Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge 29cafcfdcc and a6f39181a7. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
740a93e89c5f12672d72de7b3c55807d |
User & Date: | dan 2009-08-19 16:21:25.000 |
Context
2009-08-19
| ||
16:34 | Fix an assert() failure that may follow an OOM error. (check-in: 14a715c563 user: dan tags: trunk) | |
16:21 | Merge 29cafcfdcc and a6f39181a7. (check-in: 740a93e89c user: dan tags: trunk) | |
15:57 | Documentation improvements in sqlite.h.in. No changes to code. (check-in: a6f39181a7 user: drh tags: trunk) | |
15:34 | Add some tests that use the sqlite_stat2 table in shared-cache mode. (check-in: 29cafcfdcc user: dan tags: trunk) | |
Changes
Changes to src/analyze.c.
︙ | ︙ | |||
13 14 15 16 17 18 19 | ** ** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $ */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" /* | | > > | > | > > | > > > > > > > > > > > > > > > > > < < < < > > > > | | | | | | | < | | | | > | | < < < < | > > > > > | | < | | | < < < < < < < > > > | | | > | | < | | | | | | > > > > > > > > > > > > > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 | ** ** @(#) $Id: analyze.c,v 1.52 2009/04/16 17:45:48 drh Exp $ */ #ifndef SQLITE_OMIT_ANALYZE #include "sqliteInt.h" /* ** This routine generates code that opens the sqlite_stat1 table for ** writing with cursor iStatCur. If the library was built with the ** SQLITE_ENABLE_STAT2 macro defined, then the sqlite_stat2 table is ** opened for writing using cursor (iStatCur+1) ** ** If the sqlite_stat1 tables does not previously exist, it is created. ** Similarly, if the sqlite_stat2 table does not exist and the library ** is compiled with SQLITE_ENABLE_STAT2 defined, it is created. ** ** Argument zWhere may be a pointer to a buffer containing a table name, ** or it may be a NULL pointer. If it is not NULL, then all entries in ** the sqlite_stat1 and (if applicable) sqlite_stat2 tables associated ** with the named table are deleted. If zWhere==0, then code is generated ** to delete all stat table entries. */ static void openStatTable( Parse *pParse, /* Parsing context */ int iDb, /* The database we are looking in */ int iStatCur, /* Open the sqlite_stat1 table on this cursor */ const char *zWhere /* Delete entries associated with this table */ ){ static struct { const char *zName; const char *zCols; } aTable[] = { { "sqlite_stat1", "tbl,idx,stat" }, #ifdef SQLITE_ENABLE_STAT2 { "sqlite_stat2", "tbl,idx,sampleno,sample" }, #endif }; int aRoot[] = {0, 0}; int aCreateTbl[] = {0, 0}; int i; sqlite3 *db = pParse->db; Db *pDb; Vdbe *v = sqlite3GetVdbe(pParse); if( v==0 ) return; assert( sqlite3BtreeHoldsAllMutexes(db) ); assert( sqlite3VdbeDb(v)==db ); pDb = &db->aDb[iDb]; for(i=0; i<ArraySize(aTable); i++){ const char *zTab = aTable[i].zName; Table *pStat; if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ /* The sqlite_stat[12] table does not exist. Create it. Note that a ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite3NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); aRoot[i] = pParse->regRoot; aCreateTbl[i] = 1; }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ aRoot[i] = pStat->tnum; sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); if( zWhere ){ sqlite3NestedParse(pParse, "DELETE FROM %Q.%s WHERE tbl=%Q", pDb->zName, zTab, zWhere ); }else{ /* The sqlite_stat[12] table already exists. Delete all rows. */ sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); } } } /* Open the sqlite_stat[12] tables for writing. */ for(i=0; i<ArraySize(aTable); i++){ sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb); sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32); sqlite3VdbeChangeP5(v, aCreateTbl[i]); } } /* ** Generate code to do an analysis of all indices associated with ** a single table. */ static void analyzeOneTable( Parse *pParse, /* Parser context */ Table *pTab, /* Table whose indices are to be analyzed */ int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ int iMem /* Available memory locations begin here */ ){ Index *pIdx; /* An index to being analyzed */ int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int addr; /* The address of an instruction */ int iDb; /* Index of database containing pTab */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regSampleno = iMem++; /* Register containing next sample number */ int regCol = iMem++; /* Content of a column analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regRowid = iMem++; /* Rowid for the inserted record */ #ifdef SQLITE_ENABLE_STAT2 int regTemp2 = iMem++; /* Temporary use register */ int regSamplerecno = iMem++; /* Next sample index record number */ int regRecno = iMem++; /* Register next index record number */ int regCount = iMem++; /* Total number of records in table */ #endif v = sqlite3GetVdbe(pParse); if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){ /* Do no analysis for tables that have no indices */ return; } assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
︙ | ︙ | |||
115 116 117 118 119 120 121 122 | #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); | > | < | | < < | > | < < | > > > > > | > > > > > > > | > | | | > > > > > > > > > > | > | < > | | | | > | > | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | < < < | | | | | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | #endif /* Establish a read-lock on the table at the shared-cache level. */ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); iIdxCur = pParse->nTab++; for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol = pIdx->nColumn; KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); if( iMem+1+(nCol*2)>pParse->nMem ){ pParse->nMem = iMem+1+(nCol*2); } /* Open a cursor to the index to be analyzed. */ assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, (char *)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); /* Populate the registers containing the table and index names. */ if( pTab->pIndex==pIdx ){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); } sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0); #ifdef SQLITE_ENABLE_STAT2 /* If this iteration of the loop is generating code to analyze the ** first index in the pTab->pIndex list, then register regCount has ** not been populated. In this case populate it now. */ if( pTab->pIndex==pIdx ){ sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount); } /* Zero the regSampleno and regRecno registers. */ sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno); sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno); /* If there are less than INDEX_SAMPLES records in the index, then ** set the contents of regSampleRecno to integer value INDEX_SAMPLES. ** Otherwise, set it to zero. This is to ensure that if there are ** less than the said number of entries in the index, no samples at ** all are collected. */ sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno); sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, sqlite3VdbeCurrentAddr(v)+2, regCount); sqlite3VdbeAddOp2(v, OP_Integer, 0, regSamplerecno); #endif /* The block of memory cells initialized here is used as follows. ** ** iMem: ** The total number of rows in the table. ** ** iMem+1 .. iMem+nCol: ** Number of distinct entries in index considering the ** left-most N columns only, where N is between 1 and nCol, ** inclusive. ** ** iMem+nCol+1 .. Mem+2*nCol: ** Previous value of indexed columns, from left to right. ** ** Cells iMem through iMem+nCol are initialized to 0. The others are ** initialized to contain an SQL NULL. */ for(i=0; i<=nCol; i++){ sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); } for(i=0; i<nCol; i++){ sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); } /* Start the analysis loop. This loop runs through all the entries in ** the index b-tree. */ endOfLoop = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); topOfLoop = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); for(i=0; i<nCol; i++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); #ifdef SQLITE_ENABLE_STAT2 if( i==0 ){ /* Check if the record that cursor iIdxCur points to contains a ** value that should be stored in the sqlite_stat2 table. If so, ** store it. */ int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno); assert( regTabname+1==regIdxname && regTabname+2==regSampleno && regTabname+3==regCol ); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid); /* Calculate new values for regSamplerecno and regSampleno. ** ** sampleno = sampleno + 1 ** samplerecno = samplerecno+(remaining records)/(remaining samples) */ sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1); sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regCount, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2); sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2); sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp); sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno); sqlite3VdbeJumpHere(v, ne); sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1); } #endif sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1); /**** TODO: add collating sequence *****/ sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); } sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); for(i=0; i<nCol; i++){ sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-(nCol*2)); sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); } /* End of the analysis loop. */ sqlite3VdbeResolveLabel(v, endOfLoop); sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); /* Store the results in sqlite_stat1. ** ** The result is a single row of the sqlite_stat1 table. The first ** two columns are the names of the table and index. The third column ** is a string composed of a list of integer statistics about the ** index. The first integer in the list is the total number of entries ** in the index. There is one additional integer in the list for each ** column of the table. This additional integer is a guess of how many ** rows of the table the index will select. If D is the count of distinct ** values and K is the total number of rows, then the integer is computed ** as: ** ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno); for(i=0; i<nCol; i++){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno); } sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeJumpHere(v, addr); } } |
︙ | ︙ | |||
241 242 243 244 245 246 247 | sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); | | > | 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | sqlite3 *db = pParse->db; Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ HashElem *k; int iStatCur; int iMem; sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, 0); iMem = pParse->nMem+1; for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ Table *pTab = (Table*)sqliteHashData(k); analyzeOneTable(pParse, pTab, iStatCur, iMem); } loadAnalysis(pParse, iDb); |
︙ | ︙ | |||
263 264 265 266 267 268 269 | int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); | | > | 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | int iDb; int iStatCur; assert( pTab!=0 ); assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sqlite3BeginWriteOperation(pParse, 0, iDb); iStatCur = pParse->nTab; pParse->nTab += 2; openStatTable(pParse, iDb, iStatCur, pTab->zName); analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1); loadAnalysis(pParse, iDb); } /* ** Generate code for the ANALYZE command. The parser calls this routine |
︙ | ︙ | |||
383 384 385 386 387 388 389 | pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; } return 0; } /* | > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | | < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 | pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ void sqlite3DeleteIndexSamples(Index *pIdx){ #ifdef SQLITE_ENABLE_STAT2 if( pIdx->aSample ){ int j; sqlite3 *dbMem = pIdx->pTable->dbMem; for(j=0; j<SQLITE_INDEX_SAMPLES; j++){ IndexSample *p = &pIdx->aSample[j]; if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){ sqlite3DbFree(pIdx->pTable->dbMem, p->u.z); } } sqlite3DbFree(dbMem, pIdx->aSample); pIdx->aSample = 0; } #endif } /* ** Load the content of the sqlite_stat1 and sqlite_stat2 tables. The ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] ** arrays. The contents of sqlite_stat2 are used to populate the ** Index.aSample[] arrays. ** ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR ** is returned. In this case, even if SQLITE_ENABLE_STAT2 was defined ** during compilation and the sqlite_stat2 table is present, no data is ** read from it. ** ** If SQLITE_ENABLE_STAT2 was defined during compilation and the ** sqlite_stat2 table is not present in the database, SQLITE_ERROR is ** returned. However, in this case, data is read from the sqlite_stat1 ** table (if it is present) before returning. ** ** If an OOM error occurs, this function always sets db->mallocFailed. ** This means if the caller does not care about other errors, the return ** code may be ignored. */ int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ analysisInfo sInfo; HashElem *i; char *zSql; int rc; assert( iDb>=0 && iDb<db->nDb ); assert( db->aDb[iDb].pBt!=0 ); assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); /* Clear any prior statistics */ for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ Index *pIdx = sqliteHashData(i); sqlite3DefaultRowEst(pIdx); sqlite3DeleteIndexSamples(pIdx); } /* Check to make sure the sqlite_stat1 table exists */ sInfo.db = db; sInfo.zDatabase = db->aDb[iDb].zName; if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ return SQLITE_ERROR; } /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ (void)sqlite3SafetyOff(db); rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); (void)sqlite3SafetyOn(db); sqlite3DbFree(db, zSql); } /* Load the statistics from the sqlite_stat2 table. */ #ifdef SQLITE_ENABLE_STAT2 if( rc==SQLITE_OK && !sqlite3FindTable(db, "sqlite_stat2", sInfo.zDatabase) ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ sqlite3_stmt *pStmt = 0; zSql = sqlite3MPrintf(db, "SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase); if( !zSql ){ rc = SQLITE_NOMEM; }else{ (void)sqlite3SafetyOff(db); rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); (void)sqlite3SafetyOn(db); sqlite3DbFree(db, zSql); } if( rc==SQLITE_OK ){ (void)sqlite3SafetyOff(db); while( sqlite3_step(pStmt)==SQLITE_ROW ){ char *zIndex = (char *)sqlite3_column_text(pStmt, 0); Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase); if( pIdx ){ int iSample = sqlite3_column_int(pStmt, 1); sqlite3 *dbMem = pIdx->pTable->dbMem; assert( dbMem==db || dbMem==0 ); if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){ int eType = sqlite3_column_type(pStmt, 2); if( pIdx->aSample==0 ){ static const int sz = sizeof(IndexSample)*SQLITE_INDEX_SAMPLES; pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(dbMem, sz); if( pIdx->aSample==0 ){ db->mallocFailed = 1; break; } } if( pIdx->aSample ){ IndexSample *pSample = &pIdx->aSample[iSample]; pSample->eType = eType; if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ pSample->u.r = sqlite3_column_double(pStmt, 2); }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ const char *z = (const char *)( (eType==SQLITE_BLOB) ? sqlite3_column_blob(pStmt, 2): sqlite3_column_text(pStmt, 2) ); int n = sqlite3_column_bytes(pStmt, 2); if( n>24 ){ n = 24; } pSample->nByte = n; pSample->u.z = sqlite3DbMallocRaw(dbMem, n); if( pSample->u.z ){ memcpy(pSample->u.z, z, n); }else{ db->mallocFailed = 1; break; } } } } } } rc = sqlite3_finalize(pStmt); (void)sqlite3SafetyOn(db); } } #endif if( rc==SQLITE_NOMEM ){ db->mallocFailed = 1; } return rc; } #endif /* SQLITE_OMIT_ANALYZE */ |
Changes to src/build.c.
︙ | ︙ | |||
339 340 341 342 343 344 345 346 347 348 349 350 351 352 | /* ** Reclaim the memory used by an index */ static void freeIndex(Index *p){ sqlite3 *db = p->pTable->dbMem; /* testcase( db==0 ); */ sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** Remove the given index from the index hash table, and free ** its memory structures. | > | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | /* ** Reclaim the memory used by an index */ static void freeIndex(Index *p){ sqlite3 *db = p->pTable->dbMem; /* testcase( db==0 ); */ sqlite3DeleteIndexSamples(p); sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** Remove the given index from the index hash table, and free ** its memory structures. |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 | } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2; r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } | > | 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 | } } if( isAppropriateForFactoring(pExpr) ){ int r1 = ++pParse->nMem; int r2; r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1); pExpr->iColumn = pExpr->op; pExpr->op = TK_REGISTER; pExpr->iTable = r2; return WRC_Prune; } return WRC_Continue; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
72 73 74 75 76 77 78 79 80 81 82 83 84 85 | #ifdef HAVE_STDINT_H #include <stdint.h> #endif #ifdef HAVE_INTTYPES_H #include <inttypes.h> #endif /* ** This macro is used to "hide" some ugliness in casting an int ** value to a ptr value under the MSVC 64-bit compiler. Casting ** non 64-bit values to ptr types results in a "hard" error with ** the MSVC 64-bit compiler which this attempts to avoid. ** ** A simple compiler pragma or casting sequence could not be found | > > | 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | #ifdef HAVE_STDINT_H #include <stdint.h> #endif #ifdef HAVE_INTTYPES_H #include <inttypes.h> #endif #define SQLITE_INDEX_SAMPLES 10 /* ** This macro is used to "hide" some ugliness in casting an int ** value to a ptr value under the MSVC 64-bit compiler. Casting ** non 64-bit values to ptr types results in a "hard" error with ** the MSVC 64-bit compiler which this attempts to avoid. ** ** A simple compiler pragma or casting sequence could not be found |
︙ | ︙ | |||
590 591 592 593 594 595 596 597 598 599 600 601 602 603 | typedef struct ExprList ExprList; typedef struct ExprSpan ExprSpan; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct Parse Parse; | > | 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 | typedef struct ExprList ExprList; typedef struct ExprSpan ExprSpan; typedef struct FKey FKey; typedef struct FuncDef FuncDef; typedef struct FuncDefHash FuncDefHash; typedef struct IdList IdList; typedef struct Index Index; typedef struct IndexSample IndexSample; typedef struct KeyClass KeyClass; typedef struct KeyInfo KeyInfo; typedef struct Lookaside Lookaside; typedef struct LookasideSlot LookasideSlot; typedef struct Module Module; typedef struct NameContext NameContext; typedef struct Parse Parse; |
︙ | ︙ | |||
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 | u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** Note if Token.z==0 then Token.dyn and Token.n are undefined and | > > > > > > > > > > > > > > | 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 | u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ }; /* ** Each sample stored in the sqlite_stat2 table is represented in memory ** using a structure of this type. */ struct IndexSample { union { char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ } u; u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ u8 nByte; /* Size in byte of text or blob. */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** Note if Token.z==0 then Token.dyn and Token.n are undefined and |
︙ | ︙ | |||
1556 1557 1558 1559 1560 1561 1562 | /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number */ | | > | 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 | /* If the EP_Reduced flag is set in the Expr.flags mask, then no ** space is allocated for the fields below this point. An attempt to ** access them will result in a segfault or malfunction. *********************************************************************/ int iTable; /* TK_COLUMN: cursor number of table holding column ** TK_REGISTER: register number */ i16 iColumn; /* TK_COLUMN: column index. -1 for rowid ** TK_REGISTER: original value of Expr.op */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u16 flags2; /* Second set of flags. EP2_... */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ Table *pTab; /* Table for TK_COLUMN expressions. */ #if SQLITE_MAX_EXPR_DEPTH>0 int nHeight; /* Height of the tree headed by this node */ |
︙ | ︙ | |||
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 | const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); void sqlite3ValueFree(sqlite3_value*); sqlite3_value *sqlite3ValueNew(sqlite3 *); char *sqlite3Utf16to8(sqlite3 *, const void*, int); int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION extern const unsigned char sqlite3UpperToLower[]; extern const unsigned char sqlite3CtypeMap[]; extern SQLITE_WSD struct Sqlite3Config sqlite3Config; extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; | > > > | 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); void sqlite3ValueFree(sqlite3_value*); sqlite3_value *sqlite3ValueNew(sqlite3 *); char *sqlite3Utf16to8(sqlite3 *, const void*, int); #ifdef SQLITE_ENABLE_STAT2 char *sqlite3Utf8to16(sqlite3 *, int, char *, int, int *); #endif int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION extern const unsigned char sqlite3UpperToLower[]; extern const unsigned char sqlite3CtypeMap[]; extern SQLITE_WSD struct Sqlite3Config sqlite3Config; extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; |
︙ | ︙ | |||
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 | CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*); char sqlite3AffinityType(const char*); void sqlite3Analyze(Parse*, Token*, Token*); int sqlite3InvokeBusyHandler(BusyHandler*); int sqlite3FindDb(sqlite3*, Token*); int sqlite3FindDbName(sqlite3 *, const char *); int sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DefaultRowEst(Index*); void sqlite3RegisterLikeFunctions(sqlite3*, int); int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); void sqlite3MinimumFileFormat(Parse*, int, int); void sqlite3SchemaFree(void *); Schema *sqlite3SchemaGet(sqlite3 *, Btree *); int sqlite3SchemaToIndex(sqlite3 *db, Schema *); | > | 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 | CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char*); char sqlite3AffinityType(const char*); void sqlite3Analyze(Parse*, Token*, Token*); int sqlite3InvokeBusyHandler(BusyHandler*); int sqlite3FindDb(sqlite3*, Token*); int sqlite3FindDbName(sqlite3 *, const char *); int sqlite3AnalysisLoad(sqlite3*,int iDB); void sqlite3DeleteIndexSamples(Index*); void sqlite3DefaultRowEst(Index*); void sqlite3RegisterLikeFunctions(sqlite3*, int); int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); void sqlite3MinimumFileFormat(Parse*, int, int); void sqlite3SchemaFree(void *); Schema *sqlite3SchemaGet(sqlite3 *, Btree *); int sqlite3SchemaToIndex(sqlite3 *db, Schema *); |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
2305 2306 2307 2308 2309 2310 2311 2312 | case SQLITE_UTF16BE: Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1)); break; default: assert(0); } pVal = sqlite3ValueNew(0); | > > | | | | | | | | | > > | 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 | case SQLITE_UTF16BE: Tcl_ListObjAppendElement(i,pX,Tcl_NewStringObj("UTF-16BE",-1)); break; default: assert(0); } sqlite3BeginBenignMalloc(); pVal = sqlite3ValueNew(0); if( pVal ){ sqlite3ValueSetStr(pVal, nA, zA, encin, SQLITE_STATIC); n = sqlite3_value_bytes(pVal); Tcl_ListObjAppendElement(i,pX, Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n)); sqlite3ValueSetStr(pVal, nB, zB, encin, SQLITE_STATIC); n = sqlite3_value_bytes(pVal); Tcl_ListObjAppendElement(i,pX, Tcl_NewStringObj((char*)sqlite3_value_text(pVal),n)); sqlite3ValueFree(pVal); } sqlite3EndBenignMalloc(); Tcl_EvalObjEx(i, pX, 0); Tcl_DecrRefCount(pX); Tcl_GetIntFromObj(i, Tcl_GetObjResult(i), &res); return res; } static int test_collate( |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
391 392 393 394 395 396 397 398 399 400 401 402 403 404 | #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY); #endif #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif | > > > > > > | 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 | #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_ENABLE_STAT2 Tcl_SetVar2(interp, "sqlite_options", "stat2", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "stat2", "0", TCL_GLOBAL_ONLY); #endif #if !defined(SQLITE_ENABLE_LOCKING_STYLE) # if defined(__APPLE__) # define SQLITE_ENABLE_LOCKING_STYLE 1 # else # define SQLITE_ENABLE_LOCKING_STYLE 0 # endif |
︙ | ︙ |
Changes to src/utf.c.
︙ | ︙ | |||
450 451 452 453 454 455 456 457 458 459 460 461 462 463 | m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); } /* ** pZ is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; | > > > > > > > > > > > > > > > > > > > > > > > > > > | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | m.z = 0; } assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); } /* ** Convert a UTF-8 string to the UTF-16 encoding specified by parameter ** enc. A pointer to the new string is returned, and the value of *pnOut ** is set to the length of the returned string in bytes. The call should ** arrange to call sqlite3DbFree() on the returned pointer when it is ** no longer required. ** ** If a malloc failure occurs, NULL is returned and the db.mallocFailed ** flag set. */ #ifdef SQLITE_ENABLE_STAT2 char *sqlite3Utf8to16(sqlite3 *db, int enc, char *z, int n, int *pnOut){ Mem m; memset(&m, 0, sizeof(m)); m.db = db; sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC); if( sqlite3VdbeMemTranslate(&m, enc) ){ assert( db->mallocFailed ); return 0; } assert( m.z==m.zMalloc ); *pnOut = m.n; return m.z; } #endif /* ** pZ is a UTF-16 encoded unicode string at least nChar characters long. ** Return the number of bytes in the first nChar unicode characters ** in pZ. nChar must be non-negative. */ int sqlite3Utf16ByteLen(const void *zIn, int nChar){ int c; |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
1201 1202 1203 1204 1205 1206 1207 | ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** ** Divide the value in register P1 by the value in register P2 | | | | | 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 | ** Subtract the value in register P1 from the value in register P2 ** and store the result in register P3. ** If either input is NULL, the result is NULL. */ /* Opcode: Divide P1 P2 P3 * * ** ** Divide the value in register P1 by the value in register P2 ** and store the result in register P3 (P3=P2/P1). If the value in ** register P1 is zero, then the result is NULL. If either input is ** NULL, the result is NULL. */ /* Opcode: Remainder P1 P2 P3 * * ** ** Compute the remainder after integer division of the value in ** register P1 by the value in register P2 and store the result in P3. ** If the value in register P2 is zero the result is NULL. ** If either operand is NULL, the result is NULL. |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 | sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue); }else{ | > > > | 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 | sqlite3_value *pVal = 0; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; if( op==TK_REGISTER ){ op = pExpr->iColumn; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue); }else{ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 | /* Try to find a more efficient access pattern by using multiple indexes ** to optimize an OR expression within the WHERE clause. */ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Find the query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 | /* Try to find a more efficient access pattern by using multiple indexes ** to optimize an OR expression within the WHERE clause. */ bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /* ** Argument pIdx is a pointer to an index structure that has an array of ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column ** stored in Index.aSample. The domain of values stored in said column ** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions. ** Region 0 contains all values smaller than the first sample value. Region ** 1 contains values larger than or equal to the value of the first sample, ** but smaller than the value of the second. And so on. ** ** If successful, this function determines which of the regions value ** pVal lies in, sets *piRegion to the region index and returns SQLITE_OK. ** Or, if an OOM occurs while converting text values between encodings, ** SQLITE_NOMEM is returned. */ #ifdef SQLITE_ENABLE_STAT2 static int whereRangeRegion( Parse *pParse, /* Database connection */ Index *pIdx, /* Index to consider domain of */ sqlite3_value *pVal, /* Value to consider */ int *piRegion /* OUT: Region of domain in which value lies */ ){ if( pVal ){ IndexSample *aSample = pIdx->aSample; int i = 0; int eType = sqlite3_value_type(pVal); if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ double r = sqlite3_value_double(pVal); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ if( aSample[i].eType==SQLITE_NULL ) continue; if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break; } }else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){ sqlite3 *db = pParse->db; CollSeq *pColl; const u8 *z; int n; if( eType==SQLITE_BLOB ){ z = (const u8 *)sqlite3_value_blob(pVal); pColl = db->pDfltColl; assert( pColl->enc==SQLITE_UTF8 ); }else{ pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, *pIdx->azColl, 0); if( sqlite3CheckCollSeq(pParse, pColl) ){ return SQLITE_ERROR; } z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); if( !z ){ return SQLITE_NOMEM; } assert( z && pColl && pColl->xCmp ); } n = sqlite3ValueBytes(pVal, pColl->enc); for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ int r; int eSampletype = aSample[i].eType; if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; if( (eSampletype!=eType) ) break; if( pColl->enc==SQLITE_UTF8 ){ r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); }else{ int nSample; char *zSample = sqlite3Utf8to16( db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample ); if( !zSample ){ assert( db->mallocFailed ); return SQLITE_NOMEM; } r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); sqlite3DbFree(db, zSample); } if( r>0 ) break; } } *piRegion = i; } return SQLITE_OK; } #endif /* #ifdef SQLITE_ENABLE_STAT2 */ /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If the upper or lower bound is not present, then NULL should be passed in ** place of a WhereTerm. ** ** The nEq parameter is passed the index of the index column subject to the ** range constraint. Or, equivalently, the number of equality constraints ** optimized by the proposed index scan. For example, assuming index p is ** on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq should be passed the value 1 (as the range restricted column, ** b, is the second left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq should be passed 0. ** ** The returned value is an integer between 1 and 9, inclusive. A return ** value of 1 indicates that the proposed range scan is expected to visit ** approximately 1/9 (11%) of the rows selected by the nEq equality constraints ** (if any). A return value of 9 indicates that it is expected that the ** range scan will visit 9/9 (100%) of the rows selected by the equality ** constraints. */ static int whereRangeScanEst( Parse *pParse, Index *p, int nEq, WhereTerm *pLower, WhereTerm *pUpper, int *piEst /* OUT: Return value */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT2 sqlite3 *db = pParse->db; sqlite3_value *pLowerVal = 0; sqlite3_value *pUpperVal = 0; if( nEq==0 && p->aSample ){ int iEst; int iUpper = SQLITE_INDEX_SAMPLES; int iLower = 0; u8 aff = p->pTable->aCol[0].affinity; if( pLower ){ Expr *pExpr = pLower->pExpr->pRight; rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pLowerVal); if( !pLowerVal ) goto fallback; } if( pUpper ){ Expr *pExpr = pUpper->pExpr->pRight; rc = sqlite3ValueFromExpr(db, pExpr, SQLITE_UTF8, aff, &pUpperVal); if( !pUpperVal ){ sqlite3ValueFree(pLowerVal); goto fallback; } } rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); if( rc==SQLITE_OK ){ rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); } iEst = iUpper - iLower; if( iEst>=SQLITE_INDEX_SAMPLES ) iEst = SQLITE_INDEX_SAMPLES-1; else if( iEst<1 ) iEst = 1; sqlite3ValueFree(pLowerVal); sqlite3ValueFree(pUpperVal); *piEst = iEst; return rc; } fallback: #endif assert( pLower || pUpper ); *piEst = (SQLITE_INDEX_SAMPLES-1) / ((pLower&&pUpper)?9:3); return rc; } /* ** Find the query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of |
︙ | ︙ | |||
2039 2040 2041 2042 2043 2044 2045 | ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; int bInEst = 0; int nInMul = 1; | | | 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 | ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int nEq; int bInEst = 0; int nInMul = 1; int nBound = 9; int bSort = 0; int bLookup = 0; /* Determine the values of nEq and nInMul */ for(nEq=0; nEq<pProbe->nColumn; nEq++){ WhereTerm *pTerm; /* A single term of the WHERE clause */ int j = pProbe->aiColumn[nEq]; |
︙ | ︙ | |||
2071 2072 2073 2074 2075 2076 2077 2078 2079 | /* Determine the value of nBound. */ if( nEq<pProbe->nColumn ){ int j = pProbe->aiColumn[nEq]; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); if( pTop ){ wsFlags |= WHERE_TOP_LIMIT; | > < < | 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 | /* Determine the value of nBound. */ if( nEq<pProbe->nColumn ){ int j = pProbe->aiColumn[nEq]; if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound); if( pTop ){ wsFlags |= WHERE_TOP_LIMIT; used |= pTop->prereqRight; } if( pBtm ){ wsFlags |= WHERE_BTM_LIMIT; used |= pBtm->prereqRight; } wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); } }else if( pProbe->onError!=OE_None ){ testcase( wsFlags & WHERE_COLUMN_IN ); testcase( wsFlags & WHERE_COLUMN_NULL ); |
︙ | ︙ | |||
2148 2149 2150 2151 2152 2153 2154 | ** works well in practice and causes the test suite to pass. */ nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = nRow / aiRowEst[nEq]; } cost = nRow + nInMul*estLog(aiRowEst[0]); | | | | 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 | ** works well in practice and causes the test suite to pass. */ nRow = (double)(aiRowEst[nEq] * nInMul); if( bInEst && nRow*2>aiRowEst[0] ){ nRow = aiRowEst[0]/2; nInMul = nRow / aiRowEst[nEq]; } cost = nRow + nInMul*estLog(aiRowEst[0]); nRow = nRow * (double)nBound / 9.0; cost = cost * (double)nBound / 9.0; if( bSort ){ cost += cost*estLog(cost); } if( pIdx && bLookup==0 ){ cost /= 2; } #endif |
︙ | ︙ |
Added test/analyze2.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | # 2009 August 06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file implements regression tests for SQLite library. This file # implements tests for the extra functionality provided by the ANALYZE # command when the library is compiled with SQLITE_ENABLE_STAT2 defined. # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable !stat2 { finish_test return } #-------------------------------------------------------------------- # Test organization: # # analyze2-1.*: Tests to verify that ANALYZE creates and populates the # sqlite_stat2 table as expected. # # analyze2-2.*: Test that when a table has two indexes on it and either # index may be used for the scan, the index suggested by # the contents of sqlite_stat2 table is prefered. # # analyze2-3.*: Similar to the previous block of tests, but using tables # that contain a mixture of NULL, numeric, text and blob # values. # # analyze2-4.*: Check that when an indexed column uses a collation other # than BINARY, the collation is taken into account when # using the contents of sqlite_stat2 to estimate the cost # of a range scan. # # analyze2-5.*: Check that collation sequences are used as described above # even when the only available version of the collation # function require UTF-16 encoded arguments. # # analyze2-6.*: Check that the library behaves correctly when one of the # sqlite_stat2 or sqlite_stat1 tables are missing. # # analyze2-7.*: Check that in a shared-schema situation, nothing goes # wrong if sqlite_stat2 data is read by one connection, # and freed by another. # proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db } do_test analyze2-1.1 { execsql { CREATE TABLE t1(x PRIMARY KEY) } for {set i 0} {$i < 1000} {incr i} { execsql { INSERT INTO t1 VALUES($i) } } execsql { ANALYZE; SELECT * FROM sqlite_stat2; } } [list t1 sqlite_autoindex_t1_1 0 0 \ t1 sqlite_autoindex_t1_1 1 111 \ t1 sqlite_autoindex_t1_1 2 222 \ t1 sqlite_autoindex_t1_1 3 333 \ t1 sqlite_autoindex_t1_1 4 444 \ t1 sqlite_autoindex_t1_1 5 555 \ t1 sqlite_autoindex_t1_1 6 666 \ t1 sqlite_autoindex_t1_1 7 777 \ t1 sqlite_autoindex_t1_1 8 888 \ t1 sqlite_autoindex_t1_1 9 999 \ ] do_test analyze2-1.2 { execsql { DELETE FROM t1 WHERe x>9; ANALYZE; SELECT tbl, idx, group_concat(sample, ' ') FROM sqlite_stat2; } } {t1 sqlite_autoindex_t1_1 {0 1 2 3 4 5 6 7 8 9}} do_test analyze2-1.3 { execsql { DELETE FROM t1 WHERE x>5; ANALYZE; SELECT * FROM sqlite_stat2; } } {} do_test analyze2-1.4 { execsql { DELETE FROM t1; ANALYZE; SELECT * FROM sqlite_stat2; } } {} do_test analyze2-2.1 { execsql { BEGIN; DROP TABLE t1; CREATE TABLE t1(x, y); CREATE INDEX t1_x ON t1(x); CREATE INDEX t1_y ON t1(y); } for {set i 0} {$i < 1000} {incr i} { execsql { INSERT INTO t1 VALUES($i, $i) } } execsql COMMIT execsql ANALYZE } {} do_test analyze2-2.2 { eqp "SELECT * FROM t1 WHERE x>500 AND y>700" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-2.3 { eqp "SELECT * FROM t1 WHERE x>700 AND y>500" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-2.3 { eqp "SELECT * FROM t1 WHERE y>700 AND x>500" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-2.4 { eqp "SELECT * FROM t1 WHERE y>500 AND x>700" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-2.5 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 200 AND y BETWEEN 400 AND 700" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-2.6 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 500 AND y BETWEEN 400 AND 700" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-2.7 { eqp "SELECT * FROM t1 WHERE x BETWEEN -400 AND -300 AND y BETWEEN 100 AND 300" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-2.8 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN -400 AND -300" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-2.9 { eqp "SELECT * FROM t1 WHERE x BETWEEN 500 AND 100 AND y BETWEEN 100 AND 300" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-2.10 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN 500 AND 100" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-3.1 { set alphabet [list a b c d e f g h i j] execsql BEGIN for {set i 0} {$i < 1000} {incr i} { set str [lindex $alphabet [expr ($i/100)%10]] append str [lindex $alphabet [expr ($i/ 10)%10]] append str [lindex $alphabet [expr ($i/ 1)%10]] execsql { INSERT INTO t1 VALUES($str, $str) } } execsql COMMIT execsql ANALYZE execsql { SELECT tbl,idx,group_concat(sample,' ') FROM sqlite_stat2 WHERE idx = 't1_x' GROUP BY tbl,idx } } {t1 t1_x {0 222 444 666 888 bba ddc ffe hhg jjj}} do_test analyze2-3.2 { execsql { SELECT tbl,idx,group_concat(sample,' ') FROM sqlite_stat2 WHERE idx = 't1_y' GROUP BY tbl,idx } } {t1 t1_y {0 222 444 666 888 bba ddc ffe hhg jjj}} do_test analyze2-3.3 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 500 AND y BETWEEN 'a' AND 'b'" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-3.4 { eqp "SELECT * FROM t1 WHERE x BETWEEN 100 AND 400 AND y BETWEEN 'a' AND 'h'" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-3.5 { eqp "SELECT * FROM t1 WHERE x<'a' AND y>'h'" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-3.6 { eqp "SELECT * FROM t1 WHERE x<444 AND y>'h'" } {0 0 {TABLE t1 WITH INDEX t1_y}} do_test analyze2-3.7 { eqp "SELECT * FROM t1 WHERE x<221 AND y>'h'" } {0 0 {TABLE t1 WITH INDEX t1_x}} do_test analyze2-4.1 { execsql { CREATE TABLE t3(a COLLATE nocase, b) } execsql { CREATE INDEX t3a ON t3(a) } execsql { CREATE INDEX t3b ON t3(b) } set alphabet [list A b C d E f G h I j] execsql BEGIN for {set i 0} {$i < 1000} {incr i} { set str [lindex $alphabet [expr ($i/100)%10]] append str [lindex $alphabet [expr ($i/ 10)%10]] append str [lindex $alphabet [expr ($i/ 1)%10]] execsql { INSERT INTO t3 VALUES($str, $str) } } execsql COMMIT execsql ANALYZE } {} do_test analyze2-4.2 { execsql { SELECT tbl,idx,group_concat(sample,' ') FROM sqlite_stat2 WHERE idx = 't3a' GROUP BY tbl,idx } } {t3 t3a {AAA bbb CCC ddd EEE fff GGG hhh III jjj}} do_test analyze2-4.3 { execsql { SELECT tbl,idx,group_concat(sample,' ') FROM sqlite_stat2 WHERE idx = 't3b' GROUP BY tbl,idx } } {t3 t3b {AAA CCC EEE GGG III bbb ddd fff hhh jjj}} do_test analyze2-4.4 { eqp "SELECT * FROM t3 WHERE a > 'A' AND a < 'C' AND b > 'A' AND b < 'C'" } {0 0 {TABLE t3 WITH INDEX t3b}} do_test analyze2-4.5 { eqp "SELECT * FROM t3 WHERE a > 'A' AND a < 'c' AND b > 'A' AND b < 'c'" } {0 0 {TABLE t3 WITH INDEX t3a}} proc test_collate {enc lhs rhs} { # puts $enc return [string compare $lhs $rhs] } do_test analyze2-5.1 { add_test_collate db 0 0 1 execsql { CREATE TABLE t4(x COLLATE test_collate) } execsql { CREATE INDEX t4x ON t4(x) } set alphabet [list a b c d e f g h i j] execsql BEGIN for {set i 0} {$i < 1000} {incr i} { set str [lindex $alphabet [expr ($i/100)%10]] append str [lindex $alphabet [expr ($i/ 10)%10]] append str [lindex $alphabet [expr ($i/ 1)%10]] execsql { INSERT INTO t4 VALUES($str) } } execsql COMMIT execsql ANALYZE } {} do_test analyze2-5.2 { execsql { SELECT tbl,idx,group_concat(sample,' ') FROM sqlite_stat2 WHERE tbl = 't4' GROUP BY tbl,idx } } {t4 t4x {aaa bbb ccc ddd eee fff ggg hhh iii jjj}} do_test analyze2-5.3 { eqp "SELECT * FROM t4 WHERE x>'ccc'" } {0 0 {TABLE t4 WITH INDEX t4x}} do_test analyze2-5.4 { eqp "SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ccc' AND t42.x>'ggg'" } {0 1 {TABLE t4 AS t42 WITH INDEX t4x} 1 0 {TABLE t4 AS t41 WITH INDEX t4x}} do_test analyze2-5.5 { eqp "SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc'" } {0 0 {TABLE t4 AS t41 WITH INDEX t4x} 1 1 {TABLE t4 AS t42 WITH INDEX t4x}} #-------------------------------------------------------------------- # These tests, analyze2-6.*, verify that the library behaves correctly # when one of the sqlite_stat1 and sqlite_stat2 tables is missing. # # If the sqlite_stat1 table is not present, then the sqlite_stat2 # table is not read. However, if it is the sqlite_stat2 table that # is missing, the data in the sqlite_stat1 table is still used. # # Tests analyze2-6.1.* test the libary when the sqlite_stat2 table # is missing. Tests analyze2-6.2.* test the library when sqlite_stat1 # is not present. # do_test analyze2-6.0 { execsql { DROP TABLE t4; CREATE TABLE t5(a, b); CREATE INDEX t5i ON t5(a, b); CREATE TABLE t6(a, b); CREATE INDEX t6i ON t6(a, b); } for {set ii 0} {$ii < 20} {incr ii} { execsql { INSERT INTO t5 VALUES($ii, $ii); INSERT INTO t6 VALUES($ii/10, $ii/10); } } execsql { CREATE TABLE master AS SELECT * FROM sqlite_master WHERE name LIKE 'sqlite_stat%' } } {} do_test analyze2-6.1.1 { eqp {SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-6.1.2 { db cache flush execsql ANALYZE eqp {SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.1.3 { sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.1.4 { execsql { PRAGMA writable_schema = 1; DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat2'; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.1.5 { execsql { PRAGMA writable_schema = 1; DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat1'; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-6.1.6 { execsql { PRAGMA writable_schema = 1; INSERT INTO sqlite_master SELECT * FROM master; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a = 1 AND t6.a = 1 AND t6.b = 1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.2.1 { execsql { DELETE FROM sqlite_stat1; DELETE FROM sqlite_stat2; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.2.2 { db cache flush execsql ANALYZE eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-6.2.3 { sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-6.2.4 { execsql { PRAGMA writable_schema = 1; DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat1'; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.2.5 { execsql { PRAGMA writable_schema = 1; DELETE FROM sqlite_master WHERE tbl_name = 'sqlite_stat2'; } sqlite3 db test.db eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} do_test analyze2-6.2.6 { execsql { PRAGMA writable_schema = 1; INSERT INTO sqlite_master SELECT * FROM master; } sqlite3 db test.db execsql ANALYZE eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} #-------------------------------------------------------------------- # These tests, analyze2-7.*, test that the sqlite_stat2 functionality # works in shared-cache mode. Note that these tests reuse the database # created for the analyze2-6.* tests. # ifcapable shared_cache { db close set ::enable_shared_cache [sqlite3_enable_shared_cache 1] proc incr_schema_cookie {zDb} { foreach iOffset {24 40} { set cookie [hexio_get_int [hexio_read $zDb $iOffset 4]] incr cookie hexio_write $zDb $iOffset [hexio_render_int32 $cookie] } } do_test analyze2-7.1 { sqlite3 db1 test.db sqlite3 db2 test.db db1 cache size 0 db2 cache size 0 execsql { SELECT count(*) FROM t5 } db1 } {20} do_test analyze2-7.2 { incr_schema_cookie test.db execsql { SELECT count(*) FROM t5 } db2 } {20} do_test analyze2-7.3 { incr_schema_cookie test.db execsql { SELECT count(*) FROM t5 } db1 } {20} do_test analyze2-7.4 { incr_schema_cookie test.db execsql { SELECT count(*) FROM t5 } db2 } {20} do_test analyze2-7.5 { eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db1 } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-7.6 { incr_schema_cookie test.db execsql { SELECT * FROM sqlite_master } db2 eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db2 } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-7.7 { incr_schema_cookie test.db execsql { SELECT * FROM sqlite_master } db1 eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db1 } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-7.8 { execsql { DELETE FROM sqlite_stat2 } db2 execsql { SELECT * FROM sqlite_master } db1 eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db1 } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-7.9 { execsql { SELECT * FROM sqlite_master } db2 eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db2 } {0 1 {TABLE t6 WITH INDEX t6i} 1 0 {TABLE t5 USING PRIMARY KEY}} do_test analyze2-7.10 { incr_schema_cookie test.db execsql { SELECT * FROM sqlite_master } db1 eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND t5.a>1 AND t5.a<15 AND t6.a>1 } db1 } {0 0 {TABLE t5 WITH INDEX t5i} 1 1 {TABLE t6 USING PRIMARY KEY}} db1 close db2 close sqlite3_enable_shared_cache $::enable_shared_cache } finish_test |
Changes to test/auth.test.
︙ | ︙ | |||
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 | DROP TABLE tx; } ifcapable view { execsql { DROP TABLE v1chng; } } } do_test auth-5.2 { execsql { SELECT name FROM ( SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master) WHERE type='table' ORDER BY name } | > > > > > | | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 | DROP TABLE tx; } ifcapable view { execsql { DROP TABLE v1chng; } } } ifcapable stat2 { set stat2 "sqlite_stat2 " } else { set stat2 "" } do_test auth-5.2 { execsql { SELECT name FROM ( SELECT * FROM sqlite_master UNION ALL SELECT * FROM sqlite_temp_master) WHERE type='table' ORDER BY name } } "sqlite_stat1 ${stat2}t1 t2 t3 t4" } # Ticket #3944 # ifcapable trigger { do_test auth-5.3.1 { execsql { |
︙ | ︙ |
Changes to test/malloc.test.
︙ | ︙ | |||
861 862 863 864 865 866 867 868 869 870 871 872 873 874 | do_test malloc-36.$zRepeat.${::n}.unlocked { execsql {INSERT INTO t1 VALUES(3, 4)} db2 } {} db2 close } catch { db2 close } } # Ensure that no file descriptors were leaked. do_test malloc-99.X { catch {db close} set sqlite_open_file_count } {0} | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 | do_test malloc-36.$zRepeat.${::n}.unlocked { execsql {INSERT INTO t1 VALUES(3, 4)} db2 } {} db2 close } catch { db2 close } } ifcapable stat2 { do_malloc_test 38 -tclprep { add_test_collate db 0 0 1 execsql { ANALYZE; CREATE TABLE t4(x COLLATE test_collate); CREATE INDEX t4x ON t4(x); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 0, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 1, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 2, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 3, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 4, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 5, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 6, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 7, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 8, 'aaa'); INSERT INTO sqlite_stat2 VALUES('t4', 't4x', 9, 'aaa'); } db close sqlite3 db test.db sqlite3_db_config_lookaside db 0 0 0 add_test_collate db 0 0 1 } -sqlbody { SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc' } } # Ensure that no file descriptors were leaked. do_test malloc-99.X { catch {db close} set sqlite_open_file_count } {0} |
︙ | ︙ |