int nColumn; /* Number of columns in the table used by this index */ int *aiColumn; /* Which columns are used by this index. 1st is 0 */ unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ int tnum; /* Page containing root of this index in database file */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ // u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ DbSchema *pSchema; KeyInfo keyInfo; /* Info on how to order keys. MUST BE LAST */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** |
︙ | ︙ | |||
930 931 932 933 934 935 936 | ** If the Expr is of type OP_Column, and the table it is selecting from ** is a disk table or the "old.*" pseudo-table, then pTab points to the ** corresponding table definition. */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ | | > | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 | ** If the Expr is of type OP_Column, and the table it is selecting from ** is a disk table or the "old.*" pseudo-table, then pTab points to the ** corresponding table definition. */ struct Expr { u8 op; /* Operation performed by this node */ char affinity; /* The affinity of the column or 0 if not a column */ //u8 iDb; /* Database referenced by this expression */ u8 flags; /* Various flags. See below */ CollSeq *pColl; /* The collation type of the column or 0 */ Expr *pLeft, *pRight; /* Left and right subnodes */ ExprList *pList; /* A list of expressions used as function arguments ** or in "<expr> IN (<expr-list)" */ Token token; /* An operand token */ Token span; /* Complete text of the expression */ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the ** iColumn-th field of the iTable-th table. */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ Select *pSelect; /* When the expression is a sub-select. Also the ** right side of "<expr> IN (<select>)" */ Table *pTab; /* Table for OP_Column expressions. */ DbSchema *pSchema; }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x01 /* Originated in ON or USING clause of a join */ #define EP_Agg 0x02 /* Contains one or more aggregate functions */ |
︙ | ︙ | |||
1273 1274 1275 1276 1277 1278 1279 | * * The "step_list" member points to the first element of a linked list * containing the SQL statements specified as the trigger program. */ struct Trigger { char *name; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ | | | | 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 | * * The "step_list" member points to the first element of a linked list * containing the SQL statements specified as the trigger program. */ struct Trigger { char *name; /* The name of the trigger */ char *table; /* The table or view to which the trigger applies */ //u8 iDb; /* Database containing this trigger */ u8 iTabDb; /* Database containing Trigger.table */ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, the <column-list> is stored here */ int foreach; /* One of TK_ROW or TK_STATEMENT */ Token nameToken; /* Token containing zName. Use during parsing only */ DbSchema *pSchema; TriggerStep *step_list; /* Link list of trigger program steps */ Trigger *pNext; /* Next trigger associated with the table */ }; /* ** A trigger is either a BEFORE or an AFTER trigger. The following constants ** determine which. |
︙ | ︙ | |||
1523 1524 1525 1526 1527 1528 1529 | int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, int,Expr*,Expr*); void sqlite3SelectDelete(Select*); void sqlite3SelectUnbind(Select*); Table *sqlite3SrcListLookup(Parse*, SrcList*); int sqlite3IsReadOnly(Parse*, Table*, int); | | | 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff); Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*, int,Expr*,Expr*); void sqlite3SelectDelete(Select*); void sqlite3SelectUnbind(Select*); Table *sqlite3SrcListLookup(Parse*, SrcList*); int sqlite3IsReadOnly(Parse*, Table*, int); void sqlite3OpenTableForReading(Vdbe*, int iCur, int iDb, Table*); void sqlite3OpenTable(Vdbe*, int iCur, Table*, int); void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**); void sqlite3WhereEnd(WhereInfo*); void sqlite3ExprCode(Parse*, Expr*); void sqlite3ExprCodeAndCache(Parse*, Expr*); |
︙ | ︙ | |||
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 | void sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DefaultRowEst(Index*); void sqlite3RegisterLikeFunctions(sqlite3*, int); int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SqliteTsd *sqlite3Tsd(); void sqlite3AttachFunctions(sqlite3 *); void sqlite3MinimumFileFormat(Parse*, int, int); void sqlite3MallocClearFailed(); #ifdef NDEBUG #define sqlite3MallocDisallow() #define sqlite3MallocAllow() #else void sqlite3MallocDisallow(); | > > > | 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 | void sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DefaultRowEst(Index*); void sqlite3RegisterLikeFunctions(sqlite3*, int); int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SqliteTsd *sqlite3Tsd(); void sqlite3AttachFunctions(sqlite3 *); void sqlite3MinimumFileFormat(Parse*, int, int); void sqlite3SchemaFree(void *); DbSchema *sqlite3SchemaGet(Btree *); int sqlite3SchemaToIndex(sqlite3 *db, DbSchema *); void sqlite3MallocClearFailed(); #ifdef NDEBUG #define sqlite3MallocDisallow() #define sqlite3MallocAllow() #else void sqlite3MallocDisallow(); |
︙ | ︙ |
Changes to src/trigger.c.
︙ | ︙ | |||
54 55 56 57 58 59 60 61 62 63 64 65 66 67 | Trigger *pTrigger = 0; Table *pTab; char *zName = 0; /* Name of the trigger */ sqlite3 *db = pParse->db; int iDb; /* The database to store the trigger in */ Token *pName; /* The unqualified db name */ DbFixer sFix; if( isTemp ){ /* If TEMP was specified, then the trigger name may not be qualified. */ if( pName2 && pName2->n>0 ){ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); goto trigger_cleanup; } | > | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | Trigger *pTrigger = 0; Table *pTab; char *zName = 0; /* Name of the trigger */ sqlite3 *db = pParse->db; int iDb; /* The database to store the trigger in */ Token *pName; /* The unqualified db name */ DbFixer sFix; int iTabDb; if( isTemp ){ /* If TEMP was specified, then the trigger name may not be qualified. */ if( pName2 && pName2->n>0 ){ sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); goto trigger_cleanup; } |
︙ | ︙ | |||
78 79 80 81 82 83 84 | /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ if( !pTableName || sqlite3Tsd()->mallocFailed ) goto trigger_cleanup; pTab = sqlite3SrcListLookup(pParse, pTableName); | | | 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | /* If the trigger name was unqualified, and the table is a temp table, ** then set iDb to 1 to create the trigger in the temporary database. ** If sqlite3SrcListLookup() returns 0, indicating the table does not ** exist, the error is caught by the block below. */ if( !pTableName || sqlite3Tsd()->mallocFailed ) goto trigger_cleanup; pTab = sqlite3SrcListLookup(pParse, pTableName); if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ iDb = 1; } /* Ensure the table name matches database name and that the table exists */ if( sqlite3Tsd()->mallocFailed ) goto trigger_cleanup; assert( pTableName->nSrc==1 ); if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && |
︙ | ︙ | |||
101 102 103 104 105 106 107 | /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(pName); if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto trigger_cleanup; } | | | 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | /* Check that the trigger name is not reserved and that no trigger of the ** specified name exists */ zName = sqlite3NameFromToken(pName); if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ goto trigger_cleanup; } if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,pName->n+1) ){ sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); goto trigger_cleanup; } /* Do not create a trigger on a system table */ if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); |
︙ | ︙ | |||
126 127 128 129 130 131 132 133 134 135 136 | goto trigger_cleanup; } if( !pTab->pSelect && tr_tm==TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" " trigger on table: %S", pTableName, 0); goto trigger_cleanup; } #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_CREATE_TRIGGER; | > | | | | | | 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | goto trigger_cleanup; } if( !pTab->pSelect && tr_tm==TK_INSTEAD ){ sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" " trigger on table: %S", pTableName, 0); goto trigger_cleanup; } iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_CREATE_TRIGGER; const char *zDb = db->aDb[iTabDb].zName; const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb; if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ goto trigger_cleanup; } if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){ goto trigger_cleanup; } } #endif /* INSTEAD OF triggers can only appear on views and BEFORE triggers ** cannot appear on views. So we might as well translate every ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code ** elsewhere. */ if (tr_tm == TK_INSTEAD){ tr_tm = TK_BEFORE; } /* Build the Trigger object */ pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger)); if( pTrigger==0 ) goto trigger_cleanup; pTrigger->name = zName; zName = 0; pTrigger->table = sqliteStrDup(pTableName->a[0].zName); pTrigger->pSchema = db->aDb[iDb].pSchema; pTrigger->iTabDb = iTabDb; pTrigger->op = op; pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; pTrigger->pWhen = sqlite3ExprDup(pWhen); pTrigger->pColumns = sqlite3IdListDup(pColumns); pTrigger->foreach = foreach; sqlite3TokenCopy(&pTrigger->nameToken,pName); assert( pParse->pNewTrigger==0 ); |
︙ | ︙ | |||
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | Parse *pParse, /* Parser context */ TriggerStep *pStepList, /* The triggered program */ Token *pAll /* Token that describes the complete CREATE TRIGGER */ ){ Trigger *pTrig = 0; /* The trigger whose construction is finishing up */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; pTrig = pParse->pNewTrigger; pParse->pNewTrigger = 0; if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup; pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; pStepList = pStepList->pNext; } | > > | | 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 | Parse *pParse, /* Parser context */ TriggerStep *pStepList, /* The triggered program */ Token *pAll /* Token that describes the complete CREATE TRIGGER */ ){ Trigger *pTrig = 0; /* The trigger whose construction is finishing up */ sqlite3 *db = pParse->db; /* The database */ DbFixer sFix; int iDb; /* Database containing the trigger */ pTrig = pParse->pNewTrigger; pParse->pNewTrigger = 0; if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); pTrig->step_list = pStepList; while( pStepList ){ pStepList->pTrig = pTrig; pStepList = pStepList->pNext; } if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken) && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){ goto triggerfinish_cleanup; } /* if we are not initializing, and this trigger is not on a TEMP table, ** build the sqlite_master entry */ |
︙ | ︙ | |||
228 229 230 231 232 233 234 | }; int addr; Vdbe *v; /* Make an entry in the sqlite_master table */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto triggerfinish_cleanup; | | | | | | | 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | }; int addr; Vdbe *v; /* Make an entry in the sqlite_master table */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto triggerfinish_cleanup; sqlite3BeginWriteOperation(pParse, 0, iDb); sqlite3OpenMasterTable(v, iDb); addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig); sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0); sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0); sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n); sqlite3ChangeCookie(db, v, iDb); sqlite3VdbeAddOp(v, OP_Close, 0, 0); sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC); } if( db->init.busy ){ Table *pTab; Trigger *pDel; pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash, pTrig->name, strlen(pTrig->name)+1, pTrig); if( pDel ){ assert( sqlite3Tsd()->mallocFailed && pDel==pTrig ); goto triggerfinish_cleanup; } pTab = sqlite3LocateTable(pParse,pTrig->table,db->aDb[pTrig->iTabDb].zName); assert( pTab!=0 ); |
︙ | ︙ | |||
441 442 443 444 445 446 447 | assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; nName = strlen(zName); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; | | | 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | assert( pName->nSrc==1 ); zDb = pName->a[0].zDatabase; zName = pName->a[0].zName; nName = strlen(zName); for(i=OMIT_TEMPDB; i<db->nDb; i++){ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName+1); if( pTrigger ) break; } if( !pTrigger ){ sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); goto drop_trigger_cleanup; } sqlite3DropTriggerPtr(pParse, pTrigger, 0); |
︙ | ︙ | |||
474 475 476 477 478 479 480 | */ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){ Table *pTable; Vdbe *v; sqlite3 *db = pParse->db; int iDb; | | | | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | */ void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){ Table *pTable; Vdbe *v; sqlite3 *db = pParse->db; int iDb; iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema); assert( iDb>=0 && iDb<db->nDb ); pTable = tableOfTrigger(db, pTrigger); assert(pTable); assert( pTable->pSchema==pTrigger->pSchema || iDb==1 ); #ifndef SQLITE_OMIT_AUTHORIZATION { int code = SQLITE_DROP_TRIGGER; const char *zDb = db->aDb[iDb].zName; const char *zTab = SCHEMA_TABLE(iDb); if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) || |
︙ | ︙ | |||
524 525 526 527 528 529 530 | /* ** Remove a trigger from the hash tables of the sqlite* pointer. */ void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ Trigger *pTrigger; int nName = strlen(zName); | | | 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | /* ** Remove a trigger from the hash tables of the sqlite* pointer. */ void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ Trigger *pTrigger; int nName = strlen(zName); pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash), zName, nName+1, 0); if( pTrigger ){ Table *pTable = tableOfTrigger(db, pTrigger); assert( pTable!=0 ); if( pTable->pTrigger == pTrigger ){ pTable->pTrigger = pTrigger->pNext; }else{ Trigger *cc = pTable->pTrigger; |
︙ | ︙ | |||
616 617 618 619 620 621 622 | Parse *pParse, /* The parsing context */ TriggerStep *pStep /* The trigger containing the target token */ ){ Token sDb; /* Dummy database name token */ int iDb; /* Index of the database to use */ SrcList *pSrc; /* SrcList to be returned */ | | | 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | Parse *pParse, /* The parsing context */ TriggerStep *pStep /* The trigger containing the target token */ ){ Token sDb; /* Dummy database name token */ int iDb; /* Index of the database to use */ SrcList *pSrc; /* SrcList to be returned */ iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema); if( iDb==0 || iDb>=2 ){ assert( iDb<pParse->db->nDb ); sDb.z = (u8*)pParse->db->aDb[iDb].zName; sDb.n = strlen((char*)sDb.z); pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target); } else { pSrc = sqlite3SrcListAppend(0, &pStep->target, 0); |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle UPDATE statements. ** ** $Id: update.c,v 1.115 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** The most recently coded instruction was an OP_Column to retrieve the ** i-th column of table pTab. This routine sets the P3 parameter of the ** OP_Column to the default value, if any. |
︙ | ︙ | |||
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ int chngRowid; /* True if the record number is being changed */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ int openAll = 0; /* True if all indices need to be opened */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* Trying to update a view */ int triggers_exist = 0; /* True if any row triggers exist */ #endif int newIdx = -1; /* index of trigger "new" temp table */ int oldIdx = -1; /* index of trigger "old" temp table */ sContext.pParse = 0; if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto update_cleanup; db = pParse->db; assert( pTabList->nSrc==1 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; /* Figure out if we have any triggers and if the table being ** updated is a view */ #ifndef SQLITE_OMIT_TRIGGER triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges); isView = pTab->pSelect!=0; | > > | 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ int chngRowid; /* True if the record number is being changed */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ int openAll = 0; /* True if all indices need to be opened */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ int iDb; /* Database containing the table being updated */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* Trying to update a view */ int triggers_exist = 0; /* True if any row triggers exist */ #endif int newIdx = -1; /* index of trigger "new" temp table */ int oldIdx = -1; /* index of trigger "old" temp table */ sContext.pParse = 0; if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto update_cleanup; db = pParse->db; assert( pTabList->nSrc==1 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Figure out if we have any triggers and if the table being ** updated is a view */ #ifndef SQLITE_OMIT_TRIGGER triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges); isView = pTab->pSelect!=0; |
︙ | ︙ | |||
188 189 190 191 192 193 194 | goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, | | | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, pTab->aCol[j].zName, db->aDb[iDb].zName); if( rc==SQLITE_DENY ){ goto update_cleanup; }else if( rc==SQLITE_IGNORE ){ aXRef[j] = -1; } } #endif |
︙ | ︙ | |||
253 254 255 256 257 258 259 | } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | | | 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); /* If we are trying to update a view, realize that view into ** a ephemeral table. */ if( isView ){ Select *pView; pView = sqlite3SelectDup(pTab->pSelect); |
︙ | ︙ | |||
303 304 305 306 307 308 309 | if( !isView ){ sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); /* Open a cursor and make it point to the record that is ** being updated. */ | | | 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | if( !isView ){ sqlite3VdbeAddOp(v, OP_Dup, 0, 0); sqlite3VdbeAddOp(v, OP_Dup, 0, 0); /* Open a cursor and make it point to the record that is ** being updated. */ sqlite3OpenTableForReading(v, iCur, iDb, pTab); } sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); /* Generate the OLD table */ sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); sqlite3VdbeAddOp(v, OP_RowData, iCur, 0); |
︙ | ︙ | |||
358 359 360 361 362 363 364 | if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ | | | | 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum); sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol); if( onError==OE_Replace ){ openAll = 1; }else{ openAll = 0; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Replace ){ openAll = 1; break; } } } for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ if( openAll || aIdxUsed[i] ){ sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, (char*)&pIdx->keyInfo, P3_KEYINFO); assert( pParse->nTab>iCur+i+1 ); } } /* Loop over every record that needs updating. We have to load |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.511 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> #include "vdbeInt.h" /* |
︙ | ︙ | |||
2418 2419 2420 2421 2422 2423 2424 | assert( pDb->pBt!=0 ); assert( pTos>=p->aStack ); sqlite3VdbeMemIntegerify(pTos); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i); if( pOp->p2==0 ){ /* When the schema cookie changes, record the new cookie internally */ | | | | 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 | assert( pDb->pBt!=0 ); assert( pTos>=p->aStack ); sqlite3VdbeMemIntegerify(pTos); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i); if( pOp->p2==0 ){ /* When the schema cookie changes, record the new cookie internally */ pDb->pSchema->schema_cookie = pTos->i; db->flags |= SQLITE_InternChanges; }else if( pOp->p2==1 ){ /* Record changes in the file format */ pDb->pSchema->file_format = pTos->i; } assert( (pTos->flags & MEM_Dyn)==0 ); pTos--; break; } /* Opcode: VerifyCookie P1 P2 * |
︙ | ︙ | |||
2526 2527 2528 2529 2530 2531 2532 | pTos--; assert( iDb>=0 && iDb<db->nDb ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ wrFlag = 1; | | | | 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 | pTos--; assert( iDb>=0 && iDb<db->nDb ); pDb = &db->aDb[iDb]; pX = pDb->pBt; assert( pX!=0 ); if( pOp->opcode==OP_OpenWrite ){ wrFlag = 1; if( pDb->pSchema->file_format < p->minWriteFileFormat ){ p->minWriteFileFormat = pDb->pSchema->file_format; } }else{ wrFlag = 0; } if( p2<=0 ){ assert( pTos>=p->aStack ); sqlite3VdbeMemIntegerify(pTos); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
12 13 14 15 16 17 18 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** | | | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is reponsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ** ** $Id: where.c,v 1.190 2006/01/05 11:34:34 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS (sizeof(Bitmask)*8) |
︙ | ︙ | |||
1550 1551 1552 1553 1554 1555 1556 | /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ pLevel = pWInfo->a; for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ | | | > > | > | | | 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 | /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ pLevel = pWInfo->a; for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ Table *pTab; /* Table to open */ Index *pIx; /* Index used to access pTab (if any) */ int iDb; /* Index of database containing table/index */ int iIdxCur = pLevel->iIdxCur; #ifndef SQLITE_OMIT_EXPLAIN if( pParse->explain==2 ){ char *zMsg; struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); if( pItem->zAlias ){ zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); } if( (pIx = pLevel->pIdx)!=0 ){ zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); } sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); } #endif /* SQLITE_OMIT_EXPLAIN */ pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); if( pTab->isTransient || pTab->pSelect ) continue; if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ sqlite3OpenTableForReading(v, pTabItem->iCursor, iDb, pTab); } pLevel->iTabCur = pTabItem->iCursor; if( (pIx = pLevel->pIdx)!=0 ){ assert( pIx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); VdbeComment((v, "# %s", pIx->zName)); sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, (char*)&pIx->keyInfo, P3_KEYINFO); } if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){ sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); } sqlite3CodeVerifySchema(pParse, iDb); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ |
︙ | ︙ |
Changes to test/all.test.
1 2 3 4 5 6 7 8 9 10 11 12 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # # $Id: all.test,v 1.32 2006/01/05 11:34:34 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl rename finish_test really_finish_test proc finish_test {} {memleak_check} if {[file exists ./sqlite_test_count]} { |
︙ | ︙ | |||
52 53 54 55 56 57 58 59 60 61 62 63 64 65 | async.test crash.test autovacuum_crash.test quick.test malloc.test misuse.test memleak.test } # Test files btree2.test and btree4.test don't work if the # SQLITE_DEFAULT_AUTOVACUUM macro is defined to true (because they depend # on tables being allocated starting at page 2). # ifcapable default_autovacuum { | > > > > > | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | async.test crash.test autovacuum_crash.test quick.test malloc.test misuse.test memleak.test malloc2.test malloc3.test malloc4.test malloc5.test } # Test files btree2.test and btree4.test don't work if the # SQLITE_DEFAULT_AUTOVACUUM macro is defined to true (because they depend # on tables being allocated starting at page 2). # ifcapable default_autovacuum { |
︙ | ︙ | |||
122 123 124 125 126 127 128 | # Both tests leak memory. Currently, misuse.test also leaks a handful of # file descriptors. This is not considered a problem, but can cause tests # in malloc.test to fail. So set the open-file count to zero before running # malloc.test to get around this. # catch {source $testdir/misuse.test} set sqlite_open_file_count 0 | | | 127 128 129 130 131 132 133 134 135 136 137 138 | # Both tests leak memory. Currently, misuse.test also leaks a handful of # file descriptors. This is not considered a problem, but can cause tests # in malloc.test to fail. So set the open-file count to zero before running # malloc.test to get around this. # catch {source $testdir/misuse.test} set sqlite_open_file_count 0 # catch {source $testdir/malloc.test} catch {db close} set sqlite_open_file_count 0 really_finish_test |
Changes to test/delete2.test.
︙ | ︙ | |||
25 26 27 28 29 30 31 | # index entry was deleted first, before the table entry. And the index # delete worked. Thus an entry was deleted from the index but not from # the table. # # The solution to the problem was to detect that the table is locked # before the index entry is deleted. # | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | # index entry was deleted first, before the table entry. And the index # delete worked. Thus an entry was deleted from the index but not from # the table. # # The solution to the problem was to detect that the table is locked # before the index entry is deleted. # # $Id: delete2.test,v 1.6 2006/01/05 11:34:34 danielk1977 Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl # Create a table that has an index. # |
︙ | ︙ | |||
63 64 65 66 67 68 69 70 71 72 73 74 75 76 | set STMT [sqlite3_prepare $DB {SELECT * FROM q} -1 TAIL] sqlite3_step $STMT } SQLITE_ROW integrity_check delete2-1.5 # Try to delete a row from the table. The delete should fail. # do_test delete2-1.6 { catchsql { DELETE FROM q WHERE rowid=1 } } {1 {database table is locked}} integrity_check delete2-1.7 do_test delete2-1.8 { | > | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | set STMT [sqlite3_prepare $DB {SELECT * FROM q} -1 TAIL] sqlite3_step $STMT } SQLITE_ROW integrity_check delete2-1.5 # Try to delete a row from the table. The delete should fail. # breakpoint do_test delete2-1.6 { catchsql { DELETE FROM q WHERE rowid=1 } } {1 {database table is locked}} integrity_check delete2-1.7 do_test delete2-1.8 { |
︙ | ︙ |
Changes to test/shared.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2005 December 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # | | < < > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # 2005 December 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # # $Id: shared.test,v 1.2 2006/01/05 11:34:34 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl db close ifcapable !shared_cache { finish_test return } set ::enable_shared_cache [sqlite3_enable_shared_cache 1] # Test organization: # # shared-1.*: Simple test to verify basic sanity of table level locking when # two connections share a pager cache. # shared-2.*: Test that a read transaction can co-exist with a # write-transaction, including a simple test to ensure the # external locking protocol is still working. # shared-3.*: Simple test of read-uncommitted mode. # do_test shared-1.1 { # Open a second database on the file test.db. It should use the same pager # cache and schema as the original connection. Verify that only 1 file is # opened. sqlite3 db2 test.db |
︙ | ︙ | |||
69 70 71 72 73 74 75 | # of the read-lock connection 1 is holding on table abc (obtained in the # previous test case). catchsql { INSERT INTO abc VALUES(4, 5, 6); } db2 } {1 {database is locked}} do_test shared-1.5 { | | | | | < | | | < < | < | < < | < < | < < | < | | > | < < < < < < < < < < < < < < < | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 | # of the read-lock connection 1 is holding on table abc (obtained in the # previous test case). catchsql { INSERT INTO abc VALUES(4, 5, 6); } db2 } {1 {database is locked}} do_test shared-1.5 { # Using connection 2 (the one without the open transaction), try to create # a new table. This should fail because of the open read transaction # held by connection 1. catchsql { CREATE TABLE def(d, e, f); } db2 } {1 {database is locked}} do_test shared-1.6 { # Upgrade connection 1's transaction to a write transaction. Create # a new table - def - and insert a row into it. Because the connection 1 # transaction modifies the schema, it should not be possible for # connection 2 to access the database at all until the connection 1 # has finished the transaction. execsql { CREATE TABLE def(d, e, f); INSERT INTO def VALUES('IV', 'V', 'VI'); } } {} do_test shared-1.7 { # Read from the sqlite_master table with connection 1 (inside the # transaction). Then test that we can not do this with connection 2. This # is because of the schema-modified lock established by connection 1 # in the previous test case. execsql { SELECT * FROM sqlite_master; } catchsql { SELECT * FROM sqlite_master; } db2 } {1 {database is locked}} do_test shared-1.8 { # Commit the connection 1 transaction. execsql { COMMIT; } } {} do_test shared-2.1 { |
︙ | ︙ | |||
176 177 178 179 180 181 182 | INSERT INTO def VALUES('VII', 'VIII', 'IX'); } concat [ catchsql { SELECT * FROM def; } db3 ] [ catchsql { SELECT * FROM def; } db2 ] | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | INSERT INTO def VALUES('VII', 'VIII', 'IX'); } concat [ catchsql { SELECT * FROM def; } db3 ] [ catchsql { SELECT * FROM def; } db2 ] } {0 {IV V VI} 1 {database is locked}} do_test shared-2.4 { # Commit the open transaction on db. db2 still holds a read-transaction. # This should prevent db3 from writing to the database, but not from # reading. execsql { COMMIT; } concat [ catchsql { SELECT * FROM def; } db3 ] [ catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3 ] } {0 {IV V VI VII VIII IX} 1 {database is locked}} catchsql COMMIT db2 do_test shared-3.1.1 { # This test case starts a linear scan of table 'seq' using a # read-uncommitted connection. In the middle of the scan, rows are added # to the end of the seq table (ahead of the current cursor position). # The uncommitted rows should be included in the results of the scan. execsql " CREATE TABLE seq(i, x); INSERT INTO seq VALUES(1, '[string repeat X 500]'); INSERT INTO seq VALUES(2, '[string repeat X 500]'); " execsql {SELECT * FROM sqlite_master} db2 execsql {PRAGMA read_uncommitted = 1} db2 set ret [list] db2 eval {SELECT i FROM seq} { if {$i < 4} { execsql { INSERT INTO seq SELECT i + (SELECT max(i) FROM seq), x FROM seq; } } lappend ret $i } set ret } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16} do_test shared-3.1.2 { # Another linear scan through table seq using a read-uncommitted connection. # This time, delete each row as it is read. Should not affect the results of # the scan, but the table should be empty after the scan is concluded # (test 3.1.3 verifies this). set ret [list] db2 eval {SELECT i FROM seq} { db eval {DELETE FROM seq WHERE i = $i} lappend ret $i } set ret } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16} do_test shared-3.1.3 { execsql { SELECT * FROM seq; } } {} catch {db close} catch {db2 close} catch {db3 close} finish_test sqlite3_enable_shared_cache $::enable_shared_cache |
Changes to test/tester.tcl.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # # $Id: tester.tcl,v 1.57 2006/01/05 11:34:34 danielk1977 Exp $ # Make sure tclsqlite3 was compiled correctly. Abort now with an # error message if not. # if {[sqlite3 -tcl-uses-utf]} { if {"\u1234"=="u1234"} { puts stderr "***** BUILD PROBLEM *****" |
︙ | ︙ | |||
445 446 447 448 449 450 451 | foreach alloc [sqlite_malloc_outstanding] { foreach {nBytes file iLine userstring backtrace} $alloc {} set stack [list] set skip 0 # The first command in this block will probably fail on windows. This # means there will be no stack dump available. | | | 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | foreach alloc [sqlite_malloc_outstanding] { foreach {nBytes file iLine userstring backtrace} $alloc {} set stack [list] set skip 0 # The first command in this block will probably fail on windows. This # means there will be no stack dump available. if {$cnt < 25 && $backtrace!=""} { catch { set stuff [eval "exec addr2line -e ./testfixture -f $backtrace"] foreach {func line} $stuff { if {$func != "??" || $line != "??:0"} { regexp {.*/(.*)} $line dummy line lappend stack "${func}() $line" } else { |
︙ | ︙ |
Added www/sharedcache.tcl.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | # # Run this script to generated a sharedcache.html output file # set rcsid {$Id: } source common.tcl header {SQLite Shared-Cache Mode} proc HEADING {level title} { global pnum incr pnum($level) foreach i [array names pnum] { if {$i>$level} {set pnum($i) 0} } set h [expr {$level+1}] if {$h>6} {set h 6} set n $pnum(1).$pnum(2) for {set i 3} {$i<=$level} {incr i} { append n .$pnum($i) } puts "<h$h>$n $title</h$h>" } set pnum(1) 0 set pnum(2) 0 set pnum(3) 0 set pnum(4) 0 set pnum(5) 0 set pnum(6) 0 set pnum(7) 0 set pnum(8) 0 HEADING 1 {SQLite Shared-Cache Mode} puts { <p>Starting with version 3.3.0, SQLite includes a special "shared-cache" mode (disabled by default) intended for use in embedded servers. If shared-cache mode is enabled and a thread establishes multiple connections to the same database, the connections share a single data and schema cache. This can significantly reduce the quantity of memory and IO required by the system.</p> <p>Using shared-cache mode imposes some extra restrictions on passing database handles between threads and also changes the semantics of the locking model in some cases. These details are described in full by this document. A basic understanding of the normal SQLite locking model (see <a href="lockingv3.html">File Locking And Concurrency In SQLite Version 3</a> for details) is assumed. </p> } HEADING 1 {Shared-Cache Locking Model} puts { <p>Externally, from the point of view of another process or thread, two or more database connections using a shared-cache appear as a single connection. The locking protocol used to arbitrate between multiple shared-caches or regular database users is described elsewhere. </p> <table style="margin:auto"> <tr><td> <pre> +--------------+ +--------------+ | Connection 2 | | Connection 3 | +--------------+ +--------------+ | | V V +--------------+ +--------------+ | Connection 1 | | Shared cache | +--------------+ +--------------+ | | V V +----------------+ | Database | +----------------+ </pre> </table> <p style="font-style:italic;text-align:center">Figure 1</p> <p>Figure 1 depicts an example runtime configuration where three database connections have been established. Connection 1 is a normal SQLite database connection. Connections 2 and 3 share a cache (and so must have been established by the same process thread). The normal locking protocol is used to serialize database access between connection 1 and the shared cache. The internal protocol used to serialize (or not, see "Read-Uncommitted Isolation Mode" below) access to the shared-cache by connections 2 and 3 is described in the remainder of this section. </p> <p>There are three levels to the shared-cache locking model, transaction level locking, table level locking and schema level locking. They are described in the following three sub-sections.</p> } HEADING 2 {Transaction Level Locking} puts { <p>SQLite connections can open two kinds of transactions, read and write transactions. This is not done explicitly, a transaction is implicitly a read-transaction until it first writes to a database table, at which point it becomes a write-transaction. </p> <p>At most one connection to a single shared cache may open a write transaction at any one time. This may co-exist with any number of read transactions. </p> } HEADING 2 {Table Level Locking} puts { <p>When two or more connections use a shared-cache, locks are used to serialize concurrent access attempts on a per-table basis. Tables support two types of locks, "read-locks" and "write-locks". Locks are granted to connections - at any one time, each database connection has either a read-lock, write-lock or no lock on each database table. </p> <p>At any one time, a single table may have any number of active read-locks or a single active write lock. To read data a table, a connection must first obtain a read-lock. To write to a table, a connection must obtain a write-lock on that table. If a required table lock cannot be obtained, the query fails and SQLITE_BUSY is returned to the caller. </p> <p><b>TODO: Should we be invoking the busy-handler here? Just waiting won't do any good, but something else might... </b></p> <p>Once a connection obtains a table lock, it is not released until the current transaction (read or write) is concluded. </p> } HEADING 3 {Read-Uncommitted Isolation Mode} puts { <p>The behaviour described above may be modified slightly by using the <i>read_uncommitted</i> pragma to change the isolation level from serialized (the default), to read-uncommitted.</p> <p> A database connection in read-uncommitted mode does not attempt to obtain read-locks before reading from database tables as described above. This can lead to inconsistent query results if another database connection modifies a table while it is being read, but it also means that a read-transaction opened by a connection in read-uncommitted mode can neither block nor be blocked by any other connection.</p> <p>Read-uncommitted mode has no effect on the locks required to write to database tables (i.e. read-uncommitted connections must still obtain write-locks and hence database writes may still block or be blocked). Also, read-uncommitted mode has no effect on the <i>sqlite_master</i> locks required by the rules enumerated below (see section "Schema (sqlite_master) Level Locking"). </p> <pre> /* Set the value of the read-uncommitted flag: ** ** True -> Set the connection to read-uncommitted mode. ** False -> Set the connectino to serialized (the default) mode. */ PRAGMA read_uncommitted = <boolean>; /* Retrieve the current value of the read-uncommitted flag */ PRAGMA read_uncommitted; </pre> } HEADING 2 {Schema (sqlite_master) Level Locking} puts { <p>The <i>sqlite_master</i> table supports shared-cache read and write locks in the same way as all other database tables (see description above). The following special rules also apply: </p> <ul> <li>A connection must obtain a read-lock on <i>sqlite_master</i> before accessing any database tables or obtaining any other read or write locks.</li> <li>Before executing a statement that modifies the database schema (i.e. a CREATE or DROP TABLE statement), a connection must obtain a write-lock on <i>sqlite_master</i>. </li> <li>A connection may not compile an SQL statement that refers to database tables if any other connection is holding a write-lock on <i>sqlite_master</i>. </li> </ul> } HEADING 1 {Thread Related Issues} puts { <p>When shared-cache mode is enabled, a database connection may only be used by the thread that called sqlite3_open() to create it. If another thread attempts to use the database connection, in most cases an SQLITE_MISUSE error is returned. However this is not guaranteed and programs should not depend on this behaviour, in some cases a segfault may result. </p> } HEADING 1 {Enabling Shared-Cache Mode} puts { <p>Shared-cache mode is enabled on a thread-wide basis. Using the C interface, the following API can be used to enable or disable shared-cache mode for the calling thread: </p> <pre> int sqlite3_enable_shared_cache(int); </pre> <p>It is illegal to call sqlite3_enable_shared_cache() if one or more open database connections were opened by the calling thread. If the argument is non-zero, shared-cache mode is enabled. If the argument is zero, shared-cache mode is disabled. The return value is either SQLITE_OK (if the operation was successful), SQLITE_NOMEM (if a malloc() failed), or SQLITE_MISUSE (if the thread has open database connections). </p> } footer $rcsid |