Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Where possible, avoid freeing buffers allocated for vdbe memory cells in case they can be reused. (CVS 4783) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
990237e27e417aff3dbf05784b716c21 |
User & Date: | danielk1977 2008-02-13 18:25:27.000 |
Context
2008-02-13
| ||
23:48 | always use random access mode when opening files (like on Windows) (CVS 4784) (check-in: 9f4da1013b user: pweilbacher tags: trunk) | |
18:25 | Where possible, avoid freeing buffers allocated for vdbe memory cells in case they can be reused. (CVS 4783) (check-in: 990237e27e user: danielk1977 tags: trunk) | |
2008-02-12
| ||
16:52 | When materializing a view for an UPDATE or DELETE make use of the WHERE clause to limit the number of rows materialized. Ticket #2938. (CVS 4782) (check-in: 5ab71c3a79 user: drh tags: trunk) | |
Changes
Changes to src/attach.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the ATTACH and DETACH commands. ** ** $Id: attach.c,v 1.72 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #ifndef SQLITE_OMIT_ATTACH /* ** Resolve an expression that was part of an ATTACH or DETACH statement. This ** is slightly different from resolving a normal SQL expression, because simple |
︙ | ︙ | |||
324 325 326 327 328 329 330 | SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) ){ pParse->nErr++; goto attach_end; } v = sqlite3GetVdbe(pParse); | | | | 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) ){ pParse->nErr++; goto attach_end; } v = sqlite3GetVdbe(pParse); regArgs = sqlite3GetTempRange(pParse, 4); sqlite3ExprCode(pParse, pFilename, regArgs); sqlite3ExprCode(pParse, pDbname, regArgs+1); sqlite3ExprCode(pParse, pKey, regArgs+2); assert( v || db->mallocFailed ); if( v ){ sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs+3); sqlite3VdbeChangeP5(v, nFunc); pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0); sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this ** statement only). For DETACH, set it to false (expire all existing ** statements). |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. ** ** $Id: insert.c,v 1.229 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for index pIdx. A column affinity string has one character ** for each column in the table, according to the affinity of the column: |
︙ | ︙ | |||
214 215 216 217 218 219 220 221 222 223 224 225 226 | int memId /* Memory cell holding the maximum rowid */ ){ if( pTab->autoInc ){ int iCur = pParse->nTab; Vdbe *v = pParse->pVdbe; Db *pDb = &pParse->db->aDb[iDb]; int j1; assert( v ); sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1); sqlite3VdbeJumpHere(v, j1); | > | | | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | int memId /* Memory cell holding the maximum rowid */ ){ if( pTab->autoInc ){ int iCur = pParse->nTab; Vdbe *v = pParse->pVdbe; Db *pDb = &pParse->db->aDb[iDb]; int j1; int iRec = ++pParse->nMem; /* Memory cell used for record */ assert( v ); sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp1(v, OP_Close, iCur); } } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines |
︙ | ︙ |
Changes to src/legacy.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: legacy.c,v 1.23 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* ** Execute SQL code. Return one of the SQLITE_ success/failure |
︙ | ︙ | |||
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){ if( 0==nCallback ){ for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); } nCallback++; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; goto exec_out; } } | > > > > > > > > | 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | /* Invoke the callback function if required */ if( xCallback && (SQLITE_ROW==rc || (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){ if( 0==nCallback ){ for(i=0; i<nCol; i++){ azCols[i] = (char *)sqlite3_column_name(pStmt, i); if( !azCols[i] ){ db->mallocFailed = 1; goto exec_out; } } nCallback++; } if( rc==SQLITE_ROW ){ azVals = &azCols[nCol]; for(i=0; i<nCol; i++){ azVals[i] = (char *)sqlite3_column_text(pStmt, i); if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ db->mallocFailed = 1; goto exec_out; } } } if( xCallback(pArg, nCol, azVals, azCols) ){ rc = SQLITE_ABORT; goto exec_out; } } |
︙ | ︙ |
Changes to src/mem1.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** $Id: mem1.c,v 1.15 2008/02/13 18:25:27 danielk1977 Exp $ */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ |
︙ | ︙ | |||
184 185 186 187 188 189 190 191 192 193 194 195 196 197 | p--; nByte = (int)*p; sqlite3_mutex_enter(mem.mutex); mem.nowUsed -= nByte; free(p); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation */ void *sqlite3_realloc(void *pPrior, int nBytes){ int nOld; sqlite3_int64 *p; | > > > > > > > > > > | 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | p--; nByte = (int)*p; sqlite3_mutex_enter(mem.mutex); mem.nowUsed -= nByte; free(p); sqlite3_mutex_leave(mem.mutex); } /* ** Return the number of bytes allocated at p. */ int sqlite3MallocSize(void *p){ sqlite3_int64 *pInt; if( !p ) return 0; pInt = p; return pInt[-1]; } /* ** Change the size of an existing memory allocation */ void *sqlite3_realloc(void *pPrior, int nBytes){ int nOld; sqlite3_int64 *p; |
︙ | ︙ |
Changes to src/mem2.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** $Id: mem2.c,v 1.20 2008/02/13 18:25:27 danielk1977 Exp $ */ /* ** This version of the memory allocator is used only if the ** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION ** is not defined. */ |
︙ | ︙ | |||
238 239 240 241 242 243 244 245 246 247 248 249 250 251 | p--; assert( p->iForeGuard==FOREGUARD ); assert( (p->iSize & 3)==0 ); pInt = (int*)pAllocation; assert( pInt[p->iSize/sizeof(int)]==REARGUARD ); return p; } /* ** Allocate nByte bytes of memory. */ void *sqlite3_malloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; | > > > > > > > > > > > > | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | p--; assert( p->iForeGuard==FOREGUARD ); assert( (p->iSize & 3)==0 ); pInt = (int*)pAllocation; assert( pInt[p->iSize/sizeof(int)]==REARGUARD ); return p; } /* ** Return the number of bytes currently allocated at address p. */ int sqlite3MallocSize(void *p){ struct MemBlockHdr *pHdr; if( !p ){ return 0; } pHdr = sqlite3MemsysGetHeader(p); return pHdr->iSize; } /* ** Allocate nByte bytes of memory. */ void *sqlite3_malloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; |
︙ | ︙ | |||
447 448 449 450 451 452 453 454 455 456 | } } if( mem.sizeCnt[NCSIZE-1] ){ fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]); } fclose(out); } #endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */ | > > > > > > > > > > > > | 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | } } if( mem.sizeCnt[NCSIZE-1] ){ fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]); } fclose(out); } /* ** Return the number of times sqlite3_malloc() has been called. */ int sqlite3_memdebug_malloc_count(){ int i; int nTotal = 0; for(i=0; i<NCSIZE; i++){ nTotal += mem.sizeCnt[i]; } return nTotal; } #endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */ |
Changes to src/mem3.c.
︙ | ︙ | |||
16 17 18 19 20 21 22 | ** use of malloc(). All dynamically allocatable memory is ** contained in a static array, mem.aPool[]. The size of this ** fixed memory pool is SQLITE_MEMORY_SIZE bytes. ** ** This version of the memory allocation subsystem is used if ** and only if SQLITE_MEMORY_SIZE is defined. ** | | | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | ** use of malloc(). All dynamically allocatable memory is ** contained in a static array, mem.aPool[]. The size of this ** fixed memory pool is SQLITE_MEMORY_SIZE bytes. ** ** This version of the memory allocation subsystem is used if ** and only if SQLITE_MEMORY_SIZE is defined. ** ** $Id: mem3.c,v 1.9 2008/02/13 18:25:27 danielk1977 Exp $ */ /* ** This version of the memory allocator is used only when ** SQLITE_MEMORY_SIZE is defined. */ #if defined(SQLITE_MEMORY_SIZE) |
︙ | ︙ | |||
287 288 289 290 291 292 293 | } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ | | | 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | } /* ** Return the size of an outstanding allocation, in bytes. The ** size returned omits the 8-byte header overhead. This only ** works for chunks that are currently checked out. */ int sqlite3MallocSize(void *p){ Mem3Block *pBlock = (Mem3Block*)p; assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; } /* ** Chunk i is a free chunk that has been unlinked. Adjust its |
︙ | ︙ | |||
552 553 554 555 556 557 558 | return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } assert( mem.mutex!=0 ); | | | 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | return sqlite3_malloc(nBytes); } if( nBytes<=0 ){ sqlite3_free(pPrior); return 0; } assert( mem.mutex!=0 ); nOld = sqlite3MallocSize(pPrior); if( nBytes<=nOld && nBytes>=nOld-128 ){ return pPrior; } sqlite3_mutex_enter(mem.mutex); p = memsys3Malloc(nBytes); if( p ){ if( nOld<nBytes ){ |
︙ | ︙ |
Changes to src/os.c.
|
| | | 1 2 3 4 5 6 7 8 | /* ** 2005 November 29 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. |
︙ | ︙ |
Changes to src/pragma.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the PRAGMA command. ** ** $Id: pragma.c,v 1.170 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> /* Ignore this whole file if pragmas are disabled */ #if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER) |
︙ | ︙ | |||
890 891 892 893 894 895 896 | sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } if( cnt==0 ) continue; /* Make sure sufficient number of registers have been allocated */ | | | > | | 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 | sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } if( cnt==0 ) continue; /* Make sure sufficient number of registers have been allocated */ if( pParse->nMem < cnt+4 ){ pParse->nMem = cnt+4; } /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), P4_DYNAMIC); sqlite3VdbeAddOp2(v, OP_Move, 2, 4); sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); sqlite3VdbeJumpHere(v, addr); /* Make sure all the indices are constructed correctly. */ for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ Table *pTab = sqliteHashData(x); |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle SELECT statements in SQLite. ** ** $Id: select.c,v 1.413 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" /* ** Delete all the content of a Select structure but do not deallocate ** the select structure itself. |
︙ | ︙ | |||
806 807 808 809 810 811 812 | break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { int j1; assert( nColumn==1 ); j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow); | | | | 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 | break; } #ifndef SQLITE_OMIT_SUBQUERY case SRT_Set: { int j1; assert( nColumn==1 ); j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow); sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); sqlite3VdbeJumpHere(v, j1); break; } case SRT_Mem: { assert( nColumn==1 ); sqlite3VdbeAddOp2(v, OP_Move, regRow, iParm); /* The LIMIT clause will terminate the loop for us */ |
︙ | ︙ |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.661 2008/02/13 18:25:27 danielk1977 Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds |
︙ | ︙ | |||
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 | void *sqlite3DbMallocRaw(sqlite3*, unsigned); char *sqlite3StrDup(const char*); char *sqlite3StrNDup(const char*, int); char *sqlite3DbStrDup(sqlite3*,const char*); char *sqlite3DbStrNDup(sqlite3*,const char*, int); void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); void *sqlite3DbRealloc(sqlite3 *, void *, int); char *sqlite3MPrintf(sqlite3*,const char*, ...); char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) | > | 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 | void *sqlite3DbMallocRaw(sqlite3*, unsigned); char *sqlite3StrDup(const char*); char *sqlite3StrNDup(const char*, int); char *sqlite3DbStrDup(sqlite3*,const char*); char *sqlite3DbStrNDup(sqlite3*,const char*, int); void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); void *sqlite3DbRealloc(sqlite3 *, void *, int); int sqlite3MallocSize(void *); char *sqlite3MPrintf(sqlite3*,const char*, ...); char *sqlite3VMPrintf(sqlite3*,const char*, va_list); #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) void sqlite3DebugPrintf(const char*, ...); #endif #if defined(SQLITE_TEST) |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite. Append this file to sqlite3.c and ** compile the whole thing to build a TCL-enabled version of SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite. Append this file to sqlite3.c and ** compile the whole thing to build a TCL-enabled version of SQLite. ** ** $Id: tclsqlite.c,v 1.208 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "tcl.h" #include <errno.h> /* ** Some additional include files are needed if this file is not ** appended to the amalgamation. |
︙ | ︙ | |||
1698 1699 1700 1701 1702 1703 1704 | for(i=0; i<nCol; i++){ Tcl_Obj *pVal; /* Set pVal to contain the i'th column of this row. */ switch( sqlite3_column_type(pStmt, i) ){ case SQLITE_BLOB: { int bytes = sqlite3_column_bytes(pStmt, i); | > > | | 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 | for(i=0; i<nCol; i++){ Tcl_Obj *pVal; /* Set pVal to contain the i'th column of this row. */ switch( sqlite3_column_type(pStmt, i) ){ case SQLITE_BLOB: { int bytes = sqlite3_column_bytes(pStmt, i); char *zBlob = sqlite3_column_blob(pStmt, i); if( !zBlob ) bytes = 0; pVal = Tcl_NewByteArrayObj(zBlob, bytes); break; } case SQLITE_INTEGER: { sqlite_int64 v = sqlite3_column_int64(pStmt, i); if( v>=-2147483647 && v<=2147483647 ){ pVal = Tcl_NewIntObj(v); }else{ |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test1.c,v 1.288 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> /* |
︙ | ︙ | |||
950 951 952 953 954 955 956 957 958 959 960 961 962 963 | ptrChngFunction, 0, 0); } #ifndef SQLITE_OMIT_UTF16 /* Use the sqlite3_create_function16() API here. Mainly for fun, but also ** because it is not tested anywhere else. */ if( rc==SQLITE_OK ){ sqlite3_value *pVal; sqlite3_mutex_enter(db->mutex); pVal = sqlite3ValueNew(db); sqlite3ValueSetStr(pVal, -1, "x_sqlite_exec", SQLITE_UTF8, SQLITE_STATIC); if( db->mallocFailed ){ rc = SQLITE_NOMEM; }else{ | > > | < | | 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 | ptrChngFunction, 0, 0); } #ifndef SQLITE_OMIT_UTF16 /* Use the sqlite3_create_function16() API here. Mainly for fun, but also ** because it is not tested anywhere else. */ if( rc==SQLITE_OK ){ void *zUtf16; sqlite3_value *pVal; sqlite3_mutex_enter(db->mutex); pVal = sqlite3ValueNew(db); sqlite3ValueSetStr(pVal, -1, "x_sqlite_exec", SQLITE_UTF8, SQLITE_STATIC); zUtf16 = sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); if( db->mallocFailed ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_create_function16(db, zUtf16, 1, SQLITE_UTF16, db, sqlite3ExecFunc, 0, 0); } sqlite3ValueFree(pVal); sqlite3_mutex_leave(db->mutex); } #endif if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; |
︙ | ︙ | |||
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 | pTestCollateInterp = interp; if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[2], &val) ) return TCL_ERROR; rc = sqlite3_create_collation(db, "test_collate", SQLITE_UTF8, (void *)SQLITE_UTF8, val?test_collate_func:0); if( rc==SQLITE_OK ){ if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[3], &val) ) return TCL_ERROR; rc = sqlite3_create_collation(db, "test_collate", SQLITE_UTF16LE, (void *)SQLITE_UTF16LE, val?test_collate_func:0); if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[4], &val) ) return TCL_ERROR; #if 0 if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif sqlite3_mutex_enter(db->mutex); pVal = sqlite3ValueNew(db); sqlite3ValueSetStr(pVal, -1, "test_collate", SQLITE_UTF8, SQLITE_STATIC); if( db->mallocFailed ){ rc = SQLITE_NOMEM; }else{ | > > | < | 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 | pTestCollateInterp = interp; if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[2], &val) ) return TCL_ERROR; rc = sqlite3_create_collation(db, "test_collate", SQLITE_UTF8, (void *)SQLITE_UTF8, val?test_collate_func:0); if( rc==SQLITE_OK ){ void *zUtf16; if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[3], &val) ) return TCL_ERROR; rc = sqlite3_create_collation(db, "test_collate", SQLITE_UTF16LE, (void *)SQLITE_UTF16LE, val?test_collate_func:0); if( TCL_OK!=Tcl_GetBooleanFromObj(interp, objv[4], &val) ) return TCL_ERROR; #if 0 if( sqlite3_iMallocFail>0 ){ sqlite3_iMallocFail++; } #endif sqlite3_mutex_enter(db->mutex); pVal = sqlite3ValueNew(db); sqlite3ValueSetStr(pVal, -1, "test_collate", SQLITE_UTF8, SQLITE_STATIC); zUtf16 = sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); if( db->mallocFailed ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_create_collation16(db, zUtf16, SQLITE_UTF16BE, (void *)SQLITE_UTF16BE, val?test_collate_func:0); } sqlite3ValueFree(pVal); sqlite3_mutex_leave(db->mutex); } if( sqlite3TestErrCode(interp, db, rc) ) return TCL_ERROR; |
︙ | ︙ |
Changes to src/test8.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the virtual table interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the virtual table interfaces. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test8.c,v 1.60 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
156 157 158 159 160 161 162 | nCol = sqlite3_column_count(pStmt); /* Figure out how much space to allocate for the array of column names ** (including space for the strings themselves). Then allocate it. */ nBytes = sizeof(char *) * nCol; for(ii=0; ii<nCol; ii++){ | | > > > > > | 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | nCol = sqlite3_column_count(pStmt); /* Figure out how much space to allocate for the array of column names ** (including space for the strings themselves). Then allocate it. */ nBytes = sizeof(char *) * nCol; for(ii=0; ii<nCol; ii++){ const char *zName = sqlite3_column_name(pStmt, ii); if( !zName ){ rc = SQLITE_NOMEM; goto out; } nBytes += strlen(zName)+1; } aCol = (char **)sqlite3MallocZero(nBytes); if( !aCol ){ rc = SQLITE_NOMEM; goto out; } |
︙ | ︙ | |||
948 949 950 951 952 953 954 | if( rc==SQLITE_OK ) { if( bindArgZero ){ sqlite3_bind_value(pStmt, nData, apData[0]); } if( bindArgOne ){ sqlite3_bind_value(pStmt, 1, apData[1]); } | | | > | | > > > | 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 | if( rc==SQLITE_OK ) { if( bindArgZero ){ sqlite3_bind_value(pStmt, nData, apData[0]); } if( bindArgOne ){ sqlite3_bind_value(pStmt, 1, apData[1]); } for(i=2; i<nData && rc==SQLITE_OK; i++){ if( apData[i] ) rc = sqlite3_bind_value(pStmt, i, apData[i]); } if( rc==SQLITE_OK ){ sqlite3_step(pStmt); rc = sqlite3_finalize(pStmt); }else{ sqlite3_finalize(pStmt); } } if( pRowid && rc==SQLITE_OK ){ *pRowid = sqlite3_last_insert_rowid(db); } return rc; |
︙ | ︙ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** ** $Id: test_malloc.c,v 1.12 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #include <assert.h> |
︙ | ︙ | |||
339 340 341 342 343 344 345 346 347 348 349 350 351 352 | extern void sqlite3_memdebug_dump(const char*); sqlite3_memdebug_dump(Tcl_GetString(objv[1])); } #endif return TCL_OK; } /* ** Usage: sqlite3_memdebug_fail COUNTER ?OPTIONS? ** ** where options are: ** ** -repeat <count> | > > > > > > > > > > > > > > > > > > > > > > > > > > | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | extern void sqlite3_memdebug_dump(const char*); sqlite3_memdebug_dump(Tcl_GetString(objv[1])); } #endif return TCL_OK; } /* ** Usage: sqlite3_memdebug_malloc_count ** ** Return the total number of times malloc() has been called. */ static int test_memdebug_malloc_count( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int nMalloc = -1; if( objc!=1 ){ Tcl_WrongNumArgs(interp, 1, objv, ""); return TCL_ERROR; } #if defined(SQLITE_MEMDEBUG) { extern int sqlite3_memdebug_malloc_count(); nMalloc = sqlite3_memdebug_malloc_count(); } #endif Tcl_SetObjResult(interp, Tcl_NewIntObj(nMalloc)); return TCL_OK; } /* ** Usage: sqlite3_memdebug_fail COUNTER ?OPTIONS? ** ** where options are: ** ** -repeat <count> |
︙ | ︙ | |||
500 501 502 503 504 505 506 507 508 509 510 511 512 513 | { "sqlite3_memory_used", test_memory_used }, { "sqlite3_memory_highwater", test_memory_highwater }, { "sqlite3_memdebug_backtrace", test_memdebug_backtrace }, { "sqlite3_memdebug_dump", test_memdebug_dump }, { "sqlite3_memdebug_fail", test_memdebug_fail }, { "sqlite3_memdebug_pending", test_memdebug_pending }, { "sqlite3_memdebug_settitle", test_memdebug_settitle }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); } return TCL_OK; } | > | 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | { "sqlite3_memory_used", test_memory_used }, { "sqlite3_memory_highwater", test_memory_highwater }, { "sqlite3_memdebug_backtrace", test_memdebug_backtrace }, { "sqlite3_memdebug_dump", test_memdebug_dump }, { "sqlite3_memdebug_fail", test_memdebug_fail }, { "sqlite3_memdebug_pending", test_memdebug_pending }, { "sqlite3_memdebug_settitle", test_memdebug_settitle }, { "sqlite3_memdebug_malloc_count", test_memdebug_malloc_count }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); } return TCL_OK; } |
Changes to src/utf.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains routines used to translate between UTF-8, ** UTF-16, UTF-16BE, and UTF-16LE. ** ** $Id: utf.c,v 1.60 2008/02/13 18:25:27 danielk1977 Exp $ ** ** Notes on UTF-8: ** ** Byte-0 Byte-1 Byte-2 Byte-3 Value ** 0xxxxxxx 00000000 00000000 0xxxxxxx ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
︙ | ︙ | |||
184 185 186 187 188 189 190 | #ifndef SQLITE_OMIT_UTF16 /* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ | < | 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | #ifndef SQLITE_OMIT_UTF16 /* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; |
︙ | ︙ | |||
250 251 252 253 254 255 256 | */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** | | | < < | | | < < < | 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer, space obtained ** from sqlite3_malloc(). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn<zTerm ){ |
︙ | ︙ | |||
304 305 306 307 308 309 310 | } pMem->n = z - zOut; } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); | | < < < < < | < | 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | } pMem->n = z - zOut; } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term|MEM_Dyn); pMem->z = (char*)zOut; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
︙ | ︙ | |||
351 352 353 354 355 356 357 | } if( b1==0xFF && b2==0xFE ){ bom = SQLITE_UTF16LE; } } if( bom ){ | < | < < < < < > | | | | | | < < < < < | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 | } if( b1==0xFF && b2==0xFE ){ bom = SQLITE_UTF16LE; } } if( bom ){ rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc==SQLITE_OK ){ pMem->n -= 2; memmove(pMem->z, &pMem->z[2], pMem->n); pMem->z[pMem->n] = '\0'; pMem->z[pMem->n+1] = '\0'; pMem->flags |= MEM_Term; pMem->enc = bom; } } return rc; } #endif /* SQLITE_OMIT_UTF16 */ /* |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
39 40 41 42 43 44 45 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** | | | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** ** Various scripts scan this source file in order to generate HTML ** documentation, headers files, or other derived files. The formatting ** of the code in this file is, therefore, important. See other comments ** in this file for details. If in doubt, do not deviate from existing ** commenting and indentation practices when changing or adding code. ** ** $Id: vdbe.c,v 1.709 2008/02/13 18:25:27 danielk1977 Exp $ */ #include "sqliteInt.h" #include <ctype.h> #include "vdbeInt.h" /* ** The following global variable is incremented every time a cursor |
︙ | ︙ | |||
232 233 234 235 236 237 238 | int realnum; sqlite3VdbeMemNulTerminate(pRec); if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ i64 value; sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ | < | | 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | int realnum; sqlite3VdbeMemNulTerminate(pRec); if( (pRec->flags&MEM_Str) && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ i64 value; sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ pRec->u.i = value; MemSetTypeFlag(pRec, MEM_Int); }else{ sqlite3VdbeMemRealify(pRec); } } } } |
︙ | ︙ | |||
996 997 998 999 1000 1001 1002 1003 1004 | } /* Opcode: Concat P1 P2 P3 * * ** ** Add the text in register P1 onto the end of the text in ** register P2 and store the result in register P3. ** If either the P1 or P2 text are NULL then store NULL in P3. */ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ | > > > > > > < > | < > | < > | > | | | | < < < | 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 | } /* Opcode: Concat P1 P2 P3 * * ** ** Add the text in register P1 onto the end of the text in ** register P2 and store the result in register P3. ** If either the P1 or P2 text are NULL then store NULL in P3. ** ** P3 = P2 || P1 ** ** It is illegal for P1 and P3 to be the same register. Sometimes, ** if P3 is the same register as P2, the implementation is able ** to avoid a memcpy(). */ case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ i64 nByte; assert( pIn1!=pOut ); if( (pIn1->flags | pIn2->flags) & MEM_Null ){ sqlite3VdbeMemSetNull(pOut); break; } ExpandBlob(pIn1); Stringify(pIn1, encoding); ExpandBlob(pIn2); Stringify(pIn2, encoding); nByte = pIn1->n + pIn2->n; if( nByte>SQLITE_MAX_LENGTH ){ goto too_big; } MemSetTypeFlag(pOut, MEM_Str); if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){ goto no_mem; } if( pOut!=pIn2 ){ memcpy(pOut->z, pIn2->z, pIn2->n); } memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); pOut->z[nByte] = 0; pOut->z[nByte+1] = 0; pOut->flags |= MEM_Term; pOut->n = nByte; pOut->enc = encoding; UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Add P1 P2 P3 * * ** ** Add the value in register P1 to the value in register P2 |
︙ | ︙ | |||
1101 1102 1103 1104 1105 1106 1107 | default: { if( a==0 ) goto arithmetic_result_is_null; if( a==-1 ) a = 1; b %= a; break; } } | < | | 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 | default: { if( a==0 ) goto arithmetic_result_is_null; if( a==-1 ) a = 1; b %= a; break; } } pOut->u.i = b; MemSetTypeFlag(pOut, MEM_Int); }else{ double a, b; a = sqlite3VdbeRealValue(pIn1); b = sqlite3VdbeRealValue(pIn2); switch( pOp->opcode ){ case OP_Add: b += a; break; case OP_Subtract: b -= a; break; |
︙ | ︙ | |||
1129 1130 1131 1132 1133 1134 1135 | b = ib % ia; break; } } if( sqlite3_isnan(b) ){ goto arithmetic_result_is_null; } | < | | 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 | b = ib % ia; break; } } if( sqlite3_isnan(b) ){ goto arithmetic_result_is_null; } pOut->r = b; MemSetTypeFlag(pOut, MEM_Real); if( (flags & MEM_Real)==0 ){ sqlite3VdbeIntegerAffinity(pOut); } } break; arithmetic_result_is_null: |
︙ | ︙ | |||
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 | } /* Opcode: Function P1 P2 P3 P4 P5 ** ** Invoke a user function (P4 is a pointer to a Function structure that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. | > | 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 | } /* Opcode: Function P1 P2 P3 P4 P5 ** ** Invoke a user function (P4 is a pointer to a Function structure that ** defines the function) with P5 arguments taken from register P2 and ** successors. The result of the function is stored in register P3. ** Register P3 must not be one of the function inputs. ** ** P1 is a 32-bit bitmask indicating whether or not each argument to the ** function was determined to be constant at compile time. If the first ** argument was constant then bit 0 of P1 is set. This is used to determine ** whether meta data associated with a user function argument using the ** sqlite3_set_auxdata() API may be safely retained until the next ** invocation of this opcode. |
︙ | ︙ | |||
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 | sqlite3_value **apVal; int n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) ); pArg = &p->aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; storeTypeInfo(pArg, encoding); REGISTER_TRACE(pOp->p2, pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; }else{ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; ctx.pFunc = ctx.pVdbeFunc->pFunc; } ctx.s.flags = MEM_Null; | > > > | | > > > > > > | | 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 | sqlite3_value **apVal; int n = pOp->p5; apVal = p->apArg; assert( apVal || n==0 ); assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) ); assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); pArg = &p->aMem[pOp->p2]; for(i=0; i<n; i++, pArg++){ apVal[i] = pArg; storeTypeInfo(pArg, encoding); REGISTER_TRACE(pOp->p2, pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ ctx.pFunc = pOp->p4.pFunc; ctx.pVdbeFunc = 0; }else{ ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; ctx.pFunc = ctx.pVdbeFunc->pFunc; } assert( pOp->p3>0 && pOp->p3<=p->nMem ); pOut = &p->aMem[pOp->p3]; ctx.s.flags = MEM_Null; ctx.s.db = 0; /* The output cell may already have a buffer allocated. Move ** the pointer to ctx.s so in case the user-function can use ** the already allocated buffer instead of allocating a new one. */ sqlite3VdbeMemMove(&ctx.s, pOut); MemSetTypeFlag(&ctx.s, MEM_Null); ctx.isError = 0; if( ctx.pFunc->needCollSeq ){ assert( pOp>p->aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); ctx.pColl = pOp[-1].p4.pColl; } |
︙ | ︙ | |||
1246 1247 1248 1249 1250 1251 1252 | if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = ctx.isError; } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); | < < | 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 | if( ctx.isError ){ sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); rc = ctx.isError; } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&ctx.s, encoding); sqlite3VdbeMemMove(pOut, &ctx.s); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; } REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); break; |
︙ | ︙ | |||
1302 1303 1304 1305 1306 1307 1308 | switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; default: assert( pOp->opcode==OP_ShiftRight ); a >>= b; break; } | < | | 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 | switch( pOp->opcode ){ case OP_BitAnd: a &= b; break; case OP_BitOr: a |= b; break; case OP_ShiftLeft: a <<= b; break; default: assert( pOp->opcode==OP_ShiftRight ); a >>= b; break; } pOut->u.i = a; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: AddImm P1 P2 * * * ** ** Add the constant P2 the value in register P1. ** The result is always an integer. |
︙ | ︙ | |||
1346 1347 1348 1349 1350 1351 1352 | v = pIn1->u.i + (pOp->p3!=0); }else{ assert( pIn1->flags & MEM_Real ); v = (sqlite3_int64)pIn1->r; if( pIn1->r>(double)v ) v++; if( pOp->p3 && pIn1->r==(double)v ) v++; } | < | < | | 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 | v = pIn1->u.i + (pOp->p3!=0); }else{ assert( pIn1->flags & MEM_Real ); v = (sqlite3_int64)pIn1->r; if( pIn1->r>(double)v ) v++; if( pOp->p3 && pIn1->r==(double)v ) v++; } pIn1->u.i = v; MemSetTypeFlag(pIn1, MEM_Int); break; } /* Opcode: MustBeInt P1 P2 * * * ** ** Force the value in register P1 to be an integer. If the value ** in P1 is not an integer and cannot be converted into an integer ** without data loss, then jump immediately to P2, or if P2==0 ** raise an SQLITE_MISMATCH exception. */ case OP_MustBeInt: { /* jump, in1 */ applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); if( (pIn1->flags & MEM_Int)==0 ){ if( pOp->p2==0 ){ rc = SQLITE_MISMATCH; goto abort_due_to_error; }else{ pc = pOp->p2 - 1; } }else{ MemSetTypeFlag(pIn1, MEM_Int); } break; } /* Opcode: RealAffinity P1 * * * * ** ** If register P1 holds an integer convert it to a real value. |
︙ | ︙ | |||
1407 1408 1409 1410 1411 1412 1413 | */ case OP_ToText: { /* same as TK_TO_TEXT, in1 */ if( pIn1->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); rc = ExpandBlob(pIn1); | | | < | | 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 | */ case OP_ToText: { /* same as TK_TO_TEXT, in1 */ if( pIn1->flags & MEM_Null ) break; assert( MEM_Str==(MEM_Blob>>3) ); pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); rc = ExpandBlob(pIn1); assert( pIn1->flags & MEM_Str || db->mallocFailed ); pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); UPDATE_MAX_BLOBSIZE(pIn1); break; } /* Opcode: ToBlob P1 * * * * ** ** Force the value in register P1 to be a BLOB. ** If the value is numeric, convert it to a string first. ** Strings are simply reinterpreted as blobs with no change ** to the underlying data. ** ** A NULL value is not changed by this routine. It remains NULL. */ case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ if( pIn1->flags & MEM_Null ) break; if( (pIn1->flags & MEM_Blob)==0 ){ applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); assert( pIn1->flags & MEM_Str || db->mallocFailed ); } MemSetTypeFlag(pIn1, MEM_Blob); UPDATE_MAX_BLOBSIZE(pIn1); break; } /* Opcode: ToNumeric P1 * * * * ** ** Force the value in register P1 to be numeric (either an |
︙ | ︙ | |||
1587 1588 1589 1590 1591 1592 1593 | }else{ /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then ** the result is always NULL. The jump is taken if the ** SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &p->aMem[pOp->p2]; | < | | 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 | }else{ /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then ** the result is always NULL. The jump is taken if the ** SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &p->aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ pc = pOp->p2-1; } break; } } |
︙ | ︙ | |||
1618 1619 1620 1621 1622 1623 1624 | case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &p->aMem[pOp->p2]; | < | | 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 | case OP_Le: res = res<=0; break; case OP_Gt: res = res>0; break; default: res = res>=0; break; } if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &p->aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = res; REGISTER_TRACE(pOp->p2, pOut); }else if( res ){ pc = pOp->p2-1; } break; } |
︙ | ︙ | |||
1667 1668 1669 1670 1671 1672 1673 | if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = or_logic[v1*3+v2]; } | < | | | | | 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 | if( pOp->opcode==OP_And ){ static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; v1 = and_logic[v1*3+v2]; }else{ static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; v1 = or_logic[v1*3+v2]; } if( v1==2 ){ MemSetTypeFlag(pOut, MEM_Null); }else{ pOut->u.i = v1; MemSetTypeFlag(pOut, MEM_Int); } break; } /* Opcode: Not P1 * * * * ** ** Interpret the value in register P1 as a boolean value. Replace it ** with its complement. If the value in register P1 is NULL its value ** is unchanged. */ case OP_Not: { /* same as TK_NOT, in1 */ if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i = !pIn1->u.i; assert( pIn1->flags&MEM_Int ); break; } /* Opcode: BitNot P1 * * * * ** ** Interpret the content of register P1 as an integer. Replace it ** with its ones-complement. If the value is originally NULL, leave ** it unchanged. */ case OP_BitNot: { /* same as TK_BITNOT, in1 */ if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ sqlite3VdbeMemIntegerify(pIn1); pIn1->u.i = ~pIn1->u.i; assert( pIn1->flags&MEM_Int ); break; } /* Opcode: If P1 P2 P3 * * ** ** Jump to P2 if the value in register P1 is true. The value is ** is considered true if it is numeric and non-zero. If the value |
︙ | ︙ | |||
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 | int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ char *zData; /* Part of the record being decoded */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ sMem.flags = 0; assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &p->aMem[pOp->p3]; | > | | 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 | int len; /* The length of the serialized data for the column */ int i; /* Loop counter */ char *zData; /* Part of the record being decoded */ Mem *pDest; /* Where to write the extracted value */ Mem sMem; /* For storing the record being decoded */ sMem.flags = 0; sMem.db = 0; assert( p1<p->nCursor ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pDest = &p->aMem[pOp->p3]; MemSetTypeFlag(pDest, MEM_Null); /* This block sets the variable payloadSize to be the total number of ** bytes in the record. ** ** zRec is set to be the complete text of the record if it is available. ** The complete record text is always available for pseudo-tables ** If the record is stored in a cursor, the complete record text |
︙ | ︙ | |||
1873 1874 1875 1876 1877 1878 1879 | assert( payloadSize==0 || zRec!=0 ); nField = pC->nField; pCrsr = 0; } /* If payloadSize is 0, then just store a NULL */ if( payloadSize==0 ){ | | | 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 | assert( payloadSize==0 || zRec!=0 ); nField = pC->nField; pCrsr = 0; } /* If payloadSize is 0, then just store a NULL */ if( payloadSize==0 ){ assert( pDest->flags&MEM_Null ); goto op_column_out; } if( payloadSize>SQLITE_MAX_LENGTH ){ goto too_big; } assert( p2<nField ); |
︙ | ︙ | |||
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 | /* The KeyFetch() or DataFetch() above are fast and will get the entire ** record header in most cases. But they will fail to get the complete ** record header if the record header does not fit on a single page ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to ** acquire the complete header text. */ if( !zRec && avail<offset ){ rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); if( rc!=SQLITE_OK ){ goto op_column_out; } zData = sMem.z; } zEndHdr = (u8 *)&zData[offset]; | > > | 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 | /* The KeyFetch() or DataFetch() above are fast and will get the entire ** record header in most cases. But they will fail to get the complete ** record header if the record header does not fit on a single page ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to ** acquire the complete header text. */ if( !zRec && avail<offset ){ sMem.flags = 0; sMem.db = 0; rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); if( rc!=SQLITE_OK ){ goto op_column_out; } zData = sMem.z; } zEndHdr = (u8 *)&zData[offset]; |
︙ | ︙ | |||
1990 1991 1992 1993 1994 1995 1996 | ** then there are not enough fields in the record to satisfy the ** request. In this case, set the value NULL or to P4 if P4 is ** a pointer to a Mem object. */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ | > | > > > | > > > > < | > | | | | < | > < < | 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 | ** then there are not enough fields in the record to satisfy the ** request. In this case, set the value NULL or to P4 if P4 is ** a pointer to a Mem object. */ if( aOffset[p2] ){ assert( rc==SQLITE_OK ); if( zRec ){ if( pDest->flags&MEM_Dyn ){ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem); sMem.db = db; sqlite3VdbeMemCopy(pDest, &sMem); assert( !(sMem.flags&MEM_Dyn) ); }else{ sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); } }else{ len = sqlite3VdbeSerialTypeLen(aType[p2]); sqlite3VdbeMemMove(&sMem, pDest); rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); if( rc!=SQLITE_OK ){ goto op_column_out; } zData = sMem.z; sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); } pDest->enc = encoding; }else{ if( pOp->p4type==P4_MEM ){ sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); }else{ assert( pDest->flags&MEM_Null ); } } /* If we dynamically allocated space to hold the data (in the ** sqlite3VdbeMemFromBtree() call above) then transfer control of that ** dynamically allocated space over to the pDest structure. ** This prevents a memory copy. */ if( (sMem.flags & MEM_Dyn)!=0 ){ assert( !sMem.xDel ); assert( !(pDest->flags & MEM_Dyn) ); assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); pDest->flags &= ~(MEM_Ephem|MEM_Static); pDest->flags |= MEM_Dyn|MEM_Term; pDest->z = sMem.z; } rc = sqlite3VdbeMemMakeWriteable(pDest); op_column_out: UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); break; } |
︙ | ︙ | |||
2082 2083 2084 2085 2086 2087 2088 | u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ int file_format; /* File format to use for encoding */ int i; /* Space used in zNewRecord[] */ | < | 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 | u32 serial_type; /* Type field */ Mem *pData0; /* First field to be combined into the record */ Mem *pLast; /* Last field of the record */ int nField; /* Number of fields in the record */ char *zAffinity; /* The affinity string for the record */ int file_format; /* File format to use for encoding */ int i; /* Space used in zNewRecord[] */ nField = pOp->p1; zAffinity = pOp->p4.z; assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem ); pData0 = &p->aMem[nField]; nField = pOp->p2; pLast = &pData0[nField-1]; |
︙ | ︙ | |||
2126 2127 2128 2129 2130 2131 2132 | nHdr++; } nByte = nHdr+nData-nZero; if( nByte>SQLITE_MAX_LENGTH ){ goto too_big; } | > | < > | > > > | | | < | < < < < < < < < < < < | | < | 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 | nHdr++; } nByte = nHdr+nData-nZero; if( nByte>SQLITE_MAX_LENGTH ){ goto too_big; } /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemGrow() could clobber the value before it is used). */ assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); pOut = &p->aMem[pOp->p3]; if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){ goto no_mem; } zNewRecord = (u8 *)pOut->z; /* Write the record */ i = sqlite3PutVarint(zNewRecord, nHdr); for(pRec=pData0; pRec<=pLast; pRec++){ serial_type = sqlite3VdbeSerialType(pRec, file_format); i += sqlite3PutVarint(&zNewRecord[i], serial_type); /* serial type */ } for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format); } assert( i==nByte ); assert( pOp->p3>0 && pOp->p3<=p->nMem ); pOut->n = nByte; pOut->flags = MEM_Blob | MEM_Dyn; pOut->xDel = 0; if( nZero ){ pOut->u.i = nZero; pOut->flags |= MEM_Zero; } pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ REGISTER_TRACE(pOp->p3, pOut); UPDATE_MAX_BLOBSIZE(pOut); |
︙ | ︙ | |||
2339 2340 2341 2342 2343 2344 2345 | ** be the number of free pages in the database (a read-only value) ** and meta[1] to be the schema cookie. The schema layer considers ** meta[1] to be the schema cookie. So we have to shift the index ** by one in the following statement. */ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); pOut->u.i = iMeta; | | | 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 | ** be the number of free pages in the database (a read-only value) ** and meta[1] to be the schema cookie. The schema layer considers ** meta[1] to be the schema cookie. So we have to shift the index ** by one in the following statement. */ rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); pOut->u.i = iMeta; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: SetCookie P1 P2 P3 * * ** ** Write the content of register P3 (interpreted as an integer) ** into cookie number P2 of database P1. |
︙ | ︙ | |||
2892 2893 2894 2895 2896 2897 2898 | /* Pop the value R off the top of the stack */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); pK = &p->aMem[pOp->p4.i]; sqlite3VdbeMemIntegerify(pIn3); R = pIn3->u.i; | < | 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 | /* Pop the value R off the top of the stack */ assert( pOp->p4type==P4_INT32 ); assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); pK = &p->aMem[pOp->p4.i]; sqlite3VdbeMemIntegerify(pIn3); R = pIn3->u.i; assert( i>=0 && i<p->nCursor ); pCx = p->apCsr[i]; assert( pCx!=0 ); pCrsr = pCx->pCursor; if( pCrsr!=0 ){ int res; i64 v; /* The record number on the P1 entry that matches K */ |
︙ | ︙ | |||
2956 2957 2958 2959 2960 2961 2962 | } /* The final varint of the key is different from R. Store it back ** into register R3. (The record number of an entry that violates ** a UNIQUE constraint.) */ pIn3->u.i = v; | | | 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 | } /* The final varint of the key is different from R. Store it back ** into register R3. (The record number of an entry that violates ** a UNIQUE constraint.) */ pIn3->u.i = v; assert( pIn3->flags&MEM_Int ); } break; } /* Opcode: NotExists P1 P2 P3 * * ** ** Use the content of register P3 as a integer key. If a record |
︙ | ︙ | |||
3017 3018 3019 3020 3021 3022 3023 | ** instruction. */ case OP_Sequence: { /* out2-prerelease */ int i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); pOut->u.i = p->apCsr[i]->seqCount++; | | | 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 | ** instruction. */ case OP_Sequence: { /* out2-prerelease */ int i = pOp->p1; assert( i>=0 && i<p->nCursor ); assert( p->apCsr[i]!=0 ); pOut->u.i = p->apCsr[i]->seqCount++; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: NewRowid P1 P2 P3 * * ** ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
︙ | ︙ | |||
3170 3171 3172 3173 3174 3175 3176 | goto abort_due_to_error; } } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } | | | 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 | goto abort_due_to_error; } } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = v; break; } /* Opcode: Insert P1 P2 P3 P4 P5 ** ** Write an entry into the table of cursor P1. A new entry is |
︙ | ︙ | |||
3364 3365 3366 3367 3368 3369 3370 | ** There is no interpretation of the data. ** The key is copied onto the P3 register exactly as ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ | | | > > | 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 | ** There is no interpretation of the data. ** The key is copied onto the P3 register exactly as ** it is found in the database file. ** ** If the P1 cursor must be pointing to a valid row (not a NULL row) ** of a real table, not a pseudo-table. */ case OP_RowKey: case OP_RowData: { int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; u32 n; pOut = &p->aMem[pOp->p2]; /* Note that RowKey and RowData are really exactly the same instruction */ assert( i>=0 && i<p->nCursor ); pC = p->apCsr[i]; assert( pC->isTable || pOp->opcode==OP_RowKey ); assert( pC->isIndex || pOp->opcode==OP_RowData ); assert( pC!=0 ); |
︙ | ︙ | |||
3397 3398 3399 3400 3401 3402 3403 | n = n64; }else{ sqlite3BtreeDataSize(pCrsr, &n); if( n>SQLITE_MAX_LENGTH ){ goto too_big; } } | < < < < < | | < < < > > | 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 | n = n64; }else{ sqlite3BtreeDataSize(pCrsr, &n); if( n>SQLITE_MAX_LENGTH ){ goto too_big; } } if( sqlite3VdbeMemGrow(pOut, n, 0) ){ goto no_mem; } pOut->n = n; MemSetTypeFlag(pOut, MEM_Blob); if( pC->isIndex ){ rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); }else{ rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); } pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); |
︙ | ︙ | |||
3446 3447 3448 3449 3450 3451 3452 | break; }else{ assert( pC->pCursor!=0 ); sqlite3BtreeKeySize(pC->pCursor, &v); v = keyToInt(v); } pOut->u.i = v; | | | 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 | break; }else{ assert( pC->pCursor!=0 ); sqlite3BtreeKeySize(pC->pCursor, &v); v = keyToInt(v); } pOut->u.i = v; MemSetTypeFlag(pOut, MEM_Int); break; } /* Opcode: NullRow P1 * * * * ** ** Move the cursor P1 to a null row. Any OP_Column operations ** that occur while the cursor is on the null row will always |
︙ | ︙ | |||
3638 3639 3640 3641 3642 3643 3644 | } } break; } /* Opcode: IdxDelete P1 P2 * * * ** | | | > | 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 | } } break; } /* Opcode: IdxDelete P1 P2 * * * ** ** The content of register P2 is an index key built using the ** MakeIdxRec opcode. This opcode removes that entry from the ** index opened by cursor P1. */ case OP_IdxDelete: { /* in2 */ int i = pOp->p1; Cursor *pC; BtCursor *pCrsr; assert( pIn2->flags & MEM_Blob ); assert( i>=0 && i<p->nCursor ); |
︙ | ︙ | |||
3685 3686 3687 3688 3689 3690 3691 | assert( pC->deferredMoveto==0 ); assert( pC->isTable==0 ); if( !pC->nullRow ){ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } | | | 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 | assert( pC->deferredMoveto==0 ); assert( pC->isTable==0 ); if( !pC->nullRow ){ rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = rowid; } } break; } /* Opcode: IdxGE P1 P2 P3 * P5 |
︙ | ︙ | |||
3797 3798 3799 3800 3801 3802 3803 | rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ int iDb = pOp->p3; assert( iCnt==1 ); assert( (p->btreeMask & (1<<iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); | | | 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 | rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ int iDb = pOp->p3; assert( iCnt==1 ); assert( (p->btreeMask & (1<<iDb))!=0 ); rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = iMoved; #ifndef SQLITE_OMIT_AUTOVACUUM if( rc==SQLITE_OK && iMoved!=0 ){ sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); } #endif } |
︙ | ︙ | |||
3866 3867 3868 3869 3870 3871 3872 | flags = BTREE_LEAFDATA|BTREE_INTKEY; }else{ flags = BTREE_ZERODATA; } rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); if( rc==SQLITE_OK ){ pOut->u.i = pgno; | | | 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 | flags = BTREE_LEAFDATA|BTREE_INTKEY; }else{ flags = BTREE_ZERODATA; } rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); if( rc==SQLITE_OK ){ pOut->u.i = pgno; MemSetTypeFlag(pOut, MEM_Int); } break; } /* Opcode: ParseSchema P1 P2 * P4 * ** ** Read and parse all entries from the SQLITE_MASTER table of database P1 |
︙ | ︙ | |||
4019 4020 4021 4022 4023 4024 4025 | z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, pnErr->u.i, &nErr); pnErr->u.i -= nErr; sqlite3VdbeMemSetNull(pIn1); if( nErr==0 ){ assert( z==0 ); }else{ | | < < < < | 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 | z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, pnErr->u.i, &nErr); pnErr->u.i -= nErr; sqlite3VdbeMemSetNull(pIn1); if( nErr==0 ){ assert( z==0 ); }else{ sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); } UPDATE_MAX_BLOBSIZE(pIn1); sqlite3VdbeChangeEncoding(pIn1, encoding); sqlite3_free(aRoot); break; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
︙ | ︙ | |||
4054 4055 4056 4057 4058 4059 4060 | ** ** If the Fifo is empty jump to P2. */ case OP_FifoRead: { /* jump */ CHECK_FOR_INTERRUPT; assert( pOp->p1>0 && pOp->p1<=p->nMem ); pOut = &p->aMem[pOp->p1]; | < | | 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 | ** ** If the Fifo is empty jump to P2. */ case OP_FifoRead: { /* jump */ CHECK_FOR_INTERRUPT; assert( pOp->p1>0 && pOp->p1<=p->nMem ); pOut = &p->aMem[pOp->p1]; MemSetTypeFlag(pOut, MEM_Int); if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){ pc = pOp->p2 - 1; } break; } #ifndef SQLITE_OMIT_TRIGGER |
︙ | ︙ | |||
4133 4134 4135 4136 4137 4138 4139 | ** ** If the value of register P1 is 1 or greater, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ | | | | | 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 | ** ** If the value of register P1 is 1 or greater, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfPos: { /* jump, in1 */ assert( pIn1->flags&MEM_Int ); if( pIn1->u.i>0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfNeg P1 P2 * * * ** ** If the value of register P1 is less than zero, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfNeg: { /* jump, in1 */ assert( pIn1->flags&MEM_Int ); if( pIn1->u.i<0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: IfZero P1 P2 * * * ** ** If the value of register P1 is exactly 0, jump to P2. ** ** It is illegal to use this instruction on a register that does ** not contain an integer. An assertion fault will result if you try. */ case OP_IfZero: { /* jump, in1 */ assert( pIn1->flags&MEM_Int ); if( pIn1->u.i==0 ){ pc = pOp->p2 - 1; } break; } /* Opcode: AggStep * P2 P3 P4 P5 |
︙ | ︙ | |||
4498 4499 4500 4501 4502 4503 4504 | break; } pModule = pCur->pVtabCursor->pVtab->pModule; assert( pModule->xRowid ); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xRowid(pCur->pVtabCursor, &iRow); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; | | | 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 | break; } pModule = pCur->pVtabCursor->pVtab->pModule; assert( pModule->xRowid ); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xRowid(pCur->pVtabCursor, &iRow); if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; MemSetTypeFlag(pOut, MEM_Int); pOut->u.i = iRow; break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VColumn P1 P2 P3 * * |
︙ | ︙ | |||
4527 4528 4529 4530 4531 4532 4533 | if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } pModule = pCur->pVtabCursor->pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); | | > > > > > > | > | 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 | if( pCur->nullRow ){ sqlite3VdbeMemSetNull(pDest); break; } pModule = pCur->pVtabCursor->pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); /* The output cell may already have a buffer allocated. Move ** the current contents to sContext.s so in case the user-function ** can use the already allocated buffer instead of allocating a ** new one. */ sqlite3VdbeMemMove(&sContext.s, pDest); MemSetTypeFlag(&sContext.s, MEM_Null); if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); /* Copy the result of the function to the P3 register. We ** do this regardless of whether or not an error occured to ensure any ** dynamic allocation in sContext.s (a Mem struct) is released. */ |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
90 91 92 93 94 95 96 | int payloadSize; /* Total number of bytes in the record */ u32 *aType; /* Type values for all entries in the record */ u32 *aOffset; /* Cached offsets to the start of each columns data */ u8 *aRow; /* Data for the current row, if all on one page */ }; typedef struct Cursor Cursor; | < < < < < < < | 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | int payloadSize; /* Total number of bytes in the record */ u32 *aType; /* Type values for all entries in the record */ u32 *aOffset; /* Cached offsets to the start of each columns data */ u8 *aRow; /* Data for the current row, if all on one page */ }; typedef struct Cursor Cursor; /* ** A value for Cursor.cacheValid that means the cache is always invalid. */ #define CACHE_STALE 0 /* ** Internally, the vdbe manipulates nearly all SQL values as Mem |
︙ | ︙ | |||
126 127 128 129 130 131 132 | sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ | < | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | sqlite3 *db; /* The associated database connection */ char *z; /* String or BLOB value */ int n; /* Number of characters in string value, excluding '\0' */ u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ }; /* One or more of the following flags are set to indicate the validOK ** representations of the value stored in the Mem struct. ** ** If the MEM_Null flag is set, then the value is an SQL NULL value. ** No other flags may be set in this case. |
︙ | ︙ | |||
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0020 /* String rep is nul terminated */ #define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0080 /* Mem.z points to a static string */ #define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */ | > > > < | 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | */ #define MEM_Null 0x0001 /* Value is NULL */ #define MEM_Str 0x0002 /* Value is a string */ #define MEM_Int 0x0004 /* Value is an integer */ #define MEM_Real 0x0008 /* Value is a real number */ #define MEM_Blob 0x0010 /* Value is a BLOB */ #define MemSetTypeFlag(p, f) \ ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f) /* Whenever Mem contains a valid string or blob representation, one of ** the following flags must be set to determine the memory management ** policy for Mem.z. The MEM_Term flag tells us whether or not the ** string is \000 or \u0000 terminated */ #define MEM_Term 0x0020 /* String rep is nul terminated */ #define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */ #define MEM_Static 0x0080 /* Mem.z points to a static string */ #define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */ #define MEM_Agg 0x0400 /* Mem.z points to an agg function context */ #define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */ #ifdef SQLITE_OMIT_INCRBLOB #undef MEM_Zero #define MEM_Zero 0x0000 #endif |
︙ | ︙ | |||
394 395 396 397 398 399 400 401 402 403 404 405 406 407 | int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeOpcodeHasProperty(int, int); #ifndef NDEBUG void sqlite3VdbeMemSanity(Mem*); #endif int sqlite3VdbeMemTranslate(Mem*, u8); #ifdef SQLITE_DEBUG void sqlite3VdbePrintSql(Vdbe*); | > | 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | int sqlite3VdbeMemRealify(Mem*); int sqlite3VdbeMemNumerify(Mem*); int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); void sqlite3VdbeMemRelease(Mem *p); int sqlite3VdbeMemFinalize(Mem*, FuncDef*); const char *sqlite3OpcodeName(int); int sqlite3VdbeOpcodeHasProperty(int, int); int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); #ifndef NDEBUG void sqlite3VdbeMemSanity(Mem*); #endif int sqlite3VdbeMemTranslate(Mem*, u8); #ifdef SQLITE_DEBUG void sqlite3VdbePrintSql(Vdbe*); |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
940 941 942 943 944 945 946 947 948 949 950 951 952 953 | int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); } sqlite3_mutex_leave(p->db->mutex); return rc; } int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); | > | 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 | int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); } rc = sqlite3ApiExit(p->db, rc); sqlite3_mutex_leave(p->db->mutex); return rc; } int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ int rc; Vdbe *p = (Vdbe *)pStmt; sqlite3_mutex_enter(p->db->mutex); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
731 732 733 734 735 736 737 | } #endif /* ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ | | > > | > > | 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 | } #endif /* ** Release an array of N Mem elements */ static void releaseMemArray(Mem *p, int N){ if( p && N ){ sqlite3 *db = p->db; int malloc_failed = db->mallocFailed; while( N-->0 ){ assert( N<2 || p[0].db==p[1].db ); sqlite3VdbeMemRelease(p); p++->flags = MEM_Null; } db->mallocFailed = malloc_failed; } } #ifndef SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** |
︙ | ︙ | |||
782 783 784 785 786 787 788 789 790 791 792 793 794 795 | p->rc = SQLITE_OK; rc = SQLITE_DONE; }else if( db->u1.isInterrupted ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); }else{ Op *pOp = &p->aOp[i]; if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; pMem->u.i = i; /* Program counter */ pMem++; | > | 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 | p->rc = SQLITE_OK; rc = SQLITE_DONE; }else if( db->u1.isInterrupted ){ p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); }else{ char *z; Op *pOp = &p->aOp[i]; if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; pMem->u.i = i; /* Program counter */ pMem++; |
︙ | ︙ | |||
815 816 817 818 819 820 821 | if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->u.i = pOp->p3; /* P3 */ pMem->type = SQLITE_INTEGER; pMem++; } | > > > > | | > > > | | < | > > > > > > | | < | 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 | if( p->explain==1 ){ pMem->flags = MEM_Int; pMem->u.i = pOp->p3; /* P3 */ pMem->type = SQLITE_INTEGER; pMem++; } if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ p->db->mallocFailed = 1; return SQLITE_NOMEM; } pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; z = displayP4(pOp, pMem->z, 32); if( z!=pMem->z ){ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); }else{ assert( pMem->z!=0 ); pMem->n = strlen(pMem->z); pMem->enc = SQLITE_UTF8; } pMem->type = SQLITE_TEXT; pMem++; if( p->explain==1 ){ if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ p->db->mallocFailed = 1; return SQLITE_NOMEM; } pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; pMem->n = sprintf(pMem->z, "%.2x", pOp->p5); /* P5 */ pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; pMem->flags = MEM_Null; /* Comment */ #ifdef SQLITE_DEBUG if( pOp->zComment ){ |
︙ | ︙ | |||
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 | ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the aVar[] array. */ static void Cleanup(Vdbe *p){ int i; closeAllCursorsExceptActiveVtabs(p); releaseMemArray(&p->aMem[1], p->nMem); sqlite3VdbeFifoClear(&p->sFifo); if( p->contextStack ){ for(i=0; i<p->contextStackTop; i++){ sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); } sqlite3_free(p->contextStack); | > > > | 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 | ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the aVar[] array. */ static void Cleanup(Vdbe *p){ int i; closeAllCursorsExceptActiveVtabs(p); for(i=1; i<=p->nMem; i++){ MemSetTypeFlag(&p->aMem[i], MEM_Null); } releaseMemArray(&p->aMem[1], p->nMem); sqlite3VdbeFifoClear(&p->sFifo); if( p->contextStack ){ for(i=0; i<p->contextStackTop; i++){ sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); } sqlite3_free(p->contextStack); |
︙ | ︙ | |||
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 | const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; Mem mem1; Mem mem2; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem2.enc = pKeyInfo->enc; mem2.db = pKeyInfo->db; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; idx2 = GetVarint(aKey2, szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ | > > | 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 | const unsigned char *aKey1 = (const unsigned char *)pKey1; const unsigned char *aKey2 = (const unsigned char *)pKey2; Mem mem1; Mem mem2; mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = 0; mem2.enc = pKeyInfo->enc; mem2.db = pKeyInfo->db; mem2.flags = 0; idx1 = GetVarint(aKey1, szHdr1); d1 = szHdr1; idx2 = GetVarint(aKey2, szHdr2); d2 = szHdr2; nField = pKeyInfo->nField; while( idx1<szHdr1 && idx2<szHdr2 ){ |
︙ | ︙ | |||
2155 2156 2157 2158 2159 2160 2161 | */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0); | | | | 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 | */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0); if( mem1.flags&MEM_Dyn ) sqlite3VdbeMemRelease(&mem1); if( mem2.flags&MEM_Dyn ) sqlite3VdbeMemRelease(&mem2); if( rc!=0 ){ break; } i++; } /* One of the keys ran out of fields, but all the fields up to that point |
︙ | ︙ | |||
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 | u32 lenRowid; /* Size of the rowid */ Mem m, v; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ return SQLITE_CORRUPT_BKPT; } rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); if( rc ){ return rc; } sqlite3GetVarint32((u8*)m.z, &szHdr); sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); | > > | 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 | u32 lenRowid; /* Size of the rowid */ Mem m, v; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ return SQLITE_CORRUPT_BKPT; } m.flags = 0; m.db = 0; rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); if( rc ){ return rc; } sqlite3GetVarint32((u8*)m.z, &szHdr); sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid); lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
︙ | ︙ | |||
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 | Mem m; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ *res = 0; return SQLITE_OK; } rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); if( rc ){ return rc; } lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); sqlite3VdbeMemRelease(&m); | > > | 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 | Mem m; sqlite3BtreeKeySize(pCur, &nCellKey); if( nCellKey<=0 ){ *res = 0; return SQLITE_OK; } m.db = 0; m.flags = 0; rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); if( rc ){ return rc; } lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); *res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey); sqlite3VdbeMemRelease(&m); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
54 55 56 57 58 59 60 61 62 63 64 65 66 67 | rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < < < < | | | < | | < < < | | | > | < > > | > | < | > | | | < < < | < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < | | < | | < < < < < < < | < | > > > > | | | | < | < | < < < | 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make sure pMem->z points to a writable allocation of at least ** n bytes. ** ** If the memory cell currently contains string or blob data ** and the third argument passed to this function is true, the ** current content of the cell is preserved. Otherwise, it may ** be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ int f = pMem->flags; assert( (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Dyn || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Ephem || (f & (MEM_Dyn|MEM_Static|MEM_Ephem))==MEM_Static ); if( ((f&MEM_Dyn)==0 || pMem->xDel || sqlite3MallocSize(pMem->z)<n) ){ /* Allocate the new buffer. The minimum allocation size is 32 bytes. */ char *z = 0; if( n>0 ){ if( preserve && (f&MEM_Dyn) && !pMem->xDel ){ z = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); pMem->z = 0; preserve = 0; }else{ z = sqlite3DbMallocRaw(pMem->db, (n>32?n:32)); } if( !z ){ return SQLITE_NOMEM; } } /* If the value is currently a string or blob and the preserve flag ** is true, copy the content to the new buffer. */ if( pMem->flags&(MEM_Blob|MEM_Str) && preserve ){ int nCopy = (pMem->n>n?n:pMem->n); memcpy(z, pMem->z, nCopy); } /* Release the old buffer. */ sqlite3VdbeMemRelease(pMem); pMem->z = z; pMem->flags |= MEM_Dyn; pMem->flags &= ~(MEM_Ephem|MEM_Static); pMem->xDel = 0; } return SQLITE_OK; } /* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int f; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); f = pMem->flags; if( (f&(MEM_Str|MEM_Blob)) && ((f&MEM_Dyn)==0 || pMem->xDel) ){ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; } return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *pMem){ if( pMem->flags & MEM_Zero ){ int nByte; assert( pMem->flags&MEM_Blob ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* Set nByte to the number of bytes required to store the expanded blob. */ nByte = pMem->n + pMem->u.i; if( nByte<=0 ){ nByte = 1; } if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ return SQLITE_NOMEM; } memset(&pMem->z[pMem->n], 0, pMem->u.i); pMem->n += pMem->u.i; pMem->flags &= ~(MEM_Zero|MEM_Term); } return SQLITE_OK; } #endif /* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ return sqlite3VdbeMemDynamicify(pMem); } /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int and MEM_Real are *not* invalidated. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the later is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ int rc = SQLITE_OK; int fg = pMem->flags; const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); assert( !(fg&(MEM_Str|MEM_Blob)) ); assert( fg&(MEM_Int|MEM_Real) ); if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ return SQLITE_NOMEM; } /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 ** string representation of the value. Then, if the required encoding ** is UTF-16le or UTF-16be do a translation. ** ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. */ if( fg & MEM_Int ){ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); } pMem->n = strlen(pMem->z); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; sqlite3VdbeChangeEncoding(pMem, enc); return rc; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( pFunc && pFunc->xFinalize ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); ctx.s.flags = MEM_Null; ctx.s.db = pMem->db; ctx.pMem = pMem; ctx.pFunc = pFunc; ctx.isError = 0; pFunc->xFinalize(&ctx); if( pMem->z ){ sqlite3_free( pMem->z ); } *pMem = ctx.s; rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); } return rc; } /* ** Release any memory held by the Mem. This may leave the Mem in an |
︙ | ︙ | |||
389 390 391 392 393 394 395 396 397 398 399 400 401 402 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = doubleToInt64(pMem->r); if( pMem->r==(double)pMem->u.i ){ pMem->flags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = sqlite3VdbeIntValue(pMem); | > > > > < | < | | < < | < > | < | 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = doubleToInt64(pMem->r); if( pMem->r==(double)pMem->u.i ){ pMem->flags |= MEM_Int; } } static void setTypeFlag(Mem *pMem, int f){ MemSetTypeFlag(pMem, f); } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->u.i = sqlite3VdbeIntValue(pMem); setTypeFlag(pMem, MEM_Int); return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pMem->r = sqlite3VdbeRealValue(pMem); setTypeFlag(pMem, MEM_Real); return SQLITE_OK; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. */ int sqlite3VdbeMemNumerify(Mem *pMem){ double r1, r2; i64 i; assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); r1 = sqlite3VdbeRealValue(pMem); i = doubleToInt64(r1); r2 = (double)i; if( r1==r2 ){ sqlite3VdbeMemIntegerify(pMem); }else{ pMem->r = r1; setTypeFlag(pMem, MEM_Real); } return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ void sqlite3VdbeMemSetNull(Mem *pMem){ setTypeFlag(pMem, MEM_Null); pMem->type = SQLITE_NULL; } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); setTypeFlag(pMem, MEM_Blob); pMem->flags = MEM_Blob|MEM_Zero; pMem->type = SQLITE_BLOB; pMem->n = 0; if( n<0 ) n = 0; pMem->u.i = n; pMem->enc = SQLITE_UTF8; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ |
︙ | ︙ | |||
510 511 512 513 514 515 516 | ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ sqlite3VdbeMemRelease(pTo); | | | | | > | > > > > | | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > < < < > > > > > > > > > | > | < | > | > > > > | > > > > | > > > > > > > > | > | > < < | < < < < < | | < | < < < < < | < < < < < < < < < | | | | | < < < | 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 | ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(*pFrom)); pTo->xDel = 0; if( pTo->flags&MEM_Dyn ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; char *zBuf = 0; /* If cell pTo currently has a reusable buffer, save a pointer to it ** in local variable zBuf. This function attempts to avoid freeing ** this buffer. */ if( pTo->xDel ){ sqlite3VdbeMemRelease(pTo); }else if( pTo->flags&MEM_Dyn ){ zBuf = pTo->z; } /* Copy the contents of *pFrom to *pTo */ memcpy(pTo, pFrom, sizeof(*pFrom)); if( pTo->flags&(MEM_Str|MEM_Blob) && pTo->flags&MEM_Static ){ /* pFrom contained a pointer to a static string. In this case, ** free any dynamically allocated buffer associated with pTo. */ sqlite3_free(zBuf); }else{ char *zData = pTo->z; pTo->z = zBuf; pTo->flags &= ~(MEM_Static|MEM_Ephem); pTo->flags |= MEM_Dyn; pTo->xDel = 0; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( sqlite3VdbeMemGrow(pTo, pTo->n+2, 0) ){ pTo->n = 0; rc = SQLITE_NOMEM; }else{ memcpy(pTo->z, zData, pTo->n); pTo->z[pTo->n] = '\0'; pTo->z[pTo->n+1] = '\0'; pTo->flags |= MEM_Term; } } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); if( pTo->flags & MEM_Dyn ){ sqlite3VdbeMemRelease(pTo); } memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->xDel = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the ** string is copied into a (possibly existing) buffer managed by the ** Mem structure. Otherwise, any existing buffer is freed and the ** pointer copied. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ int nByte = n; /* New value for pMem->n */ int flags = 0; /* New value for pMem->flags */ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ if( !z ){ sqlite3VdbeMemSetNull(pMem); return SQLITE_OK; } flags = (enc==0?MEM_Blob:MEM_Str); if( nByte<0 ){ assert( enc!=0 ); nByte = ((enc==SQLITE_UTF8)?strlen(z):sqlite3Utf16ByteLen(z, -1)); flags |= MEM_Term; } /* The following block sets the new values of Mem.z and Mem.xDel. It ** also sets a flag in local variable "flags" to indicate the memory ** management (one of MEM_Dyn or MEM_Static). */ if( xDel==SQLITE_TRANSIENT ){ int nAlloc = nByte; if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ return SQLITE_NOMEM; } memcpy(pMem->z, z, nAlloc); flags |= MEM_Dyn; }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } pMem->n = nByte; pMem->flags = flags; pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); #ifndef SQLITE_OMIT_UTF16 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif return SQLITE_OK; } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
︙ | ︙ | |||
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 | int amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ int available = 0; /* Number of bytes available on the local btree page */ sqlite3 *db; /* Database connection */ db = sqlite3BtreeCursorDb(pCur); assert( sqlite3_mutex_held(db->mutex) ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); | > < < | > < < < < < | < | < < < < < < < | | | | < < < | < < < | < | > | < | | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 | int amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ int available = 0; /* Number of bytes available on the local btree page */ sqlite3 *db; /* Database connection */ int rc = SQLITE_OK; db = sqlite3BtreeCursorDb(pCur); assert( sqlite3_mutex_held(db->mutex) ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; pMem->enc = 0; pMem->type = SQLITE_BLOB; if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } pMem->z[amt] = 0; pMem->z[amt+1] = 0; if( rc!=SQLITE_OK ){ sqlite3VdbeMemRelease(pMem); } } pMem->n = amt; return rc; } #if 0 /* ** Perform various checks on the memory cell pMem. An assert() will ** fail if pMem is internally inconsistent. */ |
︙ | ︙ | |||
1015 1016 1017 1018 1019 1020 1021 | } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; | | | 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 | } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3_free(v); } /* ** Return the number of bytes in the sqlite3_value object assuming ** that it uses the encoding "enc" */ |
︙ | ︙ |
Changes to test/mallocB.test.
︙ | ︙ | |||
9 10 11 12 13 14 15 | # #*********************************************************************** # This file contains additional out-of-memory checks (see malloc.tcl). # These were all discovered by fuzzy generation of SQL. Apart from # that they have little in common. # # | | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | # #*********************************************************************** # This file contains additional out-of-memory checks (see malloc.tcl). # These were all discovered by fuzzy generation of SQL. Apart from # that they have little in common. # # # $Id: mallocB.test,v 1.8 2008/02/13 18:25:27 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/malloc_common.tcl # Only run these tests if memory debugging is turned on. # ifcapable !memdebug { puts "Skipping mallocB tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return } source $testdir/malloc_common.tcl do_malloc_test mallocB-1 -sqlbody {SELECT - 456} do_malloc_test mallocB-2 -sqlbody {SELECT - 456.1} do_malloc_test mallocB-3 -sqlbody {SELECT random()} do_malloc_test mallocB-4 -sqlbody {SELECT length(zeroblob(1000))} ifcapable subquery { do_malloc_test mallocB-5 -sqlbody {SELECT * FROM (SELECT 1) GROUP BY 1;} } # The following test checks that there are no resource leaks following a # malloc() failure in sqlite3_set_auxdata(). # |
︙ | ︙ |
Changes to test/ptrchng.test.
︙ | ︙ | |||
17 18 19 20 21 22 23 | # # sqlite3_value_text() # sqlite3_value_text16() # sqlite3_value_blob() # sqlite3_value_bytes() # sqlite3_value_bytes16() # | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # # sqlite3_value_text() # sqlite3_value_text16() # sqlite3_value_blob() # sqlite3_value_bytes() # sqlite3_value_bytes16() # # $Id: ptrchng.test,v 1.3 2008/02/13 18:25:27 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !bloblit { finish_test return |
︙ | ︙ | |||
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | SELECT count(*) FROM t1; } } {4} # For the short entries that fit in the Mem.zBuf[], the pointer should # never change regardless of what type conversions occur. # do_test ptrchng-2.1 { execsql { SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=1 } } {0} do_test ptrchng-2.2 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=1 } | > > | | | | | | | | | | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | SELECT count(*) FROM t1; } } {4} # For the short entries that fit in the Mem.zBuf[], the pointer should # never change regardless of what type conversions occur. # # UPDATE: No longer true, as Mem.zBuf[] has been removed. # do_test ptrchng-2.1 { execsql { SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=1 } } {0} do_test ptrchng-2.2 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=1 } } {1} ifcapable utf16 { do_test ptrchng-2.3 { execsql { SELECT pointer_change(y, 'text', 'noop', 'text16') FROM t1 WHERE x=1 } } {1} do_test ptrchng-2.4 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text16') FROM t1 WHERE x=1 } } {1} do_test ptrchng-2.5 { execsql { SELECT pointer_change(y, 'text16', 'noop', 'blob') FROM t1 WHERE x=1 } } {0} do_test ptrchng-2.6 { execsql { SELECT pointer_change(y, 'text16', 'noop', 'text') FROM t1 WHERE x=1 } } {1} } do_test ptrchng-2.11 { execsql { SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=3 } } {0} do_test ptrchng-2.12 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=3 } } {1} ifcapable utf16 { do_test ptrchng-2.13 { execsql { SELECT pointer_change(y, 'text', 'noop', 'text16') FROM t1 WHERE x=3 } } {1} do_test ptrchng-2.14 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text16') FROM t1 WHERE x=3 } } {1} do_test ptrchng-2.15 { execsql { SELECT pointer_change(y, 'text16', 'noop', 'blob') FROM t1 WHERE x=3 } } {0} do_test ptrchng-2.16 { btree_breakpoint execsql { SELECT pointer_change(y, 'text16', 'noop', 'text') FROM t1 WHERE x=3 } } {1} } # For the long entries that do not fit in the Mem.zBuf[], the pointer # should change sometimes. # do_test ptrchng-3.1 { execsql { SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=2 } } {0} do_test ptrchng-3.2 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=2 } } {1} ifcapable utf16 { do_test ptrchng-3.3 { execsql { SELECT pointer_change(y, 'text', 'noop', 'text16') FROM t1 WHERE x=2 } } {1} do_test ptrchng-3.4 { |
︙ | ︙ | |||
158 159 160 161 162 163 164 | SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=4 } } {0} do_test ptrchng-3.12 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=4 } | | | 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | SELECT pointer_change(y, 'text', 'noop', 'blob') FROM t1 WHERE x=4 } } {0} do_test ptrchng-3.12 { execsql { SELECT pointer_change(y, 'blob', 'noop', 'text') FROM t1 WHERE x=4 } } {1} ifcapable utf16 { do_test ptrchng-3.13 { execsql { SELECT pointer_change(y, 'text', 'noop', 'text16') FROM t1 WHERE x=4 } } {1} do_test ptrchng-3.14 { |
︙ | ︙ |
Changes to test/tester.tcl.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # # $Id: tester.tcl,v 1.104 2008/02/13 18:25:27 danielk1977 Exp $ set tcl_precision 15 set sqlite_pending_byte 0x0010000 # # Check the command-line arguments for a default soft-heap-limit. |
︙ | ︙ | |||
223 224 225 226 227 228 229 230 231 232 233 234 235 236 | puts "All memory allocations freed - no leaks" ifcapable memdebug { sqlite3_memdebug_dump ./memusage.txt } } puts "Maximum memory usage: [sqlite3_memory_highwater 1] bytes" puts "Current memory usage: [sqlite3_memory_highwater] bytes" foreach f [glob -nocomplain test.db-*-journal] { file delete -force $f } foreach f [glob -nocomplain test.db-mj*] { file delete -force $f } exit [expr {$nErr>0}] | > > > | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | puts "All memory allocations freed - no leaks" ifcapable memdebug { sqlite3_memdebug_dump ./memusage.txt } } puts "Maximum memory usage: [sqlite3_memory_highwater 1] bytes" puts "Current memory usage: [sqlite3_memory_highwater] bytes" if {[info commands sqlite3_memdebug_malloc_count] ne ""} { puts "Number of malloc() : [sqlite3_memdebug_malloc_count] calls" } foreach f [glob -nocomplain test.db-*-journal] { file delete -force $f } foreach f [glob -nocomplain test.db-mj*] { file delete -force $f } exit [expr {$nErr>0}] |
︙ | ︙ |