Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | In the sqlite3_value or Mem object, make the MEM_IntReal type completely independent from MEM_Int and MEM_Real. This helps avoid problems when inserting non-float values into a "REAL" column. |
---|---|
Downloads: | Tarball | ZIP archive | SQL archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA3-256: |
5a8a23ee5f60a31dbd167a0966d1ab3d |
User & Date: | drh 2019-05-04 01:41:18 |
Context
2019-05-04
| ||
03:56 | Fix harmless compiler warning seen with MSVC. (check-in: 5862b83e user: mistachkin tags: trunk) | |
01:41 | In the sqlite3_value or Mem object, make the MEM_IntReal type completely independent from MEM_Int and MEM_Real. This helps avoid problems when inserting non-float values into a "REAL" column. (check-in: 5a8a23ee user: drh tags: trunk) | |
01:29 | New testcase macros to ensure that MEM_IntReal is fully tested. (Closed-Leaf check-in: 8b8ef445 user: drh tags: int-real) | |
2019-05-03
| ||
19:34 | Ensure that UTF16 strings are properly zero-terminated before returning them in an sqlite3_value_text16() request, even if the string is invalid UTF16 because it was formed from an arbitrary and/or odd-length BLOB. (check-in: 3a16ddf9 user: drh tags: trunk) | |
Changes
Changes to src/main.c.
︙ | ︙ | |||
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 | */ case SQLITE_TESTCTRL_PARSER_COVERAGE: { FILE *out = va_arg(ap, FILE*); if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; break; } #endif /* defined(YYCOVERAGE) */ } va_end(ap); #endif /* SQLITE_UNTESTABLE */ return rc; } /* | > > > > > > > > > > > > > > > > | 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 | */ case SQLITE_TESTCTRL_PARSER_COVERAGE: { FILE *out = va_arg(ap, FILE*); if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; break; } #endif /* defined(YYCOVERAGE) */ /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); ** ** This test-control causes the most recent sqlite3_result_int64() value ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, ** MEM_IntReal values only arise during an INSERT operation of integer ** values into a REAL column, so they can be challenging to test. This ** test-control enables us to write an intreal() SQL function that can ** inject an intreal() value at arbitrary places in an SQL statement, ** for testing purposes. */ case SQLITE_TESTCTRL_RESULT_INTREAL: { sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); sqlite3ResultIntReal(pCtx); break; } } va_end(ap); #endif /* SQLITE_UNTESTABLE */ return rc; } /* |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
7315 7316 7317 7318 7319 7320 7321 | #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_PARSER_COVERAGE 26 | > | | 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 | #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 #define SQLITE_TESTCTRL_SORTER_MMAP 24 #define SQLITE_TESTCTRL_IMPOSTER 25 #define SQLITE_TESTCTRL_PARSER_COVERAGE 26 #define SQLITE_TESTCTRL_RESULT_INTREAL 27 #define SQLITE_TESTCTRL_LAST 27 /* Largest TESTCTRL */ /* ** CAPI3REF: SQL Keyword Checking ** ** These routines provide access to the set of SQL language keywords ** recognized by SQLite. Applications can uses these routines to determine ** whether or not a specific identifier needs to be escaped (for example, |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 | const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); void sqlite3ValueSetNull(sqlite3_value*); void sqlite3ValueFree(sqlite3_value*); sqlite3_value *sqlite3ValueNew(sqlite3 *); #ifndef SQLITE_OMIT_UTF16 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); #endif int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION | > > > | 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 | const void *sqlite3ValueText(sqlite3_value*, u8); int sqlite3ValueBytes(sqlite3_value*, u8); void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, void(*)(void*)); void sqlite3ValueSetNull(sqlite3_value*); void sqlite3ValueFree(sqlite3_value*); #ifndef SQLITE_UNTESTABLE void sqlite3ResultIntReal(sqlite3_context*); #endif sqlite3_value *sqlite3ValueNew(sqlite3 *); #ifndef SQLITE_OMIT_UTF16 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); #endif int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); #ifndef SQLITE_AMALGAMATION |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 | sqlite3_context *context, int argc, sqlite3_value **argv ){ static int cnt = 0; sqlite3_result_int(context, cnt++); } /* ** Usage: sqlite3_create_function DB ** ** Call the sqlite3_create_function API on the given database in order ** to create a function named "x_coalesce". This function does the same thing ** as the "coalesce" function. This function also registers an SQL function | > > > > > > > > > > > > > > | 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | sqlite3_context *context, int argc, sqlite3_value **argv ){ static int cnt = 0; sqlite3_result_int(context, cnt++); } /* ** This SQL function returns the integer value of its argument as a MEM_IntReal ** value. */ static void intrealFunction( sqlite3_context *context, int argc, sqlite3_value **argv ){ sqlite3_int64 v = sqlite3_value_int64(argv[0]); sqlite3_result_int64(context, v); sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, context); } /* ** Usage: sqlite3_create_function DB ** ** Call the sqlite3_create_function API on the given database in order ** to create a function named "x_coalesce". This function does the same thing ** as the "coalesce" function. This function also registers an SQL function |
︙ | ︙ | |||
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | rc = sqlite3_create_function(db, "counter1", -1, SQLITE_UTF8, 0, nondeterministicFunction, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "counter2", -1, SQLITE_UTF8|SQLITE_DETERMINISTIC, 0, nondeterministicFunction, 0, 0); } #ifndef SQLITE_OMIT_UTF16 /* Use the sqlite3_create_function16() API here. Mainly for fun, but also ** because it is not tested anywhere else. */ if( rc==SQLITE_OK ){ const void *zUtf16; sqlite3_value *pVal; | > > > > > > > > | 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 | rc = sqlite3_create_function(db, "counter1", -1, SQLITE_UTF8, 0, nondeterministicFunction, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "counter2", -1, SQLITE_UTF8|SQLITE_DETERMINISTIC, 0, nondeterministicFunction, 0, 0); } /* The intreal() function converts its argument to an integer and returns ** it as a MEM_IntReal. */ if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "intreal", 1, SQLITE_UTF8, 0, intrealFunction, 0, 0); } #ifndef SQLITE_OMIT_UTF16 /* Use the sqlite3_create_function16() API here. Mainly for fun, but also ** because it is not tested anywhere else. */ if( rc==SQLITE_OK ){ const void *zUtf16; sqlite3_value *pVal; |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
291 292 293 294 295 296 297 | ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; i64 iValue; u8 enc = pRec->enc; | | | 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | ** point or exponential notation, the result is only MEM_Real, even ** if there is an exact integer representation of the quantity. */ static void applyNumericAffinity(Mem *pRec, int bTryForInt){ double rValue; i64 iValue; u8 enc = pRec->enc; assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ pRec->u.i = iValue; pRec->flags |= MEM_Int; }else{ pRec->u.r = rValue; pRec->flags |= MEM_Real; |
︙ | ︙ | |||
348 349 350 351 352 353 354 | }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ | | > > > | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | }else if( affinity==SQLITE_AFF_TEXT ){ /* Only attempt the conversion to TEXT if there is an integer or real ** representation (blob and NULL do not get converted) but no string ** representation. It would be harmless to repeat the conversion if ** there is already a string rep, but it is pointless to waste those ** CPU cycles. */ if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ testcase( pRec->flags & MEM_Int ); testcase( pRec->flags & MEM_Real ); testcase( pRec->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pRec, enc, 1); } } pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); } } /* ** Try to convert the type of a function argument or a result column ** into a numeric representation. Use either INTEGER or REAL whichever ** is appropriate. But only do the conversion if it is possible without |
︙ | ︙ | |||
391 392 393 394 395 396 397 | /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ | | | > > > | > > | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 | /* ** pMem currently only holds a string type (or maybe a BLOB that we can ** interpret as a string if we want to). Compute its corresponding ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields ** accordingly. */ static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); ExpandBlob(pMem); if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ return 0; } if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){ return MEM_Int; } return MEM_Real; } /* ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or ** none. ** ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. ** But it does set pMem->u.r and pMem->u.i appropriately. */ static u16 numericType(Mem *pMem){ if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal); } if( pMem->flags & (MEM_Str|MEM_Blob) ){ testcase( pMem->flags & MEM_Str ); testcase( pMem->flags & MEM_Blob ); return computeNumericType(pMem); } return 0; } #ifdef SQLITE_DEBUG /* |
︙ | ︙ | |||
510 511 512 513 514 515 516 | static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); | | | 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | static void memTracePrint(Mem *p){ if( p->flags & MEM_Undefined ){ printf(" undefined"); }else if( p->flags & MEM_Null ){ printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ printf(" si:%lld", p->u.i); }else if( (p->flags & (MEM_IntReal))!=0 ){ printf(" ir:%lld", p->u.i); }else if( p->flags & MEM_Int ){ printf(" i:%lld", p->u.i); #ifndef SQLITE_OMIT_FLOATING_POINT }else if( p->flags & MEM_Real ){ printf(" r:%g", p->u.r); #endif |
︙ | ︙ | |||
1626 1627 1628 1629 1630 1631 1632 | MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); | | | 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 | MemSetTypeFlag(pOut, MEM_Int); #else if( sqlite3IsNaN(rB) ){ goto arithmetic_result_is_null; } pOut->u.r = rB; MemSetTypeFlag(pOut, MEM_Real); if( ((type1|type2)&(MEM_Real|MEM_IntReal))==0 && !bIntint ){ sqlite3VdbeIntegerAffinity(pOut); } #endif } break; arithmetic_result_is_null: |
︙ | ︙ | |||
1797 1798 1799 1800 1801 1802 1803 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; | > | > | 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 | ** This opcode is used when extracting information from a column that ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pIn1); } break; } #endif #ifndef SQLITE_OMIT_CAST |
︙ | ︙ | |||
1989 1990 1991 1992 1993 1994 1995 | break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ | | | | > | > | 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 | break; } }else{ /* Neither operand is NULL. Do a comparison. */ affinity = pOp->p5 & SQLITE_AFF_MASK; if( affinity>=SQLITE_AFF_NUMERIC ){ if( (flags1 | flags3)&MEM_Str ){ if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn1,0); assert( flags3==pIn3->flags ); /* testcase( flags3!=pIn3->flags ); ** this used to be possible with pIn1==pIn3, but not since ** the column cache was removed. The following assignment ** is essentially a no-op. But, it provides defense-in-depth ** in case our analysis is incorrect, so it is left in. */ flags3 = pIn3->flags; } if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3,0); } } /* Handle the common case of integer comparison here, as an ** optimization, to avoid a call to sqlite3MemCompare() */ if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } res = 0; goto compare_op; } }else if( affinity==SQLITE_AFF_TEXT ){ if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn1->flags & MEM_Int ); testcase( pIn1->flags & MEM_Real ); testcase( pIn1->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn1, encoding, 1); testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); assert( pIn1!=pIn3 ); } if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_Real ); testcase( pIn3->flags & MEM_IntReal ); sqlite3VdbeMemStringify(pIn3, encoding, 1); testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); } } assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
︙ | ︙ | |||
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 | assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still MEM_Int, ** indicate that REAL is actually desired */ pIn1->flags |= MEM_IntReal; } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; | > | 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); assert( memIsValid(pIn1) ); applyAffinity(pIn1, zAffinity[0], encoding); if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ /* When applying REAL affinity, if the result is still MEM_Int, ** indicate that REAL is actually desired */ pIn1->flags |= MEM_IntReal; pIn1->flags &= ~MEM_Int; } REGISTER_TRACE((int)(pIn1-aMem), pIn1); zAffinity++; if( zAffinity[0]==0 ) break; pIn1++; } break; |
︙ | ︙ | |||
3986 3987 3988 3989 3990 3991 3992 | assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; | | | | 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 | assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 || CORRUPT_DB ); /* The input value in P3 might be of any type: integer, real, string, ** blob, or NULL. But it needs to be an integer before we can do ** the seek, so convert it. */ pIn3 = &aMem[pOp->p3]; if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ applyNumericAffinity(pIn3, 0); } iKey = sqlite3VdbeIntValue(pIn3); /* If the P3 value could not be converted into an integer without ** loss of information, then special processing is required... */ if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ if( (pIn3->flags & MEM_Real)==0 ){ /* If the P3 value cannot be converted into any kind of a number, ** then the seek is not possible, so jump to P2 */ VdbeBranchTaken(1,2); goto jump_to_p2; break; } |
︙ | ︙ | |||
4378 4379 4380 4381 4382 4383 4384 | case OP_SeekRowid: { /* jump, in3 */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; | > > | | 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 | case OP_SeekRowid: { /* jump, in3 */ VdbeCursor *pC; BtCursor *pCrsr; int res; u64 iKey; pIn3 = &aMem[pOp->p3]; testcase( pIn3->flags & MEM_Int ); testcase( pIn3->flags & MEM_IntReal ); if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ /* Make sure pIn3->u.i contains a valid integer representation of ** the key value, but do not change the datatype of the register, as ** other parts of the perpared statement might be depending on the ** current datatype. */ u16 origFlags = pIn3->flags; int isNotInt; applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); |
︙ | ︙ |
Changes to src/vdbeapi.c.
︙ | ︙ | |||
230 231 232 233 234 235 236 | #endif /* SQLITE_OMIT_UTF16 */ /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating ** point number string BLOB NULL */ int sqlite3_value_type(sqlite3_value* pVal){ static const u8 aType[] = { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < > > > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | #endif /* SQLITE_OMIT_UTF16 */ /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating ** point number string BLOB NULL */ int sqlite3_value_type(sqlite3_value* pVal){ static const u8 aType[] = { SQLITE_BLOB, /* 0x00 (not possible) */ SQLITE_NULL, /* 0x01 NULL */ SQLITE_TEXT, /* 0x02 TEXT */ SQLITE_NULL, /* 0x03 (not possible) */ SQLITE_INTEGER, /* 0x04 INTEGER */ SQLITE_NULL, /* 0x05 (not possible) */ SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */ SQLITE_NULL, /* 0x07 (not possible) */ SQLITE_FLOAT, /* 0x08 FLOAT */ SQLITE_NULL, /* 0x09 (not possible) */ SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */ SQLITE_NULL, /* 0x0b (not possible) */ SQLITE_INTEGER, /* 0x0c (not possible) */ SQLITE_NULL, /* 0x0d (not possible) */ SQLITE_INTEGER, /* 0x0e (not possible) */ SQLITE_NULL, /* 0x0f (not possible) */ SQLITE_BLOB, /* 0x10 BLOB */ SQLITE_NULL, /* 0x11 (not possible) */ SQLITE_TEXT, /* 0x12 (not possible) */ SQLITE_NULL, /* 0x13 (not possible) */ SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */ SQLITE_NULL, /* 0x15 (not possible) */ SQLITE_INTEGER, /* 0x16 (not possible) */ SQLITE_NULL, /* 0x17 (not possible) */ SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */ SQLITE_NULL, /* 0x19 (not possible) */ SQLITE_FLOAT, /* 0x1a (not possible) */ SQLITE_NULL, /* 0x1b (not possible) */ SQLITE_INTEGER, /* 0x1c (not possible) */ SQLITE_NULL, /* 0x1d (not possible) */ SQLITE_INTEGER, /* 0x1e (not possible) */ SQLITE_NULL, /* 0x1f (not possible) */ SQLITE_FLOAT, /* 0x20 INTREAL */ SQLITE_NULL, /* 0x21 (not possible) */ SQLITE_TEXT, /* 0x22 INTREAL + TEXT */ SQLITE_NULL, /* 0x23 (not possible) */ SQLITE_FLOAT, /* 0x24 (not possible) */ SQLITE_NULL, /* 0x25 (not possible) */ SQLITE_FLOAT, /* 0x26 (not possible) */ SQLITE_NULL, /* 0x27 (not possible) */ SQLITE_FLOAT, /* 0x28 (not possible) */ SQLITE_NULL, /* 0x29 (not possible) */ SQLITE_FLOAT, /* 0x2a (not possible) */ SQLITE_NULL, /* 0x2b (not possible) */ SQLITE_FLOAT, /* 0x2c (not possible) */ SQLITE_NULL, /* 0x2d (not possible) */ SQLITE_FLOAT, /* 0x2e (not possible) */ SQLITE_NULL, /* 0x2f (not possible) */ SQLITE_BLOB, /* 0x30 (not possible) */ SQLITE_NULL, /* 0x31 (not possible) */ SQLITE_TEXT, /* 0x32 (not possible) */ SQLITE_NULL, /* 0x33 (not possible) */ SQLITE_FLOAT, /* 0x34 (not possible) */ SQLITE_NULL, /* 0x35 (not possible) */ SQLITE_FLOAT, /* 0x36 (not possible) */ SQLITE_NULL, /* 0x37 (not possible) */ SQLITE_FLOAT, /* 0x38 (not possible) */ SQLITE_NULL, /* 0x39 (not possible) */ SQLITE_FLOAT, /* 0x3a (not possible) */ SQLITE_NULL, /* 0x3b (not possible) */ SQLITE_FLOAT, /* 0x3c (not possible) */ SQLITE_NULL, /* 0x3d (not possible) */ SQLITE_FLOAT, /* 0x3e (not possible) */ SQLITE_NULL, /* 0x3f (not possible) */ }; #ifdef SQLITE_DEBUG { int eType = SQLITE_BLOB; if( pVal->flags & MEM_Null ){ eType = SQLITE_NULL; }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){ eType = SQLITE_FLOAT; }else if( pVal->flags & MEM_Int ){ eType = SQLITE_INTEGER; }else if( pVal->flags & MEM_Str ){ eType = SQLITE_TEXT; } assert( eType == aType[pVal->flags&MEM_AffMask] ); } #endif return aType[pVal->flags&MEM_AffMask]; |
︙ | ︙ | |||
558 559 560 561 562 563 564 565 566 567 568 569 570 571 | /* An SQLITE_NOMEM error. */ void sqlite3_result_error_nomem(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); pCtx->isError = SQLITE_NOMEM_BKPT; sqlite3OomFault(pCtx->pOut->db); } /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ static int doWalCallbacks(sqlite3 *db){ int rc = SQLITE_OK; | > > > > > > > > > > > > > > > | 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 | /* An SQLITE_NOMEM error. */ void sqlite3_result_error_nomem(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); sqlite3VdbeMemSetNull(pCtx->pOut); pCtx->isError = SQLITE_NOMEM_BKPT; sqlite3OomFault(pCtx->pOut->db); } #ifndef SQLITE_UNTESTABLE /* Force the INT64 value currently stored as the result to be ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL ** test-control. */ void sqlite3ResultIntReal(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); if( pCtx->pOut->flags & MEM_Int ){ pCtx->pOut->flags &= ~MEM_Int; pCtx->pOut->flags |= MEM_IntReal; } } #endif /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ static int doWalCallbacks(sqlite3 *db){ int rc = SQLITE_OK; |
︙ | ︙ | |||
1845 1846 1847 1848 1849 1850 1851 | pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ | > | > | 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 | pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; if( iIdx==p->pTab->iPKey ){ sqlite3VdbeMemSetInt64(pMem, p->iKey1); }else if( iIdx>=p->pUnpacked->nField ){ *ppValue = (sqlite3_value *)columnNullValue(); }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_IntReal ); sqlite3VdbeMemRealify(pMem); } } preupdate_old_out: sqlite3Error(db, rc); return sqlite3ApiExit(db, rc); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1530 1531 1532 1533 1534 1535 1536 | sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; | | | 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 | sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); break; } case P4_MEM: { Mem *pMem = pOp->p4.pMem; if( pMem->flags & MEM_Str ){ zP4 = pMem->z; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&x, "%lld", pMem->u.i); }else if( pMem->flags & MEM_Real ){ sqlite3_str_appendf(&x, "%.16g", pMem->u.r); }else if( pMem->flags & MEM_Null ){ zP4 = "NULL"; }else{ assert( pMem->flags & MEM_Blob ); |
︙ | ︙ | |||
3428 3429 3430 3431 3432 3433 3434 | u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } | | > > | 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 | u32 n; assert( pLen!=0 ); if( flags&MEM_Null ){ *pLen = 0; return 0; } if( flags&(MEM_Int|MEM_IntReal) ){ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) i64 i = pMem->u.i; u64 u; testcase( flags & MEM_Int ); testcase( flags & MEM_IntReal ); if( i<0 ){ u = ~i; }else{ u = i; } if( u<=127 ){ if( (i&1)==i && file_format>=4 ){ |
︙ | ︙ | |||
4107 4108 4109 4110 4111 4112 4113 | */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ | | > > > | > > > | > > > > > > | > | 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 | */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* At least one of the two values is a number */ if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ testcase( combined_flags & MEM_Int ); testcase( combined_flags & MEM_Real ); testcase( combined_flags & MEM_IntReal ); if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & f2 & MEM_Int ); testcase( f1 & f2 & MEM_IntReal ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; } if( (f1 & f2 & MEM_Real)!=0 ){ if( pMem1->u.r < pMem2->u.r ) return -1; if( pMem1->u.r > pMem2->u.r ) return +1; return 0; } if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f1 & MEM_Int ); testcase( f1 & MEM_IntReal ); if( (f2&MEM_Real)!=0 ){ return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return +1; return 0; }else{ return -1; } } if( (f1&MEM_Real)!=0 ){ if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ testcase( f2 & MEM_Int ); testcase( f2 & MEM_IntReal ); return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); }else{ return -1; } } return +1; } |
︙ | ︙ | |||
4275 4276 4277 4278 4279 4280 4281 | assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ | > | > | 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 | assert( pPKey2->pKeyInfo->aSortOrder!=0 ); assert( pPKey2->pKeyInfo->nKeyField>0 ); assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ testcase( pRhs->flags & MEM_Int ); testcase( pRhs->flags & MEM_IntReal ); serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=10 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ |
︙ | ︙ | |||
4620 4621 4622 4623 4624 4625 4626 | } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); | > | > | 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 | } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); | > > > > > | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" /* True if X is a power of two. 0 is considered a power of two here. ** In other words, return true if X has at most one bit set. */ #define ISPOWEROF2(X) (((X)&((X)-1))==0) #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); if( p->flags & MEM_Null ){ /* Cannot be both MEM_Null and some other type */ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); /* If MEM_Null is set, then either the value is a pure NULL (the usual ** case) or it is a pointer set using sqlite3_bind_pointer() or |
︙ | ︙ | |||
89 90 91 92 93 94 95 | ); } return 1; } #endif /* | | | | | | | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | ); } return 1; } #endif /* ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal ** into a buffer. */ static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ StrAccum acc; assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); if( p->flags & MEM_Int ){ sqlite3_str_appendf(&acc, "%lld", p->u.i); }else if( p->flags & MEM_IntReal ){ sqlite3_str_appendf(&acc, "%!.15g", (double)p->u.i); }else{ sqlite3_str_appendf(&acc, "%!.15g", p->u.r); } assert( acc.zText==zBuf && acc.mxAlloc<=0 ); zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ } |
︙ | ︙ | |||
132 133 134 135 136 137 138 | ** This routine is for use inside of assert() statements only. */ int sqlite3VdbeMemConsistentDualRep(Mem *p){ char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; | | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | ** This routine is for use inside of assert() statements only. */ int sqlite3VdbeMemConsistentDualRep(Mem *p){ char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; vdbeMemRenderNum(sizeof(zBuf), zBuf, p); z = p->z; i = j = 0; incr = 1; if( p->enc!=SQLITE_UTF8 ){ incr = 2; if( p->enc==SQLITE_UTF16BE ) z++; |
︙ | ︙ | |||
245 246 247 248 249 250 251 | /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str | | | | 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, ** and MEM_Null values are preserved. ** ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) ** if unable to complete the resizing. */ int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ assert( CORRUPT_DB || szNew>0 ); assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
︙ | ︙ | |||
356 357 358 359 360 361 362 | } /* ** Add MEM_Str to the set of representations for the given Mem. This ** routine is only called if pMem is a number of some kind, not a NULL ** or a BLOB. ** | | | | | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 | } /* ** Add MEM_Str to the set of representations for the given Mem. This ** routine is only called if pMem is a number of some kind, not a NULL ** or a BLOB. ** ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated ** if bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(pMem->flags&MEM_Zero) ); assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ pMem->enc = 0; return SQLITE_NOMEM_BKPT; |
︙ | ︙ | |||
560 561 562 563 564 565 566 | return value; } i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; | > | | 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | return value; } i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & (MEM_Int|MEM_IntReal) ){ testcase( flags & MEM_IntReal ); return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->u.r); }else if( flags & (MEM_Str|MEM_Blob) ){ assert( pMem->z || pMem->n==0 ); return memIntValue(pMem); }else{ |
︙ | ︙ | |||
589 590 591 592 593 594 595 | return val; } double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; | | > | > | 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | return val; } double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ testcase( pMem->flags & MEM_IntReal ); return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ return memRealValue(pMem); }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** Return 1 if pMem represents true, and return 0 if pMem represents false. ** Return the value ifNull if pMem is NULL. */ int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ testcase( pMem->flags & MEM_IntReal ); if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; if( pMem->flags & MEM_Null ) return ifNull; return sqlite3VdbeRealValue(pMem)!=0.0; } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. |
︙ | ︙ | |||
677 678 679 680 681 682 683 | */ static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return memcmp(&r1, &r2, sizeof(r1))==0; } /* | | > > > > | | | 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | */ static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return memcmp(&r1, &r2, sizeof(r1))==0; } /* ** Convert pMem so that it has type MEM_Real or MEM_Int. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ int sqlite3VdbeMemNumerify(Mem *pMem){ testcase( pMem->flags & MEM_Int ); testcase( pMem->flags & MEM_Real ); testcase( pMem->flags & MEM_IntReal ); testcase( pMem->flags & MEM_Null ); if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ int rc; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); if( rc==0 ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 i = pMem->u.i; sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ pMem->u.i = i; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); return SQLITE_OK; } /* ** Cast the datatype of the value in pMem according to the affinity ** "aff". Casting is different from applying affinity in that a cast |
︙ | ︙ | |||
930 931 932 933 934 935 936 | /* If pX is marked as a shallow copy of pMem, then verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; | | | 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 | /* If pX is marked as a shallow copy of pMem, then verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); /* pMem is the register that is changing. But also mark pX as ** undefined so that we can quickly detect the shallow-copy error */ pX->flags = MEM_Undefined; |
︙ | ︙ | |||
1493 1494 1495 1496 1497 1498 1499 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } | > | > > > > | 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } assert( (pVal->flags & MEM_IntReal)==0 ); if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ testcase( pVal->flags & MEM_Int ); testcase( pVal->flags & MEM_Real ); pVal->flags &= ~MEM_Str; } if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) && pVal!=0 |
︙ | ︙ |
Changes to src/vdbetrace.c.
︙ | ︙ | |||
126 127 128 129 130 131 132 | } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); | | | 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | } zRawSql += nToken; nextIndex = idx + 1; assert( idx>0 && idx<=p->nVar ); pVar = &p->aVar[idx-1]; if( pVar->flags & MEM_Null ){ sqlite3_str_append(&out, "NULL", 4); }else if( pVar->flags & (MEM_Int|MEM_IntReal) ){ sqlite3_str_appendf(&out, "%lld", pVar->u.i); }else if( pVar->flags & MEM_Real ){ sqlite3_str_appendf(&out, "%!.15g", pVar->u.r); }else if( pVar->flags & MEM_Str ){ int nOut; /* Number of bytes of the string text to include in output */ #ifndef SQLITE_OMIT_UTF16 u8 enc = ENC(db); |
︙ | ︙ |
Added test/intreal.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | # 2019-05-03 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # Tests to exercise the MEM_IntReal representation of Mem objects. # set testdir [file dirname $argv0] source $testdir/tester.tcl set ::testprefix intreal sqlite3_create_function db do_execsql_test 100 { SELECT intreal(5); } {5.0} do_execsql_test 110 { SELECT intreal(5)=5, 6=intreal(6); } {1 1} do_execsql_test 120 { SELECT intreal(7)=7.0, 8.0=intreal(8); } {1 1} do_execsql_test 130 { SELECT typeof(intreal(9)); } {real} do_execsql_test 140 { SELECT 'a'||intreal(11)||'z'; } {a11.0z} do_execsql_test 150 { SELECT max(1.0,intreal(2),3.0), max(1,intreal(2),3); } {3.0 3} do_execsql_test 160 { SELECT max(1.0,intreal(4),3.0), max(1,intreal(4),3); } {4.0 4.0} do_execsql_test 170 { SELECT max(1.0,intreal(2),intreal(3),4.0), max(1,intreal(2),intreal(3),4); } {4.0 4} do_execsql_test 180 { SELECT max(1.0,intreal(5),intreal(3),4.0), max(1,intreal(5),intreal(3),4); } {5.0 5.0} finish_test |