Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Changes to the Mem structure to reduce the frequency of freeing and reallocating the dynamic buffer. (CVS 4928) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
d0bf73d81453da1d8e602e0445064d9f |
User & Date: | danielk1977 2008-03-28 15:44:10.000 |
Context
2008-03-28
| ||
17:41 | Change the pager's sector size algorithm to the maximum of the size reported by xSectorSize() from the VFS and 512. It was using the maximum of xSectorSize() and the current page size, but that was adding an extra 512 bytes to the size of the journal file in the common case. (CVS 4929) (check-in: 17ea0c97a8 user: drh tags: trunk) | |
15:44 | Changes to the Mem structure to reduce the frequency of freeing and reallocating the dynamic buffer. (CVS 4928) (check-in: d0bf73d814 user: danielk1977 tags: trunk) | |
12:53 | Patch to the new memory tracing logic that allows it to build even if memory debugging is turned off. (CVS 4927) (check-in: 0a9c63b227 user: drh tags: trunk) | |
Changes
Changes to src/test_malloc.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** ** $Id: test_malloc.c,v 1.22 2008/03/28 15:44:10 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #include <assert.h> |
︙ | ︙ | |||
542 543 544 545 546 547 548 | } pLog->nCall++; pLog->nByte += nByte; } } | | | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | } pLog->nCall++; pLog->nByte += nByte; } } static void test_memdebug_log_clear(){ Tcl_HashSearch search; Tcl_HashEntry *pEntry; for( pEntry=Tcl_FirstHashEntry(&aMallocLog, &search); pEntry; pEntry=Tcl_NextHashEntry(&search) ){ |
︙ | ︙ |
Changes to src/utf.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** ** $Id: utf.c,v 1.61 2008/03/28 15:44:10 danielk1977 Exp $ ** ** Notes on UTF-8: ** ** Byte-0 Byte-1 Byte-2 Byte-3 Value ** 0xxxxxxx 00000000 00000000 0xxxxxxx ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
︙ | ︙ | |||
302 303 304 305 306 307 308 309 310 311 312 313 314 315 | assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term|MEM_Dyn); pMem->z = (char*)zOut; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); | > | 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term|MEM_Dyn); pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.721 2008/03/28 15:44:10 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor |
︙ | ︙ | |||
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | ** ** Memory cells for cursors are allocated at the top of the address ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for ** cursor 1 is managed by memory cell (p->nMem-1), etc. */ Mem *pMem = &p->aMem[p->nMem-iCur]; Cursor *pCx = 0; /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains ** the number of fields in the records contained in the table or ** index being opened. Use this to reserve space for the ** Cursor.aType[] array. */ int nField = 0; if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){ nField = pOp->p2; } | > < < | | 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 | ** ** Memory cells for cursors are allocated at the top of the address ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for ** cursor 1 is managed by memory cell (p->nMem-1), etc. */ Mem *pMem = &p->aMem[p->nMem-iCur]; int nByte; Cursor *pCx = 0; /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains ** the number of fields in the records contained in the table or ** index being opened. Use this to reserve space for the ** Cursor.aType[] array. */ int nField = 0; if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){ nField = pOp->p2; } nByte = sizeof(Cursor) + (isBtreeCursor?sqlite3BtreeCursorSize():0) + 2*nField*sizeof(u32); assert( iCur<p->nCursor ); if( p->apCsr[iCur] ){ sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
︙ | ︙ | |||
664 665 666 667 668 669 670 | ** is initialized to a NULL. */ opProperty = opcodeProperty[pOp->opcode]; if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &p->aMem[pOp->p2]; | | | 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 | ** is initialized to a NULL. */ opProperty = opcodeProperty[pOp->opcode]; if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){ assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &p->aMem[pOp->p2]; sqlite3VdbeMemReleaseExternal(pOut); pOut->flags = MEM_Null; }else /* Do common setup for opcodes marked with one of the following ** combinations of properties. ** ** in1 |
︙ | ︙ | |||
876 877 878 879 880 881 882 | pOp->p1 = strlen(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem; | | | 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | pOp->p1 = strlen(pOp->p4.z); #ifndef SQLITE_OMIT_UTF16 if( encoding!=SQLITE_UTF8 ){ sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem; pOut->zMalloc = 0; pOut->flags |= MEM_Static; if( pOp->p4type==P4_DYNAMIC ){ sqlite3_free(pOp->p4.z); } pOp->p4type = P4_DYNAMIC; pOp->p4.z = pOut->z; pOp->p1 = pOut->n; |
︙ | ︙ | |||
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 | pIn1 = &p->aMem[pOp->p1]; REGISTER_TRACE(pOp->p1, pIn1); assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &p->aMem[pOp->p2]; assert( pOut!=pIn1 ); if( pOp->opcode==OP_Move ){ sqlite3VdbeMemMove(pOut, pIn1); }else{ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); if( pOp->opcode==OP_Copy ){ Deephemeralize(pOut); } } REGISTER_TRACE(pOp->p2, pOut); | > > > | 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 | pIn1 = &p->aMem[pOp->p1]; REGISTER_TRACE(pOp->p1, pIn1); assert( pOp->p2>0 ); assert( pOp->p2<=p->nMem ); pOut = &p->aMem[pOp->p2]; assert( pOut!=pIn1 ); if( pOp->opcode==OP_Move ){ char *zMalloc = pOut->zMalloc; pOut->zMalloc = 0; sqlite3VdbeMemMove(pOut, pIn1); pIn1->zMalloc = zMalloc; }else{ sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); if( pOp->opcode==OP_Copy ){ Deephemeralize(pOut); } } REGISTER_TRACE(pOp->p2, pOut); |
︙ | ︙ | |||
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 | ctx.pFunc = ctx.pVdbeFunc->pFunc; } assert( pOp->p3>0 && pOp->p3<=p->nMem ); pOut = &p->aMem[pOp->p3]; ctx.s.flags = MEM_Null; ctx.s.db = db; /* The output cell may already have a buffer allocated. Move ** the pointer to ctx.s so in case the user-function can use ** the already allocated buffer instead of allocating a new one. */ sqlite3VdbeMemMove(&ctx.s, pOut); MemSetTypeFlag(&ctx.s, MEM_Null); | > > | 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 | ctx.pFunc = ctx.pVdbeFunc->pFunc; } assert( pOp->p3>0 && pOp->p3<=p->nMem ); pOut = &p->aMem[pOp->p3]; ctx.s.flags = MEM_Null; ctx.s.db = db; ctx.s.xDel = 0; ctx.s.zMalloc = 0; /* The output cell may already have a buffer allocated. Move ** the pointer to ctx.s so in case the user-function can use ** the already allocated buffer instead of allocating a new one. */ sqlite3VdbeMemMove(&ctx.s, pOut); MemSetTypeFlag(&ctx.s, MEM_Null); |
︙ | ︙ | |||
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 | int i; /* Loop counter */ char *zData; /* Part of the record being decoded */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ sMem.flags = 0; sMem.db = 0; assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &p->aMem[pOp->p3]; MemSetTypeFlag(pDest, MEM_Null); /* This block sets the variable payloadSize to be the total number of ** bytes in the record. | > | 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 | int i; /* Loop counter */ char *zData; /* Part of the record being decoded */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ sMem.flags = 0; sMem.db = 0; sMem.zMalloc = 0; assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &p->aMem[pOp->p3]; MemSetTypeFlag(pDest, MEM_Null); /* This block sets the variable payloadSize to be the total number of ** bytes in the record. |
︙ | ︙ | |||
2025 2026 2027 2028 2029 2030 2031 | ** table. Set the offset for any extra columns not present in ** the record to 0. This tells code below to store a NULL ** instead of deserializing a value from the record. */ aOffset[i] = 0; } } | | | 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 | ** table. Set the offset for any extra columns not present in ** the record to 0. This tells code below to store a NULL ** instead of deserializing a value from the record. */ aOffset[i] = 0; } } sqlite3VdbeMemRelease(&sMem); sMem.flags = MEM_Null; /* If we have read more header data than was contained in the header, ** or if the end of the last field appears to be past the end of the ** record, then we must be dealing with a corrupt database. */ if( zIdx>zEndHdr || offset>payloadSize ){ |
︙ | ︙ | |||
2050 2051 2052 2053 2054 2055 2056 | */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ if( pDest->flags&MEM_Dyn ){ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem); sMem.db = db; | | > > > | 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 | */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ if( pDest->flags&MEM_Dyn ){ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem); sMem.db = db; rc = sqlite3VdbeMemCopy(pDest, &sMem); assert( !(sMem.flags&MEM_Dyn) ); if( rc!=SQLITE_OK ){ goto op_column_out; } }else{ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); } }else{ len = sqlite3VdbeSerialTypeLen(aType[p2]); sqlite3VdbeMemMove(&sMem, pDest); rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); |
︙ | ︙ | |||
2079 2080 2081 2082 2083 2084 2085 | } /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ | | | | > | 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 | } /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( sMem.zMalloc ){ assert( sMem.z==sMem.zMalloc ); assert( !(pDest->flags & MEM_Dyn) ); assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); pDest->flags &= ~(MEM_Ephem|MEM_Static); pDest->flags |= MEM_Term; pDest->z = sMem.z; pDest->zMalloc = sMem.zMalloc; } rc = sqlite3VdbeMemMakeWriteable(pDest); op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); |
︙ | ︙ | |||
3291 3292 3293 3294 3295 3296 3297 | } if( pC->pseudoTable ){ if( !pC->ephemPseudoTable ){ sqlite3_free(pC->pData); } pC->iKey = iKey; pC->nData = pData->n; | | > | 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 | } if( pC->pseudoTable ){ if( !pC->ephemPseudoTable ){ sqlite3_free(pC->pData); } pC->iKey = iKey; pC->nData = pData->n; if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){ pC->pData = pData->z; if( !pC->ephemPseudoTable ){ pData->flags &= ~MEM_Dyn; pData->flags |= MEM_Ephem; pData->zMalloc = 0; } }else{ pC->pData = sqlite3_malloc( pC->nData+2 ); if( !pC->pData ) goto no_mem; memcpy(pC->pData, pData->z, pC->nData); pC->pData[pC->nData] = 0; pC->pData[pC->nData+1] = 0; |
︙ | ︙ | |||
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 | } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; ctx.pColl = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); | > | 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 | } ctx.pFunc = pOp->p4.pFunc; assert( pOp->p3>0 && pOp->p3<=p->nMem ); ctx.pMem = pMem = &p->aMem[pOp->p3]; pMem->n++; ctx.s.flags = MEM_Null; ctx.s.z = 0; ctx.s.zMalloc = 0; ctx.s.xDel = 0; ctx.s.db = db; ctx.isError = 0; ctx.pColl = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
120 121 122 123 124 125 126 127 128 129 130 131 132 133 | sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** No other flags may be set in this case. | > | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** No other flags may be set in this case. |
︙ | ︙ | |||
411 412 413 414 415 416 417 418 419 420 421 422 423 424 | int sqlite3VdbeMemIntegerify(Mem*); double sqlite3VdbeRealValue(Mem*); void sqlite3VdbeIntegerAffinity(Mem*); int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeOpcodeHasProperty(int, int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeReleaseBuffers(Vdbe *p); #ifndef NDEBUG | > | 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | int sqlite3VdbeMemIntegerify(Mem*); double sqlite3VdbeRealValue(Mem*); void sqlite3VdbeIntegerAffinity(Mem*); int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); void sqlite3VdbeMemReleaseExternal(Mem *p); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeOpcodeHasProperty(int, int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); int sqlite3VdbeReleaseBuffers(Vdbe *p); #ifndef NDEBUG |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
610 611 612 613 614 615 616 | void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ Mem *pMem; assert( p && p->pFunc && p->pFunc->xStep ); assert( sqlite3_mutex_held(p->s.db->mutex) ); pMem = p->pMem; if( (pMem->flags & MEM_Agg)==0 ){ if( nByte==0 ){ | > | > < | > > | 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ Mem *pMem; assert( p && p->pFunc && p->pFunc->xStep ); assert( sqlite3_mutex_held(p->s.db->mutex) ); pMem = p->pMem; if( (pMem->flags & MEM_Agg)==0 ){ if( nByte==0 ){ sqlite3VdbeMemReleaseExternal(pMem); pMem->flags = MEM_Null; pMem->z = 0; }else{ sqlite3VdbeMemGrow(pMem, nByte, 0); pMem->flags = MEM_Agg; pMem->u.pDef = p->pFunc; if( pMem->z ){ memset(pMem->z, 0, nByte); } } } return (void*)pMem->z; } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
739 740 741 742 743 744 745 | */ static void releaseMemArray(Mem *p, int N, int freebuffers){ if( p && N ){ sqlite3 *db = p->db; int malloc_failed = db->mallocFailed; while( N-->0 ){ assert( N<2 || p[0].db==p[1].db ); | | | > > | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 | */ static void releaseMemArray(Mem *p, int N, int freebuffers){ if( p && N ){ sqlite3 *db = p->db; int malloc_failed = db->mallocFailed; while( N-->0 ){ assert( N<2 || p[0].db==p[1].db ); if( freebuffers ){ sqlite3VdbeMemRelease(p); }else{ sqlite3VdbeMemReleaseExternal(p); } p->flags = MEM_Null; p++; } db->mallocFailed = malloc_failed; } } #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
︙ | ︙ | |||
1026 1027 1028 1029 1030 1031 1032 | p->aMem[n].db = db; } } } #ifdef SQLITE_DEBUG for(n=1; n<p->nMem; n++){ assert( p->aMem[n].db==db ); | < | 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | p->aMem[n].db = db; } } } #ifdef SQLITE_DEBUG for(n=1; n<p->nMem; n++){ assert( p->aMem[n].db==db ); } #endif p->pc = -1; p->rc = SQLITE_OK; p->uniqueCnt = 0; p->returnDepth = 0; |
︙ | ︙ | |||
1178 1179 1180 1181 1182 1183 1184 | pColName = &(p->aColName[idx+var*p->nResColumn]); if( N==P4_DYNAMIC || N==P4_STATIC ){ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); }else{ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); } if( rc==SQLITE_OK && N==P4_DYNAMIC ){ | | | | 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 | pColName = &(p->aColName[idx+var*p->nResColumn]); if( N==P4_DYNAMIC || N==P4_STATIC ){ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); }else{ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); } if( rc==SQLITE_OK && N==P4_DYNAMIC ){ pColName->flags &= (~MEM_Static); pColName->zMalloc = pColName->z; } return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a |
︙ | ︙ | |||
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 | u32 serial_type; idx += GetVarint( aKey+idx, serial_type); if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break; pMem->enc = pKeyInfo->enc; pMem->db = pKeyInfo->db; pMem->flags = 0; d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); pMem++; i++; } p->nField = i; return (void*)p; } /* ** This routine destroys a UnpackedRecord object */ void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ if( p ){ if( p->needDestroy ){ int i; Mem *pMem; for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ | > | | 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 | u32 serial_type; idx += GetVarint( aKey+idx, serial_type); if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break; pMem->enc = pKeyInfo->enc; pMem->db = pKeyInfo->db; pMem->flags = 0; pMem->zMalloc = 0; d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); pMem++; i++; } p->nField = i; return (void*)p; } /* ** This routine destroys a UnpackedRecord object */ void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ if( p ){ if( p->needDestroy ){ int i; Mem *pMem; for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ if( pMem->zMalloc ){ sqlite3VdbeMemRelease(pMem); } } } if( p->needFree ){ sqlite3_free(p); } |
︙ | ︙ | |||
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 | KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = 0; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; nField = pKeyInfo->nField; while( idx1<szHdr1 && i<pPKey2->nField ){ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += GetVarint( aKey1+idx1, serial_type1 ); if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; /* Extract the values to be compared. */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], i<nField ? pKeyInfo->aColl[i] : 0); | > < > | 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 | KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = 0; mem1.zMalloc = 0; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; nField = pKeyInfo->nField; while( idx1<szHdr1 && i<pPKey2->nField ){ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += GetVarint( aKey1+idx1, serial_type1 ); if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; /* Extract the values to be compared. */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], i<nField ? pKeyInfo->aColl[i] : 0); if( rc!=0 ){ break; } i++; } if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1); /* One of the keys ran out of fields, but all the fields up to that point ** were equal. If the incrKey flag is true, then the second key is ** treated as larger. */ if( rc==0 ){ if( pKeyInfo->incrKey ){ |
︙ | ︙ | |||
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 | sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ return SQLITE_CORRUPT_BKPT; } m.flags = 0; m.db = 0; rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); if( rc ){ return rc; } sqlite3GetVarint32((u8*)m.z, &szHdr); sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); | > | 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 | sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ return SQLITE_CORRUPT_BKPT; } m.flags = 0; m.db = 0; m.zMalloc = 0; rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); if( rc ){ return rc; } sqlite3GetVarint32((u8*)m.z, &szHdr); sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
︙ | ︙ | |||
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 | sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ *res = 0; return SQLITE_OK; } m.db = 0; m.flags = 0; rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); if( rc ){ return rc; } lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey, zSpace, sizeof(zSpace)); | > | 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 | sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ *res = 0; return SQLITE_OK; } m.db = 0; m.flags = 0; m.zMalloc = 0; rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); if( rc ){ return rc; } lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey, zSpace, sizeof(zSpace)); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
69 70 71 72 73 74 75 | ** be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ | < < | > | | | | | < < < | | < | | > | | < < < < | | | < < < < < | | > > | < < | < | | < | | | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | ** be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ assert( 1 >= ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + ((pMem->flags&MEM_Ephem) ? 1 : 0) + ((pMem->flags&MEM_Static) ? 1 : 0) ); if( sqlite3MallocSize(pMem->zMalloc)<n ){ n = (n>32?n:32); if( preserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); preserve = 0; }else{ sqlite3_free(pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } } if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( pMem->xDel && pMem->flags&MEM_Dyn){ pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Ephem|MEM_Static); pMem->xDel = 0; return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int f; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); f = pMem->flags; if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; } |
︙ | ︙ | |||
255 256 257 258 259 260 261 262 263 264 265 | int rc = SQLITE_OK; if( pFunc && pFunc->xFinalize ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); ctx.s.flags = MEM_Null; ctx.s.db = pMem->db; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.isError = 0; pFunc->xFinalize(&ctx); | > | | < > > > > > > > > > > > > > > > > > < < < < < < | < < < < | < | > | < | 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | int rc = SQLITE_OK; if( pFunc && pFunc->xFinalize ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); ctx.s.flags = MEM_Null; ctx.s.db = pMem->db; ctx.s.zMalloc = 0; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.isError = 0; pFunc->xFinalize(&ctx); assert( !pMem->xDel || 0==(pMem->flags&MEM_Dyn) ); sqlite3_free(pMem->zMalloc); *pMem = ctx.s; rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); } return rc; } /* ** If the memory cell contains a string value that must be freed by ** invoking an external callback, free it now. Calling this function ** does not free any Mem.zMalloc buffer. */ void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else if( p->xDel && p->flags&MEM_Dyn ){ p->xDel((void *)p->z); p->xDel = 0; } } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.type==SQLITE_TEXT). */ void sqlite3VdbeMemRelease(Mem *p){ sqlite3VdbeMemReleaseExternal(p); sqlite3_free(p->zMalloc); p->z = 0; p->zMalloc = 0; p->xDel = 0; } /* ** Convert a 64-bit IEEE double into a 64-bit signed integer. ** If the double is too large, return 0x8000000000000000. ** ** Most systems appear to do this simply by assigning |
︙ | ︙ | |||
510 511 512 513 514 515 516 517 518 519 520 521 522 523 | n += p->u.i; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ | > > | | | < < < < < < < | < < < < < < | < < < < < < < < < < | < < | | < < | < < < < | > | | | | | < > | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 | n += p->u.i; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #define MEMCELLSIZE (int)(&(((Mem *)0)->zMalloc)) /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ sqlite3VdbeMemReleaseExternal(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->xDel = 0; if( pFrom->xDel || pFrom->z==pFrom->zMalloc ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; sqlite3VdbeMemReleaseExternal(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->xDel = 0; pFrom->zMalloc = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
︙ | ︙ | |||
655 656 657 658 659 660 661 | if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ return SQLITE_NOMEM; } memcpy(pMem->z, z, nAlloc); | < | 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ return SQLITE_NOMEM; } memcpy(pMem->z, z, nAlloc); }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } |
︙ | ︙ |
Changes to test/quick.test.
1 2 3 4 5 6 7 8 | # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # | | > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # # $Id: quick.test,v 1.75 2008/03/28 15:44:10 danielk1977 Exp $ proc lshift {lvar} { upvar $lvar l set ret [lindex $l 0] set l [lrange $l 1 end] return $ret } while {[set arg [lshift argv]] != ""} { switch -- $arg { -sharedpagercache { sqlite3_enable_shared_cache 1 } -soak { set SOAKTEST 1 } -start { set STARTAT "[lshift argv]*" } default { set argv [linsert $argv 0 $arg] break } } } |
︙ | ︙ | |||
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | set INCLUDE { } foreach testfile [lsort -dictionary [glob $testdir/*.test]] { set tail [file tail $testfile] if {[lsearch -exact $EXCLUDE $tail]>=0} continue if {[llength $INCLUDE]>0 && [lsearch -exact $INCLUDE $tail]<0} continue source $testfile catch {db close} if {$sqlite_open_file_count>0} { puts "$tail did not close all files: $sqlite_open_file_count" incr nErr lappend ::failList $tail set sqlite_open_file_count 0 } } source $testdir/misuse.test set sqlite_open_file_count 0 really_finish_test | > > | 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | set INCLUDE { } foreach testfile [lsort -dictionary [glob $testdir/*.test]] { set tail [file tail $testfile] if {[lsearch -exact $EXCLUDE $tail]>=0} continue if {[llength $INCLUDE]>0 && [lsearch -exact $INCLUDE $tail]<0} continue if {[info exists STARTAT] && [string match $STARTAT $tail]} {unset STARTAT} if {[info exists STARTAT]} continue source $testfile catch {db close} if {$sqlite_open_file_count>0} { puts "$tail did not close all files: $sqlite_open_file_count" incr nErr lappend ::failList $tail set sqlite_open_file_count 0 } } source $testdir/misuse.test set sqlite_open_file_count 0 really_finish_test |
Changes to test/tester.tcl.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # # $Id: tester.tcl,v 1.112 2008/03/28 15:44:10 danielk1977 Exp $ set tcl_precision 15 set sqlite_pending_byte 0x0010000 # # Check the command-line arguments for a default soft-heap-limit. |
︙ | ︙ | |||
43 44 45 46 47 48 49 | # # See the sqlite3_memdebug_backtrace() function in mem2.c or # test_malloc.c for additional information. # for {set i 0} {$i<[llength $argv]} {incr i} { if {[lindex $argv $i] eq "--malloctrace"} { set argv [lreplace $argv $i $i] | | | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | # # See the sqlite3_memdebug_backtrace() function in mem2.c or # test_malloc.c for additional information. # for {set i 0} {$i<[llength $argv]} {incr i} { if {[lindex $argv $i] eq "--malloctrace"} { set argv [lreplace $argv $i $i] sqlite3_memdebug_backtrace 10 sqlite3_memdebug_log start set argv [lreplace $argv $i $i] set tester_do_malloctrace 1 } } for {set i 0} {$i<[llength $argv]} {incr i} { if {[regexp {^--backtrace=(\d+)$} [lindex $argv $i] all value]} { |
︙ | ︙ |