SQLite

Check-in [5cef400023]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Changes to completely remove all floating point ops if SQLITE_OMIT_FLOATING_POINT defined. Note that w/o fp, date/time, round, nan, etc. are all gone or limited in functionality. Updated some of the test scripts to support missing fp and 64-bit functionality. Ticket #3029. (CVS 6250)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 5cef400023205b55152b91441acc78f9cd8d58a9
User & Date: shane 2009-02-04 03:59:25.000
Context
2009-02-04
08:17
Fix a bug in malloc.test causing the exclusive permutation to fail. Changes to test code only. (CVS 6251) (check-in: 72745bde90 user: danielk1977 tags: trunk)
03:59
Changes to completely remove all floating point ops if SQLITE_OMIT_FLOATING_POINT defined. Note that w/o fp, date/time, round, nan, etc. are all gone or limited in functionality. Updated some of the test scripts to support missing fp and 64-bit functionality. Ticket #3029. (CVS 6250) (check-in: 5cef400023 user: shane tags: trunk)
01:49
Remove compiler warnings under MSVC. (CVS 6249) (check-in: 6301f08a2b user: shane tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/date.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.102 2009/01/30 17:27:44 drh Exp $
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: date.c,v 1.103 2009/02/04 03:59:25 shane Exp $
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
1037
1038
1039
1040
1041
1042
1043



1044
1045
1046

1047






1048
1049
1050
1051
1052
1053
1054
  sqlite3_value **argv
){
  time_t t;
  char *zFormat = (char *)sqlite3_user_data(context);
  sqlite3 *db;
  double rT;
  char zBuf[20];




  db = sqlite3_context_db_handle(context);
  sqlite3OsCurrentTime(db->pVfs, &rT);

  t = 86400.0*(rT - 2440587.5) + 0.5;






#ifdef HAVE_GMTIME_R
  {
    struct tm sNow;
    gmtime_r(&t, &sNow);
    strftime(zBuf, 20, zFormat, &sNow);
  }
#else







>
>
>



>

>
>
>
>
>
>







1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
  sqlite3_value **argv
){
  time_t t;
  char *zFormat = (char *)sqlite3_user_data(context);
  sqlite3 *db;
  double rT;
  char zBuf[20];

  UNUSED_PARAMETER(argc);
  UNUSED_PARAMETER(argv);

  db = sqlite3_context_db_handle(context);
  sqlite3OsCurrentTime(db->pVfs, &rT);
#ifndef SQLITE_OMIT_FLOATING_POINT
  t = 86400.0*(rT - 2440587.5) + 0.5;
#else
  /* without floating point support, rT will have
  ** already lost fractional day precision.
  */
  t = 86400 * (rT - 2440587) - 43200;
#endif
#ifdef HAVE_GMTIME_R
  {
    struct tm sNow;
    gmtime_r(&t, &sNow);
    strftime(zBuf, 20, zFormat, &sNow);
  }
#else
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.410 2009/01/20 16:53:40 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.411 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"

/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
      testcase( regFree1==0 );
      testcase( regFree2==0 );
      break;
    }
    case TK_UMINUS: {
      Expr *pLeft = pExpr->pLeft;
      assert( pLeft );
      if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
        if( pLeft->op==TK_FLOAT ){
          codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
        }else{
          codeInteger(v, pLeft, 1, target);
        }
      }else{
        regFree1 = r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
        testcase( regFree2==0 );
      }







<
|
|
|
|
<







1928
1929
1930
1931
1932
1933
1934

1935
1936
1937
1938

1939
1940
1941
1942
1943
1944
1945
      testcase( regFree1==0 );
      testcase( regFree2==0 );
      break;
    }
    case TK_UMINUS: {
      Expr *pLeft = pExpr->pLeft;
      assert( pLeft );

      if( pLeft->op==TK_FLOAT ){
        codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
      }else if( pLeft->op==TK_INTEGER ){
        codeInteger(v, pLeft, 1, target);

      }else{
        regFree1 = r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
        testcase( regFree2==0 );
      }
Changes to src/func.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.221 2009/02/03 15:50:34 drh Exp $
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"

/*







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This file contains the C functions that implement various SQL
** functions of SQLite.  
**
** There is only one exported symbol in this file - the function
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
** All other code has file scope.
**
** $Id: func.c,v 1.222 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#include "vdbeInt.h"

/*
239
240
241
242
243
244
245

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
    sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
  }
}

/*
** Implementation of the round() function
*/

static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  int n = 0;
  double r;
  char zBuf[500];  /* larger than the %f representation of the largest double */
  assert( argc==1 || argc==2 );
  if( argc==2 ){
    if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
    n = sqlite3_value_int(argv[1]);
    if( n>30 ) n = 30;
    if( n<0 ) n = 0;
  }
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  r = sqlite3_value_double(argv[0]);
  sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
  sqlite3AtoF(zBuf, &r);
  sqlite3_result_double(context, r);
}


/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *contextMalloc(sqlite3_context *context, i64 nByte){







>

















>







239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
  }
}

/*
** Implementation of the round() function
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  int n = 0;
  double r;
  char zBuf[500];  /* larger than the %f representation of the largest double */
  assert( argc==1 || argc==2 );
  if( argc==2 ){
    if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
    n = sqlite3_value_int(argv[1]);
    if( n>30 ) n = 30;
    if( n<0 ) n = 0;
  }
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
  r = sqlite3_value_double(argv[0]);
  sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
  sqlite3AtoF(zBuf, &r);
  sqlite3_result_double(context, r);
}
#endif

/*
** Allocate nByte bytes of space using sqlite3_malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed.
*/
static void *contextMalloc(sqlite3_context *context, i64 nByte){
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
  if( p && p->cnt>0 ){
    sqlite3_result_double(context, p->rSum/(double)p->cnt);
  }
}
static void totalFinalize(sqlite3_context *context){
  SumCtx *p;
  p = sqlite3_aggregate_context(context, 0);

  sqlite3_result_double(context, p ? p->rSum : 0.0);
}

/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;







>
|







1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
  if( p && p->cnt>0 ){
    sqlite3_result_double(context, p->rSum/(double)p->cnt);
  }
}
static void totalFinalize(sqlite3_context *context){
  SumCtx *p;
  p = sqlite3_aggregate_context(context, 0);
  /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
  sqlite3_result_double(context, p ? p->rSum : (double)0);
}

/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;
1374
1375
1376
1377
1378
1379
1380

1381
1382

1383
1384
1385
1386
1387
1388
1389
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
    FUNCTION(typeof,             1, 0, 0, typeofFunc       ),
    FUNCTION(length,             1, 0, 0, lengthFunc       ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),
    FUNCTION(abs,                1, 0, 0, absFunc          ),

    FUNCTION(round,              1, 0, 0, roundFunc        ),
    FUNCTION(round,              2, 0, 0, roundFunc        ),

    FUNCTION(upper,              1, 0, 0, upperFunc        ),
    FUNCTION(lower,              1, 0, 0, lowerFunc        ),
    FUNCTION(coalesce,           1, 0, 0, 0                ),
    FUNCTION(coalesce,          -1, 0, 0, ifnullFunc       ),
    FUNCTION(coalesce,           0, 0, 0, 0                ),
    FUNCTION(hex,                1, 0, 0, hexFunc          ),
    FUNCTION(ifnull,             2, 0, 1, ifnullFunc       ),







>


>







1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
    FUNCTION(max,                0, 1, 1, 0                ),
    AGGREGATE(max,               1, 1, 1, minmaxStep,      minMaxFinalize ),
    FUNCTION(typeof,             1, 0, 0, typeofFunc       ),
    FUNCTION(length,             1, 0, 0, lengthFunc       ),
    FUNCTION(substr,             2, 0, 0, substrFunc       ),
    FUNCTION(substr,             3, 0, 0, substrFunc       ),
    FUNCTION(abs,                1, 0, 0, absFunc          ),
#ifndef SQLITE_OMIT_FLOATING_POINT
    FUNCTION(round,              1, 0, 0, roundFunc        ),
    FUNCTION(round,              2, 0, 0, roundFunc        ),
#endif
    FUNCTION(upper,              1, 0, 0, upperFunc        ),
    FUNCTION(lower,              1, 0, 0, lowerFunc        ),
    FUNCTION(coalesce,           1, 0, 0, 0                ),
    FUNCTION(coalesce,          -1, 0, 0, ifnullFunc       ),
    FUNCTION(coalesce,           0, 0, 0, 0                ),
    FUNCTION(hex,                1, 0, 0, hexFunc          ),
    FUNCTION(ifnull,             2, 0, 1, ifnullFunc       ),
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.525 2009/02/03 16:51:25 danielk1977 Exp $
*/
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif
#ifdef SQLITE_ENABLE_RTREE







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.526 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"

#ifdef SQLITE_ENABLE_FTS3
# include "fts3.h"
#endif
#ifdef SQLITE_ENABLE_RTREE
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209

  /* The following is just a sanity check to make sure SQLite has
  ** been compiled correctly.  It is important to run this code, but
  ** we don't want to run it too often and soak up CPU cycles for no
  ** reason.  So we run it once during initialization.
  */
#ifndef NDEBUG

  /* This section of code's only "output" is via assert() statements. */
  if ( rc==SQLITE_OK ){
    u64 x = (((u64)1)<<63)-1;
    double y;
    assert(sizeof(x)==8);
    assert(sizeof(x)==sizeof(y));
    memcpy(&y, &x, 8);
    assert( sqlite3IsNaN(y) );
  }

#endif

  return rc;
}

/*
** Undo the effects of sqlite3_initialize().  Must not be called while







>









>







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

  /* The following is just a sanity check to make sure SQLite has
  ** been compiled correctly.  It is important to run this code, but
  ** we don't want to run it too often and soak up CPU cycles for no
  ** reason.  So we run it once during initialization.
  */
#ifndef NDEBUG
#ifndef SQLITE_OMIT_FLOATING_POINT
  /* This section of code's only "output" is via assert() statements. */
  if ( rc==SQLITE_OK ){
    u64 x = (((u64)1)<<63)-1;
    double y;
    assert(sizeof(x)==8);
    assert(sizeof(x)==sizeof(y));
    memcpy(&y, &x, 8);
    assert( sqlite3IsNaN(y) );
  }
#endif
#endif

  return rc;
}

/*
** Undo the effects of sqlite3_initialize().  Must not be called while
Changes to src/os_win.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.
**
** $Id: os_win.c,v 1.146 2009/01/30 05:59:11 shane Exp $
*/
#include "sqliteInt.h"
#if SQLITE_OS_WIN               /* This file is used for windows only */


/*
** A Note About Memory Allocation:







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to windows.
**
** $Id: os_win.c,v 1.147 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#if SQLITE_OS_WIN               /* This file is used for windows only */


/*
** A Note About Memory Allocation:
751
752
753
754
755
756
757

758
759
760
761
762
763
764
765
766
767
768

/*
** Make sure all writes to a particular file are committed to disk.
*/
static int winSync(sqlite3_file *id, int flags){
#ifndef SQLITE_NO_SYNC
  winFile *pFile = (winFile*)id;

#else
  UNUSED_PARAMETER(id);
#endif
  OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
#ifndef SQLITE_TEST
  UNUSED_PARAMETER(flags);
#else
  if( flags & SQLITE_SYNC_FULL ){
    sqlite3_fullsync_count++;
  }
  sqlite3_sync_count++;







>



<







751
752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
768

/*
** Make sure all writes to a particular file are committed to disk.
*/
static int winSync(sqlite3_file *id, int flags){
#ifndef SQLITE_NO_SYNC
  winFile *pFile = (winFile*)id;
  OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype);
#else
  UNUSED_PARAMETER(id);
#endif

#ifndef SQLITE_TEST
  UNUSED_PARAMETER(flags);
#else
  if( flags & SQLITE_SYNC_FULL ){
    sqlite3_fullsync_count++;
  }
  sqlite3_sync_count++;
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

1687








1688








1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
** return 0.  Return 1 if the time and date cannot be found.
*/
int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
  FILETIME ft;
  /* FILETIME structure is a 64-bit value representing the number of 
     100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). 
  */
  double now;
#if SQLITE_OS_WINCE
  SYSTEMTIME time;
  GetSystemTime(&time);
  /* if SystemTimeToFileTime() fails, it returns zero. */
  if (!SystemTimeToFileTime(&time,&ft)){
    return 1;
  }
#else
  GetSystemTimeAsFileTime( &ft );
#endif
  UNUSED_PARAMETER(pVfs);

  now = ((double)ft.dwHighDateTime) * 4294967296.0; 








  *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;








#ifdef SQLITE_TEST
  if( sqlite3_current_time ){
    *prNow = sqlite3_current_time/86400.0 + 2440587.5;
  }
#endif
  return 0;
}

/*
** The idea is that this function works like a combination of







|











>
|
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>


|







1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
** return 0.  Return 1 if the time and date cannot be found.
*/
int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){
  FILETIME ft;
  /* FILETIME structure is a 64-bit value representing the number of 
     100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). 
  */
  sqlite3_int64 timeW, timeF;
#if SQLITE_OS_WINCE
  SYSTEMTIME time;
  GetSystemTime(&time);
  /* if SystemTimeToFileTime() fails, it returns zero. */
  if (!SystemTimeToFileTime(&time,&ft)){
    return 1;
  }
#else
  GetSystemTimeAsFileTime( &ft );
#endif
  UNUSED_PARAMETER(pVfs);
#if defined(_MSC_VER)
  timeW = (((sqlite3_int64)ft.dwHighDateTime)*4294967296) + ft.dwLowDateTime;
  timeF = timeW % 864000000000;           /* fractional days (100-nanoseconds) */
  timeW = timeW / 864000000000;           /* whole days */
  timeW = timeW + 2305813;                /* add whole days (from 2305813.5) */
  timeF = timeF + 432000000000;           /* add half a day (from 2305813.5) */
  timeW = timeW + (timeF / 864000000000); /* add whole day if half day made one */
  timeF = timeF % 864000000000;           /* compute new fractional days */
  *prNow = (double)timeW + ((double)timeF / (double)864000000000);
#else
  timeW = (((sqlite3_int64)ft.dwHighDateTime)*4294967296LL) + ft.dwLowDateTime;
  timeF = timeW % 864000000000LL;           /* fractional days (100-nanoseconds) */
  timeW = timeW / 864000000000LL;           /* whole days */
  timeW = timeW + 2305813;                  /* add whole days (from 2305813.5) */
  timeF = timeF + 432000000000LL;           /* add half a day (from 2305813.5) */
  timeW = timeW + (timeF / 864000000000LL); /* add whole day if half day made one */
  timeF = timeF % 864000000000LL;           /* compute new fractional days */
  *prNow = (double)timeW + ((double)timeF / (double)864000000000LL);
#endif
#ifdef SQLITE_TEST
  if( sqlite3_current_time ){
    *prNow = ((double)sqlite3_current_time + (double)43200) / (double)86400 + (double)2440587;
  }
#endif
  return 0;
}

/*
** The idea is that this function works like a combination of
Changes to src/util.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.247 2009/01/20 16:53:41 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>


/*
** Routine needed to support the testcase() macro.
*/
#ifdef SQLITE_COVERAGE_TEST
void sqlite3Coverage(int x){
  static int dummy = 0;







|



<







10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
** $Id: util.c,v 1.248 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>


/*
** Routine needed to support the testcase() macro.
*/
#ifdef SQLITE_COVERAGE_TEST
void sqlite3Coverage(int x){
  static int dummy = 0;
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.813 2009/02/01 00:29:57 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.814 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
1224
1225
1226
1227
1228
1229
1230

1231
1232
1233
1234
1235
1236
1237
1238
    a = sqlite3VdbeRealValue(pIn1);
    b = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {

        if( a==0.0 ) goto arithmetic_result_is_null;
        b /= a;
        break;
      }
      default: {
        i64 ia = (i64)a;
        i64 ib = (i64)b;
        if( ia==0 ) goto arithmetic_result_is_null;







>
|







1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    a = sqlite3VdbeRealValue(pIn1);
    b = sqlite3VdbeRealValue(pIn2);
    switch( pOp->opcode ){
      case OP_Add:         b += a;       break;
      case OP_Subtract:    b -= a;       break;
      case OP_Multiply:    b *= a;       break;
      case OP_Divide: {
        /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
        if( a==(double)0 ) goto arithmetic_result_is_null;
        b /= a;
        break;
      }
      default: {
        i64 ia = (i64)a;
        i64 ib = (i64)b;
        if( ia==0 ) goto arithmetic_result_is_null;
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
case OP_If:                 /* jump, in1 */
case OP_IfNot: {            /* jump, in1 */
  int c;
  if( pIn1->flags & MEM_Null ){
    c = pOp->p3;
  }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
    c = sqlite3VdbeIntValue(pIn1);
#else
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  if( c ){
    pc = pOp->p2-1;







|







1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
case OP_If:                 /* jump, in1 */
case OP_IfNot: {            /* jump, in1 */
  int c;
  if( pIn1->flags & MEM_Null ){
    c = pOp->p3;
  }else{
#ifdef SQLITE_OMIT_FLOATING_POINT
    c = sqlite3VdbeIntValue(pIn1)!=0;
#else
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  if( c ){
    pc = pOp->p2-1;
Changes to src/vdbeapi.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to implement APIs that are part of the
** VDBE.
**
** $Id: vdbeapi.c,v 1.150 2008/12/10 18:03:47 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

#if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
/*
** The following structure contains pointers to the end points of a







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to implement APIs that are part of the
** VDBE.
**
** $Id: vdbeapi.c,v 1.151 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

#if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
/*
** The following structure contains pointers to the end points of a
748
749
750
751
752
753
754

755
756
757
758
759
760
761
762

  pVm = (Vdbe *)pStmt;
  if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
    sqlite3_mutex_enter(pVm->db->mutex);
    vals = sqlite3_data_count(pStmt);
    pOut = &pVm->pResultSet[i];
  }else{

    static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
    if( pVm->db ){
      sqlite3_mutex_enter(pVm->db->mutex);
      sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    }
    pOut = (Mem*)&nullMem;
  }
  return pOut;







>
|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

  pVm = (Vdbe *)pStmt;
  if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
    sqlite3_mutex_enter(pVm->db->mutex);
    vals = sqlite3_data_count(pStmt);
    pOut = &pVm->pResultSet[i];
  }else{
    /* ((double)0) In case of SQLITE_OMIT_FLOATING_POINT... */
    static const Mem nullMem = {{0}, (double)0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
    if( pVm->db ){
      sqlite3_mutex_enter(pVm->db->mutex);
      sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    }
    pOut = (Mem*)&nullMem;
  }
  return pOut;
Changes to src/vdbemem.c.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure.  A "Mem"
** stores a single value in the VDBE.  Mem is an opaque structure visible
** only within the VDBE.  Interface routines refer to a Mem using the
** name sqlite_value
**
** $Id: vdbemem.c,v 1.136 2009/02/03 15:39:01 drh Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure.  A "Mem"
** stores a single value in the VDBE.  Mem is an opaque structure visible
** only within the VDBE.  Interface routines refer to a Mem using the
** name sqlite_value
**
** $Id: vdbemem.c,v 1.137 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"
#include "vdbeInt.h"

/*
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
** P if required.
369
370
371
372
373
374
375

376
377
378
379

380
381
382
383
384
385

386
387
388
389
390
391
392
393
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){

    double val = 0.0;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){

      return 0.0;
    }
    assert( pMem->z );
    sqlite3AtoF(pMem->z, &val);
    return val;
  }else{

    return 0.0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/







>
|



>
|





>
|







369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
double sqlite3VdbeRealValue(Mem *pMem){
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
  if( pMem->flags & MEM_Real ){
    return pMem->r;
  }else if( pMem->flags & MEM_Int ){
    return (double)pMem->u.i;
  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    double val = (double)0;
    pMem->flags |= MEM_Str;
    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
       || sqlite3VdbeMemNulTerminate(pMem) ){
      /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
      return (double)0;
    }
    assert( pMem->z );
    sqlite3AtoF(pMem->z, &val);
    return val;
  }else{
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return (double)0;
  }
}

/*
** The MEM structure is already a MEM_Real.  Try to also make it a
** MEM_Int if we can.
*/
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
      pVal->u.i = -1 * pVal->u.i;

      pVal->r = -1.0 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->token.n>=3 );
    assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );







>
|







968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
    }else{
      sqlite3ValueApplyAffinity(pVal, affinity, enc);
    }
  }else if( op==TK_UMINUS ) {
    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
      pVal->u.i = -1 * pVal->u.i;
      /* (double)-1 In case of SQLITE_OMIT_FLOATING_POINT... */
      pVal->r = (double)-1 * pVal->r;
    }
  }
#ifndef SQLITE_OMIT_BLOB_LITERAL
  else if( op==TK_BLOB ){
    int nVal;
    assert( pExpr->token.n>=3 );
    assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is responsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.367 2009/02/04 01:49:30 shane Exp $
*/
#include "sqliteInt.h"

/*
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is responsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.368 2009/02/04 03:59:25 shane Exp $
*/
#include "sqliteInt.h"

/*
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
1543
1544
1545
1546
1547
1548
1549

1550
1551
1552
1553
1554
1555
1556
1557
    /* Allocate the sqlite3_index_info structure
    */
    pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                             + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                             + sizeof(*pIdxOrderBy)*nOrderBy );
    if( pIdxInfo==0 ){
      sqlite3ErrorMsg(pParse, "out of memory");

      return 0.0;
    }
    *ppIdxInfo = pIdxInfo;

    /* Initialize the structure.  The sqlite3_index_info structure contains
    ** many fields that are declared "const" to prevent xBestIndex from
    ** changing them.  We have to do some funky casting in order to
    ** initialize those fields.







>
|







1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
    /* Allocate the sqlite3_index_info structure
    */
    pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                             + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                             + sizeof(*pIdxOrderBy)*nOrderBy );
    if( pIdxInfo==0 ){
      sqlite3ErrorMsg(pParse, "out of memory");
      /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
      return (double)0;
    }
    *ppIdxInfo = pIdxInfo;

    /* Initialize the structure.  The sqlite3_index_info structure contains
    ** many fields that are declared "const" to prevent xBestIndex from
    ** changing them.  We have to do some funky casting in order to
    ** initialize those fields.
1646
1647
1648
1649
1650
1651
1652

1653
1654
1655
1656
1657
1658
1659
1660
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;

  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
  nOrderBy = pIdxInfo->nOrderBy;
  if( pIdxInfo->nOrderBy && !orderByUsable ){
    *(int*)&pIdxInfo->nOrderBy = 0;
  }

  (void)sqlite3SafetyOff(pParse->db);
  WHERETRACE(("xBestIndex for %s\n", pTab->zName));







>
|







1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
  if( pIdxInfo->needToFreeIdxStr ){
    sqlite3_free(pIdxInfo->idxStr);
  }
  pIdxInfo->idxStr = 0;
  pIdxInfo->idxNum = 0;
  pIdxInfo->needToFreeIdxStr = 0;
  pIdxInfo->orderByConsumed = 0;
  /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
  nOrderBy = pIdxInfo->nOrderBy;
  if( pIdxInfo->nOrderBy && !orderByUsable ){
    *(int*)&pIdxInfo->nOrderBy = 0;
  }

  (void)sqlite3SafetyOff(pParse->db);
  WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1675
1676
1677
1678
1679
1680
1681

1682
1683
1684
1685
1686
1687
1688
1689
  sqlite3DbFree(pParse->db, pVtab->zErrMsg);
  pVtab->zErrMsg = 0;

  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);

      return 0.0;
    }
  }

  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  return pIdxInfo->estimatedCost;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */







>
|







1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
  sqlite3DbFree(pParse->db, pVtab->zErrMsg);
  pVtab->zErrMsg = 0;

  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
      /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
      return (double)0;
    }
  }

  *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  return pIdxInfo->estimatedCost;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
3088
3089
3090
3091
3092
3093
3094

3095
3096
3097
3098
3099

3100
3101
3102
3103
3104
3105
3106
3107
                                       ppIdxInfo);
        sCost.plan.wsFlags = WHERE_VIRTUALTABLE;
        sCost.plan.u.pVtabIdx = pVtabIdx = *ppIdxInfo;
        if( pVtabIdx && pVtabIdx->orderByConsumed ){
          sCost.plan.wsFlags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
        }
        sCost.plan.nEq = 0;

        if( (SQLITE_BIG_DBL/2.0)<sCost.rCost ){
          /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
          ** inital value of lowestCost in this loop. If it is, then
          ** the (cost<lowestCost) test below will never be true.
          */ 

          sCost.rCost = (SQLITE_BIG_DBL/2.0);
        }
      }else 
#endif
      {
        bestIndex(pParse, pWC, pTabItem, notReady,
                  (i==0 && ppOrderBy) ? *ppOrderBy : 0, &sCost);
      }







>
|




>
|







3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
                                       ppIdxInfo);
        sCost.plan.wsFlags = WHERE_VIRTUALTABLE;
        sCost.plan.u.pVtabIdx = pVtabIdx = *ppIdxInfo;
        if( pVtabIdx && pVtabIdx->orderByConsumed ){
          sCost.plan.wsFlags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
        }
        sCost.plan.nEq = 0;
        /* (double)2 In case of SQLITE_OMIT_FLOATING_POINT... */
        if( (SQLITE_BIG_DBL/((double)2))<sCost.rCost ){
          /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
          ** inital value of lowestCost in this loop. If it is, then
          ** the (cost<lowestCost) test below will never be true.
          */ 
          /* (double)2 In case of SQLITE_OMIT_FLOATING_POINT... */
          sCost.rCost = (SQLITE_BIG_DBL/((double)2));
        }
      }else 
#endif
      {
        bestIndex(pParse, pWC, pTabItem, notReady,
                  (i==0 && ppOrderBy) ? *ppOrderBy : 0, &sCost);
      }
Changes to test/expr.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22






23
24
25
26
27
28
29
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing expressions.
#
# $Id: expr.test,v 1.66 2008/12/30 17:55:00 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table to work with.
#

execsql {CREATE TABLE test1(i1 int, i2 int, r1 real, r2 real, t1 text, t2 text)}
execsql {INSERT INTO test1 VALUES(1,2,1.1,2.2,'hello','world')}






proc test_expr {name settings expr result} {
  do_test $name [format {
    execsql {BEGIN; UPDATE test1 SET %s; SELECT %s FROM test1; ROLLBACK;}
  } $settings $expr] $result
}

test_expr expr-1.1 {i1=10, i2=20} {i1+i2} 30













|






>
|
|
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing expressions.
#
# $Id: expr.test,v 1.67 2009/02/04 03:59:25 shane Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table to work with.
#
ifcapable floatingpoint {
  execsql {CREATE TABLE test1(i1 int, i2 int, r1 real, r2 real, t1 text, t2 text)}
  execsql {INSERT INTO test1 VALUES(1,2,1.1,2.2,'hello','world')}
}
ifcapable !floatingpoint {
  execsql {CREATE TABLE test1(i1 int, i2 int, t1 text, t2 text)}
  execsql {INSERT INTO test1 VALUES(1,2,'hello','world')}
}

proc test_expr {name settings expr result} {
  do_test $name [format {
    execsql {BEGIN; UPDATE test1 SET %s; SELECT %s FROM test1; ROLLBACK;}
  } $settings $expr] $result
}

test_expr expr-1.1 {i1=10, i2=20} {i1+i2} 30
43
44
45
46
47
48
49

50
51

52
53
54
55
56
57
58
test_expr expr-1.15 {i1=20, i2=20} {i2<=i1} 1
test_expr expr-1.16 {i1=20, i2=20} {i2>i1} 0
test_expr expr-1.17 {i1=20, i2=20} {i2>=i1} 1
test_expr expr-1.18 {i1=20, i2=20} {i2!=i1} 0
test_expr expr-1.19 {i1=20, i2=20} {i2=i1} 1
test_expr expr-1.20 {i1=20, i2=20} {i2<>i1} 0
test_expr expr-1.21 {i1=20, i2=20} {i2==i1} 1

test_expr expr-1.22 {i1=1, i2=2, r1=3.0} {i1+i2*r1} {7.0}
test_expr expr-1.23 {i1=1, i2=2, r1=3.0} {(i1+i2)*r1} {9.0}

test_expr expr-1.24 {i1=1, i2=2} {min(i1,i2,i1+i2,i1-i2)} {-1}
test_expr expr-1.25 {i1=1, i2=2} {max(i1,i2,i1+i2,i1-i2)} {3}
test_expr expr-1.26 {i1=1, i2=2} {max(i1,i2,i1+i2,i1-i2)} {3}
test_expr expr-1.27 {i1=1, i2=2} {i1==1 AND i2=2} {1}
test_expr expr-1.28 {i1=1, i2=2} {i1=2 AND i2=1} {0}
test_expr expr-1.29 {i1=1, i2=2} {i1=1 AND i2=1} {0}
test_expr expr-1.30 {i1=1, i2=2} {i1=2 AND i2=2} {0}







>
|
|
>







50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
test_expr expr-1.15 {i1=20, i2=20} {i2<=i1} 1
test_expr expr-1.16 {i1=20, i2=20} {i2>i1} 0
test_expr expr-1.17 {i1=20, i2=20} {i2>=i1} 1
test_expr expr-1.18 {i1=20, i2=20} {i2!=i1} 0
test_expr expr-1.19 {i1=20, i2=20} {i2=i1} 1
test_expr expr-1.20 {i1=20, i2=20} {i2<>i1} 0
test_expr expr-1.21 {i1=20, i2=20} {i2==i1} 1
ifcapable floatingpoint {
  test_expr expr-1.22 {i1=1, i2=2, r1=3.0} {i1+i2*r1} {7.0}
  test_expr expr-1.23 {i1=1, i2=2, r1=3.0} {(i1+i2)*r1} {9.0}
}
test_expr expr-1.24 {i1=1, i2=2} {min(i1,i2,i1+i2,i1-i2)} {-1}
test_expr expr-1.25 {i1=1, i2=2} {max(i1,i2,i1+i2,i1-i2)} {3}
test_expr expr-1.26 {i1=1, i2=2} {max(i1,i2,i1+i2,i1-i2)} {3}
test_expr expr-1.27 {i1=1, i2=2} {i1==1 AND i2=2} {1}
test_expr expr-1.28 {i1=1, i2=2} {i1=2 AND i2=1} {0}
test_expr expr-1.29 {i1=1, i2=2} {i1=1 AND i2=1} {0}
test_expr expr-1.30 {i1=1, i2=2} {i1=2 AND i2=2} {0}
130
131
132
133
134
135
136

137
138


139
140
141
142


143


144
145
146


147
148


149
150
151

152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185
test_expr expr-1.98 {i1=NULL, i2=NULL} {coalesce(i1|i2,99)} 99
test_expr expr-1.99 {i1=32, i2=NULL} {coalesce(i1&i2,99)} 99
test_expr expr-1.100 {i1=1, i2=''} {i1=i2} 0
test_expr expr-1.101 {i1=0, i2=''} {i1=i2} 0

# Check for proper handling of 64-bit integer values.
#

test_expr expr-1.102 {i1=40, i2=1} {i2<<i1} 1099511627776



test_expr expr-1.103 {i1=0} {(-2147483648.0 % -1)} 0.0
test_expr expr-1.104 {i1=0} {(-9223372036854775808.0 % -1)} 0.0
test_expr expr-1.105 {i1=0} {(-9223372036854775808.0 / -1)>1} 1



test_expr expr-1.106 {i1=0} {(1<<63)/-1} -9223372036854775808


test_expr expr-1.107 {i1=0} {(1<<63)%-1} 0
test_expr expr-1.108 {i1=0} {1%0} {{}}
test_expr expr-1.109 {i1=0} {1/0} {{}}


test_expr expr-1.110 {i1=0} {-9223372036854775807/-1} 9223372036854775807



test_expr expr-2.1 {r1=1.23, r2=2.34} {r1+r2} 3.57
test_expr expr-2.2 {r1=1.23, r2=2.34} {r1-r2} -1.11
test_expr expr-2.3 {r1=1.23, r2=2.34} {r1*r2} 2.8782

set tcl_precision 15

test_expr expr-2.4 {r1=1.23, r2=2.34} {r1/r2} 0.525641025641026
test_expr expr-2.5 {r1=1.23, r2=2.34} {r2/r1} 1.90243902439024
test_expr expr-2.6 {r1=1.23, r2=2.34} {r2<r1} 0
test_expr expr-2.7 {r1=1.23, r2=2.34} {r2<=r1} 0
test_expr expr-2.8 {r1=1.23, r2=2.34} {r2>r1} 1
test_expr expr-2.9 {r1=1.23, r2=2.34} {r2>=r1} 1
test_expr expr-2.10 {r1=1.23, r2=2.34} {r2!=r1} 1
test_expr expr-2.11 {r1=1.23, r2=2.34} {r2=r1} 0
test_expr expr-2.12 {r1=1.23, r2=2.34} {r2<>r1} 1
test_expr expr-2.13 {r1=1.23, r2=2.34} {r2==r1} 0
test_expr expr-2.14 {r1=2.34, r2=2.34} {r2<r1} 0
test_expr expr-2.15 {r1=2.34, r2=2.34} {r2<=r1} 1
test_expr expr-2.16 {r1=2.34, r2=2.34} {r2>r1} 0
test_expr expr-2.17 {r1=2.34, r2=2.34} {r2>=r1} 1
test_expr expr-2.18 {r1=2.34, r2=2.34} {r2!=r1} 0
test_expr expr-2.19 {r1=2.34, r2=2.34} {r2=r1} 1
test_expr expr-2.20 {r1=2.34, r2=2.34} {r2<>r1} 0
test_expr expr-2.21 {r1=2.34, r2=2.34} {r2==r1} 1
test_expr expr-2.22 {r1=1.23, r2=2.34} {min(r1,r2,r1+r2,r1-r2)} {-1.11}
test_expr expr-2.23 {r1=1.23, r2=2.34} {max(r1,r2,r1+r2,r1-r2)} {3.57}
test_expr expr-2.24 {r1=25.0, r2=11.0} {r1%r2} 3.0
test_expr expr-2.25 {r1=1.23, r2=NULL} {coalesce(r1+r2,99.0)} 99.0
test_expr expr-2.26 {r1=1e300, r2=1e300} {coalesce((r1*r2)*0.0,99.0)} 99.0
test_expr expr-2.26b {r1=1e300, r2=-1e300} {coalesce((r1*r2)*0.0,99.0)} 99.0
test_expr expr-2.27 {r1=1.1, r2=0.0} {r1/r2} {{}}
test_expr expr-2.28 {r1=1.1, r2=0.0} {r1%r2} {{}}


test_expr expr-3.1 {t1='abc', t2='xyz'} {t1<t2} 1
test_expr expr-3.2 {t1='xyz', t2='abc'} {t1<t2} 0
test_expr expr-3.3 {t1='abc', t2='abc'} {t1<t2} 0
test_expr expr-3.4 {t1='abc', t2='xyz'} {t1<=t2} 1
test_expr expr-3.5 {t1='xyz', t2='abc'} {t1<=t2} 0
test_expr expr-3.6 {t1='abc', t2='abc'} {t1<=t2} 1







>
|
|
>
>
|
|
|
|
>
>
|
>
>



>
>
|
|
>
>
|
|
|
>

>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
test_expr expr-1.98 {i1=NULL, i2=NULL} {coalesce(i1|i2,99)} 99
test_expr expr-1.99 {i1=32, i2=NULL} {coalesce(i1&i2,99)} 99
test_expr expr-1.100 {i1=1, i2=''} {i1=i2} 0
test_expr expr-1.101 {i1=0, i2=''} {i1=i2} 0

# Check for proper handling of 64-bit integer values.
#
if {[working_64bit_int]} {
  test_expr expr-1.102 {i1=40, i2=1} {i2<<i1} 1099511627776
}

ifcapable floatingpoint {
  test_expr expr-1.103 {i1=0} {(-2147483648.0 % -1)} 0.0
  test_expr expr-1.104 {i1=0} {(-9223372036854775808.0 % -1)} 0.0
  test_expr expr-1.105 {i1=0} {(-9223372036854775808.0 / -1)>1} 1
}

if {[working_64bit_int]} {
  test_expr expr-1.106 {i1=0} {(1<<63)/-1} -9223372036854775808
}

test_expr expr-1.107 {i1=0} {(1<<63)%-1} 0
test_expr expr-1.108 {i1=0} {1%0} {{}}
test_expr expr-1.109 {i1=0} {1/0} {{}}

if {[working_64bit_int]} {
  test_expr expr-1.110 {i1=0} {-9223372036854775807/-1} 9223372036854775807
}

ifcapable floatingpoint {
  test_expr expr-2.1 {r1=1.23, r2=2.34} {r1+r2} 3.57
  test_expr expr-2.2 {r1=1.23, r2=2.34} {r1-r2} -1.11
  test_expr expr-2.3 {r1=1.23, r2=2.34} {r1*r2} 2.8782
}
set tcl_precision 15
ifcapable floatingpoint {
  test_expr expr-2.4 {r1=1.23, r2=2.34} {r1/r2} 0.525641025641026
  test_expr expr-2.5 {r1=1.23, r2=2.34} {r2/r1} 1.90243902439024
  test_expr expr-2.6 {r1=1.23, r2=2.34} {r2<r1} 0
  test_expr expr-2.7 {r1=1.23, r2=2.34} {r2<=r1} 0
  test_expr expr-2.8 {r1=1.23, r2=2.34} {r2>r1} 1
  test_expr expr-2.9 {r1=1.23, r2=2.34} {r2>=r1} 1
  test_expr expr-2.10 {r1=1.23, r2=2.34} {r2!=r1} 1
  test_expr expr-2.11 {r1=1.23, r2=2.34} {r2=r1} 0
  test_expr expr-2.12 {r1=1.23, r2=2.34} {r2<>r1} 1
  test_expr expr-2.13 {r1=1.23, r2=2.34} {r2==r1} 0
  test_expr expr-2.14 {r1=2.34, r2=2.34} {r2<r1} 0
  test_expr expr-2.15 {r1=2.34, r2=2.34} {r2<=r1} 1
  test_expr expr-2.16 {r1=2.34, r2=2.34} {r2>r1} 0
  test_expr expr-2.17 {r1=2.34, r2=2.34} {r2>=r1} 1
  test_expr expr-2.18 {r1=2.34, r2=2.34} {r2!=r1} 0
  test_expr expr-2.19 {r1=2.34, r2=2.34} {r2=r1} 1
  test_expr expr-2.20 {r1=2.34, r2=2.34} {r2<>r1} 0
  test_expr expr-2.21 {r1=2.34, r2=2.34} {r2==r1} 1
  test_expr expr-2.22 {r1=1.23, r2=2.34} {min(r1,r2,r1+r2,r1-r2)} {-1.11}
  test_expr expr-2.23 {r1=1.23, r2=2.34} {max(r1,r2,r1+r2,r1-r2)} {3.57}
  test_expr expr-2.24 {r1=25.0, r2=11.0} {r1%r2} 3.0
  test_expr expr-2.25 {r1=1.23, r2=NULL} {coalesce(r1+r2,99.0)} 99.0
  test_expr expr-2.26 {r1=1e300, r2=1e300} {coalesce((r1*r2)*0.0,99.0)} 99.0
  test_expr expr-2.26b {r1=1e300, r2=-1e300} {coalesce((r1*r2)*0.0,99.0)} 99.0
  test_expr expr-2.27 {r1=1.1, r2=0.0} {r1/r2} {{}}
  test_expr expr-2.28 {r1=1.1, r2=0.0} {r1%r2} {{}}
}

test_expr expr-3.1 {t1='abc', t2='xyz'} {t1<t2} 1
test_expr expr-3.2 {t1='xyz', t2='abc'} {t1<t2} 0
test_expr expr-3.3 {t1='abc', t2='abc'} {t1<t2} 0
test_expr expr-3.4 {t1='abc', t2='xyz'} {t1<=t2} 1
test_expr expr-3.5 {t1='xyz', t2='abc'} {t1<=t2} 0
test_expr expr-3.6 {t1='abc', t2='abc'} {t1<=t2} 1
229
230
231
232
233
234
235


236
237
238
239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
test_expr expr-4.3 {t1='abc', t2='Bbc'} {t1<t2} 0
test_expr expr-4.4 {t1='abc', t2='Bbc'} {t1>t2} 1
test_expr expr-4.5 {t1='0', t2='0.0'} {t1==t2} 0
test_expr expr-4.6 {t1='0.000', t2='0.0'} {t1==t2} 0
test_expr expr-4.7 {t1=' 0.000', t2=' 0.0'} {t1==t2} 0
test_expr expr-4.8 {t1='0.0', t2='abc'} {t1<t2} 1
test_expr expr-4.9 {t1='0.0', t2='abc'} {t1==t2} 0


test_expr expr-4.10 {r1='0.0', r2='abc'} {r1>r2} 0
test_expr expr-4.11 {r1='abc', r2='Abc'} {r1<r2} 0
test_expr expr-4.12 {r1='abc', r2='Abc'} {r1>r2} 1
test_expr expr-4.13 {r1='abc', r2='Bbc'} {r1<r2} 0
test_expr expr-4.14 {r1='abc', r2='Bbc'} {r1>r2} 1
test_expr expr-4.15 {r1='0', r2='0.0'} {r1==r2} 1
test_expr expr-4.16 {r1='0.000', r2='0.0'} {r1==r2} 1
test_expr expr-4.17 {r1=' 0.000', r2=' 0.0'} {r1==r2} 0
test_expr expr-4.18 {r1='0.0', r2='abc'} {r1<r2} 1
test_expr expr-4.19 {r1='0.0', r2='abc'} {r1==r2} 0
test_expr expr-4.20 {r1='0.0', r2='abc'} {r1>r2} 0


# CSL is true if LIKE is case sensitive and false if not.
# NCSL is the opposite.  Use these variables as the result
# on operations where case makes a difference.
set CSL $sqlite_options(casesensitivelike)
set NCSL [expr {!$CSL}]








>
>
|
|
|
|
|
|
|
|
|
|
|
>







252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
test_expr expr-4.3 {t1='abc', t2='Bbc'} {t1<t2} 0
test_expr expr-4.4 {t1='abc', t2='Bbc'} {t1>t2} 1
test_expr expr-4.5 {t1='0', t2='0.0'} {t1==t2} 0
test_expr expr-4.6 {t1='0.000', t2='0.0'} {t1==t2} 0
test_expr expr-4.7 {t1=' 0.000', t2=' 0.0'} {t1==t2} 0
test_expr expr-4.8 {t1='0.0', t2='abc'} {t1<t2} 1
test_expr expr-4.9 {t1='0.0', t2='abc'} {t1==t2} 0

ifcapable floatingpoint {
  test_expr expr-4.10 {r1='0.0', r2='abc'} {r1>r2} 0
  test_expr expr-4.11 {r1='abc', r2='Abc'} {r1<r2} 0
  test_expr expr-4.12 {r1='abc', r2='Abc'} {r1>r2} 1
  test_expr expr-4.13 {r1='abc', r2='Bbc'} {r1<r2} 0
  test_expr expr-4.14 {r1='abc', r2='Bbc'} {r1>r2} 1
  test_expr expr-4.15 {r1='0', r2='0.0'} {r1==r2} 1
  test_expr expr-4.16 {r1='0.000', r2='0.0'} {r1==r2} 1
  test_expr expr-4.17 {r1=' 0.000', r2=' 0.0'} {r1==r2} 0
  test_expr expr-4.18 {r1='0.0', r2='abc'} {r1<r2} 1
  test_expr expr-4.19 {r1='0.0', r2='abc'} {r1==r2} 0
  test_expr expr-4.20 {r1='0.0', r2='abc'} {r1>r2} 0
}

# CSL is true if LIKE is case sensitive and false if not.
# NCSL is the opposite.  Use these variables as the result
# on operations where case makes a difference.
set CSL $sqlite_options(casesensitivelike)
set NCSL [expr {!$CSL}]

571
572
573
574
575
576
577

578

579
580
581
582
583
584
585
test_expr2 expr-7.33 {(b=0 OR a<0) AND a IS NULL} {{}}
test_expr2 expr-7.34 {(a<0 AND b=0) AND a IS NULL} {}
test_expr2 expr-7.35 {(b=0 AND a<0) AND a IS NULL} {}
test_expr2 expr-7.36 {a<2 OR (a<0 OR b=0)} {{} 1}
test_expr2 expr-7.37 {a<2 OR (b=0 OR a<0)} {{} 1}
test_expr2 expr-7.38 {a<2 OR (a<0 AND b=0)} {1}
test_expr2 expr-7.39 {a<2 OR (b=0 AND a<0)} {1}

test_expr2 expr-7.40 {((a<2 OR a IS NULL) AND b<3) OR b>1e10} {{} 1}

test_expr2 expr-7.41 {a BETWEEN -1 AND 1} {1}
test_expr2 expr-7.42 {a NOT BETWEEN 2 AND 100} {1}
test_expr2 expr-7.43 {(b+1234)||'this is a string that is at least 32 characters long' BETWEEN 1 AND 2} {}
test_expr2 expr-7.44 {123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a BETWEEN '123a' AND '123b'} {}
test_expr2 expr-7.45 {((123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a) BETWEEN '123a' AND '123b')<0} {}
test_expr2 expr-7.46 {((123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a) BETWEEN '123a' AND '123z')>0} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}








>
|
>







597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
test_expr2 expr-7.33 {(b=0 OR a<0) AND a IS NULL} {{}}
test_expr2 expr-7.34 {(a<0 AND b=0) AND a IS NULL} {}
test_expr2 expr-7.35 {(b=0 AND a<0) AND a IS NULL} {}
test_expr2 expr-7.36 {a<2 OR (a<0 OR b=0)} {{} 1}
test_expr2 expr-7.37 {a<2 OR (b=0 OR a<0)} {{} 1}
test_expr2 expr-7.38 {a<2 OR (a<0 AND b=0)} {1}
test_expr2 expr-7.39 {a<2 OR (b=0 AND a<0)} {1}
ifcapable floatingpoint {
  test_expr2 expr-7.40 {((a<2 OR a IS NULL) AND b<3) OR b>1e10} {{} 1}
}
test_expr2 expr-7.41 {a BETWEEN -1 AND 1} {1}
test_expr2 expr-7.42 {a NOT BETWEEN 2 AND 100} {1}
test_expr2 expr-7.43 {(b+1234)||'this is a string that is at least 32 characters long' BETWEEN 1 AND 2} {}
test_expr2 expr-7.44 {123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a BETWEEN '123a' AND '123b'} {}
test_expr2 expr-7.45 {((123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a) BETWEEN '123a' AND '123b')<0} {}
test_expr2 expr-7.46 {((123||'xabcdefghijklmnopqrstuvwyxz01234567890'||a) BETWEEN '123a' AND '123z')>0} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}

610
611
612
613
614
615
616

617

618

619
620
621
622
623

624
625
626
627
628
629
630
631
632
633

634
635
636
637
638
639
640
641
642
643
644
645
646

647
648
649

650
651
652
653
654
655
656
test_expr2 expr-7.65 {b = abs(+-2)}                   {1}
test_expr2 expr-7.66 {b = abs(++-2)}                  {1}
test_expr2 expr-7.67 {b = abs(+-+-2)}                 {1}
test_expr2 expr-7.68 {b = abs(+-++-2)}                {1}
test_expr2 expr-7.69 {b = abs(++++-2)}                {1}
test_expr2 expr-7.70 {b = 5 - abs(+3)}                {1}
test_expr2 expr-7.71 {b = 5 - abs(-3)}                {1}

test_expr2 expr-7.72 {b = abs(-2.0)}                  {1}

test_expr2 expr-7.73 {b = 6 - abs(-a)}                {2}

test_expr2 expr-7.74 {b = abs(8.0)}                   {3}


# Test the CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP expressions.
#

set sqlite_current_time 1157124849
do_test expr-8.1 {
  execsql {SELECT CURRENT_TIME}
} {15:34:09}
do_test expr-8.2 {
  execsql {SELECT CURRENT_DATE}
} {2006-09-01}
do_test expr-8.3 {
  execsql {SELECT CURRENT_TIMESTAMP}
} {{2006-09-01 15:34:09}}

ifcapable datetime {
  do_test expr-8.4 {
    execsql {SELECT CURRENT_TIME==time('now');}
  } 1
  do_test expr-8.5 {
    execsql {SELECT CURRENT_DATE==date('now');}
  } 1
  do_test expr-8.6 {
    execsql {SELECT CURRENT_TIMESTAMP==datetime('now');}
  } 1
}
set sqlite_current_time 0


do_test expr-9.1 {
  execsql {SELECT round(-('-'||'123'))}
} 123.0


# Test an error message that can be generated by the LIKE expression
do_test expr-10.1 {
  catchsql {SELECT 'abc' LIKE 'abc' ESCAPE ''}
} {1 {ESCAPE expression must be a single character}}
do_test expr-10.2 {
  catchsql {SELECT 'abc' LIKE 'abc' ESCAPE 'ab'}







>
|
>

>
|
|



>
|
|
|
|
|
|
|
|
|
|
>













>
|
|
|
>







638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
test_expr2 expr-7.65 {b = abs(+-2)}                   {1}
test_expr2 expr-7.66 {b = abs(++-2)}                  {1}
test_expr2 expr-7.67 {b = abs(+-+-2)}                 {1}
test_expr2 expr-7.68 {b = abs(+-++-2)}                {1}
test_expr2 expr-7.69 {b = abs(++++-2)}                {1}
test_expr2 expr-7.70 {b = 5 - abs(+3)}                {1}
test_expr2 expr-7.71 {b = 5 - abs(-3)}                {1}
ifcapable floatingpoint {
  test_expr2 expr-7.72 {b = abs(-2.0)}                  {1}
}
test_expr2 expr-7.73 {b = 6 - abs(-a)}                {2}
ifcapable floatingpoint {
  test_expr2 expr-7.74 {b = abs(8.0)}                   {3}
}

# Test the CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP expressions.
#
ifcapable {floatingpoint} {
  set sqlite_current_time 1157124849
  do_test expr-8.1 {
    execsql {SELECT CURRENT_TIME}
  } {15:34:09}
  do_test expr-8.2 {
    execsql {SELECT CURRENT_DATE}
  } {2006-09-01}
  do_test expr-8.3 {
    execsql {SELECT CURRENT_TIMESTAMP}
  } {{2006-09-01 15:34:09}}
}
ifcapable datetime {
  do_test expr-8.4 {
    execsql {SELECT CURRENT_TIME==time('now');}
  } 1
  do_test expr-8.5 {
    execsql {SELECT CURRENT_DATE==date('now');}
  } 1
  do_test expr-8.6 {
    execsql {SELECT CURRENT_TIMESTAMP==datetime('now');}
  } 1
}
set sqlite_current_time 0

ifcapable floatingpoint {
  do_test expr-9.1 {
    execsql {SELECT round(-('-'||'123'))}
  } 123.0
}

# Test an error message that can be generated by the LIKE expression
do_test expr-10.1 {
  catchsql {SELECT 'abc' LIKE 'abc' ESCAPE ''}
} {1 {ESCAPE expression must be a single character}}
do_test expr-10.2 {
  catchsql {SELECT 'abc' LIKE 'abc' ESCAPE 'ab'}
685
686
687
688
689
690
691

692
693
694
695
696
697

698
699
700
701
702
703
704
705
706
707
708
709
710
711

712
713
714
715
716
717

718
719

720
721
722
723
724
725
726
727
728
729
730

731
732

733
734
735
736
737
738
739
740
741
742

743
744
745
746
747
748
749
} {real}
do_test expr-11.11 {
  execsql {SELECT typeof(-9223372036854775808)}
} {integer}
do_test expr-11.12 {
  execsql {SELECT typeof(-00000009223372036854775808)}
} {integer}

do_test expr-11.13 {
  execsql {SELECT typeof(-9223372036854775809)}
} {real}
do_test expr-11.14 {
  execsql {SELECT typeof(-00000009223372036854775809)}
} {real}


# These two statements used to leak memory (because of missing %destructor
# directives in parse.y).
do_test expr-12.1 {
  catchsql {
    SELECT (CASE a>4 THEN 1 ELSE 0 END) FROM test1;
  }
} {1 {near "THEN": syntax error}}
do_test expr-12.2 {
  catchsql {
    SELECT (CASE WHEN a>4 THEN 1 ELSE 0) FROM test1;
  }
} {1 {near ")": syntax error}}


do_test expr-13.1 {
  execsql {
    SELECT 12345678901234567890;
  }
} {1.23456789012346e+19}


# Implicit String->Integer conversion is used when possible.
#

do_test expr-13.2 {
  execsql {
    SELECT 0+'9223372036854775807'
  }
} {9223372036854775807}
do_test expr-13.3 {
  execsql {
    SELECT '9223372036854775807'+0
  }
} {9223372036854775807}


# If the value is too large, use String->Float conversion.
#

do_test expr-13.4 {
  execsql {
    SELECT 0+'9223372036854775808'
  }
} {9.22337203685478e+18}
do_test expr-13.5 {
  execsql {
    SELECT '9223372036854775808'+0
  }
} {9.22337203685478e+18}


# Use String->float conversion if the value is explicitly a floating
# point value.
#
do_test expr-13.6 {
  execsql {
    SELECT 0+'9223372036854775807.0'







>
|
|
|
|
|
|
>














>
|
|
|
|
|
|
>


>
|
|
|
|
|
|
|
|
|
|
|
>


>
|
|
|
|
|
|
|
|
|
|
>







720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
} {real}
do_test expr-11.11 {
  execsql {SELECT typeof(-9223372036854775808)}
} {integer}
do_test expr-11.12 {
  execsql {SELECT typeof(-00000009223372036854775808)}
} {integer}
ifcapable floatingpoint {
  do_test expr-11.13 {
    execsql {SELECT typeof(-9223372036854775809)}
  } {real}
  do_test expr-11.14 {
    execsql {SELECT typeof(-00000009223372036854775809)}
  } {real}
}

# These two statements used to leak memory (because of missing %destructor
# directives in parse.y).
do_test expr-12.1 {
  catchsql {
    SELECT (CASE a>4 THEN 1 ELSE 0 END) FROM test1;
  }
} {1 {near "THEN": syntax error}}
do_test expr-12.2 {
  catchsql {
    SELECT (CASE WHEN a>4 THEN 1 ELSE 0) FROM test1;
  }
} {1 {near ")": syntax error}}

ifcapable floatingpoint {
  do_test expr-13.1 {
    execsql {
      SELECT 12345678901234567890;
    }
  } {1.23456789012346e+19}
}

# Implicit String->Integer conversion is used when possible.
#
if {[working_64bit_int]} {
  do_test expr-13.2 {
    execsql {
      SELECT 0+'9223372036854775807'
    }
  } {9223372036854775807}
  do_test expr-13.3 {
    execsql {
      SELECT '9223372036854775807'+0
    }
  } {9223372036854775807}
}

# If the value is too large, use String->Float conversion.
#
ifcapable floatingpoint {
  do_test expr-13.4 {
    execsql {
      SELECT 0+'9223372036854775808'
    }
  } {9.22337203685478e+18}
  do_test expr-13.5 {
    execsql {
      SELECT '9223372036854775808'+0
    }
  } {9.22337203685478e+18}
}

# Use String->float conversion if the value is explicitly a floating
# point value.
#
do_test expr-13.6 {
  execsql {
    SELECT 0+'9223372036854775807.0'
Changes to test/func.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing built-in functions.
#
# $Id: func.test,v 1.90 2009/02/02 21:57:05 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table to work with.
#
do_test func-0.0 {













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing built-in functions.
#
# $Id: func.test,v 1.91 2009/02/04 03:59:25 shane Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Create a table to work with.
#
do_test func-0.0 {
145
146
147
148
149
150
151

152
153
154
155











156
157
158
159
160

161
162
163

164
165
166
167
168
169











170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209



210
211
212
213
214
215
216
217
  execsql {SELECT t1 FROM tbl1}
} {this program is free software}

} ;# End \u1234!=u1234

# Test the abs() and round() functions.
#

do_test func-4.1 {
  execsql {
    CREATE TABLE t1(a,b,c);
    INSERT INTO t1 VALUES(1,2,3);











    INSERT INTO t1 VALUES(2,1.2345678901234,-12345.67890);
    INSERT INTO t1 VALUES(3,-2,-5);
  }
  catchsql {SELECT abs(a,b) FROM t1}
} {1 {wrong number of arguments to function abs()}}

do_test func-4.2 {
  catchsql {SELECT abs() FROM t1}
} {1 {wrong number of arguments to function abs()}}

do_test func-4.3 {
  catchsql {SELECT abs(b) FROM t1 ORDER BY a}
} {0 {2 1.2345678901234 2}}
do_test func-4.4 {
  catchsql {SELECT abs(c) FROM t1 ORDER BY a}
} {0 {3 12345.6789 5}}











do_test func-4.4.1 {
  execsql {SELECT abs(a) FROM t2}
} {1 {} 345 {} 67890}
do_test func-4.4.2 {
  execsql {SELECT abs(t1) FROM tbl1}
} {0.0 0.0 0.0 0.0 0.0}


do_test func-4.5 {
  catchsql {SELECT round(a,b,c) FROM t1}
} {1 {wrong number of arguments to function round()}}
do_test func-4.6 {
  catchsql {SELECT round(b,2) FROM t1 ORDER BY b}
} {0 {-2.0 1.23 2.0}}
do_test func-4.7 {
  catchsql {SELECT round(b,0) FROM t1 ORDER BY a}
} {0 {2.0 1.0 -2.0}}
do_test func-4.8 {
  catchsql {SELECT round(c) FROM t1 ORDER BY a}
} {0 {3.0 -12346.0 -5.0}}
do_test func-4.9 {
  catchsql {SELECT round(c,a) FROM t1 ORDER BY a}
} {0 {3.0 -12345.68 -5.0}}
do_test func-4.10 {
  catchsql {SELECT 'x' || round(c,a) || 'y' FROM t1 ORDER BY a}
} {0 {x3.0y x-12345.68y x-5.0y}}
do_test func-4.11 {
  catchsql {SELECT round() FROM t1 ORDER BY a}
} {1 {wrong number of arguments to function round()}}
do_test func-4.12 {
  execsql {SELECT coalesce(round(a,2),'nil') FROM t2}
} {1.0 nil 345.0 nil 67890.0}
do_test func-4.13 {
  execsql {SELECT round(t1,2) FROM tbl1}
} {0.0 0.0 0.0 0.0 0.0}
do_test func-4.14 {
  execsql {SELECT typeof(round(5.1,1));}
} {real}
do_test func-4.15 {
  execsql {SELECT typeof(round(5.1));}
} {real}





# Test the upper() and lower() functions
#
do_test func-5.1 {
  execsql {SELECT upper(t1) FROM tbl1}
} {THIS PROGRAM IS FREE SOFTWARE}
do_test func-5.2 {







>
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
>



>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
|







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  execsql {SELECT t1 FROM tbl1}
} {this program is free software}

} ;# End \u1234!=u1234

# Test the abs() and round() functions.
#
ifcapable !floatingpoint {
  do_test func-4.1 {
    execsql {
      CREATE TABLE t1(a,b,c);
      INSERT INTO t1 VALUES(1,2,3);
      INSERT INTO t1 VALUES(2,12345678901234,-1234567890);
      INSERT INTO t1 VALUES(3,-2,-5);
    }
    catchsql {SELECT abs(a,b) FROM t1}
  } {1 {wrong number of arguments to function abs()}}
}
ifcapable floatingpoint {
  do_test func-4.1 {
    execsql {
      CREATE TABLE t1(a,b,c);
      INSERT INTO t1 VALUES(1,2,3);
      INSERT INTO t1 VALUES(2,1.2345678901234,-12345.67890);
      INSERT INTO t1 VALUES(3,-2,-5);
    }
    catchsql {SELECT abs(a,b) FROM t1}
  } {1 {wrong number of arguments to function abs()}}
}
do_test func-4.2 {
  catchsql {SELECT abs() FROM t1}
} {1 {wrong number of arguments to function abs()}}
ifcapable floatingpoint {
  do_test func-4.3 {
    catchsql {SELECT abs(b) FROM t1 ORDER BY a}
  } {0 {2 1.2345678901234 2}}
  do_test func-4.4 {
    catchsql {SELECT abs(c) FROM t1 ORDER BY a}
  } {0 {3 12345.6789 5}}
}
ifcapable !floatingpoint {
  if {[working_64bit_int]} {
    do_test func-4.3 {
      catchsql {SELECT abs(b) FROM t1 ORDER BY a}
    } {0 {2 12345678901234 2}}
  }
  do_test func-4.4 {
    catchsql {SELECT abs(c) FROM t1 ORDER BY a}
  } {0 {3 1234567890 5}}
}
do_test func-4.4.1 {
  execsql {SELECT abs(a) FROM t2}
} {1 {} 345 {} 67890}
do_test func-4.4.2 {
  execsql {SELECT abs(t1) FROM tbl1}
} {0.0 0.0 0.0 0.0 0.0}

ifcapable floatingpoint {
  do_test func-4.5 {
    catchsql {SELECT round(a,b,c) FROM t1}
  } {1 {wrong number of arguments to function round()}}
  do_test func-4.6 {
    catchsql {SELECT round(b,2) FROM t1 ORDER BY b}
  } {0 {-2.0 1.23 2.0}}
  do_test func-4.7 {
    catchsql {SELECT round(b,0) FROM t1 ORDER BY a}
  } {0 {2.0 1.0 -2.0}}
  do_test func-4.8 {
    catchsql {SELECT round(c) FROM t1 ORDER BY a}
  } {0 {3.0 -12346.0 -5.0}}
  do_test func-4.9 {
    catchsql {SELECT round(c,a) FROM t1 ORDER BY a}
  } {0 {3.0 -12345.68 -5.0}}
  do_test func-4.10 {
    catchsql {SELECT 'x' || round(c,a) || 'y' FROM t1 ORDER BY a}
  } {0 {x3.0y x-12345.68y x-5.0y}}
  do_test func-4.11 {
    catchsql {SELECT round() FROM t1 ORDER BY a}
  } {1 {wrong number of arguments to function round()}}
  do_test func-4.12 {
    execsql {SELECT coalesce(round(a,2),'nil') FROM t2}
  } {1.0 nil 345.0 nil 67890.0}
  do_test func-4.13 {
    execsql {SELECT round(t1,2) FROM tbl1}
  } {0.0 0.0 0.0 0.0 0.0}
  do_test func-4.14 {
    execsql {SELECT typeof(round(5.1,1));}
  } {real}
  do_test func-4.15 {
    execsql {SELECT typeof(round(5.1));}
  } {real}
  do_test func-4.16 {
    catchsql {SELECT round(b,2.0) FROM t1 ORDER BY b}
  } {0 {-2.0 1.23 2.0}}
}

# Test the upper() and lower() functions
#
do_test func-5.1 {
  execsql {SELECT upper(t1) FROM tbl1}
} {THIS PROGRAM IS FREE SOFTWARE}
do_test func-5.2 {
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266











267
268
269
270
271
272
273
#
do_test func-7.1 {
  execsql {SELECT last_insert_rowid()}
} [db last_insert_rowid]

# Tests for aggregate functions and how they handle NULLs.
#

do_test func-8.1 {
  ifcapable explain {
    execsql {EXPLAIN SELECT sum(a) FROM t2;}
  }
  execsql {
    SELECT sum(a), count(a), round(avg(a),2), min(a), max(a), count(*) FROM t2;
  }
} {68236 3 22745.33 1 67890 5}











do_test func-8.2 {
  execsql {
    SELECT max('z+'||a||'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP') FROM t2;
  }
} {z+67890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP}

ifcapable tempdb {







>
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>







281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#
do_test func-7.1 {
  execsql {SELECT last_insert_rowid()}
} [db last_insert_rowid]

# Tests for aggregate functions and how they handle NULLs.
#
ifcapable floatingpoint {
  do_test func-8.1 {
    ifcapable explain {
      execsql {EXPLAIN SELECT sum(a) FROM t2;}
    }
    execsql {
      SELECT sum(a), count(a), round(avg(a),2), min(a), max(a), count(*) FROM t2;
    }
  } {68236 3 22745.33 1 67890 5}
}
ifcapable !floatingpoint {
  do_test func-8.1 {
    ifcapable explain {
      execsql {EXPLAIN SELECT sum(a) FROM t2;}
    }
    execsql {
      SELECT sum(a), count(a), avg(a), min(a), max(a), count(*) FROM t2;
    }
  } {68236 3 22745.0 1 67890 5}
}
do_test func-8.2 {
  execsql {
    SELECT max('z+'||a||'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP') FROM t2;
  }
} {z+67890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP}

ifcapable tempdb {
305
306
307
308
309
310
311

312
313
314
315
316
317









318
319
320
321
322
323
324
  } {integer}
  do_test func-8.7 {
    execsql {
      SELECT typeof(sum(x)) FROM (SELECT '9223372036' || '854775808' AS x
                          UNION ALL SELECT -9223372036854775807)
    }
  } {real}

  do_test func-8.8 {
    execsql {
      SELECT sum(x)>0.0 FROM (SELECT '9223372036' || '854775808' AS x
                          UNION ALL SELECT -9223372036850000000)
    }
  } {1}









}

# How do you test the random() function in a meaningful, deterministic way?
#
do_test func-9.1 {
  execsql {
    SELECT random() is not null;







>






>
>
>
>
>
>
>
>
>







346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  } {integer}
  do_test func-8.7 {
    execsql {
      SELECT typeof(sum(x)) FROM (SELECT '9223372036' || '854775808' AS x
                          UNION ALL SELECT -9223372036854775807)
    }
  } {real}
ifcapable floatingpoint {
  do_test func-8.8 {
    execsql {
      SELECT sum(x)>0.0 FROM (SELECT '9223372036' || '854775808' AS x
                          UNION ALL SELECT -9223372036850000000)
    }
  } {1}
}
ifcapable !floatingpoint {
  do_test func-8.8 {
    execsql {
      SELECT sum(x)>0 FROM (SELECT '9223372036' || '854775808' AS x
                          UNION ALL SELECT -9223372036850000000)
    }
  } {1}
}
}

# How do you test the random() function in a meaningful, deterministic way?
#
do_test func-9.1 {
  execsql {
    SELECT random() is not null;
402
403
404
405
406
407
408


409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

435
436
437
438
439
440
441
  execsql {
    SELECT testfunc(
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'string', NULL
    );
  }
} {{}}


do_test func-10.4 {
  execsql {
    SELECT testfunc(
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'double', 1.234
    );
  }
} {1.234}
do_test func-10.5 {
  execsql {
    SELECT testfunc(
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'int', 1234,
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'string', NULL,
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'double', 1.234,
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'int', 1234,
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'string', NULL,
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'double', 1.234
    );
  }
} {1.234}


# Test the built-in sqlite_version(*) SQL function.
#
do_test func-11.1 {
  execsql {
    SELECT sqlite_version(*);
  }







>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  execsql {
    SELECT testfunc(
     'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
     'string', NULL
    );
  }
} {{}}

ifcapable floatingpoint {
  do_test func-10.4 {
    execsql {
      SELECT testfunc(
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'double', 1.234
      );
    }
  } {1.234}
  do_test func-10.5 {
    execsql {
      SELECT testfunc(
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'int', 1234,
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'string', NULL,
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'double', 1.234,
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'int', 1234,
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'string', NULL,
       'string', 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ',
       'double', 1.234
      );
    }
  } {1.234}
}

# Test the built-in sqlite_version(*) SQL function.
#
do_test func-11.1 {
  execsql {
    SELECT sqlite_version(*);
  }
606
607
608
609
610
611
612

613
614
615
616
617
618

619
620
621
622
623
624
625
    CREATE TABLE t5(x);
    INSERT INTO t5 VALUES(1);
    INSERT INTO t5 VALUES(-99);
    INSERT INTO t5 VALUES(10000);
    SELECT sum(x) FROM t5;
  }
} {9902}

do_test func-18.2 {
  execsql {
    INSERT INTO t5 VALUES(0.0);
    SELECT sum(x) FROM t5;
  }
} {9902.0}


# The sum of nothing is NULL.  But the sum of all NULLs is NULL.
#
# The TOTAL of nothing is 0.0.
#
do_test func-18.3 {
  execsql {







>
|
|
|
|
|
|
>







660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
    CREATE TABLE t5(x);
    INSERT INTO t5 VALUES(1);
    INSERT INTO t5 VALUES(-99);
    INSERT INTO t5 VALUES(10000);
    SELECT sum(x) FROM t5;
  }
} {9902}
ifcapable floatingpoint {
  do_test func-18.2 {
    execsql {
      INSERT INTO t5 VALUES(0.0);
      SELECT sum(x) FROM t5;
    }
  } {9902.0}
}

# The sum of nothing is NULL.  But the sum of all NULLs is NULL.
#
# The TOTAL of nothing is 0.0.
#
do_test func-18.3 {
  execsql {
659
660
661
662
663
664
665

666
667
668
669
670
671
672
673
674
675
676















677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705

706
707
708
709
710
711
712
  }
} 0
do_test func-18.11 {
  execsql {
    SELECT typeof(sum(x)) FROM t6
  }
} integer

do_test func-18.12 {
  catchsql {
    INSERT INTO t6 VALUES(1<<62);
    SELECT sum(x) - ((1<<62)*2.0+1) from t6;
  }
} {1 {integer overflow}}
do_test func-18.13 {
  execsql {
    SELECT total(x) - ((1<<62)*2.0+1) FROM t6
  }
} 0.0















do_test func-18.14 {
  execsql {
    SELECT sum(-9223372036854775805);
  }
} -9223372036854775805

ifcapable compound&&subquery {

do_test func-18.15 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT 9223372036854775807 AS x UNION ALL
        SELECT 10 AS x);
  }
} {1 {integer overflow}}

do_test func-18.16 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT 9223372036854775807 AS x UNION ALL
        SELECT -10 AS x);
  }
} {0 9223372036854775797}
do_test func-18.17 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT -9223372036854775807 AS x UNION ALL
        SELECT 10 AS x);
  }
} {0 -9223372036854775797}

do_test func-18.18 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT -9223372036854775807 AS x UNION ALL
        SELECT -10 AS x);
  }
} {1 {integer overflow}}







>
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|









>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
  }
} 0
do_test func-18.11 {
  execsql {
    SELECT typeof(sum(x)) FROM t6
  }
} integer
ifcapable floatingpoint {
  do_test func-18.12 {
    catchsql {
      INSERT INTO t6 VALUES(1<<62);
      SELECT sum(x) - ((1<<62)*2.0+1) from t6;
    }
  } {1 {integer overflow}}
  do_test func-18.13 {
    execsql {
      SELECT total(x) - ((1<<62)*2.0+1) FROM t6
    }
  } 0.0
}
ifcapable !floatingpoint {
  do_test func-18.12 {
    catchsql {
      INSERT INTO t6 VALUES(1<<62);
      SELECT sum(x) - ((1<<62)*2+1) from t6;
    }
  } {1 {integer overflow}}
  do_test func-18.13 {
    execsql {
      SELECT total(x) - ((1<<62)*2+1) FROM t6
    }
  } 0.0
}
if {[working_64bit_int]} {
  do_test func-18.14 {
    execsql {
      SELECT sum(-9223372036854775805);
    }
  } -9223372036854775805
}
ifcapable compound&&subquery {

do_test func-18.15 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT 9223372036854775807 AS x UNION ALL
        SELECT 10 AS x);
  }
} {1 {integer overflow}}
if {[working_64bit_int]} {
  do_test func-18.16 {
    catchsql {
      SELECT sum(x) FROM 
         (SELECT 9223372036854775807 AS x UNION ALL
          SELECT -10 AS x);
    }
  } {0 9223372036854775797}
  do_test func-18.17 {
    catchsql {
      SELECT sum(x) FROM 
         (SELECT -9223372036854775807 AS x UNION ALL
          SELECT 10 AS x);
    }
  } {0 -9223372036854775797}
}
do_test func-18.18 {
  catchsql {
    SELECT sum(x) FROM 
       (SELECT -9223372036854775807 AS x UNION ALL
        SELECT -10 AS x);
  }
} {1 {integer overflow}}
731
732
733
734
735
736
737

738
739
740
741
742

743
744
745
746
747
748
749
  }
} {0 1}

} ;# ifcapable compound&&subquery

# Integer overflow on abs()
#

do_test func-18.31 {
  catchsql {
    SELECT abs(-9223372036854775807);
  }
} {0 9223372036854775807}

do_test func-18.32 {
  catchsql {
    SELECT abs(-9223372036854775807-1);
  }
} {1 {integer overflow}}

# The MATCH function exists but is only a stub and always throws an error.







>
|
|
|
|
|
>







805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
  }
} {0 1}

} ;# ifcapable compound&&subquery

# Integer overflow on abs()
#
if {[working_64bit_int]} {
  do_test func-18.31 {
    catchsql {
      SELECT abs(-9223372036854775807);
    }
  } {0 9223372036854775807}
}
do_test func-18.32 {
  catchsql {
    SELECT abs(-9223372036854775807-1);
  }
} {1 {integer overflow}}

# The MATCH function exists but is only a stub and always throws an error.