SQLite

Check-in [deeda0dc06]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add the shared schema/pager modifications. Very few tests so far. (CVS 2859)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: deeda0dc06c1595aedd8d06a0c4e88a8abf78cf7
User & Date: danielk1977 2006-01-05 11:34:33.000
Context
2006-01-05
13:48
Disable automatic invocation of sqlite3_release_memory() when a malloc() fails in those cases where the global mutex is held. (CVS 2860) (check-in: 6fdbb8b771 user: danielk1977 tags: trunk)
11:34
Add the shared schema/pager modifications. Very few tests so far. (CVS 2859) (check-in: deeda0dc06 user: danielk1977 tags: trunk)
2006-01-04
21:40
Bug fix in the IF NOT EXISTS logic. (CVS 2858) (check-in: cb9095ac52 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to main.mk.
451
452
453
454
455
456
457



458
459
460
461
462
463
464

pragma.html:	$(TOP)/www/pragma.tcl
	tclsh $(TOP)/www/pragma.tcl >pragma.html

lockingv3.html:	$(TOP)/www/lockingv3.tcl
	tclsh $(TOP)/www/lockingv3.tcl >lockingv3.html




mingw.html:	$(TOP)/www/mingw.tcl
	tclsh $(TOP)/www/mingw.tcl >mingw.html

nulls.html:	$(TOP)/www/nulls.tcl
	tclsh $(TOP)/www/nulls.tcl >nulls.html

oldnews.html:	$(TOP)/www/oldnews.tcl







>
>
>







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

pragma.html:	$(TOP)/www/pragma.tcl
	tclsh $(TOP)/www/pragma.tcl >pragma.html

lockingv3.html:	$(TOP)/www/lockingv3.tcl
	tclsh $(TOP)/www/lockingv3.tcl >lockingv3.html

sharedcache.html: $(TOP)/www/sharedcache.tcl
	tclsh $(TOP)/www/sharedcache.tcl >sharedcache.html

mingw.html:	$(TOP)/www/mingw.tcl
	tclsh $(TOP)/www/mingw.tcl >mingw.html

nulls.html:	$(TOP)/www/nulls.tcl
	tclsh $(TOP)/www/nulls.tcl >nulls.html

oldnews.html:	$(TOP)/www/oldnews.tcl
531
532
533
534
535
536
537

538
539
540
541
542
543
544
  oldnews.html \
  omitted.html \
  opcode.html \
  optimizer.html \
  optoverview.html \
  pragma.html \
  quickstart.html \

  speed.html \
  sqlite.html \
  support.html \
  tclsqlite.html \
  vdbe.html \
  version3.html \
  whentouse.html







>







534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
  oldnews.html \
  omitted.html \
  opcode.html \
  optimizer.html \
  optoverview.html \
  pragma.html \
  quickstart.html \
  sharedcache.html \
  speed.html \
  sqlite.html \
  support.html \
  tclsqlite.html \
  vdbe.html \
  version3.html \
  whentouse.html
Changes to src/alter.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
** $Id: alter.c,v 1.13 2005/12/21 14:43:12 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The code in this file only exists if we are not omitting the
** ALTER TABLE logic from the build.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that used to generate VDBE code
** that implements the ALTER TABLE command.
**
** $Id: alter.c,v 1.14 2006/01/05 11:34:33 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** The code in this file only exists if we are not omitting the
** ALTER TABLE logic from the build.
173
174
175
176
177
178
179







180
181
182
183
184
185
186
187
188
189
** table pTab has no temporary triggers, or is itself stored in the 
** temporary database, NULL is returned.
*/
static char *whereTempTriggers(Parse *pParse, Table *pTab){
  Trigger *pTrig;
  char *zWhere = 0;
  char *tmp = 0;







  if( pTab->iDb!=1 ){
    for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
      if( pTrig->iDb==1 ){
        if( !zWhere ){
          zWhere = sqlite3MPrintf("name=%Q", pTrig->name);
        }else{
          tmp = zWhere;
          zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name);
          sqliteFree(tmp);
        }







>
>
>
>
>
>
>
|

|







173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
** table pTab has no temporary triggers, or is itself stored in the 
** temporary database, NULL is returned.
*/
static char *whereTempTriggers(Parse *pParse, Table *pTab){
  Trigger *pTrig;
  char *zWhere = 0;
  char *tmp = 0;
  const DbSchema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */

  /* If the table is not located in the temp-db (in which case NULL is 
  ** returned, loop through the tables list of triggers. For each trigger
  ** that is not part of the temp-db schema, add a clause to the WHERE 
  ** expression being built up in zWhere.
  */
  if( pTab->pSchema!=pTempSchema ){
    for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){
      if( pTrig->pSchema==pTempSchema ){
        if( !zWhere ){
          zWhere = sqlite3MPrintf("name=%Q", pTrig->name);
        }else{
          tmp = zWhere;
          zWhere = sqlite3MPrintf("%s OR name=%Q", zWhere, pTrig->name);
          sqliteFree(tmp);
        }
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218

219
220
221
222
223
224
225
226
227
** the time the generated code is executed. This can be different from
** pTab->zName if this function is being called to code part of an 
** "ALTER TABLE RENAME TO" statement.
*/
static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
  Vdbe *v;
  char *zWhere;
  int iDb;
#ifndef SQLITE_OMIT_TRIGGER
  Trigger *pTrig;
#endif

  v = sqlite3GetVdbe(pParse);
  if( !v ) return;

  iDb = pTab->iDb;

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){

    assert( pTrig->iDb==iDb || pTrig->iDb==1 );
    sqlite3VdbeOp3(v, OP_DropTrigger, pTrig->iDb, 0, pTrig->name, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */







|






>
|




>
|
|







207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
** the time the generated code is executed. This can be different from
** pTab->zName if this function is being called to code part of an 
** "ALTER TABLE RENAME TO" statement.
*/
static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){
  Vdbe *v;
  char *zWhere;
  int iDb;                   /* Index of database containing pTab */
#ifndef SQLITE_OMIT_TRIGGER
  Trigger *pTrig;
#endif

  v = sqlite3GetVdbe(pParse);
  if( !v ) return;
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
    assert( iTrigDb==iDb || iTrigDb==1 );
    sqlite3VdbeOp3(v, OP_DropTrigger, iTrigDb, 0, pTrig->name, 0);
  }
#endif

  /* Drop the table and index from the internal schema */
  sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#endif
  
  if( sqlite3Tsd()->mallocFailed ) goto exit_rename_table;
  assert( pSrc->nSrc==1 );

  pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_rename_table;
  iDb = pTab->iDb;
  zDb = db->aDb[iDb].zName;

  /* Get a NULL terminated version of the new table name. */
  zName = sqlite3NameFromToken(pName);
  if( !zName ) goto exit_rename_table;

  /* Check that a table or index named 'zName' does not already exist







|







268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#endif
  
  if( sqlite3Tsd()->mallocFailed ) goto exit_rename_table;
  assert( pSrc->nSrc==1 );

  pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_rename_table;
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  zDb = db->aDb[iDb].zName;

  /* Get a NULL terminated version of the new table name. */
  zName = sqlite3NameFromToken(pName);
  if( !zName ) goto exit_rename_table;

  /* Check that a table or index named 'zName' does not already exist
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
  Column *pCol;             /* The new column */
  Expr *pDflt;              /* Default value for the new column */

  if( pParse->nErr ) return;
  pNew = pParse->pNewTable;
  assert( pNew );

  iDb = pNew->iDb;
  zDb = pParse->db->aDb[iDb].zName;
  zTab = pNew->zName;
  pCol = &pNew->aCol[pNew->nCol-1];
  pDflt = pCol->pDflt;
  pTab = sqlite3FindTable(pParse->db, zTab, zDb);
  assert( pTab );








|







395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  Column *pCol;             /* The new column */
  Expr *pDflt;              /* Default value for the new column */

  if( pParse->nErr ) return;
  pNew = pParse->pNewTable;
  assert( pNew );

  iDb = sqlite3SchemaToIndex(pParse->db, pNew->pSchema);
  zDb = pParse->db->aDb[iDb].zName;
  zTab = pNew->zName;
  pCol = &pNew->aCol[pNew->nCol-1];
  pDflt = pCol->pDflt;
  pTab = sqlite3FindTable(pParse->db, zTab, zDb);
  assert( pTab );

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
  Table *pNew;
  Table *pTab;
  Vdbe *v;
  int iDb;
  int i;
  int nAlloc;


  /* Look up the table being altered. */
  assert( pParse->pNewTable==0 );
  if( sqlite3Tsd()->mallocFailed ) goto exit_begin_add_column;
  pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_begin_add_column;

  /* Make sure this is not an attempt to ALTER a view. */
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
    goto exit_begin_add_column;
  }

  assert( pTab->addColOffset>0 );
  iDb = pTab->iDb;

  /* Put a copy of the Table struct in Parse.pNewTable for the
  ** sqlite3AddColumn() function and friends to modify.
  */
  pNew = (Table *)sqliteMalloc(sizeof(Table));
  if( !pNew ) goto exit_begin_add_column;
  pParse->pNewTable = pNew;







<













|







495
496
497
498
499
500
501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
  Table *pNew;
  Table *pTab;
  Vdbe *v;
  int iDb;
  int i;
  int nAlloc;


  /* Look up the table being altered. */
  assert( pParse->pNewTable==0 );
  if( sqlite3Tsd()->mallocFailed ) goto exit_begin_add_column;
  pTab = sqlite3LocateTable(pParse, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_begin_add_column;

  /* Make sure this is not an attempt to ALTER a view. */
  if( pTab->pSelect ){
    sqlite3ErrorMsg(pParse, "Cannot add a column to a view");
    goto exit_begin_add_column;
  }

  assert( pTab->addColOffset>0 );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);

  /* Put a copy of the Table struct in Parse.pNewTable for the
  ** sqlite3AddColumn() function and friends to modify.
  */
  pNew = (Table *)sqliteMalloc(sizeof(Table));
  if( !pNew ) goto exit_begin_add_column;
  pParse->pNewTable = pNew;
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
  memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
  for(i=0; i<pNew->nCol; i++){
    Column *pCol = &pNew->aCol[i];
    pCol->zName = sqliteStrDup(pCol->zName);
    pCol->zType = 0;
    pCol->pDflt = 0;
  }
  pNew->iDb = iDb;
  pNew->addColOffset = pTab->addColOffset;
  pNew->nRef = 1;

  /* Begin a transaction and increment the schema cookie.  */
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  v = sqlite3GetVdbe(pParse);
  if( !v ) goto exit_begin_add_column;







|







533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
  memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol);
  for(i=0; i<pNew->nCol; i++){
    Column *pCol = &pNew->aCol[i];
    pCol->zName = sqliteStrDup(pCol->zName);
    pCol->zType = 0;
    pCol->pDflt = 0;
  }
  pNew->pSchema = pParse->db->aDb[iDb].pSchema;
  pNew->addColOffset = pTab->addColOffset;
  pNew->nRef = 1;

  /* Begin a transaction and increment the schema cookie.  */
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  v = sqlite3GetVdbe(pParse);
  if( !v ) goto exit_begin_add_column;
Changes to src/analyze.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.11 2005/11/14 22:29:05 drh Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2005 July 8
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** @(#) $Id: analyze.c,v 1.12 2006/01/05 11:34:33 danielk1977 Exp $
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

/*
** This routine generates code that opens the sqlite_stat1 table on cursor
** iStatCur.
82
83
84
85
86
87
88

89
90
91
92
93
94
95


96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
  int iIdxCur;     /* Cursor number for index being analyzed */
  int nCol;        /* Number of columns in the index */
  Vdbe *v;         /* The virtual machine being built up */
  int i;           /* Loop counter */
  int topOfLoop;   /* The top of the loop */
  int endOfLoop;   /* The end of the loop */
  int addr;        /* The address of an instruction */


  v = sqlite3GetVdbe(pParse);
  if( pTab==0 || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }



#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      pParse->db->aDb[pTab->iDb].zName ) ){
    return;
  }
#endif

  iIdxCur = pParse->nTab;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    /* Open a cursor to the index to be analyzed
    */

    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    VdbeComment((v, "# %s", pIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
                     (char*)&pIdx->keyInfo, P3_KEYINFO);
    nCol = pIdx->nColumn;
    if( iMem+nCol*2>=pParse->nMem ){
      pParse->nMem = iMem+nCol*2+1;
    }







>







>
>


|








>
|







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
  int iIdxCur;     /* Cursor number for index being analyzed */
  int nCol;        /* Number of columns in the index */
  Vdbe *v;         /* The virtual machine being built up */
  int i;           /* Loop counter */
  int topOfLoop;   /* The top of the loop */
  int endOfLoop;   /* The end of the loop */
  int addr;        /* The address of an instruction */
  int iDb;         /* Index of database containing pTab */

  v = sqlite3GetVdbe(pParse);
  if( pTab==0 || pTab->pIndex==0 ){
    /* Do no analysis for tables that have no indices */
    return;
  }

  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      pParse->db->aDb[iDb].zName ) ){
    return;
  }
#endif

  iIdxCur = pParse->nTab;
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    /* Open a cursor to the index to be analyzed
    */
    assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    VdbeComment((v, "# %s", pIdx->zName));
    sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum,
                     (char*)&pIdx->keyInfo, P3_KEYINFO);
    nCol = pIdx->nColumn;
    if( iMem+nCol*2>=pParse->nMem ){
      pParse->nMem = iMem+nCol*2+1;
    }
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
}

/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;

  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem;
  for(k=sqliteHashFirst(&db->aDb[iDb].tblHash);  k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.
*/
static void analyzeTable(Parse *pParse, Table *pTab){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  iDb = pTab->iDb;
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
  loadAnalysis(pParse, iDb);
}








>








|















|







215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
}

/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  DbSchema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;
  openStatTable(pParse, iDb, iStatCur, 0);
  iMem = pParse->nMem;
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.
*/
static void analyzeTable(Parse *pParse, Table *pTab){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab++;
  openStatTable(pParse, iDb, iStatCur, pTab->zName);
  analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem);
  loadAnalysis(pParse, iDb);
}

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
*/
void sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].idxHash); i; i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
  }

  /* Check to make sure the sqlite_stat1 table existss */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;







|







362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
*/
void sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;

  /* Clear any prior statistics */
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3DefaultRowEst(pIdx);
  }

  /* Check to make sure the sqlite_stat1 table existss */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zName;
Changes to src/attach.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.38 2005/12/29 23:04:02 drh Exp $
*/
#include "sqliteInt.h"

/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple
** identifiers are treated as strings, not possible column names or aliases.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the ATTACH and DETACH commands.
**
** $Id: attach.c,v 1.39 2006/01/05 11:34:33 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Resolve an expression that was part of an ATTACH or DETACH statement. This
** is slightly different from resolving a normal SQL expression, because simple
** identifiers are treated as strings, not possible column names or aliases.
112
113
114
115
116
117
118
119





120

121
122


123
124
125
126
127
128
129
130
131
132
133
134
    if( aNew==0 ){
      return;
    } 
  }
  db->aDb = aNew;
  aNew = &db->aDb[db->nDb++];
  memset(aNew, 0, sizeof(*aNew));
  sqlite3HashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0);





  sqlite3HashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0);

  sqlite3HashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0);
  sqlite3HashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1);


  aNew->zName = sqliteStrDup(zName);
  aNew->safety_level = 3;
  
  /* Open the database file */
  rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);

#if SQLITE_HAS_CODEC
  {
    extern int sqlite3CodecAttach(sqlite3*, int, void*, int);
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;







|
>
>
>
>
>
|
>
|
|
>
>


<
<
<







112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132



133
134
135
136
137
138
139
    if( aNew==0 ){
      return;
    } 
  }
  db->aDb = aNew;
  aNew = &db->aDb[db->nDb++];
  memset(aNew, 0, sizeof(*aNew));

  /* Open the database file. If the btree is successfully opened, use
  ** it to obtain the database schema. At this point the schema may
  ** or may not be initialised.
  */
  rc = sqlite3BtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
  if( rc==SQLITE_OK ){
    aNew->pSchema = sqlite3SchemaGet(aNew->pBt);
    if( !aNew->pSchema ){
      rc = SQLITE_NOMEM;
    }
  }
  aNew->zName = sqliteStrDup(zName);
  aNew->safety_level = 3;




#if SQLITE_HAS_CODEC
  {
    extern int sqlite3CodecAttach(sqlite3*, int, void*, int);
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;
Changes to src/auth.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the sqlite3_set_authorizer()
** API.  This facility is an optional feature of the library.  Embedded
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
** $Id: auth.c,v 1.22 2005/07/29 15:36:15 drh Exp $
*/
#include "sqliteInt.h"

/*
** All of the code in this file may be omitted by defining a single
** macro.
*/







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains code used to implement the sqlite3_set_authorizer()
** API.  This facility is an optional feature of the library.  Embedded
** systems that do not need this facility may omit it by recompiling
** the library with -DSQLITE_OMIT_AUTHORIZATION=1
**
** $Id: auth.c,v 1.23 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** All of the code in this file may be omitted by defining a single
** macro.
*/
108
109
110
111
112
113
114

115
116
117
118

119
120
121
122
123
124
125
  sqlite3 *db = pParse->db;
  int rc;
  Table *pTab;          /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  const char *zDBase;   /* Name of database being accessed */
  TriggerStack *pStack; /* The stack of current triggers */


  if( db->xAuth==0 ) return;
  if( pExpr->op==TK_AS ) return;
  assert( pExpr->op==TK_COLUMN );

  for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
    if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
  }
  if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
    pTab = pTabList->a[iSrc].pTab;
  }else if( (pStack = pParse->trigStack)!=0 ){
    /* This must be an attempt to read the NEW or OLD pseudo-tables







>




>







108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
  sqlite3 *db = pParse->db;
  int rc;
  Table *pTab;          /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  const char *zDBase;   /* Name of database being accessed */
  TriggerStack *pStack; /* The stack of current triggers */
  int iDb;              /* The index of the database the expression refers to */

  if( db->xAuth==0 ) return;
  if( pExpr->op==TK_AS ) return;
  assert( pExpr->op==TK_COLUMN );
  iDb = sqlite3SchemaToIndex(pParse->db, pExpr->pSchema);
  for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){
    if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
  }
  if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){
    pTab = pTabList->a[iSrc].pTab;
  }else if( (pStack = pParse->trigStack)!=0 ){
    /* This must be an attempt to read the NEW or OLD pseudo-tables
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    zCol = pTab->aCol[pExpr->iColumn].zName;
  }else if( pTab->iPKey>=0 ){
    assert( pTab->iPKey<pTab->nCol );
    zCol = pTab->aCol[pTab->iPKey].zName;
  }else{
    zCol = "ROWID";
  }
  assert( pExpr->iDb<db->nDb );
  zDBase = db->aDb[pExpr->iDb].zName;
  rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, 
                 pParse->zAuthContext);
  if( rc==SQLITE_IGNORE ){
    pExpr->op = TK_NULL;
  }else if( rc==SQLITE_DENY ){
    if( db->nDb>2 || pExpr->iDb!=0 ){
      sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", 
         zDBase, pTab->zName, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
    }
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK ){







|
|





|







138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    zCol = pTab->aCol[pExpr->iColumn].zName;
  }else if( pTab->iPKey>=0 ){
    assert( pTab->iPKey<pTab->nCol );
    zCol = pTab->aCol[pTab->iPKey].zName;
  }else{
    zCol = "ROWID";
  }
  assert( iDb<db->nDb );
  zDBase = db->aDb[iDb].zName;
  rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, 
                 pParse->zAuthContext);
  if( rc==SQLITE_IGNORE ){
    pExpr->op = TK_NULL;
  }else if( rc==SQLITE_DENY ){
    if( db->nDb>2 || iDb!=0 ){
      sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", 
         zDBase, pTab->zName, zCol);
    }else{
      sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol);
    }
    pParse->rc = SQLITE_AUTH;
  }else if( rc!=SQLITE_OK ){
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.278 2005/12/30 16:31:54 danielk1977 Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.279 2006/01/05 11:34:34 danielk1977 Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
345
346
347
348
349
350
351


352
353
354
355
356
357
358
  int minLeaf;          /* Minimum local payload in a LEAFDATA table */
  BusyHandler *pBusyHandler;   /* Callback for when there is lock contention */
  u8 inTransaction;     /* Transaction state */
  BtShared *pNext;      /* Next in SqliteTsd.pBtree linked list */
  int nRef;             /* Number of references to this structure */
  int nTransaction;     /* Number of open transactions (read + write) */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */


};

/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/







>
>







345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
  int minLeaf;          /* Minimum local payload in a LEAFDATA table */
  BusyHandler *pBusyHandler;   /* Callback for when there is lock contention */
  u8 inTransaction;     /* Transaction state */
  BtShared *pNext;      /* Next in SqliteTsd.pBtree linked list */
  int nRef;             /* Number of references to this structure */
  int nTransaction;     /* Number of open transactions (read + write) */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
  void *pSchema;
  void (*xFreeSchema)(void*);
};

/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
378
379
380
381
382
383
384
385





386
387
























388
389
390
391
392
393
394
  int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
  void *pArg;               /* First arg to xCompare() */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->aCell[] */
  CellInfo info;            /* A parse of the cell we are pointing at */
  u8 wrFlag;                /* True if writable */
  u8 isValid;               /* TRUE if points to a valid entry */





};

























/*
** The TRACE macro will print high-level status information about the
** btree operation when the global variable sqlite3_btree_trace is
** enabled.
*/
#if SQLITE_TEST
# define TRACE(X)   if( sqlite3_btree_trace )\







|
>
>
>
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
  int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
  void *pArg;               /* First arg to xCompare() */
  Pgno pgnoRoot;            /* The root page of this tree */
  MemPage *pPage;           /* Page that contains the entry */
  int idx;                  /* Index of the entry in pPage->aCell[] */
  CellInfo info;            /* A parse of the cell we are pointing at */
  u8 wrFlag;                /* True if writable */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_SHARED_CACHE
  void *pKey;
  i64 nKey;
  int skip;        /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */
#endif
};

/*
** Potential values for BtCursor.eState. The first two values (VALID and 
** INVALID) may occur in any build. The third (REQUIRESEEK) may only occur 
** if sqlite was compiled without the OMIT_SHARED_CACHE symbol defined.
**
** CURSOR_VALID:
**   Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
**   called.
**
** CURSOR_REQUIRESEEK:
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to seek 
**   the cursor to the saved position.
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_REQUIRESEEK       2

/*
** The TRACE macro will print high-level status information about the
** btree operation when the global variable sqlite3_btree_trace is
** enabled.
*/
#if SQLITE_TEST
# define TRACE(X)   if( sqlite3_btree_trace )\
458
459
460
461
462
463
464
465
466
467
468
469
470



471





























































































472
473
474
475
476
477
478
479
480
481
482

























483
484
485
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504





505














506
507
508
509
510
511
512

#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions queryTableLock(), lockTable() and unlockAllTables()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not required. 
  ** So define the three interface functions as no-ops.
  */
  #define queryTableLock(a,b,c) SQLITE_OK
  #define lockTable(a,b,c) SQLITE_OK
  #define unlockAllTables(a,b,c)



#else






























































































/*
** Query to see if btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_BUSY if not.
*/
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;


























  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->pBtree!=p && pIter->iTable==iTab && 
        (pIter->eLock!=READ_LOCK || eLock!=READ_LOCK) ){
      return SQLITE_BUSY;

    }
  }
  return SQLITE_OK;
}

/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
** SQLITE_NOMEM may also be returned.
*/
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;






  assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );















  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }







|
|



|
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
>


















>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>







489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions queryTableLock(), lockTable() and unlockAllTables()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not necessary. 
  ** So define the lock related functions as no-ops.
  */
  #define queryTableLock(a,b,c) SQLITE_OK
  #define lockTable(a,b,c) SQLITE_OK
  #define unlockAllTables(a)
  #define restoreCursorPosition(a,b) SQLITE_OK
  #define saveAllCursors(a,b,c) SQLITE_OK

#else

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc = SQLITE_OK;

  assert( CURSOR_VALID==pCur->eState|| CURSOR_INVALID==pCur->eState );
  assert( 0==pCur->pKey );

  if( pCur->eState==CURSOR_VALID ){
    rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);

    /* If this is an intKey table, then the above call to BtreeKeySize()
    ** stores the integer key in pCur->nKey. In this case this value is
    ** all that is required. Otherwise, if pCur is not open on an intKey
    ** table, then malloc space for and store the pCur->nKey bytes of key 
    ** data.
    */
    if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
      void *pKey = sqliteMalloc(pCur->nKey);
      if( pKey ){
        rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
        if( pKey ){
          pCur->pKey = pKey;
        }else{
          sqliteFree(pKey);
        }
      }else{
        rc = SQLITE_NOMEM;
      }
    }
    assert( !pCur->pPage->intKey || !pCur->pKey );

    /* Todo: Should we drop the reference to pCur->pPage here? */

    if( rc==SQLITE_OK ){
      pCur->eState = CURSOR_REQUIRESEEK;
    }
  }

  return rc;
}

/*
** Save the positions of all cursors except pExcept open on the table 
** with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  if( sqlite3Tsd()->useSharedData ){
    for(p=pBt->pCursor; p; p=p->pNext){
      if( p!=pExcept && p->pgnoRoot==iRoot && p->eState==CURSOR_VALID ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
        }
      }
    }
  }
  return SQLITE_OK;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
**
** If the second argument argument - doSeek - is false, then instead of 
** returning the cursor to it's saved position, any saved position is deleted
** and the cursor state set to CURSOR_INVALID.
*/
static int restoreCursorPosition(BtCursor *pCur, int doSeek){
  int rc = SQLITE_OK;
  if( pCur->eState==CURSOR_REQUIRESEEK ){
    assert( sqlite3Tsd()->useSharedData );
    if( doSeek ){
      rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, &pCur->skip);
    }else{
      pCur->eState = CURSOR_INVALID;
    }
    if( rc==SQLITE_OK ){
      sqliteFree(pCur->pKey);
      pCur->pKey = 0;
      assert( CURSOR_VALID==pCur->eState || CURSOR_INVALID==pCur->eState );
    }
  }
  return rc;
}

/*
** Query to see if btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
** SQLITE_BUSY if not.
*/
static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  /* This is a no-op if the shared-cache is not enabled */
  if( 0==sqlite3Tsd()->useSharedData ){
    return SQLITE_OK;
  }

  /* This (along with lockTable()) is where the ReadUncommitted flag is
  ** dealt with. If the caller is querying for a read-lock and the flag is
  ** set, it is unconditionally granted - even if there are write-locks
  ** on the table. If a write-lock is requested, the ReadUncommitted flag
  ** is not considered.
  **
  ** In function lockTable(), if a read-lock is demanded and the 
  ** ReadUncommitted flag is set, no entry is added to the locks list 
  ** (BtShared.pLock).
  **
  ** To summarize: If the ReadUncommitted flag is set, then read cursors do
  ** not create or respect table locks. The locking procedure for a 
  ** write-cursor does not change.
  */
  if( 
    !p->pSqlite || 
    0==(p->pSqlite->flags&SQLITE_ReadUncommitted) || 
    eLock==WRITE_LOCK ||
    iTab==1
  ){
    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
      if( pIter->pBtree!=p && pIter->iTable==iTab && 
          (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
        return SQLITE_BUSY;
      }
    }
  }
  return SQLITE_OK;
}

/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
** SQLITE_NOMEM may also be returned.
*/
static int lockTable(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  /* This is a no-op if the shared-cache is not enabled */
  if( 0==sqlite3Tsd()->useSharedData ){
    return SQLITE_OK;
  }

  assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );

  /* If the read-uncommitted flag is set and a read-lock is requested,
  ** return early without adding an entry to the BtShared.pLock list. See
  ** comment in function queryTableLock() for more info on handling 
  ** the ReadUncommitted flag.
  */
  if( 
    (p->pSqlite) && 
    (p->pSqlite->flags&SQLITE_ReadUncommitted) && 
    (eLock==READ_LOCK) &&
    iTable!=1
  ){
    return SQLITE_OK;
  }

  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }
540
541
542
543
544
545
546







547
548
549
550
551
552
553

/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void unlockAllTables(Btree *p){
  BtLock **ppIter = &p->pBt->pLock;







  while( *ppIter ){
    BtLock *pLock = *ppIter;
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      sqliteFree(pLock);
    }else{
      ppIter = &pLock->pNext;







>
>
>
>
>
>
>







712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

/*
** Release all the table locks (locks obtained via calls to the lockTable()
** procedure) held by Btree handle p.
*/
static void unlockAllTables(Btree *p){
  BtLock **ppIter = &p->pBt->pLock;

  /* If the shared-cache extension is not enabled, there should be no
  ** locks in the BtShared.pLock list, making this procedure a no-op. Assert
  ** that this is the case.
  */
  assert( sqlite3Tsd()->useSharedData || 0==*ppIter );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      sqliteFree(pLock);
    }else{
      ppIter = &pLock->pNext;
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
  sqlite3pager_unref(pPtrmap);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_AUTOVACUUM */

/*
** Return a pointer to the Btree structure associated with btree pBt
** and connection handle pSqlite.
*/
#if 0
static Btree *btree_findref(BtShared *pBt, sqlite3 *pSqlite){
#ifndef SQLITE_OMIT_SHARED_DATA
  if( pBt->aRef ){
    int i;
    for(i=0; i<pBt->nRef; i++){
      if( pBt->aRef[i].pSqlite==pSqlite ){
        return &pBt->aRef[i];
      }
    }
    assert(0);
  }
#endif
  return &pBt->ref;
}
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







855
856
857
858
859
860
861





















862
863
864
865
866
867
868
  sqlite3pager_unref(pPtrmap);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_AUTOVACUUM */






















/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
1382
1383
1384
1385
1386
1387
1388

1389

1390
1391
1392
1393
1394
1395
1396
  int flags               /* Options */
){
  BtShared *pBt;          /* Shared part of btree structure */
  Btree *p;               /* Handle to return */
  int rc;
  int nReserve;
  unsigned char zDbHeader[100];

  SqliteTsd *pTsd = sqlite3Tsd();


  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database. This symbol is only required if
  ** either of the shared-data or autovacuum features are compiled 
  ** into the library.
  */
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)







>

>







1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
  int flags               /* Options */
){
  BtShared *pBt;          /* Shared part of btree structure */
  Btree *p;               /* Handle to return */
  int rc;
  int nReserve;
  unsigned char zDbHeader[100];
#ifndef SQLITE_OMIT_SHARED_CACHE
  SqliteTsd *pTsd = sqlite3Tsd();
#endif

  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database. This symbol is only required if
  ** either of the shared-data or autovacuum features are compiled 
  ** into the library.
  */
#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1497
1498
1499
1500
1501
1502
1503
1504
1505

1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516




1517
1518
1519
1520
1521
1522
1523

#ifndef SQLITE_OMIT_SHARED_CACHE
  /* Add the new btree to the linked list starting at SqliteTsd.pBtree */
  if( pTsd->useSharedData && zFilename && !isMemdb ){
    pBt->pNext = pTsd->pBtree;
    pTsd->pBtree = pBt;
  }
  pBt->nRef = 1;
#endif

  *ppBtree = p;
  return SQLITE_OK;
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  SqliteTsd *pTsd = sqlite3Tsd();
  BtShared *pBt = p->pBt;
  BtCursor *pCur;





  /* Drop any table-locks */
  unlockAllTables(p);

  /* Close all cursors opened via this handle.  */
  pCur = pBt->pCursor;
  while( pCur ){







<

>








<


>
>
>
>







1657
1658
1659
1660
1661
1662
1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

#ifndef SQLITE_OMIT_SHARED_CACHE
  /* Add the new btree to the linked list starting at SqliteTsd.pBtree */
  if( pTsd->useSharedData && zFilename && !isMemdb ){
    pBt->pNext = pTsd->pBtree;
    pTsd->pBtree = pBt;
  }

#endif
  pBt->nRef = 1;
  *ppBtree = p;
  return SQLITE_OK;
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){

  BtShared *pBt = p->pBt;
  BtCursor *pCur;

#ifndef SQLITE_OMIT_SHARED_CACHE
  SqliteTsd *pTsd = sqlite3Tsd();
#endif

  /* Drop any table-locks */
  unlockAllTables(p);

  /* Close all cursors opened via this handle.  */
  pCur = pBt->pCursor;
  while( pCur ){
1552
1553
1554
1555
1556
1557
1558



1559
1560
1561
1562
1563
1564
1565
    }
  }
#endif

  /* Close the pager and free the shared-btree structure */
  assert( !pBt->pCursor );
  sqlite3pager_close(pBt->pPager);



  sqliteFree(pBt);
  return SQLITE_OK;
}

/*
** Change the busy handler callback function.
*/







>
>
>







1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
    }
  }
#endif

  /* Close the pager and free the shared-btree structure */
  assert( !pBt->pCursor );
  sqlite3pager_close(pBt->pPager);
  if( pBt->xFreeSchema && pBt->pSchema ){
    pBt->xFreeSchema(pBt->pSchema);
  }
  sqliteFree(pBt);
  return SQLITE_OK;
}

/*
** Change the busy handler callback function.
*/
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
  BtShared *pBt = p->pBt;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    MemPage *pPage = pCur->pPage;
    char *zMode = pCur->wrFlag ? "rw" : "ro";
    sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
       pCur, pCur->pgnoRoot, zMode,
       pPage ? pPage->pgno : 0, pCur->idx,
       pCur->isValid ? "" : " eof"
    );
  }
}
#endif

/*
** Rollback the transaction in progress.  All cursors will be







|







2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
  BtShared *pBt = p->pBt;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    MemPage *pPage = pCur->pPage;
    char *zMode = pCur->wrFlag ? "rw" : "ro";
    sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
       pCur, pCur->pgnoRoot, zMode,
       pPage ? pPage->pgno : 0, pCur->idx,
       (pCur->eState==CURSOR_VALID) ? "" : " eof"
    );
  }
}
#endif

/*
** Rollback the transaction in progress.  All cursors will be
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542

  if( pBt->pPage1==0 ){
    rc = lockBtreeWithRetry(p);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }
  pCur = sqliteMallocRaw( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->pPage = 0;  /* For exit-handler, in case getAndInitPage() fails. */
  if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){







|







2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708

  if( pBt->pPage1==0 ){
    rc = lockBtreeWithRetry(p);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }
  pCur = sqliteMalloc( sizeof(*pCur) );
  if( pCur==0 ){
    rc = SQLITE_NOMEM;
    goto create_cursor_exception;
  }
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->pPage = 0;  /* For exit-handler, in case getAndInitPage() fails. */
  if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
  memset(&pCur->info, 0, sizeof(pCur->info));
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pCur->pPrev = 0;
  pBt->pCursor = pCur;
  pCur->isValid = 0;
  *ppCur = pCur;

  return SQLITE_OK;
create_cursor_exception:
  if( pCur ){
    releasePage(pCur->pPage);
    sqliteFree(pCur);







|







2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
  memset(&pCur->info, 0, sizeof(pCur->info));
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pCur->pPrev = 0;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  *ppCur = pCur;

  return SQLITE_OK;
create_cursor_exception:
  if( pCur ){
    releasePage(pCur->pPage);
    sqliteFree(pCur);
2600
2601
2602
2603
2604
2605
2606

2607
2608
2609
2610
2611
2612
2613

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  BtShared *pBt = pCur->pBtree->pBt;

  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;







>







2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  BtShared *pBt = pCur->pBtree->pBt;
  restoreCursorPosition(pCur, 0);
  if( pCur->pPrev ){
    pCur->pPrev->pNext = pCur->pNext;
  }else{
    pBt->pCursor = pCur->pNext;
  }
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur->pPrev;
2666
2667
2668
2669
2670
2671
2672



2673
2674
2675
2676
2677
2678

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689



2690
2691
2692
2693
2694
2695
2696

2697
2698
2699
2700
2701
2702
2703
2704
** the key for the current entry.  If the cursor is not pointing
** to a valid entry, *pSize is set to 0. 
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){



  if( !pCur->isValid ){
    *pSize = 0;
  }else{
    getCellInfo(pCur);
    *pSize = pCur->info.nKey;
  }

  return SQLITE_OK;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){



  if( !pCur->isValid ){
    /* Not pointing at a valid entry - set *pSize to 0. */
    *pSize = 0;
  }else{
    getCellInfo(pCur);
    *pSize = pCur->info.nData;
  }

  return SQLITE_OK;
}

/*
** Read payload information from the entry that the pCur cursor is
** pointing to.  Begin reading the payload at "offset" and read
** a total of "amt" bytes.  Put the result in zBuf.
**







>
>
>
|
|
|
|
|
|
>
|










>
>
>
|
|
|
|
|
|
|
>
|







2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
** the key for the current entry.  If the cursor is not pointing
** to a valid entry, *pSize is set to 0. 
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
*/
int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  int rc = restoreCursorPosition(pCur, 1);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nKey;
    }
  }
  return rc;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.  Always return SQLITE_OK.
** Failure is not possible.  If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  int rc = restoreCursorPosition(pCur, 1);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
    if( pCur->eState==CURSOR_INVALID ){
      /* Not pointing at a valid entry - set *pSize to 0. */
      *pSize = 0;
    }else{
      getCellInfo(pCur);
      *pSize = pCur->info.nData;
    }
  }
  return rc;
}

/*
** Read payload information from the entry that the pCur cursor is
** pointing to.  Begin reading the payload at "offset" and read
** a total of "amt" bytes.  Put the result in zBuf.
**
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
  int rc;
  MemPage *pPage;
  BtShared *pBt;
  int ovflSize;
  u32 nKey;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->isValid );
  pBt = pCur->pBtree->pBt;
  pPage = pCur->pPage;
  pageIntegrity(pPage);
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;







|







2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
  int rc;
  MemPage *pPage;
  BtShared *pBt;
  int ovflSize;
  u32 nKey;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->eState==CURSOR_VALID );
  pBt = pCur->pBtree->pBt;
  pPage = pCur->pPage;
  pageIntegrity(pPage);
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
2794
2795
2796
2797
2798
2799
2800


2801
2802
2803
2804
2805
2806
2807
2808


2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820


2821
2822
2823
2824


2825
2826
2827
2828
2829
2830
2831
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){


  assert( pCur->isValid );
  assert( pCur->pPage!=0 );
  if( pCur->pPage->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }
  assert( pCur->pPage->intKey==0 );
  assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);


}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){


  assert( pCur->isValid );
  assert( pCur->pPage!=0 );
  assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  return getPayload(pCur, offset, amt, pBuf, 1);


}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1.  The number of bytes of available key/data is written







>
>
|
|
|
|
|
|
|
|
>
>












>
>
|
|
|
|
>
>







2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc = restoreCursorPosition(pCur, 1);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    if( pCur->pPage->intKey ){
      return SQLITE_CORRUPT_BKPT;
    }
    assert( pCur->pPage->intKey==0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
  }
  return rc;
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc = restoreCursorPosition(pCur, 1);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->pPage!=0 );
    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
    rc = getPayload(pCur, offset, amt, pBuf, 1);
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1.  The number of bytes of available key/data is written
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
){
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  int nLocal;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->isValid );
  pPage = pCur->pPage;
  pageIntegrity(pPage);
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){







|







3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
){
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  int nLocal;

  assert( pCur!=0 && pCur->pPage!=0 );
  assert( pCur->eState==CURSOR_VALID );
  pPage = pCur->pPage;
  pageIntegrity(pPage);
  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  getCellInfo(pCur);
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
2888
2889
2890
2891
2892
2893
2894

2895
2896


2897

2898


2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){

  return (const void*)fetchPayload(pCur, pAmt, 0);
}


const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){

  return (const void*)fetchPayload(pCur, pAmt, 1);


}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  MemPage *pNewPage;
  MemPage *pOldPage;
  BtShared *pBt = pCur->pBtree->pBt;

  assert( pCur->isValid );
  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  if( rc ) return rc;
  pageIntegrity(pNewPage);
  pNewPage->idxParent = pCur->idx;
  pOldPage = pCur->pPage;
  pOldPage->idxShift = 0;
  releasePage(pOldPage);







>
|
|
>
>

>
|
>
>













|







3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return 0;
}
const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  if( pCur->eState==CURSOR_VALID ){
    return (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return 0;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  MemPage *pNewPage;
  MemPage *pOldPage;
  BtShared *pBt = pCur->pBtree->pBt;

  assert( pCur->eState==CURSOR_VALID );
  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  if( rc ) return rc;
  pageIntegrity(pNewPage);
  pNewPage->idxParent = pCur->idx;
  pOldPage = pCur->pPage;
  pOldPage->idxShift = 0;
  releasePage(pOldPage);
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;

  assert( pCur->isValid );
  pPage = pCur->pPage;
  assert( pPage!=0 );
  assert( !isRootPage(pPage) );
  pageIntegrity(pPage);
  pParent = pPage->pParent;
  assert( pParent!=0 );
  pageIntegrity(pParent);







|







3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  MemPage *pParent;
  MemPage *pPage;
  int idxParent;

  assert( pCur->eState==CURSOR_VALID );
  pPage = pCur->pPage;
  assert( pPage!=0 );
  assert( !isRootPage(pPage) );
  pageIntegrity(pPage);
  pParent = pPage->pParent;
  assert( pParent!=0 );
  pageIntegrity(pParent);
2977
2978
2979
2980
2981
2982
2983

2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc;
  BtShared *pBt = pCur->pBtree->pBt;


  rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
  if( rc ){
    pCur->isValid = 0;
    return rc;
  }
  releasePage(pCur->pPage);
  pageIntegrity(pRoot);
  pCur->pPage = pRoot;
  pCur->idx = 0;
  pCur->info.nSize = 0;
  if( pRoot->nCell==0 && !pRoot->leaf ){
    Pgno subpage;
    assert( pRoot->pgno==1 );
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    assert( subpage>0 );
    pCur->isValid = 1;
    rc = moveToChild(pCur, subpage);
  }
  pCur->isValid = pCur->pPage->nCell>0;
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc;
  MemPage *pPage;

  assert( pCur->isValid );
  while( !(pPage = pCur->pPage)->leaf ){
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->idx));
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  return SQLITE_OK;







>


|












|


|












|







3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc;
  BtShared *pBt = pCur->pBtree->pBt;

  restoreCursorPosition(pCur, 0);
  rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
  if( rc ){
    pCur->eState = CURSOR_INVALID;
    return rc;
  }
  releasePage(pCur->pPage);
  pageIntegrity(pRoot);
  pCur->pPage = pRoot;
  pCur->idx = 0;
  pCur->info.nSize = 0;
  if( pRoot->nCell==0 && !pRoot->leaf ){
    Pgno subpage;
    assert( pRoot->pgno==1 );
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    assert( subpage>0 );
    pCur->eState = CURSOR_VALID;
    rc = moveToChild(pCur, subpage);
  }
  pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc;
  MemPage *pPage;

  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->pPage)->leaf ){
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->idx));
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  return SQLITE_OK;
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc;
  MemPage *pPage;

  assert( pCur->isValid );
  while( !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->idx = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->idx = pPage->nCell - 1;
  pCur->info.nSize = 0;
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( pCur->isValid==0 ){
    assert( pCur->pPage->nCell==0 );
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pCur->pPage->nCell>0 );
  *pRes = 0;
  rc = moveToLeftmost(pCur);
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( pCur->isValid==0 ){
    assert( pCur->pPage->nCell==0 );
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pCur->isValid );
  *pRes = 0;
  rc = moveToRightmost(pCur);
  return rc;
}

/* Move the cursor so that it points to an entry near pKey/nKey.
** Return a success code.







|



















|


















|




|







3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc;
  MemPage *pPage;

  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->idx = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->idx = pPage->nCell - 1;
  pCur->info.nSize = 0;
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( pCur->eState==CURSOR_INVALID ){
    assert( pCur->pPage->nCell==0 );
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pCur->pPage->nCell>0 );
  *pRes = 0;
  rc = moveToLeftmost(pCur);
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  if( CURSOR_INVALID==pCur->eState ){
    assert( pCur->pPage->nCell==0 );
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pCur->eState==CURSOR_VALID );
  *pRes = 0;
  rc = moveToRightmost(pCur);
  return rc;
}

/* Move the cursor so that it points to an entry near pKey/nKey.
** Return a success code.
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
*/
int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );
  if( pCur->isValid==0 ){
    *pRes = -1;
    assert( pCur->pPage->nCell==0 );
    return SQLITE_OK;
  }
   for(;;){
    int lwr, upr;
    Pgno chldPg;







|







3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
*/
int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
  int rc;
  rc = moveToRoot(pCur);
  if( rc ) return rc;
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pPage->nCell==0 );
    return SQLITE_OK;
  }
   for(;;){
    int lwr, upr;
    Pgno chldPg;
3205
3206
3207
3208
3209
3210
3211




3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224













3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){




  return pCur->isValid==0;
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage = pCur->pPage;














  assert( pRes!=0 );
  if( pCur->isValid==0 ){
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pPage->isInit );
  assert( pCur->idx<pPage->nCell );

  pCur->idx++;
  pCur->info.nSize = 0;
  if( pCur->idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( isRootPage(pPage) ){
        *pRes = 1;
        pCur->isValid = 0;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }while( pCur->idx>=pPage->nCell );
    *pRes = 0;
    if( pPage->leafData ){







>
>
>
>
|












>
>
>
>
>
>
>
>
>
>
>
>
>

|



















|







3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage = pCur->pPage;

#ifndef SQLITE_OMIT_SHARED_CACHE
  rc = restoreCursorPosition(pCur, 1);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  if( pCur->skip>0 ){
    pCur->skip = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skip = 0;
#endif

  assert( pRes!=0 );
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }
  assert( pPage->isInit );
  assert( pCur->idx<pPage->nCell );

  pCur->idx++;
  pCur->info.nSize = 0;
  if( pCur->idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( isRootPage(pPage) ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }while( pCur->idx>=pPage->nCell );
    *pRes = 0;
    if( pPage->leafData ){
3271
3272
3273
3274
3275
3276
3277






3278








3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;






  if( pCur->isValid==0 ){








    *pRes = 1;
    return SQLITE_OK;
  }

  pPage = pCur->pPage;
  assert( pPage->isInit );
  assert( pCur->idx>=0 );
  if( !pPage->leaf ){
    pgno = get4byte( findCell(pPage, pCur->idx) );
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->idx==0 ){
      if( isRootPage(pPage) ){
        pCur->isValid = 0;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }
    pCur->idx--;







>
>
>
>
>
>
|
>
>
>
>
>
>
>
>















|







3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  Pgno pgno;
  MemPage *pPage;

#ifndef SQLITE_OMIT_SHARED_CACHE
  rc = restoreCursorPosition(pCur, 1);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  if( pCur->skip<0 ){
    pCur->skip = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skip = 0;
#endif

  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }

  pPage = pCur->pPage;
  assert( pPage->isInit );
  assert( pCur->idx>=0 );
  if( !pPage->leaf ){
    pgno = get4byte( findCell(pPage, pCur->idx) );
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->idx==0 ){
      if( isRootPage(pPage) ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }
    pCur->idx--;
4883
4884
4885
4886
4887
4888
4889

4890

4891
4892
4893
4894
4895
4896
4897
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors 
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){
  BtCursor *p;
  for(p=pBt->pCursor; p; p=p->pNext){

    if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue;

    if( p->wrFlag==0 ) return SQLITE_LOCKED;
    if( p->pPage->pgno!=p->pgnoRoot ){
      moveToRoot(p);
    }
  }
  return SQLITE_OK;
}







>

>







5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors 
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){
  BtCursor *p;
  for(p=pBt->pCursor; p; p=p->pNext){
    u32 flags = (p->pBtree->pSqlite ? p->pBtree->pSqlite->flags : 0);
    if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue;
    if( p->wrFlag==0 && flags&SQLITE_ReadUncommitted ) continue;
    if( p->wrFlag==0 ) return SQLITE_LOCKED;
    if( p->pPage->pgno!=p->pgnoRoot ){
      moveToRoot(p);
    }
  }
  return SQLITE_OK;
}
4925
4926
4927
4928
4929
4930
4931








4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }








  rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  pPage = pCur->pPage;
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->leafData );
  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  rc = sqlite3pager_write(pPage->aData);
  if( rc ) return rc;
  newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
  if( newCell==0 ) return SQLITE_NOMEM;
  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew<=MX_CELL_SIZE(pBt) );
  if( loc==0 && pCur->isValid ){
    int szOld;
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    oldCell = findCell(pPage, pCur->idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    szOld = cellSizePtr(pPage, oldCell);







>
>
>
>
>
>
>
>

















|







5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
  assert( !pBt->readOnly );
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Cursor not open for writing */
  }
  if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Save the positions of any other cursors open on this table */
  restoreCursorPosition(pCur, 0);
  rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
  if( rc ){
    return rc;
  }

  rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
  if( rc ) return rc;
  pPage = pCur->pPage;
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->leafData );
  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  rc = sqlite3pager_write(pPage->aData);
  if( rc ) return rc;
  newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) );
  if( newCell==0 ) return SQLITE_NOMEM;
  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew<=MX_CELL_SIZE(pBt) );
  if( loc==0 && CURSOR_VALID==pCur->eState ){
    int szOld;
    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
    oldCell = findCell(pPage, pCur->idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    szOld = cellSizePtr(pPage, oldCell);
4999
5000
5001
5002
5003
5004
5005









5006

5007

5008
5009
5010
5011
5012
5013
5014
  }
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }









  rc = sqlite3pager_write(pPage->aData);

  if( rc ) return rc;


  /* Locate the cell within it's page and leave pCell pointing to the
  ** data. The clearCell() call frees any overflow pages associated with the
  ** cell. The cell itself is still intact.
  */
  pCell = findCell(pPage, pCur->idx);
  if( !pPage->leaf ){







>
>
>
>
>
>
>
>
>
|
>
|
>







5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
  }
  if( !pCur->wrFlag ){
    return SQLITE_PERM;   /* Did not open this cursor for writing */
  }
  if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){
    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  }

  /* Restore the current cursor position (a no-op if the cursor is not in 
  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  ** open on the same table. Then call sqlite3pager_write() on the page
  ** that the entry will be deleted from.
  */
  if( 
    (rc = restoreCursorPosition(pCur, 1)) ||
    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
    (rc = sqlite3pager_write(pPage->aData))
  ){
    return rc;
  }

  /* Locate the cell within it's page and leave pCell pointing to the
  ** data. The clearCell() call frees any overflow pages associated with the
  ** cell. The cell itself is still intact.
  */
  pCell = findCell(pPage, pCur->idx);
  if( !pPage->leaf ){
5422
5423
5424
5425
5426
5427
5428










5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442


5443
5444
5445
5446
5447
5448
5449
5450
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
*/
int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  int rc;
  unsigned char *pP1;
  BtShared *pBt = p->pBt;











  assert( idx>=0 && idx<=15 );
  rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
  if( rc ) return rc;
  *pMeta = get4byte(&pP1[36 + idx*4]);
  sqlite3pager_unref(pP1);

  /* If autovacuumed is disabled in this build but we are trying to 
  ** access an autovacuumed database, then make the database readonly. 
  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
#endif



  return SQLITE_OK;
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){







>
>
>
>
>
>
>
>
>
>














>
>
|







5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
*/
int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  int rc;
  unsigned char *pP1;
  BtShared *pBt = p->pBt;

  /* Reading a meta-data value requires a read-lock on page 1 (and hence
  ** the sqlite_master table. We grab this lock regardless of whether or
  ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
  ** 1 is treated as a special case by queryTableLock() and lockTable()).
  */
  rc = queryTableLock(p, 1, READ_LOCK);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  assert( idx>=0 && idx<=15 );
  rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
  if( rc ) return rc;
  *pMeta = get4byte(&pP1[36 + idx*4]);
  sqlite3pager_unref(pP1);

  /* If autovacuumed is disabled in this build but we are trying to 
  ** access an autovacuumed database, then make the database readonly. 
  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
#endif

  /* Grab the read-lock on page 1. */
  rc = lockTable(p, 1, READ_LOCK);
  return rc;
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
5464
5465
5466
5467
5468
5469
5470



5471
5472
5473
5474
5475
5476
5477
}

/*
** Return the flag byte at the beginning of the page that the cursor
** is currently pointing to.
*/
int sqlite3BtreeFlags(BtCursor *pCur){



  MemPage *pPage = pCur->pPage;
  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}

#ifdef SQLITE_DEBUG
/*
** Print a disassembly of the given page on standard output.  This routine







>
>
>







5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
}

/*
** Return the flag byte at the beginning of the page that the cursor
** is currently pointing to.
*/
int sqlite3BtreeFlags(BtCursor *pCur){
  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  ** restoreCursorPosition() here.
  */
  MemPage *pPage = pCur->pPage;
  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
}

#ifdef SQLITE_DEBUG
/*
** Print a disassembly of the given page on standard output.  This routine
5596
5597
5598
5599
5600
5601
5602





5603
5604
5605
5606
5607
5608
5609
**
** This routine is used for testing and debugging only.
*/
int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
  int cnt, idx;
  MemPage *pPage = pCur->pPage;
  BtCursor tmpCur;






  pageIntegrity(pPage);
  assert( pPage->isInit );
  getTempCursor(pCur, &tmpCur);
  while( upCnt-- ){
    moveToParent(&tmpCur);
  }







>
>
>
>
>







5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
**
** This routine is used for testing and debugging only.
*/
int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){
  int cnt, idx;
  MemPage *pPage = pCur->pPage;
  BtCursor tmpCur;

  int rc = restoreCursorPosition(pCur, 1);
  if( rc!=SQLITE_OK ){
    return rc;
  }

  pageIntegrity(pPage);
  assert( pPage->isInit );
  getTempCursor(pCur, &tmpCur);
  while( upCnt-- ){
    moveToParent(&tmpCur);
  }
6191
6192
6193
6194
6195
6196
6197

























6198
6199
6200
6201
6202
6203
6204
    }
    return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc);
#endif
    return sqlite3pager_sync(pBt->pPager, zMaster, 0);
  }
  return SQLITE_OK;
}


























#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable the shared pager and schema features.
*/
int sqlite3_enable_shared_cache(int enable){
  SqliteTsd *pTsd = sqlite3Tsd();







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
    }
    return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc);
#endif
    return sqlite3pager_sync(pBt->pPager, zMaster, 0);
  }
  return SQLITE_OK;
}

/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for it's own
** purposes (for example, to store a high-level schema associated with 
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent 
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned. 
**
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. This function should not call sqliteFree()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  if( !pBt->pSchema ){
    pBt->pSchema = sqliteMalloc(nBytes);
    pBt->xFreeSchema = xFree;
  }
  return pBt->pSchema;
}

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable the shared pager and schema features.
*/
int sqlite3_enable_shared_cache(int enable){
  SqliteTsd *pTsd = sqlite3Tsd();
Changes to src/btree.h.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.66 2005/12/30 16:28:02 danielk1977 Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
**
** @(#) $Id: btree.h,v 1.67 2006/01/05 11:34:34 danielk1977 Exp $
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
72
73
74
75
76
77
78

79
80
81
82
83
84
85
int sqlite3BtreeBeginStmt(Btree*);
int sqlite3BtreeCommitStmt(Btree*);
int sqlite3BtreeRollbackStmt(Btree*);
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInStmt(Btree*);
int sqlite3BtreeSync(Btree*, const char *zMaster);


const char *sqlite3BtreeGetFilename(Btree *);
const char *sqlite3BtreeGetDirname(Btree *);
const char *sqlite3BtreeGetJournalname(Btree *);
int sqlite3BtreeCopyFile(Btree *, Btree *);

/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR







>







72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
int sqlite3BtreeBeginStmt(Btree*);
int sqlite3BtreeCommitStmt(Btree*);
int sqlite3BtreeRollbackStmt(Btree*);
int sqlite3BtreeCreateTable(Btree*, int*, int flags);
int sqlite3BtreeIsInTrans(Btree*);
int sqlite3BtreeIsInStmt(Btree*);
int sqlite3BtreeSync(Btree*, const char *zMaster);
void *sqlite3BtreeSchema(Btree *, int, void(*)(void *));

const char *sqlite3BtreeGetFilename(Btree *);
const char *sqlite3BtreeGetDirname(Btree *);
const char *sqlite3BtreeGetJournalname(Btree *);
int sqlite3BtreeCopyFile(Btree *, Btree *);

/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.366 2006/01/04 21:40:07 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.367 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
  Table *p = 0;
  int i;
  assert( zName!=0 );
  assert( (db->flags & SQLITE_Initialized) || db->init.busy );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    p = sqlite3HashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}

/*
** Locate the in-memory structure that describes a particular database







|







168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
  Table *p = 0;
  int i;
  assert( zName!=0 );
  assert( (db->flags & SQLITE_Initialized) || db->init.busy );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
    if( p ) break;
  }
  return p;
}

/*
** Locate the in-memory structure that describes a particular database
223
224
225
226
227
228
229

230


231

232
233
234
235
236
237
238
*/
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  assert( (db->flags & SQLITE_Initialized) || db->init.busy );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */

    if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;


    p = sqlite3HashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);

    if( p ) break;
  }
  return p;
}

/*
** Reclaim the memory used by an index







>

>
>
|
>







223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
*/
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  assert( (db->flags & SQLITE_Initialized) || db->init.busy );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    DbSchema *pSchema = db->aDb[j].pSchema;
    if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
    assert( pSchema || (j==1 && !db->aDb[1].pBt) );
    if( pSchema ){
      p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
    }
    if( p ) break;
  }
  return p;
}

/*
** Reclaim the memory used by an index
248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite3 *db, Index *p){
  Index *pOld;


  assert( db!=0 && p->zName!=0 );
  pOld = sqlite3HashInsert(&db->aDb[p->iDb].idxHash, p->zName,
                          strlen(p->zName)+1, 0);
  assert( pOld==0 || pOld==p );
  freeIndex(p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
** with the index.
*/
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
  Index *pIndex;
  int len;


  len = strlen(zIdxName);
  pIndex = sqlite3HashInsert(&db->aDb[iDb].idxHash, zIdxName, len+1, 0);
  if( pIndex ){
    if( pIndex->pTable->pIndex==pIndex ){
      pIndex->pTable->pIndex = pIndex->pNext;
    }else{
      Index *p;
      for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
      if( p && p->pNext==pIndex ){







>

|
|
<













>


|







252
253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite3 *db, Index *p){
  Index *pOld;
  const char *zName = p->zName;

  assert( db!=0 && zName!=0 );
  pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);

  assert( pOld==0 || pOld==p );
  freeIndex(p);
}

/*
** For the index called zIdxName which is found in the database iDb,
** unlike that index from its Table then remove the index from
** the index hash table and free all memory structures associated
** with the index.
*/
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
  Index *pIndex;
  int len;
  Hash *pHash = &db->aDb[iDb].pSchema->idxHash;

  len = strlen(zIdxName);
  pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
  if( pIndex ){
    if( pIndex->pTable->pIndex==pIndex ){
      pIndex->pTable->pIndex = pIndex->pNext;
    }else{
      Index *p;
      for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
      if( p && p->pNext==pIndex ){
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

328
329
330
331
332
333
334
  Hash temp2;
  int i, j;

  assert( iDb>=0 && iDb<db->nDb );
  db->flags &= ~SQLITE_Initialized;
  for(i=iDb; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];

    temp1 = pDb->tblHash;
    temp2 = pDb->trigHash;
    sqlite3HashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashClear(&pDb->aFKey);
    sqlite3HashClear(&pDb->idxHash);
    for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
      sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
    }
    sqlite3HashClear(&temp2);
    sqlite3HashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
    for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
      Table *pTab = sqliteHashData(pElem);
      sqlite3DeleteTable(db, pTab);
    }
    sqlite3HashClear(&temp1);
    pDb->pSeqTab = 0;
    DbClearProperty(db, i, DB_SchemaLoaded);

    if( iDb>0 ) return;
  }
  assert( iDb==0 );
  db->flags &= ~SQLITE_InternChanges;

  /* If one or more of the auxiliary database files has been closed,
  ** then remove then from the auxiliary database list.  We take the







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  Hash temp2;
  int i, j;

  assert( iDb>=0 && iDb<db->nDb );
  db->flags &= ~SQLITE_Initialized;
  for(i=iDb; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      temp1 = pDb->pSchema->tblHash;
      temp2 = pDb->pSchema->trigHash;
      sqlite3HashInit(&pDb->pSchema->trigHash, SQLITE_HASH_STRING, 0);
      sqlite3HashClear(&pDb->pSchema->aFKey);
      sqlite3HashClear(&pDb->pSchema->idxHash);
      for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
        sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem));
      }
      sqlite3HashClear(&temp2);
      sqlite3HashInit(&pDb->pSchema->tblHash, SQLITE_HASH_STRING, 0);
      for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
        Table *pTab = sqliteHashData(pElem);
        sqlite3DeleteTable(db, pTab);
      }
      sqlite3HashClear(&temp1);
      pDb->pSchema->pSeqTab = 0;
      DbClearProperty(db, i, DB_SchemaLoaded);
    }
    if( iDb>0 ) return;
  }
  assert( iDb==0 );
  db->flags &= ~SQLITE_InternChanges;

  /* If one or more of the auxiliary database files has been closed,
  ** then remove then from the auxiliary database list.  We take the
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
  }
  assert( pTable->nRef==0 );

  /* Delete all indices associated with this table
  */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
    sqliteDeleteIndex(db, pIndex);
  }

#ifndef SQLITE_OMIT_FOREIGN_KEY
  /* Delete all foreign keys associated with this table.  The keys
  ** should have already been unlinked from the db->aFKey hash table 
  */
  for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
    pNextFKey = pFKey->pNextFrom;
    assert( pTable->iDb<db->nDb );
    assert( sqlite3HashFind(&db->aDb[pTable->iDb].aFKey,
                           pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
    sqliteFree(pFKey);
  }
#endif

  /* Delete the Table structure itself.
  */







|









|
|







436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
  }
  assert( pTable->nRef==0 );

  /* Delete all indices associated with this table
  */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->pSchema==pTable->pSchema );
    sqliteDeleteIndex(db, pIndex);
  }

#ifndef SQLITE_OMIT_FOREIGN_KEY
  /* Delete all foreign keys associated with this table.  The keys
  ** should have already been unlinked from the db->aFKey hash table 
  */
  for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
    pNextFKey = pFKey->pNextFrom;
    assert( sqlite3SchemaToIndex(db, pTable->pSchema)<db->nDb );
    assert( sqlite3HashFind(&pTable->pSchema->aFKey,
                           pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
    sqliteFree(pFKey);
  }
#endif

  /* Delete the Table structure itself.
  */
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  FKey *pF1, *pF2;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName && zTabName[0] );
  pDb = &db->aDb[iDb];
  p = sqlite3HashInsert(&pDb->tblHash, zTabName, strlen(zTabName)+1, 0);
  if( p ){
#ifndef SQLITE_OMIT_FOREIGN_KEY
    for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
      int nTo = strlen(pF1->zTo) + 1;
      pF2 = sqlite3HashFind(&pDb->aFKey, pF1->zTo, nTo);
      if( pF2==pF1 ){
        sqlite3HashInsert(&pDb->aFKey, pF1->zTo, nTo, pF1->pNextTo);
      }else{
        while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
        if( pF2 ){
          pF2->pNextTo = pF1->pNextTo;
        }
      }
    }







|




|

|







478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
  FKey *pF1, *pF2;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName && zTabName[0] );
  pDb = &db->aDb[iDb];
  p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
  if( p ){
#ifndef SQLITE_OMIT_FOREIGN_KEY
    for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
      int nTo = strlen(pF1->zTo) + 1;
      pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
      if( pF2==pF1 ){
        sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
      }else{
        while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
        if( pF2 ){
          pF2->pNextTo = pF1->pNextTo;
        }
      }
    }
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->nCol = 0;
  pTable->aCol = 0;
  pTable->iPKey = -1;
  pTable->pIndex = 0;
  pTable->iDb = iDb;
  pTable->nRef = 1;
  if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
  pParse->pNewTable = pTable;

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
    db->aDb[iDb].pSeqTab = pTable;
  }
#endif

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause







|










|







737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
    goto begin_table_error;
  }
  pTable->zName = zName;
  pTable->nCol = 0;
  pTable->aCol = 0;
  pTable->iPKey = -1;
  pTable->pIndex = 0;
  pTable->pSchema = db->aDb[iDb].pSchema;
  pTable->nRef = 1;
  if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
  pParse->pNewTable = pTable;

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
    pTable->pSchema->pSeqTab = pTable;
  }
#endif

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
  sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].schema_cookie+1, 0);
  sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.







|







1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
** This plan is not completely bullet-proof.  It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value.  But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
  sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
  sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
}

/*
** Generate a CREATE TABLE statement appropriate for the given
** table.  Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p){
  int i, k, n;
  char *zStmt;
  char *zSep, *zSep2, *zEnd, *z;
  Column *pCol;
  n = 0;
  for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
    n += identLength(pCol->zName);







|







1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
}

/*
** Generate a CREATE TABLE statement appropriate for the given
** table.  Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p, int isTemp){
  int i, k, n;
  char *zStmt;
  char *zSep, *zSep2, *zEnd, *z;
  Column *pCol;
  n = 0;
  for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
    n += identLength(pCol->zName);
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqliteMallocRaw( n );
  if( zStmt==0 ) return 0;
  strcpy(zStmt, !OMIT_TEMPDB&&p->iDb==1 ? "CREATE TEMP TABLE ":"CREATE TABLE ");
  k = strlen(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    strcpy(&zStmt[k], zSep);
    k += strlen(&zStmt[k]);
    zSep = zSep2;







|







1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
    zSep = "\n  ";
    zSep2 = ",\n  ";
    zEnd = "\n)";
  }
  n += 35 + 6*p->nCol;
  zStmt = sqliteMallocRaw( n );
  if( zStmt==0 ) return 0;
  strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
  k = strlen(zStmt);
  identPut(zStmt, &k, p->zName);
  zStmt[k++] = '(';
  for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
    strcpy(&zStmt[k], zSep);
    k += strlen(&zStmt[k]);
    zSep = zSep2;
1296
1297
1298
1299
1300
1301
1302

1303
1304
1305
1306
1307
1308
1309
1310


1311
1312
1313
1314
1315
1316
1317
  Parse *pParse,          /* Parse context */
  Token *pCons,           /* The ',' token after the last column defn. */
  Token *pEnd,            /* The final ')' token in the CREATE TABLE */
  Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
){
  Table *p;
  sqlite3 *db = pParse->db;


  if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3Tsd()->mallocFailed ) {
    return;
  }
  p = pParse->pNewTable;
  if( p==0 ) return;

  assert( !db->init.busy || !pSelect );



#ifndef SQLITE_OMIT_CHECK
  /* Resolve names in all CHECK constraint expressions.
  */
  if( p->pCheck ){
    SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
    NameContext sNC;                /* Name context for pParse->pNewTable */







>








>
>







1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
  Parse *pParse,          /* Parse context */
  Token *pCons,           /* The ',' token after the last column defn. */
  Token *pEnd,            /* The final ')' token in the CREATE TABLE */
  Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
){
  Table *p;
  sqlite3 *db = pParse->db;
  int iDb;

  if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3Tsd()->mallocFailed ) {
    return;
  }
  p = pParse->pNewTable;
  if( p==0 ) return;

  assert( !db->init.busy || !pSelect );

  iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);

#ifndef SQLITE_OMIT_CHECK
  /* Resolve names in all CHECK constraint expressions.
  */
  if( p->pCheck ){
    SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
    NameContext sNC;                /* Name context for pParse->pNewTable */
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    ** Once the SELECT has been coded by sqlite3Select(), it is in a
    ** suitable state to query for the column names and types to be used
    ** by the new table.
    */
    if( pSelect ){
      Table *pSelTab;
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3VdbeAddOp(v, OP_Integer, p->iDb, 0);
      sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
      sqlite3VdbeAddOp(v, OP_Close, 1, 0);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(0, pSelTab);
      }
    }

    /* Compute the complete text of the CREATE statement */
    if( pSelect ){
      zStmt = createTableStmt(p);
    }else{
      n = pEnd->z - pParse->sNameToken.z + 1;
      zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
    }

    /* A slot for the record has already been allocated in the 
    ** SQLITE_MASTER table.  We just need to update that slot with all
    ** the information we've collected.  The rowid for the preallocated
    ** slot is the 2nd item on the stack.  The top of the stack is the
    ** root page for the new table (or a 0 if this is a view).
    */
    sqlite3NestedParse(pParse,
      "UPDATE %Q.%s "
         "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
       "WHERE rowid=#1",
      db->aDb[p->iDb].zName, SCHEMA_TABLE(p->iDb),
      zType,
      p->zName,
      p->zName,
      zStmt
    );
    sqliteFree(zStmt);
    sqlite3ChangeCookie(db, v, p->iDb);

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->autoInc ){
      Db *pDb = &db->aDb[p->iDb];
      if( pDb->pSeqTab==0 ){
        sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeOp3(v, OP_ParseSchema, p->iDb, 0,
        sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy && pParse->nErr==0 ){
    Table *pOld;
    FKey *pFKey; 
    Db *pDb = &db->aDb[p->iDb];
    pOld = sqlite3HashInsert(&pDb->tblHash, p->zName, strlen(p->zName)+1, p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
#ifndef SQLITE_OMIT_FOREIGN_KEY
    for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
      int nTo = strlen(pFKey->zTo) + 1;
      pFKey->pNextTo = sqlite3HashFind(&pDb->aFKey, pFKey->zTo, nTo);
      sqlite3HashInsert(&pDb->aFKey, pFKey->zTo, nTo, pFKey);
    }
#endif
    pParse->pNewTable = 0;
    db->nTable++;
    db->flags |= SQLITE_InternChanges;

#ifndef SQLITE_OMIT_ALTERTABLE







|


















|















|






|






|
|









|









|
|







|
|







1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
    ** Once the SELECT has been coded by sqlite3Select(), it is in a
    ** suitable state to query for the column names and types to be used
    ** by the new table.
    */
    if( pSelect ){
      Table *pSelTab;
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
      sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
      pParse->nTab = 2;
      sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
      sqlite3VdbeAddOp(v, OP_Close, 1, 0);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(0, pSelTab);
      }
    }

    /* Compute the complete text of the CREATE statement */
    if( pSelect ){
      zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
    }else{
      n = pEnd->z - pParse->sNameToken.z + 1;
      zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
    }

    /* A slot for the record has already been allocated in the 
    ** SQLITE_MASTER table.  We just need to update that slot with all
    ** the information we've collected.  The rowid for the preallocated
    ** slot is the 2nd item on the stack.  The top of the stack is the
    ** root page for the new table (or a 0 if this is a view).
    */
    sqlite3NestedParse(pParse,
      "UPDATE %Q.%s "
         "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
       "WHERE rowid=#1",
      db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
      zType,
      p->zName,
      p->zName,
      zStmt
    );
    sqliteFree(zStmt);
    sqlite3ChangeCookie(db, v, iDb);

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->autoInc ){
      Db *pDb = &db->aDb[iDb];
      if( pDb->pSchema->pSeqTab==0 ){
        sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
        sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy && pParse->nErr==0 ){
    Table *pOld;
    FKey *pFKey; 
    DbSchema *pSchema = p->pSchema;
    pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
#ifndef SQLITE_OMIT_FOREIGN_KEY
    for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
      int nTo = strlen(pFKey->zTo) + 1;
      pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
      sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
    }
#endif
    pParse->pNewTable = 0;
    db->nTable++;
    db->flags |= SQLITE_InternChanges;

#ifndef SQLITE_OMIT_ALTERTABLE
1498
1499
1500
1501
1502
1503
1504

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

1518
1519
1520
1521
1522
1523
1524
1525
){
  Table *p;
  int n;
  const unsigned char *z;
  Token sEnd;
  DbFixer sFix;
  Token *pName;


  if( pParse->nVar>0 ){
    sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
    sqlite3SelectDelete(pSelect);
    return;
  }
  sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1, 0);
  p = pParse->pNewTable;
  if( p==0 || pParse->nErr ){
    sqlite3SelectDelete(pSelect);
    return;
  }
  sqlite3TwoPartName(pParse, pName1, pName2, &pName);

  if( sqlite3FixInit(&sFix, pParse, p->iDb, "view", pName)
    && sqlite3FixSelect(&sFix, pSelect)
  ){
    sqlite3SelectDelete(pSelect);
    return;
  }

  /* Make a copy of the entire SELECT statement that defines the view.







>













>
|







1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
){
  Table *p;
  int n;
  const unsigned char *z;
  Token sEnd;
  DbFixer sFix;
  Token *pName;
  int iDb;

  if( pParse->nVar>0 ){
    sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
    sqlite3SelectDelete(pSelect);
    return;
  }
  sqlite3StartTable(pParse, pBegin, pName1, pName2, isTemp, 1, 0);
  p = pParse->pNewTable;
  if( p==0 || pParse->nErr ){
    sqlite3SelectDelete(pSelect);
    return;
  }
  sqlite3TwoPartName(pParse, pName1, pName2, &pName);
  iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
  if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
    && sqlite3FixSelect(&sFix, pSelect)
  ){
    sqlite3SelectDelete(pSelect);
    return;
  }

  /* Make a copy of the entire SELECT statement that defines the view.
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658

1659

1660
1661
1662
1663
1664
1665
1666

1667
1668
1669
1670
1671
1672
1673
1674
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(0, pSelTab);
      DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3SelectDelete(pSel);
  } else {
    nErr++;
  }
  return nErr;  
}
#endif /* SQLITE_OMIT_VIEW */

#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite3 *db, int idx){
  HashElem *i;
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteResetColumnNames(pTab);
    }
  }
  DbClearProperty(db, idx, DB_UnresetViews);
}
#else
# define sqliteViewResetAll(A,B)
#endif /* SQLITE_OMIT_VIEW */

/*
** This function is called by the VDBE to adjust the internal schema
** used by SQLite when the btree layer moves a table root page. The
** root-page of a table or index in database iDb has changed from iFrom
** to iTo.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
  HashElem *pElem;

  

  for(pElem=sqliteHashFirst(&pDb->tblHash); pElem; pElem=sqliteHashNext(pElem)){
    Table *pTab = sqliteHashData(pElem);
    if( pTab->tnum==iFrom ){
      pTab->tnum = iTo;
      return;
    }
  }

  for(pElem=sqliteHashFirst(&pDb->idxHash); pElem; pElem=sqliteHashNext(pElem)){
    Index *pIdx = sqliteHashData(pElem);
    if( pIdx->tnum==iFrom ){
      pIdx->tnum = iTo;
      return;
    }
  }
  assert(0);







|



















|




















>
|
>
|






>
|







1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(0, pSelTab);
      pTable->pSchema->flags |= DB_UnresetViews;
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3SelectDelete(pSel);
  } else {
    nErr++;
  }
  return nErr;  
}
#endif /* SQLITE_OMIT_VIEW */

#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite3 *db, int idx){
  HashElem *i;
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteResetColumnNames(pTab);
    }
  }
  DbClearProperty(db, idx, DB_UnresetViews);
}
#else
# define sqliteViewResetAll(A,B)
#endif /* SQLITE_OMIT_VIEW */

/*
** This function is called by the VDBE to adjust the internal schema
** used by SQLite when the btree layer moves a table root page. The
** root-page of a table or index in database iDb has changed from iFrom
** to iTo.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
  HashElem *pElem;
  Hash *pHash;

  pHash = &pDb->pSchema->tblHash;
  for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
    Table *pTab = sqliteHashData(pElem);
    if( pTab->tnum==iFrom ){
      pTab->tnum = iTo;
      return;
    }
  }
  pHash = &pDb->pSchema->idxHash;
  for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
    Index *pIdx = sqliteHashData(pElem);
    if( pIdx->tnum==iFrom ){
      pIdx->tnum = iTo;
      return;
    }
  }
  assert(0);
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749



1750
1751

1752
1753
1754
1755
1756
1757
1758
    int iLargest = 0;

    if( iDestroyed==0 || iTab<iDestroyed ){
      iLargest = iTab;
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int iIdx = pIdx->tnum;
      assert( pIdx->iDb==pTab->iDb );
      if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
        iLargest = iIdx;
      }
    }
    if( iLargest==0 ) return;



    destroyRootPage(pParse, iLargest, pTab->iDb);
    iDestroyed = iLargest;

  }
#endif
}

/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.







|




|
>
>
>
|
|
>







1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
    int iLargest = 0;

    if( iDestroyed==0 || iTab<iDestroyed ){
      iLargest = iTab;
    }
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int iIdx = pIdx->tnum;
      assert( pIdx->pSchema==pTab->pSchema );
      if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
        iLargest = iIdx;
      }
    }
    if( iLargest==0 ){
      return;
    }else{
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
      destroyRootPage(pParse, iLargest, iDb);
      iDestroyed = iLargest;
    }
  }
#endif
}

/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

  if( pTab==0 ){
    if( noErr ){
      sqlite3ErrorClear(pParse);
    }
    goto exit_drop_table;
  }
  iDb = pTab->iDb;
  assert( iDb>=0 && iDb<db->nDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code;
    const char *zTab = SCHEMA_TABLE(pTab->iDb);
    const char *zDb = db->aDb[pTab->iDb].zName;
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
      goto exit_drop_table;
    }
    if( isView ){
      if( !OMIT_TEMPDB && iDb==1 ){
        code = SQLITE_DROP_TEMP_VIEW;
      }else{







|




|
|







1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

  if( pTab==0 ){
    if( noErr ){
      sqlite3ErrorClear(pParse);
    }
    goto exit_drop_table;
  }
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 && iDb<db->nDb );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code;
    const char *zTab = SCHEMA_TABLE(iDb);
    const char *zDb = db->aDb[iDb].zName;
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
      goto exit_drop_table;
    }
    if( isView ){
      if( !OMIT_TEMPDB && iDb==1 ){
        code = SQLITE_DROP_TEMP_VIEW;
      }else{
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( pTab->readOnly || pTab==db->aDb[iDb].pSeqTab ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.







|







1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
      goto exit_drop_table;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
      goto exit_drop_table;
    }
  }
#endif
  if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
    sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
    goto exit_drop_table;
  }

#ifndef SQLITE_OMIT_VIEW
  /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  ** on a table.
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842

1843
1844
1845
1846
1847
1848
1849

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    Trigger *pTrigger;
    int iDb = pTab->iDb;
    Db *pDb = &db->aDb[iDb];
    sqlite3BeginWriteOperation(pParse, 0, iDb);

    /* Drop all triggers associated with the table being dropped. Code
    ** is generated to remove entries from sqlite_master and/or
    ** sqlite_temp_master if required.
    */
    pTrigger = pTab->pTrigger;
    while( pTrigger ){
      assert( pTrigger->iDb==iDb || pTrigger->iDb==1 );

      sqlite3DropTriggerPtr(pParse, pTrigger, 1);
      pTrigger = pTrigger->pNext;
    }

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Remove any entries of the sqlite_sequence table associated with
    ** the table being dropped. This is done before the table is dropped







<









|
>







1844
1845
1846
1847
1848
1849
1850

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868

  /* Generate code to remove the table from the master table
  ** on disk.
  */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    Trigger *pTrigger;

    Db *pDb = &db->aDb[iDb];
    sqlite3BeginWriteOperation(pParse, 0, iDb);

    /* Drop all triggers associated with the table being dropped. Code
    ** is generated to remove entries from sqlite_master and/or
    ** sqlite_temp_master if required.
    */
    pTrigger = pTab->pTrigger;
    while( pTrigger ){
      assert( pTrigger->pSchema==pTab->pSchema || 
          pTrigger->pSchema==db->aDb[1].pSchema );
      sqlite3DropTriggerPtr(pParse, pTrigger, 1);
      pTrigger = pTrigger->pNext;
    }

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Remove any entries of the sqlite_sequence table associated with
    ** the table being dropped. This is done before the table is dropped
2031
2032
2033
2034
2035
2036
2037

2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab;       /* Btree cursor used for pTab */
  int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
  int addr1;                     /* Address of top of loop */
  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */


#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      pParse->db->aDb[pIndex->iDb].zName ) ){
    return;
  }
#endif

  /* Ensure all the required collation sequences are available. This
  ** routine will invoke the collation-needed callback if necessary (and
  ** if one has been registered).
  */
  if( sqlite3CheckIndexCollSeq(pParse, pIndex) ){
    return;
  }

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
    tnum = 0;
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp(v, OP_Clear, tnum, pIndex->iDb);
  }
  sqlite3VdbeAddOp(v, OP_Integer, pIndex->iDb, 0);
  sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum,
                    (char*)&pIndex->keyInfo, P3_KEYINFO);
  sqlite3OpenTableForReading(v, iTab, pTab);
  addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
  sqlite3GenerateIndexKey(v, pIndex, iTab);
  if( pIndex->onError!=OE_None ){
    int curaddr = sqlite3VdbeCurrentAddr(v);
    int addr2 = curaddr+4;
    sqlite3VdbeChangeP2(v, curaddr-1, addr2);
    sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);







>



|



















|

|


|







2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab;       /* Btree cursor used for pTab */
  int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
  int addr1;                     /* Address of top of loop */
  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */
  int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
      pParse->db->aDb[iDb].zName ) ){
    return;
  }
#endif

  /* Ensure all the required collation sequences are available. This
  ** routine will invoke the collation-needed callback if necessary (and
  ** if one has been registered).
  */
  if( sqlite3CheckIndexCollSeq(pParse, pIndex) ){
    return;
  }

  v = sqlite3GetVdbe(pParse);
  if( v==0 ) return;
  if( memRootPage>=0 ){
    sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
    tnum = 0;
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
  }
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum,
                    (char*)&pIndex->keyInfo, P3_KEYINFO);
  sqlite3OpenTableForReading(v, iTab, iDb, pTab);
  addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
  sqlite3GenerateIndexKey(v, pIndex, iTab);
  if( pIndex->onError!=OE_None ){
    int curaddr = sqlite3VdbeCurrentAddr(v);
    int addr2 = curaddr+4;
    sqlite3VdbeChangeP2(v, curaddr-1, addr2);
    sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
    if( iDb<0 ) goto exit_create_index;

#ifndef SQLITE_OMIT_TEMPDB
    /* If the index name was unqualified, check if the the table
    ** is a temp table. If so, set the database to 1.
    */
    pTab = sqlite3SrcListLookup(pParse, pTblName);
    if( pName2 && pName2->n==0 && pTab && pTab->iDb==1 ){
      iDb = 1;
    }
#endif

    if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
        sqlite3FixSrcList(&sFix, pTblName)
    ){
      /* Because the parser constructs pTblName from a single identifier,
      ** sqlite3FixSrcList can never fail. */
      assert(0);
    }
    pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 
        pTblName->a[0].zDatabase);
    if( !pTab ) goto exit_create_index;
    assert( iDb==pTab->iDb );
  }else{
    assert( pName==0 );
    pTab =  pParse->pNewTable;
    if( !pTab ) goto exit_create_index;
    iDb = pTab->iDb;
  }
  pDb = &db->aDb[iDb];

  if( pTab==0 || pParse->nErr ) goto exit_create_index;
  if( pTab->readOnly ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;







|














|


|

|







2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
    if( iDb<0 ) goto exit_create_index;

#ifndef SQLITE_OMIT_TEMPDB
    /* If the index name was unqualified, check if the the table
    ** is a temp table. If so, set the database to 1.
    */
    pTab = sqlite3SrcListLookup(pParse, pTblName);
    if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
      iDb = 1;
    }
#endif

    if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
        sqlite3FixSrcList(&sFix, pTblName)
    ){
      /* Because the parser constructs pTblName from a single identifier,
      ** sqlite3FixSrcList can never fail. */
      assert(0);
    }
    pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName, 
        pTblName->a[0].zDatabase);
    if( !pTab ) goto exit_create_index;
    assert( db->aDb[iDb].pSchema==pTab->pSchema );
  }else{
    assert( pName==0 );
    pTab = pParse->pNewTable;
    if( !pTab ) goto exit_create_index;
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  }
  pDb = &db->aDb[iDb];

  if( pTab==0 || pParse->nErr ) goto exit_create_index;
  if( pTab->readOnly ){
    sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
    goto exit_create_index;
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
  pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1];
  pIndex->keyInfo.aSortOrder = &pIndex->zName[nName+1];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->iDb = iDb;

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{
    sortOrderMask = 0;    /* Ignore DESC */
  }

  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error







|



|







2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
  pIndex->zName = (char*)&pIndex->aiRowEst[pList->nExpr+1];
  pIndex->keyInfo.aSortOrder = &pIndex->zName[nName+1];
  strcpy(pIndex->zName, zName);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = onError;
  pIndex->autoIndex = pName==0;
  pIndex->pSchema = db->aDb[iDb].pSchema;

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{
    sortOrderMask = 0;    /* Ignore DESC */
  }

  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( db->init.busy ){
    Index *p;
    p = sqlite3HashInsert(&db->aDb[pIndex->iDb].idxHash, 
                         pIndex->zName, strlen(pIndex->zName)+1, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
    if( pTblName!=0 ){







|







2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( db->init.busy ){
    Index *p;
    p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
                         pIndex->zName, strlen(pIndex->zName)+1, pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      goto exit_create_index;
    }
    db->flags |= SQLITE_InternChanges;
    if( pTblName!=0 ){
2529
2530
2531
2532
2533
2534
2535

2536
2537
2538
2539
2540
2541
2542
** This routine will drop an existing named index.  This routine
** implements the DROP INDEX statement.
*/
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
  Index *pIndex;
  Vdbe *v;
  sqlite3 *db = pParse->db;


  if( pParse->nErr || sqlite3Tsd()->mallocFailed ){
    goto exit_drop_index;
  }
  assert( pName->nSrc==1 );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    goto exit_drop_index;







>







2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
** This routine will drop an existing named index.  This routine
** implements the DROP INDEX statement.
*/
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
  Index *pIndex;
  Vdbe *v;
  sqlite3 *db = pParse->db;
  int iDb;

  if( pParse->nErr || sqlite3Tsd()->mallocFailed ){
    goto exit_drop_index;
  }
  assert( pName->nSrc==1 );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    goto exit_drop_index;
2550
2551
2552
2553
2554
2555
2556

2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
    goto exit_drop_index;
  }
  if( pIndex->autoIndex ){
    sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
      "or PRIMARY KEY constraint cannot be dropped", 0);
    goto exit_drop_index;
  }

#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_INDEX;
    Table *pTab = pIndex->pTable;
    const char *zDb = db->aDb[pIndex->iDb].zName;
    const char *zTab = SCHEMA_TABLE(pIndex->iDb);
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      goto exit_drop_index;
    }
    if( !OMIT_TEMPDB && pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
    if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
      goto exit_drop_index;
    }
  }
#endif

  /* Generate code to remove the index and from the master table */
  v = sqlite3GetVdbe(pParse);
  if( v ){
    int iDb = pIndex->iDb;
    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.%s WHERE name=%Q",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       pIndex->zName
    );
    sqlite3ChangeCookie(db, v, iDb);
    destroyRootPage(pParse, pIndex->tnum, iDb);







>




|
|



|









<







2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597

2598
2599
2600
2601
2602
2603
2604
    goto exit_drop_index;
  }
  if( pIndex->autoIndex ){
    sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
      "or PRIMARY KEY constraint cannot be dropped", 0);
    goto exit_drop_index;
  }
  iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_INDEX;
    Table *pTab = pIndex->pTable;
    const char *zDb = db->aDb[iDb].zName;
    const char *zTab = SCHEMA_TABLE(iDb);
    if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
      goto exit_drop_index;
    }
    if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
    if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
      goto exit_drop_index;
    }
  }
#endif

  /* Generate code to remove the index and from the master table */
  v = sqlite3GetVdbe(pParse);
  if( v ){

    sqlite3NestedParse(pParse,
       "DELETE FROM %Q.%s WHERE name=%Q",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       pIndex->zName
    );
    sqlite3ChangeCookie(db, v, iDb);
    destroyRootPage(pParse, pIndex->tnum, iDb);
2849
2850
2851
2852
2853
2854
2855






2856
2857
2858
2859
2860
2861
2862
    int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
    if( rc!=SQLITE_OK ){
      sqlite3ErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }






    if( db->flags & !db->autoCommit ){
      rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
      if( rc!=SQLITE_OK ){
        sqlite3ErrorMsg(pParse, "unable to get a write lock on "
          "the temporary database file");
        pParse->rc = rc;
        return 1;







>
>
>
>
>
>







2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
    int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
    if( rc!=SQLITE_OK ){
      sqlite3ErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }
/*
    db->aDb[1].pSchema = sqlite3SchemaGet(db->aDb[1].pBt);
    if( !db->aDb[1].pSchema ){
      return SQLITE_NOMEM;
    }
*/
    if( db->flags & !db->autoCommit ){
      rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
      if( rc!=SQLITE_OK ){
        sqlite3ErrorMsg(pParse, "unable to get a write lock on "
          "the temporary database file");
        pParse->rc = rc;
        return 1;
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
  if( iDb>=0 ){
    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<32 );
    mask = 1<<iDb;
    if( (pParse->cookieMask & mask)==0 ){
      pParse->cookieMask |= mask;
      pParse->cookieValue[iDb] = db->aDb[iDb].schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite3OpenTempDatabase(pParse);
      }
    }
  }
}








|







2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
  if( iDb>=0 ){
    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<32 );
    mask = 1<<iDb;
    if( (pParse->cookieMask & mask)==0 ){
      pParse->cookieMask |= mask;
      pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite3OpenTempDatabase(pParse);
      }
    }
  }
}

2967
2968
2969
2970
2971
2972
2973

2974
2975
2976
2977
2978
2979
2980
2981
*/
#ifndef SQLITE_OMIT_REINDEX
static void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){
  Index *pIndex;              /* An index associated with pTab */

  for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
    if( pColl==0 || collationMatch(pColl,pIndex) ){

      sqlite3BeginWriteOperation(pParse, 0, pTab->iDb);
      sqlite3RefillIndex(pParse, pIndex, -1);
    }
  }
}
#endif

/*







>
|







2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
*/
#ifndef SQLITE_OMIT_REINDEX
static void reindexTable(Parse *pParse, Table *pTab, CollSeq *pColl){
  Index *pIndex;              /* An index associated with pTab */

  for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
    if( pColl==0 || collationMatch(pColl,pIndex) ){
      int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
      sqlite3BeginWriteOperation(pParse, 0, iDb);
      sqlite3RefillIndex(pParse, pIndex, -1);
    }
  }
}
#endif

/*
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
  int iDb;                    /* The database index number */
  sqlite3 *db = pParse->db;   /* The database connection */
  HashElem *k;                /* For looping over tables in pDb */
  Table *pTab;                /* A table in the database */

  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
    if( pDb==0 ) continue;
    for(k=sqliteHashFirst(&pDb->tblHash);  k; k=sqliteHashNext(k)){
      pTab = (Table*)sqliteHashData(k);
      reindexTable(pParse, pTab, pColl);
    }
  }
}
#endif








|







3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
  int iDb;                    /* The database index number */
  sqlite3 *db = pParse->db;   /* The database connection */
  HashElem *k;                /* For looping over tables in pDb */
  Table *pTab;                /* A table in the database */

  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
    if( pDb==0 ) continue;
    for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
      pTab = (Table*)sqliteHashData(k);
      reindexTable(pParse, pTab, pColl);
    }
  }
}
#endif

Changes to src/delete.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.113 2005/12/15 15:22:09 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** in order to generate code for DELETE FROM statements.
**
** $Id: delete.c,v 1.114 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Look up every table that is named in pSrc.  If any table is not found,
** add an error message to pParse->zErrMsg and return NULL.  If all tables
** are found, return a pointer to the last table.
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74

/*
** Generate code that will open a table for reading.
*/
void sqlite3OpenTableForReading(
  Vdbe *v,        /* Generate code into this VDBE */
  int iCur,       /* The cursor number of the table */

  Table *pTab     /* The table to be opened */
){
  sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  VdbeComment((v, "# %s", pTab->zName));
  sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
}


/*







>


|







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

/*
** Generate code that will open a table for reading.
*/
void sqlite3OpenTableForReading(
  Vdbe *v,        /* Generate code into this VDBE */
  int iCur,       /* The cursor number of the table */
  int iDb,        /* The database index in sqlite3.aDb[] */
  Table *pTab     /* The table to be opened */
){
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  VdbeComment((v, "# %s", pTab->zName));
  sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
}


/*
91
92
93
94
95
96
97

98
99
100
101
102
103
104
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  int oldIdx = -1;       /* Cursor for the OLD table of AFTER triggers */
  NameContext sNC;       /* Name context to resolve expressions in */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  int triggers_exist = 0;      /* True if any triggers exist */
#endif

  sContext.pParse = 0;







>







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  WhereInfo *pWInfo;     /* Information about the WHERE clause */
  Index *pIdx;           /* For looping over indices of the table */
  int iCur;              /* VDBE Cursor number for pTab */
  sqlite3 *db;           /* Main database structure */
  AuthContext sContext;  /* Authorization context */
  int oldIdx = -1;       /* Cursor for the OLD table of AFTER triggers */
  NameContext sNC;       /* Name context to resolve expressions in */
  int iDb;

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* True if attempting to delete from a view */
  int triggers_exist = 0;      /* True if any triggers exist */
#endif

  sContext.pParse = 0;
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145
# undef isView
# define isView 0
#endif

  if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
    goto delete_from_cleanup;
  }

  assert( pTab->iDb<db->nDb );
  zDb = db->aDb[pTab->iDb].zName;
  if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
    goto delete_from_cleanup;
  }

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){







>
|
|







132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# undef isView
# define isView 0
#endif

  if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
    goto delete_from_cleanup;
  }
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb<db->nDb );
  zDb = db->aDb[iDb].zName;
  if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
    goto delete_from_cleanup;
  }

  /* If pTab is really a view, make sure it has been initialized.
  */
  if( isView && sqlite3ViewGetColumnNames(pParse, pTab) ){
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, triggers_exist, pTab->iDb);

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    Select *pView = sqlite3SelectDup(pTab->pSelect);
    sqlite3Select(pParse, pView, SRT_VirtualTab, iCur, 0, 0, 0, 0);







|







175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto delete_from_cleanup;
  }
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, triggers_exist, iDb);

  /* If we are trying to delete from a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    Select *pView = sqlite3SelectDup(pTab->pSelect);
    sqlite3Select(pParse, pView, SRT_VirtualTab, iCur, 0, 0, 0, 0);
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
  if( pWhere==0 && !triggers_exist ){
    if( db->flags & SQLITE_CountRows ){
      /* If counting rows deleted, just count the total number of
      ** entries in the table. */
      int endOfLoop = sqlite3VdbeMakeLabel(v);
      int addr;
      if( !isView ){
        sqlite3OpenTableForReading(v, iCur, pTab);
      }
      sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
      addr = sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
      sqlite3VdbeAddOp(v, OP_Next, iCur, addr);
      sqlite3VdbeResolveLabel(v, endOfLoop);
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }
    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb);
      if( !pParse->nested ){
        sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
      }
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){

        sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb);
      }
    }
  }

  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */







|








|




>
|







204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  if( pWhere==0 && !triggers_exist ){
    if( db->flags & SQLITE_CountRows ){
      /* If counting rows deleted, just count the total number of
      ** entries in the table. */
      int endOfLoop = sqlite3VdbeMakeLabel(v);
      int addr;
      if( !isView ){
        sqlite3OpenTableForReading(v, iCur, iDb, pTab);
      }
      sqlite3VdbeAddOp(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2);
      addr = sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
      sqlite3VdbeAddOp(v, OP_Next, iCur, addr);
      sqlite3VdbeResolveLabel(v, endOfLoop);
      sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
    }
    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Clear, pTab->tnum, iDb);
      if( !pParse->nested ){
        sqlite3VdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
      }
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        assert( pIdx->pSchema==pTab->pSchema );
        sqlite3VdbeAddOp(v, OP_Clear, pIdx->tnum, iDb);
      }
    }
  }

  /* The usual case: There is a WHERE clause so we have to scan through
  ** the table and pick which records to delete.
  */
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    /* This is the beginning of the delete loop when there are
    ** row triggers.
    */
    if( triggers_exist ){
      addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
      if( !isView ){
        sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
        sqlite3OpenTableForReading(v, iCur, pTab);
      }
      sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
      sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
      sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
      if( !isView ){
        sqlite3VdbeAddOp(v, OP_Close, iCur, 0);







|







272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    /* This is the beginning of the delete loop when there are
    ** row triggers.
    */
    if( triggers_exist ){
      addr = sqlite3VdbeAddOp(v, OP_FifoRead, 0, end);
      if( !isView ){
        sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
        sqlite3OpenTableForReading(v, iCur, iDb, pTab);
      }
      sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
      sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
      sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
      sqlite3VdbeAddOp(v, OP_Insert, oldIdx, 0);
      if( !isView ){
        sqlite3VdbeAddOp(v, OP_Close, iCur, 0);
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.243 2006/01/03 15:16:26 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.244 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
839
840
841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab = pItem->pTab;

        Column *pCol;
  
        if( pTab==0 ) continue;
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){
            char *zTabName = pItem->zAlias;
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
          }else{
            char *zTabName = pTab->zName;
            if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
            if( zDb!=0 && sqlite3StrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
              continue;
            }
          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->iDb = pTab->iDb;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            IdList *pUsing;
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pMatch = pItem;
            pExpr->iDb = pTab->iDb;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            pExpr->affinity = pTab->aCol[j].affinity;
            pExpr->pColl = pTab->aCol[j].pColl;
            if( pItem->jointype & JT_NATURAL ){
              /* If this match occurred in the left table of a natural join,
              ** then skip the right table to avoid a duplicate match */







>











|






|








|







839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
  while( pNC && cnt==0 ){
    ExprList *pEList;
    SrcList *pSrcList = pNC->pSrcList;

    if( pSrcList ){
      for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
        Table *pTab = pItem->pTab;
        int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        Column *pCol;
  
        if( pTab==0 ) continue;
        assert( pTab->nCol>0 );
        if( zTab ){
          if( pItem->zAlias ){
            char *zTabName = pItem->zAlias;
            if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
          }else{
            char *zTabName = pTab->zName;
            if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
            if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
              continue;
            }
          }
        }
        if( 0==(cntTab++) ){
          pExpr->iTable = pItem->iCursor;
          pExpr->pSchema = pTab->pSchema;
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            IdList *pUsing;
            cnt++;
            pExpr->iTable = pItem->iCursor;
            pMatch = pItem;
            pExpr->pSchema = pTab->pSchema;
            /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            pExpr->affinity = pTab->aCol[j].affinity;
            pExpr->pColl = pTab->aCol[j].pColl;
            if( pItem->jointype & JT_NATURAL ){
              /* If this match occurred in the left table of a natural join,
              ** then skip the right table to avoid a duplicate match */
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
        pTab = pTriggerStack->pTab;
      }

      if( pTab ){ 
        int j;
        Column *pCol = pTab->aCol;

        pExpr->iDb = pTab->iDb;
        cntTab++;
        for(j=0; j < pTab->nCol; j++, pCol++) {
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            cnt++;
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            pExpr->affinity = pTab->aCol[j].affinity;
            pExpr->pColl = pTab->aCol[j].pColl;







|







918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        pTab = pTriggerStack->pTab;
      }

      if( pTab ){ 
        int j;
        Column *pCol = pTab->aCol;

        pExpr->pSchema = pTab->pSchema;
        cntTab++;
        for(j=0; j < pTab->nCol; j++, pCol++) {
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
            cnt++;
            pExpr->iColumn = j==pTab->iPKey ? -1 : j;
            pExpr->affinity = pTab->aCol[j].affinity;
            pExpr->pColl = pTab->aCol[j].pColl;
Changes to src/insert.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.151 2005/12/15 15:22:09 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.152 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Set P3 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
** Return non-zero if SELECT statement p opens the table with rootpage
** iTab in database iDb.  This is used to see if a statement of the form 
** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
** table for the results of the SELECT. 
**
** No checking is done for sub-selects that are part of expressions.
*/
static int selectReadsTable(Select *p, int iDb, int iTab){
  int i;
  struct SrcList_item *pItem;
  if( p->pSrc==0 ) return 0;
  for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
    if( pItem->pSelect ){
      if( selectReadsTable(pItem->pSelect, iDb, iTab) ) return 1;
    }else{
      if( pItem->pTab->iDb==iDb && pItem->pTab->tnum==iTab ) return 1;
    }
  }
  return 0;
}

/*
** This routine is call to handle SQL of the following forms:







|





|

|







100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
** Return non-zero if SELECT statement p opens the table with rootpage
** iTab in database iDb.  This is used to see if a statement of the form 
** "INSERT INTO <iDb, iTab> SELECT ..." can run without using temporary
** table for the results of the SELECT. 
**
** No checking is done for sub-selects that are part of expressions.
*/
static int selectReadsTable(Select *p, DbSchema *pSchema, int iTab){
  int i;
  struct SrcList_item *pItem;
  if( p->pSrc==0 ) return 0;
  for(i=0, pItem=p->pSrc->a; i<p->pSrc->nSrc; i++, pItem++){
    if( pItem->pSelect ){
      if( selectReadsTable(pItem->pSelect, pSchema, iTab) ) return 1;
    }else{
      if( pItem->pTab->pSchema==pSchema && pItem->pTab->tnum==iTab ) return 1;
    }
  }
  return 0;
}

/*
** This routine is call to handle SQL of the following forms:
210
211
212
213
214
215
216

217
218
219
220
221
222
223
  int iSelectLoop = 0;  /* Address of code that implements the SELECT */
  int iCleanup = 0;     /* Address of the cleanup code */
  int iInsertBlock = 0; /* Address of the subroutine used to insert data */
  int iCntMem = 0;      /* Memory cell used for the row counter */
  int newIdx = -1;      /* Cursor for the NEW table */
  Db *pDb;              /* The database containing table being inserted into */
  int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
#endif

#ifndef SQLITE_OMIT_AUTOINCREMENT







>







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  int iSelectLoop = 0;  /* Address of code that implements the SELECT */
  int iCleanup = 0;     /* Address of the cleanup code */
  int iInsertBlock = 0; /* Address of the subroutine used to insert data */
  int iCntMem = 0;      /* Memory cell used for the row counter */
  int newIdx = -1;      /* Cursor for the NEW table */
  Db *pDb;              /* The database containing table being inserted into */
  int counterMem = 0;   /* Memory cell holding AUTOINCREMENT counter */
  int iDb;

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                 /* True if attempting to insert into a view */
  int triggers_exist = 0;     /* True if there are FOR EACH ROW triggers */
#endif

#ifndef SQLITE_OMIT_AUTOINCREMENT
232
233
234
235
236
237
238

239
240
241
242
243
244
245
246
247
  assert( pTabList->nSrc==1 );
  zTab = pTabList->a[0].zName;
  if( zTab==0 ) goto insert_cleanup;
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ){
    goto insert_cleanup;
  }

  assert( pTab->iDb<db->nDb );
  pDb = &db->aDb[pTab->iDb];
  zDb = pDb->zName;
  if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
    goto insert_cleanup;
  }

  /* Figure out if we have any triggers and if the table being
  ** inserted into is a view







>
|
|







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  assert( pTabList->nSrc==1 );
  zTab = pTabList->a[0].zName;
  if( zTab==0 ) goto insert_cleanup;
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ){
    goto insert_cleanup;
  }
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb<db->nDb );
  pDb = &db->aDb[iDb];
  zDb = pDb->zName;
  if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
    goto insert_cleanup;
  }

  /* Figure out if we have any triggers and if the table being
  ** inserted into is a view
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  }

  /* Allocate a VDBE
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto insert_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, pTab->iDb);

  /* if there are row triggers, allocate a temp table for new.* references. */
  if( triggers_exist ){
    newIdx = pParse->nTab++;
  }

#ifndef SQLITE_OMIT_AUTOINCREMENT
  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell counterMem.  Also
  ** remember the rowid of the sqlite_sequence table entry in memory cell
  ** counterRowid.
  */
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    int base = sqlite3VdbeCurrentAddr(v);
    counterRowid = pParse->nMem++;
    counterMem = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pDb->pSeqTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2);
    sqlite3VdbeAddOp(v, OP_Rewind, iCur, base+13);
    sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_Ne, 0x100, base+12);
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, counterRowid, 1);







|

















|
|







283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
  }

  /* Allocate a VDBE
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto insert_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);

  /* if there are row triggers, allocate a temp table for new.* references. */
  if( triggers_exist ){
    newIdx = pParse->nTab++;
  }

#ifndef SQLITE_OMIT_AUTOINCREMENT
  /* If this is an AUTOINCREMENT table, look up the sequence number in the
  ** sqlite_sequence table and store it in memory cell counterMem.  Also
  ** remember the rowid of the sqlite_sequence table entry in memory cell
  ** counterRowid.
  */
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    int base = sqlite3VdbeCurrentAddr(v);
    counterRowid = pParse->nMem++;
    counterMem = pParse->nMem++;
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenRead, iCur, pDb->pSchema->pSeqTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2);
    sqlite3VdbeAddOp(v, OP_Rewind, iCur, base+13);
    sqlite3VdbeAddOp(v, OP_Column, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_Ne, 0x100, base+12);
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, counterRowid, 1);
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    ** should be written into a temporary table.  Set to FALSE if each
    ** row of the SELECT can be written directly into the result table.
    **
    ** A temp table must be used if the table being updated is also one
    ** of the tables being read by the SELECT statement.  Also use a 
    ** temp table in the case of row triggers.
    */
    if( triggers_exist || selectReadsTable(pSelect, pTab->iDb, pTab->tnum) ){
      useTempTable = 1;
    }

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */







|







351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    ** should be written into a temporary table.  Set to FALSE if each
    ** row of the SELECT can be written directly into the result table.
    **
    ** A temp table must be used if the table being updated is also one
    ** of the tables being read by the SELECT statement.  Also use a 
    ** temp table in the case of row triggers.
    */
    if( triggers_exist || selectReadsTable(pSelect,pTab->pSchema,pTab->tnum) ){
      useTempTable = 1;
    }

    if( useTempTable ){
      /* Generate the subroutine that SELECT calls to process each row of
      ** the result.  Store the result in a temporary table
      */
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory counterMem back into the sqlite_sequence
  ** table.
  */
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    int base = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pDb->pSeqTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2);
    sqlite3VdbeAddOp(v, OP_MemLoad, counterRowid, 0);
    sqlite3VdbeAddOp(v, OP_NotNull, -1, base+7);
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_MemLoad, counterMem, 0);







|
|







682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
  /* Update the sqlite_sequence table by storing the content of the
  ** counter value in memory counterMem back into the sqlite_sequence
  ** table.
  */
  if( pTab->autoInc ){
    int iCur = pParse->nTab;
    int base = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pDb->pSchema->pSeqTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, 2);
    sqlite3VdbeAddOp(v, OP_MemLoad, counterRowid, 0);
    sqlite3VdbeAddOp(v, OP_NotNull, -1, base+7);
    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
    sqlite3VdbeAddOp(v, OP_NewRowid, iCur, 0);
    sqlite3VdbeOp3(v, OP_String8, 0, 0, pTab->zName, 0);
    sqlite3VdbeAddOp(v, OP_MemLoad, counterMem, 0);
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
1114

1115
1116
1117
1118
1119
1120
1121
1122
1123
void sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int base,        /* Cursor number assigned to the table */
  int op           /* OP_OpenRead or OP_OpenWrite */
){
  int i;

  Index *pIdx;
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
  VdbeComment((v, "# %s", pTab->zName));
  sqlite3VdbeAddOp(v, op, base, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){

    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    VdbeComment((v, "# %s", pIdx->zName));
    sqlite3VdbeOp3(v, op, i+base, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
  }
  if( pParse->nTab<=base+i ){
    pParse->nTab = base+i;
  }
}







>



|




>
|








1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
void sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int base,        /* Cursor number assigned to the table */
  int op           /* OP_OpenRead or OP_OpenWrite */
){
  int i;
  int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  Index *pIdx;
  Vdbe *v = sqlite3GetVdbe(pParse);
  assert( v!=0 );
  sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
  VdbeComment((v, "# %s", pTab->zName));
  sqlite3VdbeAddOp(v, op, base, pTab->tnum);
  sqlite3VdbeAddOp(v, OP_SetNumColumns, base, pTab->nCol);
  for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    VdbeComment((v, "# %s", pIdx->zName));
    sqlite3VdbeOp3(v, op, i+base, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
  }
  if( pParse->nTab<=base+i ){
    pParse->nTab = base+i;
  }
}
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.313 2005/12/30 16:28:02 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** The following constant value is used by the SQLITE_BIGENDIAN and







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.314 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** The following constant value is used by the SQLITE_BIGENDIAN and
90
91
92
93
94
95
96















































97
98
99
100
101
102
103

/*
** Return the number of changes since the database handle was opened.
*/
int sqlite3_total_changes(sqlite3 *db){
  return db->nTotalChange;
}
















































/*
** Close an existing SQLite database
*/
int sqlite3_close(sqlite3 *db){
  HashElem *i;
  int j;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

/*
** Return the number of changes since the database handle was opened.
*/
int sqlite3_total_changes(sqlite3 *db){
  return db->nTotalChange;
}

/*
** Free a schema structure.
*/
void sqlite3SchemaFree(void *p){
  sqliteFree(p);
}

DbSchema *sqlite3SchemaGet(Btree *pBt){
  DbSchema * p;
  if( pBt ){
    p = (DbSchema *)sqlite3BtreeSchema(pBt,sizeof(DbSchema),sqlite3SchemaFree);
  }else{
    p = (DbSchema *)sqliteMalloc(sizeof(DbSchema));
  }
  if( p ){
    sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1);
  }
  return p;
}

int sqlite3SchemaToIndex(sqlite3 *db, DbSchema *pSchema){
  int i = -1000000;

  /* If pSchema is NULL, then return -1000000. This happens when code in 
  ** expr.c is trying to resolve a reference to a transient table (i.e. one
  ** created by a sub-select). In this case the return value of this 
  ** function should never be used.
  **
  ** We return -1000000 instead of the more usual -1 simply because using
  ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much 
  ** more likely to cause a segfault than -1 (of course there are assert()
  ** statements too, but it never hurts to play the odds).
  */
  if( pSchema ){
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pSchema==pSchema ){
        break;
      }
    }
    assert( i>=0 &&i>=0 &&  i<db->nDb );
  }
  return i;
}

/*
** Close an existing SQLite database
*/
int sqlite3_close(sqlite3 *db){
  HashElem *i;
  int j;
181
182
183
184
185
186
187

188
189
190
191
192
193
194
    }
    sqlite3Os.xLeaveMutex();
  }
#endif
#endif

  db->magic = SQLITE_MAGIC_ERROR;

  sqliteFree(db);
  sqlite3MallocAllow();
  return SQLITE_OK;
}

/*
** Rollback all database files.







>







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    }
    sqlite3Os.xLeaveMutex();
  }
#endif
#endif

  db->magic = SQLITE_MAGIC_ERROR;
  sqliteFree(db->aDb[1].pSchema);
  sqliteFree(db);
  sqlite3MallocAllow();
  return SQLITE_OK;
}

/*
** Rollback all database files.
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#endif
#if TEMP_STORE==3
    zFilename = ":memory:";
#endif
#endif /* SQLITE_OMIT_MEMORYDB */
  }

  rc = sqlite3BtreeOpen(zFilename, db, ppBtree, btree_flags);
  if( rc==SQLITE_OK ){
    sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler);
    sqlite3BtreeSetCacheSize(*ppBtree, nCache);
  }
  return rc;
}








|







683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
#endif
#if TEMP_STORE==3
    zFilename = ":memory:";
#endif
#endif /* SQLITE_OMIT_MEMORYDB */
  }

  rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btree_flags);
  if( rc==SQLITE_OK ){
    sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler);
    sqlite3BtreeSetCacheSize(*ppBtree, nCache);
  }
  return rc;
}

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751


752
753
754
755
756
757

758
759
760
761
762
763
764
** is UTF-8 encoded.
*/
static int openDatabase(
  const char *zFilename, /* Database filename UTF-8 encoded */
  sqlite3 **ppDb         /* OUT: Returned database handle */
){
  sqlite3 *db;
  int rc, i;
  CollSeq *pColl;

  assert( !sqlite3Tsd()->mallocFailed );

  /* Allocate the sqlite data structure */
  db = sqliteMalloc( sizeof(sqlite3) );
  if( db==0 ) goto opendb_out;
  db->priorNewRowid = 0;
  db->magic = SQLITE_MAGIC_BUSY;
  db->nDb = 2;
  db->aDb = db->aDbStatic;
  db->enc = SQLITE_UTF8;
  db->autoCommit = 1;
  db->flags |= SQLITE_ShortColNames;
  sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
  sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);


  for(i=0; i<db->nDb; i++){
    sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
  }

  
  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  */
  if( sqlite3_create_collation(db, "BINARY", SQLITE_UTF8, 0,binCollFunc) ||
      sqlite3_create_collation(db, "BINARY", SQLITE_UTF16, 0,binCollFunc) ||







|
















>
>






>







776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
** is UTF-8 encoded.
*/
static int openDatabase(
  const char *zFilename, /* Database filename UTF-8 encoded */
  sqlite3 **ppDb         /* OUT: Returned database handle */
){
  sqlite3 *db;
  int rc;
  CollSeq *pColl;

  assert( !sqlite3Tsd()->mallocFailed );

  /* Allocate the sqlite data structure */
  db = sqliteMalloc( sizeof(sqlite3) );
  if( db==0 ) goto opendb_out;
  db->priorNewRowid = 0;
  db->magic = SQLITE_MAGIC_BUSY;
  db->nDb = 2;
  db->aDb = db->aDbStatic;
  db->enc = SQLITE_UTF8;
  db->autoCommit = 1;
  db->flags |= SQLITE_ShortColNames;
  sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0);
  sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0);

#if 0
  for(i=0; i<db->nDb; i++){
    sqlite3HashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
    sqlite3HashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
  }
#endif
  
  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  */
  if( sqlite3_create_collation(db, "BINARY", SQLITE_UTF8, 0,binCollFunc) ||
      sqlite3_create_collation(db, "BINARY", SQLITE_UTF16, 0,binCollFunc) ||
785
786
787
788
789
790
791


792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
  /* Open the backend database driver */
  rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
    sqlite3Error(db, rc, 0);
    db->magic = SQLITE_MAGIC_CLOSED;
    goto opendb_out;
  }



  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
#ifndef SQLITE_OMIT_TEMPDB
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;
#endif


  /* Register all built-in functions, but do not attempt to read the
  ** database schema yet. This is delayed until the first time the database
  ** is accessed.
  */
  sqlite3RegisterBuiltinFunctions(db);
  sqlite3Error(db, SQLITE_OK, 0);







>
>










<







836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854

855
856
857
858
859
860
861
  /* Open the backend database driver */
  rc = sqlite3BtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
  if( rc!=SQLITE_OK ){
    sqlite3Error(db, rc, 0);
    db->magic = SQLITE_MAGIC_CLOSED;
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite3SchemaGet(db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite3SchemaGet(0);

  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
#ifndef SQLITE_OMIT_TEMPDB
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;
#endif


  /* Register all built-in functions, but do not attempt to read the
  ** database schema yet. This is delayed until the first time the database
  ** is accessed.
  */
  sqlite3RegisterBuiltinFunctions(db);
  sqlite3Error(db, SQLITE_OK, 0);
Changes to src/pragma.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.107 2005/12/09 20:02:05 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2003 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
**
** $Id: pragma.c,v 1.108 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/* Ignore this whole file if pragmas are disabled
*/
153
154
155
156
157
158
159




160
161
162
163
164
165
166
    { "empty_result_callbacks",   SQLITE_NullCallback  },
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema   },
    { "omit_readlock",            SQLITE_NoReadlock    },




  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;
      Vdbe *v;







>
>
>
>







153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    { "empty_result_callbacks",   SQLITE_NullCallback  },
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema   },
    { "omit_readlock",            SQLITE_NoReadlock    },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },
  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){
    if( sqlite3StrICmp(zLeft, p->zName)==0 ){
      sqlite3 *db = pParse->db;
      Vdbe *v;
646
647
648
649
650
651
652

653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC);
    sqlite3VdbeAddOp(v, OP_MemInt, 0, 0);  /* Initialize error count to 0 */

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;

      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);

      /* Do an integrity check of the B-Tree
      */

      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out;
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);







>








>
|







650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, "integrity_check", P3_STATIC);
    sqlite3VdbeAddOp(v, OP_MemInt, 0, 0);  /* Initialize error count to 0 */

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite3CodeVerifySchema(pParse, i);

      /* Do an integrity check of the B-Tree
      */
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp(v, OP_Integer, pTab->tnum, 0);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          if( sqlite3CheckIndexCollSeq(pParse, pIdx) ) goto pragma_out;
          sqlite3VdbeAddOp(v, OP_Integer, pIdx->tnum, 0);
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
      sqlite3VdbeAddOp(v, OP_Concat, 0, 1);
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      sqlite3VdbeAddOp(v, OP_MemIncr, 0, 0);

      /* Make sure all the indices are constructed correctly.
      */
      sqlite3CodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);







|







687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
      sqlite3VdbeAddOp(v, OP_Concat, 0, 1);
      sqlite3VdbeAddOp(v, OP_Callback, 1, 0);
      sqlite3VdbeAddOp(v, OP_MemIncr, 0, 0);

      /* Make sure all the indices are constructed correctly.
      */
      sqlite3CodeVerifySchema(pParse, i);
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite3VdbeAddOp(v, OP_MemInt, 0, 1);
Changes to src/prepare.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.12 2006/01/04 15:54:36 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite3_prepare()
** interface, and routines that contribute to loading the database schema
** from disk.
**
** $Id: prepare.c,v 1.13 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** Fill the InitData structure with an error message that indicates
44
45
46
47
48
49
50




51
52
53
54
55
56
57
**               for auxiliary database files.
**
*/
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
  InitData *pData = (InitData*)pInit;
  sqlite3 *db = pData->db;
  int iDb;





  assert( argc==4 );
  if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
  if( argv[1]==0 || argv[3]==0 ){
    corruptSchema(pData, 0);
    return 1;
  }







>
>
>
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
**               for auxiliary database files.
**
*/
int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){
  InitData *pData = (InitData*)pInit;
  sqlite3 *db = pData->db;
  int iDb;

  if( sqlite3Tsd()->mallocFailed ){
    return SQLITE_NOMEM;
  }

  assert( argc==4 );
  if( argv==0 ) return 0;   /* Might happen if EMPTY_RESULT_CALLBACKS are on */
  if( argv[1]==0 || argv[3]==0 ){
    corruptSchema(pData, 0);
    return 1;
  }
146
147
148
149
150
151
152
















153
154
155
156
157
158
159
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );

















  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
     ")"
  ;
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );

  if( 0==db->aDb[iDb].pSchema ){
    DbSchema *pS = sqlite3BtreeSchema(db->aDb[iDb].pBt, sizeof(DbSchema), 
        sqlite3SchemaFree);
    db->aDb[iDb].pSchema = pS;
    if( !pS ){
      return SQLITE_NOMEM;
    }else if( pS->file_format!=0 ){
      return SQLITE_OK;
    }else{
      sqlite3HashInit(&pS->tblHash, SQLITE_HASH_STRING, 0);
      sqlite3HashInit(&pS->idxHash, SQLITE_HASH_STRING, 0);
      sqlite3HashInit(&pS->trigHash, SQLITE_HASH_STRING, 0);
      sqlite3HashInit(&pS->aFKey, SQLITE_HASH_STRING, 1);
    }
  }

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
      sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
      sqlite3BtreeCloseCursor(curMain);
      return rc;
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  pDb->schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */







|







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
      sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0);
      sqlite3BtreeCloseCursor(curMain);
      return rc;
    }
  }else{
    memset(meta, 0, sizeof(meta));
  }
  pDb->pSchema->schema_cookie = meta[0];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite3.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite3.enc.
  */
  if( meta[4] ){  /* text encoding */
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->file_format = meta[1];
  if( pDb->file_format==0 ){
    pDb->file_format = 1;
  }
  if( pDb->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite3BtreeCloseCursor(curMain);
    sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
    return SQLITE_ERROR;
  }


  /* Read the schema information out of the schema tables







|
|
|

|







276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->pSchema->file_format = meta[1];
  if( pDb->pSchema->file_format==0 ){
    pDb->pSchema->file_format = 1;
  }
  if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite3BtreeCloseCursor(curMain);
    sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0);
    return SQLITE_ERROR;
  }


  /* Read the schema information out of the schema tables
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
  for(iDb=0; allOk && iDb<db->nDb; iDb++){
    Btree *pBt;
    pBt = db->aDb[iDb].pBt;
    if( pBt==0 ) continue;
    rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
    if( rc==SQLITE_OK ){
      rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
      if( rc==SQLITE_OK && cookie!=db->aDb[iDb].schema_cookie ){
        allOk = 0;
      }
      sqlite3BtreeCloseCursor(curTemp);
    }
  }
  return allOk;
}







|







410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  for(iDb=0; allOk && iDb<db->nDb; iDb++){
    Btree *pBt;
    pBt = db->aDb[iDb].pBt;
    if( pBt==0 ) continue;
    rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, 0, &curTemp);
    if( rc==SQLITE_OK ){
      rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie);
      if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){
        allOk = 0;
      }
      sqlite3BtreeCloseCursor(curTemp);
    }
  }
  return allOk;
}
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.283 2006/01/03 15:16:26 drh Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.284 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.
2198
2199
2200
2201
2202
2203
2204

2205
2206
2207
2208
2209
2210
2211
  int base;
  Vdbe *v;
  int seekOp;
  ExprList *pEList, *pList, eList;
  struct ExprList_item eListItem;
  SrcList *pSrc;
  int brk;


  /* Check to see if this query is a simple min() or max() query.  Return
  ** zero if it is  not.
  */
  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
  pSrc = p->pSrc;
  if( pSrc->nSrc!=1 ) return 0;







>







2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
  int base;
  Vdbe *v;
  int seekOp;
  ExprList *pEList, *pList, eList;
  struct ExprList_item eListItem;
  SrcList *pSrc;
  int brk;
  int iDb;

  /* Check to see if this query is a simple min() or max() query.  Return
  ** zero if it is  not.
  */
  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
  pSrc = p->pSrc;
  if( pSrc->nSrc!=1 ) return 0;
2259
2260
2261
2262
2263
2264
2265

2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283

2284
2285
2286
2287
2288
2289
2290
2291
  }

  /* Generating code to find the min or the max.  Basically all we have
  ** to do is find the first or the last entry in the chosen index.  If
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
  ** or last entry in the main table.
  */

  sqlite3CodeVerifySchema(pParse, pTab->iDb);
  base = pSrc->a[0].iCursor;
  brk = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, brk);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3OpenTableForReading(v, base, pTab);
  }
  if( pIdx==0 ){
    sqlite3VdbeAddOp(v, seekOp, base, 0);
  }else{
    /* Even though the cursor used to open the index here is closed
    ** as soon as a single value has been read from it, allocate it
    ** using (pParse->nTab++) to prevent the cursor id from being 
    ** reused. This is important for statements of the form 
    ** "INSERT INTO x SELECT max() FROM x".
    */
    int iIdx;
    iIdx = pParse->nTab++;

    sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
    if( seekOp==OP_Rewind ){
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
      seekOp = OP_MoveGt;
    }







>
|




|












>
|







2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
  }

  /* Generating code to find the min or the max.  Basically all we have
  ** to do is find the first or the last entry in the chosen index.  If
  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
  ** or last entry in the main table.
  */
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3CodeVerifySchema(pParse, iDb);
  base = pSrc->a[0].iCursor;
  brk = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, brk);
  if( pSrc->a[0].pSelect==0 ){
    sqlite3OpenTableForReading(v, base, iDb, pTab);
  }
  if( pIdx==0 ){
    sqlite3VdbeAddOp(v, seekOp, base, 0);
  }else{
    /* Even though the cursor used to open the index here is closed
    ** as soon as a single value has been read from it, allocate it
    ** using (pParse->nTab++) to prevent the cursor id from being 
    ** reused. This is important for statements of the form 
    ** "INSERT INTO x SELECT max() FROM x".
    */
    int iIdx;
    iIdx = pParse->nTab++;
    assert( pIdx->pSchema==pTab->pSchema );
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
                   (char*)&pIdx->keyInfo, P3_KEYINFO);
    if( seekOp==OP_Rewind ){
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
      seekOp = OP_MoveGt;
    }
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.447 2006/01/04 15:54:36 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster.  So the following













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.448 2006/01/05 11:34:34 danielk1977 Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
** Setting NDEBUG makes the code smaller and run faster.  So the following
332
333
334
335
336
337
338

339
340
341
342
343
344
345
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct AuthContext AuthContext;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;

typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct KeyClass KeyClass;







>







332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct AuthContext AuthContext;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct DbSchema DbSchema;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct FKey FKey;
typedef struct FuncDef FuncDef;
typedef struct IdList IdList;
typedef struct Index Index;
typedef struct KeyClass KeyClass;
363
364
365
366
367
368
369












370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.
*/
struct Db {
  char *zName;         /* Name of this database */
  Btree *pBt;          /* The B*Tree structure for this database file */












  int schema_cookie;   /* Database schema version number for this file */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */
  Hash aFKey;          /* Foreign keys indexed by to-table */
  u16 flags;           /* Flags associated with this database */
  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
  u8 safety_level;     /* How aggressive at synching data to disk */
  u8 file_format;      /* Schema format version for this file */
  int cache_size;      /* Number of pages to use in the cache */
  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
  void *pAux;               /* Auxiliary data.  Usually NULL */
  void (*xFreeAux)(void*);  /* Routine to free pAux */
};

/*
** These macros can be used to test, set, or clear bits in the 
** Db.flags field.
*/
#define DbHasProperty(D,I,P)     (((D)->aDb[I].flags&(P))==(P))
#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].flags&(P))!=0)
#define DbSetProperty(D,I,P)     (D)->aDb[I].flags|=(P)
#define DbClearProperty(D,I,P)   (D)->aDb[I].flags&=~(P)

/*
** Allowed values for the DB.flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**







>
>
>
>
>
>
>
>
>
>
>
>





|
<
<

<
<
|
<






|
|
|
|







364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388


389


390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.
*/
struct Db {
  char *zName;         /* Name of this database */
  Btree *pBt;          /* The B*Tree structure for this database file */
  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
  u8 safety_level;     /* How aggressive at synching data to disk */
  int cache_size;      /* Number of pages to use in the cache */
  void *pAux;               /* Auxiliary data.  Usually NULL */
  void (*xFreeAux)(void*);  /* Routine to free pAux */
  DbSchema *pSchema;   /* Pointer to database schema (possibly shared) */
};

/*
** An instance of the following structure stores a database schema.
*/
struct DbSchema {
  int schema_cookie;   /* Database schema version number for this file */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */
  Hash aFKey;          /* Foreign keys indexed by to-table */
  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */


  u8 file_format;      /* Schema format version for this file */


  u16 flags;           /* Flags associated with this schema */

};

/*
** These macros can be used to test, set, or clear bits in the 
** Db.flags field.
*/
#define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
#define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
#define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)

/*
** Allowed values for the DB.flags field.
**
** The DB_SchemaLoaded flag is set after the database schema has been
** read into internal hash tables.
**
514
515
516
517
518
519
520

521
522
523
524
525
526
527
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
#define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when 
                                          ** accessing read-only databases */
#define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */


/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */







>







522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
#define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when 
                                          ** accessing read-only databases */
#define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x00004000  /* For shared-cache mode */

/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

690
691
692
693
694
695
696
  int nCol;        /* Number of columns in this table */
  Column *aCol;    /* Information about each column */
  int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
  Index *pIndex;   /* List of SQL indexes on this table. */
  int tnum;        /* Root BTree node for this table (see note above) */
  Select *pSelect; /* NULL for tables.  Points to definition if a view. */
  u8 readOnly;     /* True if this table should not be written by the user */
  u8 iDb;          /* Index into sqlite.aDb[] of the backend for this table */
  u8 isTransient;  /* True if automatically deleted when VDBE finishes */
  u8 hasPrimKey;   /* True if there exists a primary key */
  u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
  u8 autoInc;      /* True if the integer primary key is autoincrement */
  int nRef;          /* Number of pointers to this Table */
  Trigger *pTrigger; /* List of SQL triggers on this table */
  FKey *pFKey;       /* Linked list of all foreign keys in this table */
  char *zColAff;     /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
  Expr *pCheck;      /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
#endif

};

/*
** Each foreign key constraint is an instance of the following structure.
**
** A foreign key is associated with two tables.  The "from" table is
** the table that contains the REFERENCES clause that creates the foreign







|














>







677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
  int nCol;        /* Number of columns in this table */
  Column *aCol;    /* Information about each column */
  int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
  Index *pIndex;   /* List of SQL indexes on this table. */
  int tnum;        /* Root BTree node for this table (see note above) */
  Select *pSelect; /* NULL for tables.  Points to definition if a view. */
  u8 readOnly;     /* True if this table should not be written by the user */
// u8 iDb;          /* Index into sqlite.aDb[] of the backend for this table */
  u8 isTransient;  /* True if automatically deleted when VDBE finishes */
  u8 hasPrimKey;   /* True if there exists a primary key */
  u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
  u8 autoInc;      /* True if the integer primary key is autoincrement */
  int nRef;          /* Number of pointers to this Table */
  Trigger *pTrigger; /* List of SQL triggers on this table */
  FKey *pFKey;       /* Linked list of all foreign keys in this table */
  char *zColAff;     /* String defining the affinity of each column */
#ifndef SQLITE_OMIT_CHECK
  Expr *pCheck;      /* The AND of all CHECK constraints */
#endif
#ifndef SQLITE_OMIT_ALTERTABLE
  int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
#endif
  DbSchema *pSchema;
};

/*
** Each foreign key constraint is an instance of the following structure.
**
** A foreign key is associated with two tables.  The "from" table is
** the table that contains the REFERENCES clause that creates the foreign
818
819
820
821
822
823
824
825
826
827

828
829
830
831
832
833
834
  int nColumn;     /* Number of columns in the table used by this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */

  KeyInfo keyInfo; /* Info on how to order keys.  MUST BE LAST */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**







|


>







828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
  int nColumn;     /* Number of columns in the table used by this index */
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  Table *pTable;   /* The SQL table being indexed */
  int tnum;        /* Page containing root of this index in database file */
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  // u8 iDb;          /* Index in sqlite.aDb[] of where this index is stored */
  char *zColAff;   /* String defining the affinity of each column */
  Index *pNext;    /* The next index associated with the same table */
  DbSchema *pSchema;
  KeyInfo keyInfo; /* Info on how to order keys.  MUST BE LAST */
};

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

953
954
955
956
957
958
959
** If the Expr is of type OP_Column, and the table it is selecting from
** is a disk table or the "old.*" pseudo-table, then pTab points to the
** corresponding table definition.
*/
struct Expr {
  u8 op;                 /* Operation performed by this node */
  char affinity;         /* The affinity of the column or 0 if not a column */
  u8 iDb;                /* Database referenced by this expression */
  u8 flags;              /* Various flags.  See below */
  CollSeq *pColl;        /* The collation type of the column or 0 */
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */
  Token span;            /* Complete text of the expression */
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for OP_Column expressions. */

};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin     0x01  /* Originated in ON or USING clause of a join */
#define EP_Agg          0x02  /* Contains one or more aggregate functions */







|















>







941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
** If the Expr is of type OP_Column, and the table it is selecting from
** is a disk table or the "old.*" pseudo-table, then pTab points to the
** corresponding table definition.
*/
struct Expr {
  u8 op;                 /* Operation performed by this node */
  char affinity;         /* The affinity of the column or 0 if not a column */
//u8 iDb;                /* Database referenced by this expression */
  u8 flags;              /* Various flags.  See below */
  CollSeq *pColl;        /* The collation type of the column or 0 */
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */
  Token span;            /* Complete text of the expression */
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for OP_Column expressions. */
  DbSchema *pSchema;
};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin     0x01  /* Originated in ON or USING clause of a join */
#define EP_Agg          0x02  /* Contains one or more aggregate functions */
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
 *
 * The "step_list" member points to the first element of a linked list
 * containing the SQL statements specified as the trigger program.
 */
struct Trigger {
  char *name;             /* The name of the trigger                        */
  char *table;            /* The table or view to which the trigger applies */
  u8 iDb;                 /* Database containing this trigger               */
  u8 iTabDb;              /* Database containing Trigger.table              */
  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
                             the <column-list> is stored here */
  int foreach;            /* One of TK_ROW or TK_STATEMENT */
  Token nameToken;        /* Token containing zName. Use during parsing only */

  TriggerStep *step_list; /* Link list of trigger program steps             */
  Trigger *pNext;         /* Next trigger associated with the table */
};

/*
** A trigger is either a BEFORE or an AFTER trigger.  The following constants
** determine which. 







|








|







1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
 *
 * The "step_list" member points to the first element of a linked list
 * containing the SQL statements specified as the trigger program.
 */
struct Trigger {
  char *name;             /* The name of the trigger                        */
  char *table;            /* The table or view to which the trigger applies */
//u8 iDb;                 /* Database containing this trigger               */
  u8 iTabDb;              /* Database containing Trigger.table              */
  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
                             the <column-list> is stored here */
  int foreach;            /* One of TK_ROW or TK_STATEMENT */
  Token nameToken;        /* Token containing zName. Use during parsing only */
  DbSchema *pSchema;
  TriggerStep *step_list; /* Link list of trigger program steps             */
  Trigger *pNext;         /* Next trigger associated with the table */
};

/*
** A trigger is either a BEFORE or an AFTER trigger.  The following constants
** determine which. 
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff);
Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
                        int,Expr*,Expr*);
void sqlite3SelectDelete(Select*);
void sqlite3SelectUnbind(Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTableForReading(Vdbe*, int iCur, Table*);
void sqlite3OpenTable(Vdbe*, int iCur, Table*, int);
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**);
void sqlite3WhereEnd(WhereInfo*);
void sqlite3ExprCode(Parse*, Expr*);
void sqlite3ExprCodeAndCache(Parse*, Expr*);







|







1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
int sqlite3Select(Parse*, Select*, int, int, Select*, int, int*, char *aff);
Select *sqlite3SelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
                        int,Expr*,Expr*);
void sqlite3SelectDelete(Select*);
void sqlite3SelectUnbind(Select*);
Table *sqlite3SrcListLookup(Parse*, SrcList*);
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTableForReading(Vdbe*, int iCur, int iDb, Table*);
void sqlite3OpenTable(Vdbe*, int iCur, Table*, int);
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**);
void sqlite3WhereEnd(WhereInfo*);
void sqlite3ExprCode(Parse*, Expr*);
void sqlite3ExprCodeAndCache(Parse*, Expr*);
1696
1697
1698
1699
1700
1701
1702



1703
1704
1705
1706
1707
1708
1709
void sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SqliteTsd *sqlite3Tsd();
void sqlite3AttachFunctions(sqlite3 *);
void sqlite3MinimumFileFormat(Parse*, int, int);




void sqlite3MallocClearFailed();
#ifdef NDEBUG
  #define sqlite3MallocDisallow()
  #define sqlite3MallocAllow()
#else
  void sqlite3MallocDisallow();







>
>
>







1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
void sqlite3AnalysisLoad(sqlite3*,int iDB);
void sqlite3DefaultRowEst(Index*);
void sqlite3RegisterLikeFunctions(sqlite3*, int);
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
SqliteTsd *sqlite3Tsd();
void sqlite3AttachFunctions(sqlite3 *);
void sqlite3MinimumFileFormat(Parse*, int, int);
void sqlite3SchemaFree(void *);
DbSchema *sqlite3SchemaGet(Btree *);
int sqlite3SchemaToIndex(sqlite3 *db, DbSchema *);

void sqlite3MallocClearFailed();
#ifdef NDEBUG
  #define sqlite3MallocDisallow()
  #define sqlite3MallocAllow()
#else
  void sqlite3MallocDisallow();
Changes to src/trigger.c.
54
55
56
57
58
59
60

61
62
63
64
65
66
67
  Trigger *pTrigger = 0;
  Table *pTab;
  char *zName = 0;        /* Name of the trigger */
  sqlite3 *db = pParse->db;
  int iDb;                /* The database to store the trigger in */
  Token *pName;           /* The unqualified db name */
  DbFixer sFix;


  if( isTemp ){
    /* If TEMP was specified, then the trigger name may not be qualified. */
    if( pName2 && pName2->n>0 ){
      sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
      goto trigger_cleanup;
    }







>







54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  Trigger *pTrigger = 0;
  Table *pTab;
  char *zName = 0;        /* Name of the trigger */
  sqlite3 *db = pParse->db;
  int iDb;                /* The database to store the trigger in */
  Token *pName;           /* The unqualified db name */
  DbFixer sFix;
  int iTabDb;

  if( isTemp ){
    /* If TEMP was specified, then the trigger name may not be qualified. */
    if( pName2 && pName2->n>0 ){
      sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
      goto trigger_cleanup;
    }
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  /* If the trigger name was unqualified, and the table is a temp table,
  ** then set iDb to 1 to create the trigger in the temporary database.
  ** If sqlite3SrcListLookup() returns 0, indicating the table does not
  ** exist, the error is caught by the block below.
  */
  if( !pTableName || sqlite3Tsd()->mallocFailed ) goto trigger_cleanup;
  pTab = sqlite3SrcListLookup(pParse, pTableName);
  if( pName2->n==0 && pTab && pTab->iDb==1 ){
    iDb = 1;
  }

  /* Ensure the table name matches database name and that the table exists */
  if( sqlite3Tsd()->mallocFailed ) goto trigger_cleanup;
  assert( pTableName->nSrc==1 );
  if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && 







|







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
  /* If the trigger name was unqualified, and the table is a temp table,
  ** then set iDb to 1 to create the trigger in the temporary database.
  ** If sqlite3SrcListLookup() returns 0, indicating the table does not
  ** exist, the error is caught by the block below.
  */
  if( !pTableName || sqlite3Tsd()->mallocFailed ) goto trigger_cleanup;
  pTab = sqlite3SrcListLookup(pParse, pTableName);
  if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
    iDb = 1;
  }

  /* Ensure the table name matches database name and that the table exists */
  if( sqlite3Tsd()->mallocFailed ) goto trigger_cleanup;
  assert( pTableName->nSrc==1 );
  if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && 
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

  /* Check that the trigger name is not reserved and that no trigger of the
  ** specified name exists */
  zName = sqlite3NameFromToken(pName);
  if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    goto trigger_cleanup;
  }
  if( sqlite3HashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){
    sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
    goto trigger_cleanup;
  }

  /* Do not create a trigger on a system table */
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "cannot create trigger on system table");







|







102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

  /* Check that the trigger name is not reserved and that no trigger of the
  ** specified name exists */
  zName = sqlite3NameFromToken(pName);
  if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
    goto trigger_cleanup;
  }
  if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,pName->n+1) ){
    sqlite3ErrorMsg(pParse, "trigger %T already exists", pName);
    goto trigger_cleanup;
  }

  /* Do not create a trigger on a system table */
  if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
    sqlite3ErrorMsg(pParse, "cannot create trigger on system table");
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    goto trigger_cleanup;
  }
  if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
    sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
        " trigger on table: %S", pTableName, 0);
    goto trigger_cleanup;
  }


#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_CREATE_TRIGGER;
    const char *zDb = db->aDb[pTab->iDb].zName;
    const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
    if( pTab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
      goto trigger_cleanup;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(pTab->iDb),0,zDb)){
      goto trigger_cleanup;
    }
  }
#endif

  /* INSTEAD OF triggers can only appear on views and BEFORE triggers
  ** cannot appear on views.  So we might as well translate every
  ** INSTEAD OF trigger into a BEFORE trigger.  It simplifies code
  ** elsewhere.
  */
  if (tr_tm == TK_INSTEAD){
    tr_tm = TK_BEFORE;
  }

  /* Build the Trigger object */
  pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger));
  if( pTrigger==0 ) goto trigger_cleanup;
  pTrigger->name = zName;
  zName = 0;
  pTrigger->table = sqliteStrDup(pTableName->a[0].zName);
  pTrigger->iDb = iDb;
  pTrigger->iTabDb = pTab->iDb;
  pTrigger->op = op;
  pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
  pTrigger->pWhen = sqlite3ExprDup(pWhen);
  pTrigger->pColumns = sqlite3IdListDup(pColumns);
  pTrigger->foreach = foreach;
  sqlite3TokenCopy(&pTrigger->nameToken,pName);
  assert( pParse->pNewTrigger==0 );







>




|

|



|




















|
|







127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    goto trigger_cleanup;
  }
  if( !pTab->pSelect && tr_tm==TK_INSTEAD ){
    sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF"
        " trigger on table: %S", pTableName, 0);
    goto trigger_cleanup;
  }
  iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);

#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_CREATE_TRIGGER;
    const char *zDb = db->aDb[iTabDb].zName;
    const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
    if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){
      goto trigger_cleanup;
    }
    if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){
      goto trigger_cleanup;
    }
  }
#endif

  /* INSTEAD OF triggers can only appear on views and BEFORE triggers
  ** cannot appear on views.  So we might as well translate every
  ** INSTEAD OF trigger into a BEFORE trigger.  It simplifies code
  ** elsewhere.
  */
  if (tr_tm == TK_INSTEAD){
    tr_tm = TK_BEFORE;
  }

  /* Build the Trigger object */
  pTrigger = (Trigger*)sqliteMalloc(sizeof(Trigger));
  if( pTrigger==0 ) goto trigger_cleanup;
  pTrigger->name = zName;
  zName = 0;
  pTrigger->table = sqliteStrDup(pTableName->a[0].zName);
  pTrigger->pSchema = db->aDb[iDb].pSchema;
  pTrigger->iTabDb = iTabDb;
  pTrigger->op = op;
  pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER;
  pTrigger->pWhen = sqlite3ExprDup(pWhen);
  pTrigger->pColumns = sqlite3IdListDup(pColumns);
  pTrigger->foreach = foreach;
  sqlite3TokenCopy(&pTrigger->nameToken,pName);
  assert( pParse->pNewTrigger==0 );
192
193
194
195
196
197
198

199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214
215
  Parse *pParse,          /* Parser context */
  TriggerStep *pStepList, /* The triggered program */
  Token *pAll             /* Token that describes the complete CREATE TRIGGER */
){
  Trigger *pTrig = 0;     /* The trigger whose construction is finishing up */
  sqlite3 *db = pParse->db;  /* The database */
  DbFixer sFix;


  pTrig = pParse->pNewTrigger;
  pParse->pNewTrigger = 0;
  if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;

  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  if( sqlite3FixInit(&sFix, pParse, pTrig->iDb, "trigger", &pTrig->nameToken) 
          && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
    goto triggerfinish_cleanup;
  }

  /* if we are not initializing, and this trigger is not on a TEMP table, 
  ** build the sqlite_master entry
  */







>




>





|







194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
  Parse *pParse,          /* Parser context */
  TriggerStep *pStepList, /* The triggered program */
  Token *pAll             /* Token that describes the complete CREATE TRIGGER */
){
  Trigger *pTrig = 0;     /* The trigger whose construction is finishing up */
  sqlite3 *db = pParse->db;  /* The database */
  DbFixer sFix;
  int iDb;                   /* Database containing the trigger */

  pTrig = pParse->pNewTrigger;
  pParse->pNewTrigger = 0;
  if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup;
  iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema);
  pTrig->step_list = pStepList;
  while( pStepList ){
    pStepList->pTrig = pTrig;
    pStepList = pStepList->pNext;
  }
  if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken) 
          && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){
    goto triggerfinish_cleanup;
  }

  /* if we are not initializing, and this trigger is not on a TEMP table, 
  ** build the sqlite_master entry
  */
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    };
    int addr;
    Vdbe *v;

    /* Make an entry in the sqlite_master table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, pTrig->iDb);
    sqlite3OpenMasterTable(v, pTrig->iDb);
    addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
    sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0); 
    sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0); 
    sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
    sqlite3ChangeCookie(db, v, pTrig->iDb);
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
    sqlite3VdbeOp3(v, OP_ParseSchema, pTrig->iDb, 0, 
       sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC);
  }

  if( db->init.busy ){
    Table *pTab;
    Trigger *pDel;
    pDel = sqlite3HashInsert(&db->aDb[pTrig->iDb].trigHash, 
                     pTrig->name, strlen(pTrig->name)+1, pTrig);
    if( pDel ){
      assert( sqlite3Tsd()->mallocFailed && pDel==pTrig );
      goto triggerfinish_cleanup;
    }
    pTab = sqlite3LocateTable(pParse,pTrig->table,db->aDb[pTrig->iTabDb].zName);
    assert( pTab!=0 );







|
|




|

|






|







232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    };
    int addr;
    Vdbe *v;

    /* Make an entry in the sqlite_master table */
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) goto triggerfinish_cleanup;
    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(v, iDb);
    addr = sqlite3VdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
    sqlite3VdbeChangeP3(v, addr+2, pTrig->name, 0); 
    sqlite3VdbeChangeP3(v, addr+3, pTrig->table, 0); 
    sqlite3VdbeChangeP3(v, addr+6, (char*)pAll->z, pAll->n);
    sqlite3ChangeCookie(db, v, iDb);
    sqlite3VdbeAddOp(v, OP_Close, 0, 0);
    sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0, 
       sqlite3MPrintf("type='trigger' AND name='%q'", pTrig->name), P3_DYNAMIC);
  }

  if( db->init.busy ){
    Table *pTab;
    Trigger *pDel;
    pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash, 
                     pTrig->name, strlen(pTrig->name)+1, pTrig);
    if( pDel ){
      assert( sqlite3Tsd()->mallocFailed && pDel==pTrig );
      goto triggerfinish_cleanup;
    }
    pTab = sqlite3LocateTable(pParse,pTrig->table,db->aDb[pTrig->iTabDb].zName);
    assert( pTab!=0 );
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  assert( pName->nSrc==1 );
  zDb = pName->a[0].zDatabase;
  zName = pName->a[0].zName;
  nName = strlen(zName);
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
    pTrigger = sqlite3HashFind(&(db->aDb[j].trigHash), zName, nName+1);
    if( pTrigger ) break;
  }
  if( !pTrigger ){
    sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
    goto drop_trigger_cleanup;
  }
  sqlite3DropTriggerPtr(pParse, pTrigger, 0);







|







445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  assert( pName->nSrc==1 );
  zDb = pName->a[0].zDatabase;
  zName = pName->a[0].zName;
  nName = strlen(zName);
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue;
    pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName+1);
    if( pTrigger ) break;
  }
  if( !pTrigger ){
    sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0);
    goto drop_trigger_cleanup;
  }
  sqlite3DropTriggerPtr(pParse, pTrigger, 0);
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
*/
void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
  Table   *pTable;
  Vdbe *v;
  sqlite3 *db = pParse->db;
  int iDb;

  iDb = pTrigger->iDb;
  assert( iDb>=0 && iDb<db->nDb );
  pTable = tableOfTrigger(db, pTrigger);
  assert(pTable);
  assert( pTable->iDb==iDb || iDb==1 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_TRIGGER;
    const char *zDb = db->aDb[iDb].zName;
    const char *zTab = SCHEMA_TABLE(iDb);
    if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||







|



|







478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
*/
void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
  Table   *pTable;
  Vdbe *v;
  sqlite3 *db = pParse->db;
  int iDb;

  iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema);
  assert( iDb>=0 && iDb<db->nDb );
  pTable = tableOfTrigger(db, pTrigger);
  assert(pTable);
  assert( pTable->pSchema==pTrigger->pSchema || iDb==1 );
#ifndef SQLITE_OMIT_AUTHORIZATION
  {
    int code = SQLITE_DROP_TRIGGER;
    const char *zDb = db->aDb[iDb].zName;
    const char *zTab = SCHEMA_TABLE(iDb);
    if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER;
    if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
  Trigger *pTrigger;
  int nName = strlen(zName);
  pTrigger = sqlite3HashInsert(&(db->aDb[iDb].trigHash), zName, nName+1, 0);
  if( pTrigger ){
    Table *pTable = tableOfTrigger(db, pTrigger);
    assert( pTable!=0 );
    if( pTable->pTrigger == pTrigger ){
      pTable->pTrigger = pTrigger->pNext;
    }else{
      Trigger *cc = pTable->pTrigger;







|







528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
  Trigger *pTrigger;
  int nName = strlen(zName);
  pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash), zName, nName+1, 0);
  if( pTrigger ){
    Table *pTable = tableOfTrigger(db, pTrigger);
    assert( pTable!=0 );
    if( pTable->pTrigger == pTrigger ){
      pTable->pTrigger = pTrigger->pNext;
    }else{
      Trigger *cc = pTable->pTrigger;
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
  Parse *pParse,       /* The parsing context */
  TriggerStep *pStep   /* The trigger containing the target token */
){
  Token sDb;           /* Dummy database name token */
  int iDb;             /* Index of the database to use */
  SrcList *pSrc;       /* SrcList to be returned */

  iDb = pStep->pTrig->iDb;
  if( iDb==0 || iDb>=2 ){
    assert( iDb<pParse->db->nDb );
    sDb.z = (u8*)pParse->db->aDb[iDb].zName;
    sDb.n = strlen((char*)sDb.z);
    pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target);
  } else {
    pSrc = sqlite3SrcListAppend(0, &pStep->target, 0);







|







620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
  Parse *pParse,       /* The parsing context */
  TriggerStep *pStep   /* The trigger containing the target token */
){
  Token sDb;           /* Dummy database name token */
  int iDb;             /* Index of the database to use */
  SrcList *pSrc;       /* SrcList to be returned */

  iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema);
  if( iDb==0 || iDb>=2 ){
    assert( iDb<pParse->db->nDb );
    sDb.z = (u8*)pParse->db->aDb[iDb].zName;
    sDb.n = strlen((char*)sDb.z);
    pSrc = sqlite3SrcListAppend(0, &sDb, &pStep->target);
  } else {
    pSrc = sqlite3SrcListAppend(0, &pStep->target, 0);
Changes to src/update.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.114 2005/12/06 12:53:01 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The most recently coded instruction was an OP_Column to retrieve the
** i-th column of table pTab. This routine sets the P3 parameter of the 
** OP_Column to the default value, if any.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle UPDATE statements.
**
** $Id: update.c,v 1.115 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The most recently coded instruction was an OP_Column to retrieve the
** i-th column of table pTab. This routine sets the P3 parameter of the 
** OP_Column to the default value, if any.
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  int chngRowid;         /* True if the record number is being changed */
  Expr *pRowidExpr = 0;  /* Expression defining the new record number */
  int openAll = 0;       /* True if all indices need to be opened */
  AuthContext sContext;  /* The authorization context */
  NameContext sNC;       /* The name-context to resolve expressions in */


#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* Trying to update a view */
  int triggers_exist = 0;      /* True if any row triggers exist */
#endif

  int newIdx      = -1;  /* index of trigger "new" temp table       */
  int oldIdx      = -1;  /* index of trigger "old" temp table       */

  sContext.pParse = 0;
  if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto update_cleanup;
  db = pParse->db;
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to update. 
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;


  /* Figure out if we have any triggers and if the table being
  ** updated is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
  isView = pTab->pSelect!=0;







>


















>







85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                         ** an expression for the i-th column of the table.
                         ** aXRef[i]==-1 if the i-th column is not changed. */
  int chngRowid;         /* True if the record number is being changed */
  Expr *pRowidExpr = 0;  /* Expression defining the new record number */
  int openAll = 0;       /* True if all indices need to be opened */
  AuthContext sContext;  /* The authorization context */
  NameContext sNC;       /* The name-context to resolve expressions in */
  int iDb;               /* Database containing the table being updated */

#ifndef SQLITE_OMIT_TRIGGER
  int isView;                  /* Trying to update a view */
  int triggers_exist = 0;      /* True if any row triggers exist */
#endif

  int newIdx      = -1;  /* index of trigger "new" temp table       */
  int oldIdx      = -1;  /* index of trigger "old" temp table       */

  sContext.pParse = 0;
  if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto update_cleanup;
  db = pParse->db;
  assert( pTabList->nSrc==1 );

  /* Locate the table which we want to update. 
  */
  pTab = sqlite3SrcListLookup(pParse, pTabList);
  if( pTab==0 ) goto update_cleanup;
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);

  /* Figure out if we have any triggers and if the table being
  ** updated is a view
  */
#ifndef SQLITE_OMIT_TRIGGER
  triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges);
  isView = pTab->pSelect!=0;
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        goto update_cleanup;
      }
    }
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int rc;
      rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
                           pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
      if( rc==SQLITE_DENY ){
        goto update_cleanup;
      }else if( rc==SQLITE_IGNORE ){
        aXRef[j] = -1;
      }
    }
#endif







|







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        goto update_cleanup;
      }
    }
#ifndef SQLITE_OMIT_AUTHORIZATION
    {
      int rc;
      rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
                           pTab->aCol[j].zName, db->aDb[iDb].zName);
      if( rc==SQLITE_DENY ){
        goto update_cleanup;
      }else if( rc==SQLITE_IGNORE ){
        aXRef[j] = -1;
      }
    }
#endif
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, pTab->iDb);

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    Select *pView;
    pView = sqlite3SelectDup(pTab->pSelect);







|







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto update_cleanup;
  if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
  sqlite3BeginWriteOperation(pParse, 1, iDb);

  /* If we are trying to update a view, realize that view into
  ** a ephemeral table.
  */
  if( isView ){
    Select *pView;
    pView = sqlite3SelectDup(pTab->pSelect);
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      /* Open a cursor and make it point to the record that is
      ** being updated.
      */
      sqlite3OpenTableForReading(v, iCur, pTab);
    }
    sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);

    /* Generate the OLD table
    */
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);







|







305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    if( !isView ){
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
      /* Open a cursor and make it point to the record that is
      ** being updated.
      */
      sqlite3OpenTableForReading(v, iCur, iDb, pTab);
    }
    sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);

    /* Generate the OLD table
    */
    sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
    sqlite3VdbeAddOp(v, OP_RowData, iCur, 0);
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
    ** to be deleting some records.
    */
    sqlite3VdbeAddOp(v, OP_Integer, pTab->iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
    if( onError==OE_Replace ){
      openAll = 1;
    }else{
      openAll = 0;
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Replace ){
          openAll = 1;
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
        sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
                       (char*)&pIdx->keyInfo, P3_KEYINFO);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load







|















|







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  if( !isView ){
    /* 
    ** Open every index that needs updating.  Note that if any
    ** index could potentially invoke a REPLACE conflict resolution 
    ** action, then we need to open all indices because we might need
    ** to be deleting some records.
    */
    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
    sqlite3VdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
    sqlite3VdbeAddOp(v, OP_SetNumColumns, iCur, pTab->nCol);
    if( onError==OE_Replace ){
      openAll = 1;
    }else{
      openAll = 0;
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->onError==OE_Replace ){
          openAll = 1;
          break;
        }
      }
    }
    for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
      if( openAll || aIdxUsed[i] ){
        sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
        sqlite3VdbeOp3(v, OP_OpenWrite, iCur+i+1, pIdx->tnum,
                       (char*)&pIdx->keyInfo, P3_KEYINFO);
        assert( pParse->nTab>iCur+i+1 );
      }
    }

    /* Loop over every record that needs updating.  We have to load
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.510 2006/01/03 15:16:26 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.511 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
  assert( pDb->pBt!=0 );
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i);
  if( pOp->p2==0 ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->schema_cookie = pTos->i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==1 ){
    /* Record changes in the file format */
    pDb->file_format = pTos->i;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  break;
}

/* Opcode: VerifyCookie P1 P2 *







|



|







2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
  assert( pDb->pBt!=0 );
  assert( pTos>=p->aStack );
  sqlite3VdbeMemIntegerify(pTos);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pTos->i);
  if( pOp->p2==0 ){
    /* When the schema cookie changes, record the new cookie internally */
    pDb->pSchema->schema_cookie = pTos->i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==1 ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = pTos->i;
  }
  assert( (pTos->flags & MEM_Dyn)==0 );
  pTos--;
  break;
}

/* Opcode: VerifyCookie P1 P2 *
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
  pTos--;
  assert( iDb>=0 && iDb<db->nDb );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    if( pDb->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    sqlite3VdbeMemIntegerify(pTos);







|
|







2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
  pTos--;
  assert( iDb>=0 && iDb<db->nDb );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( p2<=0 ){
    assert( pTos>=p->aStack );
    sqlite3VdbeMemIntegerify(pTos);
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.189 2005/12/21 18:36:46 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.190 2006/01/05 11:34:34 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
1550
1551
1552
1553
1554
1555
1556
1557
1558

1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

1579
1580
1581
1582
1583
1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  pLevel = pWInfo->a;
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    Table *pTab;
    Index *pIx;

    int iIdxCur = pLevel->iIdxCur;

#ifndef SQLITE_OMIT_EXPLAIN
    if( pParse->explain==2 ){
      char *zMsg;
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
      zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
      if( pItem->zAlias ){
        zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
      }
      if( (pIx = pLevel->pIdx)!=0 ){
        zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
      }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
        zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
      }
      sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;

    if( pTab->isTransient || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
    }
    pLevel->iTabCur = pTabItem->iCursor;
    if( (pIx = pLevel->pIdx)!=0 ){

      sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
      VdbeComment((v, "# %s", pIx->zName));
      sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
                     (char*)&pIx->keyInfo, P3_KEYINFO);
    }
    if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
      sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
    }
    sqlite3CodeVerifySchema(pParse, pTab->iDb);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */







|
|
>




















>


|



>
|







|







1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  pLevel = pWInfo->a;
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    Table *pTab;     /* Table to open */
    Index *pIx;      /* Index used to access pTab (if any) */
    int iDb;         /* Index of database containing table/index */
    int iIdxCur = pLevel->iIdxCur;

#ifndef SQLITE_OMIT_EXPLAIN
    if( pParse->explain==2 ){
      char *zMsg;
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
      zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
      if( pItem->zAlias ){
        zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
      }
      if( (pIx = pLevel->pIdx)!=0 ){
        zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
      }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
        zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
      }
      sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
    }
#endif /* SQLITE_OMIT_EXPLAIN */
    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
    if( pTab->isTransient || pTab->pSelect ) continue;
    if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
      sqlite3OpenTableForReading(v, pTabItem->iCursor, iDb, pTab);
    }
    pLevel->iTabCur = pTabItem->iCursor;
    if( (pIx = pLevel->pIdx)!=0 ){
      assert( pIx->pSchema==pTab->pSchema );
      sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
      VdbeComment((v, "# %s", pIx->zName));
      sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
                     (char*)&pIx->keyInfo, P3_KEYINFO);
    }
    if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
      sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
    }
    sqlite3CodeVerifySchema(pParse, iDb);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
Changes to test/all.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file runs all tests.
#
# $Id: all.test,v 1.31 2005/12/15 10:11:32 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
rename finish_test really_finish_test
proc finish_test {} {memleak_check}

if {[file exists ./sqlite_test_count]} {












|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file runs all tests.
#
# $Id: all.test,v 1.32 2006/01/05 11:34:34 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl
rename finish_test really_finish_test
proc finish_test {} {memleak_check}

if {[file exists ./sqlite_test_count]} {
52
53
54
55
56
57
58





59
60
61
62
63
64
65
  async.test
  crash.test
  autovacuum_crash.test
  quick.test
  malloc.test
  misuse.test
  memleak.test





}

# Test files btree2.test and btree4.test don't work if the 
# SQLITE_DEFAULT_AUTOVACUUM macro is defined to true (because they depend
# on tables being allocated starting at page 2).
#
ifcapable default_autovacuum {







>
>
>
>
>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  async.test
  crash.test
  autovacuum_crash.test
  quick.test
  malloc.test
  misuse.test
  memleak.test

  malloc2.test
  malloc3.test
  malloc4.test
  malloc5.test
}

# Test files btree2.test and btree4.test don't work if the 
# SQLITE_DEFAULT_AUTOVACUUM macro is defined to true (because they depend
# on tables being allocated starting at page 2).
#
ifcapable default_autovacuum {
122
123
124
125
126
127
128
129
130
131
132
133
# Both tests leak memory. Currently, misuse.test also leaks a handful of
# file descriptors. This is not considered a problem, but can cause tests
# in malloc.test to fail. So set the open-file count to zero before running
# malloc.test to get around this.
#
catch {source $testdir/misuse.test}
set sqlite_open_file_count 0
catch {source $testdir/malloc.test}

catch {db close}
set sqlite_open_file_count 0
really_finish_test







|




127
128
129
130
131
132
133
134
135
136
137
138
# Both tests leak memory. Currently, misuse.test also leaks a handful of
# file descriptors. This is not considered a problem, but can cause tests
# in malloc.test to fail. So set the open-file count to zero before running
# malloc.test to get around this.
#
catch {source $testdir/misuse.test}
set sqlite_open_file_count 0
# catch {source $testdir/malloc.test}

catch {db close}
set sqlite_open_file_count 0
really_finish_test
Changes to test/delete2.test.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# index entry was deleted first, before the table entry.  And the index
# delete worked.  Thus an entry was deleted from the index but not from
# the table.
#
# The solution to the problem was to detect that the table is locked
# before the index entry is deleted.
#
# $Id: delete2.test,v 1.5 2006/01/03 00:33:50 drh Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table that has an index.
#







|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# index entry was deleted first, before the table entry.  And the index
# delete worked.  Thus an entry was deleted from the index but not from
# the table.
#
# The solution to the problem was to detect that the table is locked
# before the index entry is deleted.
#
# $Id: delete2.test,v 1.6 2006/01/05 11:34:34 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table that has an index.
#
63
64
65
66
67
68
69

70
71
72
73
74
75
76
  set STMT [sqlite3_prepare $DB {SELECT * FROM q} -1 TAIL]
  sqlite3_step $STMT
} SQLITE_ROW
integrity_check delete2-1.5

# Try to delete a row from the table. The delete should fail.
#

do_test delete2-1.6 {
  catchsql {
    DELETE FROM q WHERE rowid=1
  }
} {1 {database table is locked}}
integrity_check delete2-1.7
do_test delete2-1.8 {







>







63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  set STMT [sqlite3_prepare $DB {SELECT * FROM q} -1 TAIL]
  sqlite3_step $STMT
} SQLITE_ROW
integrity_check delete2-1.5

# Try to delete a row from the table. The delete should fail.
#
breakpoint
do_test delete2-1.6 {
  catchsql {
    DELETE FROM q WHERE rowid=1
  }
} {1 {database table is locked}}
integrity_check delete2-1.7
do_test delete2-1.8 {
Changes to test/shared.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
# 2005 December 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the SELECT statement.
#
# $Id: shared.test,v 1.1 2005/12/30 16:28:02 danielk1977 Exp $

set ::enable_shared_cache [sqlite3_enable_shared_cache 1]

set testdir [file dirname $argv0]
source $testdir/tester.tcl
db close

ifcapable !shared_cache {
  finish_test
  return
}


# Test organization:
#
# shared-1.*: Simple test to verify basic sanity of table level locking when
#             two connections share a pager cache.
# shared-2.*: Test that a read transaction can co-exist with a 
#             write-transaction, including a simple test to ensure the 
#             external locking protocol is still working.

#

do_test shared-1.1 {
  # Open a second database on the file test.db. It should use the same pager
  # cache and schema as the original connection. Verify that only 1 file is 
  # opened.
  sqlite3 db2 test.db













|
<
<









>








>







1
2
3
4
5
6
7
8
9
10
11
12
13
14


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# 2005 December 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the SELECT statement.
#
# $Id: shared.test,v 1.2 2006/01/05 11:34:34 danielk1977 Exp $



set testdir [file dirname $argv0]
source $testdir/tester.tcl
db close

ifcapable !shared_cache {
  finish_test
  return
}
set ::enable_shared_cache [sqlite3_enable_shared_cache 1]

# Test organization:
#
# shared-1.*: Simple test to verify basic sanity of table level locking when
#             two connections share a pager cache.
# shared-2.*: Test that a read transaction can co-exist with a 
#             write-transaction, including a simple test to ensure the 
#             external locking protocol is still working.
# shared-3.*: Simple test of read-uncommitted mode.
#

do_test shared-1.1 {
  # Open a second database on the file test.db. It should use the same pager
  # cache and schema as the original connection. Verify that only 1 file is 
  # opened.
  sqlite3 db2 test.db
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
  # of the read-lock connection 1 is holding on table abc (obtained in the
  # previous test case).
  catchsql {
    INSERT INTO abc VALUES(4, 5, 6);
  } db2
} {1 {database is locked}}
do_test shared-1.5 {
  # Using connection 2 (the one without the open transaction), create a 
  # new table and add a row to it. This is permitted as the transaction
  # started by connection 1 is currently a read transaction.
  execsql {
    CREATE TABLE def(d, e, f);
    INSERT INTO def VALUES('I', 'II', 'III');
  } db2
} {}
do_test shared-1.6 {
  # Upgrade connection 1's transaction to a write transaction. Insert
  # a row into table def - the table just created by connection 2.
  #
  # Connection 1 is able to see table def, even though it was created 
  # "after" the connection 1 transaction was started. This is because no
  # lock was established on the sqlite_master table.

# Todo: Remove this. Because the implementation does not include
# shared-schemas yet, we need to run some query (that will fail at 
# OP_VerifyCookie) so that connection 1 picks up the schema change
# made via connection 2. Otherwise the sqlite3_prepare("INSERT INTO def...")
# below will fail.
execsql {
  SELECT * FROM sqlite_master;
}

  execsql {
    INSERT INTO def VALUES('IV', 'V', 'VI');
  }
} {}
do_test shared-1.7 {
  # Read from the sqlite_master table with connection 1 (inside the 
  # transaction). Then test that we can no longer create a table 
  # with connection 2. This is because of the read-lock on sqlite_master.

  execsql {
    SELECT * FROM sqlite_master;
  }
  catchsql {
    CREATE TABLE ghi(g, h, i);
  } db2
} {1 {database is locked}}
do_test shared-1.8 {
  # Check that connection 2 can read the sqlite_master table. Then
  # create a table using connection 1 (this should write-lock the 
  # sqlite_master table). Then try to read sqlite_master again using 
  # connection 2 and verify that the write-lock prevents this.
  execsql {
    SELECT * FROM sqlite_master;
  } db2
  execsql {
    CREATE TABLE ghi(g, h, i);
  } 
  catchsql {
    SELECT * FROM sqlite_master;
  } db2
} {1 {database is locked}}
do_test shared-1.9 {
  # Commit the connection 1 transaction.
  execsql {
    COMMIT;
  }
} {}

do_test shared-2.1 {







|
|
|
|

<

|

|
|
<
<
|
<
|
<
<
|
<
<
|
<
<
|
<





|
|
>




|



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85


86

87


88


89


90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106















107
108
109
110
111
112
113
  # of the read-lock connection 1 is holding on table abc (obtained in the
  # previous test case).
  catchsql {
    INSERT INTO abc VALUES(4, 5, 6);
  } db2
} {1 {database is locked}}
do_test shared-1.5 {
  # Using connection 2 (the one without the open transaction), try to create
  # a new table. This should fail because of the open read transaction 
  # held by connection 1.
  catchsql {
    CREATE TABLE def(d, e, f);

  } db2
} {1 {database is locked}}
do_test shared-1.6 {
  # Upgrade connection 1's transaction to a write transaction. Create
  # a new table - def - and insert a row into it. Because the connection 1


  # transaction modifies the schema, it should not be possible for 

  # connection 2 to access the database at all until the connection 1 


  # has finished the transaction.


  execsql {


    CREATE TABLE def(d, e, f);

    INSERT INTO def VALUES('IV', 'V', 'VI');
  }
} {}
do_test shared-1.7 {
  # Read from the sqlite_master table with connection 1 (inside the 
  # transaction). Then test that we can not do this with connection 2. This
  # is because of the schema-modified lock established by connection 1 
  # in the previous test case.
  execsql {
    SELECT * FROM sqlite_master;
  }
  catchsql {
    SELECT * FROM sqlite_master;
  } db2
} {1 {database is locked}}
do_test shared-1.8 {















  # Commit the connection 1 transaction.
  execsql {
    COMMIT;
  }
} {}

do_test shared-2.1 {
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197











































198
199
200
201
202
203
204
205
    INSERT INTO def VALUES('VII', 'VIII', 'IX');
  }
  concat [
    catchsql { SELECT * FROM def; } db3
  ] [
    catchsql { SELECT * FROM def; } db2
  ]
} {0 {I II III IV V VI} 1 {database is locked}}
do_test shared-2.4 {
  # Commit the open transaction on db. db2 still holds a read-transaction.
  # This should prevent db3 from writing to the database, but not from 
  # reading.
  execsql {
    COMMIT;
  }
  concat [
    catchsql { SELECT * FROM def; } db3
  ] [
    catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3
  ]
} {0 {I II III IV V VI VII VIII IX} 1 {database is locked}}













































catch {db close}
catch {db2 close}
catch {db3 close}

finish_test
sqlite3_enable_shared_cache $::enable_shared_cache








|












|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    INSERT INTO def VALUES('VII', 'VIII', 'IX');
  }
  concat [
    catchsql { SELECT * FROM def; } db3
  ] [
    catchsql { SELECT * FROM def; } db2
  ]
} {0 {IV V VI} 1 {database is locked}}
do_test shared-2.4 {
  # Commit the open transaction on db. db2 still holds a read-transaction.
  # This should prevent db3 from writing to the database, but not from 
  # reading.
  execsql {
    COMMIT;
  }
  concat [
    catchsql { SELECT * FROM def; } db3
  ] [
    catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3
  ]
} {0 {IV V VI VII VIII IX} 1 {database is locked}}

catchsql COMMIT db2

do_test shared-3.1.1 {
  # This test case starts a linear scan of table 'seq' using a 
  # read-uncommitted connection. In the middle of the scan, rows are added
  # to the end of the seq table (ahead of the current cursor position).
  # The uncommitted rows should be included in the results of the scan.
  execsql "
    CREATE TABLE seq(i, x);
    INSERT INTO seq VALUES(1, '[string repeat X 500]');
    INSERT INTO seq VALUES(2, '[string repeat X 500]');
  "
  execsql {SELECT * FROM sqlite_master} db2
  execsql {PRAGMA read_uncommitted = 1} db2

  set ret [list]
  db2 eval {SELECT i FROM seq} {
    if {$i < 4} {
      execsql {
        INSERT INTO seq SELECT i + (SELECT max(i) FROM seq), x FROM seq;
      }
    }
    lappend ret $i
  }
  set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-3.1.2 {
  # Another linear scan through table seq using a read-uncommitted connection.
  # This time, delete each row as it is read. Should not affect the results of
  # the scan, but the table should be empty after the scan is concluded 
  # (test 3.1.3 verifies this).
  set ret [list]
  db2 eval {SELECT i FROM seq} {
    db eval {DELETE FROM seq WHERE i = $i}
    lappend ret $i
  }
  set ret
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16}
do_test shared-3.1.3 {
  execsql {
    SELECT * FROM seq;
  }
} {}

catch {db close}
catch {db2 close}
catch {db3 close}

finish_test
sqlite3_enable_shared_cache $::enable_shared_cache

Changes to test/tester.tcl.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.56 2006/01/03 00:33:50 drh Exp $

# Make sure tclsqlite3 was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite3 -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.57 2006/01/05 11:34:34 danielk1977 Exp $

# Make sure tclsqlite3 was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite3 -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  foreach alloc [sqlite_malloc_outstanding] {
    foreach {nBytes file iLine userstring backtrace} $alloc {}
    set stack [list]
    set skip 0

    # The first command in this block will probably fail on windows. This
    # means there will be no stack dump available.
    if {$cnt < 25} {
      catch {
        set stuff [eval "exec addr2line -e ./testfixture -f $backtrace"]
        foreach {func line} $stuff {
          if {$func != "??" || $line != "??:0"} {
            regexp {.*/(.*)} $line dummy line
            lappend stack "${func}() $line"
          } else {







|







445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  foreach alloc [sqlite_malloc_outstanding] {
    foreach {nBytes file iLine userstring backtrace} $alloc {}
    set stack [list]
    set skip 0

    # The first command in this block will probably fail on windows. This
    # means there will be no stack dump available.
    if {$cnt < 25 && $backtrace!=""} {
      catch {
        set stuff [eval "exec addr2line -e ./testfixture -f $backtrace"]
        foreach {func line} $stuff {
          if {$func != "??" || $line != "??:0"} {
            regexp {.*/(.*)} $line dummy line
            lappend stack "${func}() $line"
          } else {
Added www/sharedcache.tcl.






























































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#
# Run this script to generated a sharedcache.html output file
#
set rcsid {$Id: }
source common.tcl
header {SQLite Shared-Cache Mode}

proc HEADING {level title} {
  global pnum
  incr pnum($level)
  foreach i [array names pnum] {
    if {$i>$level} {set pnum($i) 0}
  }
  set h [expr {$level+1}]
  if {$h>6} {set h 6}
  set n $pnum(1).$pnum(2)
  for {set i 3} {$i<=$level} {incr i} {
    append n .$pnum($i)
  }
  puts "<h$h>$n $title</h$h>"
}
set pnum(1) 0
set pnum(2) 0
set pnum(3) 0
set pnum(4) 0
set pnum(5) 0
set pnum(6) 0
set pnum(7) 0
set pnum(8) 0

HEADING 1 {SQLite Shared-Cache Mode}

puts {
<p>Starting with version 3.3.0, SQLite includes a special "shared-cache"
mode (disabled by default) intended for use in embedded servers. If
shared-cache mode is enabled and a thread establishes multiple connections
to the same database, the connections share a single data and schema cache.
This can significantly reduce the quantity of memory and IO required by
the system.</p>

<p>Using shared-cache mode imposes some extra restrictions on 
passing database handles between threads and also changes the semantics
of the locking model in some cases. These details are described in full by
this document. A basic understanding of the normal SQLite locking model (see
<a href="lockingv3.html">File Locking And Concurrency In SQLite Version 3</a>
for details) is assumed.
</p>
}

HEADING 1 {Shared-Cache Locking Model}

puts {
<p>Externally, from the point of view of another process or thread, two
or more database connections using a shared-cache appear as a single 
connection. The locking protocol used to arbitrate between multiple 
shared-caches or regular database users is described elsewhere.
</p>

<table style="margin:auto">
<tr><td>
<pre>
            +--------------+      +--------------+
            | Connection 2 |      | Connection 3 |
            +--------------+      +--------------+
                         |          |
                         V          V
+--------------+       +--------------+
| Connection 1 |       | Shared cache |
+--------------+       +--------------+
            |            |
            V            V
          +----------------+
          |    Database    |
          +----------------+
</pre>
</table>
<p style="font-style:italic;text-align:center">Figure 1</p>

<p>Figure 1 depicts an example runtime configuration where three 
database connections have been established. Connection 1 is a normal
SQLite database connection. Connections 2 and 3 share a cache (and so must
have been established by the same process thread). The normal locking
protocol is used to serialize database access between connection 1 and
the shared cache. The internal protocol used to serialize (or not, see
"Read-Uncommitted Isolation Mode" below) access to the shared-cache by
connections 2 and 3 is described in the remainder of this section.
</p>

<p>There are three levels to the shared-cache locking model, 
transaction level locking, table level locking and schema level locking. 
They are described in the following three sub-sections.</p>

}

HEADING 2 {Transaction Level Locking}

puts {
<p>SQLite connections can open two kinds of transactions, read and write
transactions. This is not done explicitly, a transaction is implicitly a
read-transaction until it first writes to a database table, at which point
it becomes a write-transaction.
</p>
<p>At most one connection to a single shared cache may open a 
write transaction at any one time. This may co-exist with any number of read 
transactions. 
</p>
}

HEADING 2 {Table Level Locking}

puts {
<p>When two or more connections use a shared-cache, locks are used to 
serialize concurrent access attempts on a per-table basis. Tables support 
two types of locks, "read-locks" and "write-locks". Locks are granted to
connections - at any one time, each database connection has either a
read-lock, write-lock or no lock on each database table.
</p>

<p>At any one time, a single table may have any number of active read-locks
or a single active write lock. To read data a table, a connection must 
first obtain a read-lock. To write to a table, a connection must obtain a 
write-lock on that table. If a required table lock cannot be obtained,
the query fails and SQLITE_BUSY is returned to the caller.
</p> 

<p><b>TODO: Should we be invoking the busy-handler here? Just waiting won't do
any good, but something else might...  </b></p>

<p>Once a connection obtains a table lock, it is not released until the
current transaction (read or write) is concluded.
</p>
}

HEADING 3 {Read-Uncommitted Isolation Mode}

puts {
<p>The behaviour described above may be modified slightly by using the 
<i>read_uncommitted</i> pragma to change the isolation level from serialized 
(the default), to read-uncommitted.</p>

<p> A database connection in read-uncommitted mode does not attempt 
to obtain read-locks before reading from database tables as described 
above. This can lead to inconsistent query results if another database
connection modifies a table while it is being read, but it also means that
a read-transaction opened by a connection in read-uncommitted mode can
neither block nor be blocked by any other connection.</p>

<p>Read-uncommitted mode has no effect on the locks required to write to
database tables (i.e. read-uncommitted connections must still obtain 
write-locks and hence database writes may still block or be blocked). 
Also, read-uncommitted mode has no effect on the <i>sqlite_master</i> 
locks required by the rules enumerated below (see section 
"Schema (sqlite_master) Level Locking").
</p>

<pre>
  /* Set the value of the read-uncommitted flag:
  **
  **   True  -> Set the connection to read-uncommitted mode.
  **   False -> Set the connectino to serialized (the default) mode.
  */
  PRAGMA read_uncommitted = &lt;boolean&gt;;

  /* Retrieve the current value of the read-uncommitted flag */
  PRAGMA read_uncommitted;
</pre>
}

HEADING 2 {Schema (sqlite_master) Level Locking}

puts {
<p>The <i>sqlite_master</i> table supports shared-cache read and write 
locks in the same way as all other database tables (see description 
above). The following special rules also apply:
</p>

<ul>
<li>A connection must obtain a read-lock on <i>sqlite_master</i> before 
accessing any database tables or obtaining any other read or write locks.</li>
<li>Before executing a statement that modifies the database schema (i.e. 
a CREATE or DROP TABLE statement), a connection must obtain a write-lock on 
<i>sqlite_master</i>.
</li>
<li>A connection may not compile an SQL statement that refers to database
tables if any other connection is holding a write-lock on <i>sqlite_master</i>.
</li>
</ul>
}

HEADING 1 {Thread Related Issues}

puts {
<p>When shared-cache mode is enabled, a database connection may only be
used by the thread that called sqlite3_open() to create it. If another 
thread attempts to use the database connection, in most cases an 
SQLITE_MISUSE error is returned. However this is not guaranteed and 
programs should not depend on this behaviour, in some cases a segfault 
may result.
</p>
}

HEADING 1 {Enabling Shared-Cache Mode}

puts {
<p>Shared-cache mode is enabled on a thread-wide basis. Using the C 
interface, the following API can be used to enable or disable shared-cache
mode for the calling thread:
</p>

<pre>
int sqlite3_enable_shared_cache(int);
</pre>

<p>It is illegal to call sqlite3_enable_shared_cache() if one or more 
open database connections were opened by the calling thread. If the argument
is non-zero, shared-cache mode is enabled. If the argument is zero,
shared-cache mode is disabled. The return value is either SQLITE_OK (if the
operation was successful), SQLITE_NOMEM (if a malloc() failed), or
SQLITE_MISUSE (if the thread has open database connections).
</p>
}

footer $rcsid