SQLite

Check-in [5a00d24b27]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge performance enhancements into trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 5a00d24b279424d257781ec3f1227e72a5d56f57
User & Date: drh 2011-08-29 03:08:47.559
Context
2011-08-29
11:56
Back out [05c9832e5f6eb] since it was causing a performance regression with no obvious benefit. (check-in: 639cc85a91 user: drh tags: trunk)
03:08
Merge performance enhancements into trunk. (check-in: 5a00d24b27 user: drh tags: trunk)
02:49
About a 1% overall performance improvement by using a macro to avoid no-op calls to sqlite3MemReleaseExternal(). (Closed-Leaf check-in: ff71d20a9e user: drh tags: experimental)
2011-08-26
20:55
Fix several harmless compiler warnings and a documentation bug. (check-in: 5454d0fe22 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
3475
3476
3477
3478
3479
3480
3481
3482

3483
3484
3485
3486
3487
3488
3489
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && pBt->readOnly) ){
    return SQLITE_READONLY;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    return SQLITE_EMPTY;

  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;







|
>







3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && pBt->readOnly) ){
    return SQLITE_READONLY;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
4229
4230
4231
4232
4233
4234
4235



4236
4237
4238
4239
4240
4241
4242

  if( pCur->iPage>=0 ){
    int i;
    for(i=1; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;



  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;







>
>
>







4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246

  if( pCur->iPage>=0 ){
    int i;
    for(i=1; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }







|







4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      pCur->atLast = rc==SQLITE_OK ?1:0;
    }







|







4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      pCur->atLast = rc==SQLITE_OK ?1:0;
    }
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
    }
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->apPage[pCur->iPage] );
  assert( pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];







|
|
|


|







4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
    }
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
7372
7373
7374
7375
7376
7377
7378





7379
7380
7381
7382
7383
7384
7385
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */





  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */







>
>
>
>
>







7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */

  if( pCur->pgnoRoot==0 ){
    *pnEntry = 0;
    return SQLITE_OK;
  }
  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */
Changes to src/vdbe.c.
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      sqlite3VdbeMemReleaseExternal(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );







|







669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=p->nMem );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      MemReleaseExt(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
2114
2115
2116
2117
2118
2119
2120

2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */

  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  MemSetTypeFlag(pDest, MEM_Null);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables







>











<







2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132

2133
2134
2135
2136
2137
2138
2139
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);

  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

2190
2191
2192
2193
2194
2195
2196
2197
2198
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( pC->pseudoTableReg>0 ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL */

  if( payloadSize==0 ){
    assert( pDest->flags&MEM_Null );
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }








|












|
>

|







2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite3BtreeCursorIsValid(pCrsr) );
      rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( ALWAYS(pC->pseudoTableReg>0) ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL.  This can happen because of
  ** nullRow or because of a corrupt database. */
  if( payloadSize==0 ){
    MemSetTypeFlag(pDest, MEM_Null);
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

2291
2292
2293
2294
2295
2296
2297




2298


2299
2300
2301
2302
2303
2304
2305
2306
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;




        zIdx += getVarint32(zIdx, aType[i]);


        szField = sqlite3VdbeSerialTypeLen(aType[i]);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this







>
>
>
>
|
>
>
|







2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;
        if( zIdx[0]<0x80 ){
          t = zIdx[0];
          zIdx++;
        }else{
          zIdx += sqlite3GetVarint32(zIdx, &t);
        }
        aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      sqlite3VdbeMemReleaseExternal(pDest);
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      assert( pDest->flags&MEM_Null );
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.







|
















|







2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      MemReleaseExt(pDest);
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      MemSetTypeFlag(pDest, MEM_Null);
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( pCrsr ){
    rc = sqlite3BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;
  }
  pOut->u.i = nEntry;
  break;
}







|







2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( ALWAYS(pCrsr) ){
    rc = sqlite3BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;
  }
  pOut->u.i = nEntry;
  break;
}
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only values that
  ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK. 
  ** SQLITE_EMPTY is only returned when attempting to open the table
  ** rooted at page 1 of a zero-byte database.  */
  assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
  if( rc==SQLITE_EMPTY ){
    pCur->pCursor = 0;
    rc = SQLITE_OK;
  }

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;







|
|
<
<
|
<
<
<
<







3115
3116
3117
3118
3119
3120
3121
3122
3123


3124




3125
3126
3127
3128
3129
3130
3131
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */


  assert( rc==SQLITE_OK );





  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( pC->pCursor!=0 ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];







|







3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( ALWAYS(pC->pCursor!=0) ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  if( pCrsr!=0 ){
    res = 0;
    iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;







|







3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
  assert( pIn3->flags & MEM_Int );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    res = 0;
    iKey = pIn3->u.i;
    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;
4214
4215
4216
4217
4218
4219
4220

4221
4222
4223
4224
4225
4226
4227
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;

  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *







>







4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  assert( pC->pCursor || pC->pVtabCursor );
  if( pC->pCursor ){
    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( pCrsr==0 ){
    res = 1;
  }else{
    rc = sqlite3BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;







|







4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( NEVER(pCrsr==0) ){
    res = 1;
  }else{
    rc = sqlite3BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;
4292
4293
4294
4295
4296
4297
4298

4299

4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321



4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335



4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363

4364
4365

4366
4367
4368
4369
4370
4371
4372

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  res = 1;
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(db, pC, &res);

  }else if( (pCrsr = pC->pCursor)!=0 ){

    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * * P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.



**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.



**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_Next );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{
    pCrsr = pC->pCursor;
    if( pCrsr==0 ){
      pC->nullRow = 1;
      break;
    }
    res = 1;
    assert( pC->deferredMoveto==0 );

    rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
                                sqlite3BtreePrevious(pCrsr, &res);

  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST







>
|
>














|







>
>
>














>
>
>







<













<
<
<
<
<


>
|
|
>







4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352

4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365





4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  res = 1;
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(db, pC, &res);
  }else{
    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
    pC->rowidIsValid = 0;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite3BtreePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_Prev:          /* jump */
case OP_Next: {        /* jump */
  VdbeCursor *pC;

  int res;

  CHECK_FOR_INTERRUPT;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<=ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_Next );
    rc = sqlite3VdbeSorterNext(db, pC, &res);
  }else{





    res = 1;
    assert( pC->deferredMoveto==0 );
    assert( pC->pCursor );
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
    rc = pOp->p4.xAdvance(pC->pCursor, &res);
  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
#ifdef SQLITE_TEST
Changes to src/vdbe.h.
57
58
59
60
61
62
63

64
65
66
67
68
69
70
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */

  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */







>







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */
112
113
114
115
116
117
118

119
120
121
122
123
124
125
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */


/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.







>







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
#define P4_INTARRAY (-15) /* P4 is a vector of 32-bit integers */
#define P4_SUBPROGRAM  (-18) /* P4 is a pointer to a SubProgram structure */
#define P4_ADVANCE  (-19) /* P4 is a pointer to BtreeNext() or BtreePrev() */

/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure
** is made.  That copy is freed when the Vdbe is finalized.  But if the
** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used.  It still
** gets freed when the Vdbe is finalized so it still should be obtained
** from a single sqliteMalloc().  But no copy is made and the calling
** function should *not* try to free the KeyInfo.
Changes to src/vdbeInt.h.
380
381
382
383
384
385
386



387
388
389
390
391
392
393
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);



int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
void sqlite3VdbeMemStoreType(Mem *pMem);







>
>
>







380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);
#define MemReleaseExt(X)  \
  if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \
    sqlite3VdbeMemReleaseExternal(X);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
void sqlite3VdbeMemStoreType(Mem *pMem);
Changes to src/vdbeaux.c.
429
430
431
432
433
434
435






436
437
438
439
440
441
442
    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif






    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }







>
>
>
>
>
>







429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    }else if( opcode==OP_VFilter ){
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }else if( opcode==OP_Next ){
      pOp->p4.xAdvance = sqlite3BtreeNext;
      pOp->p4type = P4_ADVANCE;
    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite3BtreePrevious;
      pOp->p4type = P4_ADVANCE;
    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
934
935
936
937
938
939
940




941
942
943
944
945
946
947
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;




    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }







>
>
>
>







940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
    case P4_SUBPROGRAM: {
      sqlite3_snprintf(nTemp, zTemp, "program");
      break;
    }
    case P4_ADVANCE: {
      zTemp[0] = 0;
      break;
    }
    default: {
      zP4 = pOp->p4.z;
      if( zP4==0 ){
        zP4 = zTemp;
        zTemp[0] = 0;
      }
Changes to src/vdbemem.c.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  testcase( p->flags & MEM_Agg );
  testcase( p->flags & MEM_Dyn );
  testcase( p->flags & MEM_RowSet );
  testcase( p->flags & MEM_Frame );
  if( p->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame) ){
    if( p->flags&MEM_Agg ){
      sqlite3VdbeMemFinalize(p, p->u.pDef);
      assert( (p->flags & MEM_Agg)==0 );
      sqlite3VdbeMemRelease(p);
    }else if( p->flags&MEM_Dyn && p->xDel ){
      assert( (p->flags&MEM_RowSet)==0 );
      p->xDel((void *)p->z);
      p->xDel = 0;
    }else if( p->flags&MEM_RowSet ){
      sqlite3RowSetClear(p->u.pRowSet);
    }else if( p->flags&MEM_Frame ){
      sqlite3VdbeMemSetNull(p);
    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  sqlite3VdbeMemReleaseExternal(p);
  sqlite3DbFree(p->db, p->zMalloc);
  p->z = 0;
  p->zMalloc = 0;
  p->xDel = 0;
}

/*







<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
|
|
<









|







267
268
269
270
271
272
273





274
275
276
277
278
279
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
*/
void sqlite3VdbeMemReleaseExternal(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );





  if( p->flags&MEM_Agg ){
    sqlite3VdbeMemFinalize(p, p->u.pDef);
    assert( (p->flags & MEM_Agg)==0 );
    sqlite3VdbeMemRelease(p);
  }else if( p->flags&MEM_Dyn && p->xDel ){
    assert( (p->flags&MEM_RowSet)==0 );
    p->xDel((void *)p->z);
    p->xDel = 0;
  }else if( p->flags&MEM_RowSet ){
    sqlite3RowSetClear(p->u.pRowSet);
  }else if( p->flags&MEM_Frame ){
    sqlite3VdbeMemSetNull(p);

  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  MemReleaseExt(p);
  sqlite3DbFree(p->db, p->zMalloc);
  p->z = 0;
  p->zMalloc = 0;
  p->xDel = 0;
}

/*
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemReleaseExternal(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( (pFrom->flags & MEM_RowSet)==0 );
  sqlite3VdbeMemReleaseExternal(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);







|

















|







610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  MemReleaseExt(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( (pFrom->flags & MEM_RowSet)==0 );
  MemReleaseExt(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);