SQLite

Check-in [6b01a24d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Enhance UPSERT so that it allows multiple ON CONFLICT clauses and does not require a conflict target for DO UPDATE.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: 6b01a24daab1e5bcb0768ebf994368d941b1dfc217bf6b661211d900331e68cf
User & Date: drh 2020-12-14 15:39:12
Context
2020-12-15
13:55
Change an fts5 assert() that can be triggered by a corrupt database to an if() condition. (check-in: ea0a7f10 user: dan tags: trunk)
2020-12-14
16:50
Merge the latest trunk enhancements into the begin-concurrent-pnu branch. (check-in: daf04650 user: drh tags: begin-concurrent-pnu)
16:26
Merge recent trunk enhancements into the begin-concurrent branch. (check-in: a1708e84 user: drh tags: begin-concurrent)
15:39
Enhance UPSERT so that it allows multiple ON CONFLICT clauses and does not require a conflict target for DO UPDATE. (check-in: 6b01a24d user: drh tags: trunk)
15:25
Fix an integer overflow problem in new VACUUM code. (check-in: 59b4367f user: dan tags: trunk)
13:52
Minor changes for test coverage. (Closed-Leaf check-in: e5a8fa50 user: drh tags: generalized-upsert)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/insert.c.
971
972
973
974
975
976
977

978
979
980
981
982
983
984
985
986
987
988
989
990


991
992
993
994
995
996
997


998
999
1000
1001
1002
1003
1004
      aRegIdx[i] = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }
    aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
  }
#ifndef SQLITE_OMIT_UPSERT
  if( pUpsert ){

    if( IsVirtual(pTab) ){
      sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
              pTab->zName);
      goto insert_cleanup;
    }
    if( pTab->pSelect ){
      sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
      goto insert_cleanup;
    }
    if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
      goto insert_cleanup;
    }
    pTabList->a[0].iCursor = iDataCur;


    pUpsert->pUpsertSrc = pTabList;
    pUpsert->regData = regData;
    pUpsert->iDataCur = iDataCur;
    pUpsert->iIdxCur = iIdxCur;
    if( pUpsert->pUpsertTarget ){
      sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
    }


  }
#endif


  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the







>













>
>
|
|
|
|
|
|
|
>
>







971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
      aRegIdx[i] = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }
    aRegIdx[i] = ++pParse->nMem;  /* Register to store the table record */
  }
#ifndef SQLITE_OMIT_UPSERT
  if( pUpsert ){
    Upsert *pNx;
    if( IsVirtual(pTab) ){
      sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
              pTab->zName);
      goto insert_cleanup;
    }
    if( pTab->pSelect ){
      sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
      goto insert_cleanup;
    }
    if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
      goto insert_cleanup;
    }
    pTabList->a[0].iCursor = iDataCur;
    pNx = pUpsert;
    do{
      pNx->pUpsertSrc = pTabList;
      pNx->regData = regData;
      pNx->iDataCur = iDataCur;
      pNx->iIdxCur = iIdxCur;
      if( pNx->pUpsertTarget ){
        sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx);
      }
      pNx = pNx->pNextUpsert;
    }while( pNx!=0 );
  }
#endif


  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the
1395
1396
1397
1398
1399
1400
1401
































































1402
1403
1404
1405
1406
1407
1408
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return w.eCode!=0;
}

































































/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be
** pTab->nCol+1 registers in this range.  The first register (the one







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return w.eCode!=0;
}

/*
** The sqlite3GenerateConstraintChecks() routine usually wants to visit
** the indexes of a table in the order provided in the Table->pIndex list.
** However, sometimes (rarely - when there is an upsert) it wants to visit
** the indexes in a different order.  The following data structures accomplish
** this.
**
** The IndexIterator object is used to walk through all of the indexes
** of a table in either Index.pNext order, or in some other order established
** by an array of IndexListTerm objects.
*/
typedef struct IndexListTerm IndexListTerm;
typedef struct IndexIterator IndexIterator;
struct IndexIterator {
  int eType;    /* 0 for Index.pNext list.  1 for an array of IndexListTerm */
  int i;        /* Index of the current item from the list */
  union {
    struct {    /* Use this object for eType==0: A Index.pNext list */
      Index *pIdx;   /* The current Index */
    } lx;      
    struct {    /* Use this object for eType==1; Array of IndexListTerm */
      int nIdx;               /* Size of the array */
      IndexListTerm *aIdx;    /* Array of IndexListTerms */
    } ax;
  } u;
};

/* When IndexIterator.eType==1, then each index is an array of instances
** of the following object
*/
struct IndexListTerm {
  Index *p;  /* The index */
  int ix;    /* Which entry in the original Table.pIndex list is this index*/
};

/* Return the first index on the list */
static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
  assert( pIter->i==0 );
  if( pIter->eType ){
    *pIx = pIter->u.ax.aIdx[0].ix;
    return pIter->u.ax.aIdx[0].p;
  }else{
    *pIx = 0;
    return pIter->u.lx.pIdx;
  }
}

/* Return the next index from the list.  Return NULL when out of indexes */
static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
  if( pIter->eType ){
    int i = ++pIter->i;
    if( i>=pIter->u.ax.nIdx ){
      *pIx = i;
      return 0;
    }
    *pIx = pIter->u.ax.aIdx[i].ix;
    return pIter->u.ax.aIdx[i].p;
  }else{
    ++(*pIx);
    pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
    return pIter->u.lx.pIdx;
  }
}
  
/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
** the data to be inserted or the data after the update.  There will be
** pTab->nCol+1 registers in this range.  The first register (the one
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
  int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
  Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  Index *pUpIdx = 0;   /* Index to which to apply the upsert */
  u8 isUpdate;         /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
  int upsertBypass = 0;  /* Address of Goto to bypass upsert subroutine */
  int upsertJump = 0;    /* Address of Goto that jumps into upsert subroutine */
  int ipkTop = 0;        /* Top of the IPK uniqueness check */
  int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
  /* Variables associated with retesting uniqueness constraints after
  ** replace triggers fire have run */
  int regTrigCnt;       /* Register used to count replace trigger invocations */
  int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
  int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
  Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
  int nReplaceTrig = 0; /* Number of replace triggers coded */


  isUpdate = regOldData!=0;
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;







|







|
|

|
|









>







1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
  int ignoreDest,      /* Jump to this label on an OE_Ignore resolution */
  int *pbMayReplace,   /* OUT: Set to true if constraint may cause a replace */
  int *aiChng,         /* column i is unchanged if aiChng[i]<0 */
  Upsert *pUpsert      /* ON CONFLICT clauses, if any.  NULL otherwise */
){
  Vdbe *v;             /* VDBE under constrution */
  Index *pIdx;         /* Pointer to one of the indices */
  Index *pPk = 0;      /* The PRIMARY KEY index for WITHOUT ROWID tables */
  sqlite3 *db;         /* Database connection */
  int i;               /* loop counter */
  int ix;              /* Index loop counter */
  int nCol;            /* Number of columns */
  int onError;         /* Conflict resolution strategy */
  int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
  int nPkField;        /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
  Upsert *pUpsertClause = 0;  /* The specific ON CONFLICT clause for pIdx */
  u8 isUpdate;           /* True if this is an UPDATE operation */
  u8 bAffinityDone = 0;  /* True if the OP_Affinity operation has been run */
  int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
  int upsertIpkDelay = 0;  /* Address of Goto to bypass initial IPK check */
  int ipkTop = 0;        /* Top of the IPK uniqueness check */
  int ipkBottom = 0;     /* OP_Goto at the end of the IPK uniqueness check */
  /* Variables associated with retesting uniqueness constraints after
  ** replace triggers fire have run */
  int regTrigCnt;       /* Register used to count replace trigger invocations */
  int addrRecheck = 0;  /* Jump here to recheck all uniqueness constraints */
  int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
  Trigger *pTrigger;    /* List of DELETE triggers on the table pTab */
  int nReplaceTrig = 0; /* Number of replace triggers coded */
  IndexIterator sIdxIter;  /* Index iterator */

  isUpdate = regOldData!=0;
  db = pParse->db;
  v = pParse->pVdbe;
  assert( v!=0 );
  assert( pTab->pSelect==0 );  /* This table is not a VIEW */
  nCol = pTab->nCol;
1722
1723
1724
1725
1726
1727
1728
1729



1730
1731



1732
1733
1734
1735
1736




1737

1738
1739










1740
1741

























1742
1743
1744
1745
1746
1747
1748
  **        default conflict resolution strategy
  **   (C)  Unique index that do use OE_Replace by default.
  **
  ** The ordering of (2) and (3) is accomplished by making sure the linked
  ** list of indexes attached to a table puts all OE_Replace indexes last
  ** in the list.  See sqlite3CreateIndex() for where that happens.
  */




  if( pUpsert ){
    if( pUpsert->pUpsertTarget==0 ){



      /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
      ** Make all unique constraint resolution be OE_Ignore */
      assert( pUpsert->pUpsertSet==0 );
      overrideError = OE_Ignore;
      pUpsert = 0;




    }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){

      /* If the constraint-target uniqueness check must be run first.
      ** Jump to that uniqueness check now */










      upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
      VdbeComment((v, "UPSERT constraint goes first"));

























    }
  }

  /* Determine if it is possible that triggers (either explicitly coded
  ** triggers or FK resolution actions) might run as a result of deletes
  ** that happen when OE_Replace conflict resolution occurs. (Call these
  ** "replace triggers".)  If any replace triggers run, we will need to







|
>
>
>


>
>
>
|
|
<
|
|
>
>
>
>
|
>
|
|
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
  **        default conflict resolution strategy
  **   (C)  Unique index that do use OE_Replace by default.
  **
  ** The ordering of (2) and (3) is accomplished by making sure the linked
  ** list of indexes attached to a table puts all OE_Replace indexes last
  ** in the list.  See sqlite3CreateIndex() for where that happens.
  */
  sIdxIter.eType = 0;
  sIdxIter.i = 0;
  sIdxIter.u.ax.aIdx = 0;  /* Silence harmless compiler warning */
  sIdxIter.u.lx.pIdx = pTab->pIndex;
  if( pUpsert ){
    if( pUpsert->pUpsertTarget==0 ){
      /* There is just on ON CONFLICT clause and it has no constraint-target */
      assert( pUpsert->pNextUpsert==0 );
      if( pUpsert->isDoUpdate==0 ){
        /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
        ** Make all unique constraint resolution be OE_Ignore */

        overrideError = OE_Ignore;
        pUpsert = 0;
      }else{
        /* A single ON CONFLICT DO UPDATE.  Make all resolutions OE_Update */
        overrideError = OE_Update;
      }
    }else if( pTab->pIndex!=0 ){
      /* Otherwise, we'll need to run the IndexListTerm array version of the
      ** iterator to ensure that all of the ON CONFLICT conditions are
      ** checked first and in order. */
      int nIdx, jj;
      u64 nByte;
      Upsert *pTerm;
      u8 *bUsed;
      for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
         assert( aRegIdx[nIdx]>0 );
      }
      sIdxIter.eType = 1;
      sIdxIter.u.ax.nIdx = nIdx;
      nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
      sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);

      if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
      bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
      pUpsert->pToFree = sIdxIter.u.ax.aIdx;
      for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
        if( pTerm->pUpsertTarget==0 ) break;
        if( pTerm->pUpsertIdx==0 ) continue;  /* Skip ON CONFLICT for the IPK */
        jj = 0;
        pIdx = pTab->pIndex;
        while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
           pIdx = pIdx->pNext;
           jj++;
        }
        if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
        bUsed[jj] = 1;
        sIdxIter.u.ax.aIdx[i].p = pIdx;
        sIdxIter.u.ax.aIdx[i].ix = jj;
        i++;
      }
      for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
        if( bUsed[jj] ) continue;
        sIdxIter.u.ax.aIdx[i].p = pIdx;
        sIdxIter.u.ax.aIdx[i].ix = jj;
        i++;
      }
      assert( i==nIdx );
    }
  }

  /* Determine if it is possible that triggers (either explicitly coded
  ** triggers or FK resolution actions) might run as a result of deletes
  ** that happen when OE_Replace conflict resolution occurs. (Call these
  ** "replace triggers".)  If any replace triggers run, we will need to
1797
1798
1799
1800
1801
1802
1803
1804

1805

1806
1807
1808







1809
1810
1811
1812
1813
1814
1815
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* figure out whether or not upsert applies in this case */
    if( pUpsert && pUpsert->pUpsertIdx==0 ){

      if( pUpsert->pUpsertSet==0 ){

        onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
      }else{
        onError = OE_Update;  /* DO UPDATE */







      }
    }

    /* If the response to a rowid conflict is REPLACE but the response
    ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
    ** to defer the running of the rowid conflict checking until after
    ** the UNIQUE constraints have run.







|
>
|
>
|
|
|
>
>
>
>
>
>
>







1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* figure out whether or not upsert applies in this case */
    if( pUpsert ){
      pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
      if( pUpsertClause!=0 ){
        if( pUpsertClause->isDoUpdate==0 ){
          onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
        }else{
          onError = OE_Update;  /* DO UPDATE */
        }
      }
      if( pUpsertClause!=pUpsert ){
        /* The first ON CONFLICT clause has a conflict target other than
        ** the IPK.  We have to jump ahead to that first ON CONFLICT clause
        ** and then come back here and deal with the IPK afterwards */
        upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
      }
    }

    /* If the response to a rowid conflict is REPLACE but the response
    ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
    ** to defer the running of the rowid conflict checking until after
    ** the UNIQUE constraints have run.
1908
1909
1910
1911
1912
1913
1914


1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927

1928


1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943


1944
1945
1946
1947
1948
1949
1950
1951
      case OE_Ignore: {
        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrRowidOk);


    if( ipkTop ){
      ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, ipkTop-1);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Compute the revised record entries for indices as we go.
  **
  ** This loop also handles the case of the PRIMARY KEY index for a
  ** WITHOUT ROWID table.
  */

  for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){


    int regIdx;          /* Range of registers hold conent for pIdx */
    int regR;            /* Range of registers holding conflicting PK */
    int iThisCur;        /* Cursor for this UNIQUE index */
    int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
    int addrConflictCk;  /* First opcode in the conflict check logic */

    if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
    if( pUpIdx==pIdx ){
      addrUniqueOk = upsertJump+1;
      upsertBypass = sqlite3VdbeGoto(v, 0);
      VdbeComment((v, "Skip upsert subroutine"));
      sqlite3VdbeJumpHere(v, upsertJump);
    }else{
      addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
    }


    if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
      sqlite3TableAffinity(v, pTab, regNewData+1);
      bAffinityDone = 1;
    }
    VdbeNoopComment((v, "prep index %s", pIdx->zName));
    iThisCur = iIdxCur+ix;









>
>
|












>
|
>
>







|
<
|
|
|
<
<
|
>
>
|







2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064

2065
2066
2067


2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
      case OE_Ignore: {
        testcase( onError==OE_Ignore );
        sqlite3VdbeGoto(v, ignoreDest);
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrRowidOk);
    if( pUpsert && pUpsertClause!=pUpsert ){
      upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
    }else if( ipkTop ){
      ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
      sqlite3VdbeJumpHere(v, ipkTop-1);
    }
  }

  /* Test all UNIQUE constraints by creating entries for each UNIQUE
  ** index and making sure that duplicate entries do not already exist.
  ** Compute the revised record entries for indices as we go.
  **
  ** This loop also handles the case of the PRIMARY KEY index for a
  ** WITHOUT ROWID table.
  */
  for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
      pIdx;
      pIdx = indexIteratorNext(&sIdxIter, &ix)
  ){
    int regIdx;          /* Range of registers hold conent for pIdx */
    int regR;            /* Range of registers holding conflicting PK */
    int iThisCur;        /* Cursor for this UNIQUE index */
    int addrUniqueOk;    /* Jump here if the UNIQUE constraint is satisfied */
    int addrConflictCk;  /* First opcode in the conflict check logic */

    if( aRegIdx[ix]==0 ) continue;  /* Skip indices that do not change */
    if( pUpsert ){

      pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
      if( upsertIpkDelay && pUpsertClause==pUpsert ){
        sqlite3VdbeJumpHere(v, upsertIpkDelay);


      }
    }
    addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
    if( bAffinityDone==0 ){
      sqlite3TableAffinity(v, pTab, regNewData+1);
      bAffinityDone = 1;
    }
    VdbeNoopComment((v, "prep index %s", pIdx->zName));
    iThisCur = iIdxCur+ix;


2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* Figure out if the upsert clause applies to this index */
    if( pUpIdx==pIdx ){
      if( pUpsert->pUpsertSet==0 ){
        onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
      }else{
        onError = OE_Update;  /* DO UPDATE */
      }
    }

    /* Collision detection may be omitted if all of the following are true:







|
|







2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
    if( overrideError!=OE_Default ){
      onError = overrideError;
    }else if( onError==OE_Default ){
      onError = OE_Abort;
    }

    /* Figure out if the upsert clause applies to this index */
    if( pUpsertClause ){
      if( pUpsertClause->isDoUpdate==0 ){
        onError = OE_Ignore;  /* DO NOTHING is the same as INSERT OR IGNORE */
      }else{
        onError = OE_Update;  /* DO UPDATE */
      }
    }

    /* Collision detection may be omitted if all of the following are true:
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    /* Check to see if the new index entry will be unique */
    sqlite3VdbeVerifyAbortable(v, onError);
    addrConflictCk = 
      sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
                           regIdx, pIdx->nKeyCol); VdbeCoverage(v);

    /* Generate code to handle collisions */
    regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
    if( isUpdate || onError==OE_Replace ){
      if( HasRowid(pTab) ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
        /* Conflict only if the rowid of the existing index entry
        ** is different from old-rowid */
        if( isUpdate ){
          sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);







|







2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
    /* Check to see if the new index entry will be unique */
    sqlite3VdbeVerifyAbortable(v, onError);
    addrConflictCk = 
      sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
                           regIdx, pIdx->nKeyCol); VdbeCoverage(v);

    /* Generate code to handle collisions */
    regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
    if( isUpdate || onError==OE_Replace ){
      if( HasRowid(pTab) ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
        /* Conflict only if the rowid of the existing index entry
        ** is different from old-rowid */
        if( isUpdate ){
          sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2199
2200
2201
2202
2203
2204
2205


2206



2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219

          sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
        }
        seenReplace = 1;
        break;
      }
    }


    if( pUpIdx==pIdx ){



      sqlite3VdbeGoto(v, upsertJump+1);
      sqlite3VdbeJumpHere(v, upsertBypass);
    }else{
      sqlite3VdbeResolveLabel(v, addrUniqueOk);
    }
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
  }

  /* If the IPK constraint is a REPLACE, run it last */
  if( ipkTop ){
    sqlite3VdbeGoto(v, ipkTop);
    VdbeComment((v, "Do IPK REPLACE"));
    sqlite3VdbeJumpHere(v, ipkBottom);







>
>
|
>
>
>
|
|
|
<

<







2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341

2342

2343
2344
2345
2346
2347
2348
2349

          sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
        }
        seenReplace = 1;
        break;
      }
    }
    sqlite3VdbeResolveLabel(v, addrUniqueOk);
    if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
    if( pUpsertClause 
     && upsertIpkReturn
     && sqlite3UpsertNextIsIPK(pUpsertClause)
    ){
      sqlite3VdbeGoto(v, upsertIpkDelay+1);
      sqlite3VdbeJumpHere(v, upsertIpkReturn);
      upsertIpkReturn = 0;

    }

  }

  /* If the IPK constraint is a REPLACE, run it last */
  if( ipkTop ){
    sqlite3VdbeGoto(v, ipkTop);
    VdbeComment((v, "Do IPK REPLACE"));
    sqlite3VdbeJumpHere(v, ipkBottom);
Changes to src/parse.y.
956
957
958
959
960
961
962
963
964
965
966
967
968


969
970
971
972
973
974
975
// Because upsert only occurs at the tip end of the INSERT rule for cmd,
// there is never a case where the value of the upsert pointer will not
// be destroyed by the cmd action.  So comment-out the destructor to
// avoid unreachable code.
//%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
upsert(A) ::= . { A = 0; }
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
              DO UPDATE SET setlist(Z) where_opt(W).
              { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);}
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING.
              { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); }
upsert(A) ::= ON CONFLICT DO NOTHING.
              { A = sqlite3UpsertNew(pParse->db,0,0,0,0); }



%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}

%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}







|
|
|
|

|
>
>







956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// Because upsert only occurs at the tip end of the INSERT rule for cmd,
// there is never a case where the value of the upsert pointer will not
// be destroyed by the cmd action.  So comment-out the destructor to
// avoid unreachable code.
//%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
upsert(A) ::= . { A = 0; }
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
              DO UPDATE SET setlist(Z) where_opt(W) upsert(N).
              { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);}
upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N).
              { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); }
upsert(A) ::= ON CONFLICT DO NOTHING.
              { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); }
upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W).
              { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);}

%type insert_cmd {int}
insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}

%type idlist_opt {IdList*}
%destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
Changes to src/sqliteInt.h.
2312
2313
2314
2315
2316
2317
2318


2319
2320
2321
2322

2323
2324
2325
2326



2327
2328
2329
2330
2331
2332
2333
2334
2335
** the operation in progress stops and returns an error code.  But prior
** changes due to the same operation are not backed out and no rollback
** occurs.  IGNORE means that the particular row that caused the constraint
** error is not inserted or updated.  Processing continues and no error
** is returned.  REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed.  Processing continues and no error is reported.


**
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign

** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
** referenced table row is propagated into the row that holds the
** foreign key.
**



** The following symbolic values are used to record which type
** of action to take.
*/
#define OE_None     0   /* There is no constraint to check */
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */







>
>

|


>
|



>
>
>

|







2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
** the operation in progress stops and returns an error code.  But prior
** changes due to the same operation are not backed out and no rollback
** occurs.  IGNORE means that the particular row that caused the constraint
** error is not inserted or updated.  Processing continues and no error
** is returned.  REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed.  Processing continues and no error is reported.
** UPDATE applies to insert operations only and means that the insert
** is omitted and the DO UPDATE clause of an upsert is run instead.
**
** RESTRICT, SETNULL, SETDFLT, and CASCADE actions apply only to foreign keys.
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
** key is set to NULL.  SETDFLT means that the foreign key is set
** to its default value.  CASCADE means that a DELETE or UPDATE of the
** referenced table row is propagated into the row that holds the
** foreign key.
**
** The OE_Default value is a place holder that means to use whatever
** conflict resolution algorthm is required from context.
**
** The following symbolic values are used to record which type
** of conflict resolution action to take.
*/
#define OE_None     0   /* There is no constraint to check */
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085


3086



3087
3088
3089


3090
3091
3092
3093
3094
3095
3096
3097
**
** pUpsertSet is the list of column=expr terms of the UPDATE statement. 
** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING.  The
** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the
** WHERE clause is omitted.
*/
struct Upsert {
  ExprList *pUpsertTarget;  /* Optional description of conflicting index */
  Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */
  ExprList *pUpsertSet;     /* The SET clause from an ON CONFLICT UPDATE */
  Expr *pUpsertWhere;       /* WHERE clause for the ON CONFLICT UPDATE */


  /* The fields above comprise the parse tree for the upsert clause.



  ** The fields below are used to transfer information from the INSERT
  ** processing down into the UPDATE processing while generating code.
  ** Upsert owns the memory allocated above, but not the memory below. */


  Index *pUpsertIdx;        /* Constraint that pUpsertTarget identifies */
  SrcList *pUpsertSrc;      /* Table to be updated */
  int regData;              /* First register holding array of VALUES */
  int iDataCur;             /* Index of the data cursor */
  int iIdxCur;              /* Index of the first index cursor */
};

/*







|



>
>
|
>
>
>
|
|
<
>
>
|







3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099

3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
**
** pUpsertSet is the list of column=expr terms of the UPDATE statement. 
** The pUpsertSet field is NULL for a ON CONFLICT DO NOTHING.  The
** pUpsertWhere is the WHERE clause for the UPDATE and is NULL if the
** WHERE clause is omitted.
*/
struct Upsert {
  ExprList *pUpsertTarget;  /* Optional description of conflict target */
  Expr *pUpsertTargetWhere; /* WHERE clause for partial index targets */
  ExprList *pUpsertSet;     /* The SET clause from an ON CONFLICT UPDATE */
  Expr *pUpsertWhere;       /* WHERE clause for the ON CONFLICT UPDATE */
  Upsert *pNextUpsert;      /* Next ON CONFLICT clause in the list */
  u8 isDoUpdate;            /* True for DO UPDATE.  False for DO NOTHING */
  /* Above this point is the parse tree for the ON CONFLICT clauses.
  ** The next group of fields stores intermediate data. */
  void *pToFree;            /* Free memory when deleting the Upsert object */
  /* All fields above are owned by the Upsert object and must be freed
  ** when the Upsert is destroyed.  The fields below are used to transfer
  ** information from the INSERT processing down into the UPDATE processing

  ** while generating code.  The fields below are owned by the INSERT
  ** statement and will be freed by INSERT processing. */
  Index *pUpsertIdx;        /* UNIQUE constraint specified by pUpsertTarget */
  SrcList *pUpsertSrc;      /* Table to be updated */
  int regData;              /* First register holding array of VALUES */
  int iDataCur;             /* Index of the data cursor */
  int iIdxCur;              /* Index of the first index cursor */
};

/*
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844


4845
4846
4847
4848


4849
4850
4851
4852
4853
4854
4855
  void sqlite3WithDelete(sqlite3*,With*);
  void sqlite3WithPush(Parse*, With*, u8);
#else
#define sqlite3WithPush(x,y,z)
#define sqlite3WithDelete(x,y)
#endif
#ifndef SQLITE_OMIT_UPSERT
  Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*);
  void sqlite3UpsertDelete(sqlite3*,Upsert*);
  Upsert *sqlite3UpsertDup(sqlite3*,Upsert*);
  int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*);
  void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int);


#else
#define sqlite3UpsertNew(v,w,x,y,z) ((Upsert*)0)
#define sqlite3UpsertDelete(x,y)
#define sqlite3UpsertDup(x,y)       ((Upsert*)0)


#endif


/* Declarations for functions in fkey.c. All of these are replaced by
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In







|




>
>

|

|
>
>







4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
  void sqlite3WithDelete(sqlite3*,With*);
  void sqlite3WithPush(Parse*, With*, u8);
#else
#define sqlite3WithPush(x,y,z)
#define sqlite3WithDelete(x,y)
#endif
#ifndef SQLITE_OMIT_UPSERT
  Upsert *sqlite3UpsertNew(sqlite3*,ExprList*,Expr*,ExprList*,Expr*,Upsert*);
  void sqlite3UpsertDelete(sqlite3*,Upsert*);
  Upsert *sqlite3UpsertDup(sqlite3*,Upsert*);
  int sqlite3UpsertAnalyzeTarget(Parse*,SrcList*,Upsert*);
  void sqlite3UpsertDoUpdate(Parse*,Upsert*,Table*,Index*,int);
  Upsert *sqlite3UpsertOfIndex(Upsert*,Index*);
  int sqlite3UpsertNextIsIPK(Upsert*);
#else
#define sqlite3UpsertNew(u,v,w,x,y,z) ((Upsert*)0)
#define sqlite3UpsertDelete(x,y)
#define sqlite3UpsertDup(x,y)         ((Upsert*)0)
#define sqlite3UpsertOfIndex(x,y)     ((Upsert*)0)
#define sqlite3UpsertNextIsIPK(x)     0
#endif


/* Declarations for functions in fkey.c. All of these are replaced by
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
** key functionality is available. If OMIT_TRIGGER is defined but
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
Changes to src/upsert.c.
14
15
16
17
18
19
20
21

22
23
24
25
26

27


28


29

30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71
72
73
74
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_UPSERT
/*
** Free a list of Upsert objects
*/
void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){

  if( p ){
    sqlite3ExprListDelete(db, p->pUpsertTarget);
    sqlite3ExprDelete(db, p->pUpsertTargetWhere);
    sqlite3ExprListDelete(db, p->pUpsertSet);
    sqlite3ExprDelete(db, p->pUpsertWhere);

    sqlite3DbFree(db, p);


  }


}


/*
** Duplicate an Upsert object.
*/
Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){
  if( p==0 ) return 0;
  return sqlite3UpsertNew(db,
           sqlite3ExprListDup(db, p->pUpsertTarget, 0),
           sqlite3ExprDup(db, p->pUpsertTargetWhere, 0),
           sqlite3ExprListDup(db, p->pUpsertSet, 0),
           sqlite3ExprDup(db, p->pUpsertWhere, 0)

         );
}

/*
** Create a new Upsert object.
*/
Upsert *sqlite3UpsertNew(
  sqlite3 *db,           /* Determines which memory allocator to use */
  ExprList *pTarget,     /* Target argument to ON CONFLICT, or NULL */
  Expr *pTargetWhere,    /* Optional WHERE clause on the target */
  ExprList *pSet,        /* UPDATE columns, or NULL for a DO NOTHING */
  Expr *pWhere           /* WHERE clause for the ON CONFLICT UPDATE */

){
  Upsert *pNew;
  pNew = sqlite3DbMallocRaw(db, sizeof(Upsert));
  if( pNew==0 ){
    sqlite3ExprListDelete(db, pTarget);
    sqlite3ExprDelete(db, pTargetWhere);
    sqlite3ExprListDelete(db, pSet);
    sqlite3ExprDelete(db, pWhere);

    return 0;
  }else{
    pNew->pUpsertTarget = pTarget;
    pNew->pUpsertTargetWhere = pTargetWhere;
    pNew->pUpsertSet = pSet;
    pNew->pUpsertWhere = pWhere;

    pNew->pUpsertIdx = 0;
  }
  return pNew;
}

/*
** Analyze the ON CONFLICT clause described by pUpsert.  Resolve all
** symbols in the conflict-target.







|
>
|




>

>
>
|
>
>

>










|
>











|
>


|





>






>
|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
*/
#include "sqliteInt.h"

#ifndef SQLITE_OMIT_UPSERT
/*
** Free a list of Upsert objects
*/
static void SQLITE_NOINLINE upsertDelete(sqlite3 *db, Upsert *p){
  do{
    Upsert *pNext = p->pNextUpsert;
    sqlite3ExprListDelete(db, p->pUpsertTarget);
    sqlite3ExprDelete(db, p->pUpsertTargetWhere);
    sqlite3ExprListDelete(db, p->pUpsertSet);
    sqlite3ExprDelete(db, p->pUpsertWhere);
    sqlite3DbFree(db, p->pToFree);
    sqlite3DbFree(db, p);
    p = pNext;
  }while( p );
}
void sqlite3UpsertDelete(sqlite3 *db, Upsert *p){
  if( p ) upsertDelete(db, p);
}


/*
** Duplicate an Upsert object.
*/
Upsert *sqlite3UpsertDup(sqlite3 *db, Upsert *p){
  if( p==0 ) return 0;
  return sqlite3UpsertNew(db,
           sqlite3ExprListDup(db, p->pUpsertTarget, 0),
           sqlite3ExprDup(db, p->pUpsertTargetWhere, 0),
           sqlite3ExprListDup(db, p->pUpsertSet, 0),
           sqlite3ExprDup(db, p->pUpsertWhere, 0),
           sqlite3UpsertDup(db, p->pNextUpsert)
         );
}

/*
** Create a new Upsert object.
*/
Upsert *sqlite3UpsertNew(
  sqlite3 *db,           /* Determines which memory allocator to use */
  ExprList *pTarget,     /* Target argument to ON CONFLICT, or NULL */
  Expr *pTargetWhere,    /* Optional WHERE clause on the target */
  ExprList *pSet,        /* UPDATE columns, or NULL for a DO NOTHING */
  Expr *pWhere,          /* WHERE clause for the ON CONFLICT UPDATE */
  Upsert *pNext          /* Next ON CONFLICT clause in the list */
){
  Upsert *pNew;
  pNew = sqlite3DbMallocZero(db, sizeof(Upsert));
  if( pNew==0 ){
    sqlite3ExprListDelete(db, pTarget);
    sqlite3ExprDelete(db, pTargetWhere);
    sqlite3ExprListDelete(db, pSet);
    sqlite3ExprDelete(db, pWhere);
    sqlite3UpsertDelete(db, pNext);
    return 0;
  }else{
    pNew->pUpsertTarget = pTarget;
    pNew->pUpsertTargetWhere = pTargetWhere;
    pNew->pUpsertSet = pSet;
    pNew->pUpsertWhere = pWhere;
    pNew->isDoUpdate = pSet!=0;
    pNew->pNextUpsert = pNext;
  }
  return pNew;
}

/*
** Analyze the ON CONFLICT clause described by pUpsert.  Resolve all
** symbols in the conflict-target.
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104


105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182







183
184
185



































186
187
188
189
190
191
192
  int rc;                 /* Result code */
  int iCursor;            /* Cursor used by pTab */
  Index *pIdx;            /* One of the indexes of pTab */
  ExprList *pTarget;      /* The conflict-target clause */
  Expr *pTerm;            /* One term of the conflict-target clause */
  NameContext sNC;        /* Context for resolving symbolic names */
  Expr sCol[2];           /* Index column converted into an Expr */


  assert( pTabList->nSrc==1 );
  assert( pTabList->a[0].pTab!=0 );
  assert( pUpsert!=0 );
  assert( pUpsert->pUpsertTarget!=0 );

  /* Resolve all symbolic names in the conflict-target clause, which
  ** includes both the list of columns and the optional partial-index
  ** WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;


  rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
  if( rc ) return rc;
  rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
  if( rc ) return rc;

  /* Check to see if the conflict target matches the rowid. */  
  pTab = pTabList->a[0].pTab;
  pTarget = pUpsert->pUpsertTarget;
  iCursor = pTabList->a[0].iCursor;
  if( HasRowid(pTab) 
   && pTarget->nExpr==1
   && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN
   && pTerm->iColumn==XN_ROWID
  ){
    /* The conflict-target is the rowid of the primary table */
    assert( pUpsert->pUpsertIdx==0 );
    return SQLITE_OK;

  }

  /* Initialize sCol[0..1] to be an expression parse tree for a
  ** single column of an index.  The sCol[0] node will be the TK_COLLATE
  ** operator and sCol[1] will be the TK_COLUMN operator.  Code below
  ** will populate the specific collation and column number values
  ** prior to comparing against the conflict-target expression.
  */
  memset(sCol, 0, sizeof(sCol));
  sCol[0].op = TK_COLLATE;
  sCol[0].pLeft = &sCol[1];
  sCol[1].op = TK_COLUMN;
  sCol[1].iTable = pTabList->a[0].iCursor;

  /* Check for matches against other indexes */
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int ii, jj, nn;
    if( !IsUniqueIndex(pIdx) ) continue;
    if( pTarget->nExpr!=pIdx->nKeyCol ) continue;
    if( pIdx->pPartIdxWhere ){
      if( pUpsert->pUpsertTargetWhere==0 ) continue;
      if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere,
                             pIdx->pPartIdxWhere, iCursor)!=0 ){
        continue;
      }
    }
    nn = pIdx->nKeyCol;
    for(ii=0; ii<nn; ii++){
      Expr *pExpr;
      sCol[0].u.zToken = (char*)pIdx->azColl[ii];
      if( pIdx->aiColumn[ii]==XN_EXPR ){
        assert( pIdx->aColExpr!=0 );
        assert( pIdx->aColExpr->nExpr>ii );
        pExpr = pIdx->aColExpr->a[ii].pExpr;
        if( pExpr->op!=TK_COLLATE ){
          sCol[0].pLeft = pExpr;
          pExpr = &sCol[0];
        }
      }else{
        sCol[0].pLeft = &sCol[1];
        sCol[1].iColumn = pIdx->aiColumn[ii];
        pExpr = &sCol[0];
      }
      for(jj=0; jj<nn; jj++){
        if( sqlite3ExprCompare(pParse, pTarget->a[jj].pExpr, pExpr,iCursor)<2 ){
          break;  /* Column ii of the index matches column jj of target */
        }
      }
      if( jj>=nn ){
        /* The target contains no match for column jj of the index */
        break;
      }
    }
    if( ii<nn ){
      /* Column ii of the index did not match any term of the conflict target.
      ** Continue the search with the next index. */
      continue;
    }
    pUpsert->pUpsertIdx = pIdx;
    return SQLITE_OK;
  }







  sqlite3ErrorMsg(pParse, "ON CONFLICT clause does not match any "
                          "PRIMARY KEY or UNIQUE constraint");
  return SQLITE_ERROR;



































}

/*
** Generate bytecode that does an UPDATE as part of an upsert.
**
** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK.
** In this case parameter iCur is a cursor open on the table b-tree that







>













>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  int rc;                 /* Result code */
  int iCursor;            /* Cursor used by pTab */
  Index *pIdx;            /* One of the indexes of pTab */
  ExprList *pTarget;      /* The conflict-target clause */
  Expr *pTerm;            /* One term of the conflict-target clause */
  NameContext sNC;        /* Context for resolving symbolic names */
  Expr sCol[2];           /* Index column converted into an Expr */
  int nClause = 0;        /* Counter of ON CONFLICT clauses */

  assert( pTabList->nSrc==1 );
  assert( pTabList->a[0].pTab!=0 );
  assert( pUpsert!=0 );
  assert( pUpsert->pUpsertTarget!=0 );

  /* Resolve all symbolic names in the conflict-target clause, which
  ** includes both the list of columns and the optional partial-index
  ** WHERE clause.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  sNC.pSrcList = pTabList;
  for(; pUpsert && pUpsert->pUpsertTarget;
        pUpsert=pUpsert->pNextUpsert, nClause++){
    rc = sqlite3ResolveExprListNames(&sNC, pUpsert->pUpsertTarget);
    if( rc ) return rc;
    rc = sqlite3ResolveExprNames(&sNC, pUpsert->pUpsertTargetWhere);
    if( rc ) return rc;
  
    /* Check to see if the conflict target matches the rowid. */  
    pTab = pTabList->a[0].pTab;
    pTarget = pUpsert->pUpsertTarget;
    iCursor = pTabList->a[0].iCursor;
    if( HasRowid(pTab) 
     && pTarget->nExpr==1
     && (pTerm = pTarget->a[0].pExpr)->op==TK_COLUMN
     && pTerm->iColumn==XN_ROWID
    ){
      /* The conflict-target is the rowid of the primary table */
      assert( pUpsert->pUpsertIdx==0 );

      continue;
    }
  
    /* Initialize sCol[0..1] to be an expression parse tree for a
    ** single column of an index.  The sCol[0] node will be the TK_COLLATE
    ** operator and sCol[1] will be the TK_COLUMN operator.  Code below
    ** will populate the specific collation and column number values
    ** prior to comparing against the conflict-target expression.
    */
    memset(sCol, 0, sizeof(sCol));
    sCol[0].op = TK_COLLATE;
    sCol[0].pLeft = &sCol[1];
    sCol[1].op = TK_COLUMN;
    sCol[1].iTable = pTabList->a[0].iCursor;
  
    /* Check for matches against other indexes */
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      int ii, jj, nn;
      if( !IsUniqueIndex(pIdx) ) continue;
      if( pTarget->nExpr!=pIdx->nKeyCol ) continue;
      if( pIdx->pPartIdxWhere ){
        if( pUpsert->pUpsertTargetWhere==0 ) continue;
        if( sqlite3ExprCompare(pParse, pUpsert->pUpsertTargetWhere,
                               pIdx->pPartIdxWhere, iCursor)!=0 ){
          continue;
        }
      }
      nn = pIdx->nKeyCol;
      for(ii=0; ii<nn; ii++){
        Expr *pExpr;
        sCol[0].u.zToken = (char*)pIdx->azColl[ii];
        if( pIdx->aiColumn[ii]==XN_EXPR ){
          assert( pIdx->aColExpr!=0 );
          assert( pIdx->aColExpr->nExpr>ii );
          pExpr = pIdx->aColExpr->a[ii].pExpr;
          if( pExpr->op!=TK_COLLATE ){
            sCol[0].pLeft = pExpr;
            pExpr = &sCol[0];
          }
        }else{
          sCol[0].pLeft = &sCol[1];
          sCol[1].iColumn = pIdx->aiColumn[ii];
          pExpr = &sCol[0];
        }
        for(jj=0; jj<nn; jj++){
          if( sqlite3ExprCompare(pParse,pTarget->a[jj].pExpr,pExpr,iCursor)<2 ){
            break;  /* Column ii of the index matches column jj of target */
          }
        }
        if( jj>=nn ){
          /* The target contains no match for column jj of the index */
          break;
        }
      }
      if( ii<nn ){
        /* Column ii of the index did not match any term of the conflict target.
        ** Continue the search with the next index. */
        continue;
      }
      pUpsert->pUpsertIdx = pIdx;
      break;
    }
    if( pUpsert->pUpsertIdx==0 ){
      char zWhich[16];
      if( nClause==0 && pUpsert->pNextUpsert==0 ){
        zWhich[0] = 0;
      }else{
        sqlite3_snprintf(sizeof(zWhich),zWhich,"%r ", nClause+1);
      }
      sqlite3ErrorMsg(pParse, "%sON CONFLICT clause does not match any "
                              "PRIMARY KEY or UNIQUE constraint", zWhich);
      return SQLITE_ERROR;
    }
  }
  return SQLITE_OK;
}

/*
** Return true if pUpsert is the last ON CONFLICT clause with a
** conflict target, or if pUpsert is followed by another ON CONFLICT
** clause that targets the INTEGER PRIMARY KEY.
*/
int sqlite3UpsertNextIsIPK(Upsert *pUpsert){
  Upsert *pNext;
  if( NEVER(pUpsert==0) ) return 0;
  pNext = pUpsert->pNextUpsert;
  if( pNext==0 ) return 1;
  if( pNext->pUpsertTarget==0 ) return 1;
  if( pNext->pUpsertIdx==0 ) return 1;
  return 0;
}

/*
** Given the list of ON CONFLICT clauses described by pUpsert, and
** a particular index pIdx, return a pointer to the particular ON CONFLICT
** clause that applies to the index.  Or, if the index is not subject to
** any ON CONFLICT clause, return NULL.
*/
Upsert *sqlite3UpsertOfIndex(Upsert *pUpsert, Index *pIdx){
  while(
      pUpsert
   && pUpsert->pUpsertTarget!=0
   && pUpsert->pUpsertIdx!=pIdx
  ){
     pUpsert = pUpsert->pNextUpsert;
  }
  return pUpsert;
}

/*
** Generate bytecode that does an UPDATE as part of an upsert.
**
** If pIdx is NULL, then the UNIQUE constraint that failed was the IPK.
** In this case parameter iCur is a cursor open on the table b-tree that
202
203
204
205
206
207
208

209
210
211
212
213


214
215
216
217
218
219
220
  int iCur              /* Cursor for pIdx (or pTab if pIdx==NULL) */
){
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;
  SrcList *pSrc;            /* FROM clause for the UPDATE */
  int iDataCur;
  int i;


  assert( v!=0 );
  assert( pUpsert!=0 );
  VdbeNoopComment((v, "Begin DO UPDATE of UPSERT"));
  iDataCur = pUpsert->iDataCur;


  if( pIdx && iCur!=iDataCur ){
    if( HasRowid(pTab) ){
      int regRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid);
      sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid);
      VdbeCoverage(v);
      sqlite3ReleaseTempReg(pParse, regRowid);







>



<

>
>







258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
  int iCur              /* Cursor for pIdx (or pTab if pIdx==NULL) */
){
  Vdbe *v = pParse->pVdbe;
  sqlite3 *db = pParse->db;
  SrcList *pSrc;            /* FROM clause for the UPDATE */
  int iDataCur;
  int i;
  Upsert *pTop = pUpsert;

  assert( v!=0 );
  assert( pUpsert!=0 );

  iDataCur = pUpsert->iDataCur;
  pUpsert = sqlite3UpsertOfIndex(pTop, pIdx);
  VdbeNoopComment((v, "Begin DO UPDATE of UPSERT"));
  if( pIdx && iCur!=iDataCur ){
    if( HasRowid(pTab) ){
      int regRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_IdxRowid, iCur, regRowid);
      sqlite3VdbeAddOp3(v, OP_SeekRowid, iDataCur, 0, regRowid);
      VdbeCoverage(v);
      sqlite3ReleaseTempReg(pParse, regRowid);
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
      VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, 
            "corrupt database", P4_STATIC);
      sqlite3MayAbort(pParse);
      sqlite3VdbeJumpHere(v, i);
    }
  }
  /* pUpsert does not own pUpsertSrc - the outer INSERT statement does.  So
  ** we have to make a copy before passing it down into sqlite3Update() */
  pSrc = sqlite3SrcListDup(db, pUpsert->pUpsertSrc, 0);
  /* excluded.* columns of type REAL need to be converted to a hard real */
  for(i=0; i<pTab->nCol; i++){
    if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
      sqlite3VdbeAddOp1(v, OP_RealAffinity, pUpsert->regData+i);
    }
  }
  sqlite3Update(pParse, pSrc, pUpsert->pUpsertSet,
      pUpsert->pUpsertWhere, OE_Abort, 0, 0, pUpsert);
  pUpsert->pUpsertSet = 0;    /* Will have been deleted by sqlite3Update() */
  pUpsert->pUpsertWhere = 0;  /* Will have been deleted by sqlite3Update() */
  VdbeNoopComment((v, "End DO UPDATE of UPSERT"));
}

#endif /* SQLITE_OMIT_UPSERT */







|
|
|



|


|
|
<
<




294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311


312
313
314
315
      VdbeCoverage(v);
      sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CORRUPT, OE_Abort, 0, 
            "corrupt database", P4_STATIC);
      sqlite3MayAbort(pParse);
      sqlite3VdbeJumpHere(v, i);
    }
  }
  /* pUpsert does not own pTop->pUpsertSrc - the outer INSERT statement does.
  ** So we have to make a copy before passing it down into sqlite3Update() */
  pSrc = sqlite3SrcListDup(db, pTop->pUpsertSrc, 0);
  /* excluded.* columns of type REAL need to be converted to a hard real */
  for(i=0; i<pTab->nCol; i++){
    if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
      sqlite3VdbeAddOp1(v, OP_RealAffinity, pTop->regData+i);
    }
  }
  sqlite3Update(pParse, pSrc, sqlite3ExprListDup(db,pUpsert->pUpsertSet,0),
      sqlite3ExprDup(db,pUpsert->pUpsertWhere,0), OE_Abort, 0, 0, pUpsert);


  VdbeNoopComment((v, "End DO UPDATE of UPSERT"));
}

#endif /* SQLITE_OMIT_UPSERT */
Added test/upsert5.test.


























































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# 2020-12-11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test cases for generalized UPSERT

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix upsert5

foreach {tn sql} {
  1 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b, c UNIQUE, d UNIQUE, e UNIQUE) }
  2 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE, d UNIQUE, e UNIQUE) }
  3 { CREATE TABLE t1(a INT PRIMARY KEY, b, c UNIQUE, d UNIQUE, e UNIQUE) WITHOUT ROWID}
  4 { CREATE TABLE t1(e UNIQUE, d UNIQUE, c UNIQUE, a INTEGER PRIMARY KEY, b) }
  5 { CREATE TABLE t1(e UNIQUE, d UNIQUE, c UNIQUE, a INT PRIMARY KEY, b) }
  6 { CREATE TABLE t1(e UNIQUE, d UNIQUE, c UNIQUE, a INT PRIMARY KEY, b) WITHOUT ROWID}
} {
  reset_db
  execsql $sql

  do_execsql_test 1.$tn.100 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,3,4,5)
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.101 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,4,5)
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.102 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,4,5)
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 d 3 4 5}
  do_execsql_test 1.$tn.103 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 e 3 4 5}
  do_execsql_test 1.$tn.200 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.201 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,3,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.202 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,3,4,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.203 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.204 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,4,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.210 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.211 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,4,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 d 3 4 5}
  do_execsql_test 1.$tn.212 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}
  do_execsql_test 1.$tn.213 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 e 3 4 5}
  do_execsql_test 1.$tn.214 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e'
      ON CONFLICT(a) DO UPDATE SET b='a';
    SELECT a,b,c,d,e FROM t1;
  } {1 e 3 4 5}
  do_execsql_test 1.$tn.215 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e'
      ON CONFLICT(a) DO UPDATE SET b='a';
    SELECT a,b,c,d,e FROM t1;
  } {1 e 3 4 5}
  do_execsql_test 1.$tn.216 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(e) DO UPDATE SET b='e'
      ON CONFLICT(a) DO UPDATE SET b='a';
    SELECT a,b,c,d,e FROM t1;
  } {1 a 3 4 5}

  do_execsql_test 1.$tn.300 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a1'
      ON CONFLICT(a) DO UPDATE SET b='a2'
      ON CONFLICT(a) DO UPDATE SET b='a3'
      ON CONFLICT(a) DO UPDATE SET b='a4'
      ON CONFLICT(a) DO UPDATE SET b='a5'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 a1 3 4 5}
  do_execsql_test 1.$tn.301 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT(a) DO UPDATE SET b='a1'
      ON CONFLICT(a) DO UPDATE SET b='a2'
      ON CONFLICT(a) DO UPDATE SET b='a3'
      ON CONFLICT(a) DO UPDATE SET b='a4'
      ON CONFLICT(a) DO UPDATE SET b='a5'
      ON CONFLICT(e) DO UPDATE SET b='e';
    SELECT a,b,c,d,e FROM t1;
  } {1 e 3 4 5}

  do_execsql_test 1.$tn.400 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.401 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.402 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.403 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.404 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,4,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.405 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,4,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 d 3 4 5}

  do_execsql_test 1.$tn.410 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.411 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.412 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,4,95)
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.413 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,94,95)
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}

  do_execsql_test 1.$tn.420 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO NOTHING
      ON CONFLICT(d) DO NOTHING
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.421 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO NOTHING
      ON CONFLICT(d) DO NOTHING
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 x 3 4 5}
  do_execsql_test 1.$tn.422 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,4,95)
      ON CONFLICT(c) DO NOTHING
      ON CONFLICT(d) DO NOTHING
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 2 3 4 5}
  do_execsql_test 1.$tn.423 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,94,95)
      ON CONFLICT(c) DO NOTHING
      ON CONFLICT(d) DO NOTHING
      ON CONFLICT DO UPDATE set b='x';
    SELECT a,b,c,d,e FROM t1;
  } {1 2 3 4 5}

  do_execsql_test 1.$tn.500 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 2 3 4 5}
  do_execsql_test 1.$tn.501 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,93,94,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 2 3 4 5}
  do_execsql_test 1.$tn.502 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 2 3 4 5}
  do_execsql_test 1.$tn.503 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,94,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.504 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(91,NULL,3,4,95)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 c 3 4 5}
  do_execsql_test 1.$tn.505 {
    DELETE FROM t1;
    INSERT INTO t1(a,b,c,d,e) VALUES(1,2,3,4,5);
    INSERT INTO t1(a,b,c,d,e) VALUES(1,NULL,93,4,5)
      ON CONFLICT(c) DO UPDATE SET b='c'
      ON CONFLICT(d) DO UPDATE SET b='d'
      ON CONFLICT DO NOTHING;
    SELECT a,b,c,d,e FROM t1;
  } {1 d 3 4 5}

}

finish_test