Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | BTree and pager are working pretty well now. (CVS 234) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
a84fb078baf96dbfb5983981127dfc90 |
User & Date: | drh 2001-07-02 17:51:46.000 |
Context
2001-07-23
| ||
14:33 | Add ability to quote table and column names in expression. (CVS 235) (check-in: 029e3a3a5d user: drh tags: trunk) | |
2001-07-02
| ||
17:51 | BTree and pager are working pretty well now. (CVS 234) (check-in: a84fb078ba user: drh tags: trunk) | |
2001-07-01
| ||
22:12 | More BTree tests (CVS 233) (check-in: 55c89bfdd3 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
︙ | ︙ | |||
17 18 19 20 21 22 23 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ** Boston, MA 02111-1307, USA. ** ** Author contact information: ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** $Id: btree.c,v 1.20 2001/07/02 17:51:46 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /* ** The maximum number of database entries that can be held in a single ** page of the database. */ #define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE) /* ** The maximum amount of payload (in bytes) that can be stored locally for ** a database entry. If the entry contains more data than this, the ** extra goes onto overflow pages. ** ** This number is chosen so that at least 4 cells will fit on every page. */ | > > > > > > | < | 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | /* ** The maximum number of database entries that can be held in a single ** page of the database. */ #define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE) /* ** The amount of usable space on a single page of the BTree. This is the ** page size minus the overhead of the page header. */ #define USABLE_SPACE (SQLITE_PAGE_SIZE - sizeof(PageHdr)) /* ** The maximum amount of payload (in bytes) that can be stored locally for ** a database entry. If the entry contains more data than this, the ** extra goes onto overflow pages. ** ** This number is chosen so that at least 4 cells will fit on every page. */ #define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3) /* ** Data on a database page is stored as a linked list of Cell structures. ** Both the key and the data are stored in aPayload[]. The key always comes ** first. The aPayload[] field grows as necessary to hold the key and data, ** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and ** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the |
︙ | ︙ | |||
357 358 359 360 361 362 363 364 365 366 367 368 369 370 | ** into one big FreeBlk at the end of the page. */ static void defragmentPage(MemPage *pPage){ int pc, i, n; FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; pc = sizeof(PageHdr); pPage->u.hdr.firstCell = pc; memcpy(newPage, pPage->u.aDisk, pc); for(i=0; i<pPage->nCell; i++){ Cell *pCell = pPage->apCell[i]; /* This routine should never be called on an overfull page. The | > | 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | ** into one big FreeBlk at the end of the page. */ static void defragmentPage(MemPage *pPage){ int pc, i, n; FreeBlk *pFBlk; char newPage[SQLITE_PAGE_SIZE]; assert( sqlitepager_iswriteable(pPage) ); pc = sizeof(PageHdr); pPage->u.hdr.firstCell = pc; memcpy(newPage, pPage->u.aDisk, pc); for(i=0; i<pPage->nCell; i++){ Cell *pCell = pPage->apCell[i]; /* This routine should never be called on an overfull page. The |
︙ | ︙ | |||
405 406 407 408 409 410 411 412 413 414 415 416 417 418 | */ static int allocateSpace(MemPage *pPage, int nByte){ FreeBlk *p; u16 *pIdx; int start; int cnt = 0; assert( nByte==ROUNDUP(nByte) ); if( pPage->nFree<nByte || pPage->isOverfull ) return 0; pIdx = &pPage->u.hdr.firstFree; p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; while( p->iSize<nByte ){ assert( cnt++ < SQLITE_PAGE_SIZE/4 ); if( p->iNext==0 ){ | > | 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 | */ static int allocateSpace(MemPage *pPage, int nByte){ FreeBlk *p; u16 *pIdx; int start; int cnt = 0; assert( sqlitepager_iswriteable(pPage) ); assert( nByte==ROUNDUP(nByte) ); if( pPage->nFree<nByte || pPage->isOverfull ) return 0; pIdx = &pPage->u.hdr.firstFree; p = (FreeBlk*)&pPage->u.aDisk[*pIdx]; while( p->iSize<nByte ){ assert( cnt++ < SQLITE_PAGE_SIZE/4 ); if( p->iNext==0 ){ |
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 462 463 | static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; u16 *pIdx, idx; FreeBlk *pFBlk; FreeBlk *pNew; FreeBlk *pNext; assert( size == ROUNDUP(size) ); assert( start == ROUNDUP(start) ); pIdx = &pPage->u.hdr.firstFree; idx = *pIdx; while( idx!=0 && idx<start ){ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; if( idx + pFBlk->iSize == start ){ | > | 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | static void freeSpace(MemPage *pPage, int start, int size){ int end = start + size; u16 *pIdx, idx; FreeBlk *pFBlk; FreeBlk *pNew; FreeBlk *pNext; assert( sqlitepager_iswriteable(pPage) ); assert( size == ROUNDUP(size) ); assert( start == ROUNDUP(start) ); pIdx = &pPage->u.hdr.firstFree; idx = *pIdx; while( idx!=0 && idx<start ){ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx]; if( idx + pFBlk->iSize == start ){ |
︙ | ︙ | |||
514 515 516 517 518 519 520 | if( pParent ){ pPage->pParent = pParent; sqlitepager_ref(pParent); } if( pPage->isInit ) return SQLITE_OK; pPage->isInit = 1; pPage->nCell = 0; | | | 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 | if( pParent ){ pPage->pParent = pParent; sqlitepager_ref(pParent); } if( pPage->isInit ) return SQLITE_OK; pPage->isInit = 1; pPage->nCell = 0; freeSpace = USABLE_SPACE; idx = pPage->u.hdr.firstCell; while( idx!=0 ){ if( idx>SQLITE_PAGE_SIZE-MIN_CELL_SIZE ) goto page_format_error; if( idx<sizeof(PageHdr) ) goto page_format_error; if( idx!=ROUNDUP(idx) ) goto page_format_error; pCell = (Cell*)&pPage->u.aDisk[idx]; sz = cellSize(pCell); |
︙ | ︙ | |||
556 557 558 559 560 561 562 563 564 565 566 567 568 569 | /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage){ PageHdr *pHdr; FreeBlk *pFBlk; memset(pPage, 0, SQLITE_PAGE_SIZE); pHdr = &pPage->u.hdr; pHdr->firstCell = 0; pHdr->firstFree = sizeof(*pHdr); pFBlk = (FreeBlk*)&pHdr[1]; pFBlk->iNext = 0; pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr); | > | 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage){ PageHdr *pHdr; FreeBlk *pFBlk; assert( sqlitepager_iswriteable(pPage) ); memset(pPage, 0, SQLITE_PAGE_SIZE); pHdr = &pPage->u.hdr; pHdr->firstCell = 0; pHdr->firstFree = sizeof(*pHdr); pFBlk = (FreeBlk*)&pHdr[1]; pFBlk->iNext = 0; pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr); |
︙ | ︙ | |||
589 590 591 592 593 594 595 | /* ** Open a new database. ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. */ | | > > > > > > | | 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | /* ** Open a new database. ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. */ int sqliteBtreeOpen( const char *zFilename, /* Name of the file containing the BTree database */ int mode, /* Not currently used */ int nCache, /* How many pages in the page cache */ Btree **ppBtree /* Pointer to new Btree object written here */ ){ Btree *pBt; int rc; pBt = sqliteMalloc( sizeof(*pBt) ); if( pBt==0 ){ *ppBtree = 0; return SQLITE_NOMEM; } if( nCache<10 ) nCache = 10; rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE); if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlitepager_close(pBt->pPager); sqliteFree(pBt); *ppBtree = 0; return rc; } sqlitepager_set_destructor(pBt->pPager, pageDestructor); |
︙ | ︙ | |||
1067 1068 1069 1070 1071 1072 1073 | ** Move the cursor down to a new child page. */ static int moveToChild(BtCursor *pCur, int newPgno){ int rc; MemPage *pNewPage; rc = sqlitepager_get(pCur->pBt->pPager, newPgno, (void**)&pNewPage); | | < < | > | 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 | ** Move the cursor down to a new child page. */ static int moveToChild(BtCursor *pCur, int newPgno){ int rc; MemPage *pNewPage; rc = sqlitepager_get(pCur->pBt->pPager, newPgno, (void**)&pNewPage); if( rc ) return rc; rc = initPage(pNewPage, newPgno, pCur->pPage); if( rc ) return rc; sqlitepager_unref(pCur->pPage); pCur->pPage = pNewPage; pCur->idx = 0; return SQLITE_OK; } /* |
︙ | ︙ | |||
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pNew; int rc; rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, (void**)&pNew); if( rc ) return rc; sqlitepager_unref(pCur->pPage); pCur->pPage = pNew; pCur->idx = 0; return SQLITE_OK; } | > > | 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 | ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pNew; int rc; rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, (void**)&pNew); if( rc ) return rc; rc = initPage(pNew, pCur->pgnoRoot, 0); if( rc ) return rc; sqlitepager_unref(pCur->pPage); pCur->pPage = pNew; pCur->idx = 0; return SQLITE_OK; } |
︙ | ︙ | |||
1433 1434 1435 1436 1437 1438 1439 | */ static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){ MemPage *pThis; if( pgno==0 ) return; assert( pPager!=0 ); pThis = sqlitepager_lookup(pPager, pgno); | | | 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 | */ static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){ MemPage *pThis; if( pgno==0 ) return; assert( pPager!=0 ); pThis = sqlitepager_lookup(pPager, pgno); if( pThis && pThis->isInit ){ if( pThis->pParent!=pNewParent ){ if( pThis->pParent ) sqlitepager_unref(pThis->pParent); pThis->pParent = pNewParent; if( pNewParent ) sqlitepager_ref(pNewParent); } sqlitepager_unref(pThis); } |
︙ | ︙ | |||
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 | ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void dropCell(MemPage *pPage, int idx, int sz){ int j; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage->apCell[idx]) ); freeSpace(pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz); for(j=idx; j<pPage->nCell-1; j++){ pPage->apCell[j] = pPage->apCell[j+1]; } pPage->nCell--; } | > | 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 | ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void dropCell(MemPage *pPage, int idx, int sz){ int j; assert( idx>=0 && idx<pPage->nCell ); assert( sz==cellSize(pPage->apCell[idx]) ); assert( sqlitepager_iswriteable(pPage) ); freeSpace(pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz); for(j=idx; j<pPage->nCell-1; j++){ pPage->apCell[j] = pPage->apCell[j+1]; } pPage->nCell--; } |
︙ | ︙ | |||
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 | ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void insertCell(MemPage *pPage, int i, Cell *pCell, int sz){ int idx, j; assert( i>=0 && i<=pPage->nCell ); assert( sz==cellSize(pCell) ); idx = allocateSpace(pPage, sz); for(j=pPage->nCell; j>i; j--){ pPage->apCell[j] = pPage->apCell[j-1]; } pPage->nCell++; if( idx<=0 ){ pPage->isOverfull = 1; | > | 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 | ** routine will be called soon after this routine in order to rebuild ** the linked list. */ static void insertCell(MemPage *pPage, int i, Cell *pCell, int sz){ int idx, j; assert( i>=0 && i<=pPage->nCell ); assert( sz==cellSize(pCell) ); assert( sqlitepager_iswriteable(pPage) ); idx = allocateSpace(pPage, sz); for(j=pPage->nCell; j>i; j--){ pPage->apCell[j] = pPage->apCell[j-1]; } pPage->nCell++; if( idx<=0 ){ pPage->isOverfull = 1; |
︙ | ︙ | |||
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 | ** occur in the order specified by the pPage->apCell[] array. ** Invoke this routine once to repair damage after one or more ** invocations of either insertCell() or dropCell(). */ static void relinkCellList(MemPage *pPage){ int i; u16 *pIdx; pIdx = &pPage->u.hdr.firstCell; for(i=0; i<pPage->nCell; i++){ int idx = Addr(pPage->apCell[i]) - Addr(pPage); assert( idx>0 && idx<SQLITE_PAGE_SIZE ); *pIdx = idx; pIdx = &pPage->apCell[i]->h.iNext; } | > | 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 | ** occur in the order specified by the pPage->apCell[] array. ** Invoke this routine once to repair damage after one or more ** invocations of either insertCell() or dropCell(). */ static void relinkCellList(MemPage *pPage){ int i; u16 *pIdx; assert( sqlitepager_iswriteable(pPage) ); pIdx = &pPage->u.hdr.firstCell; for(i=0; i<pPage->nCell; i++){ int idx = Addr(pPage->apCell[i]) - Addr(pPage); assert( idx>0 && idx<SQLITE_PAGE_SIZE ); *pIdx = idx; pIdx = &pPage->apCell[i]->h.iNext; } |
︙ | ︙ | |||
1616 1617 1618 1619 1620 1621 1622 | int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->apCell[] */ int nxDiv; /* Next divider slot in pParent->apCell[] */ int rc; /* The return code */ int iCur; /* apCell[iCur] is the cell of the cursor */ | < < > > > > | < < | > | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 | int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->apCell[] */ int nxDiv; /* Next divider slot in pParent->apCell[] */ int rc; /* The return code */ int iCur; /* apCell[iCur] is the cell of the cursor */ int totalSize; /* Total bytes for all cells */ int subtotal; /* Subtotal of bytes in cells on one page */ int cntNew[4]; /* Index in apCell[] of cell after i-th page */ int szNew[4]; /* Combined size of cells place on i-th page */ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */ Pgno pgno; /* Page number */ Cell *apCell[MX_CELL*3+5]; /* All cells from pages being balanceed */ int szCell[MX_CELL*3+5]; /* Local size of all cells */ Cell aTemp[2]; /* Temporary holding area for apDiv[] */ MemPage aOld[3]; /* Temporary copies of pPage and its siblings */ /* ** Return without doing any work if pPage is neither overfull nor ** underfull. */ assert( sqlitepager_iswriteable(pPage) ); if( !pPage->isOverfull && pPage->nFree<SQLITE_PAGE_SIZE/3 ){ relinkCellList(pPage); return SQLITE_OK; } /* ** Find the parent of the page to be balanceed. ** If there is no parent, it means this page is the root page and ** special rules apply. */ pParent = pPage->pParent; if( pParent==0 ){ Pgno pgnoChild; MemPage *pChild; if( pPage->nCell==0 ){ if( pPage->u.hdr.rightChild ){ /* ** The root page is empty. Copy the one child page ** into the root page and return. This reduces the depth ** of the BTree by one. */ pgnoChild = pPage->u.hdr.rightChild; rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild); if( rc ) return rc; memcpy(pPage, pChild, SQLITE_PAGE_SIZE); pPage->isInit = 0; rc = initPage(pPage, sqlitepager_pagenumber(pPage), 0); assert( rc==SQLITE_OK ); reparentChildPages(pBt->pPager, pPage); freePage(pBt, pChild, pgnoChild); sqlitepager_unref(pChild); }else{ relinkCellList(pPage); } return SQLITE_OK; |
︙ | ︙ | |||
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 | ** child. Then fall thru to the code below which will cause ** the overfull child page to be split. */ rc = sqlitepager_write(pPage); if( rc ) return rc; rc = allocatePage(pBt, &pChild, &pgnoChild); if( rc ) return rc; copyPage(pChild, pPage); pChild->pParent = pPage; sqlitepager_ref(pPage); pChild->isOverfull = 1; if( pCur ){ sqlitepager_unref(pCur->pPage); pCur->pPage = pChild; }else{ extraUnref = pChild; } zeroPage(pPage); pPage->u.hdr.rightChild = pgnoChild; pParent = pPage; pPage = pChild; | > < > | | < | 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 | ** child. Then fall thru to the code below which will cause ** the overfull child page to be split. */ rc = sqlitepager_write(pPage); if( rc ) return rc; rc = allocatePage(pBt, &pChild, &pgnoChild); if( rc ) return rc; assert( sqlitepager_iswriteable(pChild) ); copyPage(pChild, pPage); pChild->pParent = pPage; sqlitepager_ref(pPage); pChild->isOverfull = 1; if( pCur ){ sqlitepager_unref(pCur->pPage); pCur->pPage = pChild; }else{ extraUnref = pChild; } zeroPage(pPage); pPage->u.hdr.rightChild = pgnoChild; pParent = pPage; pPage = pChild; } rc = sqlitepager_write(pParent); if( rc ) return rc; /* ** Find the Cell in the parent page whose h.leftChild points back ** to pPage. The "idx" variable is the index of that cell. If pPage ** is the rightmost child of pParent then set idx to pParent->nCell */ idx = -1; |
︙ | ︙ | |||
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 | pgnoOld[i] = apDiv[i]->h.leftChild; }else if( k==pParent->nCell ){ pgnoOld[i] = pParent->u.hdr.rightChild; }else{ break; } rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]); if( rc ) goto balance_cleanup; nOld++; } /* ** Set iCur to be the index in apCell[] of the cell that the cursor ** is pointing to. We will need this later on in order to keep the | > > | 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 | pgnoOld[i] = apDiv[i]->h.leftChild; }else if( k==pParent->nCell ){ pgnoOld[i] = pParent->u.hdr.rightChild; }else{ break; } rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]); if( rc ) goto balance_cleanup; rc = initPage(apOld[i], pgnoOld[i], pParent); if( rc ) goto balance_cleanup; nOld++; } /* ** Set iCur to be the index in apCell[] of the cell that the cursor ** is pointing to. We will need this later on in order to keep the |
︙ | ︙ | |||
1814 1815 1816 1817 1818 1819 1820 | assert( apCell[nCell]->h.leftChild==pgnoOld[i] ); apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild; nCell++; } } /* | | | > > > | > > > | > | > | > > > > | > > > > > > > | | > > | > > | > > | 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 | assert( apCell[nCell]->h.leftChild==pgnoOld[i] ); apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild; nCell++; } } /* ** Figure out the number of pages needed to hold all nCell cells. ** Store this number in "k". Also compute szNew[] which is the total ** size of all cells on the i-th page and cntNew[] which is the index ** in apCell[] of the cell that divides path i from path i+1. ** cntNew[k] should equal nCell. ** ** This little patch of code is critical for keeping the tree ** balanced. */ totalSize = 0; for(i=0; i<nCell; i++){ totalSize += szCell[i]; } for(subtotal=k=i=0; i<nCell; i++){ subtotal += szCell[i]; if( subtotal > USABLE_SPACE ){ szNew[k] = subtotal - szCell[i]; cntNew[k] = i; subtotal = 0; k++; } } szNew[k] = subtotal; cntNew[k] = nCell; k++; for(i=k-1; i>0; i--){ while( szNew[i]<USABLE_SPACE/2 ){ cntNew[i-1]--; assert( cntNew[i-1]>0 ); szNew[i] += szCell[cntNew[i-1]]; szNew[i-1] -= szCell[cntNew[i-1]-1]; } } assert( cntNew[0]>0 ); /* ** Allocate k new pages */ for(i=0; i<k; i++){ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i]); if( rc ) goto balance_cleanup; nNew++; zeroPage(apNew[i]); apNew[i]->isInit = 1; } /* ** Evenly distribute the data in apCell[] across the new pages. ** Insert divider cells into pParent as necessary. */ j = 0; for(i=0; i<nNew; i++){ MemPage *pNew = apNew[i]; while( j<cntNew[i] ){ assert( pNew->nFree>=szCell[j] ); if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; } insertCell(pNew, pNew->nCell, apCell[j], szCell[j]); j++; } assert( pNew->nCell>0 ); assert( !pNew->isOverfull ); relinkCellList(pNew); if( i<nNew-1 && j<nCell ){ pNew->u.hdr.rightChild = apCell[j]->h.leftChild; apCell[j]->h.leftChild = pgnoNew[i]; if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; } insertCell(pParent, nxDiv, apCell[j], szCell[j]); j++; nxDiv++; } } assert( j==nCell ); apNew[nNew-1]->u.hdr.rightChild = apOld[nOld-1]->u.hdr.rightChild; if( nxDiv==pParent->nCell ){ pParent->u.hdr.rightChild = pgnoNew[nNew-1]; }else{ pParent->apCell[nxDiv]->h.leftChild = pgnoNew[nNew-1]; } if( pCur ){ |
︙ | ︙ | |||
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | Cell *pNext; int szNext; getTempCursor(pCur, &leafCur); rc = sqliteBtreeNext(&leafCur, 0); if( rc!=SQLITE_OK ){ return SQLITE_CORRUPT; } dropCell(pPage, pCur->idx, cellSize(pCell)); pNext = leafCur.pPage->apCell[leafCur.idx]; szNext = cellSize(pNext); pNext->h.leftChild = pgnoChild; insertCell(pPage, pCur->idx, pNext, szNext); rc = balance(pCur->pBt, pPage, pCur); if( rc ) return rc; pCur->bSkipNext = 1; dropCell(leafCur.pPage, leafCur.idx, szNext); rc = balance(pCur->pBt, leafCur.pPage, 0); releaseTempCursor(&leafCur); }else{ dropCell(pPage, pCur->idx, cellSize(pCell)); | > > > | > | > > | > > | 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 | Cell *pNext; int szNext; getTempCursor(pCur, &leafCur); rc = sqliteBtreeNext(&leafCur, 0); if( rc!=SQLITE_OK ){ return SQLITE_CORRUPT; } rc = sqlitepager_write(leafCur.pPage); if( rc ) return rc; dropCell(pPage, pCur->idx, cellSize(pCell)); pNext = leafCur.pPage->apCell[leafCur.idx]; szNext = cellSize(pNext); pNext->h.leftChild = pgnoChild; insertCell(pPage, pCur->idx, pNext, szNext); rc = balance(pCur->pBt, pPage, pCur); if( rc ) return rc; pCur->bSkipNext = 1; dropCell(leafCur.pPage, leafCur.idx, szNext); rc = balance(pCur->pBt, leafCur.pPage, 0); releaseTempCursor(&leafCur); }else{ dropCell(pPage, pCur->idx, cellSize(pCell)); if( pCur->idx>=pPage->nCell && pCur->idx>0 ){ pCur->idx--; }else{ pCur->bSkipNext = 1; } rc = balance(pCur->pBt, pPage, pCur); } return rc; } /* ** Create a new BTree in the same file. Write into *piTable the index ** of the root page of the new table. */ int sqliteBtreeCreateTable(Btree *pBt, int *piTable){ MemPage *pRoot; Pgno pgnoRoot; int rc; if( !pBt->inTrans ){ return SQLITE_ERROR; /* Must start a transaction first */ } rc = allocatePage(pBt, &pRoot, &pgnoRoot); if( rc ) return rc; assert( sqlitepager_iswriteable(pRoot) ); zeroPage(pRoot); sqlitepager_unref(pRoot); *piTable = (int)pgnoRoot; return SQLITE_OK; } /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){ MemPage *pPage; int rc; Cell *pCell; int idx; rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage); if( rc ) return rc; rc = sqlitepager_write(pPage); if( rc ) return rc; idx = pPage->u.hdr.firstCell; while( idx>0 ){ pCell = (Cell*)&pPage->u.aDisk[idx]; idx = pCell->h.iNext; if( pCell->h.leftChild ){ rc = clearDatabasePage(pBt, pCell->h.leftChild, 1); |
︙ | ︙ | |||
2153 2154 2155 2156 2157 2158 2159 | ******************************************************************************/ #ifdef SQLITE_TEST /* ** Print a disassembly of the given page on standard output. This routine ** is used for debugging and testing only. */ | | > | | | 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 | ******************************************************************************/ #ifdef SQLITE_TEST /* ** Print a disassembly of the given page on standard output. This routine ** is used for debugging and testing only. */ int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){ int rc; MemPage *pPage; int i, j; int nFree; u16 idx; char range[20]; unsigned char payload[20]; rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage); if( rc ){ return rc; } if( recursive ) printf("PAGE %d:\n", pgno); i = 0; idx = pPage->u.hdr.firstCell; while( idx>0 && idx<=SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){ Cell *pCell = (Cell*)&pPage->u.aDisk[idx]; int sz = cellSize(pCell); sprintf(range,"%d..%d", idx, idx+sz-1); sz = pCell->h.nKey + pCell->h.nData; if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; memcpy(payload, pCell->aPayload, sz); for(j=0; j<sz; j++){ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; } payload[sz] = 0; printf( "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n", i, range, (int)pCell->h.leftChild, pCell->h.nKey, pCell->h.nData, payload ); if( pPage->isInit && pPage->apCell[i]!=pCell ){ printf("**** apCell[%d] does not match on prior entry ****\n", i); } i++; idx = pCell->h.iNext; } if( idx!=0 ){ printf("ERROR: next cell index out of range: %d\n", idx); |
︙ | ︙ | |||
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 | i, range, p->iSize, nFree); idx = p->iNext; i++; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } sqlitepager_unref(pPage); return SQLITE_OK; } /* ** Fill aResult[] with information about the entry and page that the ** cursor is pointing to. | > > > > > > > > > | 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 | i, range, p->iSize, nFree); idx = p->iNext; i++; } if( idx!=0 ){ printf("ERROR: next freeblock index out of range: %d\n", idx); } if( recursive && pPage->u.hdr.rightChild!=0 ){ idx = pPage->u.hdr.firstCell; while( idx>0 && idx<SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){ Cell *pCell = (Cell*)&pPage->u.aDisk[idx]; sqliteBtreePageDump(pBt, pCell->h.leftChild, 1); idx = pCell->h.iNext; } sqliteBtreePageDump(pBt, pPage->u.hdr.rightChild, 1); } sqlitepager_unref(pPage); return SQLITE_OK; } /* ** Fill aResult[] with information about the entry and page that the ** cursor is pointing to. |
︙ | ︙ | |||
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 | */ typedef struct SanityCheck SanityCheck; struct SanityCheck { Btree *pBt; // The tree being checked out Pager *pPager; // The associated pager. Also accessible by pBt->pPager int nPage; // Number of pages in the database int *anRef; // Number of times each page is referenced char *zErrMsg; // An error message. NULL of no errors seen. }; /* ** Append a message to the error message string. */ static void checkAppendMsg(SanityCheck *pCheck, char *zMsg1, char *zMsg2){ | > > | 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 | */ typedef struct SanityCheck SanityCheck; struct SanityCheck { Btree *pBt; // The tree being checked out Pager *pPager; // The associated pager. Also accessible by pBt->pPager int nPage; // Number of pages in the database int *anRef; // Number of times each page is referenced int nTreePage; // Number of BTree pages int nByte; // Number of bytes of data stored on BTree pages char *zErrMsg; // An error message. NULL of no errors seen. }; /* ** Append a message to the error message string. */ static void checkAppendMsg(SanityCheck *pCheck, char *zMsg1, char *zMsg2){ |
︙ | ︙ | |||
2351 2352 2353 2354 2355 2356 2357 | ** but combine to completely cover the page. ** 2. Make sure cell keys are in order. ** 3. Make sure no key is less than or equal to zLowerBound. ** 4. Make sure no key is greater than or equal to zUpperBound. ** 5. Check the integrity of overflow pages. ** 6. Recursively call checkTreePage on all children. ** 7. Verify that the depth of all children is the same. | | | 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 | ** but combine to completely cover the page. ** 2. Make sure cell keys are in order. ** 3. Make sure no key is less than or equal to zLowerBound. ** 4. Make sure no key is greater than or equal to zUpperBound. ** 5. Check the integrity of overflow pages. ** 6. Recursively call checkTreePage on all children. ** 7. Verify that the depth of all children is the same. ** 8. Make sure this page is at least 33% full or else it is ** the root of the tree. */ static int checkTreePage( SanityCheck *pCheck, /* Context for the sanity check */ int iPage, /* Page number of the page to check */ MemPage *pParent, /* Parent page */ char *zParentContext, /* Parent context */ |
︙ | ︙ | |||
2461 2462 2463 2464 2465 2466 2467 | checkAppendMsg(pCheck, zMsg, 0); break; } } /* Check that free space is kept to a minimum */ | > | > > > > > > | 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 | checkAppendMsg(pCheck, zMsg, 0); break; } } /* Check that free space is kept to a minimum */ #if 0 if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_PAGE_SIZE/4 ){ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree, SQLITE_PAGE_SIZE/3); checkAppendMsg(pCheck, zContext, zMsg); } #endif /* Update freespace totals. */ pCheck->nTreePage++; pCheck->nByte += USABLE_SPACE - pPage->nFree; sqlitepager_unref(pPage); return depth; } /* ** This routine does a complete check of the given BTree file. aRoot[] is |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
20 21 22 23 24 25 26 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** | | | | 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ** drh@hwaci.com ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. ** ** @(#) $Id: btree.h,v 1.9 2001/07/02 17:51:46 drh Exp $ */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree); int sqliteBtreeClose(Btree*); int sqliteBtreeBeginTrans(Btree*); int sqliteBtreeCommit(Btree*); int sqliteBtreeRollback(Btree*); int sqliteBtreeCreateTable(Btree*, int*); |
︙ | ︙ | |||
54 55 56 57 58 59 60 | #define SQLITE_N_BTREE_META 4 int sqliteBtreeGetMeta(Btree*, int*); int sqliteBtreeUpdateMeta(Btree*, int*); #ifdef SQLITE_TEST | | | 54 55 56 57 58 59 60 61 62 63 64 65 | #define SQLITE_N_BTREE_META 4 int sqliteBtreeGetMeta(Btree*, int*); int sqliteBtreeUpdateMeta(Btree*, int*); #ifdef SQLITE_TEST int sqliteBtreePageDump(Btree*, int, int); int sqliteBtreeCursorDump(BtCursor*, int*); Pager *sqliteBtreePager(Btree*); char *sqliteBtreeSanityCheck(Btree*, int*, int); #endif |
Changes to src/pager.c.
︙ | ︙ | |||
23 24 25 26 27 28 29 | ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit ** access to one or more reader or one writer. ** | | | 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ************************************************************************* ** This is the implementation of the page cache subsystem. ** ** The page cache is used to access a database file. The pager journals ** all writes in order to support rollback. Locking is used to limit ** access to one or more reader or one writer. ** ** @(#) $Id: pager.c,v 1.13 2001/07/02 17:51:46 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include <fcntl.h> #include <sys/stat.h> #include <unistd.h> #include <assert.h> |
︙ | ︙ | |||
118 119 120 121 122 123 124 125 126 127 128 129 130 131 | void (*xDestructor)(void*); /* Call this routine when freeing pages */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ unsigned char state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */ unsigned char errMask; /* One of several kinds of errors */ PgHdr *pFirst, *pLast; /* List of free pages */ PgHdr *pAll; /* List of all pages */ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */ }; /* ** These are bits that can be set in Pager.errMask. | > | 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | void (*xDestructor)(void*); /* Call this routine when freeing pages */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ unsigned char state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */ unsigned char errMask; /* One of several kinds of errors */ unsigned char *aInJournal; /* One bit for each page in the database file */ PgHdr *pFirst, *pLast; /* List of free pages */ PgHdr *pAll; /* List of all pages */ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */ }; /* ** These are bits that can be set in Pager.errMask. |
︙ | ︙ | |||
206 207 208 209 210 211 212 213 214 215 216 217 218 219 | } /* ** Move the cursor for file descriptor fd to the point whereto from ** the beginning of the file. */ static int pager_seek(int fd, off_t whereto){ lseek(fd, whereto, SEEK_SET); return SQLITE_OK; } /* ** Truncate the given file so that it contains exactly mxPg pages ** of data. | > | 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | } /* ** Move the cursor for file descriptor fd to the point whereto from ** the beginning of the file. */ static int pager_seek(int fd, off_t whereto){ /*printf("SEEK to page %d\n", whereto/SQLITE_PAGE_SIZE + 1);*/ lseek(fd, whereto, SEEK_SET); return SQLITE_OK; } /* ** Truncate the given file so that it contains exactly mxPg pages ** of data. |
︙ | ︙ | |||
228 229 230 231 232 233 234 235 236 237 238 239 240 241 | ** Read nBytes of data from fd into pBuf. If the data cannot be ** read or only a partial read occurs, then the unread parts of ** pBuf are filled with zeros and this routine returns SQLITE_IOERR. ** If the read is completely successful, return SQLITE_OK. */ static int pager_read(int fd, void *pBuf, int nByte){ int rc; rc = read(fd, pBuf, nByte); if( rc<0 ){ memset(pBuf, 0, nByte); return SQLITE_IOERR; } if( rc<nByte ){ memset(&((char*)pBuf)[rc], 0, nByte - rc); | > | 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | ** Read nBytes of data from fd into pBuf. If the data cannot be ** read or only a partial read occurs, then the unread parts of ** pBuf are filled with zeros and this routine returns SQLITE_IOERR. ** If the read is completely successful, return SQLITE_OK. */ static int pager_read(int fd, void *pBuf, int nByte){ int rc; /* printf("READ\n");*/ rc = read(fd, pBuf, nByte); if( rc<0 ){ memset(pBuf, 0, nByte); return SQLITE_IOERR; } if( rc<nByte ){ memset(&((char*)pBuf)[rc], 0, nByte - rc); |
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 259 260 261 262 | /* ** Write nBytes of data into fd. If any problem occurs or if the ** write is incomplete, SQLITE_IOERR is returned. SQLITE_OK is ** returned upon complete success. */ static int pager_write(int fd, const void *pBuf, int nByte){ int rc; rc = write(fd, pBuf, nByte); if( rc<nByte ){ return SQLITE_FULL; }else{ return SQLITE_OK; } } | > | 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 | /* ** Write nBytes of data into fd. If any problem occurs or if the ** write is incomplete, SQLITE_IOERR is returned. SQLITE_OK is ** returned upon complete success. */ static int pager_write(int fd, const void *pBuf, int nByte){ int rc; /*printf("WRITE\n");*/ rc = write(fd, pBuf, nByte); if( rc<nByte ){ return SQLITE_FULL; }else{ return SQLITE_OK; } } |
︙ | ︙ | |||
334 335 336 337 338 339 340 341 342 343 344 345 346 347 | PgHdr *pPg; if( pPager->state!=SQLITE_WRITELOCK ) return SQLITE_OK; pager_unlock(pPager->fd); rc = pager_lock(pPager->fd, 0); unlink(pPager->zJournal); close(pPager->jfd); pPager->jfd = -1; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ pPg->inJournal = 0; pPg->dirty = 0; } if( rc!=SQLITE_OK ){ pPager->state = SQLITE_UNLOCK; rc = SQLITE_PROTOCOL; | > > | 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | PgHdr *pPg; if( pPager->state!=SQLITE_WRITELOCK ) return SQLITE_OK; pager_unlock(pPager->fd); rc = pager_lock(pPager->fd, 0); unlink(pPager->zJournal); close(pPager->jfd); pPager->jfd = -1; sqliteFree( pPager->aInJournal ); pPager->aInJournal = 0; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ pPg->inJournal = 0; pPg->dirty = 0; } if( rc!=SQLITE_OK ){ pPager->state = SQLITE_UNLOCK; rc = SQLITE_PROTOCOL; |
︙ | ︙ | |||
430 431 432 433 434 435 436 437 438 439 440 441 442 443 | /* Playback the page. Update the in-memory copy of the page ** at the same time, if there is one. */ pPg = pager_lookup(pPager, pgRec.pgno); if( pPg ){ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE); } rc = pager_seek(pPager->fd, (pgRec.pgno-1)*SQLITE_PAGE_SIZE); if( rc!=SQLITE_OK ) break; rc = pager_write(pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE); if( rc!=SQLITE_OK ) break; } if( rc!=SQLITE_OK ){ | > | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | /* Playback the page. Update the in-memory copy of the page ** at the same time, if there is one. */ pPg = pager_lookup(pPager, pgRec.pgno); if( pPg ){ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE); memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra); } rc = pager_seek(pPager->fd, (pgRec.pgno-1)*SQLITE_PAGE_SIZE); if( rc!=SQLITE_OK ) break; rc = pager_write(pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE); if( rc!=SQLITE_OK ) break; } if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
715 716 717 718 719 720 721 | pPg->pPrevAll = 0; pPager->pAll = pPg; pPager->nPage++; }else{ /* Recycle an older page. First locate the page to be recycled. ** Try to find one that is not dirty and is near the head of ** of the free list */ | | | | 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 | pPg->pPrevAll = 0; pPager->pAll = pPg; pPager->nPage++; }else{ /* Recycle an older page. First locate the page to be recycled. ** Try to find one that is not dirty and is near the head of ** of the free list */ int cnt = pPager->mxPage/2; pPg = pPager->pFirst; while( pPg->dirty && 0<cnt-- && pPg->pNextFree ){ pPg = pPg->pNextFree; } if( pPg==0 || pPg->dirty ) pPg = pPager->pFirst; assert( pPg->nRef==0 ); /* If the page to be recycled is dirty, sync the journal and write ** the old page into the database. */ |
︙ | ︙ | |||
748 749 750 751 752 753 754 | if( rc==SQLITE_OK ) rc = SQLITE_FULL; return rc; } } /* Unlink the old page from the free list and the hash table */ | > > > > | > | | > | > > > > > | > | 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | if( rc==SQLITE_OK ) rc = SQLITE_FULL; return rc; } } /* Unlink the old page from the free list and the hash table */ if( pPg->pPrevFree ){ pPg->pPrevFree->pNextFree = pPg->pNextFree; }else{ assert( pPager->pFirst==pPg ); pPager->pFirst = pPg->pNextFree; } if( pPg->pNextFree ){ pPg->pNextFree->pPrevFree = pPg->pPrevFree; }else{ assert( pPager->pLast==pPg ); pPager->pLast = pPg->pPrevFree; } pPg->pNextFree = pPg->pPrevFree = 0; if( pPg->pNextHash ){ pPg->pNextHash->pPrevHash = pPg->pPrevHash; } if( pPg->pPrevHash ){ pPg->pPrevHash->pNextHash = pPg->pNextHash; }else{ h = pager_hash(pPg->pgno); assert( pPager->aHash[h]==pPg ); pPager->aHash[h] = pPg->pNextHash; } pPg->pNextHash = pPg->pPrevHash = 0; pPager->nOvfl++; } pPg->pgno = pgno; if( pPager->aInJournal && pgno<=pPager->origDbSize ){ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; }else{ pPg->inJournal = 0; } pPg->dirty = 0; pPg->nRef = 1; REFINFO(pPg); pPager->nRef++; h = pager_hash(pgno); pPg->pNextHash = pPager->aHash[h]; pPager->aHash[h] = pPg; |
︙ | ︙ | |||
906 907 908 909 910 911 912 913 914 915 916 917 918 919 | if( pPager->errMask ){ return pager_errcode(pPager); } pPg->dirty = 1; if( pPg->inJournal ){ return SQLITE_OK; } assert( pPager->state!=SQLITE_UNLOCK ); if( pPager->state==SQLITE_READLOCK ){ pPager->jfd = open(pPager->zJournal, O_RDWR|O_CREAT, 0644); if( pPager->jfd<0 ){ return SQLITE_CANTOPEN; } if( pager_lock(pPager->jfd, 1) ){ close(pPager->jfd); pPager->jfd = -1; | > > > > > | 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 | if( pPager->errMask ){ return pager_errcode(pPager); } pPg->dirty = 1; if( pPg->inJournal ){ return SQLITE_OK; } assert( pPager->state!=SQLITE_UNLOCK ); if( pPager->state==SQLITE_READLOCK ){ assert( pPager->aInJournal==0 ); pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); if( pPager->aInJournal==0 ){ return SQLITE_NOMEM; } pPager->jfd = open(pPager->zJournal, O_RDWR|O_CREAT, 0644); if( pPager->jfd<0 ){ return SQLITE_CANTOPEN; } if( pager_lock(pPager->jfd, 1) ){ close(pPager->jfd); pPager->jfd = -1; |
︙ | ︙ | |||
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | rc = pager_write(pPager->jfd, pData, SQLITE_PAGE_SIZE); } if( rc!=SQLITE_OK ){ sqlitepager_rollback(pPager); pPager->errMask |= PAGER_ERR_FULL; return rc; } } pPg->inJournal = 1; if( pPager->dbSize<pPg->pgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** Commit all changes to the database and release the write lock. ** ** If the commit fails for any reason, a rollback attempt is made ** and an error code is returned. If the commit worked, SQLITE_OK ** is returned. | > > > > > > > > > > > > | 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 | rc = pager_write(pPager->jfd, pData, SQLITE_PAGE_SIZE); } if( rc!=SQLITE_OK ){ sqlitepager_rollback(pPager); pPager->errMask |= PAGER_ERR_FULL; return rc; } assert( pPager->aInJournal!=0 ); pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); } pPg->inJournal = 1; if( pPager->dbSize<pPg->pgno ){ pPager->dbSize = pPg->pgno; } return rc; } /* ** Return TRUE if the page given in the argument was previous passed ** to sqlitepager_write(). In other words, return TRUE if it is ok ** to change the content of the page. */ int sqlitepager_iswriteable(void *pData){ PgHdr *pPg = DATA_TO_PGHDR(pData); return pPg->dirty; } /* ** Commit all changes to the database and release the write lock. ** ** If the commit fails for any reason, a rollback attempt is made ** and an error code is returned. If the commit worked, SQLITE_OK ** is returned. |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** ** @(#) $Id: pager.h,v 1.7 2001/07/02 17:51:46 drh Exp $ */ /* ** The size of one page */ #define SQLITE_PAGE_SIZE 1024 |
︙ | ︙ | |||
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | int sqlitepager_close(Pager *pPager); int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage); void *sqlitepager_lookup(Pager *pPager, Pgno pgno); int sqlitepager_ref(void*); int sqlitepager_unref(void*); Pgno sqlitepager_pagenumber(void*); int sqlitepager_write(void*); int sqlitepager_pagecount(Pager*); int sqlitepager_commit(Pager*); int sqlitepager_rollback(Pager*); int *sqlitepager_stats(Pager*); #ifdef SQLITE_TEST void sqlitepager_refdump(Pager*); int pager_refinfo_enable; #endif | > | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | int sqlitepager_close(Pager *pPager); int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage); void *sqlitepager_lookup(Pager *pPager, Pgno pgno); int sqlitepager_ref(void*); int sqlitepager_unref(void*); Pgno sqlitepager_pagenumber(void*); int sqlitepager_write(void*); int sqlitepager_iswriteable(void*); int sqlitepager_pagecount(Pager*); int sqlitepager_commit(Pager*); int sqlitepager_rollback(Pager*); int *sqlitepager_stats(Pager*); #ifdef SQLITE_TEST void sqlitepager_refdump(Pager*); int pager_refinfo_enable; #endif |
Changes to src/test3.c.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** http://www.hwaci.com/drh/ ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.7 2001/07/02 17:51:46 drh Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
75 76 77 78 79 80 81 | int rc; char zBuf[100]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME\"", 0); return TCL_ERROR; } | | | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | int rc; char zBuf[100]; if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME\"", 0); return TCL_ERROR; } rc = sqliteBtreeOpen(argv[1], 0666, 10, &pBt); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sprintf(zBuf,"0x%x",(int)pBt); Tcl_AppendResult(interp, zBuf, 0); return TCL_OK; |
︙ | ︙ | |||
372 373 374 375 376 377 378 | if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iPage) ) return TCL_ERROR; | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iPage) ) return TCL_ERROR; rc = sqliteBtreePageDump(pBt, iPage, 0); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return TCL_OK; } /* ** Usage: btree_tree_dump ID PAGENUM ** ** Print a disassembly of a page and all its child pages on standard output */ static int btree_tree_dump( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ char **argv /* Text of each argument */ ){ Btree *pBt; int iPage; int rc; if( argc!=3 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[1], (int*)&pBt) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[2], &iPage) ) return TCL_ERROR; rc = sqliteBtreePageDump(pBt, iPage, 1); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } return TCL_OK; } |
︙ | ︙ | |||
791 792 793 794 795 796 797 798 799 800 801 802 803 804 | Tcl_CreateCommand(interp, "btree_rollback", btree_rollback, 0, 0); Tcl_CreateCommand(interp, "btree_create_table", btree_create_table, 0, 0); Tcl_CreateCommand(interp, "btree_drop_table", btree_drop_table, 0, 0); Tcl_CreateCommand(interp, "btree_clear_table", btree_clear_table, 0, 0); Tcl_CreateCommand(interp, "btree_get_meta", btree_get_meta, 0, 0); Tcl_CreateCommand(interp, "btree_update_meta", btree_update_meta, 0, 0); Tcl_CreateCommand(interp, "btree_page_dump", btree_page_dump, 0, 0); Tcl_CreateCommand(interp, "btree_pager_stats", btree_pager_stats, 0, 0); Tcl_CreateCommand(interp, "btree_pager_ref_dump", btree_pager_ref_dump, 0, 0); Tcl_CreateCommand(interp, "btree_cursor", btree_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_close_cursor", btree_close_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_move_to", btree_move_to, 0, 0); Tcl_CreateCommand(interp, "btree_delete", btree_delete, 0, 0); Tcl_CreateCommand(interp, "btree_insert", btree_insert, 0, 0); | > | 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 | Tcl_CreateCommand(interp, "btree_rollback", btree_rollback, 0, 0); Tcl_CreateCommand(interp, "btree_create_table", btree_create_table, 0, 0); Tcl_CreateCommand(interp, "btree_drop_table", btree_drop_table, 0, 0); Tcl_CreateCommand(interp, "btree_clear_table", btree_clear_table, 0, 0); Tcl_CreateCommand(interp, "btree_get_meta", btree_get_meta, 0, 0); Tcl_CreateCommand(interp, "btree_update_meta", btree_update_meta, 0, 0); Tcl_CreateCommand(interp, "btree_page_dump", btree_page_dump, 0, 0); Tcl_CreateCommand(interp, "btree_tree_dump", btree_tree_dump, 0, 0); Tcl_CreateCommand(interp, "btree_pager_stats", btree_pager_stats, 0, 0); Tcl_CreateCommand(interp, "btree_pager_ref_dump", btree_pager_ref_dump, 0, 0); Tcl_CreateCommand(interp, "btree_cursor", btree_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_close_cursor", btree_close_cursor, 0, 0); Tcl_CreateCommand(interp, "btree_move_to", btree_move_to, 0, 0); Tcl_CreateCommand(interp, "btree_delete", btree_delete, 0, 0); Tcl_CreateCommand(interp, "btree_insert", btree_insert, 0, 0); |
︙ | ︙ |
Changes to test/btree.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # # $Id: btree.test,v 1.6 2001/07/02 17:51:47 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl if {$dbprefix!="memory:" && [info commands btree_open]!=""} { |
︙ | ︙ | |||
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 | btree_drop_table $::b1 2 set ::c1 [btree_cursor $::b1 2] lindex [btree_get_meta $::b1] 0 } {4} do_test btree-8.24 { lindex [btree_pager_stats $::b1] 1 } {2} # Check page splitting logic # do_test btree-9.1 { for {set i 1} {$i<=19} {incr i} { set key [format %03d $i] set data "*** $key *** $key *** $key *** $key ***" btree_insert $::c1 $key $data } } {} | > | | 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 | btree_drop_table $::b1 2 set ::c1 [btree_cursor $::b1 2] lindex [btree_get_meta $::b1] 0 } {4} do_test btree-8.24 { lindex [btree_pager_stats $::b1] 1 } {2} #btree_pager_ref_dump $::b1 # Check page splitting logic # do_test btree-9.1 { for {set i 1} {$i<=19} {incr i} { set key [format %03d $i] set data "*** $key *** $key *** $key *** $key ***" btree_insert $::c1 $key $data } } {} #btree_tree_dump $::b1 2 #btree_pager_ref_dump $::b1 #set pager_refinfo_enable 1 do_test btree-9.2 { btree_insert $::c1 020 {*** 020 *** 020 *** 020 *** 020 ***} select_keys $::c1 } {001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020} #btree_page_dump $::b1 5 |
︙ | ︙ | |||
816 817 818 819 820 821 822 | #btree_page_dump $::b1 2 #btree_page_dump $::b1 6 do_test btree-10.4 { btree_move_to $::c1 011 btree_delete $::c1 select_keys $::c1 } {001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020} | | > > > | 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 | #btree_page_dump $::b1 2 #btree_page_dump $::b1 6 do_test btree-10.4 { btree_move_to $::c1 011 btree_delete $::c1 select_keys $::c1 } {001 002 003 004 005 006 007 008 009 010 012 013 014 015 016 017 018 019 020} #btree_tree_dump $::b1 2 #btree_pager_ref_dump $::b1 for {set i 1} {$i<=20} {incr i} { do_test btree-10.5.$i { btree_move_to $::c1 [format %03d $i] lindex [btree_pager_stats $::b1] 1 } {2} #btree_pager_ref_dump $::b1 #btree_tree_dump $::b1 2 } # Create a tree with lots more pages # catch {unset ::data} catch {unset ::key} for {set i 21} {$i<=1000} {incr i} { |
︙ | ︙ | |||
882 883 884 885 886 887 888 | } {258} do_test btree-11.4.3 { btree_move_to $::c1 259 btree_key $::c1 } {259} do_test btree-11.4.4 { btree_move_to $::c1 257 | | > | | > | | > | | 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 | } {258} do_test btree-11.4.3 { btree_move_to $::c1 259 btree_key $::c1 } {259} do_test btree-11.4.4 { btree_move_to $::c1 257 set n [btree_key $::c1] expr {$n==256||$n==258} } {1} do_test btree-11.5 { btree_move_to $::c1 513 btree_delete $::c1 btree_next $::c1 btree_key $::c1 } {514} do_test btree-11.5.1 { btree_move_to $::c1 512 btree_key $::c1 } {512} do_test btree-11.5.2 { btree_move_to $::c1 514 btree_key $::c1 } {514} do_test btree-11.5.3 { btree_move_to $::c1 515 btree_key $::c1 } {515} do_test btree-11.5.4 { btree_move_to $::c1 513 set n [btree_key $::c1] expr {$n==512||$n==514} } {1} do_test btree-11.6 { btree_move_to $::c1 769 btree_delete $::c1 btree_next $::c1 btree_key $::c1 } {770} do_test btree-11.6.1 { btree_move_to $::c1 768 btree_key $::c1 } {768} do_test btree-11.6.2 { btree_move_to $::c1 771 btree_key $::c1 } {771} do_test btree-11.6.3 { btree_move_to $::c1 770 btree_key $::c1 } {770} do_test btree-11.6.4 { btree_move_to $::c1 769 set n [btree_key $::c1] expr {$n==768||$n==770} } {1} #btree_page_dump $::b1 2 #btree_page_dump $::b1 25 # Change the data on an intermediate node such that the node becomes overfull # and has to split. We happen to know that intermediate nodes exist on # 337, 401 and 465 by the btree_page_dumps above # |
︙ | ︙ |
Changes to test/btree2.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # | | > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # drh@hwaci.com # http://www.hwaci.com/drh/ # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is btree database backend # # $Id: btree2.test,v 1.2 2001/07/02 17:51:47 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl if {$dbprefix!="memory:" && [info commands btree_open]!=""} { # Create a new database file containing no entries. The database should # contain 5 tables: # # 2 The descriptor table # 3 The foreground table # 4 The background table # 5 The long key table # 6 The long data table # # An explanation for what all these tables are used for is provided below. # do_test btree2-1.1 { expr srand(1) file delete -force test2.bt file delete -force test2.bt-journal set ::b [btree_open test2.bt] btree_begin_transaction $::b btree_create_table $::b } {3} do_test btree2-1.2 { |
︙ | ︙ | |||
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | return [string range $r 0 [expr {$len-1}]] } # Verify the invariants on the database. Return an empty string on # success or an error message if something is amiss. # proc check_invariants {} { btree_move_to $::c3 {} btree_move_to $::c4 {} btree_move_to $::c2 N set N [btree_data $::c2] btree_move_to $::c2 L set L [btree_data $::c2] set LM1 [expr {$L-1}] for {set i 1} {$i<=$N} {incr i} { set key [btree_key $::c3] | > > > > > > | | > > > > | | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | return [string range $r 0 [expr {$len-1}]] } # Verify the invariants on the database. Return an empty string on # success or an error message if something is amiss. # proc check_invariants {} { set ck [btree_sanity_check $::b 2 3 4 5 6] if {$ck!=""} { puts "\n*** SANITY:\n$ck" exit return $ck } btree_move_to $::c3 {} btree_move_to $::c4 {} btree_move_to $::c2 N set N [btree_data $::c2] btree_move_to $::c2 L set L [btree_data $::c2] set LM1 [expr {$L-1}] for {set i 1} {$i<=$N} {incr i} { set key [btree_key $::c3] if {[scan $key %d k]<1} {set k 0} if {$k!=$i} { set key [btree_key $::c4] if {[scan $key %d k]<1} {set k 0} if {$k!=$i} { # puts "MISSING $i" # puts {Page 3:}; btree_page_dump $::b 3 # puts {Page 4:}; btree_page_dump $::b 4 # exit return "Key $i is missing from both foreground and background" } set data [btree_data $::c4] btree_next $::c4 } else { set data [btree_data $::c3] btree_next $::c3 } |
︙ | ︙ | |||
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | # Make random changes to the database such that each change preserves # the invariants. The number of changes is $n*N where N is the parameter # from the descriptor table. Each changes begins with a random key. # the entry with that key is put in the foreground table with probability # $I and it is put in background with probability (1.0-$I). It gets # a long key with probability $K and long data with probability $D. # proc random_changes {n I K D} { set N [btree_data $::c2] btree_move_to $::c2 L set L [btree_data $::c2] set LM1 [expr {$L-1}] set total [expr {int($N*$n)}] set format %0${L}d for {set i 0} {$i<$total} {incr i} { | > > | > > > | | < | | > | > | > > | > > | > > | | | | > > > > > > > > > > < > > > | 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | # Make random changes to the database such that each change preserves # the invariants. The number of changes is $n*N where N is the parameter # from the descriptor table. Each changes begins with a random key. # the entry with that key is put in the foreground table with probability # $I and it is put in background with probability (1.0-$I). It gets # a long key with probability $K and long data with probability $D. # set chngcnt 0 proc random_changes {n I K D} { btree_move_to $::c2 N set N [btree_data $::c2] btree_move_to $::c2 L set L [btree_data $::c2] set LM1 [expr {$L-1}] set total [expr {int($N*$n)}] set format %0${L}d for {set i 0} {$i<$total} {incr i} { set k [expr {int(rand()*$N)+1}] set insert [expr {rand()<=$I}] set longkey [expr {rand()<=$K}] set longdata [expr {rand()<=$D}] # incr ::chngcnt # if {$::chngcnt==251} {btree_tree_dump $::b 3} # puts "CHANGE $::chngcnt: $k $insert $longkey $longdata" if {$longkey} { set x [expr {rand()}] set keylen [expr {int($x*$x*$x*$x*3000)+10}] } else { set keylen $L } set key [make_payload $k $L $keylen] if {$longdata} { set x [expr {rand()}] set datalen [expr {int($x*$x*$x*$x*3000)+10}] } else { set datalen $L } set data [make_payload $k $L $datalen] set basekey [format $format $k] if {[set c [btree_move_to $::c3 $basekey]]==0} { btree_delete $::c3 } else { if {$c<0} {btree_next $::c3} if {[string match $basekey* [btree_key $::c3]]} { btree_delete $::c3 } } if {[set c [btree_move_to $::c4 $basekey]]==0} { btree_delete $::c4 } else { if {$c<0} {btree_next $::c4} if {[string match $basekey* [btree_key $::c4]]} { btree_delete $::c4 } } if {[scan [btree_key $::c4] %d kx]<1} {set kx -1} if {$kx==$k} { btree_delete $::c4 } if {$insert} { btree_insert $::c3 $key $data } else { btree_insert $::c4 $key $data } if {$longkey} { btree_insert $::c5 $basekey $keylen } elseif {[btree_move_to $::c5 $basekey]==0} { btree_delete $::c5 } if {$longdata} { btree_insert $::c6 $basekey $datalen } elseif {[btree_move_to $::c6 $basekey]==0} { btree_delete $::c6 } # set ck [btree_sanity_check $::b 2 3 4 5 6] # if {$ck!=""} { # puts "\nSANITY CHECK FAILED!\n$ck" # exit # } # puts "PAGE 3:"; btree_page_dump $::b 3 # puts "PAGE 4:"; btree_page_dump $::b 4 } } # Repeat this test sequence on database of various sizes # set testno 2 foreach {N L} { 10 2 50 2 200 3 2000 5 } { puts "**** N=$N L=$L ****" set hash [md5file test2.bt] do_test btree2-$testno.1 [subst -nocommands { set ::c2 [btree_cursor $::b 2] set ::c3 [btree_cursor $::b 3] set ::c4 [btree_cursor $::b 4] |
︙ | ︙ | |||
300 301 302 303 304 305 306 307 308 309 310 311 312 313 | btree_close_cursor $::c5 btree_close_cursor $::c6 lindex [btree_pager_stats $::b] 1 } {0} do_test btree2-$testno.7 { btree_close $::b set ::b [btree_open test2.bt] check_invariants } {} # For each database size, run various changes tests. # set num2 1 foreach {n I K D} { | > > > > > | > > > > > > > > > > < < < < < | > | > > | | | | | | | | | > > > | | | > > > > > > > > > > > > > | 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | btree_close_cursor $::c5 btree_close_cursor $::c6 lindex [btree_pager_stats $::b] 1 } {0} do_test btree2-$testno.7 { btree_close $::b set ::b [btree_open test2.bt] set ::c2 [btree_cursor $::b 2] set ::c3 [btree_cursor $::b 3] set ::c4 [btree_cursor $::b 4] set ::c5 [btree_cursor $::b 5] set ::c6 [btree_cursor $::b 6] check_invariants } {} # For each database size, run various changes tests. # set num2 1 foreach {n I K D} { 0.5 0.5 0.1 0.1 1.0 0.2 0.1 0.1 1.0 0.8 0.1 0.1 2.0 0.0 0.1 0.1 2.0 1.0 0.1 0.1 2.0 0.0 0.0 0.0 2.0 1.0 0.0 0.0 } { set testid btree2-$testno.8.$num2 set cnt 6 for {set i 2} {$i<=6} {incr i} { if {[lindex [btree_cursor_dump [set ::c$i]] 0]!=$i} {incr cnt} } do_test $testid.1 { btree_begin_transaction $::b lindex [btree_pager_stats $::b] 1 } $cnt set hash [md5file test2.bt] # exec cp test2.bt test2.bt.bu1 do_test $testid.2 [subst { random_changes $n $I $K $D }] {} do_test $testid.3 { check_invariants } {} do_test $testid.4 { btree_close_cursor $::c2 btree_close_cursor $::c3 btree_close_cursor $::c4 btree_close_cursor $::c5 btree_close_cursor $::c6 btree_rollback $::b md5file test2.bt } $hash # exec cp test2.bt test2.bt.bu2 btree_begin_transaction $::b set ::c2 [btree_cursor $::b 2] set ::c3 [btree_cursor $::b 3] set ::c4 [btree_cursor $::b 4] set ::c5 [btree_cursor $::b 5] set ::c6 [btree_cursor $::b 6] do_test $testid.5 [subst { random_changes $n $I $K $D }] {} do_test $testid.6 { check_invariants } {} do_test $testid.7 { btree_commit $::b check_invariants } {} set hash [md5file test2.bt] do_test $testid.8 { btree_close_cursor $::c2 btree_close_cursor $::c3 btree_close_cursor $::c4 btree_close_cursor $::c5 btree_close_cursor $::c6 lindex [btree_pager_stats $::b] 1 } {0} do_test $testid.9 { btree_close $::b set ::b [btree_open test2.bt] set ::c2 [btree_cursor $::b 2] set ::c3 [btree_cursor $::b 3] set ::c4 [btree_cursor $::b 4] set ::c5 [btree_cursor $::b 5] set ::c6 [btree_cursor $::b 6] check_invariants } {} incr num2 } btree_close_cursor $::c2 btree_close_cursor $::c3 btree_close_cursor $::c4 btree_close_cursor $::c5 btree_close_cursor $::c6 incr testno } # Testing is complete. Shut everything down. # do_test btree-999.1 { lindex [btree_pager_stats $::b] 1 |
︙ | ︙ |