/ Check-in [5754a3a5]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest changes on trunk (and especially the fix for the (xANDy)OR(z) bug) into apple-osx.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: 5754a3a56144ee0e073c80651bf11cb23ee7f447
User & Date: drh 2009-12-16 23:46:12
Context
2009-12-23
18:06
Fix the main.mk makefile so that the sqlrr extension is built into the amalgamation correctly. check-in: a3204d8a user: drh tags: apple-osx
2009-12-16
23:46
Merge the latest changes on trunk (and especially the fix for the (xANDy)OR(z) bug) into apple-osx. check-in: 5754a3a5 user: drh tags: apple-osx
23:43
Remove unreachable code that was added by the fix to the "(xANDy)OR(z)" bug in the previous check-in. check-in: 04915562 user: drh tags: trunk
2009-12-07
23:53
Merge all changes associated with the version 3.6.21 release into the OS-X branch. check-in: ad08794d user: drh tags: apple-osx
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3.c.

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
...
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
...
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
...
427
428
429
430
431
432
433

434
435
436
437
438
439
440
441
442
443

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

459
460
461
462
463
464
465
...
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
...
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
...
696
697
698
699
700
701
702

703
704
705
706
707
708
709
...
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
...
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829



830
831
832
833
834
835
836
837

838
839
840
841
842
843
844
...
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896





897




898
899
900
901
902
903
904
....
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250
1251
1252
1253
1254
1255
1256
....
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
....
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
....
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603








1604
1605
1606
1607
1608
1609
1610
....
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
....
1904
1905
1906
1907
1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
....
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
....
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

2008


2009
2010
2011
2012
2013
2014
2015
....
2119
2120
2121
2122
2123
2124
2125
2126



2127

2128
2129
2130
2131
2132
2133
2134
....
2138
2139
2140
2141
2142
2143
2144

2145

2146
2147
2148
2149
2150
2151
2152
....
2303
2304
2305
2306
2307
2308
2309


2310


2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329

2330

2331
2332
2333
2334
2335
2336

2337

2338
2339
2340
2341
2342
2343
2344

#include "fts3.h"
#ifndef SQLITE_CORE 
# include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#endif



/* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
** would be nice to order the file better, perhaps something along the
** lines of:
**
**  - utility functions
**  - table setup functions
**  - table update functions
**  - table query functions
**
** Put the query functions last because they're likely to reference
** typedefs or functions from the table update section.
*/

#if 0
# define FTSTRACE(A)  printf A; fflush(stdout)
#else
# define FTSTRACE(A)
#endif

typedef enum DocListType {
  DL_DOCIDS,              /* docids only */
  DL_POSITIONS,           /* docids + positions */
  DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
} DocListType;

/*
** By default, only positions and not offsets are stored in the doclists.
** To change this so that offsets are stored too, compile with
**
**          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
**
** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
** into (no deletes or updates).
*/
#ifndef DL_DEFAULT
# define DL_DEFAULT DL_POSITIONS
#endif

enum {
  POS_END = 0,        /* end of this position list */
  POS_COLUMN,         /* followed by new column number */
  POS_BASE
};

/* utility functions */

/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
** record to prevent errors of the form:
**
** my_function(SomeType *b){
**   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
** }
*/
/* TODO(shess) Obvious candidates for a header file. */
#define CLEAR(b) memset(b, '\0', sizeof(*(b)))

#ifndef NDEBUG
#  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
#else
#  define SCRAMBLE(b)
#endif

/* 
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
** The number of bytes written is returned.
*/
int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
  unsigned char *q = (unsigned char *) p;
................................................................................
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
  const unsigned char *q = (const unsigned char *) p;
  sqlite_uint64 x = 0, y = 1;
  while( (*q & 0x80) == 0x80 ){
    x += y * (*q++ & 0x7f);
    y <<= 7;
    if( q - (unsigned char *)p >= FTS3_VARINT_MAX ){  /* bad data */
      assert( 0 );
      return 0;
    }
  }
  x += y * (*q++);
  *v = (sqlite_int64) x;
  return (int) (q - (unsigned char *)p);
}

/*
................................................................................
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
** 32-bit integer before it is returned.
*/
int sqlite3Fts3GetVarint32(const char *p, int *pi){
 sqlite_int64 i;
 int ret = sqlite3Fts3GetVarint(p, &i);
 *pi = (int) i;
 assert( *pi==i );
 return ret;
}

/*
** Return the number of bytes required to store the value passed as the
** first argument in varint form.
*/
................................................................................
**
** Examples:
**
**     "abc"   becomes   abc
**     'xyz'   becomes   xyz
**     [pqr]   becomes   pqr
**     `mno`   becomes   mno

*/
void sqlite3Fts3Dequote(char *z){
  int quote;
  int i, j;

  quote = z[0];
  switch( quote ){
    case '\'':  break;
    case '"':   break;
    case '`':   break;                /* For MySQL compatibility */

    case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
    default:    return;
  }
  for(i=1, j=0; z[i]; i++){
    if( z[i]==quote ){
      if( z[i+1]==quote ){
        z[j++] = (char)quote;
        i++;
      }else{
        z[j++] = 0;
        break;
      }
    }else{
      z[j++] = z[i];
    }

  }
}

static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
  sqlite3_int64 iVal;
  *pp += sqlite3Fts3GetVarint(*pp, &iVal);
  *pVal += iVal;
................................................................................
** The argv[] array contains the following:
**
**   argv[0]   -> module name
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[...] -> "column name" and other module argument fields.
*/
int fts3InitVtab(
  int isCreate,                   /* True for xCreate, false for xConnect */
  sqlite3 *db,                    /* The SQLite database connection */
  void *pAux,                     /* Hash table containing tokenizers */
  int argc,                       /* Number of elements in argv array */
  const char * const *argv,       /* xCreate/xConnect argument array */
  sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
  char **pzErr                    /* Write any error message here */
................................................................................
  char *zCsr;
  int nDb;
  int nName;

  const char *zTokenizer = 0;               /* Name of tokenizer to use */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

#ifdef SQLITE_TEST
  const char *zTestParam = 0;
  if( strncmp(argv[argc-1], "test:", 5)==0 ){
    zTestParam = argv[argc-1];
    argc--;
  }
#endif

  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;
  for(i=3; i<argc; i++){
    char const *z = argv[i];
    rc = sqlite3Fts3InitTokenizer(pHash, z, &pTokenizer, &zTokenizer, pzErr);
    if( rc!=SQLITE_OK ){
      return rc;
................................................................................

  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nNodeSize = 1000;

  zCsr = (char *)&p->azColumn[nCol];

  fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);

  /* Fill in the zName and zDb fields of the vtab structure. */
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
................................................................................
    rc = fts3CreateTables(p);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }

  rc = fts3DeclareVtab(p);
  if( rc!=SQLITE_OK ) goto fts3_init_out;

#ifdef SQLITE_TEST
  if( zTestParam ){
    p->nNodeSize = atoi(&zTestParam[5]);
  }
#endif
  *ppVTab = &p->base;

fts3_init_out:
  assert( p || (pTokenizer && rc!=SQLITE_OK) );
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
................................................................................
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 500000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. This is the best
    ** strategy in all cases. Assign a cost of 1.0 and return early.
    */
    if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 
     && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
    ){
      pInfo->idxNum = FTS3_DOCID_SEARCH;
      pInfo->estimatedCost = 1.0;
      iCons = i;
      break;
    }

    /* A MATCH constraint. Use a full-text search.
    **
    ** If there is more than one MATCH constraint available, use the first
    ** one encountered. If there is both a MATCH constraint and a direct
    ** rowid/docid lookup, prefer the rowid/docid strategy.



    */
    if( iCons<0 
     && pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH 
     && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
    ){
      pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
      pInfo->estimatedCost = 2.0;
      iCons = i;

    }
  }

  if( iCons>=0 ){
    pInfo->aConstraintUsage[iCons].argvIndex = 1;
    pInfo->aConstraintUsage[iCons].omit = 1;
  } 
................................................................................
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr);
  return SQLITE_OK;
}

static int fts3CursorSeek(Fts3Cursor *pCsr){
  if( pCsr->isRequireSeek ){
    pCsr->isRequireSeek = 0;
    sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
    if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
      return SQLITE_OK;
    }else{
      int rc;
      pCsr->isEof = 1;
      if( SQLITE_OK==(rc = sqlite3_reset(pCsr->pStmt)) ){





        rc = SQLITE_ERROR;




      }
      return rc;
    }
  }else{
    return SQLITE_OK;
  }
}
................................................................................
        if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
          if( (*p2&0xFE)==0 ) break;
          fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
        }else{
          if( (*p1&0xFE)==0 ) break;
          fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
        }

      }
      if( pSave && pp ){

        p = pSave;
      }

      fts3ColumnlistCopy(0, &p1);
      fts3ColumnlistCopy(0, &p2);
      assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
      if( 0==*p1 || 0==*p2 ) break;
................................................................................
       || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
       || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
  );

  if( !aBuffer ){
    return SQLITE_NOMEM;
  }
  if( n1==0 && n2==0 ){
    *pnBuffer = 0;
    return SQLITE_OK;
  }

  /* Read the first docid from each doclist */
  fts3GetDeltaVarint2(&p1, pEnd1, &i1);
  fts3GetDeltaVarint2(&p2, pEnd2, &i2);

  switch( mergetype ){
    case MERGE_OR:
................................................................................
    }

    default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
      char *aTmp = 0;
      char **ppPos = 0;
      if( mergetype==MERGE_POS_NEAR ){
        ppPos = &p;
        aTmp = sqlite3_malloc(2*(n1+n2));
        if( !aTmp ){
          return SQLITE_NOMEM;
        }
      }

      while( p1 && p2 ){
        if( i1==i2 ){
................................................................................
  int isReqPos,                   /* True to include position lists in output */
  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int i;
  TermSelect tsc;
  Fts3SegFilter filter;           /* Segment term filter configuration */
  Fts3SegReader **apSegment = 0;  /* Array of segments to read data from */
  int nSegment = 0;               /* Size of apSegment array */
  int nAlloc = 0;                 /* Allocated size of segment array */
  int rc;                         /* Return code */
  sqlite3_stmt *pStmt;            /* SQL statement to scan %_segdir table */
  int iAge = 0;                   /* Used to assign ages to segments */









  /* Loop through the entire %_segdir table. For each segment, create a
  ** Fts3SegReader to iterate through the subset of the segment leaves
  ** that may contain a term that matches zTerm/nTerm. For non-prefix
  ** searches, this is always a single leaf. For prefix searches, this
  ** may be a contiguous block of leaves.
  **
................................................................................
  char *pOut = 0;
  int nOut = 0;
  int rc = SQLITE_OK;
  int ii;
  int iCol = pPhrase->iColumn;
  int isTermPos = (pPhrase->nToken>1 || isReqPos);

  assert( p->nPendingData==0 );

  for(ii=0; ii<pPhrase->nToken; ii++){
    struct PhraseToken *pTok = &pPhrase->aToken[ii];
    char *z = pTok->z;            /* Next token of the phrase */
    int n = pTok->n;              /* Size of z in bytes */
    int isPrefix = pTok->isPrefix;/* True if token is a prefix */
    char *pList;                  /* Pointer to token doclist */
    int nList;                    /* Size of buffer at pList */
................................................................................
  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);

  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
................................................................................
  }else if( idxNum!=FTS3_FULLSCAN_SEARCH ){
    int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
    const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);

    if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
      return SQLITE_NOMEM;
    }
    rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, 
        iCol, zQuery, -1, &pCsr->pExpr
    );
    if( rc!=SQLITE_OK ) return rc;

    rc = evalFts3Expr(p, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist);
................................................................................
  int rc;                         /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+1 );

  rc = fts3CursorSeek(pCsr);
  if( rc==SQLITE_OK ){
    if( iCol==p->nColumn+1 ){
      /* This call is a request for the "docid" column. Since "docid" is an 
      ** alias for "rowid", use the xRowid() method to obtain the value.
      */
      sqlite3_int64 iRowid;
      rc = fts3RowidMethod(pCursor, &iRowid);
      sqlite3_result_int64(pContext, iRowid);
    }else if( iCol==p->nColumn ){
      /* The extra column whose name is the same as the table.
      ** Return a blob which is a pointer to the cursor.
      */
      sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);

    }else{


      sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
    }
  }
  return rc;
}

/* 
................................................................................
  if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;

  switch( nVal ){
    case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
    case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
    case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
  }




  sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis);

}

/*
** Implementation of the offsets() function for FTS3
*/
static void fts3OffsetsFunc(
  sqlite3_context *pContext,      /* SQLite function call context */
................................................................................
  Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */

  UNUSED_PARAMETER(nVal);

  assert( nVal==1 );
  if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
  assert( pCsr );

  sqlite3Fts3Offsets(pContext, pCsr);

}

/* 
** Implementation of the special optimize() function for FTS3. This 
** function merges all segments in the database to a single segment.
** Example usage is:
**
................................................................................
** function is called by the sqlite3_extension_init() entry point.
*/
int sqlite3Fts3Init(sqlite3 *db){
  int rc = SQLITE_OK;
  Fts3Hash *pHash = 0;
  const sqlite3_tokenizer_module *pSimple = 0;
  const sqlite3_tokenizer_module *pPorter = 0;


  const sqlite3_tokenizer_module *pIcu = 0;



  sqlite3Fts3SimpleTokenizerModule(&pSimple);
  sqlite3Fts3PorterTokenizerModule(&pPorter);
#ifdef SQLITE_ENABLE_ICU
  sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif

  /* Allocate and initialise the hash-table used to store tokenizers. */
  pHash = sqlite3_malloc(sizeof(Fts3Hash));
  if( !pHash ){
    rc = SQLITE_NOMEM;
  }else{
    sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
  }

  /* Load the built-in tokenizers into the hash table */
  if( rc==SQLITE_OK ){
    if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
     || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 

     || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))

    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST

  sqlite3Fts3ExprInitTestInterface(db);

#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the two scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|


<
<
<
<







 







<







 







>


<
|


|
|
|
<
>
|
|
|
|
|
|
|
|

|
<

<
<

>







 







|







 







<
<
<
<
<
<
<
<







 







>







 







<
<
<
<
<







 







|
<
<






<






|
>
>
>

<
|





>







 







|






<
<
|
>
>
>
>
>
|
>
>
>
>







 







|
|
|
>







 







<
<
<
<







 







|







 







|

|

|

>
>
>
>
>
>
>
>







 







<
<







 







>







 







<
<







 







<
<
|
|
|
|
|
|
|
|
|
|
|
|
>
|
>
>







 







<
>
>
>
|
>







 







>
|
>







 







>
>

>
>



<
<
<













>

>






>
|
>







288
289
290
291
292
293
294
































































295
296
297
298
299
300
301
...
313
314
315
316
317
318
319
320
321
322




323
324
325
326
327
328
329
...
330
331
332
333
334
335
336

337
338
339
340
341
342
343
...
358
359
360
361
362
363
364
365
366
367

368
369
370
371
372
373

374
375
376
377
378
379
380
381
382
383
384

385


386
387
388
389
390
391
392
393
394
...
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
...
573
574
575
576
577
578
579








580
581
582
583
584
585
586
...
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
...
661
662
663
664
665
666
667





668
669
670
671
672
673
674
...
723
724
725
726
727
728
729
730


731
732
733
734
735
736

737
738
739
740
741
742
743
744
745
746
747

748
749
750
751
752
753
754
755
756
757
758
759
760
761
...
797
798
799
800
801
802
803
804
805
806
807
808
809
810


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
....
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
....
1308
1309
1310
1311
1312
1313
1314




1315
1316
1317
1318
1319
1320
1321
....
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
....
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
....
1643
1644
1645
1646
1647
1648
1649


1650
1651
1652
1653
1654
1655
1656
....
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
....
1858
1859
1860
1861
1862
1863
1864


1865
1866
1867
1868
1869
1870
1871
....
1913
1914
1915
1916
1917
1918
1919


1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
....
2046
2047
2048
2049
2050
2051
2052

2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
....
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
....
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249



2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

#include "fts3.h"
#ifndef SQLITE_CORE 
# include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#endif

































































/* 
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
** The number of bytes written is returned.
*/
int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
  unsigned char *q = (unsigned char *) p;
................................................................................
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
  const unsigned char *q = (const unsigned char *) p;
  sqlite_uint64 x = 0, y = 1;
  while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
    x += y * (*q++ & 0x7f);
    y <<= 7;




  }
  x += y * (*q++);
  *v = (sqlite_int64) x;
  return (int) (q - (unsigned char *)p);
}

/*
................................................................................
** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
** 32-bit integer before it is returned.
*/
int sqlite3Fts3GetVarint32(const char *p, int *pi){
 sqlite_int64 i;
 int ret = sqlite3Fts3GetVarint(p, &i);
 *pi = (int) i;

 return ret;
}

/*
** Return the number of bytes required to store the value passed as the
** first argument in varint form.
*/
................................................................................
**
** Examples:
**
**     "abc"   becomes   abc
**     'xyz'   becomes   xyz
**     [pqr]   becomes   pqr
**     `mno`   becomes   mno
**
*/
void sqlite3Fts3Dequote(char *z){

  char quote;                     /* Quote character (if any ) */

  quote = z[0];
  if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
    int iIn = 1;                  /* Index of next byte to read from input */
    int iOut = 0;                 /* Index of next byte to write to output */


    /* If the first byte was a '[', then the close-quote character is a ']' */
    if( quote=='[' ) quote = ']';  

    while( ALWAYS(z[iIn]) ){
      if( z[iIn]==quote ){
        if( z[iIn+1]!=quote ) break;
        z[iOut++] = quote;
        iIn += 2;
      }else{
        z[iOut++] = z[iIn++];

      }


    }
    z[iOut] = '\0';
  }
}

static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
  sqlite3_int64 iVal;
  *pp += sqlite3Fts3GetVarint(*pp, &iVal);
  *pVal += iVal;
................................................................................
** The argv[] array contains the following:
**
**   argv[0]   -> module name
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[...] -> "column name" and other module argument fields.
*/
static int fts3InitVtab(
  int isCreate,                   /* True for xCreate, false for xConnect */
  sqlite3 *db,                    /* The SQLite database connection */
  void *pAux,                     /* Hash table containing tokenizers */
  int argc,                       /* Number of elements in argv array */
  const char * const *argv,       /* xCreate/xConnect argument array */
  sqlite3_vtab **ppVTab,          /* Write the resulting vtab structure here */
  char **pzErr                    /* Write any error message here */
................................................................................
  char *zCsr;
  int nDb;
  int nName;

  const char *zTokenizer = 0;               /* Name of tokenizer to use */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */









  nDb = (int)strlen(argv[1]) + 1;
  nName = (int)strlen(argv[2]) + 1;
  for(i=3; i<argc; i++){
    char const *z = argv[i];
    rc = sqlite3Fts3InitTokenizer(pHash, z, &pTokenizer, &zTokenizer, pzErr);
    if( rc!=SQLITE_OK ){
      return rc;
................................................................................

  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nNodeSize = 1000;
  p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
  zCsr = (char *)&p->azColumn[nCol];

  fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);

  /* Fill in the zName and zDb fields of the vtab structure. */
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
................................................................................
    rc = fts3CreateTables(p);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }

  rc = fts3DeclareVtab(p);
  if( rc!=SQLITE_OK ) goto fts3_init_out;






  *ppVTab = &p->base;

fts3_init_out:
  assert( p || (pTokenizer && rc!=SQLITE_OK) );
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
................................................................................
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 500000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */


    if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 
     && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
    ){
      pInfo->idxNum = FTS3_DOCID_SEARCH;
      pInfo->estimatedCost = 1.0;
      iCons = i;

    }

    /* A MATCH constraint. Use a full-text search.
    **
    ** If there is more than one MATCH constraint available, use the first
    ** one encountered. If there is both a MATCH constraint and a direct
    ** rowid/docid lookup, prefer the MATCH strategy. This is done even 
    ** though the rowid/docid lookup is faster than a MATCH query, selecting
    ** it would lead to an "unable to use function MATCH in the requested 
    ** context" error.
    */

    if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH 
     && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
    ){
      pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
      pInfo->estimatedCost = 2.0;
      iCons = i;
      break;
    }
  }

  if( iCons>=0 ){
    pInfo->aConstraintUsage[iCons].argvIndex = 1;
    pInfo->aConstraintUsage[iCons].omit = 1;
  } 
................................................................................
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr);
  return SQLITE_OK;
}

static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  if( pCsr->isRequireSeek ){
    pCsr->isRequireSeek = 0;
    sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
    if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
      return SQLITE_OK;
    }else{


      int rc = sqlite3_reset(pCsr->pStmt);
      if( rc==SQLITE_OK ){
        /* If no row was found and no error has occured, then the %_content
        ** table is missing a row that is present in the full-text index.
        ** The data structures are corrupt.
        */
        rc = SQLITE_CORRUPT;
      }
      pCsr->isEof = 1;
      if( pContext ){
        sqlite3_result_error_code(pContext, rc);
      }
      return rc;
    }
  }else{
    return SQLITE_OK;
  }
}
................................................................................
        if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
          if( (*p2&0xFE)==0 ) break;
          fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
        }else{
          if( (*p1&0xFE)==0 ) break;
          fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
        }
      }

      if( pSave ){
        assert( pp && p );
        p = pSave;
      }

      fts3ColumnlistCopy(0, &p1);
      fts3ColumnlistCopy(0, &p2);
      assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
      if( 0==*p1 || 0==*p2 ) break;
................................................................................
       || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
       || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
  );

  if( !aBuffer ){
    return SQLITE_NOMEM;
  }





  /* Read the first docid from each doclist */
  fts3GetDeltaVarint2(&p1, pEnd1, &i1);
  fts3GetDeltaVarint2(&p2, pEnd2, &i2);

  switch( mergetype ){
    case MERGE_OR:
................................................................................
    }

    default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
      char *aTmp = 0;
      char **ppPos = 0;
      if( mergetype==MERGE_POS_NEAR ){
        ppPos = &p;
        aTmp = sqlite3_malloc(2*(n1+n2+1));
        if( !aTmp ){
          return SQLITE_NOMEM;
        }
      }

      while( p1 && p2 ){
        if( i1==i2 ){
................................................................................
  int isReqPos,                   /* True to include position lists in output */
  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int i;
  TermSelect tsc;
  Fts3SegFilter filter;           /* Segment term filter configuration */
  Fts3SegReader **apSegment;      /* Array of segments to read data from */
  int nSegment = 0;               /* Size of apSegment array */
  int nAlloc = 16;                /* Allocated size of segment array */
  int rc;                         /* Return code */
  sqlite3_stmt *pStmt = 0;        /* SQL statement to scan %_segdir table */
  int iAge = 0;                   /* Used to assign ages to segments */

  apSegment = (Fts3SegReader **)sqlite3_malloc(sizeof(Fts3SegReader*)*nAlloc);
  if( !apSegment ) return SQLITE_NOMEM;
  rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &apSegment[0]);
  if( rc!=SQLITE_OK ) goto finished;
  if( apSegment[0] ){
    nSegment = 1;
  }

  /* Loop through the entire %_segdir table. For each segment, create a
  ** Fts3SegReader to iterate through the subset of the segment leaves
  ** that may contain a term that matches zTerm/nTerm. For non-prefix
  ** searches, this is always a single leaf. For prefix searches, this
  ** may be a contiguous block of leaves.
  **
................................................................................
  char *pOut = 0;
  int nOut = 0;
  int rc = SQLITE_OK;
  int ii;
  int iCol = pPhrase->iColumn;
  int isTermPos = (pPhrase->nToken>1 || isReqPos);



  for(ii=0; ii<pPhrase->nToken; ii++){
    struct PhraseToken *pTok = &pPhrase->aToken[ii];
    char *z = pTok->z;            /* Next token of the phrase */
    int n = pTok->n;              /* Size of z in bytes */
    int isPrefix = pTok->isPrefix;/* True if token is a prefix */
    char *pList;                  /* Pointer to token doclist */
    int nList;                    /* Size of buffer at pList */
................................................................................
  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
................................................................................
  }else if( idxNum!=FTS3_FULLSCAN_SEARCH ){
    int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
    const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);

    if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
      return SQLITE_NOMEM;
    }



    rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, 
        iCol, zQuery, -1, &pCsr->pExpr
    );
    if( rc!=SQLITE_OK ) return rc;

    rc = evalFts3Expr(p, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist);
................................................................................
  int rc;                         /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+1 );



  if( iCol==p->nColumn+1 ){
    /* This call is a request for the "docid" column. Since "docid" is an 
    ** alias for "rowid", use the xRowid() method to obtain the value.
    */
    sqlite3_int64 iRowid;
    rc = fts3RowidMethod(pCursor, &iRowid);
    sqlite3_result_int64(pContext, iRowid);
  }else if( iCol==p->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor.
    */
    sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
    rc = SQLITE_OK;
  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
    }
  }
  return rc;
}

/* 
................................................................................
  if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;

  switch( nVal ){
    case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
    case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
    case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
  }

  if( !zEllipsis || !zEnd || !zStart ){
    sqlite3_result_error_nomem(pContext);
  }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
    sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis);
  }
}

/*
** Implementation of the offsets() function for FTS3
*/
static void fts3OffsetsFunc(
  sqlite3_context *pContext,      /* SQLite function call context */
................................................................................
  Fts3Cursor *pCsr;               /* Cursor handle passed through apVal[0] */

  UNUSED_PARAMETER(nVal);

  assert( nVal==1 );
  if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
  assert( pCsr );
  if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
    sqlite3Fts3Offsets(pContext, pCsr);
  }
}

/* 
** Implementation of the special optimize() function for FTS3. This 
** function merges all segments in the database to a single segment.
** Example usage is:
**
................................................................................
** function is called by the sqlite3_extension_init() entry point.
*/
int sqlite3Fts3Init(sqlite3 *db){
  int rc = SQLITE_OK;
  Fts3Hash *pHash = 0;
  const sqlite3_tokenizer_module *pSimple = 0;
  const sqlite3_tokenizer_module *pPorter = 0;

#ifdef SQLITE_ENABLE_ICU
  const sqlite3_tokenizer_module *pIcu = 0;
  sqlite3Fts3IcuTokenizerModule(&pIcu);
#endif

  sqlite3Fts3SimpleTokenizerModule(&pSimple);
  sqlite3Fts3PorterTokenizerModule(&pPorter);




  /* Allocate and initialise the hash-table used to store tokenizers. */
  pHash = sqlite3_malloc(sizeof(Fts3Hash));
  if( !pHash ){
    rc = SQLITE_NOMEM;
  }else{
    sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
  }

  /* Load the built-in tokenizers into the hash table */
  if( rc==SQLITE_OK ){
    if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
     || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 
#ifdef SQLITE_ENABLE_ICU
     || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
#endif
    ){
      rc = SQLITE_NOMEM;
    }
  }

#ifdef SQLITE_TEST
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3ExprInitTestInterface(db);
  }
#endif

  /* Create the virtual table wrapper around the hash-table and overload 
  ** the two scalar functions. If this is successful, register the
  ** module with sqlite.
  */
  if( SQLITE_OK==rc 

Changes to ext/fts3/fts3Int.h.

116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
...
221
222
223
224
225
226
227

228
229
230
231
232
233
234
...
269
270
271
272
273
274
275
276
277
278
279
  sqlite3_stmt **aLeavesStmt;     /* Array of prepared zSelectLeaves stmts */

  int nNodeSize;                  /* Soft limit for node size */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds FTS3_MAX_PENDING_DATA, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
  */

  int nPendingData;
  sqlite_int64 iPrevDocid;
  Fts3Hash pendingTerms;
};

/*
** When the core wants to read from the virtual table, it creates a
................................................................................
/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(Fts3Table *,int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);

void sqlite3Fts3SegReaderFree(Fts3Table *, Fts3SegReader *);
int sqlite3Fts3SegReaderIterate(
  Fts3Table *, Fts3SegReader **, int, Fts3SegFilter *,
  int (*)(Fts3Table *, void *, char *, int, char *, int),  void *
);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char const**, int*);
int sqlite3Fts3AllSegdirs(Fts3Table*, sqlite3_stmt **);
................................................................................

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, 
  char **, int, int, const char *, int, Fts3Expr **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
void sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
#endif

#endif /* _FTSINT_H */







|



>







 







>







 







|



116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
...
271
272
273
274
275
276
277
278
279
280
281
  sqlite3_stmt **aLeavesStmt;     /* Array of prepared zSelectLeaves stmts */

  int nNodeSize;                  /* Soft limit for node size */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
  */
  int nMaxPendingData;
  int nPendingData;
  sqlite_int64 iPrevDocid;
  Fts3Hash pendingTerms;
};

/*
** When the core wants to read from the virtual table, it creates a
................................................................................
/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(Fts3Table *,int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3Table *, Fts3SegReader *);
int sqlite3Fts3SegReaderIterate(
  Fts3Table *, Fts3SegReader **, int, Fts3SegFilter *,
  int (*)(Fts3Table *, void *, char *, int, char *, int),  void *
);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char const**, int*);
int sqlite3Fts3AllSegdirs(Fts3Table*, sqlite3_stmt **);
................................................................................

/* fts3_expr.c */
int sqlite3Fts3ExprParse(sqlite3_tokenizer *, 
  char **, int, int, const char *, int, Fts3Expr **
);
void sqlite3Fts3ExprFree(Fts3Expr *);
#ifdef SQLITE_TEST
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
#endif

#endif /* _FTSINT_H */

Changes to ext/fts3/fts3_expr.c.

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
...
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
}


/*
** Enlarge a memory allocation.  If an out-of-memory allocation occurs,
** then free the old allocation.
*/
void *fts3ReallocOrFree(void *pOrig, int nNew){
  void *pRet = sqlite3_realloc(pOrig, nNew);
  if( !pRet ){
    sqlite3_free(pOrig);
  }
  return pRet;
}

................................................................................
  sqlite3_free(azCol);
}

/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
void sqlite3Fts3ExprInitTestInterface(sqlite3* db){
  sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
  );
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */







|







 







|
|






177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
...
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
}


/*
** Enlarge a memory allocation.  If an out-of-memory allocation occurs,
** then free the old allocation.
*/
static void *fts3ReallocOrFree(void *pOrig, int nNew){
  void *pRet = sqlite3_realloc(pOrig, nNew);
  if( !pRet ){
    sqlite3_free(pOrig);
  }
  return pRet;
}

................................................................................
  sqlite3_free(azCol);
}

/*
** Register the query expression parser test function fts3_exprtest() 
** with database connection db. 
*/
int sqlite3Fts3ExprInitTestInterface(sqlite3* db){
  return sqlite3_create_function(
      db, "fts3_exprtest", -1, SQLITE_UTF8, 0, fts3ExprTest, 0, 0
  );
}

#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_hash.c.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296











297
298
299
300
301
302
303
304
  if( pH->count<=0 ){
    assert( pH->first==0 );
    assert( pH->count==0 );
    fts3HashClear(pH);
  }
}

/* Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey.  Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
  int h;                 /* A hash on key */
  Fts3HashElem *elem;    /* The element that matches key */
  int (*xHash)(const void*,int);  /* The hash function */

  if( pH==0 || pH->ht==0 ) return 0;
  xHash = ftsHashFunction(pH->keyClass);
  assert( xHash!=0 );
  h = (*xHash)(pKey,nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));











  return elem ? elem->data : 0;
}

/* Insert an element into the hash table pH.  The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created.  A copy of the key is made if the copyKey







|
|
|
|
|
|
<







|
>
>
>
>
>
>
>
>
>
>
>
|







275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
  if( pH->count<=0 ){
    assert( pH->first==0 );
    assert( pH->count==0 );
    fts3HashClear(pH);
  }
}

Fts3HashElem *sqlite3Fts3HashFindElem(
  const Fts3Hash *pH, 
  const void *pKey, 
  int nKey
){
  int h;                          /* A hash on key */

  int (*xHash)(const void*,int);  /* The hash function */

  if( pH==0 || pH->ht==0 ) return 0;
  xHash = ftsHashFunction(pH->keyClass);
  assert( xHash!=0 );
  h = (*xHash)(pKey,nKey);
  assert( (pH->htsize & (pH->htsize-1))==0 );
  return fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1));
}

/* 
** Attempt to locate an element of the hash table pH with a key
** that matches pKey,nKey.  Return the data for this element if it is
** found, or NULL if there is no match.
*/
void *sqlite3Fts3HashFind(const Fts3Hash *pH, const void *pKey, int nKey){
  Fts3HashElem *pElem;            /* The element that matches key (if any) */

  pElem = sqlite3Fts3HashFindElem(pH, pKey, nKey);
  return pElem ? pElem->data : 0;
}

/* Insert an element into the hash table pH.  The key is pKey,nKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created.  A copy of the key is made if the copyKey

Changes to ext/fts3/fts3_hash.h.

71
72
73
74
75
76
77

78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
/*
** Access routines.  To delete, insert a NULL pointer.
*/
void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
void sqlite3Fts3HashClear(Fts3Hash*);


/*
** Shorthand for the functions above
*/
#define fts3HashInit   sqlite3Fts3HashInit
#define fts3HashInsert sqlite3Fts3HashInsert
#define fts3HashFind   sqlite3Fts3HashFind
#define fts3HashClear  sqlite3Fts3HashClear


/*
** Macros for looping over all elements of a hash table.  The idiom is
** like this:
**
**   Fts3Hash h;
**   Fts3HashElem *p;







>




|
|
|
|
>







71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
** Access routines.  To delete, insert a NULL pointer.
*/
void sqlite3Fts3HashInit(Fts3Hash *pNew, char keyClass, char copyKey);
void *sqlite3Fts3HashInsert(Fts3Hash*, const void *pKey, int nKey, void *pData);
void *sqlite3Fts3HashFind(const Fts3Hash*, const void *pKey, int nKey);
void sqlite3Fts3HashClear(Fts3Hash*);
Fts3HashElem *sqlite3Fts3HashFindElem(const Fts3Hash *, const void *, int);

/*
** Shorthand for the functions above
*/
#define fts3HashInit     sqlite3Fts3HashInit
#define fts3HashInsert   sqlite3Fts3HashInsert
#define fts3HashFind     sqlite3Fts3HashFind
#define fts3HashClear    sqlite3Fts3HashClear
#define fts3HashFindElem sqlite3Fts3HashFindElem

/*
** Macros for looping over all elements of a hash table.  The idiom is
** like this:
**
**   Fts3Hash h;
**   Fts3HashElem *p;

Changes to ext/fts3/fts3_tokenizer.c.

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
...
462
463
464
465
466
467
468
469
470
471
472


473
474
475
476
477
478
479
...
482
483
484
485
486
487
488
489
490

491
492


493
494
495
496
const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
  const char *z1;
  const char *z2 = 0;

  /* Find the start of the next token. */
  z1 = zStr;
  while( z2==0 ){

    switch( *z1 ){
      case '\0': return 0;        /* No more tokens here */
      case '\'':
      case '"':
      case '`': {
        z2 = &z1[1];
        while( *z2 && (z2[0]!=*z1 || z2[1]==*z1) ) z2++;
        if( *z2 ) z2++;
        break;
      }
      case '[':
        z2 = &z1[1];
        while( *z2 && z2[0]!=']' ) z2++;
        if( *z2 ) z2++;
        break;
................................................................................
  sqlite3 *db, 
  Fts3Hash *pHash, 
  const char *zName
){
  int rc = SQLITE_OK;
  void *p = (void *)pHash;
  const int any = SQLITE_ANY;
  char *zTest = 0;
  char *zTest2 = 0;

#ifdef SQLITE_TEST


  void *pdb = (void *)db;
  zTest = sqlite3_mprintf("%s_test", zName);
  zTest2 = sqlite3_mprintf("%s_internal_test", zName);
  if( !zTest || !zTest2 ){
    rc = SQLITE_NOMEM;
  }
#endif
................................................................................
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
#ifdef SQLITE_TEST
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
#endif
  );


  sqlite3_free(zTest);
  sqlite3_free(zTest2);


  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */







>
|




|
|
<







 







<
<


>
>







 







|

>


>
>




115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
...
462
463
464
465
466
467
468


469
470
471
472
473
474
475
476
477
478
479
...
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
const char *sqlite3Fts3NextToken(const char *zStr, int *pn){
  const char *z1;
  const char *z2 = 0;

  /* Find the start of the next token. */
  z1 = zStr;
  while( z2==0 ){
    char c = *z1;
    switch( c ){
      case '\0': return 0;        /* No more tokens here */
      case '\'':
      case '"':
      case '`': {
        z2 = z1;
        while( *++z2 && (*z2!=c || *++z2==c) );

        break;
      }
      case '[':
        z2 = &z1[1];
        while( *z2 && z2[0]!=']' ) z2++;
        if( *z2 ) z2++;
        break;
................................................................................
  sqlite3 *db, 
  Fts3Hash *pHash, 
  const char *zName
){
  int rc = SQLITE_OK;
  void *p = (void *)pHash;
  const int any = SQLITE_ANY;



#ifdef SQLITE_TEST
  char *zTest = 0;
  char *zTest2 = 0;
  void *pdb = (void *)db;
  zTest = sqlite3_mprintf("%s_test", zName);
  zTest2 = sqlite3_mprintf("%s_internal_test", zName);
  if( !zTest || !zTest2 ){
    rc = SQLITE_NOMEM;
  }
#endif
................................................................................
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0))
#ifdef SQLITE_TEST
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0))
   || SQLITE_OK!=(rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0))
#endif
   );

#ifdef SQLITE_TEST
  sqlite3_free(zTest);
  sqlite3_free(zTest2);
#endif

  return rc;
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */

Changes to ext/fts3/fts3_write.c.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
48
49
50
51
52
53
54






55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
..
72
73
74
75
76
77
78


79
80
81
82
83
84
85
...
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
...
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
...
724
725
726
727
728
729
730















731
732
733
734
735
736
737
...
833
834
835
836
837
838
839

840

841
842
843
844
845
846
847
...
930
931
932
933
934
935
936

































































































937
938
939
940
941
942
943
...
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
....
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
....
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
....
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
















1731
1732
1733
1734
1735
1736
1737
....
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
....
1821
1822
1823
1824
1825
1826
1827

1828
1829
1830
1831
1832
1833
1834
1835
....
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
....
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

1934
1935
1936
1937
1938
1939
1940
1941
1942


1943


1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

1957
1958
1959
1960
1961
1962
1963
1964
1965

1966
1967
1968
1969
1970
1971
1972
....
1977
1978
1979
1980
1981
1982
1983




1984
1985
1986
1987
1988
1989
1990
....
2001
2002
2003
2004
2005
2006
2007

2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039

2040

2041

2042
2043
2044
2045
2046
2047
2048
2049
2050
2051



2052
2053
2054
2055
2056

2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073



2074



2075

2076
2077
2078
2079
2080
2081
2082
2083




2084
2085
2086
2087
2088
2089


2090
2091





































2092
2093
2094
2095
2096
2097
2098
....
2102
2103
2104
2105
2106
2107
2108

2109
2110
2111
2112
2113
2114
2115
....
2126
2127
2128
2129
2130
2131
2132


2133
2134
2135
2136
2137
2138
2139
....
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163



2164
2165

2166
2167
2168
2169
2170
2171

typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloced
** instance of this structure.
*/
struct PendingList {
  int nData;
  char *aData;
  int nSpace;
  sqlite3_int64 iLastDocid;
................................................................................
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
**   sqlite3Fts3SegReaderNew()
**   sqlite3Fts3SegReaderFree()
**   sqlite3Fts3SegReaderIterate()






*/
struct Fts3SegReader {
  int iIdx;                       /* Index within level */
  sqlite3_int64 iStartBlock;
  sqlite3_int64 iEndBlock;
  sqlite3_stmt *pStmt;            /* SQL Statement to access leaf nodes */
  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */


  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
................................................................................
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used to iterate through the current doclist */
  char *pOffsetList;
  sqlite3_int64 iDocid;
};



/*
** An instance of this structure is used to create a segment b-tree in the
** database. The internal details of this type are only accessed by the
** following functions:
**
**   fts3SegWriterAdd()
................................................................................
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_reset(pStmt);

  if( pzBlock ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    rc = sqlite3_step(pStmt); 
    if( rc!=SQLITE_ROW ){
      return SQLITE_CORRUPT;
    }
  
    *pnBlock = sqlite3_column_bytes(pStmt, 0);
    *pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
    if( !*pzBlock ){
      return SQLITE_NOMEM;
    }
  }
  return SQLITE_OK;
}

/*
** Set *ppStmt to a statement handle that may be used to iterate through
................................................................................
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
  /* TODO(shess) Explore whether partially flushing the buffer on
  ** forced-flush would provide better performance.  I suspect that if
  ** we ordered the doclists by size and flushed the largest until the
  ** buffer was half empty, that would let the less frequent terms
  ** generate longer doclists.
  */
  if( iDocid<=p->iPrevDocid || p->nPendingData>FTS3_MAX_PENDING_DATA ){
    int rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

................................................................................
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
    int rc;















    if( !pReader->pStmt ){
      pReader->aNode = 0;
      return SQLITE_OK;
    }
    rc = sqlite3_step(pReader->pStmt);
    if( rc!=SQLITE_ROW ){
      pReader->aNode = 0;
................................................................................
      /* Move the leaf-range SELECT statement to the aLeavesStmt[] array,
      ** so that it can be reused when required by another query.
      */
      assert( p->nLeavesStmt<p->nLeavesTotal );
      sqlite3_reset(pReader->pStmt);
      p->aLeavesStmt[p->nLeavesStmt++] = pReader->pStmt;
    }

    sqlite3_free(pReader->zTerm);

    sqlite3_free(pReader);
  }
}

/*
** Allocate a new SegReader object.
*/
................................................................................
    *ppReader = pReader;
  }else{
    sqlite3Fts3SegReaderFree(p, pReader);
  }
  return rc;
}



































































































/*
** The second argument to this function is expected to be a statement of
** the form:
**
**   SELECT 
**     idx,                  -- col 0
................................................................................

/*
** Compare the entries pointed to by two Fts3SegReader structures. 
** Comparison is as follows:
**
**   1) EOF is greater than not EOF.
**
**   2) The current terms (if any) are compared with memcmp(). If one
**      term is a prefix of another, the longer term is considered the
**      larger.
**
**   3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc;
................................................................................
  char *z,                        /* Pointer to buffer containing block data */
  int n                           /* Size of buffer z in bytes */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    rc = sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
    if( rc==SQLITE_OK ){
      sqlite3_step(pStmt);
      rc = sqlite3_reset(pStmt);
    }
  }
  return rc;
}

/* 
** Insert a record into the %_segdir table.
*/
................................................................................
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pStmt, 1, iLevel);
    sqlite3_bind_int(pStmt, 2, iIdx);
    sqlite3_bind_int64(pStmt, 3, iStartBlock);
    sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
    sqlite3_bind_int64(pStmt, 5, iEndBlock);
    rc = sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
    if( rc==SQLITE_OK ){
      sqlite3_step(pStmt);
      rc = sqlite3_reset(pStmt);
    }
  }
  return rc;
}

/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example, 
................................................................................
}

/*
** sqlite3Fts3SegReaderIterate() callback used when merging multiple 
** segments to create a single, larger segment.
*/
static int fts3MergeCallback(
  Fts3Table *p,
  void *pContext,
  char *zTerm,
  int nTerm,
  char *aDoclist,
  int nDoclist
){
  SegmentWriter **ppW = (SegmentWriter **)pContext;
  return fts3SegWriterAdd(p, ppW, 1, zTerm, nTerm, aDoclist, nDoclist);
}

















/*
** This function is used to iterate through a contiguous set of terms 
** stored in the full-text index. It merges data contained in one or 
** more segments to support this.
**
** The second argument is passed an array of pointers to SegReader objects
................................................................................
  if( pFilter->zTerm ){
    int nTerm = pFilter->nTerm;
    const char *zTerm = pFilter->zTerm;
    for(i=0; i<nSegment; i++){
      Fts3SegReader *pSeg = apSegment[i];
      while( fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ){
        rc = fts3SegReaderNext(pSeg);
        if( rc!=SQLITE_OK ) goto finished;
      }
    }
  }

  fts3SegReaderSort(apSegment, nSegment, nSegment, fts3SegReaderCmp);
  while( apSegment[0]->aNode ){
    int nTerm = apSegment[0]->nTerm;
    char *zTerm = apSegment[0]->zTerm;
................................................................................
        && apSegment[nMerge]->aNode
        && apSegment[nMerge]->nTerm==nTerm 
        && 0==memcmp(zTerm, apSegment[nMerge]->zTerm, nTerm)
    ){
      nMerge++;
    }


    if( nMerge==1 && !isIgnoreEmpty && !isColFilter && isRequirePos ){
      Fts3SegReader *p0 = apSegment[0];
      rc = xFunc(p, pContext, zTerm, nTerm, p0->aDoclist, p0->nDoclist);
      if( rc!=SQLITE_OK ) goto finished;
    }else{
      int nDoclist = 0;           /* Size of doclist */
      sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */

................................................................................
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge 
            && apSegment[j]->pOffsetList 
            && apSegment[j]->iDocid==iDocid 
        ){
          fts3SegReaderNextDocid(apSegment[j], 0, 0);
          j++;
        }

        if( isColFilter ){
          fts3ColumnFilter(pFilter->iCol, &pList, &nList);
................................................................................
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
  int i;                          /* Iterator variable */
  int rc;                         /* Return code */
  int iIdx;                       /* Index of new segment */
  int iNewLevel;                  /* Level to create new segment at */
  sqlite3_stmt *pStmt;
  SegmentWriter *pWriter = 0;
  int nSegment = 0;               /* Number of segments being merged */
  Fts3SegReader **apSegment = 0;  /* Array of Segment iterators */

  Fts3SegFilter filter;           /* Segment term filter condition */

  if( iLevel<0 ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database. The index
    ** of the new segment is always 0.
    */
    iIdx = 0;


    rc = fts3SegmentCountMax(p, &nSegment, &iNewLevel);


    if( nSegment==1 ){
      return SQLITE_DONE;
    }
  }else{
    /* This call is to merge all segments at level iLevel. Find the next
    ** available segment index at level iLevel+1. The call to
    ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 
    ** a single iLevel+2 segment if necessary.
    */
    iNewLevel = iLevel+1;
    rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);
    if( rc!=SQLITE_OK ) return rc;
    rc = fts3SegmentCount(p, iLevel, &nSegment);

  }
  if( rc!=SQLITE_OK ) return rc;
  assert( nSegment>0 );
  assert( iNewLevel>=0 );

  /* Allocate space for an array of pointers to segment iterators. */
  apSegment = (Fts3SegReader**)sqlite3_malloc(sizeof(Fts3SegReader *)*nSegment);
  if( !apSegment ){
    return SQLITE_NOMEM;

  }
  memset(apSegment, 0, sizeof(Fts3SegReader *)*nSegment);

  /* Allocate a Fts3SegReader structure for each segment being merged. A 
  ** Fts3SegReader stores the state data required to iterate through all 
  ** entries on all leaves of a single segment. 
  */
................................................................................
  for(i=0; SQLITE_ROW==(sqlite3_step(pStmt)); i++){
    rc = fts3SegReaderNew(p, pStmt, i, &apSegment[i]);
    if( rc!=SQLITE_OK ){
      goto finished;
    }
  }
  rc = sqlite3_reset(pStmt);




  pStmt = 0;
  if( rc!=SQLITE_OK ) goto finished;

  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (iLevel<0 ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
  rc = sqlite3Fts3SegReaderIterate(p, apSegment, nSegment,
................................................................................
  fts3SegWriterFree(pWriter);
  if( apSegment ){
    for(i=0; i<nSegment; i++){
      sqlite3Fts3SegReaderFree(p, apSegment[i]);
    }
    sqlite3_free(apSegment);
  }

  sqlite3_reset(pStmt);
  return rc;
}

/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int qsortCompare(const void *lhs, const void *rhs){
  char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
  char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
  int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
  int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);

  int n = (n1<n2 ? n1 : n2);
  int c = memcmp(z1, z2, n);
  if( c==0 ){
    c = n1 - n2;
  }
  return c;
}


/* 
** Flush the contents of pendingTerms to a level 0 segment.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
  Fts3HashElem *pElem;
  int idx, rc, i;
  Fts3HashElem **apElem;          /* Array of pointers to hash elements */
  int nElem;                      /* Number of terms in new segment */

  SegmentWriter *pWriter = 0;     /* Used to write the segment */



  /* Find the number of terms that will make up the new segment. If there
  ** are no terms, return early (do not bother to write an empty segment).
  */
  nElem = fts3HashCount(&p->pendingTerms);
  if( nElem==0 ){
    assert( p->nPendingData==0 );
    return SQLITE_OK;
  }

  /* Determine the next index at level 0, merging as necessary. */



  rc = fts3AllocateSegdirIdx(p, 0, &idx);
  if( rc!=SQLITE_OK ){
    return rc;
  } 


  apElem = sqlite3_malloc(nElem*sizeof(Fts3HashElem *));
  if( !apElem ){
    return SQLITE_NOMEM;
  }

  i = 0;
  for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
    apElem[i++] = pElem;
  }
  assert( i==nElem );

  /* TODO(shess) Should we allow user-defined collation sequences,
  ** here?  I think we only need that once we support prefix searches.
  ** Also, should we be using qsort()?
  */
  if( nElem>1 ){
    qsort(apElem, nElem, sizeof(Fts3HashElem *), qsortCompare);



  }






  /* Write the segment tree into the database. */
  for(i=0; rc==SQLITE_OK && i<nElem; i++){
    const char *z = fts3HashKey(apElem[i]);
    int n = fts3HashKeysize(apElem[i]);
    PendingList *pList = fts3HashData(apElem[i]);
    rc = fts3SegWriterAdd(p, &pWriter, 0, z, n, pList->aData, pList->nData+1);
  }




  if( rc==SQLITE_OK ){
    rc = fts3SegWriterFlush(p, pWriter, 0, idx);
  }

  /* Free all allocated resources before returning */
  fts3SegWriterFree(pWriter);


  sqlite3_free(apElem);
  sqlite3Fts3PendingTermsClear(p);





































  return rc;
}

/*
** This function does the work for the xUpdate method of FTS3 virtual
** tables.
*/
................................................................................
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */


  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    int isEmpty;
    rc = fts3IsEmpty(p, apVal, &isEmpty);
    if( rc==SQLITE_OK ){
      if( isEmpty ){
................................................................................
          rc = fts3DeleteTerms(p, apVal);
          if( rc==SQLITE_OK ){
            rc = fts3SqlExec(p, SQL_DELETE_CONTENT, apVal);
          }
        }
      }
    }


  }
  
  /* If this is an INSERT or UPDATE operation, insert the new record. */
  if( nArg>1 && rc==SQLITE_OK ){
    rc = fts3InsertData(p, apVal, pRowid);
    if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
      rc = fts3PendingTermsDocid(p, *pRowid);
................................................................................
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
*/
int sqlite3Fts3Optimize(Fts3Table *p){
  int rc;
  rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc==SQLITE_OK ){
      rc = fts3SegmentMerge(p, -1);
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);



    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3 ; RELEASE fts3", 0, 0, 0);

    }
  }
  return rc;
}

#endif







|







 







>
>
>
>
>
>


|






>







 







>
>







 







|




|
|







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|
<
|
|
<







 







|
<
|
|
<







 







|
|
|
|
|
|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
<







 







>
|







 







|
|
|







 







|



>









>
>

>
>
|










|

>

<






|
>







 







>
>
>
>







 







>




<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





<
<
<
|
>

>

>
|
|

|
|
<
|


|
>
>
>

<
<
|
<
>
|
|
|
<
<
<
<
<
<
<
<
<
<
<

<
<
>
>
>
|
>
>
>
|
>

<
<
<
<
<
<
<
>
>
>
>



<
<

>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>







 







>
>







 







<
<
|
<


>
>
>

|
>






26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
..
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
...
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
...
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
...
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
...
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
....
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
....
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233

1234
1235
1236
1237
1238
1239
1240
....
1252
1253
1254
1255
1256
1257
1258
1259

1260
1261

1262
1263
1264
1265
1266
1267
1268
....
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
....
1921
1922
1923
1924
1925
1926
1927
1928

1929
1930
1931
1932
1933
1934
1935
....
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
....
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
....
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098

2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
....
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
....
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157



















2158
2159
2160
2161
2162



2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173

2174
2175
2176
2177
2178
2179
2180
2181


2182

2183
2184
2185
2186











2187


2188
2189
2190
2191
2192
2193
2194
2195
2196
2197







2198
2199
2200
2201
2202
2203
2204


2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
....
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
....
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
....
2309
2310
2311
2312
2313
2314
2315


2316

2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330

typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloc'd
** instance of this structure.
*/
struct PendingList {
  int nData;
  char *aData;
  int nSpace;
  sqlite3_int64 iLastDocid;
................................................................................
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
**   sqlite3Fts3SegReaderNew()
**   sqlite3Fts3SegReaderFree()
**   sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
**   fts3SegReaderNext()
**   fts3SegReaderFirstDocid()
**   fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */
  sqlite3_int64 iStartBlock;
  sqlite3_int64 iEndBlock;
  sqlite3_stmt *pStmt;            /* SQL Statement to access leaf nodes */
  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
................................................................................
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used to iterate through the current doclist */
  char *pOffsetList;
  sqlite3_int64 iDocid;
};

#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)

/*
** An instance of this structure is used to create a segment b-tree in the
** database. The internal details of this type are only accessed by the
** following functions:
**
**   fts3SegWriterAdd()
................................................................................
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_reset(pStmt);

  if( pzBlock ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    rc = sqlite3_step(pStmt); 
    if( rc!=SQLITE_ROW ){
      return (rc==SQLITE_DONE ? SQLITE_CORRUPT : rc);
    }
  
    *pnBlock = sqlite3_column_bytes(pStmt, 0);
    *pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
    if( sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
      return SQLITE_CORRUPT;
    }
  }
  return SQLITE_OK;
}

/*
** Set *ppStmt to a statement handle that may be used to iterate through
................................................................................
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
  /* TODO(shess) Explore whether partially flushing the buffer on
  ** forced-flush would provide better performance.  I suspect that if
  ** we ordered the doclists by size and flushed the largest until the
  ** buffer was half empty, that would let the less frequent terms
  ** generate longer doclists.
  */
  if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){
    int rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

................................................................................
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
    int rc;
    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        pReader->zTerm = (char *)fts3HashKey(pElem);
        pReader->nTerm = fts3HashKeysize(pElem);
        pReader->nNode = pReader->nDoclist = pList->nData + 1;
        pReader->aNode = pReader->aDoclist = pList->aData;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }
      return SQLITE_OK;
    }
    if( !pReader->pStmt ){
      pReader->aNode = 0;
      return SQLITE_OK;
    }
    rc = sqlite3_step(pReader->pStmt);
    if( rc!=SQLITE_ROW ){
      pReader->aNode = 0;
................................................................................
      /* Move the leaf-range SELECT statement to the aLeavesStmt[] array,
      ** so that it can be reused when required by another query.
      */
      assert( p->nLeavesStmt<p->nLeavesTotal );
      sqlite3_reset(pReader->pStmt);
      p->aLeavesStmt[p->nLeavesStmt++] = pReader->pStmt;
    }
    if( !fts3SegReaderIsPending(pReader) ){
      sqlite3_free(pReader->zTerm);
    }
    sqlite3_free(pReader);
  }
}

/*
** Allocate a new SegReader object.
*/
................................................................................
    *ppReader = pReader;
  }else{
    sqlite3Fts3SegReaderFree(p, pReader);
  }
  return rc;
}

/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
  char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
  char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
  int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
  int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);

  int n = (n1<n2 ? n1 : n2);
  int c = memcmp(z1, z2, n);
  if( c==0 ){
    c = n1 - n2;
  }
  return c;
}

/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.
*/
int sqlite3Fts3SegReaderPending(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to search for */
  int nTerm,                      /* Size of buffer zTerm */
  int isPrefix,                   /* True for a term-prefix query */
  Fts3SegReader **ppReader        /* OUT: SegReader for pending-terms */
){
  Fts3SegReader *pReader = 0;     /* Fts3SegReader object to return */
  Fts3HashElem **aElem = 0;       /* Array of term hash entries to scan */
  int nElem = 0;                  /* Size of array at aElem */
  int rc = SQLITE_OK;             /* Return Code */

  if( isPrefix ){
    int nAlloc = 0;               /* Size of allocated array at aElem */
    Fts3HashElem *pE = 0;         /* Iterator variable */

    for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }
          aElem = aElem2;
        }
        aElem[nElem++] = pE;
      }
    }

    /* If more than one term matches the prefix, sort the Fts3HashElem
    ** objects in term order using qsort(). This uses the same comparison
    ** callback as is used when flushing terms to disk.
    */
    if( nElem>1 ){
      qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
    }

  }else{
    Fts3HashElem *pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm);
    if( pE ){
      aElem = &pE;
      nElem = 1;
    }
  }

  if( nElem>0 ){
    int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
    if( !pReader ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pReader, 0, nByte);
      pReader->iIdx = 0x7FFFFFFF;
      pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
      memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
      fts3SegReaderNext(pReader);
    }
  }

  if( isPrefix ){
    sqlite3_free(aElem);
  }
  *ppReader = pReader;
  return rc;
}


/*
** The second argument to this function is expected to be a statement of
** the form:
**
**   SELECT 
**     idx,                  -- col 0
................................................................................

/*
** Compare the entries pointed to by two Fts3SegReader structures. 
** Comparison is as follows:
**
**   1) EOF is greater than not EOF.
**
**   2) The current terms (if any) are compared using memcmp(). If one
**      term is a prefix of another, the longer term is considered the
**      larger.
**
**   3) By segment age. An older segment is considered larger.
*/
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc;
................................................................................
  char *z,                        /* Pointer to buffer containing block data */
  int n                           /* Size of buffer z in bytes */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);

    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);

  }
  return rc;
}

/* 
** Insert a record into the %_segdir table.
*/
................................................................................
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pStmt, 1, iLevel);
    sqlite3_bind_int(pStmt, 2, iIdx);
    sqlite3_bind_int64(pStmt, 3, iStartBlock);
    sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
    sqlite3_bind_int64(pStmt, 5, iEndBlock);
    sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);

    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);

  }
  return rc;
}

/*
** Return the size of the common prefix (if any) shared by zPrev and
** zNext, in bytes. For example, 
................................................................................
}

/*
** sqlite3Fts3SegReaderIterate() callback used when merging multiple 
** segments to create a single, larger segment.
*/
static int fts3MergeCallback(
  Fts3Table *p,                   /* FTS3 Virtual table handle */
  void *pContext,                 /* Pointer to SegmentWriter* to write with */
  char *zTerm,                    /* Term to write to the db */
  int nTerm,                      /* Number of bytes in zTerm */
  char *aDoclist,                 /* Doclist associated with zTerm */
  int nDoclist                    /* Number of bytes in doclist */
){
  SegmentWriter **ppW = (SegmentWriter **)pContext;
  return fts3SegWriterAdd(p, ppW, 1, zTerm, nTerm, aDoclist, nDoclist);
}

/*
** sqlite3Fts3SegReaderIterate() callback used when flushing the contents
** of the pending-terms hash table to the database.
*/
static int fts3FlushCallback(
  Fts3Table *p,                   /* FTS3 Virtual table handle */
  void *pContext,                 /* Pointer to SegmentWriter* to write with */
  char *zTerm,                    /* Term to write to the db */
  int nTerm,                      /* Number of bytes in zTerm */
  char *aDoclist,                 /* Doclist associated with zTerm */
  int nDoclist                    /* Number of bytes in doclist */
){
  SegmentWriter **ppW = (SegmentWriter **)pContext;
  return fts3SegWriterAdd(p, ppW, 0, zTerm, nTerm, aDoclist, nDoclist);
}

/*
** This function is used to iterate through a contiguous set of terms 
** stored in the full-text index. It merges data contained in one or 
** more segments to support this.
**
** The second argument is passed an array of pointers to SegReader objects
................................................................................
  if( pFilter->zTerm ){
    int nTerm = pFilter->nTerm;
    const char *zTerm = pFilter->zTerm;
    for(i=0; i<nSegment; i++){
      Fts3SegReader *pSeg = apSegment[i];
      while( fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ){
        rc = fts3SegReaderNext(pSeg);
        if( rc!=SQLITE_OK ) goto finished; }

    }
  }

  fts3SegReaderSort(apSegment, nSegment, nSegment, fts3SegReaderCmp);
  while( apSegment[0]->aNode ){
    int nTerm = apSegment[0]->nTerm;
    char *zTerm = apSegment[0]->zTerm;
................................................................................
        && apSegment[nMerge]->aNode
        && apSegment[nMerge]->nTerm==nTerm 
        && 0==memcmp(zTerm, apSegment[nMerge]->zTerm, nTerm)
    ){
      nMerge++;
    }

    assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
    if( nMerge==1 && !isIgnoreEmpty ){
      Fts3SegReader *p0 = apSegment[0];
      rc = xFunc(p, pContext, zTerm, nTerm, p0->aDoclist, p0->nDoclist);
      if( rc!=SQLITE_OK ) goto finished;
    }else{
      int nDoclist = 0;           /* Size of doclist */
      sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */

................................................................................
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid
        ){
          fts3SegReaderNextDocid(apSegment[j], 0, 0);
          j++;
        }

        if( isColFilter ){
          fts3ColumnFilter(pFilter->iCol, &pList, &nList);
................................................................................
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
  int i;                          /* Iterator variable */
  int rc;                         /* Return code */
  int iIdx;                       /* Index of new segment */
  int iNewLevel;                  /* Level to create new segment at */
  sqlite3_stmt *pStmt = 0;
  SegmentWriter *pWriter = 0;
  int nSegment = 0;               /* Number of segments being merged */
  Fts3SegReader **apSegment = 0;  /* Array of Segment iterators */
  Fts3SegReader *pPending = 0;    /* Iterator for pending-terms */
  Fts3SegFilter filter;           /* Segment term filter condition */

  if( iLevel<0 ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database. The index
    ** of the new segment is always 0.
    */
    iIdx = 0;
    rc = sqlite3Fts3SegReaderPending(p, 0, 0, 1, &pPending);
    if( rc!=SQLITE_OK ) goto finished;
    rc = fts3SegmentCountMax(p, &nSegment, &iNewLevel);
    if( rc!=SQLITE_OK ) goto finished;
    nSegment += (pPending!=0);
    if( nSegment<=1 ){
      return SQLITE_DONE;
    }
  }else{
    /* This call is to merge all segments at level iLevel. Find the next
    ** available segment index at level iLevel+1. The call to
    ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 
    ** a single iLevel+2 segment if necessary.
    */
    iNewLevel = iLevel+1;
    rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);
    if( rc!=SQLITE_OK ) goto finished;
    rc = fts3SegmentCount(p, iLevel, &nSegment);
    if( rc!=SQLITE_OK ) goto finished;
  }

  assert( nSegment>0 );
  assert( iNewLevel>=0 );

  /* Allocate space for an array of pointers to segment iterators. */
  apSegment = (Fts3SegReader**)sqlite3_malloc(sizeof(Fts3SegReader *)*nSegment);
  if( !apSegment ){
    rc = SQLITE_NOMEM;
    goto finished;
  }
  memset(apSegment, 0, sizeof(Fts3SegReader *)*nSegment);

  /* Allocate a Fts3SegReader structure for each segment being merged. A 
  ** Fts3SegReader stores the state data required to iterate through all 
  ** entries on all leaves of a single segment. 
  */
................................................................................
  for(i=0; SQLITE_ROW==(sqlite3_step(pStmt)); i++){
    rc = fts3SegReaderNew(p, pStmt, i, &apSegment[i]);
    if( rc!=SQLITE_OK ){
      goto finished;
    }
  }
  rc = sqlite3_reset(pStmt);
  if( pPending ){
    apSegment[i] = pPending;
    pPending = 0;
  }
  pStmt = 0;
  if( rc!=SQLITE_OK ) goto finished;

  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (iLevel<0 ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
  rc = sqlite3Fts3SegReaderIterate(p, apSegment, nSegment,
................................................................................
  fts3SegWriterFree(pWriter);
  if( apSegment ){
    for(i=0; i<nSegment; i++){
      sqlite3Fts3SegReaderFree(p, apSegment[i]);
    }
    sqlite3_free(apSegment);
  }
  sqlite3Fts3SegReaderFree(p, pPending);
  sqlite3_reset(pStmt);
  return rc;
}





















/* 
** Flush the contents of pendingTerms to a level 0 segment.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){



  int rc;                         /* Return Code */
  int idx;                        /* Index of new segment created */
  SegmentWriter *pWriter = 0;     /* Used to write the segment */
  Fts3SegReader *pReader = 0;     /* Used to iterate through the hash table */

  /* Allocate a SegReader object to iterate through the contents of the
  ** pending-terms table. If an error occurs, or if there are no terms
  ** in the pending-terms table, return immediately.
  */
  rc = sqlite3Fts3SegReaderPending(p, 0, 0, 1, &pReader);
  if( rc!=SQLITE_OK || pReader==0 ){

    return rc;
  }

  /* Determine the next index at level 0. If level 0 is already full, this
  ** call may merge all existing level 0 segments into a single level 1
  ** segment.
  */
  rc = fts3AllocateSegdirIdx(p, 0, &idx);




  /* If no errors have occured, iterate through the contents of the 
  ** pending-terms hash table using the Fts3SegReader iterator. The callback
  ** writes each term (along with its doclist) to the database via the
  ** SegmentWriter handle pWriter.











  */


  if( rc==SQLITE_OK ){
    void *c = (void *)&pWriter;   /* SegReaderIterate() callback context */
    Fts3SegFilter f;              /* SegReaderIterate() parameters */

    memset(&f, 0, sizeof(Fts3SegFilter));
    f.flags = FTS3_SEGMENT_REQUIRE_POS;
    rc = sqlite3Fts3SegReaderIterate(p, &pReader, 1, &f, fts3FlushCallback, c);
  }
  assert( pWriter || rc!=SQLITE_OK );








  /* If no errors have occured, flush the SegmentWriter object to the
  ** database. Then delete the SegmentWriter and Fts3SegReader objects
  ** allocated by this function.
  */
  if( rc==SQLITE_OK ){
    rc = fts3SegWriterFlush(p, pWriter, 0, idx);
  }


  fts3SegWriterFree(pWriter);
  sqlite3Fts3SegReaderFree(p, pReader);

  if( rc==SQLITE_OK ){
    sqlite3Fts3PendingTermsClear(p);
  }
  return rc;
}

/*
** Handle a 'special' INSERT of the form:
**
**   "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only 
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
  int rc;                         /* Return Code */
  const char *zVal = (const char *)sqlite3_value_text(pVal);
  int nVal = sqlite3_value_bytes(pVal);

  if( !zVal ){
    return SQLITE_NOMEM;
  }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
    rc = fts3SegmentMerge(p, -1);
    if( rc==SQLITE_DONE || rc==SQLITE_OK ){
      rc = SQLITE_OK;
      sqlite3Fts3PendingTermsClear(p);
    }
#ifdef SQLITE_TEST
  }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
    p->nNodeSize = atoi(&zVal[9]);
    rc = SQLITE_OK;
  }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }

  return rc;
}

/*
** This function does the work for the xUpdate method of FTS3 virtual
** tables.
*/
................................................................................
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */


  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    int isEmpty;
    rc = fts3IsEmpty(p, apVal, &isEmpty);
    if( rc==SQLITE_OK ){
      if( isEmpty ){
................................................................................
          rc = fts3DeleteTerms(p, apVal);
          if( rc==SQLITE_OK ){
            rc = fts3SqlExec(p, SQL_DELETE_CONTENT, apVal);
          }
        }
      }
    }
  }else if( sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL ){
    return fts3SpecialInsert(p, apVal[p->nColumn+2]);
  }
  
  /* If this is an INSERT or UPDATE operation, insert the new record. */
  if( nArg>1 && rc==SQLITE_OK ){
    rc = fts3InsertData(p, apVal, pRowid);
    if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
      rc = fts3PendingTermsDocid(p, *pRowid);
................................................................................
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
*/
int sqlite3Fts3Optimize(Fts3Table *p){
  int rc;
  rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
  if( rc==SQLITE_OK ){


    rc = fts3SegmentMerge(p, -1);

    if( rc==SQLITE_OK ){
      rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
      if( rc==SQLITE_OK ){
        sqlite3Fts3PendingTermsClear(p);
      }
    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }
  return rc;
}

#endif

Changes to main.mk.

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  $(TOP)/src/os_os2.c $(TOP)/src/os_unix.c $(TOP)/src/os_win.c                 \
  $(TOP)/src/pager.c $(TOP)/src/pragma.c $(TOP)/src/prepare.c                  \
  $(TOP)/src/printf.c $(TOP)/src/random.c $(TOP)/src/pcache.c                  \
  $(TOP)/src/pcache1.c $(TOP)/src/select.c $(TOP)/src/tokenize.c               \
  $(TOP)/src/utf.c $(TOP)/src/util.c $(TOP)/src/vdbeapi.c $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbe.c $(TOP)/src/vdbemem.c $(TOP)/src/where.c parse.c            \
  $(TOP)/ext/fts3/fts3.c $(TOP)/ext/fts3/fts3_expr.c                           \
  $(TOP)/ext/fts3/fts3_tokenizer.c                                             \
  $(TOP)/ext/async/sqlite3async.c

# Header files used by all library source files.
#
HDR = \
   $(TOP)/src/btree.h \
   $(TOP)/src/btreeInt.h \







|







258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  $(TOP)/src/os_os2.c $(TOP)/src/os_unix.c $(TOP)/src/os_win.c                 \
  $(TOP)/src/pager.c $(TOP)/src/pragma.c $(TOP)/src/prepare.c                  \
  $(TOP)/src/printf.c $(TOP)/src/random.c $(TOP)/src/pcache.c                  \
  $(TOP)/src/pcache1.c $(TOP)/src/select.c $(TOP)/src/tokenize.c               \
  $(TOP)/src/utf.c $(TOP)/src/util.c $(TOP)/src/vdbeapi.c $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbe.c $(TOP)/src/vdbemem.c $(TOP)/src/where.c parse.c            \
  $(TOP)/ext/fts3/fts3.c $(TOP)/ext/fts3/fts3_expr.c                           \
  $(TOP)/ext/fts3/fts3_tokenizer.c $(TOP)/ext/fts3/fts3_write.c                \
  $(TOP)/ext/async/sqlite3async.c

# Header files used by all library source files.
#
HDR = \
   $(TOP)/src/btree.h \
   $(TOP)/src/btreeInt.h \

Changes to src/build.c.

545
546
547
548
549
550
551
552

553
554
555
556
557
558
559
*/
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
  Table *p;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName && zTabName[0] );

  pDb = &db->aDb[iDb];
  p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
                        sqlite3Strlen30(zTabName),0);
  sqlite3DeleteTable(p);
  db->flags |= SQLITE_InternChanges;
}








|
>







545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
*/
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
  Table *p;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName );
  testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
  pDb = &db->aDb[iDb];
  p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
                        sqlite3Strlen30(zTabName),0);
  sqlite3DeleteTable(p);
  db->flags |= SQLITE_InternChanges;
}

Changes to src/func.c.

113
114
115
116
117
118
119
120



121
122
123
124
125
126
127
128
129



130
131
132
133
134
135
136
137
138

139
140
141
142





143
144
145
146
147
148
149
....
1040
1041
1042
1043
1044
1045
1046




1047
1048
1049



1050
1051
1052
1053
1054
1055
1056
....
1086
1087
1088
1089
1090
1091
1092


1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
      sqlite3_result_null(context);
      break;
    }
  }
}

/*
** Implementation of the abs() function



*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER: {
      i64 iVal = sqlite3_value_int64(argv[0]);
      if( iVal<0 ){
        if( (iVal<<1)==0 ){



          sqlite3_result_error(context, "integer overflow", -1);
          return;
        }
        iVal = -iVal;
      } 
      sqlite3_result_int64(context, iVal);
      break;
    }
    case SQLITE_NULL: {

      sqlite3_result_null(context);
      break;
    }
    default: {





      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }
}
................................................................................
      sqlite3_free(azChar);
    }
  }
  sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
}






#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.



*/
static void soundexFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  char zResult[8];
................................................................................
    }
    while( j<4 ){
      zResult[j++] = '0';
    }
    zResult[j] = 0;
    sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
  }else{


    sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
  }
}
#endif

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
  const char *zFile = (const char *)sqlite3_value_text(argv[0]);







|
>
>
>









>
>
>









>




>
>
>
>
>







 







>
>
>
>



>
>
>







 







>
>



|







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
....
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
....
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
      sqlite3_result_null(context);
      break;
    }
  }
}

/*
** Implementation of the abs() function.
**
** IMP: R-23979-26855 The abs(X) function returns the absolute value of
** the numeric argument X. 
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER: {
      i64 iVal = sqlite3_value_int64(argv[0]);
      if( iVal<0 ){
        if( (iVal<<1)==0 ){
          /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then
          ** abs(X) throws an integer overflow error since there is no
          ** equivalent positive 64-bit two complement value. */
          sqlite3_result_error(context, "integer overflow", -1);
          return;
        }
        iVal = -iVal;
      } 
      sqlite3_result_int64(context, iVal);
      break;
    }
    case SQLITE_NULL: {
      /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
      sqlite3_result_null(context);
      break;
    }
    default: {
      /* Because sqlite3_value_double() returns 0.0 if the argument is not
      ** something that can be converted into a number, we have:
      ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
      ** cannot be converted to a numeric value. 
      */
      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }
}
................................................................................
      sqlite3_free(azChar);
    }
  }
  sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
}


/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
** is only available if the SQLITE_SOUNDEX compile-time option is used
** when SQLite is built.
*/
#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.
**
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
** soundex encoding of the string X. 
*/
static void soundexFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  char zResult[8];
................................................................................
    }
    while( j<4 ){
      zResult[j++] = '0';
    }
    zResult[j] = 0;
    sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
  }else{
    /* IMP: R-64894-50321 The string "?000" is returned if the argument
    ** is NULL or contains no ASCII alphabetic characters. */
    sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
  }
}
#endif /* SQLITE_SOUNDEX */

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
  const char *zFile = (const char *)sqlite3_value_text(argv[0]);

Changes to src/main.c.

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile. 
    */
#if SQLITE_THREADSAFE
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
    case SQLITE_CONFIG_MULTITHREAD: {







|







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile. 
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
    case SQLITE_CONFIG_MULTITHREAD: {

Changes to src/parse.y.

312
313
314
315
316
317
318

319
320
321
322
323
324
325
// check fails.
//
%type refargs {int}
refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }

refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}







>







312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// check fails.
//
%type refargs {int}
refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}

Changes to src/select.c.

184
185
186
187
188
189
190

































191
192
193
194
195
196
197
...
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
...
304
305
306
307
308
309
310
311




312
313
314

315

316
317
318
319
320
321
322
...
340
341
342
343
344
345
346





347
348
349
350


351
352
353
354

355
356
357
358
359
360
361
362
....
3165
3166
3167
3168
3169
3170
3171
3172
3173

3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
static int columnIndex(Table *pTab, const char *zCol){
  int i;
  for(i=0; i<pTab->nCol; i++){
    if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
  }
  return -1;
}


































/*
** This function is used to add terms implied by JOIN syntax to the
** WHERE clause expression of a SELECT statement. The new term, which
** is ANDed with the existing WHERE clause, is of the form:
**
**    (tab1.col1 = tab2.col2)
................................................................................
** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 
** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
** column iColRight of tab2.
*/
static void addWhereTerm(
  Parse *pParse,                  /* Parsing context */
  SrcList *pSrc,                  /* List of tables in FROM clause */
  int iSrc,                       /* Index of first table to join in pSrc */
  int iColLeft,                   /* Index of column in first table */

  int iColRight,                  /* Index of column in second table */
  int isOuterJoin,                /* True if this is an OUTER join */
  Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
){
  sqlite3 *db = pParse->db;
  Expr *pE1;
  Expr *pE2;
  Expr *pEq;


  assert( pSrc->nSrc>(iSrc+1) );
  assert( pSrc->a[iSrc].pTab );
  assert( pSrc->a[iSrc+1].pTab );

  pE1 = sqlite3CreateColumnExpr(db, pSrc, iSrc, iColLeft);
  pE2 = sqlite3CreateColumnExpr(db, pSrc, iSrc+1, iColRight);

  pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
  if( pEq && isOuterJoin ){
    ExprSetProperty(pEq, EP_FromJoin);
    assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
    ExprSetIrreducible(pEq);
    pEq->iRightJoinTable = (i16)pE2->iTable;
................................................................................
    */
    if( pRight->jointype & JT_NATURAL ){
      if( pRight->pOn || pRight->pUsing ){
        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
           "an ON or USING clause", 0);
        return 1;
      }
      for(j=0; j<pLeftTab->nCol; j++){




        char *zName = pLeftTab->aCol[j].zName;
        int iRightCol = columnIndex(pRightTab, zName);
        if( iRightCol>=0 ){

          addWhereTerm(pParse, pSrc, i, j, iRightCol, isOuter, &p->pWhere);

        }
      }
    }

    /* Disallow both ON and USING clauses in the same join
    */
    if( pRight->pOn && pRight->pUsing ){
................................................................................
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    ** Report an error if any column mentioned in the USING clause is
    ** not contained in both tables to be joined.
    */
    if( pRight->pUsing ){
      IdList *pList = pRight->pUsing;
      for(j=0; j<pList->nId; j++){





        char *zName = pList->a[j].zName;
        int iLeftCol = columnIndex(pLeftTab, zName);
        int iRightCol = columnIndex(pRightTab, zName);
        if( iLeftCol<0 || iRightCol<0 ){


          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
            "not present in both tables", zName);
          return 1;
        }

        addWhereTerm(pParse, pSrc, i, iLeftCol, iRightCol, isOuter, &p->pWhere);
      }
    }
  }
  return 0;
}

/*
................................................................................
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }

            if( i>0 && zTName==0 ){
              struct SrcList_item *pLeft = &pTabList->a[i-1];
              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&

                        columnIndex(pLeft->pTab, zName)>=0 ){
                /* In a NATURAL join, omit the join columns from the 
                ** table on the right */
                continue;
              }
              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|

>









>
|
|
|

|
|







 







|
>
>
>
>
|
<
<
>
|
>







 







>
>
>
>
>
|
<
|
|
>
>




>
|







 







<
|
>
|

|


|







184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
...
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
...
339
340
341
342
343
344
345
346
347
348
349
350
351


352
353
354
355
356
357
358
359
360
361
...
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
....
3211
3212
3213
3214
3215
3216
3217

3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
static int columnIndex(Table *pTab, const char *zCol){
  int i;
  for(i=0; i<pTab->nCol; i++){
    if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
  }
  return -1;
}

/*
** Search the first N tables in pSrc, from left to right, looking for a
** table that has a column named zCol.  
**
** When found, set *piTab and *piCol to the table index and column index
** of the matching column and return TRUE.
**
** If not found, return FALSE.
*/
static int tableAndColumnIndex(
  SrcList *pSrc,       /* Array of tables to search */
  int N,               /* Number of tables in pSrc->a[] to search */
  const char *zCol,    /* Name of the column we are looking for */
  int *piTab,          /* Write index of pSrc->a[] here */
  int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
){
  int i;               /* For looping over tables in pSrc */
  int iCol;            /* Index of column matching zCol */

  assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
  for(i=0; i<N; i++){
    iCol = columnIndex(pSrc->a[i].pTab, zCol);
    if( iCol>=0 ){
      if( piTab ){
        *piTab = i;
        *piCol = iCol;
      }
      return 1;
    }
  }
  return 0;
}

/*
** This function is used to add terms implied by JOIN syntax to the
** WHERE clause expression of a SELECT statement. The new term, which
** is ANDed with the existing WHERE clause, is of the form:
**
**    (tab1.col1 = tab2.col2)
................................................................................
** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 
** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
** column iColRight of tab2.
*/
static void addWhereTerm(
  Parse *pParse,                  /* Parsing context */
  SrcList *pSrc,                  /* List of tables in FROM clause */
  int iLeft,                      /* Index of first table to join in pSrc */
  int iColLeft,                   /* Index of column in first table */
  int iRight,                     /* Index of second table in pSrc */
  int iColRight,                  /* Index of column in second table */
  int isOuterJoin,                /* True if this is an OUTER join */
  Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
){
  sqlite3 *db = pParse->db;
  Expr *pE1;
  Expr *pE2;
  Expr *pEq;

  assert( iLeft<iRight );
  assert( pSrc->nSrc>iRight );
  assert( pSrc->a[iLeft].pTab );
  assert( pSrc->a[iRight].pTab );

  pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
  pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);

  pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
  if( pEq && isOuterJoin ){
    ExprSetProperty(pEq, EP_FromJoin);
    assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
    ExprSetIrreducible(pEq);
    pEq->iRightJoinTable = (i16)pE2->iTable;
................................................................................
    */
    if( pRight->jointype & JT_NATURAL ){
      if( pRight->pOn || pRight->pUsing ){
        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
           "an ON or USING clause", 0);
        return 1;
      }
      for(j=0; j<pRightTab->nCol; j++){
        char *zName;   /* Name of column in the right table */
        int iLeft;     /* Matching left table */
        int iLeftCol;  /* Matching column in the left table */

        zName = pRightTab->aCol[j].zName;


        if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
          addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
                       isOuter, &p->pWhere);
        }
      }
    }

    /* Disallow both ON and USING clauses in the same join
    */
    if( pRight->pOn && pRight->pUsing ){
................................................................................
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    ** Report an error if any column mentioned in the USING clause is
    ** not contained in both tables to be joined.
    */
    if( pRight->pUsing ){
      IdList *pList = pRight->pUsing;
      for(j=0; j<pList->nId; j++){
        char *zName;     /* Name of the term in the USING clause */
        int iLeft;       /* Table on the left with matching column name */
        int iLeftCol;    /* Column number of matching column on the left */
        int iRightCol;   /* Column number of matching column on the right */

        zName = pList->a[j].zName;

        iRightCol = columnIndex(pRightTab, zName);
        if( iRightCol<0
         || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
        ){
          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
            "not present in both tables", zName);
          return 1;
        }
        addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
                     isOuter, &p->pWhere);
      }
    }
  }
  return 0;
}

/*
................................................................................
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }

            if( i>0 && zTName==0 ){

              if( (pFrom->jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
              ){
                /* In a NATURAL join, omit the join columns from the 
                ** table to the right of the join */
                continue;
              }
              if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3Expr(db, TK_ID, zName);
            zColname = zName;

Changes to src/sqlite.h.in.

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95



96
97



98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156




157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
...
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215



216
217
218
219
220
221
222
...
232
233
234
235
236
237
238
239
240
241


242
243
244
245



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
278





279
280
281
282
283
284
285
286
287
288
289
290
291
292



293
294
295



296
297
298









299
300
301
302




303
304
305

306
307
308
309








310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
...
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
...
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
...
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
...
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
...
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
...
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
...
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
...
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
...
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
...
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912


913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
...
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
....
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
....
1048
1049
1050
1051
1052
1053
1054
1055

1056
1057





1058
1059
1060

1061
1062
1063
1064
1065
1066
1067



1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078




1079
1080
1081
1082
1083
1084


1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

1097
1098
1099
1100
1101
1102
1103
1104



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166






1167
1168
1169
1170
1171
1172
1173
1174
1175




1176
1177
1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
....
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234

1235
1236
1237
1238
1239
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
....
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
....
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
....
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
....
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839













1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
....
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
....
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036

2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090

2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
....
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
....
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
....
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
....
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
....
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388

2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
....
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
....
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751

2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766

2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
....
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
....
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
....
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
....
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
....
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
....
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
....
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
....
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369

3370
3371
3372
3373






3374









3375
3376

3377
3378
3379
3380

3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
....
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
....
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
....
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775

3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831

3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872


3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947


3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
....
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
....
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
....
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
....
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380





4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
....
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785

4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796

4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
....
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
....
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960

4961
4962

4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
....
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002


5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
....
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
....
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
....
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
....
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
....
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
....
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481

5482
5483
5484
5485


5486
5487
5488
5489



5490

5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501

5502
5503
5504

5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551

5552
5553
5554

5555
5556
5557
5558
5559
5560

5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577

5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
....
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
....
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
....
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
# undef SQLITE_VERSION
#endif
#ifdef SQLITE_VERSION_NUMBER
# undef SQLITE_VERSION_NUMBER
#endif

/*
** CAPI3REF: Compile-Time Library Version Numbers {H10010} <S60100>
**
** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in
** the sqlite3.h file specify the version of SQLite with which
** that header file is associated.
**
** The "version" of SQLite is a string of the form "W.X.Y" or "W.X.Y.Z".
** The W value is major version number and is always 3 in SQLite3.
** The W value only changes when backwards compatibility is
** broken and we intend to never break backwards compatibility.
** The X value is the minor version number and only changes when
** there are major feature enhancements that are forwards compatible
** but not backwards compatible.
** The Y value is the release number and is incremented with
** each release but resets back to 0 whenever X is incremented.
** The Z value only appears on branch releases.
**



** The SQLITE_VERSION_NUMBER is an integer that is computed as
** follows:



**
** <blockquote><pre>
** SQLITE_VERSION_NUMBER = W*1000000 + X*1000 + Y
** </pre></blockquote>
**
** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">fossil configuration management
** system</a>.  The SQLITE_SOURCE_ID
** macro is a string which identifies a particular check-in of SQLite
** within its configuration management system.  The string contains the
** date and time of the check-in (UTC) and an SHA1 hash of the entire
** source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10011] [H10014]
*/
#define SQLITE_VERSION        "--VERS--"
#define SQLITE_VERSION_NUMBER --VERSION-NUMBER--
#define SQLITE_SOURCE_ID      "--SOURCE-ID--"

/*
** CAPI3REF: Run-Time Library Version Numbers {H10020} <S60100>
** KEYWORDS: sqlite3_version
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] #defines in the header,
** but are associated with the library instead of the header file.  Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus insure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion,SQLITE_VERSION)==0 );
** </pre></blockquote>
**
** The sqlite3_libversion() function returns the same information as is
** in the sqlite3_version[] string constant.  The function is provided
** for use in DLLs since DLL users usually do not have direct access to string
** constants within the DLL.  Similarly, the sqlite3_sourceid() function
** returns the same information as is in the [SQLITE_SOURCE_ID] #define of
** the header file.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
**
** Requirements: [H10021] [H10022] [H10023]

*/
SQLITE_EXTERN const char sqlite3_version[];
const char *sqlite3_libversion(void);
const char *sqlite3_sourceid(void);
int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe {H10100} <S60100>




**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** The default behavior is for mutexes to be enabled.
**
** This interface can be used by an application to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
** or [SQLITE_CONFIG_MUTEX].  The return value of this function shows
** only the default compile-time setting, not any run-time changes
** to that setting.
**
** See the [threading mode] documentation for additional information.
**
** Requirements: [H10101] [H10102]
*/
int sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle {H12000} <S40200>
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
** is its destructor.  There are many other interfaces (such as
................................................................................
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*
** CAPI3REF: 64-Bit Integer Types {H10200} <S10110>
** KEYWORDS: sqlite_int64 sqlite_uint64
**
** Because there is no cross-platform way to specify 64-bit integer types
** SQLite includes typedefs for 64-bit signed and unsigned integers.
**
** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
** The sqlite_int64 and sqlite_uint64 types are supported for backwards
** compatibility only.
**
** Requirements: [H10201] [H10202]



*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;
  typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
................................................................................
** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection {H12010} <S30100><S40200>
**
** This routine is the destructor for the [sqlite3] object.


**
** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with
** the [sqlite3] object prior to attempting to close the object.



**
** If [sqlite3_close()] is invoked while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
**
** Requirements:
** [H12011] [H12012] [H12013] [H12014] [H12015] [H12019]
*/
int sqlite3_close(sqlite3 *);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);

/*
** CAPI3REF: One-Step Query Execution Interface {H12100} <S10000>
**
** The sqlite3_exec() interface is a convenient way of running one or more

** SQL statements without having to write a lot of C code.  The UTF-8 encoded
** SQL statements are passed in as the second parameter to sqlite3_exec().
** The statements are evaluated one by one until either an error or
** an interrupt is encountered, or until they are all done.  The 3rd parameter
** is an optional callback that is invoked once for each row of any query
** results produced by the SQL statements.  The 5th parameter tells where
** to write any error messages.
**





** The error message passed back through the 5th parameter is held
** in memory obtained from [sqlite3_malloc()].  To avoid a memory leak,
** the calling application should call [sqlite3_free()] on any error
** message returned through the 5th parameter when it has finished using
** the error message.
**
** If the SQL statement in the 2nd parameter is NULL or an empty string
** or a string containing only whitespace and comments, then no SQL
** statements are evaluated and the database is not changed.
**
** The sqlite3_exec() interface is implemented in terms of
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].
** The sqlite3_exec() routine does nothing to the database that cannot be done
** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()].



**
** The first parameter to [sqlite3_exec()] must be an valid and open
** [database connection].



**
** The database connection must not be closed while
** [sqlite3_exec()] is running.









**
** The calling function should use [sqlite3_free()] to free
** the memory that *errmsg is left pointing at once the error
** message is no longer needed.




**
** The SQL statement text in the 2nd parameter to [sqlite3_exec()]
** must remain unchanged while [sqlite3_exec()] is running.

**
** Requirements:
** [H12101] [H12102] [H12104] [H12105] [H12107] [H12110] [H12113] [H12116]
** [H12119] [H12122] [H12125] [H12131] [H12134] [H12137] [H12138]








*/
int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);

/*
** CAPI3REF: Result Codes {H10210} <S10700>
** KEYWORDS: SQLITE_OK {error code} {error codes}
** KEYWORDS: {result code} {result codes}
**
** Many SQLite functions return an integer result code from the set shown
** here in order to indicates success or failure.
**
** New error codes may be added in future versions of SQLite.
................................................................................
#define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB      26   /* File opened that is not a database file */
#define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
#define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
/* end-of-error-codes */

/*
** CAPI3REF: Extended Result Codes {H10220} <S10700>
** KEYWORDS: {extended error code} {extended error codes}
** KEYWORDS: {extended result code} {extended result codes}
**
** In its default configuration, SQLite API routines return one of 26 integer
** [SQLITE_OK | result codes].  However, experience has shown that many of
** these result codes are too coarse-grained.  They do not provide as
** much information about problems as programmers might like.  In an effort to
................................................................................
#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
#define SQLITE_IOERR_LOCK              (SQLITE_IOERR | (15<<8))
#define SQLITE_IOERR_CLOSE             (SQLITE_IOERR | (16<<8))
#define SQLITE_IOERR_DIR_CLOSE         (SQLITE_IOERR | (17<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED | (1<<8) )

/*
** CAPI3REF: Flags For File Open Operations {H10230} <H11120> <H12700>
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the xOpen method of the
** [sqlite3_vfs] object.
*/
#define SQLITE_OPEN_READONLY         0x00000001  /* Ok for sqlite3_open_v2() */
................................................................................
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */

/*
** CAPI3REF: Device Characteristics {H10240} <H11120>
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
................................................................................
#define SQLITE_IOCAP_ATOMIC16K       0x00000040
#define SQLITE_IOCAP_ATOMIC32K       0x00000080
#define SQLITE_IOCAP_ATOMIC64K       0x00000100
#define SQLITE_IOCAP_SAFE_APPEND     0x00000200
#define SQLITE_IOCAP_SEQUENTIAL      0x00000400

/*
** CAPI3REF: File Locking Levels {H10250} <H11120> <H11310>
**
** SQLite uses one of these integer values as the second
** argument to calls it makes to the xLock() and xUnlock() methods
** of an [sqlite3_io_methods] object.
*/
#define SQLITE_LOCK_NONE          0
#define SQLITE_LOCK_SHARED        1
#define SQLITE_LOCK_RESERVED      2
#define SQLITE_LOCK_PENDING       3
#define SQLITE_LOCK_EXCLUSIVE     4

/*
** CAPI3REF: Synchronization Type Flags {H10260} <H11120>
**
** When SQLite invokes the xSync() method of an
** [sqlite3_io_methods] object it uses a combination of
** these integer values as the second argument.
**
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
** sync operation only needs to flush data to mass storage.  Inode
................................................................................
** to use Mac OS X style fullsync instead of fsync().
*/
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle {H11110} <S20110>
**
** An [sqlite3_file] object represents an open file in the 
** [sqlite3_vfs | OS interface layer].  Individual OS interface
** implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
................................................................................
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {
  const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
};

/*
** CAPI3REF: OS Interface File Virtual Methods Object {H11120} <S20110>
**
** Every file opened by the [sqlite3_vfs] xOpen method populates an
** [sqlite3_file] object (or, more commonly, a subclass of the
** [sqlite3_file] object) with a pointer to an instance of this object.
** This object defines the methods used to perform various operations
** against the open file represented by the [sqlite3_file] object.
**
................................................................................
  int (*xFileControl)(sqlite3_file*, int op, void *pArg);
  int (*xSectorSize)(sqlite3_file*);
  int (*xDeviceCharacteristics)(sqlite3_file*);
  /* Additional methods may be added in future releases */
};

/*
** CAPI3REF: Standard File Control Opcodes {H11310} <S30800>
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
................................................................................
*/
#define SQLITE_FCNTL_LOCKSTATE        1
#define SQLITE_GET_LOCKPROXYFILE      2
#define SQLITE_SET_LOCKPROXYFILE      3
#define SQLITE_LAST_ERRNO             4

/*
** CAPI3REF: Mutex Handle {H17110} <S20130>
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only
** deals with pointers to the [sqlite3_mutex] object.
**
** Mutexes are created using [sqlite3_mutex_alloc()].
*/
typedef struct sqlite3_mutex sqlite3_mutex;

/*
** CAPI3REF: OS Interface Object {H11140} <S20100>
**
** An instance of the sqlite3_vfs object defines the interface between
** the SQLite core and the underlying operating system.  The "vfs"
** in the name of the object stands for "virtual file system".
**
** The value of the iVersion field is initially 1 but may be larger in
** future versions of SQLite.  Additional fields may be appended to this
................................................................................
  int (*xCurrentTime)(sqlite3_vfs*, double*);
  int (*xGetLastError)(sqlite3_vfs*, int, char *);
  /* New fields may be appended in figure versions.  The iVersion
  ** value will increment whenever this happens. */
};

/*
** CAPI3REF: Flags for the xAccess VFS method {H11190} <H11140>
**
** These integer constants can be used as the third parameter to
** the xAccess method of an [sqlite3_vfs] object. {END}  They determine
** what kind of permissions the xAccess method is looking for.
** With SQLITE_ACCESS_EXISTS, the xAccess method
** simply checks whether the file exists.
** With SQLITE_ACCESS_READWRITE, the xAccess method
** checks whether the file is both readable and writable.
** With SQLITE_ACCESS_READ, the xAccess method
** checks whether the file is readable.
*/
#define SQLITE_ACCESS_EXISTS    0
#define SQLITE_ACCESS_READWRITE 1
#define SQLITE_ACCESS_READ      2

/*
** CAPI3REF: Initialize The SQLite Library {H10130} <S20000><S30100>
**
** The sqlite3_initialize() routine initializes the
** SQLite library.  The sqlite3_shutdown() routine
** deallocates any resources that were allocated by sqlite3_initialize().
** These routines are designed to aid in process initialization and
** shutdown on embedded systems.  Workstation applications using
** SQLite normally do not need to invoke either of these routines.
**
** A call to sqlite3_initialize() is an "effective" call if it is
** the first time sqlite3_initialize() is invoked during the lifetime of
** the process, or if it is the first time sqlite3_initialize() is invoked
** following a call to sqlite3_shutdown().  Only an effective call
** of sqlite3_initialize() does any initialization.  All other calls
** are harmless no-ops.
**
** A call to sqlite3_shutdown() is an "effective" call if it is the first
** call to sqlite3_shutdown() since the last sqlite3_initialize().  Only
** an effective call to sqlite3_shutdown() does any deinitialization.
** All other valid calls to sqlite3_shutdown() are harmless no-ops.
**
** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
** is not.  The sqlite3_shutdown() interface must only be called from a
** single thread.  All open [database connections] must be closed and all
** other SQLite resources must be deallocated prior to invoking
** sqlite3_shutdown().
**
** Among other things, sqlite3_initialize() will invoke
** sqlite3_os_init().  Similarly, sqlite3_shutdown()
** will invoke sqlite3_os_end().
**
** The sqlite3_initialize() routine returns [SQLITE_OK] on success.
** If for some reason, sqlite3_initialize() is unable to initialize
** the library (perhaps it is unable to allocate a needed resource such
** as a mutex) it returns an [error code] other than [SQLITE_OK].
**
** The sqlite3_initialize() routine is called internally by many other
** SQLite interfaces so that an application usually does not need to
** invoke sqlite3_initialize() directly.  For example, [sqlite3_open()]
** calls sqlite3_initialize() so the SQLite library will be automatically
** initialized when [sqlite3_open()] is called if it has not be initialized
** already.  However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
** compile-time option, then the automatic calls to sqlite3_initialize()
** are omitted and the application must call sqlite3_initialize() directly
** prior to using any other SQLite interface.  For maximum portability,
** it is recommended that applications always invoke sqlite3_initialize()
** directly prior to using any other SQLite interface.  Future releases
** of SQLite may require this.  In other words, the behavior exhibited
** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
................................................................................
*/
int sqlite3_initialize(void);
int sqlite3_shutdown(void);
int sqlite3_os_init(void);
int sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library {H14100} <S20000><S30200>
** EXPERIMENTAL
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
** applications and so this routine is usually not necessary.  It is
** provided to support rare applications with unusual needs.
**
** The sqlite3_config() interface is not threadsafe.  The application
** must insure that no other SQLite interfaces are invoked by other
** threads while sqlite3_config() is running.  Furthermore, sqlite3_config()
** may only be invoked prior to library initialization using
** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].


** Note, however, that sqlite3_config() can be called as part of the
** implementation of an application-defined [sqlite3_os_init()].
**
** The first argument to sqlite3_config() is an integer
** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
** what property of SQLite is to be configured.  Subsequent arguments
** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
** in the first argument.
**
** When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].
**
** Requirements:
** [H14103] [H14106] [H14120] [H14123] [H14126] [H14129] [H14132] [H14135]
** [H14138] [H14141] [H14144] [H14147] [H14150] [H14153] [H14156] [H14159]
** [H14162] [H14165] [H14168]
*/
SQLITE_EXPERIMENTAL int sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections  {H14200} <S20000>
** EXPERIMENTAL
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).  The
** sqlite3_db_config() interface can only be used immediately after
** the database connection is created using [sqlite3_open()],
** [sqlite3_open16()], or [sqlite3_open_v2()].  
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** configuration verb - an integer code that indicates what
** aspect of the [database connection] is being configured.
** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
** New verbs are likely to be added in future releases of SQLite.
** Additional arguments depend on the verb.
**
** Requirements:
** [H14203] [H14206] [H14209] [H14212] [H14215]
*/
SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines {H10155} <S20120>
** EXPERIMENTAL
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
................................................................................
** conditions.
**
** The xMalloc and xFree methods must work like the
** malloc() and free() functions from the standard C library.
** The xRealloc method must work like realloc() from the standard C library
** with the exception that if the second argument to xRealloc is zero,
** xRealloc must be a no-op - it must not perform any allocation or
** deallocation.  SQLite guaranteeds that the second argument to
** xRealloc is always a value returned by a prior call to xRoundup.
** And so in cases where xRoundup always returns a positive number,
** xRealloc can perform exactly as the standard library realloc() and
** still be in compliance with this specification.
**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
................................................................................
  int (*xRoundup)(int);          /* Round up request size to allocation size */
  int (*xInit)(void*);           /* Initialize the memory allocator */
  void (*xShutdown)(void*);      /* Deinitialize the memory allocator */
  void *pAppData;                /* Argument to xInit() and xShutdown() */
};

/*
** CAPI3REF: Configuration Options {H10160} <S20000>
** EXPERIMENTAL
**
** These constants are the available integer configuration options that
** can be passed as the first argument to the [sqlite3_config()] interface.
**
** New configuration options may be added in future releases of SQLite.
** Existing configuration options might be discontinued.  Applications
................................................................................
** should check the return code from [sqlite3_config()] to make sure that
** the call worked.  The [sqlite3_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
** <dd>There are no arguments to this option.  This option disables

** all mutexing and puts SQLite into a mode where it can only be used
** by a single thread.</dd>





**
** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
** <dd>There are no arguments to this option.  This option disables

** mutexing on [database connection] and [prepared statement] objects.
** The application is responsible for serializing access to
** [database connections] and [prepared statements].  But other mutexes
** are enabled so that SQLite will be safe to use in a multi-threaded
** environment as long as no two threads attempt to use the same
** [database connection] at the same time.  See the [threading mode]
** documentation for additional information.</dd>



**
** <dt>SQLITE_CONFIG_SERIALIZED</dt>
** <dd>There are no arguments to this option.  This option enables

** all mutexes including the recursive
** mutexes on [database connection] and [prepared statement] objects.
** In this mode (which is the default when SQLite is compiled with
** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
** to [database connections] and [prepared statements] so that the
** application is free to use the same [database connection] or the
** same [prepared statement] in different threads at the same time.
** See the [threading mode] documentation for additional information.</dd>




**
** <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The argument specifies
** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.</dd>


**
** <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]
** structure is filled with the currently defined memory allocation routines.
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example.</dd>
**
** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd>This option takes single argument of type int, interpreted as a 
** boolean, which enables or disables the collection of memory allocation 

** statistics. When disabled, the following SQLite interfaces become 
** non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit()]
**   <li> [sqlite3_status()]
**   </ul>



** </dd>
**
** <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scrach allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16. The sz parameter should be a few bytes
** larger than the actual scratch space required due to internal overhead.
** The first argument should pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** SQLite will use no more than one scratch buffer at once per thread, so
** N should be set to the expected maximum number of threads.  The sz
** parameter should be 6 times the size of the largest database page size.
** Scratch buffers are used as part of the btree balance operation.  If
** The btree balancer needs additional memory beyond what is provided by
** scratch buffers or if no scratch buffer space is specified, then SQLite
** goes to [sqlite3_malloc()] to obtain the memory it needs.</dd>
**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd>This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implemenation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
** There are three arguments to this option: A pointer to 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  The page header size is 20 to 40 bytes depending on
** the host architecture.  It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first
** argument should point to an allocation of at least sz*N bytes of memory.
** SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The implementation might use one or more of the N buffers to hold 
** memory accounting information. The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_HEAP</dt>
** <dd>This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided
** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.</dd>






**
** <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd>This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.</dd>




**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd>This option takes two arguments that determine the default

** memory allocation lookaside optimization.  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.  This option sets the
** <i>default</i> lookaside size.  The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.</dd>
**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd>This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.  SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
** <dt>SQLITE_CONFIG_GETPCACHE</dt>
** <dd>This option takes a single argument which is a pointer to an
** [sqlite3_pcache_methods] object.  SQLite copies of the current
** page cache implementation into that object.</dd>
**
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
................................................................................
#define SQLITE_CONFIG_GETMUTEX     11  /* sqlite3_mutex_methods* */
/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ 
#define SQLITE_CONFIG_LOOKASIDE    13  /* int int */
#define SQLITE_CONFIG_PCACHE       14  /* sqlite3_pcache_methods* */
#define SQLITE_CONFIG_GETPCACHE    15  /* sqlite3_pcache_methods* */

/*
** CAPI3REF: Configuration Options {H10170} <S20000>
** EXPERIMENTAL
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
** New configuration options may be added in future releases of SQLite.
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd>This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an memory buffer to use for lookaside memory.

** The first argument may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()].  The second argument is the
** size of each lookaside buffer slot and the third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.  The buffer
** must be aligned to an 8-byte boundary.  If the second argument is not

** a multiple of 8, it is internally rounded down to the next smaller
** multiple of 8.  See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*
** CAPI3REF: Enable Or Disable Extended Result Codes {H12200} <S10700>
**
** The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. The extended result
** codes are disabled by default for historical compatibility considerations.
**
** Requirements:
** [H12201] [H12202]
*/
int sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid {H12220} <S10700>
**
** Each entry in an SQLite table has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. The rowid is always available
** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
** names are not also used by explicitly declared columns. If
** the table has a column of type [INTEGER PRIMARY KEY] then that column
** is another alias for the rowid.
**
** This routine returns the [rowid] of the most recent
** successful [INSERT] into the database from the [database connection]
** in the first argument.  If no successful [INSERT]s
** have ever occurred on that database connection, zero is returned.
**
** If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
** row is returned by this routine as long as the trigger is running.
** But once the trigger terminates, the value returned by this routine
** reverts to the last value inserted before the trigger fired.
**
** An [INSERT] that fails due to a constraint violation is not a
** successful [INSERT] and does not change the value returned by this
** routine.  Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
** and INSERT OR ABORT make no changes to the return value of this
** routine when their insertion fails.  When INSERT OR REPLACE
** encounters a constraint violation, it does not fail.  The
** INSERT continues to completion after deleting rows that caused
** the constraint problem so INSERT OR REPLACE will always change
** the return value of this interface.
**
** For the purposes of this routine, an [INSERT] is considered to
** be successful even if it is subsequently rolled back.
**
** This function is accessible to SQL statements via the
** [last_insert_rowid() SQL function].
**
** Requirements:
** [H12221] [H12223]
**
** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified {H12240} <S10600>
**
** This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers or [foreign key actions] are not counted. Use the
** [sqlite3_total_changes()] function to find the total number of changes
** including changes caused by triggers and foreign key actions.
**
** Changes to a view that are simulated by an [INSTEAD OF trigger]
** are not counted.  Only real table changes are counted.
**
** A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of [REPLACE] constraint resolution,
** rollback, ABORT processing, [DROP TABLE], or by any other
** mechanisms do not count as direct row changes.
**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a [CREATE TRIGGER | trigger]. 
** Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
**
** This function returns the number of direct row changes in the
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
** Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
** that also occurred at the top level.  Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.
**
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** Requirements:
** [H12241] [H12243]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified {H12260} <S10600>
**
** This function returns the number of row changes caused by [INSERT],
** [UPDATE] or [DELETE] statements since the [database connection] was opened.

** The count includes all changes from all [CREATE TRIGGER | trigger] 
** contexts and changes made by [foreign key actions]. However,
** the count does not include changes used to implement [REPLACE] constraints,
** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
** count does not include rows of views that fire an [INSTEAD OF trigger],
** though if the INSTEAD OF trigger makes changes of its own, those changes 
** are counted.
** The changes are counted as soon as the statement that makes them is
** completed (when the statement handle is passed to [sqlite3_reset()] or
** [sqlite3_finalize()]).
**
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** Requirements:
** [H12261] [H12263]
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
int sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query {H12270} <S30500>
**
** This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
** or Ctrl-C where the user wants a long query operation to halt
** immediately.
**
** It is safe to call this routine from a thread different from the
** thread that is currently running the database operation.  But it
** is not safe to call this routine with a [database connection] that
** is closed or might close before sqlite3_interrupt() returns.
**
** If an SQL operation is very nearly finished at the time when
** sqlite3_interrupt() is called, then it might not have an opportunity
** to be interrupted and might continue to completion.
**
** An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
** If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
** that is inside an explicit transaction, then the entire transaction
** will be rolled back automatically.
**
** The sqlite3_interrupt(D) call is in effect until all currently running
** SQL statements on [database connection] D complete.  Any new SQL statements
** that are started after the sqlite3_interrupt() call and before the 
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** Requirements:
** [H12271] [H12272]
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete {H10510} <S70200>
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into
** SQLite for parsing.  These routines return 1 if the input string
** appears to be a complete SQL statement.  A statement is judged to be
** complete if it ends with a semicolon token and is not a prefix of a
** well-formed CREATE TRIGGER statement.  Semicolons that are embedded within
** string literals or quoted identifier names or comments are not
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.  Whitespace
** and comments that follow the final semicolon are ignored.
**
** These routines return 0 if the statement is incomplete.  If a
** memory allocation fails, then SQLITE_NOMEM is returned.
**
** These routines do not parse the SQL statements thus
** will not detect syntactically incorrect SQL.
**
** If SQLite has not been initialized using [sqlite3_initialize()] prior 
** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
** automatically by sqlite3_complete16().  If that initialization fails,
** then the return value from sqlite3_complete16() will be non-zero
** regardless of whether or not the input SQL is complete.
**
** Requirements: [H10511] [H10512]
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
int sqlite3_complete(const char *sql);
int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {H12310} <S40400>
**
** This routine sets a callback function that might be invoked whenever
** an attempt is made to open a database table that another thread
** or process has locked.
**
** If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
** is returned immediately upon encountering the lock. If the busy callback
** is not NULL, then the callback will be invoked with two arguments.
**
** The first argument to the handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  The second argument to
** the handler callback is the number of times that the busy handler has
** been invoked for this locking event.  If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
** If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
** when there is lock contention. If SQLite determines that invoking the busy
** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock.  The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first.  If both processes
** invoke the busy handlers, neither will make any progress.  Therefore,
** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** The default busy callback is NULL.
**
** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
** when SQLite is in the middle of a large transaction where all the
** changes will not fit into the in-memory cache.  SQLite will
** already hold a RESERVED lock on the database file, but it needs
** to promote this lock to EXCLUSIVE so that it can spill cache
** pages into the database file without harm to concurrent
** readers.  If it is unable to promote the lock, then the in-memory
** cache will be left in an inconsistent state and so the error
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED].  This error code promotion
** forces an automatic rollback of the changes.  See the
** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** There can only be a single busy handler defined for each
** [database connection].  Setting a new busy handler clears any
** previously set handler.  Note that calling [sqlite3_busy_timeout()]
** will also set or clear the busy handler.
**
** The busy callback should not take any actions which modify the
** database connection that invoked the busy handler.  Any such actions
** result in undefined behavior.
** 
** Requirements:
** [H12311] [H12312] [H12314] [H12316] [H12318]
**
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout {H12340} <S40410>
**
** This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping
** have accumulated. {H12343} After "ms" milliseconds of sleeping,
** the handler returns 0 which causes [sqlite3_step()] to return
** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.
**
** Requirements:
** [H12341] [H12343] [H12344]
*/
int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries {H12370} <S10000>
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface.  A result table records the
** complete query results from one or more queries.
**
** The table conceptually has a number of rows and columns.  But
** these numbers are not part of the result table itself.  These
................................................................................
**        azResult&#91;3] = "43";
**        azResult&#91;4] = "Bob";
**        azResult&#91;5] = "28";
**        azResult&#91;6] = "Cindy";
**        azResult&#91;7] = "21";
** </pre></blockquote>
**
** The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
** string of its 2nd parameter.  It returns a result table to the
** pointer given in its 3rd parameter.
**
** After the calling function has finished using the result, it should
** pass the pointer to the result table to sqlite3_free_table() in order to
** release the memory that was malloced.  Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly.  Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or [sqlite3_errmsg()].
**
** Requirements:
** [H12371] [H12373] [H12374] [H12376] [H12379] [H12382]
*/
int sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions {H17400} <S70000><S20000>
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
**
** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
** In sqlite3_snprintf() routine is similar to "snprintf()" from
** the standard C library.  The result is written into the
** buffer supplied as the second parameter whose size is given by
** the first parameter. Note that the order of the
** first two parameters is reversed from snprintf().  This is an
** historical accident that cannot be fixed without breaking
** backwards compatibility.  Note also that sqlite3_snprintf()
** returns a pointer to its buffer instead of the number of
** characters actually written into the buffer.  We admit that
** the number of characters written would be a more useful return
** value but we cannot change the implementation of sqlite3_snprintf()
** now without breaking compatibility.
**
** As long as the buffer size is greater than zero, sqlite3_snprintf()
** guarantees that the buffer is always zero-terminated.  The first
** parameter "n" is the total size of the buffer, including space for
** the zero terminator.  So the longest string that can be completely
** written will be n-1 characters.
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", and "%z" options.
**
** The %q option works like %s in that it substitutes a null-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
** For example, assume the string variable zText contains text as follows:
**
** <blockquote><pre>
**  char *zText = "It's a happy day!";
................................................................................
** <blockquote><pre>
**  INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
** This second example is an SQL syntax error.  As a general rule you should
** always use %q instead of %s when inserting text into a string literal.
**
** The %Q option works like %q except it also adds single quotes around
** the outside of the total string.  Additionally, if the parameter in the
** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
** single quotes) in place of the %Q option.  So, for example, one could say:
**
** <blockquote><pre>
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** The "%z" formatting option works exactly like "%s" with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string. {END}
**
** Requirements:
** [H17403] [H17406] [H17407]
*/
char *sqlite3_mprintf(const char*,...);
char *sqlite3_vmprintf(const char*, va_list);
char *sqlite3_snprintf(int,char*,const char*, ...);

/*
** CAPI3REF: Memory Allocation Subsystem {H17300} <S20000>
**
** The SQLite core  uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The
** Windows VFS uses native malloc() and free() for some operations.
**
** The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer.  If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.
**
** Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused.  The sqlite3_free() routine is
** a no-op if is called with a NULL pointer.  Passing a NULL pointer
** to sqlite3_free() is harmless.  After being freed, memory
** should neither be read nor written.  Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_realloc().
**
** The sqlite3_realloc() interface attempts to resize a
** prior memory allocation to be at least N bytes, where N is the
** second parameter.  The memory allocation to be resized is the first
** parameter.  If the first parameter to sqlite3_realloc()
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
** If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
** sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc() and the prior allocation is freed.
** If sqlite3_realloc() returns NULL, then the prior allocation
** is not freed.
**
** The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary. {END}
**
** The default implementation of the memory allocation subsystem uses
** the malloc(), realloc() and free() provided by the standard C library.
** {H17382} However, if SQLite is compiled with the
** SQLITE_MEMORY_SIZE=<i>NNN</i> C preprocessor macro (where <i>NNN</i>
** is an integer), then SQLite create a static array of at least
** <i>NNN</i> bytes in size and uses that array for all of its dynamic
** memory allocation needs. {END}  Additional memory allocator options
** may be added in future releases.
**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted.  That capability
** is no longer provided.  Only built-in memory allocators can be used.
**
** The Windows OS interface layer calls
................................................................................
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
** and whatever filename encoding is used by the particular Windows
** installation.  Memory allocation errors are detected, but
** they are reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**
** Requirements:
** [H17303] [H17304] [H17305] [H17306] [H17310] [H17312] [H17315] [H17318]
** [H17321] [H17322] [H17323]
**
** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
** must be either NULL or else pointers obtained from a prior
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
................................................................................
** [sqlite3_free()] or [sqlite3_realloc()].
*/
void *sqlite3_malloc(int);
void *sqlite3_realloc(void*, int);
void sqlite3_free(void*);

/*
** CAPI3REF: Memory Allocator Statistics {H17370} <S30210>
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
**
** Requirements:
** [H17371] [H17373] [H17374] [H17375]













*/
sqlite3_int64 sqlite3_memory_used(void);
sqlite3_int64 sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator {H17390} <S20000>
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** A call to this routine stores N bytes of randomness into buffer P.
**
** The first time this routine is invoked (either internally or by
** the application) the PRNG is seeded using randomness obtained
** from the xRandomness method of the default [sqlite3_vfs] object.
** On all subsequent invocations, the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
**
** Requirements:
** [H17392]
*/
void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks {H12500} <S70100>
**
** This routine registers a authorizer callback with a particular
** [database connection], supplied in the first argument.
** The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  At various
** points during the compilation process, as logic is being created
** to perform various actions, the authorizer callback is invoked to
** see if those actions are allowed.  The authorizer callback should
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
** rejected with an error.  If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok.  When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied. 
**
** The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.
**
** If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
** try to execute malicious statements that damage the database.  For
................................................................................
** disallows everything except [SELECT] statements.
**
** Applications that need to process SQL from untrusted sources
** might also consider lowering resource limits using [sqlite3_limit()]
** and limiting database size using the [max_page_count] [PRAGMA]
** in addition to using an authorizer.
**
** Only a single authorizer can be in place on a database connection
** at a time.  Each call to sqlite3_set_authorizer overrides the
** previous call.  Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be re-prepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
**
** Requirements:
** [H12501] [H12502] [H12503] [H12504] [H12505] [H12506] [H12507] [H12510]
** [H12511] [H12512] [H12520] [H12521] [H12522]
*/
int sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes {H12590} <H12500>
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
** to signal SQLite whether or not the action is permitted.  See the
** [sqlite3_set_authorizer | authorizer documentation] for additional
** information.
*/
#define SQLITE_DENY   1   /* Abort the SQL statement with an error */
#define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */

/*
** CAPI3REF: Authorizer Action Codes {H12550} <H12500>
**
** The [sqlite3_set_authorizer()] interface registers a callback function
** that is invoked to authorize certain SQL statement actions.  The
** second parameter to the callback is an integer code that specifies
** what action is being authorized.  These are the integer action codes that
** the authorizer callback may be passed.
**
** These action code values signify what kind of operation is to be
** authorized.  The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter.  The 5th parameter to the
** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable.  The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.
**
** Requirements:
** [H12551] [H12552] [H12553] [H12554]
*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
#define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
#define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
................................................................................
#define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
#define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
#define SQLITE_FUNCTION             31   /* NULL            Function Name   */
#define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
#define SQLITE_COPY                  0   /* No longer used */

/*
** CAPI3REF: Tracing And Profiling Functions {H12280} <S60400>
** EXPERIMENTAL
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
**
** The callback function registered by sqlite3_trace() is invoked at
** various times when an SQL statement is being run by [sqlite3_step()].
** The callback returns a UTF-8 rendering of the SQL statement text
** as the statement first begins executing.  Additional callbacks occur

** as each triggered subprogram is entered.  The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.
**
** The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes.  The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.
**
** Requirements:
** [H12281] [H12282] [H12283] [H12284] [H12285] [H12287] [H12288] [H12289]
** [H12290]
*/
SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks {H12910} <S60400>
**
** This routine configures a callback function - the
** progress callback - that is invoked periodically during long
** running calls to [sqlite3_exec()], [sqlite3_step()] and
** [sqlite3_get_table()].  An example use for this
** interface is to keep a GUI updated during a large query.
**
** If the progress callback returns non-zero, the operation is
** interrupted.  This feature can be used to implement a
** "Cancel" button on a GUI progress dialog box.
**
** The progress handler must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** Requirements:
** [H12911] [H12912] [H12913] [H12914] [H12915] [H12916] [H12917] [H12918]
**
*/
void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection {H12700} <S40200>
**
** These routines open an SQLite database file whose name is given by the
** filename argument. The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
** order for sqlite3_open16(). A [database connection] handle is usually
** returned in *ppDb, even if an error occurs.  The only exception is that
** if SQLite is unable to allocate memory to hold the [sqlite3] object,
** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
** object. If the database is opened (and/or created) successfully, then
** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.  The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error.

**
** The default encoding for the database will be UTF-8 if
** sqlite3_open() or sqlite3_open_v2() is called and
** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  The flags parameter can take one of

** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
** and/or [SQLITE_OPEN_PRIVATECACHE] flags:
**
** <dl>
** <dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>
**
** <dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
** then the behavior is undefined.
**
** If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.
** The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
** eligible to use [shared cache mode], regardless of whether or not shared
** cache is enabled using [sqlite3_enable_shared_cache()].  The
** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
** participate in [shared cache mode] even if it is enabled.
**
** If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as
** "./" to avoid ambiguity.
**
** If the filename is an empty string, then a private, temporary
** on-disk database will be created.  This private database will be
** automatically deleted as soon as the database connection is closed.
**
** The fourth parameter to sqlite3_open_v2() is the name of the
** [sqlite3_vfs] object that defines the operating system interface that
** the new database connection should use.  If the fourth parameter is
** a NULL pointer then the default [sqlite3_vfs] object is used.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().
**
** Requirements:
** [H12701] [H12702] [H12703] [H12704] [H12706] [H12707] [H12709] [H12711]
** [H12712] [H12713] [H12714] [H12717] [H12719] [H12721] [H12723]
*/
int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
................................................................................
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*
** CAPI3REF: Error Codes And Messages {H12800} <S60200>
**
** The sqlite3_errcode() interface returns the numeric [result code] or
** [extended result code] for the most recent failed sqlite3_* API call
** associated with a [database connection]. If a prior API call failed
** but the most recent API call succeeded, the return value from
** sqlite3_errcode() is undefined.  The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** Memory to hold the error message string is managed internally.
** The application does not need to worry about freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.
**
** When the serialized [threading mode] is in use, it might be the
** case that a second error occurs on a separate thread in between
** the time of the first error and the call to these interfaces.
** When that happens, the second error will be reported since these
** interfaces always report the most recent result.  To avoid
** this, each thread can obtain exclusive use of the [database connection] D
................................................................................
** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
**
** Requirements:
** [H12801] [H12802] [H12803] [H12807] [H12808] [H12809]
*/
int sqlite3_errcode(sqlite3 *db);
int sqlite3_extended_errcode(sqlite3 *db);
const char *sqlite3_errmsg(sqlite3*);
const void *sqlite3_errmsg16(sqlite3*);

/*
** CAPI3REF: SQL Statement Object {H13000} <H13010>
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
**
** The life of a statement object goes something like this:
................................................................................
**
** Refer to documentation on individual methods above for additional
** information.
*/
typedef struct sqlite3_stmt sqlite3_stmt;

/*
** CAPI3REF: Run-time Limits {H12760} <S20600>
**
** This interface allows the size of various constructs to be limited
** on a connection by connection basis.  The first parameter is the
** [database connection] whose limit is to be set or queried.  The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited.  The third parameter is the
** new limit for that construct.  The function returns the old limit.
**
** If the new limit is a negative number, the limit is unchanged.
** For the limit category of SQLITE_LIMIT_XYZ there is a 
** [limits | hard upper bound]
** set by a compile-time C preprocessor macro named 
** [limits | SQLITE_MAX_XYZ].
** (The "_LIMIT_" in the name is changed to "_MAX_".)
** Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper limit.
**
** Run time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources.  An example application might be a
** web browser that has its own databases for storing history and
** separate databases controlled by JavaScript applications downloaded
** off the Internet.  The internal databases can be given the
** large, default limits.  Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
**
** Requirements:
** [H12762] [H12766] [H12769]
*/
int sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories {H12790} <H12760>
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].
** The synopsis of the meanings of the various limits is shown below.
** Additional information is available at [limits | Limits in SQLite].
**
** <dl>
** <dt>SQLITE_LIMIT_LENGTH</dt>
** <dd>The maximum size of any string or BLOB or table row.<dd>
**
** <dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement.</dd>
**
** <dt>SQLITE_LIMIT_COLUMN</dt>
** <dd>The maximum number of columns in a table definition or in the
** result set of a [SELECT] or the maximum number of columns in an index
** or in an ORDER BY or GROUP BY clause.</dd>
**
** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
** <dd>The maximum depth of the parse tree on any expression.</dd>
**
** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
** <dd>The maximum number of terms in a compound SELECT statement.</dd>
**
** <dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
** used to implement an SQL statement.</dd>
**
** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>
**
** <dt>SQLITE_LIMIT_ATTACHED</dt>
** <dd>The maximum number of [ATTACH | attached databases].</dd>
**
** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>
**
** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>
**
** <dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>
** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
................................................................................
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9
#define SQLITE_LIMIT_TRIGGER_DEPTH            10

/*
** CAPI3REF: Compiling An SQL Statement {H13010} <S10000>
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.
**
** The first argument, "db", is a [database connection] obtained from a
** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
................................................................................
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** If the nByte argument is less than zero, then zSql is read up to the
** first zero terminator. If nByte is non-negative, then it is the maximum
** number of  bytes read from zSql.  When nByte is non-negative, the
** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
** performance advantage to be gained by passing an nByte parameter that
** is equal to the number of bytes in the input string <i>including</i>
** the nul-terminator bytes.
**
** If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** *ppStmt is left pointing to a compiled [prepared statement] that can be
** executed using [sqlite3_step()].  If there is an error, *ppStmt is set
** to NULL.  If the input text contains no SQL (if the input is an empty
** string or a comment) then *ppStmt is set to NULL.
** The calling procedure is responsible for deleting the compiled
** SQL statement using [sqlite3_finalize()] after it has finished with it.
** ppStmt may not be NULL.
**

** On success, [SQLITE_OK] is returned, otherwise an [error code] is returned.
**
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
** recommended for all new programs. The two older interfaces are retained
** for backwards compatibility, but their use is discouraged.
** In the "v2" interfaces, the prepared statement
** that is returned (the [sqlite3_stmt] object) contains a copy of the
** original SQL text. This causes the [sqlite3_step()] interface to
** behave differently in three ways:
**
** <ol>
** <li>
** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
** always used to do, [sqlite3_step()] will automatically recompile the SQL
** statement and try to run it again.  If the schema has changed in
** a way that makes the statement no longer valid, [sqlite3_step()] will still
** return [SQLITE_SCHEMA].  But unlike the legacy behavior, [SQLITE_SCHEMA] is
** now a fatal error.  Calling [sqlite3_prepare_v2()] again will not make the
** error go away.  Note: use [sqlite3_errmsg()] to find the text
** of the parsing error that results in an [SQLITE_SCHEMA] return.
** </li>
**
** <li>
** When an error occurs, [sqlite3_step()] will return one of the detailed
** [error codes] or [extended error codes].  The legacy behavior was that
** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
** and you would have to make a second call to [sqlite3_reset()] in order
** to find the underlying cause of the problem. With the "v2" prepare
** interfaces, the underlying reason for the error is returned immediately.
** </li>
**
** <li>
** ^If the value of a [parameter | host parameter] in the WHERE clause might
** change the query plan for a statement, then the statement may be
** automatically recompiled (as if there had been a schema change) on the first 
** [sqlite3_step()] call following any change to the 
** [sqlite3_bind_text | bindings] of the [parameter]. 
** </li>
** </ol>
**
** Requirements:
** [H13011] [H13012] [H13013] [H13014] [H13015] [H13016] [H13019] [H13021]
**
*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
................................................................................
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL {H13100} <H13000>
**
** This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
**
** Requirements:
** [H13101] [H13102] [H13103]
*/
const char *sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Dynamically Typed Value Object {H15000} <S20200>
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing
** for the values it stores. Values stored in sqlite3_value objects
** can be integers, floating point values, strings, BLOBs, or NULL.
**
** An sqlite3_value object may be either "protected" or "unprotected".
** Some interfaces require a protected sqlite3_value.  Other interfaces
** will accept either a protected or an unprotected sqlite3_value.
** Every interface that accepts sqlite3_value arguments specifies
** whether or not it requires a protected sqlite3_value.
................................................................................
** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
** then there is no distinction between protected and unprotected
** sqlite3_value objects and they can be used interchangeably.  However,
** for maximum code portability it is recommended that applications
** still make the distinction between between protected and unprotected
** sqlite3_value objects even when not strictly required.
**
** The sqlite3_value objects that are passed as parameters into the
** implementation of [application-defined SQL functions] are protected.
** The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object {H16001} <S20200>
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].
** The application-defined SQL function implementation will pass this
** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
** [sqlite3_aggregate_context()], [sqlite3_user_data()],
** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
** and/or [sqlite3_set_auxdata()].
*/
typedef struct sqlite3_context sqlite3_context;

/*
** CAPI3REF: Binding Values To Prepared Statements {H13500} <S70300>
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** In the SQL strings input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] that matches one of following
** templates:
**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the templates above, NNN represents an integer literal,
** and VVV represents an alphanumeric identifer.  The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**
** The second argument is the index of the SQL parameter to be set.
** The leftmost SQL parameter has an index of 1.  When the same named
** SQL parameter is used more than once, second and subsequent
** occurrences have the same index as the first occurrence.
** The index for named parameters can be looked up using the
** [sqlite3_bind_parameter_index()] API if desired.  The index
** for "?NNN" parameters is the value of NNN.
** The NNN value must be between 1 and the [sqlite3_limit()]
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** The third argument is the value to bind to the parameter.
**
** In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.
** If the fourth parameter is negative, the length of the string is
** the number of bytes up to the first zero terminator.
**
** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it. If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
** Zeroblobs are intended to serve as placeholders for BLOBs whose
** content is later written using
** [sqlite3_blob_open | incremental BLOB I/O] routines.
** A negative value for the zeroblob results in a zero-length BLOB.
**
** The sqlite3_bind_*() routines must be called after
** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and
** before [sqlite3_step()].
** Bindings are not cleared by the [sqlite3_reset()] routine.
** Unbound parameters are interpreted as NULL.
**
** These routines return [SQLITE_OK] on success or an error code if
** anything goes wrong.  [SQLITE_RANGE] is returned if the parameter
** index is out of range.  [SQLITE_NOMEM] is returned if malloc() fails.
** [SQLITE_MISUSE] might be returned if these routines are called on a
** virtual machine that is the wrong state or which has already been finalized.
** Detection of misuse is unreliable.  Applications should not depend
** on SQLITE_MISUSE returns.  SQLITE_MISUSE is intended to indicate a
** a logic error in the application.  Future versions of SQLite might
** panic rather than return SQLITE_MISUSE.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
**
** Requirements:
** [H13506] [H13509] [H13512] [H13515] [H13518] [H13521] [H13524] [H13527]
** [H13530] [H13533] [H13536] [H13539] [H13542] [H13545] [H13548] [H13551]
**
*/
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters {H13600} <S70300>
**
** This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN are used,
** there may be gaps in the list.
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
**
** Requirements:
** [H13601]
*/
int sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter {H13620} <S70300>
**
** This routine returns a pointer to the name of the n-th
** [SQL parameter] in a [prepared statement].
** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
** respectively.
** In other words, the initial ":" or "$" or "@" or "?"
** is included as part of the name.
** Parameters of the form "?" without a following integer have no name
** and are also referred to as "anonymous parameters".
**
** The first host parameter has an index of 1, not 0.
**
** If the value n is out of range or if the n-th parameter is
** nameless, then NULL is returned.  The returned string is
** always in UTF-8 encoding even if the named parameter was
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
**
** Requirements:
** [H13621]
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name {H13640} <S70300>
**
** Return the index of an SQL parameter given its name.  The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  A zero
** is returned if no matching parameter is found.  The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
**
** Requirements:
** [H13641]
*/
int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement {H13660} <S70300>
**
** Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** Use this routine to reset all host parameters to NULL.
**
** Requirements:
** [H13661]
*/
int sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set {H13710} <S10700>
**
** Return the number of columns in the result set returned by the
** [prepared statement]. This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
**
** Requirements:
** [H13711]
*/
int sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set {H13720} <S10700>
**
** These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string
** and sqlite3_column_name16() returns a pointer to a zero-terminated
** UTF-16 string.  The first parameter is the [prepared statement]
** that implements the [SELECT] statement. The second parameter is the
** column number.  The leftmost column is number 0.
**
** The returned string pointer is valid until either the [prepared statement]
** is destroyed by [sqlite3_finalize()] or until the next call to
** sqlite3_column_name() or sqlite3_column_name16() on the same column.
**
** If sqlite3_malloc() fails during the processing of either routine
** (for example during a conversion from UTF-8 to UTF-16) then a
** NULL pointer is returned.
**
** The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
**
** Requirements:
** [H13721] [H13723] [H13724] [H13725] [H13726] [H13727]
*/
const char *sqlite3_column_name(sqlite3_stmt*, int N);
const void *sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result {H13740} <S10700>
**
** These routines provide a means to determine what column of what

** table in which database a result of a [SELECT] statement comes from.
** The name of the database or table or column can be returned as
** either a UTF-8 or UTF-16 string.  The _database_ routines return
** the database name, the _table_ routines return the table name, and
** the origin_ routines return the column name.
** The returned string is valid until the [prepared statement] is destroyed
** using [sqlite3_finalize()] or until the same information is requested
** again in a different encoding.
**
** The names returned are the original un-aliased names of the
** database, table, and column.
**
** The first argument to the following calls is a [prepared statement].
** These functions return information about the Nth column returned by
** the statement, where N is the second function argument.

**
** If the Nth column returned by the statement is an expression or
** subquery and is not a column value, then all of these functions return
** NULL.  These routine might also return NULL if a memory allocation error
** occurs.  Otherwise, they return the name of the attached database, table
** and column that query result column was extracted from.
**
** As with all other SQLite APIs, those postfixed with "16" return
** UTF-16 encoded strings, the other functions return UTF-8. {END}
**
** These APIs are only available if the library was compiled with the
** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
**
** {A13751}
** If two or more threads call one or more of these routines against the same
** prepared statement and column at the same time then the results are
** undefined.
**
** Requirements:
** [H13741] [H13742] [H13743] [H13744] [H13745] [H13746] [H13748]
**
** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
const char *sqlite3_column_database_name(sqlite3_stmt*,int);
const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
const char *sqlite3_column_table_name(sqlite3_stmt*,int);
const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result {H13760} <S10700>
**
** The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an
** expression or subquery) then the declared type of the table
** column is returned.  If the Nth column of the result set is an
** expression or subquery, then a NULL pointer is returned.
** The returned string is always UTF-8 encoded. {END}
**
** For example, given the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
** this routine would return the string "VARIANT" for the second result
** column (i==1), and a NULL pointer for the first result column (i==0).
**
** SQLite uses dynamic run-time typing.  So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  Type
** is associated with individual values, not with the containers
** used to hold those values.
**
** Requirements:
** [H13761] [H13762] [H13763]
*/
const char *sqlite3_column_decltype(sqlite3_stmt*,int);
const void *sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement {H13200} <S10000>
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
** must be called one or more times to evaluate the statement.
**
** The details of the behavior of the sqlite3_step() interface depend
** on whether the statement was prepared using the newer "v2" interface
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
** interface [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
** new "v2" interface is recommended for new applications but the legacy
** interface will continue to be supported.
**
** In the legacy interface, the return value will be either [SQLITE_BUSY],
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
** With the "v2" interface, any of the other [result codes] or
** [extended result codes] might be returned as well.
**
** [SQLITE_BUSY] means that the database engine was unable to acquire the
** database locks it needs to do its job.  If the statement is a [COMMIT]
** or occurs outside of an explicit transaction, then you can retry the
** statement.  If the statement is not a [COMMIT] and occurs within a
** explicit transaction then you should rollback the transaction before
** continuing.
**
** [SQLITE_DONE] means that the statement has finished executing
** successfully.  sqlite3_step() should not be called again on this virtual
** machine without first calling [sqlite3_reset()] to reset the virtual
** machine back to its initial state.
**
** If the SQL statement being executed returns any data, then [SQLITE_ROW]
** is returned each time a new row of data is ready for processing by the
** caller. The values may be accessed using the [column access functions].
** sqlite3_step() is called again to retrieve the next row of data.
**
** [SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred.  sqlite3_step() should not be called again on
** the VM. More information may be found by calling [sqlite3_errmsg()].
** With the legacy interface, a more specific error code (for example,
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
** can be obtained by calling [sqlite3_reset()] on the
** [prepared statement].  In the "v2" interface,
** the more specific error code is returned directly by sqlite3_step().
**
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
** Perhaps it was called on a [prepared statement] that has
** already been [sqlite3_finalize | finalized] or on one that had
** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
** be the case that the same database connection is being used by two or
................................................................................
** specific [error codes] that better describes the error.
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.
**
** Requirements:
** [H13202] [H15304] [H15306] [H15308] [H15310]
*/
int sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set {H13770} <S10700>
**
** Returns the number of values in the current row of the result set.
**
** Requirements:
** [H13771] [H13772]
*/
int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes {H10265} <S10110><S10120>
** KEYWORDS: SQLITE_TEXT
**
** {H10266} Every value in SQLite has one of five fundamental datatypes:
**
** <ul>
** <li> 64-bit signed integer
** <li> 64-bit IEEE floating point number
** <li> string
** <li> BLOB
** <li> NULL
** </ul> {END}
**
** These constants are codes for each of those types.
**
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
** for a completely different meaning.  Software that links against both
** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
** SQLITE_TEXT.
................................................................................
# undef SQLITE_TEXT
#else
# define SQLITE_TEXT     3
#endif
#define SQLITE3_TEXT     3

/*
** CAPI3REF: Result Values From A Query {H13800} <S10700>
** KEYWORDS: {column access functions}
**
** These routines form the "result set query" interface.
**
** These routines return information about a single column of the current
** result row of a query.  In every case the first argument is a pointer
** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
** that was returned from [sqlite3_prepare_v2()] or one of its variants)
** and the second argument is the index of the column for which information
** should be returned.  The leftmost column of the result set has the index 0.
** The number of columns in the result can be determined using
** [sqlite3_column_count()].
**
** If the SQL statement does not currently point to a valid row, or if the
** column index is out of range, the result is undefined.
** These routines may only be called when the most recent call to
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
................................................................................
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
** are pending, then the results are undefined.
**
** The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column.  The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
** returned by sqlite3_column_type() is only meaningful if no type
** conversions have occurred as described below.  After a type conversion,
** the value returned by sqlite3_column_type() is undefined.  Future
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
** If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
** the number of bytes in that string.
** The value returned does not include the zero terminator at the end
** of the string.  For clarity: the value returned is the number of
** bytes in the string, not the number of characters.
**
** Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated.  The return
** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
** pointer, possibly even a NULL pointer.
**
** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
** but leaves the result in UTF-16 in native byte order instead of UTF-8.
** The zero terminator is not included in this count.
**
** The object returned by [sqlite3_column_value()] is an
** [unprotected sqlite3_value] object.  An unprotected sqlite3_value object
** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate.  For
** example, if the internal representation is FLOAT and a text result
** is requested, [sqlite3_snprintf()] is used internally to perform the
** conversion automatically.  The following table details the conversions
** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
**
** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
................................................................................
** <tr><td>  TEXT    <td> INTEGER   <td> Use atoi()
** <tr><td>  TEXT    <td>  FLOAT    <td> Use atof()
** <tr><td>  TEXT    <td>   BLOB    <td> No change
** <tr><td>  BLOB    <td> INTEGER   <td> Convert to TEXT then use atoi()
** <tr><td>  BLOB    <td>  FLOAT    <td> Convert to TEXT then use atof()
** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
** </table>
** </blockquote>
**
** The table above makes reference to standard C library functions atoi()
** and atof().  SQLite does not really use these functions.  It has its
** own equivalent internal routines.  The atoi() and atof() names are
** used in the table for brevity and because they are familiar to most
** C programmers.
**
** Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
** sqlite3_column_text16() may be invalidated.
** Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
** <li> The initial content is a BLOB and sqlite3_column_text() or
**      sqlite3_column_text16() is called.  A zero-terminator might
**      need to be added to the string.</li>
** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
**      sqlite3_column_text16() is called.  The content must be converted
**      to UTF-16.</li>
** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
**      sqlite3_column_text() is called.  The content must be converted
**      to UTF-8.</li>
** </ul>
**
** Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
** that the prior pointer points to will have been modified.  Other kinds
** of conversion are done in place when it is possible, but sometimes they
** are not possible and in those cases prior pointers are invalidated.
**
** The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
** <ul>
**  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
**  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
**  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
** </ul>
**
** In other words, you should call sqlite3_column_text(),
** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
** into the desired format, then invoke sqlite3_column_bytes() or
** sqlite3_column_bytes16() to find the size of the result.  Do not mix calls
** to sqlite3_column_text() or sqlite3_column_blob() with calls to
** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
** with calls to sqlite3_column_bytes().
**
** The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called.  The memory space used to hold strings
** and BLOBs is freed automatically.  Do <b>not</b> pass the pointers returned
** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].
**
** Requirements:
** [H13803] [H13806] [H13809] [H13812] [H13815] [H13818] [H13821] [H13824]
** [H13827] [H13830]
*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object {H13300} <S70300><S30100>
**
** The sqlite3_finalize() function is called to delete a [prepared statement].
** If the statement was executed successfully or not executed at all, then
** SQLITE_OK is returned. If execution of the statement failed then an
** [error code] or [extended error code] is returned.
**
** This routine can be called at any point during the execution of the
** [prepared statement].  If the virtual machine has not
** completed execution when this routine is called, that is like
** encountering an error or an [sqlite3_interrupt | interrupt].
** Incomplete updates may be rolled back and transactions canceled,
** depending on the circumstances, and the
** [error code] returned will be [SQLITE_ABORT].
**
** Requirements:
** [H11302] [H11304]
*/
int sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object {H13330} <S70300>
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
** Use [sqlite3_clear_bindings()] to reset the bindings.
**
** {H11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S
**          back to the beginning of its program.
**
** {H11334} If the most recent call to [sqlite3_step(S)] for the
**          [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
**          or if [sqlite3_step(S)] has never before been called on S,
**          then [sqlite3_reset(S)] returns [SQLITE_OK].
**
** {H11336} If the most recent call to [sqlite3_step(S)] for the
**          [prepared statement] S indicated an error, then
**          [sqlite3_reset(S)] returns an appropriate [error code].
**
** {H11338} The [sqlite3_reset(S)] interface does not change the values
**          of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
int sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions {H16100} <S20200>
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
** These two functions (collectively known as "function creation routines")
** are used to add SQL functions or aggregates or to redefine the behavior
** of existing SQL functions or aggregates.  The only difference between the
** two is that the second parameter, the name of the (scalar) function or
** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
** for sqlite3_create_function16().
**
** The first parameter is the [database connection] to which the SQL
** function is to be added.  If a single program uses more than one database
** connection internally, then SQL functions must be added individually to
** each database connection.
**
** The second parameter is the name of the SQL function to be created or
** redefined.  The length of the name is limited to 255 bytes, exclusive of
** the zero-terminator.  Note that the name length limit is in bytes, not
** characters.  Any attempt to create a function with a longer name
** will result in [SQLITE_ERROR] being returned.
**
** The third parameter (nArg)
** is the number of arguments that the SQL function or
** aggregate takes. If this parameter is -1, then the SQL function or
** aggregate may take any number of arguments between 0 and the limit
** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]).  If the third
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
** The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
** aggregate. A scalar SQL function requires an implementation of the xFunc
** callback only, NULL pointers should be passed as the xStep and xFinal
** parameters. An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  SQLite will use
** the implementation that most closely matches the way in which the
** SQL function is used.  A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is
** between UTF8 and UTF16.
**
** Built-in functions may be overloaded by new application-defined functions.
** The first application-defined function with a given name overrides all
** built-in functions in the same [database connection] with the same name.
** Subsequent application-defined functions of the same name only override 
** prior application-defined functions that are an exact match for the
** number of parameters and preferred encoding.
**
** An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
**
** Requirements:
** [H16103] [H16106] [H16109] [H16112] [H16118] [H16121] [H16127]
** [H16130] [H16133] [H16136] [H16139] [H16142]
*/
int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
................................................................................
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);

/*
** CAPI3REF: Text Encodings {H10267} <S50200> <H16100>
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1
#define SQLITE_UTF16LE        2
#define SQLITE_UTF16BE        3
................................................................................
SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values {H15100} <S20200>
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.
**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
................................................................................
** each parameter to the SQL function.  These routines are used to
** extract values from the [sqlite3_value] objects.
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** These routines work just like the corresponding [column access functions]
** except that  these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
** extract UTF-16 strings as big-endian and little-endian respectively.
**
** The sqlite3_value_numeric_type() interface attempts to apply
** numeric affinity to the value.  This means that an attempt is
** made to convert the value to an integer or floating point.  If
** such a conversion is possible without loss of information (in other
** words, if the value is a string that looks like a number)
** then the conversion is performed.  Otherwise no conversion occurs.
** The [SQLITE_INTEGER | datatype] after conversion is returned.
**
** Please pay particular attention to the fact that the pointer returned
** from [sqlite3_value_blob()], [sqlite3_value_text()], or
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
**
** Requirements:
** [H15103] [H15106] [H15109] [H15112] [H15115] [H15118] [H15121] [H15124]
** [H15127] [H15130] [H15133] [H15136]
*/
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
................................................................................
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context {H16210} <S20200>
**
** The implementation of aggregate SQL functions use this routine to allocate
** a structure for storing their state.
**
** The first time the sqlite3_aggregate_context() routine is called for a
** particular aggregate, SQLite allocates nBytes of memory, zeroes out that

** memory, and returns a pointer to it. On second and subsequent calls to
** sqlite3_aggregate_context() for the same aggregate function index,
** the same buffer is returned. The implementation of the aggregate can use
** the returned buffer to accumulate data.






**









** SQLite automatically frees the allocated buffer when the aggregate
** query concludes.

**
** The first parameter should be a copy of the
** [sqlite3_context | SQL function context] that is the first parameter
** to the callback routine that implements the aggregate function.

**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
**
** Requirements:
** [H16211] [H16213] [H16215] [H16217]
*/
void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions {H16240} <S20200>
**
** The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function. {END}
**
** This routine must be called from the same thread in which
** the application-defined function is running.
**
** Requirements:
** [H16243]
*/
void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions {H16250} <S60600><S20200>
**
** The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** Requirements:
** [H16253]
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data {H16270} <S20200>
**
** The following two functions may be used by scalar SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
** metadata associated with the SQL value passed as the regular expression
** pattern.  The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
** The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. If no metadata has been ever
** been set for the Nth argument of the function, or if the corresponding
** function parameter has changed since the meta-data was set,
** then sqlite3_get_auxdata() returns a NULL pointer.
**
** The sqlite3_set_auxdata() interface saves the metadata
** pointed to by its 3rd parameter as the metadata for the N-th
** argument of the application-defined function.  Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has
** not been destroyed.
** If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on
** the metadata when the corresponding function parameter changes
** or when the SQL statement completes, whichever comes first.
**
** SQLite is free to call the destructor and drop metadata on any
** parameter of any function at any time.  The only guarantee is that
** the destructor will be called before the metadata is dropped.
**
** In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and SQL variables.
**
** These routines must be called from the same thread in which
** the SQL function is running.
**
** Requirements:
** [H16272] [H16274] [H16276] [H16277] [H16278] [H16279]
*/
void *sqlite3_get_auxdata(sqlite3_context*, int N);
void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior {H10280} <S30100>
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
** and will never change.  It does not need to be destroyed.  The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
**
** The typedef is necessary to work around problems in certain
** C++ compilers.  See ticket #2191.
*/
typedef void (*sqlite3_destructor_type)(void*);
#define SQLITE_STATIC      ((sqlite3_destructor_type)0)
#define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)

/*
** CAPI3REF: Setting The Result Of An SQL Function {H16400} <S20200>
**
** These routines are used by the xFunc or xFinal callbacks that
** implement SQL functions and aggregates.  See
** [sqlite3_create_function()] and [sqlite3_create_function16()]
** for additional information.
**
** These functions work very much like the [parameter binding] family of
** functions used to bind values to host parameters in prepared statements.
** Refer to the [SQL parameter] documentation for additional information.
**
** The sqlite3_result_blob() interface sets the result from
** an application-defined function to be the BLOB whose content is pointed
** to by the second parameter and which is N bytes long where N is the
** third parameter.
**
** The sqlite3_result_zeroblob() interfaces set the result of
** the application-defined function to be a BLOB containing all zero
** bytes and N bytes in size, where N is the value of the 2nd parameter.
**
** The sqlite3_result_double() interface sets the result from
** an application-defined function to be a floating point value specified
** by its 2nd argument.
**
** The sqlite3_result_error() and sqlite3_result_error16() functions
** cause the implemented SQL function to throw an exception.
** SQLite uses the string pointed to by the
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
** as the text of an error message.  SQLite interprets the error
** message string from sqlite3_result_error() as UTF-8. SQLite
** interprets the string from sqlite3_result_error16() as UTF-16 in native
** byte order.  If the third parameter to sqlite3_result_error()
** or sqlite3_result_error16() is negative then SQLite takes as the error
** message all text up through the first zero character.
** If the third parameter to sqlite3_result_error() or
** sqlite3_result_error16() is non-negative then SQLite takes that many
** bytes (not characters) from the 2nd parameter as the error message.
** The sqlite3_result_error() and sqlite3_result_error16()
** routines make a private copy of the error message text before
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  By default,
** the error code is SQLITE_ERROR.  A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** The sqlite3_result_toobig() interface causes SQLite to throw an error
** indicating that a string or BLOB is to long to represent.
**
** The sqlite3_result_nomem() interface causes SQLite to throw an error
** indicating that a memory allocation failed.
**
** The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces or to
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not
** copy the content of the parameter nor call a destructor on the content
** when it has finished using that result.
** If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the
** [unprotected sqlite3_value] object specified by the 2nd parameter.  The
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
** so that the [sqlite3_value] specified in the parameter may change or
** be deallocated after sqlite3_result_value() returns without harm.
** A [protected sqlite3_value] object may always be used where an
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
**
** Requirements:
** [H16403] [H16406] [H16409] [H16412] [H16415] [H16418] [H16421] [H16424]
** [H16427] [H16430] [H16433] [H16436] [H16439] [H16442] [H16445] [H16448]
** [H16451] [H16454] [H16457] [H16460] [H16463]
*/
void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_error_toobig(sqlite3_context*);
void sqlite3_result_error_nomem(sqlite3_context*);
................................................................................
void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences {H16600} <S20300>
**
** These functions are used to add new collation sequences to the
** [database connection] specified as the first argument.
**
** The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** and a UTF-16 string for sqlite3_create_collation16(). In all cases
** the name is passed as the second function argument.
**
** The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
** UTF-16 little-endian, or UTF-16 big-endian, respectively. The
** third argument might also be [SQLITE_UTF16] to indicate that the routine
** expects pointers to be UTF-16 strings in the native byte order, or the
** argument can be [SQLITE_UTF16_ALIGNED] if the
** the routine expects pointers to 16-bit word aligned strings
** of UTF-16 in the native byte order.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument.  If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
** Each time the application supplied function is invoked, it is passed
** as its first parameter a copy of the void* passed as the fourth argument
** to sqlite3_create_collation() or sqlite3_create_collation16().
**
** The remaining arguments to the application-supplied routine are two strings,
** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
** registered. {END}  The application defined collation routine should
** return negative, zero or positive if the first string is less than,
** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
**
** The sqlite3_create_collation_v2() works like sqlite3_create_collation()
** except that it takes an extra argument which is a destructor for
** the collation.  The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
** Collations are destroyed when they are overridden by later calls to the
** collation creation functions or when the [database connection] is closed
** using [sqlite3_close()].
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
**
** Requirements:
** [H16603] [H16604] [H16606] [H16609] [H16612] [H16615] [H16618] [H16621]
** [H16624] [H16627] [H16630]
*/
int sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void*,
  int(*xCompare)(void*,int,const void*,int,const void*)
................................................................................
  const void *zName,
  int eTextRep, 
  void*,
  int(*xCompare)(void*,int,const void*,int,const void*)
);

/*
** CAPI3REF: Collation Needed Callbacks {H16700} <S20300>
**
** To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
** [database connection] to be called whenever an undefined collation
** sequence is required.
**
** If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
** encoded in UTF-8. {H16703} If sqlite3_collation_needed16() is used,
** the names are passed as UTF-16 in machine native byte order.
** A call to either function replaces any existing callback.
**
** When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
** sqlite3_collation_needed16().  The second argument is the database
** connection.  The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
**
** Requirements:
** [H16702] [H16704] [H16706]
*/
int sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
int sqlite3_collation_needed16(
................................................................................
*/
int sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);

/*
** CAPI3REF: Suspend Execution For A Short Time {H10530} <S40410>
**
** The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
** If the operating system does not support sleep requests with
** millisecond time resolution, then the time will be rounded up to
** the nearest second. The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.
**
** Requirements: [H10533] [H10536]
*/
int sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files {H10310} <S20000>
**
** If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files

** created by SQLite will be placed in that directory.  If this variable
** is a NULL pointer, then SQLite performs a search for an appropriate
** temporary file directory.
**
** It is not safe to read or modify this variable in more than one
** thread at a time.  It is not safe to read or modify this variable
** if a [database connection] is being used at the same time in a separate
** thread.
** It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been called and that this variable remain unchanged
** thereafter.
**
** The [temp_store_directory pragma] may modify this variable and cause
** it to point to memory obtained from [sqlite3_malloc].  Furthermore,
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_temp_directory;

/*
** CAPI3REF: Test For Auto-Commit Mode {H12930} <S60200>
** KEYWORDS: {autocommit mode}
**
** The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
** respectively.  Autocommit mode is on by default.
** Autocommit mode is disabled by a [BEGIN] statement.
** Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
**
** If certain kinds of errors occur on a statement within a multi-statement
** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
** transaction might be rolled back automatically.  The only way to
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
**
** Requirements: [H12931] [H12932] [H12933] [H12934]
*/
int sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement {H13120} <S60600>
**
** The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  The [database connection]
** returned by sqlite3_db_handle is the same [database connection] that was the first argument

** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.
**
** Requirements: [H13123]
*/
sqlite3 *sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Find the next prepared statement {H13140} <S60600>
**
** This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.
**
** Requirements: [H13143] [H13146] [H13149] [H13152]
*/
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks {H12950} <S60400>
**
** The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The sqlite3_rollback_hook() interface registers a callback
** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
** Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** The pArg argument is passed through to the callback.
** If the callback on a commit hook function returns non-zero,
** then the commit is converted into a rollback.
**
** If another function was previously registered, its
** pArg value is returned.  Otherwise NULL is returned.


**
** The callback implementation must not do anything that will modify
** the database connection that invoked the callback.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the commit
** or rollback hook in the first place.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** Registering a NULL function disables the callback.
**
** When the commit hook callback routine returns zero, the [COMMIT]
** operation is allowed to continue normally.  If the commit hook
** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
** The rollback hook is invoked on a rollback that results from a commit
** hook returning non-zero, just as it would be with any other rollback.
**
** For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
** The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.
** <todo> Check on this </todo>
**
** See also the [sqlite3_update_hook()] interface.
**
** Requirements:
** [H12951] [H12952] [H12953] [H12954] [H12955]
** [H12961] [H12962] [H12963] [H12964]
*/
void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks {H12970} <S60400>
**
** The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted.
** Any callback set by a previous call to this function
** for the same database connection is overridden.
**
** The second argument is a pointer to the function to invoke when a
** row is updated, inserted or deleted.
** The first argument to the callback is a copy of the third argument
** to sqlite3_update_hook().
** The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
** or [SQLITE_UPDATE], depending on the operation that caused the callback
** to be invoked.
** The third and fourth arguments to the callback contain pointers to the
** database and table name containing the affected row.
** The final callback parameter is the [rowid] of the row.
** In the case of an update, this is the [rowid] after the update takes place.
**
** The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).
**
** In the current implementation, the update hook
** is not invoked when duplication rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the update hook.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** If another function was previously registered, its pArg value
** is returned.  Otherwise NULL is returned.


**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
**
** Requirements:
** [H12971] [H12973] [H12975] [H12977] [H12979] [H12981] [H12983] [H12986]
*/
void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache {H10330} <S30900>
** KEYWORDS: {shared cache}
**
** This routine enables or disables the sharing of the database cache
** and schema data structures between [database connection | connections]
** to the same database. Sharing is enabled if the argument is true
** and disabled if the argument is false.
**
** Cache sharing is enabled and disabled for an entire process.
** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
** sharing was enabled or disabled for each thread separately.
**
** The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.
**
** Virtual tables cannot be used with a shared cache.  When shared
** cache is enabled, the [sqlite3_create_module()] API used to register
** virtual tables will always return an error.
**
** This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.
**
** Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.
**
** See Also:  [SQLite Shared-Cache Mode]
**
** Requirements: [H10331] [H10336] [H10337] [H10339]
*/
int sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory {H17340} <S30220>
**
** The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library. {END}  Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
**
** Requirements: [H17341] [H17342]
*/
int sqlite3_release_memory(int);

/*
** CAPI3REF: Impose A Limit On Heap Size {H17350} <S30220>
**
** The sqlite3_soft_heap_limit() interface places a "soft" limit
** on the amount of heap memory that may be allocated by SQLite.
** If an internal allocation is requested that would exceed the
** soft heap limit, [sqlite3_release_memory()] is invoked one or
** more times to free up some space before the allocation is performed.
**
** The limit is called "soft", because if [sqlite3_release_memory()]
** cannot free sufficient memory to prevent the limit from being exceeded,
** the memory is allocated anyway and the current operation proceeds.
**
** A negative or zero value for N means that there is no soft heap limit and
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** The default value for the soft heap limit is zero.
**
** SQLite makes a best effort to honor the soft heap limit.
** But if the soft heap limit cannot be honored, execution will
** continue without error or notification.  This is why the limit is
** called a "soft" limit.  It is advisory only.
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
** allocated by a single thread - the same thread in which this routine
** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
** applied to all threads. The value specified for the soft heap limit
** is an upper bound on the total memory allocation for all threads. In
** version 3.5.0 there is no mechanism for limiting the heap usage for
** individual threads.
**
** Requirements:
** [H16351] [H16352] [H16353] [H16354] [H16355] [H16358]
*/
void sqlite3_soft_heap_limit(int);

/*
** CAPI3REF: Extract Metadata About A Column Of A Table {H12850} <S60300>
**
** This routine returns metadata about a specific column of a specific
** database table accessible using the [database connection] handle
** passed as the first function argument.
**
** The column is identified by the second, third and fourth parameters to
** this function. The second parameter is either the name of the database
** (i.e. "main", "temp" or an attached database) containing the specified
** table or NULL. If it is NULL, then all attached databases are searched
** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
** The third and fourth parameters to this function are the table and column
** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
** Metadata is returned by writing to the memory locations passed as the 5th
** and subsequent parameters to this function. Any of these arguments may be
** NULL, in which case the corresponding element of metadata is omitted.
**
** <blockquote>
** <table border="1">
** <tr><th> Parameter <th> Output<br>Type <th>  Description
**
** <tr><td> 5th <td> const char* <td> Data type
** <tr><td> 6th <td> const char* <td> Name of default collation sequence
** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
** </table>
** </blockquote>
**
** The memory pointed to by the character pointers returned for the
** declaration type and collation sequence is valid only until the next
** call to any SQLite API function.
**
** If the specified table is actually a view, an [error code] is returned.
**
** If the specified column is "rowid", "oid" or "_rowid_" and an
** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. If there is no
** explicitly declared [INTEGER PRIMARY KEY] column, then the output
** parameters are set as follows:
**
** <pre>
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** </pre>
**
** This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
** cannot be found, an [error code] is returned and an error message left
** in the [database connection] (to be retrieved using sqlite3_errmsg()).
**
** This API is only available if the library was compiled with the
** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
................................................................................
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
);

/*
** CAPI3REF: Load An Extension {H12600} <S20500>
**
** This interface loads an SQLite extension library from the named file.
**
** {H12601} The sqlite3_load_extension() interface attempts to load an
**          SQLite extension library contained in the file zFile.
**
** {H12602} The entry point is zProc.
**
** {H12603} zProc may be 0, in which case the name of the entry point
**          defaults to "sqlite3_extension_init".
**
** {H12604} The sqlite3_load_extension() interface shall return
**          [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
**
** {H12605} If an error occurs and pzErrMsg is not 0, then the
**          [sqlite3_load_extension()] interface shall attempt to
**          fill *pzErrMsg with error message text stored in memory
**          obtained from [sqlite3_malloc()]. {END}  The calling function
**          should free this memory by calling [sqlite3_free()].
**
** {H12606} Extension loading must be enabled using
**          [sqlite3_enable_load_extension()] prior to calling this API,
**          otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading {H12620} <S20500>
**
** So as not to open security holes in older applications that are
** unprepared to deal with extension loading, and as a means of disabling
** extension loading while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** Extension loading is off by default. See ticket #1863.
**
** {H12621} Call the sqlite3_enable_load_extension() routine with onoff==1
**          to turn extension loading on and call it with onoff==0 to turn
**          it back off again.
**
** {H12622} Extension loading is off by default.
*/
int sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load An Extensions {H12640} <S20500>
**
** This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
** to all new [database connections]. {END}
**
** This routine stores a pointer to the extension in an array that is
** obtained from [sqlite3_malloc()].  If you run a memory leak checker
** on your program and it reports a leak because of this array, invoke
** [sqlite3_reset_auto_extension()] prior to shutdown to free the memory.
**
** {H12641} This function registers an extension entry point that is
**          automatically invoked whenever a new [database connection]
**          is opened using [sqlite3_open()], [sqlite3_open16()],
**          or [sqlite3_open_v2()].
**
** {H12642} Duplicate extensions are detected so calling this routine
**          multiple times with the same extension is harmless.
**
** {H12643} This routine stores a pointer to the extension in an array
**          that is obtained from [sqlite3_malloc()].
**
** {H12644} Automatic extensions apply across all threads.
*/
int sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading {H12660} <S20500>
**
** This function disables all previously registered automatic
** extensions. {END}  It undoes the effect of all prior
** [sqlite3_auto_extension()] calls.
**
** {H12661} This function disables all previously registered
**          automatic extensions.
**
** {H12662} This function disables automatic extensions in all threads.
*/
void sqlite3_reset_auto_extension(void);

/*
****** EXPERIMENTAL - subject to change without notice **************
**
** The interface to the virtual-table mechanism is currently considered
................................................................................
*/
typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;

/*
** CAPI3REF: Virtual Table Object {H18000} <S20400>
** KEYWORDS: sqlite3_module {virtual table module}
** EXPERIMENTAL
**
** This structure, sometimes called a a "virtual table module", 
** defines the implementation of a [virtual tables].  
** This structure consists mostly of methods for the module.
**
** A virtual table module is created by filling in a persistent
** instance of this structure and passing a pointer to that instance
** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
** The registration remains valid until it is replaced by a different
** module or until the [database connection] closes.  The content
** of this structure must not change while it is registered with
** any database connection.
*/
struct sqlite3_module {
  int iVersion;
  int (*xCreate)(sqlite3*, void *pAux,
................................................................................
  int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
                       void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};

/*
** CAPI3REF: Virtual Table Indexing Information {H18100} <S20400>
** KEYWORDS: sqlite3_index_info
** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the [xBestIndex]
** method of a [virtual table module].  The fields under **Inputs** are the
** inputs to xBestIndex and are read-only.  xBestIndex inserts its
** results into the **Outputs** fields.
**
** The aConstraint[] array records WHERE clause constraints of the form:
**
** <pre>column OP expr</pre>
**
** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.  The particular operator is
** stored in aConstraint[].op.  The index of the column is stored in
** aConstraint[].iColumn.  aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.
**
** The optimizer automatically inverts terms of the form "expr OP column"
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** The aConstraint[] array only reports WHERE clause terms in the correct
** form that refer to the particular virtual table being queried.
**
** Information about the ORDER BY clause is stored in aOrderBy[].
** Each term of aOrderBy records a column of the ORDER BY clause.
**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.
**
** The idxNum and idxPtr values are recorded and passed into the
** [xFilter] method.
** [sqlite3_free()] is used to free idxPtr if and only iff
** needToFreeIdxPtr is true.
**
** The orderByConsumed means that output from [xFilter]/[xNext] will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
** The estimatedCost value is an estimate of the cost of doing the
** particular lookup.  A full scan of a table with N entries should have
** a cost of N.  A binary search of a table of N entries should have a
** cost of approximately log(N).
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
................................................................................
#define SQLITE_INDEX_CONSTRAINT_GT    4
#define SQLITE_INDEX_CONSTRAINT_LE    8
#define SQLITE_INDEX_CONSTRAINT_LT    16
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64

/*
** CAPI3REF: Register A Virtual Table Implementation {H18200} <S20400>
** EXPERIMENTAL
**
** This routine is used to register a new [virtual table module] name.
** Module names must be registered before
** creating a new [virtual table] using the module, or before using a
** preexisting [virtual table] for the module.
**
** The module name is registered on the [database connection] specified
** by the first parameter.  The name of the module is given by the 
** second parameter.  The third parameter is a pointer to
** the implementation of the [virtual table module].   The fourth
** parameter is an arbitrary client data pointer that is passed through
** into the [xCreate] and [xConnect] methods of the virtual table module
** when a new virtual table is be being created or reinitialized.
**
** This interface has exactly the same effect as calling
** [sqlite3_create_module_v2()] with a NULL client data destructor.





*/
SQLITE_EXPERIMENTAL int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);

/*
** CAPI3REF: Register A Virtual Table Implementation {H18210} <S20400>
** EXPERIMENTAL
**
** This routine is identical to the [sqlite3_create_module()] method,
** except that it has an extra parameter to specify 
** a destructor function for the client data pointer.  SQLite will
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  
*/
SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

/*
** CAPI3REF: Virtual Table Instance Object {H18010} <S20400>
** KEYWORDS: sqlite3_vtab
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass
** of the following structure to describe a particular instance
** of the [virtual table].  Each subclass will
** be tailored to the specific needs of the module implementation.
** The purpose of this superclass is to define certain fields that are
** common to all module implementations.
**
** Virtual tables methods can set an error message by assigning a
** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* NO LONGER USED */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object  {H18020} <S20400>
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass of the
** following structure to describe cursors that point into the
** [virtual table] and are used
** to loop through the virtual table.  Cursors are created using the
** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
** by the [sqlite3_module.xClose | xClose] method.  Cussors are used
** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
** of the module.  Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
*/
struct sqlite3_vtab_cursor {
  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Declare The Schema Of A Virtual Table {H18280} <S20400>
** EXPERIMENTAL
**
** The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table {H18300} <S20400>
** EXPERIMENTAL
**
** Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.
**
** This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.  The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

................................................................................
** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
**
****** EXPERIMENTAL - subject to change without notice **************
*/

/*
** CAPI3REF: A Handle To An Open BLOB {H17800} <S30230>
** KEYWORDS: {BLOB handle} {BLOB handles}
**
** An instance of this object represents an open BLOB on which
** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
** Objects of this type are created by [sqlite3_blob_open()]
** and destroyed by [sqlite3_blob_close()].
** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
** can be used to read or write small subsections of the BLOB.
** The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
typedef struct sqlite3_blob sqlite3_blob;

/*
** CAPI3REF: Open A BLOB For Incremental I/O {H17810} <S30230>
**
** This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre> {END}
**
** If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. If it is zero, the BLOB is opened for read access.
** It is not possible to open a column that is part of an index or primary 
** key for writing. ^If [foreign key constraints] are enabled, it is 
** not possible to open a column that is part of a [child key] for writing.
**
** Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** is assigned when the database is connected using [ATTACH].
** For the main database file, the database name is "main".
** For TEMP tables, the database name is "temp".
**
** On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
** to be a null pointer.
** This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
** functions.  Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.
**
** If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.
** Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** Changes written into a BLOB prior to the BLOB expiring are not
** rollback by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.
**
** Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
**
** Requirements:
** [H17813] [H17814] [H17816] [H17819] [H17821] [H17824]
*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Close A BLOB Handle {H17830} <S30230>
**
** Closes an open [BLOB handle].
**
** Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.
**
** The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.
**
** Calling this routine with a null pointer (which as would be returned
** by failed call to [sqlite3_blob_open()]) is a harmless no-op.
**
** Requirements:
** [H17833] [H17836] [H17839]
*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB {H17840} <S30230>
**
** Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** Requirements:
** [H17843]
*/
int sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally {H17850} <S30230>
**
** This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.
**
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read.  If N or iOffset is
** less than zero, [SQLITE_ERROR] is returned and no data is read.
** The size of the blob (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** An attempt to read from an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].
**
** On success, SQLITE_OK is returned.
** Otherwise, an [error code] or an [extended error code] is returned.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
**
** Requirements:
** [H17853] [H17856] [H17859] [H17862] [H17863] [H17865] [H17868]
*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally {H17870} <S30230>
**
** This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.
**
** If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** On success, SQLITE_OK is returned.
** Otherwise, an  [error code] or an [extended error code] is returned.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
**
** Requirements:
** [H17873] [H17874] [H17875] [H17876] [H17877] [H17879] [H17882] [H17885]
** [H17888]
*/
int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects {H11200} <S20100>
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
** single default VFS that is appropriate for the host computer.
** New VFSes can be registered and existing VFSes can be unregistered.
** The following interfaces are provided.
**
** The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
** Names are case sensitive.
** Names are zero-terminated UTF-8 strings.
** If there is no match, a NULL pointer is returned.
** If zVfsName is NULL then the default VFS is returned.
**
** New VFSes are registered with sqlite3_vfs_register().
** Each new VFS becomes the default VFS if the makeDflt flag is set.
** The same VFS can be registered multiple times without injury.
** To make an existing VFS into the default VFS, register it again
** with the makeDflt flag set.  If two different VFSes with the
** same name are registered, the behavior is undefined.  If a
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** Unregister a VFS with the sqlite3_vfs_unregister() interface.
** If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.
**
** Requirements:
** [H11203] [H11206] [H11209] [H11212] [H11215] [H11218]
*/
sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
int sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes {H17000} <S20000>
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_OS2
** <li>   SQLITE_MUTEX_PTHREAD
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>
**
** The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
** are appropriate for use on OS/2, Unix, and Windows.
**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().
**
** {H17011} The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. {H17012} If it returns NULL
** that means that a mutex could not be allocated. {H17013} SQLite
** will unwind its stack and return an error. {H17014} The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>
**

** {H17015} The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END}
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  {H17016} But SQLite will only request a recursive mutex in
** cases where it really needs one.  {END} If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** {H17017} The other allowed parameters to sqlite3_mutex_alloc() each return

** a pointer to a static preexisting mutex. {END}  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** {H17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  {H17034} But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** {H17019} The sqlite3_mutex_free() routine deallocates a previously
** allocated dynamic mutex. {H17020} SQLite is careful to deallocate every
** dynamic mutex that it allocates. {A17021} The dynamic mutexes must not be in
** use when they are deallocated. {A17022} Attempting to deallocate a static
** mutex results in undefined behavior. {H17023} SQLite never deallocates
** a static mutex. {END}
**
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex. {H17024} If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY. {H17025}  The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  {H17026} Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** {H17027} In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.  {A17028} If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
** {H17029} SQLite will never exhibit
** such behavior in its own use of mutexes.
**
** Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY.  {H17030} The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable behavior.
**
** {H17031} The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  {A17032} The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.  {H17033} SQLite will
** never do either. {END}
**
** If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
sqlite3_mutex *sqlite3_mutex_alloc(int);
void sqlite3_mutex_free(sqlite3_mutex*);
void sqlite3_mutex_enter(sqlite3_mutex*);
int sqlite3_mutex_try(sqlite3_mutex*);
void sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object {H17120} <S20130>
** EXPERIMENTAL
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the user has the option of substituting a custom
................................................................................
** does not provide a suitable implementation. In this case, the user
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** The xMutexInit method defined by this structure is invoked as
** part of system initialization by the sqlite3_initialize() function.
** {H17001} The xMutexInit routine shall be called by SQLite once for each
** effective call to [sqlite3_initialize()].
**
** The xMutexEnd method defined by this structure is invoked as
** part of system shutdown by the sqlite3_shutdown() function. The
** implementation of this method is expected to release all outstanding
** resources obtained by the mutex methods implementation, especially
** those obtained by the xMutexInit method. {H17003} The xMutexEnd()
** interface shall be invoked once for each call to [sqlite3_shutdown()].
**
** The remaining seven methods defined by this structure (xMutexAlloc,
** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
** xMutexNotheld) implement the following interfaces (respectively):
**
** <ul>
**   <li>  [sqlite3_mutex_alloc()] </li>
**   <li>  [sqlite3_mutex_free()] </li>
**   <li>  [sqlite3_mutex_enter()] </li>
**   <li>  [sqlite3_mutex_try()] </li>
**   <li>  [sqlite3_mutex_leave()] </li>
**   <li>  [sqlite3_mutex_held()] </li>
**   <li>  [sqlite3_mutex_notheld()] </li>
** </ul>
**
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  It must be harmless to
** invoke xMutexInit() mutiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
................................................................................
  int (*xMutexTry)(sqlite3_mutex *);
  void (*xMutexLeave)(sqlite3_mutex *);
  int (*xMutexHeld)(sqlite3_mutex *);
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines {H17080} <S20130> <S30800>
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements. {H17081} The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  {H17082} The core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  {A17087} External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** {H17083} These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** {X17084} The implementation is not required to provided versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** {H17085} If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.  {END} This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But the
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  {H17086} The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/

int sqlite3_mutex_held(sqlite3_mutex*);
int sqlite3_mutex_notheld(sqlite3_mutex*);


/*
** CAPI3REF: Mutex Types {H17001} <H17000>
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.
**
** The set of static mutexes may change from one SQLite release to the
** next.  Applications that override the built-in mutex logic must be
** prepared to accommodate additional static mutexes.
................................................................................
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* lru page list */

/*
** CAPI3REF: Retrieve the mutex for a database connection {H17002} <H17000>
**
** This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
sqlite3_mutex *sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files {H11300} <S30800>
**
** {H11301} The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. {H11302} The
** name of the database is the name assigned to the database by the
** <a href="lang_attach.html">ATTACH</a> SQL command that opened the


** database. {H11303} To control the main database file, use the name "main"
** or a NULL pointer. {H11304} The third and fourth parameters to this routine
** are passed directly through to the second and third parameters of
** the xFileControl method.  {H11305} The return value of the xFileControl
** method becomes the return value of this routine.
**
** {H11306} If the second parameter (zDbName) does not match the name of any
** open database file, then SQLITE_ERROR is returned. {H11307} This error
** code is not remembered and will not be recalled by [sqlite3_errcode()]
** or [sqlite3_errmsg()]. {A11308} The underlying xFileControl method might
** also return SQLITE_ERROR.  {A11309} There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method. {END}
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface {H11400} <S30800>
**
** The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
................................................................................
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
int sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes {H11410} <H11400>
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
** These parameters and their meanings are subject to change
** without notice.  These values are for testing purposes only.
** Applications should not use any of these parameters or the
................................................................................
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14

/*
** CAPI3REF: SQLite Runtime Status {H17200} <S60200>
** EXPERIMENTAL
**
** This interface is used to retrieve runtime status information
** about the preformance of SQLite, and optionally to reset various
** highwater marks.  The first argument is an integer code for
** the specific parameter to measure.  Recognized integer codes
** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].
** The current value of the parameter is returned into *pCurrent.
** The highest recorded value is returned in *pHighwater.  If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written. Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.
** Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.
**
** This routine returns SQLITE_OK on success and a non-zero
** [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
................................................................................
**
** See also: [sqlite3_db_status()]
*/
SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);


/*
** CAPI3REF: Status Parameters {H17250} <H17200>
** EXPERIMENTAL
**
** These integer constants designate various run-time status parameters
** that can be returned by [sqlite3_status()].
**
** <dl>
** <dt>SQLITE_STATUS_MEMORY_USED</dt>
** <dd>This parameter is the current amount of memory checked out
** using [sqlite3_malloc()], either directly or indirectly.  The
** figure includes calls made to [sqlite3_malloc()] by the application
** and internal memory usage by the SQLite library.  Scratch memory
** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
** this parameter.  The amount returned is the sum of the allocation
** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>
**
** <dt>SQLITE_STATUS_MALLOC_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
** internal equivalents).  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>
**
** <dt>SQLITE_STATUS_PAGECACHE_USED</dt>
** <dd>This parameter returns the number of pages used out of the
** [pagecache memory allocator] that was configured using 
** [SQLITE_CONFIG_PAGECACHE].  The
** value returned is in pages, not in bytes.</dd>
**
** <dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of page cache
** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
** buffer and where forced to overflow to [sqlite3_malloc()].  The
** returned value includes allocations that overflowed because they
** where too large (they were larger than the "sz" parameter to
** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
** no space was left in the page cache.</dd>
**
** <dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [pagecache memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>
**
** <dt>SQLITE_STATUS_SCRATCH_USED</dt>
** <dd>This parameter returns the number of allocations used out of the
** [scratch memory allocator] configured using
** [SQLITE_CONFIG_SCRATCH].  The value returned is in allocations, not
** in bytes.  Since a single thread may only have one scratch allocation
** outstanding at time, this parameter also reports the number of threads
** using scratch memory at the same time.</dd>
**
** <dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of scratch memory
** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
** buffer and where forced to overflow to [sqlite3_malloc()].  The values
** returned include overflows because the requested allocation was too
** larger (that is, because the requested allocation was larger than the
** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
** slots were available.
** </dd>
**
** <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>
**
** <dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>This parameter records the deepest parser stack.  It is only
** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1
#define SQLITE_STATUS_PAGECACHE_OVERFLOW   2
................................................................................
#define SQLITE_STATUS_SCRATCH_OVERFLOW     4
#define SQLITE_STATUS_MALLOC_SIZE          5
#define SQLITE_STATUS_PARSER_STACK         6
#define SQLITE_STATUS_PAGECACHE_SIZE       7
#define SQLITE_STATUS_SCRATCH_SIZE         8

/*
** CAPI3REF: Database Connection Status {H17500} <S60200>
** EXPERIMENTAL
**
** This interface is used to retrieve runtime status information 
** about a single [database connection].  The first argument is the
** database connection object to be interrogated.  The second argument
** is the parameter to interrogate.  Currently, the only allowed value
** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
** Additional options will likely appear in future releases of SQLite.
**
** The current value of the requested parameter is written into *pCur
** and the highest instantaneous value is written into *pHiwtr.  If
** the resetFlg is true, then the highest instantaneous value is
** reset back down to the current value.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections {H17520} <H17500>
** EXPERIMENTAL
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
**
** New verbs may be added in future releases of SQLite. Existing verbs
** might be discontinued. Applications should check the return code from
** [sqlite3_db_status()] to make sure that the call worked.
** The [sqlite3_db_status()] interface will return a non-zero error code
** if a discontinued or unsupported verb is invoked.
**
** <dl>
** <dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>
** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED     0


/*
** CAPI3REF: Prepared Statement Status {H17550} <S60200>
** EXPERIMENTAL
**
** Each prepared statement maintains various
** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
** of times it has performed specific operations.  These counters can
** be used to monitor the performance characteristics of the prepared
** statements.  For example, if the number of table steps greatly exceeds
** the number of table searches or result rows, that would tend to indicate
** that the prepared statement is using a full table scan rather than
** an index.  
**
** This interface is used to retrieve and reset counter values from
** a [prepared statement].  The first argument is the prepared statement
** object to be interrogated.  The second argument
** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
** to be interrogated. 
** The current value of the requested counter is returned.
** If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements {H17570} <H17550>
** EXPERIMENTAL
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.
** The meanings of the various counters are as follows:
**
** <dl>
** <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
** <dd>This is the number of times that SQLite has stepped forward in
** a table as part of a full table scan.  Large numbers for this counter
** may indicate opportunities for performance improvement through 
** careful use of indices.</dd>
**
** <dt>SQLITE_STMTSTATUS_SORT</dt>
** <dd>This is the number of sort operations that have occurred.
** A non-zero value in this counter may indicate an opportunity to
** improvement performance through careful use of indices.</dd>
**
** </dl>
*/
#define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
#define SQLITE_STMTSTATUS_SORT              2
................................................................................
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.
** KEYWORDS: {page cache}
** EXPERIMENTAL
**
** The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure. The majority of the 
** heap memory used by SQLite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by SQLite, the way in which 
** that memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config].  Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.
**
** The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). It is passed
** a copy of the sqlite3_pcache_methods.pArg value. It can be used to set
** up global structures and mutexes required by the custom page cache 
** implementation. 
**
** The xShutdown() method is called from within [sqlite3_shutdown()], 
** if the application invokes this API. It can be used to clean up 
** any outstanding resources before process shutdown, if required.
**
** SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  All other methods must be threadsafe
** in multithreaded applications.
**
** SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
** The xCreate() method is used to construct a new cache instance.  SQLite
** will typically create one cache instance for each open database file,
** though this is not guaranteed. The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache.  szPage will not be a power of two.  szPage
** will the page size of the database file that is to be cached plus an
** increment (here called "R") of about 100 or 200.  SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk.  The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** R is constant for a particular build of SQLite.  The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
** false if it is used for an in-memory database. The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory.  On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
** In other words, a cache created with bPurgeable set to false will
** never contain any unpinned pages.
**
** The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command. As with the bPurgeable parameter,
** the implementation is not required to do anything with this
** value; it is advisory only.
**
** The xPagecount() method should return the number of pages currently
** stored in the cache.
** 
** The xFetch() method is used to fetch a page and return a pointer to it. 
** A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. The page to be fetched is determined by the key. The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be "pinned".
**
** If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
** intact.  If the requested page is not already in the cache, then the
** behavior of the cache implementation is determined by the value of the
** createFlag parameter passed to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache
** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.
** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
**                 Otherwise return NULL.
** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return
**                 NULL if allocating a new page is effectively impossible.
** </table>
**
** SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  If
** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
** attempt to unpin one or more cache pages by spilling the content of
** pinned pages to disk and synching the operating system disk cache. After
** attempting to unpin pages, the xFetch() method will be invoked again with
** a createFlag of 2.
**
** xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed. If the discard parameter is
** zero, then the page is considered to be unpinned. The cache implementation
** may choose to evict unpinned pages at any time.
**
** The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().
**
** The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. If the cache
** previously contains an entry associated with newKey, it should be
** discarded. Any prior cache entry associated with newKey is guaranteed not
** to be pinned.
**
** When SQLite calls the xTruncate() method, the cache must discard all
** existing cache entries with page numbers (keys) greater than or equal
** to the value of the iLimit parameter passed to xTruncate(). If any
** of these pages are pinned, they are implicitly unpinned, meaning that
** they can be safely discarded.
**
** The xDestroy() method is used to delete a cache allocated by xCreate().
** All resources associated with the specified cache should be freed. After
** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
** handle invalid, and will not use it with any other sqlite3_pcache_methods
** functions.
*/
typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
struct sqlite3_pcache_methods {
  void *pArg;
................................................................................
};

/*
** CAPI3REF: Online Backup Object
** EXPERIMENTAL
**
** The sqlite3_backup object records state information about an ongoing
** online backup operation.  The sqlite3_backup object is created by
** a call to [sqlite3_backup_init()] and is destroyed by a call to
** [sqlite3_backup_finish()].
**
** See Also: [Using the SQLite Online Backup API]
*/
typedef struct sqlite3_backup sqlite3_backup;

/*
** CAPI3REF: Online Backup API.
** EXPERIMENTAL
**
** This API is used to overwrite the contents of one database with that
** of another. It is useful either for creating backups of databases or
** for copying in-memory databases to or from persistent files. 
**
** See Also: [Using the SQLite Online Backup API]
**
** Exclusive access is required to the destination database for the 
** duration of the operation. However the source database is only
** read-locked while it is actually being read, it is not locked
** continuously for the entire operation. Thus, the backup may be
** performed on a live database without preventing other users from
** writing to the database for an extended period of time.
** 
** To perform a backup operation: 
**   <ol>
**     <li><b>sqlite3_backup_init()</b> is called once to initialize the
**         backup, 
**     <li><b>sqlite3_backup_step()</b> is called one or more times to transfer 
**         the data between the two databases, and finally
**     <li><b>sqlite3_backup_finish()</b> is called to release all resources 
**         associated with the backup operation. 
**   </ol>
** There should be exactly one call to sqlite3_backup_finish() for each
** successful call to sqlite3_backup_init().
**
** <b>sqlite3_backup_init()</b>
**
** The first two arguments passed to [sqlite3_backup_init()] are the database
** handle associated with the destination database and the database name 
** used to attach the destination database to the handle. The database name
** is "main" for the main database, "temp" for the temporary database, or
** the name specified as part of the [ATTACH] statement if the destination is
** an attached database. The third and fourth arguments passed to 

** sqlite3_backup_init() identify the [database connection]
** and database name used
** to access the source database. The values passed for the source and 
** destination [database connection] parameters must not be the same.


**
** If an error occurs within sqlite3_backup_init(), then NULL is returned
** and an error code and error message written into the [database connection] 
** passed as the first argument. They may be retrieved using the



** [sqlite3_errcode()], [sqlite3_errmsg()], and [sqlite3_errmsg16()] functions.

** Otherwise, if successful, a pointer to an [sqlite3_backup] object is
** returned. This pointer may be used with the sqlite3_backup_step() and
** sqlite3_backup_finish() functions to perform the specified backup 
** operation.
**
** <b>sqlite3_backup_step()</b>
**
** Function [sqlite3_backup_step()] is used to copy up to nPage pages between 
** the source and destination databases, where nPage is the value of the 
** second parameter passed to sqlite3_backup_step(). If nPage is a negative
** value, all remaining source pages are copied. If the required pages are 

** succesfully copied, but there are still more pages to copy before the 
** backup is complete, it returns [SQLITE_OK]. If no error occured and there 
** are no more pages to copy, then [SQLITE_DONE] is returned. If an error 

** occurs, then an SQLite error code is returned. As well as [SQLITE_OK] and
** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
**
** As well as the case where the destination database file was opened for
** read-only access, sqlite3_backup_step() may return [SQLITE_READONLY] if
** the destination is an in-memory database with a different page size
** from the source database.
**
** If sqlite3_backup_step() cannot obtain a required file-system lock, then
** the [sqlite3_busy_handler | busy-handler function]
** is invoked (if one is specified). If the 
** busy-handler returns non-zero before the lock is available, then 
** [SQLITE_BUSY] is returned to the caller. In this case the call to
** sqlite3_backup_step() can be retried later. If the source
** [database connection]
** is being used to write to the source database when sqlite3_backup_step()
** is called, then [SQLITE_LOCKED] is returned immediately. Again, in this
** case the call to sqlite3_backup_step() can be retried later on. If
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
** [SQLITE_READONLY] is returned, then 
** there is no point in retrying the call to sqlite3_backup_step(). These 
** errors are considered fatal. At this point the application must accept 
** that the backup operation has failed and pass the backup operation handle 
** to the sqlite3_backup_finish() to release associated resources.
**
** Following the first call to sqlite3_backup_step(), an exclusive lock is
** obtained on the destination file. It is not released until either 
** sqlite3_backup_finish() is called or the backup operation is complete 
** and sqlite3_backup_step() returns [SQLITE_DONE]. Additionally, each time 
** a call to sqlite3_backup_step() is made a [shared lock] is obtained on
** the source database file. This lock is released before the
** sqlite3_backup_step() call returns. Because the source database is not
** locked between calls to sqlite3_backup_step(), it may be modified mid-way
** through the backup procedure. If the source database is modified by an
** external process or via a database connection other than the one being
** used by the backup operation, then the backup will be transparently
** restarted by the next call to sqlite3_backup_step(). If the source 
** database is modified by the using the same database connection as is used
** by the backup operation, then the backup database is transparently 
** updated at the same time.
**
** <b>sqlite3_backup_finish()</b>
**
** Once sqlite3_backup_step() has returned [SQLITE_DONE], or when the 
** application wishes to abandon the backup operation, the [sqlite3_backup]

** object should be passed to sqlite3_backup_finish(). This releases all
** resources associated with the backup operation. If sqlite3_backup_step()
** has not yet returned [SQLITE_DONE], then any active write-transaction on the

** destination database is rolled back. The [sqlite3_backup] object is invalid
** and may not be used following a call to sqlite3_backup_finish().
**
** The value returned by sqlite3_backup_finish is [SQLITE_OK] if no error
** occurred, regardless or whether or not sqlite3_backup_step() was called
** a sufficient number of times to complete the backup operation. Or, if

** an out-of-memory condition or IO error occured during a call to
** sqlite3_backup_step() then [SQLITE_NOMEM] or an
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] error code
** is returned. In this case the error code and an error message are
** written to the destination [database connection].
**
** A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step() is
** not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b>
**
** Each call to sqlite3_backup_step() sets two values stored internally
** by an [sqlite3_backup] object. The number of pages still to be backed
** up, which may be queried by sqlite3_backup_remaining(), and the total
** number of pages in the source database file, which may be queried by
** sqlite3_backup_pagecount().

**
** The values returned by these functions are only updated by
** sqlite3_backup_step(). If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file
** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
** from within other threads.
**
** However, the application must guarantee that the destination database
** connection handle is not passed to any other API (by any thread) after 
** sqlite3_backup_init() is called and before the corresponding call to
** sqlite3_backup_finish(). Unfortunately SQLite does not currently check
** for this, if the application does use the destination [database connection]
** for some other purpose during a backup operation, things may appear to
** work correctly but in fact be subtly malfunctioning.  Use of the
** destination database connection while a backup is in progress might
** also cause a mutex deadlock.
**
** Furthermore, if running in [shared cache mode], the application must
** guarantee that the shared cache used by the destination database
** is not accessed while the backup is running. In practice this means
** that the application must guarantee that the file-system file being 
** backed up to is not accessed by any connection within the process,
** not just the specific connection that was passed to sqlite3_backup_init().
**
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
................................................................................
int sqlite3_backup_remaining(sqlite3_backup *p);
int sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
** EXPERIMENTAL
**
** When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
** [SQLite Shared-Cache Mode] for a description of shared-cache locking. 
** This API may be used to register a callback that SQLite will invoke 
** when the connection currently holding the required lock relinquishes it.
** This API is only available if the library was compiled with the
** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
**
** See Also: [Using the SQLite Unlock Notification Feature].
**
** Shared-cache locks are released when a database connection concludes
** its current transaction, either by committing it or rolling it back. 
**
** When a connection (known as the blocked connection) fails to obtain a
** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
** identity of the database connection (the blocking connection) that
** has locked the required resource is stored internally. After an 
** application receives an SQLITE_LOCKED error, it may call the
** sqlite3_unlock_notify() method with the blocked connection handle as 
** the first argument to register for a callback that will be invoked
** when the blocking connections current transaction is concluded. The
** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
** call that concludes the blocking connections transaction.
**
** If sqlite3_unlock_notify() is called in a multi-threaded application,
** there is a chance that the blocking connection will have already
** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
** If this happens, then the specified callback is invoked immediately,
** from within the call to sqlite3_unlock_notify().
**
** If the blocked connection is attempting to obtain a write-lock on a
** shared-cache table, and more than one other connection currently holds
** a read-lock on the same table, then SQLite arbitrarily selects one of 
** the other connections to use as the blocking connection.
**
** There may be at most one unlock-notify callback registered by a 
** blocked connection. If sqlite3_unlock_notify() is called when the
** blocked connection already has a registered unlock-notify callback,
** then the new callback replaces the old. If sqlite3_unlock_notify() is
** called with a NULL pointer as its second argument, then any existing
** unlock-notify callback is cancelled. The blocked connections 
** unlock-notify callback may also be canceled by closing the blocked
** connection using [sqlite3_close()].
**
** The unlock-notify callback is not reentrant. If an application invokes
** any sqlite3_xxx API functions from within an unlock-notify callback, a
** crash or deadlock may be the result.
**
** Unless deadlock is detected (see below), sqlite3_unlock_notify() always
** returns SQLITE_OK.
**
** <b>Callback Invocation Details</b>
**
** When an unlock-notify callback is registered, the application provides a 
** single void* pointer that is passed to the callback when it is invoked.
** However, the signature of the callback function allows SQLite to pass
** it an array of void* context pointers. The first argument passed to
** an unlock-notify callback is a pointer to an array of void* pointers,
** and the second is the number of entries in the array.
**
** When a blocking connections transaction is concluded, there may be
** more than one blocked connection that has registered for an unlock-notify
** callback. If two or more such blocked connections have specified the
** same callback function, then instead of invoking the callback function
** multiple times, it is invoked once with the set of void* context pointers
** specified by the blocked connections bundled together into an array.
** This gives the application an opportunity to prioritize any actions 
** related to the set of unblocked database connections.
**
** <b>Deadlock Detection</b>
................................................................................
** action (a reasonable assumption), then using this API may cause the
** application to deadlock. For example, if connection X is waiting for
** connection Y's transaction to be concluded, and similarly connection
** Y is waiting on connection X's transaction, then neither connection
** will proceed and the system may remain deadlocked indefinitely.
**
** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
** detection. If a given call to sqlite3_unlock_notify() would put the
** system in a deadlocked state, then SQLITE_LOCKED is returned and no
** unlock-notify callback is registered. The system is said to be in
** a deadlocked state if connection A has registered for an unlock-notify
** callback on the conclusion of connection B's transaction, and connection
** B has itself registered for an unlock-notify callback when connection
** A's transaction is concluded. Indirect deadlock is also detected, so
** the system is also considered to be deadlocked if connection B has
** registered for an unlock-notify callback on the conclusion of connection
** C's transaction, where connection C is waiting on connection A. Any
** number of levels of indirection are allowed.
**
** <b>The "DROP TABLE" Exception</b>
**
** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost 
** always appropriate to call sqlite3_unlock_notify(). There is however,
** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
................................................................................
** that belong to the same connection. If there are, SQLITE_LOCKED is
** returned. In this case there is no "blocking connection", so invoking
** sqlite3_unlock_notify() results in the unlock-notify callback being
** invoked immediately. If the application then re-attempts the "DROP TABLE"
** or "DROP INDEX" query, an infinite loop might be the result.
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.
*/
int sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
** EXPERIMENTAL
**
** The [sqlite3_strnicmp()] API allows applications and extensions to
** compare the contents of two buffers containing UTF-8 strings in a
** case-indendent fashion, using the same definition of case independence 
** that SQLite uses internally when comparing identifiers.
*/
int sqlite3_strnicmp(const char *, const char *, int);

/*







|

|
|
|
<
<
<
<
<
|
<
<
<
<
<
<
>
>
>
|
<
>
>
>

<
<
<
<

|
|
|
|
|
|




<
<






|



|
|








|
|
|
|
|
|
|
|
|
|
|
|
|
>







|
>
>
>
>











|







|
|
|
|
|
|
|
|
|
|




|







 







|









|
>
>
>







 







|

|
>
>



|
>
>
>

|






|
|
<











|

|
>
|
|
<
<
<
<
<

>
>
>
>
>
|
|
|
|
|

|
|
|
|
|
|
|
|
>
>
>

<
<
>
>
>

<
<
>
>
>
>
>
>
>
>
>

<
<
<
>
>
>
>

<
<
>

<
<
<
>
>
>
>
>
>
>
>










|







 







|







 







|







 







|







 







|












|







 







|







 







|







 







|







 







|











|







 







|


|













|

|
|








|

|


|

|







|
|


|
|



|




|







 







|













>
>
|








|
|

<
<
<
<
<




|






|










|
|




|







 







|







 







|







 







|
>

|
>
>
>
>
>


|
>





|
|
>
>
>


|
>







|
>
>
>
>


|


|
>
>


|

|


|


|

>
|
<





|
>
>
>



|






|

|
|
|
|
|
|
<


|







|
|


|
|


|





|




|

|







|


|
>
>
>
>
>
>


|


|


|
>
>
>
>


|
>
|

|
|

|


|

|



|

|







 







|








|





|

|

>
|
|
|


|
>
|








|

|
|
|
<
<
<




|

|
|

|



|

|


|


|

|

|

|



|

|





<
<
<










|

|


|

|



|


|



|









|


|



|

|




|




<
<
<







|

|

>
|
|




|
|
|
|




<
<
<







|

|





|




|



|
|



|
|


|


|



<
<
<






|




|
|

|


|


|


|


|



|
<
<











|

|



|
|
|

|
|
|
|


|



|













|

|





|


|





|

|





<
<
<







|

|
|

|



|


|


|
<
<
<




|







 







|

|


|
|





|




|
|
<
<












|




|


|



|



|

|

|




|
|









|

|







 







|


|










|

|
<
<
<






|

|




|

|
|



|

|








|


|


|


|

|


|


|
|
<
<
<
<
<
<
<
<
<







 







<
<
<
<







 







|





|
|
>
>
>
>
>
>
>
>
>
>
>
>
>





|







|

|


|


<
<
<




|

|

|

|


|



|





|




|
|

|



|






|







 







|

|







|




|




<
<
<
<








|











|










|

|



<
<
<







 







|





|

|
|
>

|

|
|


<
<
<
<






|

|





|








<
<
<




|

|
|

|



|
|

|
>

|









|
>


|


|

|

|


|

|


|








|

|



|

|



|
|






|
|


|

|







<
<
<
<







 







|

|



|




|

|


|







 







<
<
<







|







 







|

|




|

|
|



|
|
|

|













<
<
<




|








|
|

|
|

|


|

|
|

|
|

|

|

|
|

|
|

|

|

|

|

|
|







 







|







 







|
|
|







|




|
|
|





>
|




|






|

|








|
|

|
|











<
<
<
<







 







|

|


<
<
<




|




|







 







|

|









|


|










|



|












|



|



|
|


|
|

|


|

|

|
|


|

|


|



|
|




|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<



<
<
<
<
<












|

|





|

|
|




<
<
<




|

|
|
|



|
|
|

|

|
|







<
<
<




|

|

|
|






<
<
<




|

|

|
<
<
<




|

|
|

<
<
<




|

|
|


|
|
|

|



|



|



<
<
<





|

|
>
|
|
|


|



|


|
|

>

|

|
|
|

|
|

|
|

<




<
<
<













|

|



|

|

|








|

|


|


<
<
<





|













|

|


|
|





|




|




|


|


|







 







<
<
<




|

|
|
<
<




|


|







|







 







|


|

|
|



|
|







 







|

|







|

|

|


|
|


|
|



|

|

|







|


|







 







|







|


|












|

|





|






|









|

|




|



|
<
<
<
<













|

|
|
|


|
|


|


<
<
<




|



|



|
|

|
|
|
|

|
|
|

|
|




|




|






|
|
|
|


|

|


|

|









|


|




|
|



|
|
|
|


|

|

|

|


|



|
|

|



|



<
<
<
<







 







|







 







|







 







|



|
|



|





|









<
<
<
<







 







|

|
|

|
|
>
|
|
|
<
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
|
<
>

|

|
>



<
<
<




|

|



|



<
<
<




|

|




<
<
<




|












|

|




|




|





|


|

|



<
<
<






|


|

|












|










|




|



|



|

|

|
|

|


|


|



|
|
|


|
|

|


|


|



|


|




|

|


|



|



|




|




|

|



|






<
<
<
<
<







 







|




|

|


|


|







|

|



|


|



|

|


|




<
<
<
<







 







|

|

|


|

|

|

|





|




<
<
<







 







|

|


|

|


|

<
<




|

|

>
|












|
|











|


|

|
|
|











<
<




|

|
|
|
>


<
<




|

|
|

|





<
<




|

|

|

|

|

|
|


|
|
>
>









|

|
|

|


|


|

|

<


<
<
<
<





|

|


|


|

|

|


|

|
|

|
|

|

|











|
|
>
>



<
<
<








|


|


|

|



|


|

<
<
<
<
|
|

|




<
<




|

|

|

|

<
<




|

|

|



|



|

|

|

|









<
<
<




|

|



|
|
|
|



|



|
|


|









|

|



|

|

|









|

|


|

|







 







|

|

|
|

|
<
|
|
<
|
|
<
|
|
|
|
|

|
|
|











|

|




|
<
|
|
|
<
<




|

|

|

|
|
<
|

|
|
|
|
<
|
|
<
<
<
<
|




|

|
|
|

<
<
<
|







 







|







|


|







 







|









|



|
|
|

|

|


|
|

|
|


|

|

|

|

|


|



|







 







|


|
|
|


|
|
|
|




<
|
>
>
>
>
>







<
<
<
<
<
<
<
<
<
<
<









|




|





|


|











|








|













|


|







|


|


|

|

|







 







|




|

|

|




|

|





|

|
|
|



|

|
|
|

|

|
|

|



|



|
|

|
|
|

|
|



|






<
<
<












|

|

|


|


|


|

|
|

|
|
<
<
<




|

|
|







<
<
<




|

|

|

|
|

|


|


|
|







<
<
<




|

|
|


|



|

|
|




|
|





|
|







<
<
<
<




|








|
|
|
|
|

|
|
|
|





|
|
|
<
<
<






|








|







|

|

|



|





|

|
|
|
|











|

>
|
|
|


|
|



|
>
|






|

|



|
|
|
|
|
|

|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

|












|







 







|

|


|



|
|

|











|









|




|
|
|


|







 







|


|

|

|



|


|




|
|




|


>


>


|







 







|

|


|





|

|

|
|
|
>
>
|
|

|


|
|

|
|

|






|

|

|







 







|







 







|


|

|
|
|
|
|

|

|
|
|

|
|







 







|






|







|

|




|

|



|

|






|

|



|

|





|

|







|

|



|

|

|







 







|


|
|
|
|



|
|








|












|

|






|


|

|






|



|
|
|







|








|





|







 







|

|








|


|

|
|
|
|
|

|



|
|




|


|

|

|

|



|


|

|

|


|


|
|


|


|
|
|



|

|










|








|
|


|
|


|

|

|
|

|


|

|



|
|







 







|











|
|




|
|
|
|
|
|

|







|





|
|
|
|
|
|
>
|
|
<
|
>
>

|
|
<
>
>
>
|
>
|
|





|
|
<
|
>
|
|
|
>
|




|
|



|

|

|
|


|
|



|



|
|

|
|
|
|
|
|

|
|

|




|
|
>
|
|
|
>
|


|
|
<
>
|
|
<
<
|

|
|




|
|
<
|
|
>

|
|






|

|



|
|

|
|
|
<
|
|

|


|







 







|



|

|




|


|


|



|



|



|

|




|


|

|







|













|







 







|





|


|







 







|


|












|







72
73
74
75
76
77
78
79
80
81
82
83





84






85
86
87
88

89
90
91
92




93
94
95
96
97
98
99
100
101
102
103


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
...
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
...
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273





274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


298
299
300
301


302
303
304
305
306
307
308
309
310
311



312
313
314
315
316


317
318



319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
...
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
...
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
...
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
...
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
...
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
...
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
...
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
...
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943





944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
...
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
....
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
....
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
....
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300



1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339



1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396



1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422



1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462



1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493


1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563



1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586



1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
....
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657


1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
....
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759



1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809









1810
1811
1812
1813
1814
1815
1816
....
1817
1818
1819
1820
1821
1822
1823




1824
1825
1826
1827
1828
1829
1830
....
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879



1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
....
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961




1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998



1999
2000
2001
2002
2003
2004
2005
....
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053




2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076



2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167




2168
2169
2170
2171
2172
2173
2174
....
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
....
2209
2210
2211
2212
2213
2214
2215



2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
....
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280



2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
....
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
....
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423




2424
2425
2426
2427
2428
2429
2430
....
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459



2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
....
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590

2591
2592
2593





2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621



2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648



2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664



2665
2666
2667
2668
2669
2670
2671
2672
2673



2674
2675
2676
2677
2678
2679
2680
2681
2682



2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708



2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746

2747
2748
2749
2750



2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790



2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
....
2852
2853
2854
2855
2856
2857
2858



2859
2860
2861
2862
2863
2864
2865
2866


2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
....
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
....
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
....
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054




3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081



3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189




3190
3191
3192
3193
3194
3195
3196
....
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
....
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
....
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287




3288
3289
3290
3291
3292
3293
3294
....
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313

3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330

3331
3332
3333
3334
3335
3336
3337
3338
3339



3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353



3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364



3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408



3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535





3536
3537
3538
3539
3540
3541
3542
....
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598




3599
3600
3601
3602
3603
3604
3605
....
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647



3648
3649
3650
3651
3652
3653
3654
....
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697


3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751


3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763


3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778


3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824

3825
3826




3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875



3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900




3901
3902
3903
3904
3905
3906
3907
3908


3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920


3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952



3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
....
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038

4039
4040

4041
4042

4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070

4071
4072
4073


4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085

4086
4087
4088
4089
4090
4091

4092
4093




4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104



4105
4106
4107
4108
4109
4110
4111
4112
....
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
....
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
....
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274

4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287











4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
....
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455



4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487



4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502



4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530



4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568




4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599



4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
....
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
....
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
....
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
....
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
....
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
....
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
....
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
....
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
....
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360

5361
5362
5363
5364
5365
5366

5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380

5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443

5444
5445
5446


5447
5448
5449
5450
5451
5452
5453
5454
5455
5456

5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480

5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
....
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
....
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
....
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
# undef SQLITE_VERSION
#endif
#ifdef SQLITE_VERSION_NUMBER
# undef SQLITE_VERSION_NUMBER
#endif

/*
** CAPI3REF: Compile-Time Library Version Numbers
**
** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
** evaluates to a string literal that is the SQLite version in the
** format "X.Y.Z" where X is the major version number (always 3 for





** SQLite3) and Y is the minor version number and Z is the release number.)^






** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
** numbers used in [SQLITE_VERSION].)^
** The SQLITE_VERSION_NUMBER for any given release of SQLite will also

** be larger than the release from which it is derived.  Either Y will
** be held constant and Z will be incremented or else Y will be incremented
** and Z will be reset to zero.
**




** Since version 3.6.18, SQLite source code has been stored in the
** <a href="http://www.fossil-scm.org/">Fossil configuration management
** system</a>.  ^The SQLITE_SOURCE_ID macro evalutes to
** a string which identifies a particular check-in of SQLite
** within its configuration management system.  ^The SQLITE_SOURCE_ID
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].


*/
#define SQLITE_VERSION        "--VERS--"
#define SQLITE_VERSION_NUMBER --VERSION-NUMBER--
#define SQLITE_SOURCE_ID      "--SOURCE-ID--"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
** but are associated with the library instead of the header file.  ^(Cautious
** programmers might include assert() statements in their application to
** verify that values returned by these interfaces match the macros in
** the header, and thus insure that the application is
** compiled with matching library and header files.
**
** <blockquote><pre>
** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
** </pre></blockquote>)^
**
** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
** macro.  ^The sqlite3_libversion() function returns a pointer to the
** to the sqlite3_version[] string constant.  The sqlite3_libversion()
** function is provided for use in DLLs since DLL users usually do not have
** direct access to string constants within the DLL.  ^The
** sqlite3_libversion_number() function returns an integer equal to
** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function a pointer
** to a string constant whose value is the same as the [SQLITE_SOURCE_ID]
** C preprocessor macro.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
*/
SQLITE_EXTERN const char sqlite3_version[];
const char *sqlite3_libversion(void);
const char *sqlite3_sourceid(void);
int sqlite3_libversion_number(void);

/*
** CAPI3REF: Test To See If The Library Is Threadsafe
**
** ^The sqlite3_threadsafe() function returns zero if and only if
** SQLite was compiled mutexing code omitted due to the
** [SQLITE_THREADSAFE] compile-time option being set to 0.
**
** SQLite can be compiled with or without mutexes.  When
** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
** are enabled and SQLite is threadsafe.  When the
** [SQLITE_THREADSAFE] macro is 0, 
** the mutexes are omitted.  Without the mutexes, it is not safe
** to use SQLite concurrently from more than one thread.
**
** Enabling mutexes incurs a measurable performance penalty.
** So if speed is of utmost importance, it makes sense to disable
** the mutexes.  But for maximum safety, mutexes should be enabled.
** ^The default behavior is for mutexes to be enabled.
**
** This interface can be used by an application to make sure that the
** version of SQLite that it is linking against was compiled with
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
** or [SQLITE_CONFIG_MUTEX].  ^(The return value of the
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
int sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
** is its destructor.  There are many other interfaces (such as
................................................................................
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*
** CAPI3REF: 64-Bit Integer Types
** KEYWORDS: sqlite_int64 sqlite_uint64
**
** Because there is no cross-platform way to specify 64-bit integer types
** SQLite includes typedefs for 64-bit signed and unsigned integers.
**
** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
** The sqlite_int64 and sqlite_uint64 types are supported for backwards
** compatibility only.
**
** ^The sqlite3_int64 and sqlite_int64 types can store integer values
** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
** sqlite3_uint64 and sqlite_uint64 types can store integer values 
** between 0 and +18446744073709551615 inclusive.
*/
#ifdef SQLITE_INT64_TYPE
  typedef SQLITE_INT64_TYPE sqlite_int64;
  typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef __int64 sqlite_int64;
  typedef unsigned __int64 sqlite_uint64;
................................................................................
** substitute integer for floating-point.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection
**
** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
** successfullly destroyed and all associated resources are deallocated.
**
** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with
** the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements] or [BLOB handles], then it returns
** SQLITE_BUSY.
**
** ^If [sqlite3_close()] is invoked while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() with a NULL pointer argument is a 
** harmless no-op.

*/
int sqlite3_close(sqlite3 *);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);

/*
** CAPI3REF: One-Step Query Execution Interface
**
** The sqlite3_exec() interface is a convenience wrapper around
** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
** that allows an application to run multiple statements of SQL
** without having to use a lot of C code. 





**
** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
** semicolon-separate SQL statements passed into its 2nd argument,
** in the context of the [database connection] passed in as its 1st
** argument.  ^If the callback function of the 3rd argument to
** sqlite3_exec() is not NULL, then it is invoked for each result row
** coming out of the evaluated SQL statements.  ^The 4th argument to
** to sqlite3_exec() is relayed through to the 1st argument of each
** callback invocation.  ^If the callback pointer to sqlite3_exec()
** is NULL, then no callback is ever invoked and result rows are
** ignored.
**
** ^If an error occurs while evaluating the SQL statements passed into
** sqlite3_exec(), then execution of the current statement stops and
** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
** is not NULL then any error message is written into memory obtained
** from [sqlite3_malloc()] and passed back through the 5th parameter.
** To avoid memory leaks, the application should invoke [sqlite3_free()]
** on error message strings returned through the 5th parameter of
** of sqlite3_exec() after the error message string is no longer needed.
** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
** NULL before returning.
**


** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
** routine returns SQLITE_ABORT without invoking the callback again and
** without running any subsequent SQL statements.
**


** ^The 2nd argument to the sqlite3_exec() callback function is the
** number of columns in the result.  ^The 3rd argument to the sqlite3_exec()
** callback is an array of pointers to strings obtained as if from
** [sqlite3_column_text()], one for each column.  ^If an element of a
** result row is NULL then the corresponding string pointer for the
** sqlite3_exec() callback is a NULL pointer.  ^The 4th argument to the
** sqlite3_exec() callback is an array of pointers to strings where each
** entry represents the name of corresponding result column as obtained
** from [sqlite3_column_name()].
**



** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
** to an empty string, or a pointer that contains only whitespace and/or 
** SQL comments, then no SQL statements are evaluated and the database
** is not changed.
**


** Restrictions:
**



** <ul>
** <li> The application must insure that the 1st parameter to sqlite3_exec()
**      is a valid and open [database connection].
** <li> The application must not close [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);

/*
** CAPI3REF: Result Codes
** KEYWORDS: SQLITE_OK {error code} {error codes}
** KEYWORDS: {result code} {result codes}
**
** Many SQLite functions return an integer result code from the set shown
** here in order to indicates success or failure.
**
** New error codes may be added in future versions of SQLite.
................................................................................
#define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB      26   /* File opened that is not a database file */
#define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
#define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
/* end-of-error-codes */

/*
** CAPI3REF: Extended Result Codes
** KEYWORDS: {extended error code} {extended error codes}
** KEYWORDS: {extended result code} {extended result codes}
**
** In its default configuration, SQLite API routines return one of 26 integer
** [SQLITE_OK | result codes].  However, experience has shown that many of
** these result codes are too coarse-grained.  They do not provide as
** much information about problems as programmers might like.  In an effort to
................................................................................
#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
#define SQLITE_IOERR_LOCK              (SQLITE_IOERR | (15<<8))
#define SQLITE_IOERR_CLOSE             (SQLITE_IOERR | (16<<8))
#define SQLITE_IOERR_DIR_CLOSE         (SQLITE_IOERR | (17<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED | (1<<8) )

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the xOpen method of the
** [sqlite3_vfs] object.
*/
#define SQLITE_OPEN_READONLY         0x00000001  /* Ok for sqlite3_open_v2() */
................................................................................
#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */

/*
** CAPI3REF: Device Characteristics
**
** The xDeviceCapabilities method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
................................................................................
#define SQLITE_IOCAP_ATOMIC16K       0x00000040
#define SQLITE_IOCAP_ATOMIC32K       0x00000080
#define SQLITE_IOCAP_ATOMIC64K       0x00000100
#define SQLITE_IOCAP_SAFE_APPEND     0x00000200
#define SQLITE_IOCAP_SEQUENTIAL      0x00000400

/*
** CAPI3REF: File Locking Levels
**
** SQLite uses one of these integer values as the second
** argument to calls it makes to the xLock() and xUnlock() methods
** of an [sqlite3_io_methods] object.
*/
#define SQLITE_LOCK_NONE          0
#define SQLITE_LOCK_SHARED        1
#define SQLITE_LOCK_RESERVED      2
#define SQLITE_LOCK_PENDING       3
#define SQLITE_LOCK_EXCLUSIVE     4

/*
** CAPI3REF: Synchronization Type Flags
**
** When SQLite invokes the xSync() method of an
** [sqlite3_io_methods] object it uses a combination of
** these integer values as the second argument.
**
** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
** sync operation only needs to flush data to mass storage.  Inode
................................................................................
** to use Mac OS X style fullsync instead of fsync().
*/
#define SQLITE_SYNC_NORMAL        0x00002
#define SQLITE_SYNC_FULL          0x00003
#define SQLITE_SYNC_DATAONLY      0x00010

/*
** CAPI3REF: OS Interface Open File Handle
**
** An [sqlite3_file] object represents an open file in the 
** [sqlite3_vfs | OS interface layer].  Individual OS interface
** implementations will
** want to subclass this object by appending additional fields
** for their own use.  The pMethods entry is a pointer to an
** [sqlite3_io_methods] object that defines methods for performing
................................................................................
*/
typedef struct sqlite3_file sqlite3_file;
struct sqlite3_file {
  const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
};

/*
** CAPI3REF: OS Interface File Virtual Methods Object
**
** Every file opened by the [sqlite3_vfs] xOpen method populates an
** [sqlite3_file] object (or, more commonly, a subclass of the
** [sqlite3_file] object) with a pointer to an instance of this object.
** This object defines the methods used to perform various operations
** against the open file represented by the [sqlite3_file] object.
**
................................................................................
  int (*xFileControl)(sqlite3_file*, int op, void *pArg);
  int (*xSectorSize)(sqlite3_file*);
  int (*xDeviceCharacteristics)(sqlite3_file*);
  /* Additional methods may be added in future releases */
};

/*
** CAPI3REF: Standard File Control Opcodes
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
................................................................................
*/
#define SQLITE_FCNTL_LOCKSTATE        1
#define SQLITE_GET_LOCKPROXYFILE      2
#define SQLITE_SET_LOCKPROXYFILE      3
#define SQLITE_LAST_ERRNO             4

/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only
** deals with pointers to the [sqlite3_mutex] object.
**
** Mutexes are created using [sqlite3_mutex_alloc()].
*/
typedef struct sqlite3_mutex sqlite3_mutex;

/*
** CAPI3REF: OS Interface Object
**
** An instance of the sqlite3_vfs object defines the interface between
** the SQLite core and the underlying operating system.  The "vfs"
** in the name of the object stands for "virtual file system".
**
** The value of the iVersion field is initially 1 but may be larger in
** future versions of SQLite.  Additional fields may be appended to this
................................................................................
  int (*xCurrentTime)(sqlite3_vfs*, double*);
  int (*xGetLastError)(sqlite3_vfs*, int, char *);
  /* New fields may be appended in figure versions.  The iVersion
  ** value will increment whenever this happens. */
};

/*
** CAPI3REF: Flags for the xAccess VFS method
**
** These integer constants can be used as the third parameter to
** the xAccess method of an [sqlite3_vfs] object.  They determine
** what kind of permissions the xAccess method is looking for.
** With SQLITE_ACCESS_EXISTS, the xAccess method
** simply checks whether the file exists.
** With SQLITE_ACCESS_READWRITE, the xAccess method
** checks whether the file is both readable and writable.
** With SQLITE_ACCESS_READ, the xAccess method
** checks whether the file is readable.
*/
#define SQLITE_ACCESS_EXISTS    0
#define SQLITE_ACCESS_READWRITE 1
#define SQLITE_ACCESS_READ      2

/*
** CAPI3REF: Initialize The SQLite Library
**
** ^The sqlite3_initialize() routine initializes the
** SQLite library.  ^The sqlite3_shutdown() routine
** deallocates any resources that were allocated by sqlite3_initialize().
** These routines are designed to aid in process initialization and
** shutdown on embedded systems.  Workstation applications using
** SQLite normally do not need to invoke either of these routines.
**
** A call to sqlite3_initialize() is an "effective" call if it is
** the first time sqlite3_initialize() is invoked during the lifetime of
** the process, or if it is the first time sqlite3_initialize() is invoked
** following a call to sqlite3_shutdown().  ^(Only an effective call
** of sqlite3_initialize() does any initialization.  All other calls
** are harmless no-ops.)^
**
** A call to sqlite3_shutdown() is an "effective" call if it is the first
** call to sqlite3_shutdown() since the last sqlite3_initialize().  ^(Only
** an effective call to sqlite3_shutdown() does any deinitialization.
** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
**
** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
** is not.  The sqlite3_shutdown() interface must only be called from a
** single thread.  All open [database connections] must be closed and all
** other SQLite resources must be deallocated prior to invoking
** sqlite3_shutdown().
**
** Among other things, ^sqlite3_initialize() will invoke
** sqlite3_os_init().  Similarly, ^sqlite3_shutdown()
** will invoke sqlite3_os_end().
**
** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
** ^If for some reason, sqlite3_initialize() is unable to initialize
** the library (perhaps it is unable to allocate a needed resource such
** as a mutex) it returns an [error code] other than [SQLITE_OK].
**
** ^The sqlite3_initialize() routine is called internally by many other
** SQLite interfaces so that an application usually does not need to
** invoke sqlite3_initialize() directly.  For example, [sqlite3_open()]
** calls sqlite3_initialize() so the SQLite library will be automatically
** initialized when [sqlite3_open()] is called if it has not be initialized
** already.  ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
** compile-time option, then the automatic calls to sqlite3_initialize()
** are omitted and the application must call sqlite3_initialize() directly
** prior to using any other SQLite interface.  For maximum portability,
** it is recommended that applications always invoke sqlite3_initialize()
** directly prior to using any other SQLite interface.  Future releases
** of SQLite may require this.  In other words, the behavior exhibited
** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
................................................................................
*/
int sqlite3_initialize(void);
int sqlite3_shutdown(void);
int sqlite3_os_init(void);
int sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library
** EXPERIMENTAL
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
** applications and so this routine is usually not necessary.  It is
** provided to support rare applications with unusual needs.
**
** The sqlite3_config() interface is not threadsafe.  The application
** must insure that no other SQLite interfaces are invoked by other
** threads while sqlite3_config() is running.  Furthermore, sqlite3_config()
** may only be invoked prior to library initialization using
** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
** Note, however, that ^sqlite3_config() can be called as part of the
** implementation of an application-defined [sqlite3_os_init()].
**
** The first argument to sqlite3_config() is an integer
** [SQLITE_CONFIG_SINGLETHREAD | configuration option] that determines
** what property of SQLite is to be configured.  Subsequent arguments
** vary depending on the [SQLITE_CONFIG_SINGLETHREAD | configuration option]
** in the first argument.
**
** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** ^If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].





*/
SQLITE_EXPERIMENTAL int sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections
** EXPERIMENTAL
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).  The
** sqlite3_db_config() interface should only be used immediately after
** the database connection is created using [sqlite3_open()],
** [sqlite3_open16()], or [sqlite3_open_v2()].  
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** configuration verb - an integer code that indicates what
** aspect of the [database connection] is being configured.
** The only choice for this value is [SQLITE_DBCONFIG_LOOKASIDE].
** New verbs are likely to be added in future releases of SQLite.
** Additional arguments depend on the verb.
**
** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
** the call is considered successful.
*/
SQLITE_EXPERIMENTAL int sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines
** EXPERIMENTAL
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
** This object is used in only one place in the SQLite interface.
** A pointer to an instance of this object is the argument to
................................................................................
** conditions.
**
** The xMalloc and xFree methods must work like the
** malloc() and free() functions from the standard C library.
** The xRealloc method must work like realloc() from the standard C library
** with the exception that if the second argument to xRealloc is zero,
** xRealloc must be a no-op - it must not perform any allocation or
** deallocation.  ^SQLite guarantees that the second argument to
** xRealloc is always a value returned by a prior call to xRoundup.
** And so in cases where xRoundup always returns a positive number,
** xRealloc can perform exactly as the standard library realloc() and
** still be in compliance with this specification.
**
** xSize should return the allocated size of a memory allocation
** previously obtained from xMalloc or xRealloc.  The allocated size
................................................................................
  int (*xRoundup)(int);          /* Round up request size to allocation size */
  int (*xInit)(void*);           /* Initialize the memory allocator */
  void (*xShutdown)(void*);      /* Deinitialize the memory allocator */
  void *pAppData;                /* Argument to xInit() and xShutdown() */
};

/*
** CAPI3REF: Configuration Options
** EXPERIMENTAL
**
** These constants are the available integer configuration options that
** can be passed as the first argument to the [sqlite3_config()] interface.
**
** New configuration options may be added in future releases of SQLite.
** Existing configuration options might be discontinued.  Applications
................................................................................
** should check the return code from [sqlite3_config()] to make sure that
** the call worked.  The [sqlite3_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
** <dd>There are no arguments to this option.  ^This option sets the
** [threading mode] to Single-thread.  In other words, it disables
** all mutexing and puts SQLite into a mode where it can only be used
** by a single thread.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to change the [threading mode] from its default
** value of Single-thread and so [sqlite3_config()] will return 
** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
** configuration option.</dd>
**
** <dt>SQLITE_CONFIG_MULTITHREAD</dt>
** <dd>There are no arguments to this option.  ^This option sets the
** [threading mode] to Multi-thread.  In other words, it disables
** mutexing on [database connection] and [prepared statement] objects.
** The application is responsible for serializing access to
** [database connections] and [prepared statements].  But other mutexes
** are enabled so that SQLite will be safe to use in a multi-threaded
** environment as long as no two threads attempt to use the same
** [database connection] at the same time.  ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Multi-thread [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
**
** <dt>SQLITE_CONFIG_SERIALIZED</dt>
** <dd>There are no arguments to this option.  ^This option sets the
** [threading mode] to Serialized. In other words, this option enables
** all mutexes including the recursive
** mutexes on [database connection] and [prepared statement] objects.
** In this mode (which is the default when SQLite is compiled with
** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
** to [database connections] and [prepared statements] so that the
** application is free to use the same [database connection] or the
** same [prepared statement] in different threads at the same time.
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The argument specifies
** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]
** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^This option takes single argument of type int, interpreted as a 
** boolean, which enables or disables the collection of memory allocation 
** statistics. ^(When memory allocation statistics are disabled, the 
** following SQLite interfaces become non-operational:

**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for
** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scrach allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16. The sz parameter should be a few bytes
** larger than the actual scratch space required due to internal overhead.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will use no more than one scratch buffer per thread.  So
** N should be set to the expected maximum number of threads.  ^SQLite will
** never require a scratch buffer that is more than 6 times the database
** page size. ^If SQLite needs needs additional scratch memory beyond 
** what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>

**
** <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implemenation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE option.
** There are three arguments to this option: A pointer to 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  ^The page header size is 20 to 40 bytes depending on
** the host architecture.  ^It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first
** argument should point to an allocation of at least sz*N bytes of memory.
** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** ^The implementation might use one or more of the N buffers to hold 
** memory accounting information. The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided
** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].
** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.</dd>
**
** <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
** content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(This option takes two arguments that determine the default
** memory allocation for the lookaside memory allocator on each
** [database connection].  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(This option sets the
** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** <dt>SQLITE_CONFIG_PCACHE</dt>
** <dd> ^(This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods] object.  This object specifies the interface
** to a custom page cache implementation.)^  ^SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
** <dt>SQLITE_CONFIG_GETPCACHE</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** [sqlite3_pcache_methods] object.  SQLite copies of the current
** page cache implementation into that object.)^ </dd>
**
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
................................................................................
#define SQLITE_CONFIG_GETMUTEX     11  /* sqlite3_mutex_methods* */
/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ 
#define SQLITE_CONFIG_LOOKASIDE    13  /* int int */
#define SQLITE_CONFIG_PCACHE       14  /* sqlite3_pcache_methods* */
#define SQLITE_CONFIG_GETPCACHE    15  /* sqlite3_pcache_methods* */

/*
** CAPI3REF: Configuration Options
** EXPERIMENTAL
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
** New configuration options may be added in future releases of SQLite.
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  ^The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd> ^This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** ^The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to an memory buffer to use for lookaside memory.
** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
** may be NULL in which case SQLite will allocate the
** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
** size of each lookaside buffer slot.  ^The third argument is the number of
** slots.  The size of the buffer in the first argument must be greater than
** or equal to the product of the second and third arguments.  The buffer
** must be aligned to an 8-byte boundary.  ^If the second argument to
** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
** rounded down to the next smaller
** multiple of 8.  See also: [SQLITE_CONFIG_LOOKASIDE]</dd>
**
** </dl>
*/
#define SQLITE_DBCONFIG_LOOKASIDE    1001  /* void* int int */


/*
** CAPI3REF: Enable Or Disable Extended Result Codes
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
** codes are disabled by default for historical compatibility.



*/
int sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid
**
** ^Each entry in an SQLite table has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. ^The rowid is always available
** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
** names are not also used by explicitly declared columns. ^If
** the table has a column of type [INTEGER PRIMARY KEY] then that column
** is another alias for the rowid.
**
** ^This routine returns the [rowid] of the most recent
** successful [INSERT] into the database from the [database connection]
** in the first argument.  ^If no successful [INSERT]s
** have ever occurred on that database connection, zero is returned.
**
** ^(If an [INSERT] occurs within a trigger, then the [rowid] of the inserted
** row is returned by this routine as long as the trigger is running.
** But once the trigger terminates, the value returned by this routine
** reverts to the last value inserted before the trigger fired.)^
**
** ^An [INSERT] that fails due to a constraint violation is not a
** successful [INSERT] and does not change the value returned by this
** routine.  ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
** and INSERT OR ABORT make no changes to the return value of this
** routine when their insertion fails.  ^(When INSERT OR REPLACE
** encounters a constraint violation, it does not fail.  The
** INSERT continues to completion after deleting rows that caused
** the constraint problem so INSERT OR REPLACE will always change
** the return value of this interface.)^
**
** ^For the purposes of this routine, an [INSERT] is considered to
** be successful even if it is subsequently rolled back.
**
** This function is accessible to SQL statements via the
** [last_insert_rowid() SQL function].
**



** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers or [foreign key actions] are not counted.)^ Use the
** [sqlite3_total_changes()] function to find the total number of changes
** including changes caused by triggers and foreign key actions.
**
** ^Changes to a view that are simulated by an [INSTEAD OF trigger]
** are not counted.  Only real table changes are counted.
**
** ^(A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of [REPLACE] constraint resolution,
** rollback, ABORT processing, [DROP TABLE], or by any other
** mechanisms do not count as direct row changes.)^
**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a [CREATE TRIGGER | trigger]. 
** Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
**
** ^This function returns the number of direct row changes in the
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
** ^Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
** that also occurred at the top level.  ^(Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.)^
**
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**



** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the number of row changes caused by [INSERT],
** [UPDATE] or [DELETE] statements since the [database connection] was opened.
** ^(The count returned by sqlite3_total_changes() includes all changes
** from all [CREATE TRIGGER | trigger] contexts and changes made by
** [foreign key actions]. However,
** the count does not include changes used to implement [REPLACE] constraints,
** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
** count does not include rows of views that fire an [INSTEAD OF trigger],
** though if the INSTEAD OF trigger makes changes of its own, those changes 
** are counted.)^
** ^The sqlite3_total_changes() function counts the changes as soon as
** the statement that makes them is completed (when the statement handle
** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
**
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**



** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
int sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query
**
** ^This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
** or Ctrl-C where the user wants a long query operation to halt
** immediately.
**
** ^It is safe to call this routine from a thread different from the
** thread that is currently running the database operation.  But it
** is not safe to call this routine with a [database connection] that
** is closed or might close before sqlite3_interrupt() returns.
**
** ^If an SQL operation is very nearly finished at the time when
** sqlite3_interrupt() is called, then it might not have an opportunity
** to be interrupted and might continue to completion.
**
** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
** that is inside an explicit transaction, then the entire transaction
** will be rolled back automatically.
**
** ^The sqlite3_interrupt(D) call is in effect until all currently running
** SQL statements on [database connection] D complete.  ^Any new SQL statements
** that are started after the sqlite3_interrupt() call and before the 
** running statements reaches zero are interrupted as if they had been
** running prior to the sqlite3_interrupt() call.  ^New SQL statements
** that are started after the running statement count reaches zero are
** not effected by the sqlite3_interrupt().
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**



** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into
** SQLite for parsing.  ^These routines return 1 if the input string
** appears to be a complete SQL statement.  ^A statement is judged to be
** complete if it ends with a semicolon token and is not a prefix of a
** well-formed CREATE TRIGGER statement.  ^Semicolons that are embedded within
** string literals or quoted identifier names or comments are not
** independent tokens (they are part of the token in which they are
** embedded) and thus do not count as a statement terminator.  ^Whitespace
** and comments that follow the final semicolon are ignored.
**
** ^These routines return 0 if the statement is incomplete.  ^If a
** memory allocation fails, then SQLITE_NOMEM is returned.
**
** ^These routines do not parse the SQL statements thus
** will not detect syntactically incorrect SQL.
**
** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior 
** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
** automatically by sqlite3_complete16().  If that initialization fails,
** then the return value from sqlite3_complete16() will be non-zero
** regardless of whether or not the input SQL is complete.)^


**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
int sqlite3_complete(const char *sql);
int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
**
** ^This routine sets a callback function that might be invoked whenever
** an attempt is made to open a database table that another thread
** or process has locked.
**
** ^If the busy callback is NULL, then [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked for this locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned.
** ^If the callback returns non-zero, then another attempt
** is made to open the database for reading and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
** when there is lock contention. ^If SQLite determines that invoking the busy
** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
** or [SQLITE_IOERR_BLOCKED] instead of invoking the busy handler.
** Consider a scenario where one process is holding a read lock that
** it is trying to promote to a reserved lock and
** a second process is holding a reserved lock that it is trying
** to promote to an exclusive lock.  The first process cannot proceed
** because it is blocked by the second and the second process cannot
** proceed because it is blocked by the first.  If both processes
** invoke the busy handlers, neither will make any progress.  Therefore,
** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
** will induce the first process to release its read lock and allow
** the second process to proceed.
**
** ^The default busy callback is NULL.
**
** ^The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED]
** when SQLite is in the middle of a large transaction where all the
** changes will not fit into the in-memory cache.  SQLite will
** already hold a RESERVED lock on the database file, but it needs
** to promote this lock to EXCLUSIVE so that it can spill cache
** pages into the database file without harm to concurrent
** readers.  ^If it is unable to promote the lock, then the in-memory
** cache will be left in an inconsistent state and so the error
** code is promoted from the relatively benign [SQLITE_BUSY] to
** the more severe [SQLITE_IOERR_BLOCKED].  ^This error code promotion
** forces an automatic rollback of the changes.  See the
** <a href="/cvstrac/wiki?p=CorruptionFollowingBusyError">
** CorruptionFollowingBusyError</a> wiki page for a discussion of why
** this is important.
**
** ^(There can only be a single busy handler defined for each
** [database connection].  Setting a new busy handler clears any
** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]
** will also set or clear the busy handler.
**
** The busy callback should not take any actions which modify the
** database connection that invoked the busy handler.  Any such actions
** result in undefined behavior.



**
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping
** have accumulated.  ^After at least "ms" milliseconds of sleeping,
** the handler returns 0 which causes [sqlite3_step()] to return
** [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED].
**
** ^Calling this routine with an argument less than or equal to zero
** turns off all busy handlers.
**
** ^(There can only be a single busy handler for a particular
** [database connection] any any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^



*/
int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** Definition: A <b>result table</b> is memory data structure created by the
** [sqlite3_get_table()] interface.  A result table records the
** complete query results from one or more queries.
**
** The table conceptually has a number of rows and columns.  But
** these numbers are not part of the result table itself.  These
................................................................................
**        azResult&#91;3] = "43";
**        azResult&#91;4] = "Bob";
**        azResult&#91;5] = "28";
**        azResult&#91;6] = "Cindy";
**        azResult&#91;7] = "21";
** </pre></blockquote>
**
** ^The sqlite3_get_table() function evaluates one or more
** semicolon-separated SQL statements in the zero-terminated UTF-8
** string of its 2nd parameter and returns a result table to the
** pointer given in its 3rd parameter.
**
** After the application has finished with the result from sqlite3_get_table(),
** it should pass the result table pointer to sqlite3_free_table() in order to
** release the memory that was malloced.  Because of the way the
** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
** function must not try to call [sqlite3_free()] directly.  Only
** [sqlite3_free_table()] is able to release the memory properly and safely.
**
** ^(The sqlite3_get_table() interface is implemented as a wrapper around
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].)^


*/
int sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
**
** ^(In sqlite3_snprintf() routine is similar to "snprintf()" from
** the standard C library.  The result is written into the
** buffer supplied as the second parameter whose size is given by
** the first parameter. Note that the order of the
** first two parameters is reversed from snprintf().)^  This is an
** historical accident that cannot be fixed without breaking
** backwards compatibility.  ^(Note also that sqlite3_snprintf()
** returns a pointer to its buffer instead of the number of
** characters actually written into the buffer.)^  We admit that
** the number of characters written would be a more useful return
** value but we cannot change the implementation of sqlite3_snprintf()
** now without breaking compatibility.
**
** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
** guarantees that the buffer is always zero-terminated.  ^The first
** parameter "n" is the total size of the buffer, including space for
** the zero terminator.  So the longest string that can be completely
** written will be n-1 characters.
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a null-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
** For example, assume the string variable zText contains text as follows:
**
** <blockquote><pre>
**  char *zText = "It's a happy day!";
................................................................................
** <blockquote><pre>
**  INSERT INTO table1 VALUES('It's a happy day!');
** </pre></blockquote>
**
** This second example is an SQL syntax error.  As a general rule you should
** always use %q instead of %s when inserting text into a string literal.
**
** ^(The %Q option works like %q except it also adds single quotes around
** the outside of the total string.  Additionally, if the parameter in the
** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
** single quotes).)^  So, for example, one could say:
**
** <blockquote><pre>
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^



*/
char *sqlite3_mprintf(const char*,...);
char *sqlite3_vmprintf(const char*, va_list);
char *sqlite3_snprintf(int,char*,const char*, ...);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The
** Windows VFS uses native malloc() and free() for some operations.
**
** ^The sqlite3_malloc() routine returns a pointer to a block
** of memory at least N bytes in length, where N is the parameter.
** ^If sqlite3_malloc() is unable to obtain sufficient free
** memory, it returns a NULL pointer.  ^If the parameter N to
** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
** a NULL pointer.
**
** ^Calling sqlite3_free() with a pointer previously returned
** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
** that it might be reused.  ^The sqlite3_free() routine is
** a no-op if is called with a NULL pointer.  Passing a NULL pointer
** to sqlite3_free() is harmless.  After being freed, memory
** should neither be read nor written.  Even reading previously freed
** memory might result in a segmentation fault or other severe error.
** Memory corruption, a segmentation fault, or other severe error
** might result if sqlite3_free() is called with a non-NULL pointer that
** was not obtained from sqlite3_malloc() or sqlite3_realloc().
**
** ^(The sqlite3_realloc() interface attempts to resize a
** prior memory allocation to be at least N bytes, where N is the
** second parameter.  The memory allocation to be resized is the first
** parameter.)^ ^ If the first parameter to sqlite3_realloc()
** is a NULL pointer then its behavior is identical to calling
** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc().
** ^If the second parameter to sqlite3_realloc() is zero or
** negative then the behavior is exactly the same as calling
** sqlite3_free(P) where P is the first parameter to sqlite3_realloc().
** ^sqlite3_realloc() returns a pointer to a memory allocation
** of at least N bytes in size or NULL if sufficient memory is unavailable.
** ^If M is the size of the prior allocation, then min(N,M) bytes
** of the prior allocation are copied into the beginning of buffer returned
** by sqlite3_realloc() and the prior allocation is freed.
** ^If sqlite3_realloc() returns NULL, then the prior allocation
** is not freed.
**
** ^The memory returned by sqlite3_malloc() and sqlite3_realloc()
** is always aligned to at least an 8 byte boundary.









**
** In SQLite version 3.5.0 and 3.5.1, it was possible to define
** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
** implementation of these routines to be omitted.  That capability
** is no longer provided.  Only built-in memory allocators can be used.
**
** The Windows OS interface layer calls
................................................................................
** the system malloc() and free() directly when converting
** filenames between the UTF-8 encoding used by SQLite
** and whatever filename encoding is used by the particular Windows
** installation.  Memory allocation errors are detected, but
** they are reported back as [SQLITE_CANTOPEN] or
** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
**




** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
** must be either NULL or else pointers obtained from a prior
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
................................................................................
** [sqlite3_free()] or [sqlite3_realloc()].
*/
void *sqlite3_malloc(int);
void *sqlite3_realloc(void*, int);
void sqlite3_free(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
**
** ^The [sqlite3_memory_used()] routine returns the number of bytes
** of memory currently outstanding (malloced but not freed).
** ^The [sqlite3_memory_highwater()] routine returns the maximum
** value of [sqlite3_memory_used()] since the high-water mark
** was last reset.  ^The values returned by [sqlite3_memory_used()] and
** [sqlite3_memory_highwater()] include any overhead
** added by SQLite in its implementation of [sqlite3_malloc()],
** but not overhead added by the any underlying system library
** routines that [sqlite3_malloc()] may call.
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
sqlite3_int64 sqlite3_memory_used(void);
sqlite3_int64 sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** ^A call to this routine stores N bytes of randomness into buffer P.
**
** ^The first time this routine is invoked (either internally or by
** the application) the PRNG is seeded using randomness obtained
** from the xRandomness method of the default [sqlite3_vfs] object.
** ^On all subsequent invocations, the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.



*/
void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers a authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()].  ^At various
** points during the compilation process, as logic is being created
** to perform various actions, the authorizer callback is invoked to
** see if those actions are allowed.  ^The authorizer callback should
** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
** specific action but allow the SQL statement to continue to be
** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
** rejected with an error.  ^If the authorizer callback returns
** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
** then the [sqlite3_prepare_v2()] or equivalent call that triggered
** the authorizer will fail with an error message.
**
** When the callback returns [SQLITE_OK], that means the operation
** requested is ok.  ^When the callback returns [SQLITE_DENY], the
** [sqlite3_prepare_v2()] or equivalent call that triggered the
** authorizer will fail with an error message explaining that
** access is denied. 
**
** ^The first parameter to the authorizer callback is a copy of the third
** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
** to the callback is an integer [SQLITE_COPY | action code] that specifies
** the particular action to be authorized. ^The third through sixth parameters
** to the callback are zero-terminated strings that contain additional
** details about the action to be authorized.
**
** ^If the action code is [SQLITE_READ]
** and the callback returns [SQLITE_IGNORE] then the
** [prepared statement] statement is constructed to substitute
** a NULL value in place of the table column that would have
** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
** return can be used to deny an untrusted user access to individual
** columns of a table.
** ^If the action code is [SQLITE_DELETE] and the callback returns
** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
** [truncate optimization] is disabled and all rows are deleted individually.
**
** An authorizer is used when [sqlite3_prepare | preparing]
** SQL statements from an untrusted source, to ensure that the SQL statements
** do not try to access data they are not allowed to see, or that they do not
** try to execute malicious statements that damage the database.  For
................................................................................
** disallows everything except [SELECT] statements.
**
** Applications that need to process SQL from untrusted sources
** might also consider lowering resource limits using [sqlite3_limit()]
** and limiting database size using the [max_page_count] [PRAGMA]
** in addition to using an authorizer.
**
** ^(Only a single authorizer can be in place on a database connection
** at a time.  Each call to sqlite3_set_authorizer overrides the
** previous call.)^  ^Disable the authorizer by installing a NULL callback.
** The authorizer is disabled by default.
**
** The authorizer callback must not do anything that will modify
** the database connection that invoked the authorizer callback.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
** statement might be re-prepared during [sqlite3_step()] due to a 
** schema change.  Hence, the application should ensure that the
** correct authorizer callback remains in place during the [sqlite3_step()].
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.




*/
int sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes
**
** The [sqlite3_set_authorizer | authorizer callback function] must
** return either [SQLITE_OK] or one of these two constants in order
** to signal SQLite whether or not the action is permitted.  See the
** [sqlite3_set_authorizer | authorizer documentation] for additional
** information.
*/
#define SQLITE_DENY   1   /* Abort the SQL statement with an error */
#define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */

/*
** CAPI3REF: Authorizer Action Codes
**
** The [sqlite3_set_authorizer()] interface registers a callback function
** that is invoked to authorize certain SQL statement actions.  The
** second parameter to the callback is an integer code that specifies
** what action is being authorized.  These are the integer action codes that
** the authorizer callback may be passed.
**
** These action code values signify what kind of operation is to be
** authorized.  The 3rd and 4th parameters to the authorization
** callback function will be parameters or NULL depending on which of these
** codes is used as the second parameter.  ^(The 5th parameter to the
** authorizer callback is the name of the database ("main", "temp",
** etc.) if applicable.)^  ^The 6th parameter to the authorizer callback
** is the name of the inner-most trigger or view that is responsible for
** the access attempt or NULL if this access attempt is directly from
** top-level SQL code.



*/
/******************************************* 3rd ************ 4th ***********/
#define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
#define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
#define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
#define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
................................................................................
#define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
#define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
#define SQLITE_FUNCTION             31   /* NULL            Function Name   */
#define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
#define SQLITE_COPY                  0   /* No longer used */

/*
** CAPI3REF: Tracing And Profiling Functions
** EXPERIMENTAL
**
** These routines register callback functions that can be used for
** tracing and profiling the execution of SQL statements.
**
** ^The callback function registered by sqlite3_trace() is invoked at
** various times when an SQL statement is being run by [sqlite3_step()].
** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
** SQL statement text as the statement first begins executing.
** ^(Additional sqlite3_trace() callbacks might occur
** as each triggered subprogram is entered.  The callbacks for triggers
** contain a UTF-8 SQL comment that identifies the trigger.)^
**
** ^The callback function registered by sqlite3_profile() is invoked
** as each SQL statement finishes.  ^The profile callback contains
** the original statement text and an estimate of wall-clock time
** of how long that statement took to run.




*/
SQLITE_EXPERIMENTAL void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^This routine configures a callback function - the
** progress callback - that is invoked periodically during long
** running calls to [sqlite3_exec()], [sqlite3_step()] and
** [sqlite3_get_table()].  An example use for this
** interface is to keep a GUI updated during a large query.
**
** ^If the progress callback returns non-zero, the operation is
** interrupted.  This feature can be used to implement a
** "Cancel" button on a GUI progress dialog box.
**
** The progress handler must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**



*/
void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file whose name is given by the
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
** order for sqlite3_open16(). ^(A [database connection] handle is usually
** returned in *ppDb, even if an error occurs.  The only exception is that
** if SQLite is unable to allocate memory to hold the [sqlite3] object,
** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
** object.)^ ^(If the database is opened (and/or created) successfully, then
** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
** an English language description of the error following a failure of any
** of the sqlite3_open() routines.
**
** ^The default encoding for the database will be UTF-8 if
** sqlite3_open() or sqlite3_open_v2() is called and
** UTF-16 in the native byte order if sqlite3_open16() is used.
**
** Whether or not an error occurs when it is opened, resources
** associated with the [database connection] handle should be released by
** passing it to [sqlite3_close()] when it is no longer required.
**
** The sqlite3_open_v2() interface works like sqlite3_open()
** except that it accepts two additional parameters for additional control
** over the new database connection.  ^(The flags parameter to
** sqlite3_open_v2() can take one of
** the following three values, optionally combined with the 
** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
** and/or [SQLITE_OPEN_PRIVATECACHE] flags:)^
**
** <dl>
** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
** <dd>The database is opened in read-only mode.  If the database does not
** already exist, an error is returned.</dd>)^
**
** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
** <dd>The database is opened for reading and writing if possible, or reading
** only if the file is write protected by the operating system.  In either
** case the database must already exist, otherwise an error is returned.</dd>)^
**
** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
** <dd>The database is opened for reading and writing, and is creates it if
** it does not already exist. This is the behavior that is always used for
** sqlite3_open() and sqlite3_open16().</dd>)^
** </dl>
**
** If the 3rd parameter to sqlite3_open_v2() is not one of the
** combinations shown above or one of the combinations shown above combined
** with the [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX],
** [SQLITE_OPEN_SHAREDCACHE] and/or [SQLITE_OPEN_SHAREDCACHE] flags,
** then the behavior is undefined.
**
** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
** opens in the multi-thread [threading mode] as long as the single-thread
** mode has not been set at compile-time or start-time.  ^If the
** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
** in the serialized [threading mode] unless single-thread was
** previously selected at compile-time or start-time.
** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
** eligible to use [shared cache mode], regardless of whether or not shared
** cache is enabled using [sqlite3_enable_shared_cache()].  ^The
** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
** participate in [shared cache mode] even if it is enabled.
**
** ^If the filename is ":memory:", then a private, temporary in-memory database
** is created for the connection.  ^This in-memory database will vanish when
** the database connection is closed.  Future versions of SQLite might
** make use of additional special filenames that begin with the ":" character.
** It is recommended that when a database filename actually does begin with
** a ":" character you should prefix the filename with a pathname such as
** "./" to avoid ambiguity.
**
** ^If the filename is an empty string, then a private, temporary
** on-disk database will be created.  ^This private database will be
** automatically deleted as soon as the database connection is closed.
**
** ^The fourth parameter to sqlite3_open_v2() is the name of the
** [sqlite3_vfs] object that defines the operating system interface that
** the new database connection should use.  ^If the fourth parameter is
** a NULL pointer then the default [sqlite3_vfs] object is used.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().




*/
int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
................................................................................
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*
** CAPI3REF: Error Codes And Messages
**
** ^The sqlite3_errcode() interface returns the numeric [result code] or
** [extended result code] for the most recent failed sqlite3_* API call
** associated with a [database connection]. If a prior API call failed
** but the most recent API call succeeded, the return value from
** sqlite3_errcode() is undefined.  ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.
** The application does not need to worry about freeing the result.
** However, the error string might be overwritten or deallocated by
** subsequent calls to other SQLite interface functions.)^
**
** When the serialized [threading mode] is in use, it might be the
** case that a second error occurs on a separate thread in between
** the time of the first error and the call to these interfaces.
** When that happens, the second error will be reported since these
** interfaces always report the most recent result.  To avoid
** this, each thread can obtain exclusive use of the [database connection] D
................................................................................
** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.



*/
int sqlite3_errcode(sqlite3 *db);
int sqlite3_extended_errcode(sqlite3 *db);
const char *sqlite3_errmsg(sqlite3*);
const void *sqlite3_errmsg16(sqlite3*);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a
** "compiled SQL statement" or simply as a "statement".
**
** The life of a statement object goes something like this:
................................................................................
**
** Refer to documentation on individual methods above for additional
** information.
*/
typedef struct sqlite3_stmt sqlite3_stmt;

/*
** CAPI3REF: Run-time Limits
**
** ^(This interface allows the size of various constructs to be limited
** on a connection by connection basis.  The first parameter is the
** [database connection] whose limit is to be set or queried.  The
** second parameter is one of the [limit categories] that define a
** class of constructs to be size limited.  The third parameter is the
** new limit for that construct.  The function returns the old limit.)^
**
** ^If the new limit is a negative number, the limit is unchanged.
** ^(For the limit category of SQLITE_LIMIT_XYZ there is a 
** [limits | hard upper bound]
** set by a compile-time C preprocessor macro named 
** [limits | SQLITE_MAX_XYZ].
** (The "_LIMIT_" in the name is changed to "_MAX_".))^
** ^Attempts to increase a limit above its hard upper bound are
** silently truncated to the hard upper bound.
**
** Run-time limits are intended for use in applications that manage
** both their own internal database and also databases that are controlled
** by untrusted external sources.  An example application might be a
** web browser that has its own databases for storing history and
** separate databases controlled by JavaScript applications downloaded
** off the Internet.  The internal databases can be given the
** large, default limits.  Databases managed by external sources can
** be given much smaller limits designed to prevent a denial of service
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.



*/
int sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].
** The synopsis of the meanings of the various limits is shown below.
** Additional information is available at [limits | Limits in SQLite].
**
** <dl>
** ^(<dt>SQLITE_LIMIT_LENGTH</dt>
** <dd>The maximum size of any string or BLOB or table row.<dd>)^
**
** ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_COLUMN</dt>
** <dd>The maximum number of columns in a table definition or in the
** result set of a [SELECT] or the maximum number of columns in an index
** or in an ORDER BY or GROUP BY clause.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
** <dd>The maximum depth of the parse tree on any expression.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
** <dd>The maximum number of instructions in a virtual machine program
** used to implement an SQL statement.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
** <dd>The maximum number of arguments on a function.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
**
** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
** <dd>The maximum length of the pattern argument to the [LIKE] or
** [GLOB] operators.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
** <dd>The maximum number of variables in an SQL statement that can
** be bound.</dd>)^
**
** ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
** <dd>The maximum depth of recursion for triggers.</dd>)^
** </dl>
*/
#define SQLITE_LIMIT_LENGTH                    0
#define SQLITE_LIMIT_SQL_LENGTH                1
#define SQLITE_LIMIT_COLUMN                    2
#define SQLITE_LIMIT_EXPR_DEPTH                3
#define SQLITE_LIMIT_COMPOUND_SELECT           4
................................................................................
#define SQLITE_LIMIT_FUNCTION_ARG              6
#define SQLITE_LIMIT_ATTACHED                  7
#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
#define SQLITE_LIMIT_VARIABLE_NUMBER           9
#define SQLITE_LIMIT_TRIGGER_DEPTH            10

/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
**
** To execute an SQL query, it must first be compiled into a byte-code
** program using one of these routines.
**
** The first argument, "db", is a [database connection] obtained from a
** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
................................................................................
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** ^If the nByte argument is less than zero, then zSql is read up to the
** first zero terminator. ^If nByte is non-negative, then it is the maximum
** number of  bytes read from zSql.  ^When nByte is non-negative, the
** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
** performance advantage to be gained by passing an nByte parameter that
** is equal to the number of bytes in the input string <i>including</i>
** the nul-terminator bytes.
**
** ^If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
** executed using [sqlite3_step()].  ^If there is an error, *ppStmt is set
** to NULL.  ^If the input text contains no SQL (if the input is an empty
** string or a comment) then *ppStmt is set to NULL.
** The calling procedure is responsible for deleting the compiled
** SQL statement using [sqlite3_finalize()] after it has finished with it.
** ppStmt may not be NULL.
**
** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
** otherwise an [error code] is returned.
**
** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
** recommended for all new programs. The two older interfaces are retained
** for backwards compatibility, but their use is discouraged.
** ^In the "v2" interfaces, the prepared statement
** that is returned (the [sqlite3_stmt] object) contains a copy of the
** original SQL text. This causes the [sqlite3_step()] interface to
** behave differently in three ways:
**
** <ol>
** <li>
** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
** always used to do, [sqlite3_step()] will automatically recompile the SQL
** statement and try to run it again.  ^If the schema has changed in
** a way that makes the statement no longer valid, [sqlite3_step()] will still
** return [SQLITE_SCHEMA].  But unlike the legacy behavior, [SQLITE_SCHEMA] is
** now a fatal error.  Calling [sqlite3_prepare_v2()] again will not make the
** error go away.  Note: use [sqlite3_errmsg()] to find the text
** of the parsing error that results in an [SQLITE_SCHEMA] return.
** </li>
**
** <li>
** ^When an error occurs, [sqlite3_step()] will return one of the detailed
** [error codes] or [extended error codes].  ^The legacy behavior was that
** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
** and the application would have to make a second call to [sqlite3_reset()]
** in order to find the underlying cause of the problem. With the "v2" prepare
** interfaces, the underlying reason for the error is returned immediately.
** </li>
**
** <li>
** ^If the value of a [parameter | host parameter] in the WHERE clause might
** change the query plan for a statement, then the statement may be
** automatically recompiled (as if there had been a schema change) on the first 
** [sqlite3_step()] call following any change to the 
** [sqlite3_bind_text | bindings] of the [parameter]. 
** </li>
** </ol>




*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
................................................................................
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL
**
** ^This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].



*/
const char *sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Dynamically Typed Value Object
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing
** for the values it stores.  ^Values stored in sqlite3_value objects
** can be integers, floating point values, strings, BLOBs, or NULL.
**
** An sqlite3_value object may be either "protected" or "unprotected".
** Some interfaces require a protected sqlite3_value.  Other interfaces
** will accept either a protected or an unprotected sqlite3_value.
** Every interface that accepts sqlite3_value arguments specifies
** whether or not it requires a protected sqlite3_value.
................................................................................
** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
** then there is no distinction between protected and unprotected
** sqlite3_value objects and they can be used interchangeably.  However,
** for maximum code portability it is recommended that applications
** still make the distinction between between protected and unprotected
** sqlite3_value objects even when not strictly required.
**
** ^The sqlite3_value objects that are passed as parameters into the
** implementation of [application-defined SQL functions] are protected.
** ^The sqlite3_value object returned by
** [sqlite3_column_value()] is unprotected.
** Unprotected sqlite3_value objects may only be used with
** [sqlite3_result_value()] and [sqlite3_bind_value()].
** The [sqlite3_value_blob | sqlite3_value_type()] family of
** interfaces require protected sqlite3_value objects.
*/
typedef struct Mem sqlite3_value;

/*
** CAPI3REF: SQL Function Context Object
**
** The context in which an SQL function executes is stored in an
** sqlite3_context object.  ^A pointer to an sqlite3_context object
** is always first parameter to [application-defined SQL functions].
** The application-defined SQL function implementation will pass this
** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
** [sqlite3_aggregate_context()], [sqlite3_user_data()],
** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
** and/or [sqlite3_set_auxdata()].
*/
typedef struct sqlite3_context sqlite3_context;

/*
** CAPI3REF: Binding Values To Prepared Statements
** KEYWORDS: {host parameter} {host parameters} {host parameter name}
** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
**
** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
** literals may be replaced by a [parameter] that matches one of following
** templates:
**
** <ul>
** <li>  ?
** <li>  ?NNN
** <li>  :VVV
** <li>  @VVV
** <li>  $VVV
** </ul>
**
** In the templates above, NNN represents an integer literal,
** and VVV represents an alphanumeric identifer.)^  ^The values of these
** parameters (also called "host parameter names" or "SQL parameters")
** can be set using the sqlite3_bind_*() routines defined here.
**
** ^The first argument to the sqlite3_bind_*() routines is always
** a pointer to the [sqlite3_stmt] object returned from
** [sqlite3_prepare_v2()] or its variants.
**
** ^The second argument is the index of the SQL parameter to be set.
** ^The leftmost SQL parameter has an index of 1.  ^When the same named
** SQL parameter is used more than once, second and subsequent
** occurrences have the same index as the first occurrence.
** ^The index for named parameters can be looked up using the
** [sqlite3_bind_parameter_index()] API if desired.  ^The index
** for "?NNN" parameters is the value of NNN.
** ^The NNN value must be between 1 and the [sqlite3_limit()]
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** ^The third argument is the value to bind to the parameter.
**
** ^(In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter is negative, the length of the string is
** the number of bytes up to the first zero terminator.
**
** ^The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and
** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or
** string after SQLite has finished with it. ^If the fifth argument is
** the special value [SQLITE_STATIC], then SQLite assumes that the
** information is in static, unmanaged space and does not need to be freed.
** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
** SQLite makes its own private copy of the data immediately, before
** the sqlite3_bind_*() routine returns.
**
** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
** (just an integer to hold its size) while it is being processed.
** Zeroblobs are intended to serve as placeholders for BLOBs whose
** content is later written using
** [sqlite3_blob_open | incremental BLOB I/O] routines.
** ^A negative value for the zeroblob results in a zero-length BLOB.
**
** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
** for the [prepared statement] or with a prepared statement for which
** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
** then the call will return [SQLITE_MISUSE].  If any sqlite3_bind_()
** routine is passed a [prepared statement] that has been finalized, the
** result is undefined and probably harmful.
**
** ^Bindings are not cleared by the [sqlite3_reset()] routine.
** ^Unbound parameters are interpreted as NULL.
**
** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
** [error code] if anything goes wrong.
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.

**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].





*/
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*));
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** ^(This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN form are used,
** there may be gaps in the list.)^
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].



*/
int sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter
**
** ^The sqlite3_bind_parameter_name(P,N) interface returns
** the name of the N-th [SQL parameter] in the [prepared statement] P.
** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
** respectively.
** In other words, the initial ":" or "$" or "@" or "?"
** is included as part of the name.)^
** ^Parameters of the form "?" without a following integer have no name
** and are referred to as "nameless" or "anonymous parameters".
**
** ^The first host parameter has an index of 1, not 0.
**
** ^If the value N is out of range or if the N-th parameter is
** nameless, then NULL is returned.  ^The returned string is
** always in UTF-8 encoding even if the named parameter was
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].



*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name
**
** ^Return the index of an SQL parameter given its name.  ^The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
** is returned if no matching parameter is found.  ^The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].



*/
int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement
**
** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** ^Use this routine to reset all host parameters to NULL.



*/
int sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).



*/
int sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set
**
** ^These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string
** and sqlite3_column_name16() returns a pointer to a zero-terminated
** UTF-16 string.  ^The first parameter is the [prepared statement]
** that implements the [SELECT] statement. ^The second parameter is the
** column number.  ^The leftmost column is number 0.
**
** ^The returned string pointer is valid until either the [prepared statement]
** is destroyed by [sqlite3_finalize()] or until the next call to
** sqlite3_column_name() or sqlite3_column_name16() on the same column.
**
** ^If sqlite3_malloc() fails during the processing of either routine
** (for example during a conversion from UTF-8 to UTF-16) then a
** NULL pointer is returned.
**
** ^The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.



*/
const char *sqlite3_column_name(sqlite3_stmt*, int N);
const void *sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result
**
** ^These routines provide a means to determine the database, table, and
** table column that is the origin of a particular result column in
** [SELECT] statement.
** ^The name of the database or table or column can be returned as
** either a UTF-8 or UTF-16 string.  ^The _database_ routines return
** the database name, the _table_ routines return the table name, and
** the origin_ routines return the column name.
** ^The returned string is valid until the [prepared statement] is destroyed
** using [sqlite3_finalize()] or until the same information is requested
** again in a different encoding.
**
** ^The names returned are the original un-aliased names of the
** database, table, and column.
**
** ^The first argument to these interfaces is a [prepared statement].
** ^These functions return information about the Nth result column returned by
** the statement, where N is the second function argument.
** ^The left-most column is column 0 for these routines.
**
** ^If the Nth column returned by the statement is an expression or
** subquery and is not a column value, then all of these functions return
** NULL.  ^These routine might also return NULL if a memory allocation error
** occurs.  ^Otherwise, they return the name of the attached database, table,
** or column that query result column was extracted from.
**
** ^As with all other SQLite APIs, those whose names end with "16" return
** UTF-16 encoded strings and the other functions return UTF-8.
**
** ^These APIs are only available if the library was compiled with the
** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
**

** If two or more threads call one or more of these routines against the same
** prepared statement and column at the same time then the results are
** undefined.
**



** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
const char *sqlite3_column_database_name(sqlite3_stmt*,int);
const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
const char *sqlite3_column_table_name(sqlite3_stmt*,int);
const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result
**
** ^(The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an
** expression or subquery) then the declared type of the table
** column is returned.)^  ^If the Nth column of the result set is an
** expression or subquery, then a NULL pointer is returned.
** ^The returned string is always UTF-8 encoded.
**
** ^(For example, given the database schema:
**
** CREATE TABLE t1(c1 VARIANT);
**
** and the following statement to be compiled:
**
** SELECT c1 + 1, c1 FROM t1;
**
** this routine would return the string "VARIANT" for the second result
** column (i==1), and a NULL pointer for the first result column (i==0).)^
**
** ^SQLite uses dynamic run-time typing.  ^So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  ^Type
** is associated with individual values, not with the containers
** used to hold those values.



*/
const char *sqlite3_column_decltype(sqlite3_stmt*,int);
const void *sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
** must be called one or more times to evaluate the statement.
**
** The details of the behavior of the sqlite3_step() interface depend
** on whether the statement was prepared using the newer "v2" interface
** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
** interface [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
** new "v2" interface is recommended for new applications but the legacy
** interface will continue to be supported.
**
** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
** ^With the "v2" interface, any of the other [result codes] or
** [extended result codes] might be returned as well.
**
** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
** database locks it needs to do its job.  ^If the statement is a [COMMIT]
** or occurs outside of an explicit transaction, then you can retry the
** statement.  If the statement is not a [COMMIT] and occurs within a
** explicit transaction then you should rollback the transaction before
** continuing.
**
** ^[SQLITE_DONE] means that the statement has finished executing
** successfully.  sqlite3_step() should not be called again on this virtual
** machine without first calling [sqlite3_reset()] to reset the virtual
** machine back to its initial state.
**
** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
** is returned each time a new row of data is ready for processing by the
** caller. The values may be accessed using the [column access functions].
** sqlite3_step() is called again to retrieve the next row of data.
**
** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
** violation) has occurred.  sqlite3_step() should not be called again on
** the VM. More information may be found by calling [sqlite3_errmsg()].
** ^With the legacy interface, a more specific error code (for example,
** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
** can be obtained by calling [sqlite3_reset()] on the
** [prepared statement].  ^In the "v2" interface,
** the more specific error code is returned directly by sqlite3_step().
**
** [SQLITE_MISUSE] means that the this routine was called inappropriately.
** Perhaps it was called on a [prepared statement] that has
** already been [sqlite3_finalize | finalized] or on one that had
** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
** be the case that the same database connection is being used by two or
................................................................................
** specific [error codes] that better describes the error.
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.



*/
int sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set
**
** ^The sqlite3_data_count(P) the number of columns in the
** of the result set of [prepared statement] P.


*/
int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes
** KEYWORDS: SQLITE_TEXT
**
** ^(Every value in SQLite has one of five fundamental datatypes:
**
** <ul>
** <li> 64-bit signed integer
** <li> 64-bit IEEE floating point number
** <li> string
** <li> BLOB
** <li> NULL
** </ul>)^
**
** These constants are codes for each of those types.
**
** Note that the SQLITE_TEXT constant was also used in SQLite version 2
** for a completely different meaning.  Software that links against both
** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
** SQLITE_TEXT.
................................................................................
# undef SQLITE_TEXT
#else
# define SQLITE_TEXT     3
#endif
#define SQLITE3_TEXT     3

/*
** CAPI3REF: Result Values From A Query
** KEYWORDS: {column access functions}
**
** These routines form the "result set" interface.
**
** ^These routines return information about a single column of the current
** result row of a query.  ^In every case the first argument is a pointer
** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
** that was returned from [sqlite3_prepare_v2()] or one of its variants)
** and the second argument is the index of the column for which information
** should be returned. ^The leftmost column of the result set has the index 0.
** ^The number of columns in the result can be determined using
** [sqlite3_column_count()].
**
** If the SQL statement does not currently point to a valid row, or if the
** column index is out of range, the result is undefined.
** These routines may only be called when the most recent call to
** [sqlite3_step()] has returned [SQLITE_ROW] and neither
** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
................................................................................
** If any of these routines are called after [sqlite3_reset()] or
** [sqlite3_finalize()] or after [sqlite3_step()] has returned
** something other than [SQLITE_ROW], the results are undefined.
** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
** are called from a different thread while any of these routines
** are pending, then the results are undefined.
**
** ^The sqlite3_column_type() routine returns the
** [SQLITE_INTEGER | datatype code] for the initial data type
** of the result column.  ^The returned value is one of [SQLITE_INTEGER],
** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].  The value
** returned by sqlite3_column_type() is only meaningful if no type
** conversions have occurred as described below.  After a type conversion,
** the value returned by sqlite3_column_type() is undefined.  Future
** versions of SQLite may change the behavior of sqlite3_column_type()
** following a type conversion.
**
** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
** routine returns the number of bytes in that BLOB or string.
** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
** the string to UTF-8 and then returns the number of bytes.
** ^If the result is a numeric value then sqlite3_column_bytes() uses
** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
** the number of bytes in that string.
** ^The value returned does not include the zero terminator at the end
** of the string.  ^For clarity: the value returned is the number of
** bytes in the string, not the number of characters.
**
** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
** even empty strings, are always zero terminated.  ^The return
** value from sqlite3_column_blob() for a zero-length BLOB is an arbitrary
** pointer, possibly even a NULL pointer.
**
** ^The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes()
** but leaves the result in UTF-16 in native byte order instead of UTF-8.
** ^The zero terminator is not included in this count.
**
** ^The object returned by [sqlite3_column_value()] is an
** [unprotected sqlite3_value] object.  An unprotected sqlite3_value object
** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()].
** If the [unprotected sqlite3_value] object returned by
** [sqlite3_column_value()] is used in any other way, including calls
** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
** or [sqlite3_value_bytes()], then the behavior is undefined.
**
** These routines attempt to convert the value where appropriate.  ^For
** example, if the internal representation is FLOAT and a text result
** is requested, [sqlite3_snprintf()] is used internally to perform the
** conversion automatically.  ^(The following table details the conversions
** that are applied:
**
** <blockquote>
** <table border="1">
** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
**
** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
................................................................................
** <tr><td>  TEXT    <td> INTEGER   <td> Use atoi()
** <tr><td>  TEXT    <td>  FLOAT    <td> Use atof()
** <tr><td>  TEXT    <td>   BLOB    <td> No change
** <tr><td>  BLOB    <td> INTEGER   <td> Convert to TEXT then use atoi()
** <tr><td>  BLOB    <td>  FLOAT    <td> Convert to TEXT then use atof()
** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
** </table>
** </blockquote>)^
**
** The table above makes reference to standard C library functions atoi()
** and atof().  SQLite does not really use these functions.  It has its
** own equivalent internal routines.  The atoi() and atof() names are
** used in the table for brevity and because they are familiar to most
** C programmers.
**
** ^Note that when type conversions occur, pointers returned by prior
** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
** sqlite3_column_text16() may be invalidated.
** ^(Type conversions and pointer invalidations might occur
** in the following cases:
**
** <ul>
** <li> The initial content is a BLOB and sqlite3_column_text() or
**      sqlite3_column_text16() is called.  A zero-terminator might
**      need to be added to the string.</li>
** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
**      sqlite3_column_text16() is called.  The content must be converted
**      to UTF-16.</li>
** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
**      sqlite3_column_text() is called.  The content must be converted
**      to UTF-8.</li>
** </ul>)^
**
** ^Conversions between UTF-16be and UTF-16le are always done in place and do
** not invalidate a prior pointer, though of course the content of the buffer
** that the prior pointer points to will have been modified.  Other kinds
** of conversion are done in place when it is possible, but sometimes they
** are not possible and in those cases prior pointers are invalidated.
**
** ^(The safest and easiest to remember policy is to invoke these routines
** in one of the following ways:
**
** <ul>
**  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
**  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
**  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
** </ul>)^
**
** In other words, you should call sqlite3_column_text(),
** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
** into the desired format, then invoke sqlite3_column_bytes() or
** sqlite3_column_bytes16() to find the size of the result.  Do not mix calls
** to sqlite3_column_text() or sqlite3_column_blob() with calls to
** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
** with calls to sqlite3_column_bytes().
**
** ^The pointers returned are valid until a type conversion occurs as
** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
** [sqlite3_finalize()] is called.  ^The memory space used to hold strings
** and BLOBs is freed automatically.  Do <b>not</b> pass the pointers returned
** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
** [sqlite3_free()].
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^




*/
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);
sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the statement was executed successfully or not executed at all, then
** SQLITE_OK is returned. ^If execution of the statement failed then an
** [error code] or [extended error code] is returned.
**
** ^This routine can be called at any point during the execution of the
** [prepared statement].  ^If the virtual machine has not
** completed execution when this routine is called, that is like
** encountering an error or an [sqlite3_interrupt | interrupt].
** ^Incomplete updates may be rolled back and transactions canceled,
** depending on the circumstances, and the
** [error code] returned will be [SQLITE_ABORT].



*/
int sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** ^Any SQL statement variables that had values bound to them using
** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
** Use [sqlite3_clear_bindings()] to reset the bindings.
**
** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
** back to the beginning of its program.
**
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
** or if [sqlite3_step(S)] has never before been called on S,
** then [sqlite3_reset(S)] returns [SQLITE_OK].
**
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** ^The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
int sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
** ^These two functions (collectively known as "function creation routines")
** are used to add SQL functions or aggregates or to redefine the behavior
** of existing SQL functions or aggregates.  The only difference between the
** two is that the second parameter, the name of the (scalar) function or
** aggregate, is encoded in UTF-8 for sqlite3_create_function() and UTF-16
** for sqlite3_create_function16().
**
** ^The first parameter is the [database connection] to which the SQL
** function is to be added.  ^If an application uses more than one database
** connection then application-defined SQL functions must be added
** to each database connection separately.
**
** The second parameter is the name of the SQL function to be created or
** redefined.  ^The length of the name is limited to 255 bytes, exclusive of
** the zero-terminator.  Note that the name length limit is in bytes, not
** characters.  ^Any attempt to create a function with a longer name
** will result in [SQLITE_ERROR] being returned.
**
** ^The third parameter (nArg)
** is the number of arguments that the SQL function or
** aggregate takes. ^If this parameter is -1, then the SQL function or
** aggregate may take any number of arguments between 0 and the limit
** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]).  If the third
** parameter is less than -1 or greater than 127 then the behavior is
** undefined.
**
** The fourth parameter, eTextRep, specifies what
** [SQLITE_UTF8 | text encoding] this SQL function prefers for
** its parameters.  Any SQL function implementation should be able to work
** work with UTF-8, UTF-16le, or UTF-16be.  But some implementations may be
** more efficient with one encoding than another.  ^An application may
** invoke sqlite3_create_function() or sqlite3_create_function16() multiple
** times with the same function but with different values of eTextRep.
** ^When multiple implementations of the same function are available, SQLite
** will pick the one that involves the least amount of data conversion.
** If there is only a single implementation which does not care what text
** encoding is used, then the fourth argument should be [SQLITE_ANY].
**
** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
** function can gain access to this pointer using [sqlite3_user_data()].)^
**
** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are
** pointers to C-language functions that implement the SQL function or
** aggregate. ^A scalar SQL function requires an implementation of the xFunc
** callback only; NULL pointers should be passed as the xStep and xFinal
** parameters. ^An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL should be passed for xFunc. ^To delete an existing
** SQL function or aggregate, pass NULL for all three function callbacks.
**
** ^It is permitted to register multiple implementations of the same
** functions with the same name but with either differing numbers of
** arguments or differing preferred text encodings.  ^SQLite will use
** the implementation that most closely matches the way in which the
** SQL function is used.  ^A function implementation with a non-negative
** nArg parameter is a better match than a function implementation with
** a negative nArg.  ^A function where the preferred text encoding
** matches the database encoding is a better
** match than a function where the encoding is different.  
** ^A function where the encoding difference is between UTF16le and UTF16be
** is a closer match than a function where the encoding difference is
** between UTF8 and UTF16.
**
** ^Built-in functions may be overloaded by new application-defined functions.
** ^The first application-defined function with a given name overrides all
** built-in functions in the same [database connection] with the same name.
** ^Subsequent application-defined functions of the same name only override 
** prior application-defined functions that are an exact match for the
** number of parameters and preferred encoding.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.




*/
int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
................................................................................
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1
#define SQLITE_UTF16LE        2
#define SQLITE_UTF16BE        3
................................................................................
SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.
**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
................................................................................
** each parameter to the SQL function.  These routines are used to
** extract values from the [sqlite3_value] objects.
**
** These routines work only with [protected sqlite3_value] objects.
** Any attempt to use these routines on an [unprotected sqlite3_value]
** object results in undefined behavior.
**
** ^These routines work just like the corresponding [column access functions]
** except that  these routines take a single [protected sqlite3_value] object
** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
**
** ^The sqlite3_value_text16() interface extracts a UTF-16 string
** in the native byte-order of the host machine.  ^The
** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
** extract UTF-16 strings as big-endian and little-endian respectively.
**
** ^(The sqlite3_value_numeric_type() interface attempts to apply
** numeric affinity to the value.  This means that an attempt is
** made to convert the value to an integer or floating point.  If
** such a conversion is possible without loss of information (in other
** words, if the value is a string that looks like a number)
** then the conversion is performed.  Otherwise no conversion occurs.
** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
**
** Please pay particular attention to the fact that the pointer returned
** from [sqlite3_value_blob()], [sqlite3_value_text()], or
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.




*/
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
................................................................................
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
**
** Implementions of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
** ^The first time the sqlite3_aggregate_context(C,N) routine is called 
** for a particular aggregate function, SQLite
** allocates N of memory, zeroes out that memory, and returns a pointer
** to the new memory. ^On second and subsequent calls to
** sqlite3_aggregate_context() for the same aggregate function instance,
** the same buffer is returned.  Sqlite3_aggregate_context() is normally

** called once for each invocation of the xStep callback and then one
** last time when the xFinal callback is invoked.  ^(When no rows match
** an aggregate query, the xStep() callback of the aggregate function
** implementation is never called and xFinal() is called exactly once.
** In those cases, sqlite3_aggregate_context() might be called for the
** first time from within xFinal().)^
**
** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer if N is
** less than or equal to zero or if a memory allocate error occurs.
**
** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
** determined by the N parameter on first successful call.  Changing the
** value of N in subsequent call to sqlite3_aggregate_context() within
** the same aggregate function instance will not resize the memory
** allocation.)^
**
** ^SQLite automatically frees the memory allocated by 

** sqlite3_aggregate_context() when the aggregate query concludes.
**
** The first parameter must be a copy of the
** [sqlite3_context | SQL function context] that is the first parameter
** to the xStep or xFinal callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.



*/
void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions
**
** ^The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** This routine must be called from the same thread in which
** the application-defined function is running.



*/
void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions
**
** ^The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.



*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** The following two functions may be used by scalar SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
** some circumstances the associated metadata may be preserved. This may
** be used, for example, to add a regular-expression matching scalar
** function. The compiled version of the regular expression is stored as
** metadata associated with the SQL value passed as the regular expression
** pattern.  The compiled regular expression can be reused on multiple
** invocations of the same function so that the original pattern string
** does not need to be recompiled on each invocation.
**
** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
** associated by the sqlite3_set_auxdata() function with the Nth argument
** value to the application-defined function. ^If no metadata has been ever
** been set for the Nth argument of the function, or if the corresponding
** function parameter has changed since the meta-data was set,
** then sqlite3_get_auxdata() returns a NULL pointer.
**
** ^The sqlite3_set_auxdata() interface saves the metadata
** pointed to by its 3rd parameter as the metadata for the N-th
** argument of the application-defined function.  Subsequent
** calls to sqlite3_get_auxdata() might return this data, if it has
** not been destroyed.
** ^If it is not NULL, SQLite will invoke the destructor
** function given by the 4th parameter to sqlite3_set_auxdata() on
** the metadata when the corresponding function parameter changes
** or when the SQL statement completes, whichever comes first.
**
** SQLite is free to call the destructor and drop metadata on any
** parameter of any function at any time.  ^The only guarantee is that
** the destructor will be called before the metadata is dropped.
**
** ^(In practice, metadata is preserved between function calls for
** expressions that are constant at compile time. This includes literal
** values and [parameters].)^
**
** These routines must be called from the same thread in which
** the SQL function is running.



*/
void *sqlite3_get_auxdata(sqlite3_context*, int N);
void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  ^If the destructor
** argument is SQLITE_STATIC, it means that the content pointer is constant
** and will never change.  It does not need to be destroyed.  ^The
** SQLITE_TRANSIENT value means that the content will likely change in
** the near future and that SQLite should make its own private copy of
** the content before returning.
**
** The typedef is necessary to work around problems in certain
** C++ compilers.  See ticket #2191.
*/
typedef void (*sqlite3_destructor_type)(void*);
#define SQLITE_STATIC      ((sqlite3_destructor_type)0)
#define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)

/*
** CAPI3REF: Setting The Result Of An SQL Function
**
** These routines are used by the xFunc or xFinal callbacks that
** implement SQL functions and aggregates.  See
** [sqlite3_create_function()] and [sqlite3_create_function16()]
** for additional information.
**
** These functions work very much like the [parameter binding] family of
** functions used to bind values to host parameters in prepared statements.
** Refer to the [SQL parameter] documentation for additional information.
**
** ^The sqlite3_result_blob() interface sets the result from
** an application-defined function to be the BLOB whose content is pointed
** to by the second parameter and which is N bytes long where N is the
** third parameter.
**
** ^The sqlite3_result_zeroblob() interfaces set the result of
** the application-defined function to be a BLOB containing all zero
** bytes and N bytes in size, where N is the value of the 2nd parameter.
**
** ^The sqlite3_result_double() interface sets the result from
** an application-defined function to be a floating point value specified
** by its 2nd argument.
**
** ^The sqlite3_result_error() and sqlite3_result_error16() functions
** cause the implemented SQL function to throw an exception.
** ^SQLite uses the string pointed to by the
** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
** as the text of an error message.  ^SQLite interprets the error
** message string from sqlite3_result_error() as UTF-8. ^SQLite
** interprets the string from sqlite3_result_error16() as UTF-16 in native
** byte order.  ^If the third parameter to sqlite3_result_error()
** or sqlite3_result_error16() is negative then SQLite takes as the error
** message all text up through the first zero character.
** ^If the third parameter to sqlite3_result_error() or
** sqlite3_result_error16() is non-negative then SQLite takes that many
** bytes (not characters) from the 2nd parameter as the error message.
** ^The sqlite3_result_error() and sqlite3_result_error16()
** routines make a private copy of the error message text before
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** ^The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  ^By default,
** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** ^The sqlite3_result_toobig() interface causes SQLite to throw an error
** indicating that a string or BLOB is too long to represent.
**
** ^The sqlite3_result_nomem() interface causes SQLite to throw an error
** indicating that a memory allocation failed.
**
** ^The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** ^The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
**
** ^The sqlite3_result_null() interface sets the return value
** of the application-defined function to be NULL.
**
** ^The sqlite3_result_text(), sqlite3_result_text16(),
** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
** set the return value of the application-defined function to be
** a text string which is represented as UTF-8, UTF-16 native byte order,
** UTF-16 little endian, or UTF-16 big endian, respectively.
** ^SQLite takes the text result from the application from
** the 2nd parameter of the sqlite3_result_text* interfaces.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is negative, then SQLite takes result text from the 2nd parameter
** through the first zero character.
** ^If the 3rd parameter to the sqlite3_result_text* interfaces
** is non-negative, then as many bytes (not characters) of the text
** pointed to by the 2nd parameter are taken as the application-defined
** function result.
** ^If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
** function as the destructor on the text or BLOB result when it has
** finished using that result.
** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
** assumes that the text or BLOB result is in constant space and does not
** copy the content of the parameter nor call a destructor on the content
** when it has finished using that result.
** ^If the 4th parameter to the sqlite3_result_text* interfaces
** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
** then SQLite makes a copy of the result into space obtained from
** from [sqlite3_malloc()] before it returns.
**
** ^The sqlite3_result_value() interface sets the result of
** the application-defined function to be a copy the
** [unprotected sqlite3_value] object specified by the 2nd parameter.  ^The
** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
** so that the [sqlite3_value] specified in the parameter may change or
** be deallocated after sqlite3_result_value() returns without harm.
** ^A [protected sqlite3_value] object may always be used where an
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.





*/
void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_error_toobig(sqlite3_context*);
void sqlite3_result_error_nomem(sqlite3_context*);
................................................................................
void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences
**
** These functions are used to add new collation sequences to the
** [database connection] specified as the first argument.
**
** ^The name of the new collation sequence is specified as a UTF-8 string
** for sqlite3_create_collation() and sqlite3_create_collation_v2()
** and a UTF-16 string for sqlite3_create_collation16(). ^In all cases
** the name is passed as the second function argument.
**
** ^The third argument may be one of the constants [SQLITE_UTF8],
** [SQLITE_UTF16LE], or [SQLITE_UTF16BE], indicating that the user-supplied
** routine expects to be passed pointers to strings encoded using UTF-8,
** UTF-16 little-endian, or UTF-16 big-endian, respectively. ^The
** third argument might also be [SQLITE_UTF16] to indicate that the routine
** expects pointers to be UTF-16 strings in the native byte order, or the
** argument can be [SQLITE_UTF16_ALIGNED] if the
** the routine expects pointers to 16-bit word aligned strings
** of UTF-16 in the native byte order.
**
** A pointer to the user supplied routine must be passed as the fifth
** argument.  ^If it is NULL, this is the same as deleting the collation
** sequence (so that SQLite cannot call it anymore).
** ^Each time the application supplied function is invoked, it is passed
** as its first parameter a copy of the void* passed as the fourth argument
** to sqlite3_create_collation() or sqlite3_create_collation16().
**
** ^The remaining arguments to the application-supplied routine are two strings,
** each represented by a (length, data) pair and encoded in the encoding
** that was passed as the third argument when the collation sequence was
** registered.  The application defined collation routine should
** return negative, zero or positive if the first string is less than,
** equal to, or greater than the second string. i.e. (STRING1 - STRING2).
**
** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
** except that it takes an extra argument which is a destructor for
** the collation.  ^The destructor is called when the collation is
** destroyed and is passed a copy of the fourth parameter void* pointer
** of the sqlite3_create_collation_v2().
** ^Collations are destroyed when they are overridden by later calls to the
** collation creation functions or when the [database connection] is closed
** using [sqlite3_close()].
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].




*/
int sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void*,
  int(*xCompare)(void*,int,const void*,int,const void*)
................................................................................
  const void *zName,
  int eTextRep, 
  void*,
  int(*xCompare)(void*,int,const void*,int,const void*)
);

/*
** CAPI3REF: Collation Needed Callbacks
**
** ^To avoid having to register all collation sequences before a database
** can be used, a single callback function may be registered with the
** [database connection] to be invoked whenever an undefined collation
** sequence is required.
**
** ^If the function is registered using the sqlite3_collation_needed() API,
** then it is passed the names of undefined collation sequences as strings
** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
** the names are passed as UTF-16 in machine native byte order.
** ^A call to either function replaces the existing collation-needed callback.
**
** ^(When the callback is invoked, the first argument passed is a copy
** of the second argument to sqlite3_collation_needed() or
** sqlite3_collation_needed16().  The second argument is the database
** connection.  The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.)^
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].



*/
int sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
int sqlite3_collation_needed16(
................................................................................
*/
int sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);

/*
** CAPI3REF: Suspend Execution For A Short Time
**
** ^The sqlite3_sleep() function causes the current thread to suspend execution
** for at least a number of milliseconds specified in its parameter.
**
** ^If the operating system does not support sleep requests with
** millisecond time resolution, then the time will be rounded up to
** the nearest second. ^The number of milliseconds of sleep actually
** requested from the operating system is returned.
**
** ^SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.


*/
int sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]
** will be placed in that directory.)^  ^If this variable
** is a NULL pointer, then SQLite performs a search for an appropriate
** temporary file directory.
**
** It is not safe to read or modify this variable in more than one
** thread at a time.  It is not safe to read or modify this variable
** if a [database connection] is being used at the same time in a separate
** thread.
** It is intended that this variable be set once
** as part of process initialization and before any SQLite interface
** routines have been called and that this variable remain unchanged
** thereafter.
**
** ^The [temp_store_directory pragma] may modify this variable and cause
** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.
*/
SQLITE_EXTERN char *sqlite3_temp_directory;

/*
** CAPI3REF: Test For Auto-Commit Mode
** KEYWORDS: {autocommit mode}
**
** ^The sqlite3_get_autocommit() interface returns non-zero or
** zero if the given database connection is or is not in autocommit mode,
** respectively.  ^Autocommit mode is on by default.
** ^Autocommit mode is disabled by a [BEGIN] statement.
** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
**
** If certain kinds of errors occur on a statement within a multi-statement
** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
** transaction might be rolled back automatically.  The only way to
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.


*/
int sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement
**
** ^The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  ^The [database connection]
** returned by sqlite3_db_handle is the same [database connection]
** that was the first argument
** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.


*/
sqlite3 *sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.


*/
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks
**
** ^The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** ^Any callback set by a previous call to sqlite3_commit_hook()
** for the same database connection is overridden.
** ^The sqlite3_rollback_hook() interface registers a callback
** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
** ^Any callback set by a previous call to sqlite3_rollback_hook()
** for the same database connection is overridden.
** ^The pArg argument is passed through to the callback.
** ^If the callback on a commit hook function returns non-zero,
** then the commit is converted into a rollback.
**
** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
** return the P argument from the previous call of the same function
** on the same [database connection] D, or NULL for
** the first call for each function on D.
**
** The callback implementation must not do anything that will modify
** the database connection that invoked the callback.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the commit
** or rollback hook in the first place.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** ^Registering a NULL function disables the callback.
**
** ^When the commit hook callback routine returns zero, the [COMMIT]
** operation is allowed to continue normally.  ^If the commit hook
** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
** ^The rollback hook is invoked on a rollback that results from a commit
** hook returning non-zero, just as it would be with any other rollback.
**
** ^For the purposes of this API, a transaction is said to have been
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** ^The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
** ^The rollback callback is not invoked if a transaction is
** rolled back because a commit callback returned non-zero.

**
** See also the [sqlite3_update_hook()] interface.




*/
void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks
**
** ^The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted.
** ^Any callback set by a previous call to this function
** for the same database connection is overridden.
**
** ^The second argument is a pointer to the function to invoke when a
** row is updated, inserted or deleted.
** ^The first argument to the callback is a copy of the third argument
** to sqlite3_update_hook().
** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
** or [SQLITE_UPDATE], depending on the operation that caused the callback
** to be invoked.
** ^The third and fourth arguments to the callback contain pointers to the
** database and table name containing the affected row.
** ^The final callback parameter is the [rowid] of the row.
** ^In the case of an update, this is the [rowid] after the update takes place.
**
** ^(The update hook is not invoked when internal system tables are
** modified (i.e. sqlite_master and sqlite_sequence).)^
**
** ^In the current implementation, the update hook
** is not invoked when duplication rows are deleted because of an
** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
** invoked when rows are deleted using the [truncate optimization].
** The exceptions defined in this paragraph might change in a future
** release of SQLite.
**
** The update hook implementation must not do anything that will modify
** the database connection that invoked the update hook.  Any actions
** to modify the database connection must be deferred until after the
** completion of the [sqlite3_step()] call that triggered the update hook.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
** ^The sqlite3_update_hook(D,C,P) function
** returns the P argument from the previous call
** on the same [database connection] D, or NULL for
** the first call on D.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.



*/
void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache
** KEYWORDS: {shared cache}
**
** ^(This routine enables or disables the sharing of the database cache
** and schema data structures between [database connection | connections]
** to the same database. Sharing is enabled if the argument is true
** and disabled if the argument is false.)^
**
** ^Cache sharing is enabled and disabled for an entire process.
** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
** sharing was enabled or disabled for each thread separately.
**
** ^(The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.)^
**




** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.
**
** See Also:  [SQLite Shared-Cache Mode]


*/
int sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.


*/
int sqlite3_release_memory(int);

/*
** CAPI3REF: Impose A Limit On Heap Size
**
** ^The sqlite3_soft_heap_limit() interface places a "soft" limit
** on the amount of heap memory that may be allocated by SQLite.
** ^If an internal allocation is requested that would exceed the
** soft heap limit, [sqlite3_release_memory()] is invoked one or
** more times to free up some space before the allocation is performed.
**
** ^The limit is called "soft" because if [sqlite3_release_memory()]
** cannot free sufficient memory to prevent the limit from being exceeded,
** the memory is allocated anyway and the current operation proceeds.
**
** ^A negative or zero value for N means that there is no soft heap limit and
** [sqlite3_release_memory()] will only be called when memory is exhausted.
** ^The default value for the soft heap limit is zero.
**
** ^(SQLite makes a best effort to honor the soft heap limit.
** But if the soft heap limit cannot be honored, execution will
** continue without error or notification.)^  This is why the limit is
** called a "soft" limit.  It is advisory only.
**
** Prior to SQLite version 3.5.0, this routine only constrained the memory
** allocated by a single thread - the same thread in which this routine
** runs.  Beginning with SQLite version 3.5.0, the soft heap limit is
** applied to all threads. The value specified for the soft heap limit
** is an upper bound on the total memory allocation for all threads. In
** version 3.5.0 there is no mechanism for limiting the heap usage for
** individual threads.



*/
void sqlite3_soft_heap_limit(int);

/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^This routine returns metadata about a specific column of a specific
** database table accessible using the [database connection] handle
** passed as the first function argument.
**
** ^The column is identified by the second, third and fourth parameters to
** this function. ^The second parameter is either the name of the database
** (i.e. "main", "temp", or an attached database) containing the specified
** table or NULL. ^If it is NULL, then all attached databases are searched
** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
** ^The third and fourth parameters to this function are the table and column
** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
** ^Metadata is returned by writing to the memory locations passed as the 5th
** and subsequent parameters to this function. ^Any of these arguments may be
** NULL, in which case the corresponding element of metadata is omitted.
**
** ^(<blockquote>
** <table border="1">
** <tr><th> Parameter <th> Output<br>Type <th>  Description
**
** <tr><td> 5th <td> const char* <td> Data type
** <tr><td> 6th <td> const char* <td> Name of default collation sequence
** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
** </table>
** </blockquote>)^
**
** ^The memory pointed to by the character pointers returned for the
** declaration type and collation sequence is valid only until the next
** call to any SQLite API function.
**
** ^If the specified table is actually a view, an [error code] is returned.
**
** ^If the specified column is "rowid", "oid" or "_rowid_" and an
** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. ^(If there is no
** explicitly declared [INTEGER PRIMARY KEY] column, then the output
** parameters are set as follows:
**
** <pre>
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** </pre>)^
**
** ^(This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
** cannot be found, an [error code] is returned and an error message left
** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^
**
** ^This API is only available if the library was compiled with the
** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
................................................................................
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
);

/*
** CAPI3REF: Load An Extension
**
** ^This interface loads an SQLite extension library from the named file.
**
** ^The sqlite3_load_extension() interface attempts to load an
** SQLite extension library contained in the file zFile.
**
** ^The entry point is zProc.

** ^zProc may be 0, in which case the name of the entry point
** defaults to "sqlite3_extension_init".

** ^The sqlite3_load_extension() interface returns
** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.

** ^If an error occurs and pzErrMsg is not 0, then the
** [sqlite3_load_extension()] interface shall attempt to
** fill *pzErrMsg with error message text stored in memory
** obtained from [sqlite3_malloc()]. The calling function
** should free this memory by calling [sqlite3_free()].
**
** ^Extension loading must be enabled using
** [sqlite3_enable_load_extension()] prior to calling this API,
** otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading
**
** ^So as not to open security holes in older applications that are
** unprepared to deal with extension loading, and as a means of disabling
** extension loading while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** ^Extension loading is off by default. See ticket #1863.

** ^Call the sqlite3_enable_load_extension() routine with onoff==1
** to turn extension loading on and call it with onoff==0 to turn
** it back off again.


*/
int sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load An Extensions
**
** ^This API can be invoked at program startup in order to register
** one or more statically linked extensions that will be available
** to all new [database connections].
**
** ^(This routine stores a pointer to the extension entry point
** in an array that is obtained from [sqlite3_malloc()].  That memory

** is deallocated by [sqlite3_reset_auto_extension()].)^
**
** ^This function registers an extension entry point that is
** automatically invoked whenever a new [database connection]
** is opened using [sqlite3_open()], [sqlite3_open16()],
** or [sqlite3_open_v2()].

** ^Duplicate extensions are detected so calling this routine
** multiple times with the same extension is harmless.




** ^Automatic extensions apply across all threads.
*/
int sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^(This function disables all previously registered automatic
** extensions. It undoes the effect of all prior
** [sqlite3_auto_extension()] calls.)^
**



** ^This function disables automatic extensions in all threads.
*/
void sqlite3_reset_auto_extension(void);

/*
****** EXPERIMENTAL - subject to change without notice **************
**
** The interface to the virtual-table mechanism is currently considered
................................................................................
*/
typedef struct sqlite3_vtab sqlite3_vtab;
typedef struct sqlite3_index_info sqlite3_index_info;
typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
typedef struct sqlite3_module sqlite3_module;

/*
** CAPI3REF: Virtual Table Object
** KEYWORDS: sqlite3_module {virtual table module}
** EXPERIMENTAL
**
** This structure, sometimes called a a "virtual table module", 
** defines the implementation of a [virtual tables].  
** This structure consists mostly of methods for the module.
**
** ^A virtual table module is created by filling in a persistent
** instance of this structure and passing a pointer to that instance
** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
** ^The registration remains valid until it is replaced by a different
** module or until the [database connection] closes.  The content
** of this structure must not change while it is registered with
** any database connection.
*/
struct sqlite3_module {
  int iVersion;
  int (*xCreate)(sqlite3*, void *pAux,
................................................................................
  int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
                       void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
};

/*
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
** EXPERIMENTAL
**
** The sqlite3_index_info structure and its substructures is used to
** pass information into and receive the reply from the [xBestIndex]
** method of a [virtual table module].  The fields under **Inputs** are the
** inputs to xBestIndex and are read-only.  xBestIndex inserts its
** results into the **Outputs** fields.
**
** ^(The aConstraint[] array records WHERE clause constraints of the form:
**
** <pre>column OP expr</pre>
**
** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^  ^(The particular operator is
** stored in aConstraint[].op.)^  ^(The index of the column is stored in
** aConstraint[].iColumn.)^  ^(aConstraint[].usable is TRUE if the
** expr on the right-hand side can be evaluated (and thus the constraint
** is usable) and false if it cannot.)^
**
** ^The optimizer automatically inverts terms of the form "expr OP column"
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** ^The aConstraint[] array only reports WHERE clause terms that are
** relevant to the particular virtual table being queried.
**
** ^Information about the ORDER BY clause is stored in aOrderBy[].
** ^Each term of aOrderBy records a column of the ORDER BY clause.
**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  ^If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.)^
**
** ^The idxNum and idxPtr values are recorded and passed into the
** [xFilter] method.
** ^[sqlite3_free()] is used to free idxPtr if and only if
** needToFreeIdxPtr is true.
**
** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
** the correct order to satisfy the ORDER BY clause so that no separate
** sorting step is required.
**
** ^The estimatedCost value is an estimate of the cost of doing the
** particular lookup.  A full scan of a table with N entries should have
** a cost of N.  A binary search of a table of N entries should have a
** cost of approximately log(N).
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
................................................................................
#define SQLITE_INDEX_CONSTRAINT_GT    4
#define SQLITE_INDEX_CONSTRAINT_LE    8
#define SQLITE_INDEX_CONSTRAINT_LT    16
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64

/*
** CAPI3REF: Register A Virtual Table Implementation
** EXPERIMENTAL
**
** ^These routines are used to register a new [virtual table module] name.
** ^Module names must be registered before
** creating a new [virtual table] using the module and before using a
** preexisting [virtual table] for the module.
**
** ^The module name is registered on the [database connection] specified
** by the first parameter.  ^The name of the module is given by the 
** second parameter.  ^The third parameter is a pointer to
** the implementation of the [virtual table module].   ^The fourth
** parameter is an arbitrary client data pointer that is passed through
** into the [xCreate] and [xConnect] methods of the virtual table module
** when a new virtual table is be being created or reinitialized.
**

** ^The sqlite3_create_module_v2() interface has a fifth parameter which
** is a pointer to a destructor for the pClientData.  ^SQLite will
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  ^The sqlite3_create_module()
** interface is equivalent to sqlite3_create_module_v2() with a NULL
** destructor.
*/
SQLITE_EXPERIMENTAL int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);











SQLITE_EXPERIMENTAL int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

/*
** CAPI3REF: Virtual Table Instance Object
** KEYWORDS: sqlite3_vtab
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass
** of this object to describe a particular instance
** of the [virtual table].  Each subclass will
** be tailored to the specific needs of the module implementation.
** The purpose of this superclass is to define certain fields that are
** common to all module implementations.
**
** ^Virtual tables methods can set an error message by assigning a
** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  ^After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* NO LONGER USED */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
** EXPERIMENTAL
**
** Every [virtual table module] implementation uses a subclass of the
** following structure to describe cursors that point into the
** [virtual table] and are used
** to loop through the virtual table.  Cursors are created using the
** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
** by the [sqlite3_module.xClose | xClose] method.  Cursors are used
** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
** of the module.  Each module implementation will define
** the content of a cursor structure to suit its own needs.
**
** This superclass exists in order to define fields of the cursor that
** are common to all implementations.
*/
struct sqlite3_vtab_cursor {
  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Declare The Schema Of A Virtual Table
** EXPERIMENTAL
**
** ^The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_EXPERIMENTAL int sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table
** EXPERIMENTAL
**
** ^(Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.)^
**
** ^(This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.)^  ^The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_EXPERIMENTAL int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

................................................................................
** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
**
****** EXPERIMENTAL - subject to change without notice **************
*/

/*
** CAPI3REF: A Handle To An Open BLOB
** KEYWORDS: {BLOB handle} {BLOB handles}
**
** An instance of this object represents an open BLOB on which
** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
** ^Objects of this type are created by [sqlite3_blob_open()]
** and destroyed by [sqlite3_blob_close()].
** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
** can be used to read or write small subsections of the BLOB.
** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
typedef struct sqlite3_blob sqlite3_blob;

/*
** CAPI3REF: Open A BLOB For Incremental I/O
**
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If it is zero, the BLOB is opened for read access.
** ^It is not possible to open a column that is part of an index or primary 
** key for writing. ^If [foreign key constraints] are enabled, it is 
** not possible to open a column that is part of a [child key] for writing.
**
** ^Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** appears after the AS keyword when the database is connected using [ATTACH].
** ^For the main database file, the database name is "main".
** ^For TEMP tables, the database name is "temp".
**
** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
** to be a null pointer.)^
** ^This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
** functions. ^Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
** a expired BLOB handle fail with an return code of [SQLITE_ABORT].
** ^(Changes written into a BLOB prior to the BLOB expiring are not
** rolled back by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].



*/
int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].
**
** ^Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** ^If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** ^(Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.)^
**
** ^(The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.)^
**
** ^Calling this routine with a null pointer (such as would be returned
** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.



*/
int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.



*/
int sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^
**
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read.  ^If N or iOffset is
** less than zero, [SQLITE_ERROR] is returned and no data is read.
** ^The size of the blob (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** ^An attempt to read from an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].
**
** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
** Otherwise, an [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].



*/
int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.
**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** ^This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  ^If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.
**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].




*/
int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
** single default VFS that is appropriate for the host computer.
** New VFSes can be registered and existing VFSes can be unregistered.
** The following interfaces are provided.
**
** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
** ^Names are case sensitive.
** ^Names are zero-terminated UTF-8 strings.
** ^If there is no match, a NULL pointer is returned.
** ^If zVfsName is NULL then the default VFS is returned.
**
** ^New VFSes are registered with sqlite3_vfs_register().
** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
** ^The same VFS can be registered multiple times without injury.
** ^To make an existing VFS into the default VFS, register it again
** with the makeDflt flag set.  If two different VFSes with the
** same name are registered, the behavior is undefined.  If a
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
** ^(If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.)^



*/
sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
int sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_OS2
** <li>   SQLITE_MUTEX_PTHREAD
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations
** are appropriate for use on OS/2, Unix, and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().)^
**
** ^The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. ^If it returns NULL
** that means that a mutex could not be allocated.  ^SQLite
** will unwind its stack and return an error.  ^(The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>)^
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  ^SQLite will only request a recursive mutex in
** cases where it really needs one.  ^If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
** a pointer to a static preexisting mutex.  ^Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  ^But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** ^The sqlite3_mutex_free() routine deallocates a previously
** allocated dynamic mutex.  ^SQLite is careful to deallocate every
** dynamic mutex that it allocates.  The dynamic mutexes must not be in
** use when they are deallocated.  Attempting to deallocate a static
** mutex results in undefined behavior.  ^SQLite never deallocates
** a static mutex.
**
** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  ^If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  ^(Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.)^  ^(If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
** SQLite will never exhibit
** such behavior in its own use of mutexes.)^
**
** ^(Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY.  The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^
**
** ^The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.   ^(The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.  SQLite will
** never do either.)^
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
sqlite3_mutex *sqlite3_mutex_alloc(int);
void sqlite3_mutex_free(sqlite3_mutex*);
void sqlite3_mutex_enter(sqlite3_mutex*);
int sqlite3_mutex_try(sqlite3_mutex*);
void sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object
** EXPERIMENTAL
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the user has the option of substituting a custom
................................................................................
** does not provide a suitable implementation. In this case, the user
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** ^The xMutexInit method defined by this structure is invoked as
** part of system initialization by the sqlite3_initialize() function.
** ^The xMutexInit routine is calle by SQLite exactly once for each
** effective call to [sqlite3_initialize()].
**
** ^The xMutexEnd method defined by this structure is invoked as
** part of system shutdown by the sqlite3_shutdown() function. The
** implementation of this method is expected to release all outstanding
** resources obtained by the mutex methods implementation, especially
** those obtained by the xMutexInit method.  ^The xMutexEnd()
** interface is invoked exactly once for each call to [sqlite3_shutdown()].
**
** ^(The remaining seven methods defined by this structure (xMutexAlloc,
** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
** xMutexNotheld) implement the following interfaces (respectively):
**
** <ul>
**   <li>  [sqlite3_mutex_alloc()] </li>
**   <li>  [sqlite3_mutex_free()] </li>
**   <li>  [sqlite3_mutex_enter()] </li>
**   <li>  [sqlite3_mutex_try()] </li>
**   <li>  [sqlite3_mutex_leave()] </li>
**   <li>  [sqlite3_mutex_held()] </li>
**   <li>  [sqlite3_mutex_notheld()] </li>
** </ul>)^
**
** The only difference is that the public sqlite3_XXX functions enumerated
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  ^It must be harmless to
** invoke xMutexInit() mutiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  ^Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
*/
typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
struct sqlite3_mutex_methods {
  int (*xMutexInit)(void);
................................................................................
  int (*xMutexTry)(sqlite3_mutex *);
  void (*xMutexLeave)(sqlite3_mutex *);
  int (*xMutexHeld)(sqlite3_mutex *);
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements.  ^The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  ^The SQLite core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  ^External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** ^These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** ^The implementation is not required to provided versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.   This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But the
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  ^The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
int sqlite3_mutex_held(sqlite3_mutex*);
int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

/*
** CAPI3REF: Mutex Types
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.
**
** The set of static mutexes may change from one SQLite release to the
** next.  Applications that override the built-in mutex logic must be
** prepared to accommodate additional static mutexes.
................................................................................
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* lru page list */

/*
** CAPI3REF: Retrieve the mutex for a database connection
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** ^If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
sqlite3_mutex *sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files
**
** ^The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. ^The
** name of the database "main" for the main database or "temp" for the
** TEMP database, or the name that appears after the AS keyword for
** databases that are added using the [ATTACH] SQL command.
** ^A NULL pointer can be used in place of "main" to refer to the
** main database file.
** ^The third and fourth parameters to this routine
** are passed directly through to the second and third parameters of
** the xFileControl method.  ^The return value of the xFileControl
** method becomes the return value of this routine.
**
** ^If the second parameter (zDbName) does not match the name of any
** open database file, then SQLITE_ERROR is returned.  ^This error
** code is not remembered and will not be recalled by [sqlite3_errcode()]
** or [sqlite3_errmsg()].  The underlying xFileControl method might
** also return SQLITE_ERROR.  There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method.
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface
**
** ^The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  ^The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
................................................................................
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
int sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
** These parameters and their meanings are subject to change
** without notice.  These values are for testing purposes only.
** Applications should not use any of these parameters or the
................................................................................
#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14

/*
** CAPI3REF: SQLite Runtime Status
** EXPERIMENTAL
**
** ^This interface is used to retrieve runtime status information
** about the preformance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [SQLITE_STATUS_MEMORY_USED | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.
................................................................................
**
** See also: [sqlite3_db_status()]
*/
SQLITE_EXPERIMENTAL int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);


/*
** CAPI3REF: Status Parameters
** EXPERIMENTAL
**
** These integer constants designate various run-time status parameters
** that can be returned by [sqlite3_status()].
**
** <dl>
** ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
** <dd>This parameter is the current amount of memory checked out
** using [sqlite3_malloc()], either directly or indirectly.  The
** figure includes calls made to [sqlite3_malloc()] by the application
** and internal memory usage by the SQLite library.  Scratch memory
** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
** this parameter.  The amount returned is the sum of the allocation
** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
**
** ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
** internal equivalents).  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
** <dd>This parameter returns the number of pages used out of the
** [pagecache memory allocator] that was configured using 
** [SQLITE_CONFIG_PAGECACHE].  The
** value returned is in pages, not in bytes.</dd>)^
**
** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of page cache
** allocation which could not be statisfied by the [SQLITE_CONFIG_PAGECACHE]
** buffer and where forced to overflow to [sqlite3_malloc()].  The
** returned value includes allocations that overflowed because they
** where too large (they were larger than the "sz" parameter to
** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
** no space was left in the page cache.</dd>)^
**
** ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [pagecache memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** ^(<dt>SQLITE_STATUS_SCRATCH_USED</dt>
** <dd>This parameter returns the number of allocations used out of the
** [scratch memory allocator] configured using
** [SQLITE_CONFIG_SCRATCH].  The value returned is in allocations, not
** in bytes.  Since a single thread may only have one scratch allocation
** outstanding at time, this parameter also reports the number of threads
** using scratch memory at the same time.</dd>)^
**
** ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
** <dd>This parameter returns the number of bytes of scratch memory
** allocation which could not be statisfied by the [SQLITE_CONFIG_SCRATCH]
** buffer and where forced to overflow to [sqlite3_malloc()].  The values
** returned include overflows because the requested allocation was too
** larger (that is, because the requested allocation was larger than the
** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
** slots were available.
** </dd>)^
**
** ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>This parameter records the deepest parser stack.  It is only
** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1
#define SQLITE_STATUS_PAGECACHE_OVERFLOW   2
................................................................................
#define SQLITE_STATUS_SCRATCH_OVERFLOW     4
#define SQLITE_STATUS_MALLOC_SIZE          5
#define SQLITE_STATUS_PARSER_STACK         6
#define SQLITE_STATUS_PAGECACHE_SIZE       7
#define SQLITE_STATUS_SCRATCH_SIZE         8

/*
** CAPI3REF: Database Connection Status
** EXPERIMENTAL
**
** ^This interface is used to retrieve runtime status information 
** about a single [database connection].  ^The first argument is the
** database connection object to be interrogated.  ^The second argument
** is the parameter to interrogate.  ^Currently, the only allowed value
** for the second parameter is [SQLITE_DBSTATUS_LOOKASIDE_USED].
** Additional options will likely appear in future releases of SQLite.
**
** ^The current value of the requested parameter is written into *pCur
** and the highest instantaneous value is written into *pHiwtr.  ^If
** the resetFlg is true, then the highest instantaneous value is
** reset back down to the current value.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_EXPERIMENTAL int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections
** EXPERIMENTAL
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
**
** New verbs may be added in future releases of SQLite. Existing verbs
** might be discontinued. Applications should check the return code from
** [sqlite3_db_status()] to make sure that the call worked.
** The [sqlite3_db_status()] interface will return a non-zero error code
** if a discontinued or unsupported verb is invoked.
**
** <dl>
** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
** <dd>This parameter returns the number of lookaside memory slots currently
** checked out.</dd>)^
** </dl>
*/
#define SQLITE_DBSTATUS_LOOKASIDE_USED     0


/*
** CAPI3REF: Prepared Statement Status
** EXPERIMENTAL
**
** ^(Each prepared statement maintains various
** [SQLITE_STMTSTATUS_SORT | counters] that measure the number
** of times it has performed specific operations.)^  These counters can
** be used to monitor the performance characteristics of the prepared
** statements.  For example, if the number of table steps greatly exceeds
** the number of table searches or result rows, that would tend to indicate
** that the prepared statement is using a full table scan rather than
** an index.  
**
** ^(This interface is used to retrieve and reset counter values from
** a [prepared statement].  The first argument is the prepared statement
** object to be interrogated.  The second argument
** is an integer code for a specific [SQLITE_STMTSTATUS_SORT | counter]
** to be interrogated.)^
** ^The current value of the requested counter is returned.
** ^If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_EXPERIMENTAL int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements
** EXPERIMENTAL
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.
** The meanings of the various counters are as follows:
**
** <dl>
** <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
** <dd>^This is the number of times that SQLite has stepped forward in
** a table as part of a full table scan.  Large numbers for this counter
** may indicate opportunities for performance improvement through 
** careful use of indices.</dd>
**
** <dt>SQLITE_STMTSTATUS_SORT</dt>
** <dd>^This is the number of sort operations that have occurred.
** A non-zero value in this counter may indicate an opportunity to
** improvement performance through careful use of indices.</dd>
**
** </dl>
*/
#define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
#define SQLITE_STMTSTATUS_SORT              2
................................................................................
typedef struct sqlite3_pcache sqlite3_pcache;

/*
** CAPI3REF: Application Defined Page Cache.
** KEYWORDS: {page cache}
** EXPERIMENTAL
**
** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE], ...) interface can
** register an alternative page cache implementation by passing in an 
** instance of the sqlite3_pcache_methods structure.)^ The majority of the 
** heap memory used by SQLite is used by the page cache to cache data read 
** from, or ready to be written to, the database file. By implementing a 
** custom page cache using this API, an application can control more 
** precisely the amount of memory consumed by SQLite, the way in which 
** that memory is allocated and released, and the policies used to 
** determine exactly which parts of a database file are cached and for 
** how long.
**
** ^(The contents of the sqlite3_pcache_methods structure are copied to an
** internal buffer by SQLite within the call to [sqlite3_config].  Hence
** the application may discard the parameter after the call to
** [sqlite3_config()] returns.)^
**
** ^The xInit() method is called once for each call to [sqlite3_initialize()]
** (usually only once during the lifetime of the process). ^(The xInit()
** method is passed a copy of the sqlite3_pcache_methods.pArg value.)^
** ^The xInit() method can set up up global structures and/or any mutexes
** required by the custom page cache implementation. 
**
** ^The xShutdown() method is called from within [sqlite3_shutdown()], 
** if the application invokes this API. It can be used to clean up 
** any outstanding resources before process shutdown, if required.
**
** ^SQLite holds a [SQLITE_MUTEX_RECURSIVE] mutex when it invokes
** the xInit method, so the xInit method need not be threadsafe.  ^The
** xShutdown method is only called from [sqlite3_shutdown()] so it does
** not need to be threadsafe either.  All other methods must be threadsafe
** in multithreaded applications.
**
** ^SQLite will never invoke xInit() more than once without an intervening
** call to xShutdown().
**
** ^The xCreate() method is used to construct a new cache instance.  SQLite
** will typically create one cache instance for each open database file,
** though this is not guaranteed. ^The
** first parameter, szPage, is the size in bytes of the pages that must
** be allocated by the cache.  ^szPage will not be a power of two.  ^szPage
** will the page size of the database file that is to be cached plus an
** increment (here called "R") of about 100 or 200.  ^SQLite will use the
** extra R bytes on each page to store metadata about the underlying
** database page on disk.  The value of R depends
** on the SQLite version, the target platform, and how SQLite was compiled.
** ^R is constant for a particular build of SQLite.  ^The second argument to
** xCreate(), bPurgeable, is true if the cache being created will
** be used to cache database pages of a file stored on disk, or
** false if it is used for an in-memory database. ^The cache implementation
** does not have to do anything special based with the value of bPurgeable;
** it is purely advisory.  ^On a cache where bPurgeable is false, SQLite will
** never invoke xUnpin() except to deliberately delete a page.
** ^In other words, a cache created with bPurgeable set to false will
** never contain any unpinned pages.
**
** ^(The xCachesize() method may be called at any time by SQLite to set the
** suggested maximum cache-size (number of pages stored by) the cache
** instance passed as the first argument. This is the value configured using
** the SQLite "[PRAGMA cache_size]" command.)^  ^As with the bPurgeable
** parameter, the implementation is not required to do anything with this
** value; it is advisory only.
**
** ^The xPagecount() method should return the number of pages currently
** stored in the cache.
** 
** ^The xFetch() method is used to fetch a page and return a pointer to it. 
** ^A 'page', in this context, is a buffer of szPage bytes aligned at an
** 8-byte boundary. ^The page to be fetched is determined by the key. ^The
** mimimum key value is 1. After it has been retrieved using xFetch, the page 
** is considered to be "pinned".
**
** ^If the requested page is already in the page cache, then the page cache
** implementation must return a pointer to the page buffer with its content
** intact.  ^(If the requested page is not already in the cache, then the
** behavior of the cache implementation is determined by the value of the
** createFlag parameter passed to xFetch, according to the following table:
**
** <table border=1 width=85% align=center>
** <tr><th> createFlag <th> Behaviour when page is not already in cache
** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.
** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
**                 Otherwise return NULL.
** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return
**                 NULL if allocating a new page is effectively impossible.
** </table>)^
**
** SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  If
** a call to xFetch() with createFlag==1 returns NULL, then SQLite will
** attempt to unpin one or more cache pages by spilling the content of
** pinned pages to disk and synching the operating system disk cache. After
** attempting to unpin pages, the xFetch() method will be invoked again with
** a createFlag of 2.
**
** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
** as its second argument. ^(If the third parameter, discard, is non-zero,
** then the page should be evicted from the cache. In this case SQLite 
** assumes that the next time the page is retrieved from the cache using
** the xFetch() method, it will be zeroed.)^ ^If the discard parameter is
** zero, then the page is considered to be unpinned. ^The cache implementation
** may choose to evict unpinned pages at any time.
**
** ^(The cache is not required to perform any reference counting. A single 
** call to xUnpin() unpins the page regardless of the number of prior calls 
** to xFetch().)^
**
** ^The xRekey() method is used to change the key value associated with the
** page passed as the second argument from oldKey to newKey. ^If the cache
** previously contains an entry associated with newKey, it should be
** discarded. ^Any prior cache entry associated with newKey is guaranteed not
** to be pinned.
**
** ^When SQLite calls the xTruncate() method, the cache must discard all
** existing cache entries with page numbers (keys) greater than or equal
** to the value of the iLimit parameter passed to xTruncate(). ^If any
** of these pages are pinned, they are implicitly unpinned, meaning that
** they can be safely discarded.
**
** ^The xDestroy() method is used to delete a cache allocated by xCreate().
** All resources associated with the specified cache should be freed. ^After
** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
** handle invalid, and will not use it with any other sqlite3_pcache_methods
** functions.
*/
typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
struct sqlite3_pcache_methods {
  void *pArg;
................................................................................
};

/*
** CAPI3REF: Online Backup Object
** EXPERIMENTAL
**
** The sqlite3_backup object records state information about an ongoing
** online backup operation.  ^The sqlite3_backup object is created by
** a call to [sqlite3_backup_init()] and is destroyed by a call to
** [sqlite3_backup_finish()].
**
** See Also: [Using the SQLite Online Backup API]
*/
typedef struct sqlite3_backup sqlite3_backup;

/*
** CAPI3REF: Online Backup API.
** EXPERIMENTAL
**
** The backup API copies the content of one database into another.
** It is useful either for creating backups of databases or
** for copying in-memory databases to or from persistent files. 
**
** See Also: [Using the SQLite Online Backup API]
**
** ^Exclusive access is required to the destination database for the 
** duration of the operation. ^However the source database is only
** read-locked while it is actually being read; it is not locked
** continuously for the entire backup operation. ^Thus, the backup may be
** performed on a live source database without preventing other users from
** reading or writing to the source database while the backup is underway.
** 
** ^(To perform a backup operation: 
**   <ol>
**     <li><b>sqlite3_backup_init()</b> is called once to initialize the
**         backup, 
**     <li><b>sqlite3_backup_step()</b> is called one or more times to transfer 
**         the data between the two databases, and finally
**     <li><b>sqlite3_backup_finish()</b> is called to release all resources 
**         associated with the backup operation. 
**   </ol>)^
** There should be exactly one call to sqlite3_backup_finish() for each
** successful call to sqlite3_backup_init().
**
** <b>sqlite3_backup_init()</b>
**
** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the 
** [database connection] associated with the destination database 
** and the database name, respectively.
** ^The database name is "main" for the main database, "temp" for the
** temporary database, or the name specified after the AS keyword in
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.

** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will file with
** an error.
**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are store3d in the

** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.
** ^A successful call to sqlite3_backup_init() returns a pointer to an
** [sqlite3_backup] object.
** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
** sqlite3_backup_finish() functions to perform the specified backup 
** operation.
**
** <b>sqlite3_backup_step()</b>
**
** ^Function sqlite3_backup_step(B,N) will copy up to N pages between 
** the source and destination databases specified by [sqlite3_backup] object B.

** ^If N is negative, all remaining source pages are copied. 
** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
** are still more pages to be copied, then the function resturns [SQLITE_OK].
** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
** from source to destination, then it returns [SQLITE_DONE].
** ^If an error occurs while running sqlite3_backup_step(B,N),
** then an [error code] is returned. ^As well as [SQLITE_OK] and
** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
**
** ^The sqlite3_backup_step() might return [SQLITE_READONLY] if the destination
** database was opened read-only or if
** the destination is an in-memory database with a different page size
** from the source database.
**
** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
** the [sqlite3_busy_handler | busy-handler function]
** is invoked (if one is specified). ^If the 
** busy-handler returns non-zero before the lock is available, then 
** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
** sqlite3_backup_step() can be retried later. ^If the source
** [database connection]
** is being used to write to the source database when sqlite3_backup_step()
** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
** case the call to sqlite3_backup_step() can be retried later on. ^(If
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
** [SQLITE_READONLY] is returned, then 
** there is no point in retrying the call to sqlite3_backup_step(). These 
** errors are considered fatal.)^  The application must accept 
** that the backup operation has failed and pass the backup operation handle 
** to the sqlite3_backup_finish() to release associated resources.
**
** ^The first call to sqlite3_backup_step() obtains an exclusive lock
** on the destination file. ^The exclusive lock is not released until either 
** sqlite3_backup_finish() is called or the backup operation is complete 
** and sqlite3_backup_step() returns [SQLITE_DONE].  ^Every call to
** sqlite3_backup_step() obtains a [shared lock] on the source database that
** lasts for the duration of the sqlite3_backup_step() call.
** ^Because the source database is not locked between calls to
** sqlite3_backup_step(), the source database may be modified mid-way
** through the backup process.  ^If the source database is modified by an
** external process or via a database connection other than the one being
** used by the backup operation, then the backup will be automatically
** restarted by the next call to sqlite3_backup_step(). ^If the source 
** database is modified by the using the same database connection as is used
** by the backup operation, then the backup database is automatically
** updated at the same time.
**
** <b>sqlite3_backup_finish()</b>
**
** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the 
** application wishes to abandon the backup operation, the application
** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
** ^The sqlite3_backup_finish() interfaces releases all
** resources associated with the [sqlite3_backup] object. 
** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
** active write-transaction on the destination database is rolled back.
** The [sqlite3_backup] object is invalid
** and may not be used following a call to sqlite3_backup_finish().
**
** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
** sqlite3_backup_step() errors occurred, regardless or whether or not

** sqlite3_backup_step() completed.
** ^If an out-of-memory condition or IO error occurred during any prior
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then


** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** <b>sqlite3_backup_remaining(), sqlite3_backup_pagecount()</b>
**
** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed

** up and the total number of pages in the source databae file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** ^The values returned by these functions are only updated by
** sqlite3_backup_step(). ^If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file
** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
** from within other threads.
**
** However, the application must guarantee that the destination 
** [database connection] is not passed to any other API (by any thread) after 
** sqlite3_backup_init() is called and before the corresponding call to
** sqlite3_backup_finish().  SQLite does not currently check to see
** if the application incorrectly accesses the destination [database connection]
** and so no error code is reported, but the operations may malfunction

** nevertheless.  Use of the destination database connection while a
** backup is in progress might also also cause a mutex deadlock.
**
** If running in [shared cache mode], the application must
** guarantee that the shared cache used by the destination database
** is not accessed while the backup is running. In practice this means
** that the application must guarantee that the disk file being 
** backed up to is not accessed by any connection within the process,
** not just the specific connection that was passed to sqlite3_backup_init().
**
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
................................................................................
int sqlite3_backup_remaining(sqlite3_backup *p);
int sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
** EXPERIMENTAL
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
** [SQLite Shared-Cache Mode] for a description of shared-cache locking. 
** ^This API may be used to register a callback that SQLite will invoke 
** when the connection currently holding the required lock relinquishes it.
** ^This API is only available if the library was compiled with the
** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
**
** See Also: [Using the SQLite Unlock Notification Feature].
**
** ^Shared-cache locks are released when a database connection concludes
** its current transaction, either by committing it or rolling it back. 
**
** ^When a connection (known as the blocked connection) fails to obtain a
** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
** identity of the database connection (the blocking connection) that
** has locked the required resource is stored internally. ^After an 
** application receives an SQLITE_LOCKED error, it may call the
** sqlite3_unlock_notify() method with the blocked connection handle as 
** the first argument to register for a callback that will be invoked
** when the blocking connections current transaction is concluded. ^The
** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
** call that concludes the blocking connections transaction.
**
** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
** there is a chance that the blocking connection will have already
** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
** If this happens, then the specified callback is invoked immediately,
** from within the call to sqlite3_unlock_notify().)^
**
** ^If the blocked connection is attempting to obtain a write-lock on a
** shared-cache table, and more than one other connection currently holds
** a read-lock on the same table, then SQLite arbitrarily selects one of 
** the other connections to use as the blocking connection.
**
** ^(There may be at most one unlock-notify callback registered by a 
** blocked connection. If sqlite3_unlock_notify() is called when the
** blocked connection already has a registered unlock-notify callback,
** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
** called with a NULL pointer as its second argument, then any existing
** unlock-notify callback is cancelled. ^The blocked connections 
** unlock-notify callback may also be canceled by closing the blocked
** connection using [sqlite3_close()].
**
** The unlock-notify callback is not reentrant. If an application invokes
** any sqlite3_xxx API functions from within an unlock-notify callback, a
** crash or deadlock may be the result.
**
** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
** returns SQLITE_OK.
**
** <b>Callback Invocation Details</b>
**
** When an unlock-notify callback is registered, the application provides a 
** single void* pointer that is passed to the callback when it is invoked.
** However, the signature of the callback function allows SQLite to pass
** it an array of void* context pointers. The first argument passed to
** an unlock-notify callback is a pointer to an array of void* pointers,
** and the second is the number of entries in the array.
**
** When a blocking connections transaction is concluded, there may be
** more than one blocked connection that has registered for an unlock-notify
** callback. ^If two or more such blocked connections have specified the
** same callback function, then instead of invoking the callback function
** multiple times, it is invoked once with the set of void* context pointers
** specified by the blocked connections bundled together into an array.
** This gives the application an opportunity to prioritize any actions 
** related to the set of unblocked database connections.
**
** <b>Deadlock Detection</b>
................................................................................
** action (a reasonable assumption), then using this API may cause the
** application to deadlock. For example, if connection X is waiting for
** connection Y's transaction to be concluded, and similarly connection
** Y is waiting on connection X's transaction, then neither connection
** will proceed and the system may remain deadlocked indefinitely.
**
** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
** detection. ^If a given call to sqlite3_unlock_notify() would put the
** system in a deadlocked state, then SQLITE_LOCKED is returned and no
** unlock-notify callback is registered. The system is said to be in
** a deadlocked state if connection A has registered for an unlock-notify
** callback on the conclusion of connection B's transaction, and connection
** B has itself registered for an unlock-notify callback when connection
** A's transaction is concluded. ^Indirect deadlock is also detected, so
** the system is also considered to be deadlocked if connection B has
** registered for an unlock-notify callback on the conclusion of connection
** C's transaction, where connection C is waiting on connection A. ^Any
** number of levels of indirection are allowed.
**
** <b>The "DROP TABLE" Exception</b>
**
** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost 
** always appropriate to call sqlite3_unlock_notify(). There is however,
** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
................................................................................
** that belong to the same connection. If there are, SQLITE_LOCKED is
** returned. In this case there is no "blocking connection", so invoking
** sqlite3_unlock_notify() results in the unlock-notify callback being
** invoked immediately. If the application then re-attempts the "DROP TABLE"
** or "DROP INDEX" query, an infinite loop might be the result.
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
int sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
** EXPERIMENTAL
**
** ^The [sqlite3_strnicmp()] API allows applications and extensions to
** compare the contents of two buffers containing UTF-8 strings in a
** case-indendent fashion, using the same definition of case independence 
** that SQLite uses internally when comparing identifiers.
*/
int sqlite3_strnicmp(const char *, const char *, int);

/*

Changes to src/sqliteInt.h.

1890
1891
1892
1893
1894
1895
1896

1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908

1909
1910
1911
1912
1913
1914
1915
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN        0x0010 /* Table cursor are already open */
#define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
#define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */


/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;       /* Parsing and code generating context */
  u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */

  SrcList *pTabList;             /* List of tables in the join */
  int iTop;                      /* The very beginning of the WHERE loop */
  int iContinue;                 /* Jump here to continue with next record */
  int iBreak;                    /* Jump here to break out of the loop */
  int nLevel;                    /* Number of nested loop */
  struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
  WhereLevel a[1];               /* Information about each nest loop in WHERE */







>












>







1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN        0x0010 /* Table cursor are already open */
#define WHERE_OMIT_CLOSE       0x0020 /* Omit close of table & index cursors */
#define WHERE_FORCE_TABLE      0x0040 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0080 /* Only code the 1st table in pTabList */

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;       /* Parsing and code generating context */
  u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
  u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */
  SrcList *pTabList;             /* List of tables in the join */
  int iTop;                      /* The very beginning of the WHERE loop */
  int iContinue;                 /* Jump here to continue with next record */
  int iBreak;                    /* Jump here to break out of the loop */
  int nLevel;                    /* Number of nested loop */
  struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
  WhereLevel a[1];               /* Information about each nest loop in WHERE */

Changes to src/test_hexio.c.

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
...
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  x += y * (*q++);
  *v = (sqlite_int64) x;
  return (int) (q - (unsigned char *)p);
}


/*
** USAGE:  read_varint BLOB VARNAME
**
** Read a varint from the start of BLOB. Set variable VARNAME to contain
** the interpreted value. Return the number of bytes of BLOB consumed.
*/
static int read_varint(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int nBlob;
  unsigned char *zBlob;
................................................................................
  } aObjCmd[] = {
     { "hexio_read",                   hexio_read            },
     { "hexio_write",                  hexio_write           },
     { "hexio_get_int",                hexio_get_int         },
     { "hexio_render_int16",           hexio_render_int16    },
     { "hexio_render_int32",           hexio_render_int32    },
     { "utf8_to_utf8",                 utf8_to_utf8          },
     { "read_varint",                  read_varint           },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
  }
  return TCL_OK;
}







|




|







 







|







326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
...
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  x += y * (*q++);
  *v = (sqlite_int64) x;
  return (int) (q - (unsigned char *)p);
}


/*
** USAGE:  read_fts3varint BLOB VARNAME
**
** Read a varint from the start of BLOB. Set variable VARNAME to contain
** the interpreted value. Return the number of bytes of BLOB consumed.
*/
static int read_fts3varint(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int nBlob;
  unsigned char *zBlob;
................................................................................
  } aObjCmd[] = {
     { "hexio_read",                   hexio_read            },
     { "hexio_write",                  hexio_write           },
     { "hexio_get_int",                hexio_get_int         },
     { "hexio_render_int16",           hexio_render_int16    },
     { "hexio_render_int32",           hexio_render_int32    },
     { "utf8_to_utf8",                 utf8_to_utf8          },
     { "read_fts3varint",              read_fts3varint       },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
  }
  return TCL_OK;
}

Changes to src/tokenize.c.

119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
...
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){

        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
    case '(': {
      *tokenType = TK_LP;
................................................................................
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }

      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;
      return i;
    }
    case '%': {
      *tokenType = TK_REM;
      return 1;
    }
    case '=': {







>

|







 







>


|







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
...
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      testcase( z[0]=='\r' );
      for(i=1; sqlite3Isspace(z[i]); i++){}
      *tokenType = TK_SPACE;
      return i;
    }
    case '-': {
      if( z[1]=='-' ){
        /* IMP: R-15891-05542 -- syntax diagram for comments */
        for(i=2; (c=z[i])!=0 && c!='\n'; i++){}
        *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
        return i;
      }
      *tokenType = TK_MINUS;
      return 1;
    }
    case '(': {
      *tokenType = TK_LP;
................................................................................
      return 1;
    }
    case '/': {
      if( z[1]!='*' || z[2]==0 ){
        *tokenType = TK_SLASH;
        return 1;
      }
      /* IMP: R-15891-05542 -- syntax diagram for comments */
      for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){}
      if( c ) i++;
      *tokenType = TK_SPACE;   /* IMP: R-22934-25134 */
      return i;
    }
    case '%': {
      *tokenType = TK_REM;
      return 1;
    }
    case '=': {

Changes to src/vdbeapi.c.

502
503
504
505
506
507
508

509
510
511
512
513
514
515
516
517
** same context that was returned on prior calls.
*/
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  Mem *pMem;
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->s.db->mutex) );
  pMem = p->pMem;

  if( (pMem->flags & MEM_Agg)==0 ){
    if( nByte==0 ){
      sqlite3VdbeMemReleaseExternal(pMem);
      pMem->flags = MEM_Null;
      pMem->z = 0;
    }else{
      sqlite3VdbeMemGrow(pMem, nByte, 0);
      pMem->flags = MEM_Agg;
      pMem->u.pDef = p->pFunc;







>

|







502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
** same context that was returned on prior calls.
*/
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  Mem *pMem;
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->s.db->mutex) );
  pMem = p->pMem;
  testcase( nByte<0 );
  if( (pMem->flags & MEM_Agg)==0 ){
    if( nByte<=0 ){
      sqlite3VdbeMemReleaseExternal(pMem);
      pMem->flags = MEM_Null;
      pMem->z = 0;
    }else{
      sqlite3VdbeMemGrow(pMem, nByte, 0);
      pMem->flags = MEM_Agg;
      pMem->u.pDef = p->pFunc;

Changes to src/vdbeaux.c.

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

1261



1262
1263
1264
1265
1266

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292
1293
1294
1295
....
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358










1359
1360
1361
1362
1363
1364
1365

1366
1367
1368
1369
1370
1371
1372
1373
1374
....
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

1712

1713
1714
1715
1716
1717
1718
1719
    z[j] = 0;
    sqlite3IoTrace("SQL %s\n", z);
  }
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */

/*
** Allocate space from a fixed size buffer.  Make *pp point to the
** allocated space.  (Note:  pp is a char* rather than a void** to
** work around the pointer aliasing rules of C.)  *pp should initially
** be zero.  If *pp is not zero, that means that the space has already

** been allocated and this routine is a noop.



**
** nByte is the number of bytes of space needed.
**
** *ppFrom point to available space and pEnd points to the end of the
** available space.

**
** *pnByte is a counter of the number of bytes of space that have failed
** to allocate.  If there is insufficient space in *ppFrom to satisfy the
** request, then increment *pnByte by the amount of the request.
*/
static void allocSpace(
  char *pp,            /* IN/OUT: Set *pp to point to allocated buffer */
  int nByte,           /* Number of bytes to allocate */
  u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
  u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
  int *pnByte          /* If allocation cannot be made, increment *pnByte */
){
  assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
  if( (*(void**)pp)==0 ){
    nByte = ROUND8(nByte);
    if( &(*ppFrom)[nByte] <= pEnd ){
      *(void**)pp = (void *)*ppFrom;
      *ppFrom += nByte;
    }else{
      *pnByte += nByte;
    }
  }

}

/*
** Prepare a virtual machine for execution.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
................................................................................

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in. This is only done the
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];
    int nByte;

    resolveP2Values(p, &nArg);
    p->usesStmtJournal = (u8)usesStmtJournal;
    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );











    do {
      nByte = 0;
      allocSpace((char*)&p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
      allocSpace((char*)&p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
      allocSpace((char*)&p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
      allocSpace((char*)&p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
      allocSpace((char*)&p->apCsr, 

                 nCursor*sizeof(VdbeCursor*), &zCsr, zEnd, &nByte
      );
      if( nByte ){
        p->pFree = sqlite3DbMallocZero(db, nByte);
      }
      zCsr = p->pFree;
      zEnd = &zCsr[nByte];
    }while( nByte && !db->mallocFailed );

................................................................................
    ** master journal file. If an error occurs at this point close
    ** and delete the master journal file. All the individual journal files
    ** still have 'null' as the master journal pointer, so they will roll
    ** back independently if a failure occurs.
    */
    for(i=0; i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( i==1 ) continue;   /* Ignore the TEMP database */
      if( sqlite3BtreeIsInTrans(pBt) ){
        char const *zFile = sqlite3BtreeGetJournalname(pBt);

        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */

        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
          needSync = 1;
        }
        rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
        offset += sqlite3Strlen30(zFile)+1;
        if( rc!=SQLITE_OK ){
          sqlite3OsCloseFree(pMaster);







|
|
|
|
>
|
>
>
>



|
|
>





|
|






|
|
|
|
|
|
|
|
<
>







 







|
|
|
>









>
>
>
>
>
>
>
>
>
>


|
|
|
|
<
>
|
<







 







<


>
|
>







1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

1293
1294
1295
1296
1297
1298
1299
1300
....
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

1381
1382

1383
1384
1385
1386
1387
1388
1389
....
1717
1718
1719
1720
1721
1722
1723

1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
    z[j] = 0;
    sqlite3IoTrace("SQL %s\n", z);
  }
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */

/*
** Allocate space from a fixed size buffer and return a pointer to
** that space.  If insufficient space is available, return NULL.
**
** The pBuf parameter is the initial value of a pointer which will
** receive the new memory.  pBuf is normally NULL.  If pBuf is not
** NULL, it means that memory space has already been allocated and that
** this routine should not allocate any new memory.  When pBuf is not
** NULL simply return pBuf.  Only allocate new memory space when pBuf
** is NULL.
**
** nByte is the number of bytes of space needed.
**
** *ppFrom points to available space and pEnd points to the end of the
** available space.  When space is allocated, *ppFrom is advanced past
** the end of the allocated space.
**
** *pnByte is a counter of the number of bytes of space that have failed
** to allocate.  If there is insufficient space in *ppFrom to satisfy the
** request, then increment *pnByte by the amount of the request.
*/
static void *allocSpace(
  void *pBuf,          /* Where return pointer will be stored */
  int nByte,           /* Number of bytes to allocate */
  u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
  u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
  int *pnByte          /* If allocation cannot be made, increment *pnByte */
){
  assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
  if( pBuf ) return pBuf;
  nByte = ROUND8(nByte);
  if( &(*ppFrom)[nByte] <= pEnd ){
    pBuf = (void*)*ppFrom;
    *ppFrom += nByte;
  }else{
    *pnByte += nByte;
  }

  return pBuf;
}

/*
** Prepare a virtual machine for execution.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
................................................................................

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in. This is only done the
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */
    int nByte;                              /* How much extra memory needed */

    resolveP2Values(p, &nArg);
    p->usesStmtJournal = (u8)usesStmtJournal;
    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

    /* Memory for registers, parameters, cursor, etc, is allocated in two
    ** passes.  On the first pass, we try to reuse unused space at the 
    ** end of the opcode array.  If we are unable to satisfy all memory
    ** requirements by reusing the opcode array tail, then the second
    ** pass will fill in the rest using a fresh allocation.  
    **
    ** This two-pass approach that reuses as much memory as possible from
    ** the leftover space at the end of the opcode array can significantly
    ** reduce the amount of memory held by a prepared statement.
    */
    do {
      nByte = 0;
      p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
      p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);

      p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                            &zCsr, zEnd, &nByte);

      if( nByte ){
        p->pFree = sqlite3DbMallocZero(db, nByte);
      }
      zCsr = p->pFree;
      zEnd = &zCsr[nByte];
    }while( nByte && !db->mallocFailed );

................................................................................
    ** master journal file. If an error occurs at this point close
    ** and delete the master journal file. All the individual journal files
    ** still have 'null' as the master journal pointer, so they will roll
    ** back independently if a failure occurs.
    */
    for(i=0; i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;

      if( sqlite3BtreeIsInTrans(pBt) ){
        char const *zFile = sqlite3BtreeGetJournalname(pBt);
        if( zFile==0 || zFile[0]==0 ){
          continue;  /* Ignore TEMP and :memory: databases */
        }
        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
          needSync = 1;
        }
        rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
        offset += sqlite3Strlen30(zFile)+1;
        if( rc!=SQLITE_OK ){
          sqlite3OsCloseFree(pMaster);

Changes to src/vtab.c.

665
666
667
668
669
670
671
672
673
674

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
  if( pParse==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pParse->declareVtab = 1;
    pParse->db = db;
  
    if( 
        SQLITE_OK == sqlite3RunParser(pParse, zCreateTable, &zErr) && 
        pParse->pNewTable && 

        !pParse->pNewTable->pSelect && 
        (pParse->pNewTable->tabFlags & TF_Virtual)==0
    ){
      if( !pTab->aCol ){
        pTab->aCol = pParse->pNewTable->aCol;
        pTab->nCol = pParse->pNewTable->nCol;
        pParse->pNewTable->nCol = 0;
        pParse->pNewTable->aCol = 0;
      }
      db->pVTab = 0;
    } else {
      sqlite3Error(db, SQLITE_ERROR, zErr);
      sqlite3DbFree(db, zErr);
      rc = SQLITE_ERROR;
    }
    pParse->declareVtab = 0;
  
    if( pParse->pVdbe ){







<
|
|
>
|
|








|







665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
  pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
  if( pParse==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pParse->declareVtab = 1;
    pParse->db = db;
  

    if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) 
     && pParse->pNewTable
     && !db->mallocFailed
     && !pParse->pNewTable->pSelect
     && (pParse->pNewTable->tabFlags & TF_Virtual)==0
    ){
      if( !pTab->aCol ){
        pTab->aCol = pParse->pNewTable->aCol;
        pTab->nCol = pParse->pNewTable->nCol;
        pParse->pNewTable->nCol = 0;
        pParse->pNewTable->aCol = 0;
      }
      db->pVTab = 0;
    }else{
      sqlite3Error(db, SQLITE_ERROR, zErr);
      sqlite3DbFree(db, zErr);
      rc = SQLITE_ERROR;
    }
    pParse->declareVtab = 0;
  
    if( pParse->pVdbe ){

Changes to src/where.c.

3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274

3275
3276
3277
3278
3279
3280
3281
3282


3283
3284
3285
3286
3287


















3288
3289
3290
3291
3292
3293
3294
....
3305
3306
3307
3308
3309
3310
3311
3312
3313

3314
3315
3316
3317
3318
3319
3320
3321
3322
3323







3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
....
3358
3359
3360
3361
3362
3363
3364
3365





3366
3367
3368
3369
3370
3371
3372
....
3381
3382
3383
3384
3385
3386
3387
3388



3389
3390
3391
3392
3393
3394
3395
....
3524
3525
3526
3527
3528
3529
3530

3531
3532
3533
3534
3535
3536
3537
....
3542
3543
3544
3545
3546
3547
3548







3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
....
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
....
3599
3600
3601
3602
3603
3604
3605





3606
3607
3608
3609
3610
3611
3612
....
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
....
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
....
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
....
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
....
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
....
3998
3999
4000
4001
4002
4003
4004

4005
4006
4007
4008
4009
4010
4011
4012
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    WhereTerm *pFinal;     /* Final subterm within the OR-clause. */
    SrcList oneTab;        /* Shortened table list */

    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */

    int ii;
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pFinal = &pOrWc->a[pOrWc->nTerm-1];



    /* Set up a SrcList containing just the table being scanned by this loop. */
    oneTab.nSrc = 1;
    oneTab.nAlloc = 1;
    oneTab.a[0] = *pTabItem;



















    /* Initialize the rowset register to contain NULL. An SQL NULL is 
    ** equivalent to an empty rowset.
    **
    ** Also initialize regReturn to contain the address of the instruction 
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
................................................................................
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
                        WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);

        if( pSubWInfo ){
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);








          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;
    disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 5:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
................................................................................
  */
  k = 0;
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & notReady)!=0 ) continue;





    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    k = 1;
................................................................................
    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
    VdbeComment((v, "record LEFT JOIN hit"));
    sqlite3ExprCacheClear(pParse);
    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
      testcase( pTerm->wtFlags & TERM_VIRTUAL );
      testcase( pTerm->wtFlags & TERM_CODED );
      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & notReady)!=0 ) continue;



      assert( pTerm->pExpr );
      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
      pTerm->wtFlags |= TERM_CODED;
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

................................................................................
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */

  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereClause *pWC;               /* Decomposition of the WHERE clause */
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  WhereLevel *pLevel;             /* A single level in the pWInfo list */
................................................................................
  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
    return 0;
  }








  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value. A single allocation is used to store the WhereInfo
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */
  db = pParse->db;
  nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, 
      nByteWInfo + 
      sizeof(WhereClause) +
      sizeof(WhereMaskSet)
  );
  if( db->mallocFailed ){
    goto whereBeginError;
  }
  pWInfo->nLevel = pTabList->nSrc;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pMaskSet = (WhereMaskSet*)&pWC[1];

................................................................................
  whereClauseInit(pWC, pParse, pMaskSet);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(pWC, pWhere, TK_AND);
    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
................................................................................
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **
  ** Configure the WhereClause.vmask variable so that bits that correspond
  ** to virtual table cursors are set. This is used to selectively disable 
  ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
  ** with virtual tables.





  */
  assert( pWC->vmask==0 && pMaskSet->n==0 );
  for(i=0; i<pTabList->nSrc; i++){
    createMask(pMaskSet, pTabList->a[i].iCursor);
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
      pWC->vmask |= ((Bitmask)1 << i);
................................................................................
  ** clause.
  */
  notReady = ~(Bitmask)0;
  pTabItem = pTabList->a;
  pLevel = pWInfo->a;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */

................................................................................
    ** However, since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
      Bitmask mask = (isOptimal ? 0 : notReady);
      assert( (pTabList->nSrc-iFrom)>1 || isOptimal );
      for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
  
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, pTabItem->iCursor);
................................................................................
    pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */

#ifndef SQLITE_OMIT_EXPLAIN
    if( pParse->explain==2 ){
      char *zMsg;
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
................................................................................
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(i=0; i<pTabList->nSrc; i++){
    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
    pWInfo->iContinue = pWInfo->a[i].addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
  ** the index is listed as "{}".  If the primary key is used the
  ** index name is '*'.
  */
  for(i=0; i<pTabList->nSrc; i++){
    char *z;
    int n;
    pLevel = &pWInfo->a[i];
    pTabItem = &pTabList->a[pLevel->iFrom];
    z = pTabItem->zAlias;
    if( z==0 ) z = pTabItem->pTab->zName;
    n = sqlite3Strlen30(z);
................................................................................
  WhereLevel *pLevel;
  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pTabList->nSrc-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
................................................................................
  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */

  for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
    if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
      if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);







|






>








>
>

<
<
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
|
>










>
>
>
>
>
>
>







<



|
<
|







 







|
>
>
>
>
>







 







|
>
>
>







 







>







 







>
>
>
>
>
>
>









|








|







 







|







 







>
>
>
>
>







 







|







 







|
|







 







|







 







|











|







 







|







 







>
|







3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286


3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
....
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357

3358
3359
3360
3361

3362
3363
3364
3365
3366
3367
3368
3369
....
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
....
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
....
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
....
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
....
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
....
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
....
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
....
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
....
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
....
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
....
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
....
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    WhereTerm *pFinal;     /* Final subterm within the OR-clause. */
    SrcList *pOrTab;       /* Shortened table list or OR-clause generation */

    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pFinal = &pOrWc->a[pOrWc->nTerm-1];
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;



    /* Set up a new SrcList ni pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
    ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
    */
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
      pOrTab = sqlite3StackAllocRaw(pParse->db,
                            sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
      if( pOrTab==0 ) return notReady;
      pOrTab->nSrc = pOrTab->nAlloc = nNotReady + 1;
      memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
      origSrc = pWInfo->pTabList->a;
      for(k=1; k<=nNotReady; k++){
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
      pOrTab = pWInfo->pTabList;
    }

    /* Initialize the rowset register to contain NULL. An SQL NULL is 
    ** equivalent to an empty rowset.
    **
    ** Also initialize regReturn to contain the address of the instruction 
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
................................................................................
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
                        WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
        if( pSubWInfo ){
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);

          /* The pSubWInfo->untestedTerms flag means that this OR term
          ** contained one or more AND term from a notReady table.  The
          ** terms from the notReady table could not be tested and will
          ** need to be tested later.
          */
          if( pSubWInfo->untestedTerms ) untestedTerms = 1;

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));

    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);

    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 5:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
................................................................................
  */
  k = 0;
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & notReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    k = 1;
................................................................................
    sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
    VdbeComment((v, "record LEFT JOIN hit"));
    sqlite3ExprCacheClear(pParse);
    for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
      testcase( pTerm->wtFlags & TERM_VIRTUAL );
      testcase( pTerm->wtFlags & TERM_CODED );
      if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
      if( (pTerm->prereqAll & notReady)!=0 ){
        assert( pWInfo->untestedTerms );
        continue;
      }
      assert( pTerm->pExpr );
      sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
      pTerm->wtFlags |= TERM_CODED;
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

................................................................................
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereClause *pWC;               /* Decomposition of the WHERE clause */
  struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  WhereLevel *pLevel;             /* A single level in the pWInfo list */
................................................................................
  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
    return 0;
  }

  /* This function normally generates a nested loop for all tables in 
  ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
  ** only generate code for the first table in pTabList and assume that
  ** any cursors associated with subsequent tables are uninitialized.
  */
  nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;

  /* Allocate and initialize the WhereInfo structure that will become the
  ** return value. A single allocation is used to store the WhereInfo
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */
  db = pParse->db;
  nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, 
      nByteWInfo + 
      sizeof(WhereClause) +
      sizeof(WhereMaskSet)
  );
  if( db->mallocFailed ){
    goto whereBeginError;
  }
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pMaskSet = (WhereMaskSet*)&pWC[1];

................................................................................
  whereClauseInit(pWC, pParse, pMaskSet);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(pWC, pWhere, TK_AND);
    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
................................................................................
  ** bitmask for all tables to the left of the join.  Knowing the bitmask
  ** for all tables to the left of a left join is important.  Ticket #3015.
  **
  ** Configure the WhereClause.vmask variable so that bits that correspond
  ** to virtual table cursors are set. This is used to selectively disable 
  ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 
  ** with virtual tables.
  **
  ** Note that bitmasks are created for all pTabList->nSrc tables in
  ** pTabList, not just the first nTabList tables.  nTabList is normally
  ** equal to pTabList->nSrc but might be shortened to 1 if the
  ** WHERE_ONETABLE_ONLY flag is set.
  */
  assert( pWC->vmask==0 && pMaskSet->n==0 );
  for(i=0; i<pTabList->nSrc; i++){
    createMask(pMaskSet, pTabList->a[i].iCursor);
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
      pWC->vmask |= ((Bitmask)1 << i);
................................................................................
  ** clause.
  */
  notReady = ~(Bitmask)0;
  pTabItem = pTabList->a;
  pLevel = pWInfo->a;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */

................................................................................
    ** However, since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    for(isOptimal=1; isOptimal>=0 && bestJ<0; isOptimal--){
      Bitmask mask = (isOptimal ? 0 : notReady);
      assert( (nTabList-iFrom)>1 || isOptimal );
      for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
  
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, pTabItem->iCursor);
................................................................................
    pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */

#ifndef SQLITE_OMIT_EXPLAIN
    if( pParse->explain==2 ){
      char *zMsg;
      struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
................................................................................
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(i=0; i<nTabList; i++){
    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
    pWInfo->iContinue = pWInfo->a[i].addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
  ** the index is listed as "{}".  If the primary key is used the
  ** index name is '*'.
  */
  for(i=0; i<nTabList; i++){
    char *z;
    int n;
    pLevel = &pWInfo->a[i];
    pTabItem = &pTabList->a[pLevel->iFrom];
    z = pTabItem->zAlias;
    if( z==0 ) z = pTabItem->pTab->zName;
    n = sqlite3Strlen30(z);
................................................................................
  WhereLevel *pLevel;
  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
................................................................................
  /* The "break" point is here, just past the end of the outer loop.
  ** Set it.
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
    if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
      if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);

Changes to test/attach.test.

811
812
813
814
815
816
817


818


















819
do_test attach-9.3 {
  execsql {
    COMMIT;
    SELECT * FROM aux2.t1;
  }
} {1 2 3 4}






















finish_test







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
do_test attach-9.3 {
  execsql {
    COMMIT;
    SELECT * FROM aux2.t1;
  }
} {1 2 3 4}

# Ticket [abe728bbc311d81334dae9762f0db87c07a98f79].
# Multi-database commit on an attached TEMP database.
#
do_test attach-10.1 {
  execsql {
    ATTACH '' AS noname;
    ATTACH ':memory:' AS inmem;
    BEGIN;
    CREATE TABLE noname.noname(x);
    CREATE TABLE inmem.inmem(y);
    CREATE TABLE main.main(z);
    COMMIT;
    SELECT name FROM noname.sqlite_master;
    SELECT name FROM inmem.sqlite_master;
  }
} {noname inmem}
do_test attach-10.2 {
  lrange [execsql {
    PRAGMA database_list;
  }] 9 end
} {4 noname {} 5 inmem {}}
finish_test

Changes to test/e_fkey.test.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
..
47
48
49
50
51
52
53
54
55
56
57


58
59

60
61
62









63
64
65
66
67
68
69
..
80
81
82
83
84
85
86
87
88
89


90
91
92
93
94
95
96
...
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130


131
132
133
134
135
136
137
...
149
150
151
152
153
154
155
156
157

158
159
160
161
162


163
164
165
166
167
168
169
...
174
175
176
177
178
179
180
181
182
183
184





185
186
187
188
189
190
191
...
217
218
219
220
221
222
223
224
225
226




227
228
229
230
231
232
233
...
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280




281
282
283
284
285
286
287
...
310
311
312
313
314
315
316




317
318
319
320
321
322
323
...
363
364
365
366
367
368
369





370
371
372
373
374
375
376
...
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
...
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
...
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
504
505
506
507
508
509
510
511
512
513
514



515
516
517
518
519
520
521
...
533
534
535
536
537
538
539
540
541
542
543
544




545
546
547
548
549
550
551
...
567
568
569
570
571
572
573
574
575
576
577
578


579

580
581
582
583
584




585
586
587
588
589
590
591
...
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626


627
628
629
630
631


632
633




634
635
636
637
638
639
640
...
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681























682
683
684
685
686
687
688
...
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
...
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792



793
794




795
796
797
798
799
800
801
...
837
838
839
840
841
842
843
844
845
846
847



848
849
850
851
852
853
854
...
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
...
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
...
956
957
958
959
960
961
962




963
964
965
966
967
968
969
proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db }

###########################################################################
### SECTION 2: Enabling Foreign Key Support
###########################################################################

#-------------------------------------------------------------------------
# /* EV: R-33710-56344 */
#
# Test builds neither OMIT_FOREIGN_KEY or OMIT_TRIGGER defined have 
# foreign key functionality.
#
ifcapable trigger&&foreignkey {
  do_test e_fkey-1 {
    execsql {
      PRAGMA foreign_keys = ON;
      CREATE TABLE p(i PRIMARY KEY);
      CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
................................................................................
      UPDATE p SET i = 'world';
      SELECT * FROM c;
    }
  } {world}
}

#-------------------------------------------------------------------------
# /* EV: R-44697-61543 */
#
# Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY.
#


# /* EV: R-22567-44039 */
# /* EV: R-41784-13339 */

#
# Specifically, test that "PRAGMA foreign_keys" is a no-op in this case.
# When using the pragma to query the current setting, 0 rows are returned.









#
reset_db
ifcapable !trigger&&foreignkey {
  do_test e_fkey-2.1 {
    execsql {
      PRAGMA foreign_keys = ON;
      CREATE TABLE p(i PRIMARY KEY);
................................................................................
  do_test e_fkey-2.3 {
    execsql { PRAGMA foreign_keys }
  } {}
}


#-------------------------------------------------------------------------
# /* EV: R-58428-36660 */
#
# Test the effects of defining OMIT_FOREIGN_KEY.


#
# /* EV: R-58428-36660 */
#
# Specifically, test that foreign key constraints cannot even be parsed 
# in such a build.
#
reset_db
................................................................................
}

ifcapable !foreignkey||!trigger { finish_test ; return }
reset_db


#-------------------------------------------------------------------------
# /* EV: R-07280-60510 */
#
# Test that even if foreign keys are supported by the build, they must
# be enabled using "PRAGMA foreign_keys = ON" (or similar).
#
# /* EV: R-59578-04990 */

#
# This also tests that foreign key constraints are disabled by default.


#
drop_all_tables
do_test e_fkey-4.1 {
  execsql {
    CREATE TABLE p(i PRIMARY KEY);
    CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
    INSERT INTO p VALUES('hello');
................................................................................
    INSERT INTO c VALUES('hello');
    UPDATE p SET i = 'world';
    SELECT * FROM c;
  } 
} {world}

#-------------------------------------------------------------------------
# /* EV: R-15278-54456 */
# /* EV: R-11255-19907 */

#
# Test that the application can use "PRAGMA foreign_keys" to query for
# whether or not foreign keys are currently enabled. This also tests
# the example code in section 2 of foreignkeys.in.
#


reset_db
do_test e_fkey-5.1 {
  execsql { PRAGMA foreign_keys }
} {0}
do_test e_fkey-5.2 {
  execsql { 
    PRAGMA foreign_keys = ON;
................................................................................
  execsql { 
    PRAGMA foreign_keys = OFF;
    PRAGMA foreign_keys;
  }
} {0}

#-------------------------------------------------------------------------
# /* EV: R-46649-58537 */
#
# Test that it is not possible to enable or disable foreign key support
# while not in auto-commit mode.





#
reset_db
do_test e_fkey-6.1 {
  execsql {
    PRAGMA foreign_keys = ON;
    CREATE TABLE t1(a UNIQUE, b);
    CREATE TABLE t2(c, d REFERENCES t1(a));
................................................................................

###########################################################################
### SECTION 1: Introduction to Foreign Key Constraints
###########################################################################
execsql "PRAGMA foreign_keys = ON"

#-------------------------------------------------------------------------
# /* EV: R-04042-24825 */
#
# Verify that the syntax in the first example in section 1 is valid.




#
do_test e_fkey-7.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
      trackartist INTEGER,
      FOREIGN KEY(trackartist) REFERENCES artist(artistid)
    );
  }
} {}

#-------------------------------------------------------------------------
# /* EV: R-61362-32087 */
#
# Attempting to insert a row into the 'track' table that corresponds
# to no row in the 'artist' table fails.
#
do_test e_fkey-8.1 {
  catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
} {1 {foreign key constraint failed}}
do_test e_fkey-8.2 {
  execsql { INSERT INTO artist VALUES(2, 'artist 1') }
  catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
} {1 {foreign key constraint failed}}
do_test e_fkey-8.2 {
  execsql { INSERT INTO track VALUES(1, 'track 1', 2) }
} {}

#-------------------------------------------------------------------------
# /* EV: R-24401-52400 */

#
# Attempting to delete a row from the 'artist' table while there are 
# dependent rows in the track table also fails.
#
do_test e_fkey-9.1 {
  catchsql { DELETE FROM artist WHERE artistid = 2 }
} {1 {foreign key constraint failed}}
do_test e_fkey-9.2 {
  execsql { 
    DELETE FROM track WHERE trackartist = 2;
    DELETE FROM artist WHERE artistid = 2;
  }
} {}

#-------------------------------------------------------------------------
# /* EV: R-23980-48859 */
#
# If the foreign key column (trackartist) in table 'track' is set to NULL,
# there is no requirement for a matching row in the 'artist' table.




#
do_test e_fkey-10.1 {
  execsql {
    INSERT INTO track VALUES(1, 'track 1', NULL);
    INSERT INTO track VALUES(2, 'track 2', NULL);
  }
} {}
................................................................................
# /* EV: R-52486-21352 */
#
# Test that the following is true fo all rows in the track table:
#
#   trackartist IS NULL OR 
#   EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
#





# This procedure executes a test case to check that statement 
# R-52486-21352 is true after executing the SQL statement passed.
# as the second argument.
proc test_r52486_21352 {tn sql} {
  set res [catchsql $sql]
  set results {
................................................................................

#-------------------------------------------------------------------------
# /* EV: R-42412-59321 */
#
# Check that a NOT NULL constraint can be added to the example schema
# to prohibit NULL child keys from being inserted.
#





drop_all_tables
do_test e_fkey-12.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
  }
} {}
do_test e_fkey-12.2 {
  catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
} {1 {track.trackartist may not be NULL}}

#-------------------------------------------------------------------------
# /* EV: R-17902-59250 */
#
# Test an example from foreignkeys.html.
#
drop_all_tables
do_test e_fkey-13.1 {
  execsql {
    CREATE TABLE artist(
................................................................................
    INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
    UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
    INSERT INTO track VALUES(15, 'Boogie Woogie', 3);
  }
} {}

#-------------------------------------------------------------------------
# /* EV: R-15034-64331 */
#
# Test the second example from the first section of foreignkeys.html.
#
do_test e_fkey-14.1 {
  catchsql {
    DELETE FROM artist WHERE artistname = 'Frank Sinatra';
  }
................................................................................
    DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues');
    UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
  }
} {}


#-------------------------------------------------------------------------
# /* EV: R-56032-24923 */
#
# Test that a foreign key constraint is satisifed if "for each row in the child
# table either one or more of the child key columns are NULL, or there exists a
# row in the parent table for which each parent key column contains a value
# equal to the value in its associated child key column".
#
# /* EV: R-57765-12380 */
#
# Test also that the comparison rules are used when testing if there 
# is a matching row in the parent table of a foreign key constraint.
#
drop_all_tables
do_test e_fkey-15.1 {
  execsql {
    CREATE TABLE par(p PRIMARY KEY);
    CREATE TABLE chi(c REFERENCES par);

    INSERT INTO par VALUES(1);
................................................................................
test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'"
test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'"
test_efkey_45 7 1 "INSERT INTO chi VALUES('1')"
test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')"
test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')"

#-------------------------------------------------------------------------
# /* EV: R-15796-47513 */
#
# Specifically, test that when comparing child and parent key values the
# default collation sequence of the parent key column is used.



#
drop_all_tables
do_test e_fkey-16.1 {
  execsql {
    CREATE TABLE t1(a COLLATE nocase PRIMARY KEY);
    CREATE TABLE t2(b REFERENCES t1);
  }
................................................................................
  catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 }
} {1 {foreign key constraint failed}}
do_test e_fkey-16.4 {
  catchsql { DELETE FROM t1 WHERE rowid = 1 }
} {1 {foreign key constraint failed}}

#-------------------------------------------------------------------------
# /* EV: R-04240-13860 */
#
# Specifically, test that when comparing child and parent key values the
# affinity of the parent key column is applied to the child key value
# before the comparison takes place.




#
drop_all_tables
do_test e_fkey-17.1 {
  execsql {
    CREATE TABLE t1(a NUMERIC PRIMARY KEY);
    CREATE TABLE t2(b TEXT REFERENCES t1);
  }
................................................................................
} {1 {foreign key constraint failed}}

###########################################################################
### SECTION 3: Required and Suggested Database Indexes
###########################################################################

#-------------------------------------------------------------------------
# /* EV: R-13435-26311 */
#
# A parent key must be either a PRIMARY KEY, subject to a UNIQUE 
# constraint, or have a UNIQUE index created on it.
# 


# /* EV: R-00376-39212 */

#
# Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE
# constraint, but does have a UNIQUE index created on it, then the UNIQUE index
# must use the default collation sequences associated with the parent key
# columns.




#
drop_all_tables
do_test e_fkey-18.1 {
  execsql {
    CREATE TABLE t2(a REFERENCES t1(x));
  }
} {}
................................................................................
}


#-------------------------------------------------------------------------
# This block tests an example in foreignkeys.html. Several testable
# statements refer to this example, as follows
#
# /* EV: R-27484-01467 */
#
# FK Constraints on child1, child2 and child3 are Ok.
#
# /* EV: R-51039-44840 */
#
# Problem with FK on child4.
#


# /* EV: R-01060-48788 */
#
# Problem with FK on child5.
#
# /* EV: R-63088-37469 */


#
# Problem with FK on child6 and child7.




#
drop_all_tables
do_test e_fkey-19.1 {
  execsql {
    CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f);
    CREATE UNIQUE INDEX i1 ON parent(c, d);
    CREATE INDEX i2 ON parent(e);
................................................................................
  catchsql { INSERT INTO child6 VALUES(2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-19.5 {
  catchsql { INSERT INTO child7 VALUES(3) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------
# /* EV: R-45488-08504 */
# /* EV: R-48391-38472 */
# /* EV: R-03108-63659 */
# /* EV: R-60781-26576 */
#
# Test errors in the database schema that are detected while preparing
# DML statements. The error text for these messages always matches 
# either "foreign key mismatch" or "no such table*" (using [string match]).























#
do_test e_fkey-20.1 {
  execsql {
    CREATE TABLE c1(c REFERENCES nosuchtable, d);

    CREATE TABLE p2(a, b, UNIQUE(a, b));
    CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x));
................................................................................
    do_test e_fkey-20.$tn.6 {
      catchsql "INSERT INTO $ptbl SELECT ?, ?"
    } [list 1 $err]
  }
}

#-------------------------------------------------------------------------
# /* EV: R-19353-43643 */
#
# Test the example of foreign key mismatch errors caused by implicitly
# mapping a child key to the primary key of the parent table when the
# child key consists of a different number of columns to that primary key.
# 
drop_all_tables
do_test e_fkey-21.1 {
................................................................................
  catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-21.8 {
  catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------
# /* EV: R-23682-59820 */
#
# Test errors that are reported when creating the child table. 
# Specifically:
#
#   * different number of child and parent key columns, and
#   * child columns that do not exist.
#
# /* EV: R-33883-28833 */



#
# These errors are reported whether or not FK support is enabled.




#
drop_all_tables
foreach fk [list OFF ON] {
  execsql "PRAGMA foreign_keys = $fk"
  set i 0
  foreach {sql error} {
    "CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))"
................................................................................
test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)"
test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)"
test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)"
test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)"
test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)"

#-------------------------------------------------------------------------
# /* EV: R-15417-28014 */
#
# Test that an index on on the child key columns of an FK constraint
# is optional.



#
# /* EV: R-15741-50893 */
#
# Also test that if an index is created on the child key columns, it does
# not make a difference whether or not it is a UNIQUE index.
#
drop_all_tables
................................................................................
  test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)"
  test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)"

  execsql "DELETE FROM $c ; DELETE FROM parent"
}

#-------------------------------------------------------------------------
# /* EV: R-00279-52283 */
#
# Test an example showing that when a row is deleted from the parent 
# table, the child table is queried for orphaned rows as follows:
#
#   SELECT rowid FROM track WHERE trackartist = ?
#
# /* EV: R-23302-30956 */
#
# Also test that if the SELECT above would return any rows, a foreign
# key constraint is violated.
#
do_test e_fkey-25.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
do_test e_fkey-25.7 {
  concat \
    [execsql { SELECT rowid FROM track WHERE trackartist = 6 }]   \
    [catchsql { DELETE FROM artist WHERE artistid = 6 }]
} {2 1 {foreign key constraint failed}}

#-------------------------------------------------------------------------
# /* EV: R-54172-55848 */
#
# Test that when a row is deleted from the parent table of an FK 
# constraint, the child table is queried for orphaned rows. The
# query is equivalent to:
#
#   SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
#
................................................................................
#
# Also test that when a row is inserted into the parent table, or when the 
# parent key values of an existing row are modified, a query equivalent
# to the following is planned. In some cases it is not executed, but it
# is always planned.
#
#   SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value




#
#
drop_all_tables
do_test e_fkey-26.1 {
  execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) }
} {}
foreach {tn sql} {







|
|
|
<







 







<
<


>
>
|
|
>



>
>
>
>
>
>
>
>
>







 







|

|
>
>







 







|
|
|
<

<
>

|
>
>







 







|
|
>

<
<
|

>
>







 







<
<


>
>
>
>
>







 







|

|
>
>
>
>







 







|
|
|
<













|
>

|
|












<
<


>
>
>
>







 







>
>
>
>







 







>
>
>
>
>







 







|







 







|







 







|
|
|
|
|
|
|
|
|
|
|
|







 







<
<


>
>
>







 







<
<



>
>
>
>







 







<
<


|
>
>
|
>
|




>
>
>
>







 







|



<
<
|

>
>
|

|

|
>
>

|
>
>
>
>







 







<
<
<
<
<



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







<
<






|
>
>
>


>
>
>
>







 







<
<


>
>
>







 







|






|
|
|
<







 







|







 







>
>
>
>







27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
..
46
47
48
49
50
51
52


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
..
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
...
127
128
129
130
131
132
133
134
135
136

137

138
139
140
141
142
143
144
145
146
147
148
149
...
161
162
163
164
165
166
167
168
169
170
171


172
173
174
175
176
177
178
179
180
181
182
...
187
188
189
190
191
192
193


194
195
196
197
198
199
200
201
202
203
204
205
206
207
...
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
...
257
258
259
260
261
262
263
264
265
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296


297
298
299
300
301
302
303
304
305
306
307
308
309
...
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
...
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
...
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
...
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
...
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
...
535
536
537
538
539
540
541


542
543
544
545
546
547
548
549
550
551
552
553
...
565
566
567
568
569
570
571


572
573
574
575
576
577
578
579
580
581
582
583
584
585
...
601
602
603
604
605
606
607


608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
...
651
652
653
654
655
656
657
658
659
660
661


662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
...
712
713
714
715
716
717
718





719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
...
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
...
840
841
842
843
844
845
846


847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
...
905
906
907
908
909
910
911


912
913
914
915
916
917
918
919
920
921
922
923
...
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957

958
959
960
961
962
963
964
....
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
....
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
proc eqp {sql {db db}} { uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db }

###########################################################################
### SECTION 2: Enabling Foreign Key Support
###########################################################################

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-33710-56344 In order to use foreign key constraints in
# SQLite, the library must be compiled with neither
# SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined.

#
ifcapable trigger&&foreignkey {
  do_test e_fkey-1 {
    execsql {
      PRAGMA foreign_keys = ON;
      CREATE TABLE p(i PRIMARY KEY);
      CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
................................................................................
      UPDATE p SET i = 'world';
      SELECT * FROM c;
    }
  } {world}
}

#-------------------------------------------------------------------------


# Test the effects of defining OMIT_TRIGGER but not OMIT_FOREIGN_KEY.
#
# EVIDENCE-OF: R-44697-61543 If SQLITE_OMIT_TRIGGER is defined but
# SQLITE_OMIT_FOREIGN_KEY is not, then SQLite behaves as it did prior to
# version 3.6.19 - foreign key definitions are parsed and may be queried
# using PRAGMA foreign_key_list, but foreign key constraints are not
# enforced.
#
# Specifically, test that "PRAGMA foreign_keys" is a no-op in this case.
# When using the pragma to query the current setting, 0 rows are returned.
#
# EVIDENCE-OF: R-22567-44039 The PRAGMA foreign_keys command is a no-op
# in this configuration.
#
# EVIDENCE-OF: R-41784-13339 Tip: If the command "PRAGMA foreign_keys"
# returns no data instead of a single row containing "0" or "1", then
# the version of SQLite you are using does not support foreign keys
# (either because it is older than 3.6.19 or because it was compiled
# with SQLITE_OMIT_FOREIGN_KEY or SQLITE_OMIT_TRIGGER defined).
#
reset_db
ifcapable !trigger&&foreignkey {
  do_test e_fkey-2.1 {
    execsql {
      PRAGMA foreign_keys = ON;
      CREATE TABLE p(i PRIMARY KEY);
................................................................................
  do_test e_fkey-2.3 {
    execsql { PRAGMA foreign_keys }
  } {}
}


#-------------------------------------------------------------------------
# Test the effects of defining OMIT_FOREIGN_KEY.
#
# EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then
# foreign key definitions cannot even be parsed (attempting to specify a
# foreign key definition is a syntax error).
#
# /* EV: R-58428-36660 */
#
# Specifically, test that foreign key constraints cannot even be parsed 
# in such a build.
#
reset_db
................................................................................
}

ifcapable !foreignkey||!trigger { finish_test ; return }
reset_db


#-------------------------------------------------------------------------
# EVIDENCE-OF: R-07280-60510 Assuming the library is compiled with
# foreign key constraints enabled, it must still be enabled by the
# application at runtime, using the PRAGMA foreign_keys command.

#

# This also tests that foreign key constraints are disabled by default.
#
# EVIDENCE-OF: R-59578-04990 Foreign key constraints are disabled by
# default (for backwards compatibility), so must be enabled separately
# for each database connection separately.
#
drop_all_tables
do_test e_fkey-4.1 {
  execsql {
    CREATE TABLE p(i PRIMARY KEY);
    CREATE TABLE c(j REFERENCES p ON UPDATE CASCADE);
    INSERT INTO p VALUES('hello');
................................................................................
    INSERT INTO c VALUES('hello');
    UPDATE p SET i = 'world';
    SELECT * FROM c;
  } 
} {world}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-15278-54456 The application can can also use a PRAGMA
# foreign_keys statement to determine if foreign keys are currently
# enabled.
#


# This also tests the example code in section 2 of foreignkeys.in.
#
# EVIDENCE-OF: R-11255-19907
# 
reset_db
do_test e_fkey-5.1 {
  execsql { PRAGMA foreign_keys }
} {0}
do_test e_fkey-5.2 {
  execsql { 
    PRAGMA foreign_keys = ON;
................................................................................
  execsql { 
    PRAGMA foreign_keys = OFF;
    PRAGMA foreign_keys;
  }
} {0}

#-------------------------------------------------------------------------


# Test that it is not possible to enable or disable foreign key support
# while not in auto-commit mode.
#
# EVIDENCE-OF: R-46649-58537 It is not possible to enable or disable
# foreign key constraints in the middle of a multi-statement transaction
# (when SQLite is not in autocommit mode). Attempting to do so does not
# return an error; it simply has no effect.
#
reset_db
do_test e_fkey-6.1 {
  execsql {
    PRAGMA foreign_keys = ON;
    CREATE TABLE t1(a UNIQUE, b);
    CREATE TABLE t2(c, d REFERENCES t1(a));
................................................................................

###########################################################################
### SECTION 1: Introduction to Foreign Key Constraints
###########################################################################
execsql "PRAGMA foreign_keys = ON"

#-------------------------------------------------------------------------
# Verify that the syntax in the first example in section 1 is valid.
#
# EVIDENCE-OF: R-04042-24825 To do so, a foreign key definition may be
# added by modifying the declaration of the track table to the
# following: CREATE TABLE track( trackid INTEGER, trackname TEXT,
# trackartist INTEGER, FOREIGN KEY(trackartist) REFERENCES
# artist(artistid) );
#
do_test e_fkey-7.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
      trackartist INTEGER,
      FOREIGN KEY(trackartist) REFERENCES artist(artistid)
    );
  }
} {}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-61362-32087 Attempting to insert a row into the track
# table that does not correspond to any row in the artist table will
# fail,

#
do_test e_fkey-8.1 {
  catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
} {1 {foreign key constraint failed}}
do_test e_fkey-8.2 {
  execsql { INSERT INTO artist VALUES(2, 'artist 1') }
  catchsql { INSERT INTO track VALUES(1, 'track 1', 1) }
} {1 {foreign key constraint failed}}
do_test e_fkey-8.2 {
  execsql { INSERT INTO track VALUES(1, 'track 1', 2) }
} {}

#-------------------------------------------------------------------------
# Attempting to delete a row from the 'artist' table while there are 
# dependent rows in the track table also fails.
#
# EVIDENCE-OF: R-24401-52400 as will attempting to delete a row from the
# artist table when there exist dependent rows in the track table
#
do_test e_fkey-9.1 {
  catchsql { DELETE FROM artist WHERE artistid = 2 }
} {1 {foreign key constraint failed}}
do_test e_fkey-9.2 {
  execsql { 
    DELETE FROM track WHERE trackartist = 2;
    DELETE FROM artist WHERE artistid = 2;
  }
} {}

#-------------------------------------------------------------------------


# If the foreign key column (trackartist) in table 'track' is set to NULL,
# there is no requirement for a matching row in the 'artist' table.
#
# EVIDENCE-OF: R-23980-48859 There is one exception: if the foreign key
# column in the track table is NULL, then no corresponding entry in the
# artist table is required.
#
do_test e_fkey-10.1 {
  execsql {
    INSERT INTO track VALUES(1, 'track 1', NULL);
    INSERT INTO track VALUES(2, 'track 2', NULL);
  }
} {}
................................................................................
# /* EV: R-52486-21352 */
#
# Test that the following is true fo all rows in the track table:
#
#   trackartist IS NULL OR 
#   EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist)
#
# EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every
# row in the track table, the following expression evaluates to true:
# trackartist IS NULL OR EXISTS(SELECT 1 FROM artist WHERE
# artistid=trackartist)

# This procedure executes a test case to check that statement 
# R-52486-21352 is true after executing the SQL statement passed.
# as the second argument.
proc test_r52486_21352 {tn sql} {
  set res [catchsql $sql]
  set results {
................................................................................

#-------------------------------------------------------------------------
# /* EV: R-42412-59321 */
#
# Check that a NOT NULL constraint can be added to the example schema
# to prohibit NULL child keys from being inserted.
#
# EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter
# relationship between artist and track, where NULL values are not
# permitted in the trackartist column, simply add the appropriate "NOT
# NULL" constraint to the schema.
#
drop_all_tables
do_test e_fkey-12.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
  }
} {}
do_test e_fkey-12.2 {
  catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) }
} {1 {track.trackartist may not be NULL}}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-17902-59250
#
# Test an example from foreignkeys.html.
#
drop_all_tables
do_test e_fkey-13.1 {
  execsql {
    CREATE TABLE artist(
................................................................................
    INSERT INTO artist VALUES(3, 'Sammy Davis Jr.');
    UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles';
    INSERT INTO track VALUES(15, 'Boogie Woogie', 3);
  }
} {}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-15034-64331
#
# Test the second example from the first section of foreignkeys.html.
#
do_test e_fkey-14.1 {
  catchsql {
    DELETE FROM artist WHERE artistname = 'Frank Sinatra';
  }
................................................................................
    DELETE FROM track WHERE trackname IN('That''s Amore', 'Christmas Blues');
    UPDATE artist SET artistid=4 WHERE artistname = 'Dean Martin';
  }
} {}


#-------------------------------------------------------------------------
# EVIDENCE-OF: R-56032-24923 The foreign key constraint is satisfied if
# for each row in the child table either one or more of the child key
# columns are NULL, or there exists a row in the parent table for which
# each parent key column contains a value equal to the value in its
# associated child key column.
#
# Test also that the usual comparison rules are used when testing if there 
# is a matching row in the parent table of a foreign key constraint.
#
# EVIDENCE-OF: R-57765-12380 In the above paragraph, the term "equal"
# means equal when values are compared using the rules specified here.
#
drop_all_tables
do_test e_fkey-15.1 {
  execsql {
    CREATE TABLE par(p PRIMARY KEY);
    CREATE TABLE chi(c REFERENCES par);

    INSERT INTO par VALUES(1);
................................................................................
test_efkey_45 5 0 "DELETE FROM chi WHERE c = '1'"
test_efkey_45 6 0 "DELETE FROM par WHERE p = '1'"
test_efkey_45 7 1 "INSERT INTO chi VALUES('1')"
test_efkey_45 8 0 "INSERT INTO chi VALUES(X'31')"
test_efkey_45 9 1 "INSERT INTO chi VALUES(X'32')"

#-------------------------------------------------------------------------


# Specifically, test that when comparing child and parent key values the
# default collation sequence of the parent key column is used.
#
# EVIDENCE-OF: R-15796-47513 When comparing text values, the collating
# sequence associated with the parent key column is always used.
#
drop_all_tables
do_test e_fkey-16.1 {
  execsql {
    CREATE TABLE t1(a COLLATE nocase PRIMARY KEY);
    CREATE TABLE t2(b REFERENCES t1);
  }
................................................................................
  catchsql { UPDATE t2 SET b = 'two' WHERE rowid = 1 }
} {1 {foreign key constraint failed}}
do_test e_fkey-16.4 {
  catchsql { DELETE FROM t1 WHERE rowid = 1 }
} {1 {foreign key constraint failed}}

#-------------------------------------------------------------------------


# Specifically, test that when comparing child and parent key values the
# affinity of the parent key column is applied to the child key value
# before the comparison takes place.
#
# EVIDENCE-OF: R-04240-13860 When comparing values, if the parent key
# column has an affinity, then that affinity is applied to the child key
# value before the comparison is performed.
#
drop_all_tables
do_test e_fkey-17.1 {
  execsql {
    CREATE TABLE t1(a NUMERIC PRIMARY KEY);
    CREATE TABLE t2(b TEXT REFERENCES t1);
  }
................................................................................
} {1 {foreign key constraint failed}}

###########################################################################
### SECTION 3: Required and Suggested Database Indexes
###########################################################################

#-------------------------------------------------------------------------


# A parent key must be either a PRIMARY KEY, subject to a UNIQUE 
# constraint, or have a UNIQUE index created on it.
#
# EVIDENCE-OF: R-13435-26311 Usually, the parent key of a foreign key
# constraint is the primary key of the parent table. If they are not the
# primary key, then the parent key columns must be collectively subject
# to a UNIQUE constraint or have a UNIQUE index.
# 
# Also test that if a parent key is not subject to a PRIMARY KEY or UNIQUE
# constraint, but does have a UNIQUE index created on it, then the UNIQUE index
# must use the default collation sequences associated with the parent key
# columns.
#
# EVIDENCE-OF: R-00376-39212 If the parent key columns have a UNIQUE
# index, then that index must use the collation sequences that are
# specified in the CREATE TABLE statement for the parent table.
#
drop_all_tables
do_test e_fkey-18.1 {
  execsql {
    CREATE TABLE t2(a REFERENCES t1(x));
  }
} {}
................................................................................
}


#-------------------------------------------------------------------------
# This block tests an example in foreignkeys.html. Several testable
# statements refer to this example, as follows
#
# EVIDENCE-OF: R-27484-01467
#
# FK Constraints on child1, child2 and child3 are Ok.
#


# Problem with FK on child4:
#
# EVIDENCE-OF: R-51039-44840 The foreign key declared as part of table
# child4 is an error because even though the parent key column is
# indexed, the index is not UNIQUE.
#
# Problem with FK on child5:
#
# EVIDENCE-OF: R-01060-48788 The foreign key for table child5 is an
# error because even though the parent key column has a unique index,
# the index uses a different collating sequence.
#
# Problem with FK on child6 and child7:
#
# EVIDENCE-OF: R-63088-37469 Tables child6 and child7 are incorrect
# because while both have UNIQUE indices on their parent keys, the keys
# are not an exact match to the columns of a single UNIQUE index.
#
drop_all_tables
do_test e_fkey-19.1 {
  execsql {
    CREATE TABLE parent(a PRIMARY KEY, b UNIQUE, c, d, e, f);
    CREATE UNIQUE INDEX i1 ON parent(c, d);
    CREATE INDEX i2 ON parent(e);
................................................................................
  catchsql { INSERT INTO child6 VALUES(2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-19.5 {
  catchsql { INSERT INTO child7 VALUES(3) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------





# Test errors in the database schema that are detected while preparing
# DML statements. The error text for these messages always matches 
# either "foreign key mismatch" or "no such table*" (using [string match]).
#
# EVIDENCE-OF: R-45488-08504 If the database schema contains foreign key
# errors that require looking at more than one table definition to
# identify, then those errors are not detected when the tables are
# created.
#
# EVIDENCE-OF: R-48391-38472 Instead, such errors prevent the
# application from preparing SQL statements that modify the content of
# the child or parent tables in ways that use the foreign keys.
#
# EVIDENCE-OF: R-03108-63659 The English language error message for
# foreign key DML errors is usually "foreign key mismatch" but can also
# be "no such table" if the parent table does not exist.
#
# EVIDENCE-OF: R-60781-26576 Foreign key DML errors are may be reported
# if: The parent table does not exist, or The parent key columns named
# in the foreign key constraint do not exist, or The parent key columns
# named in the foreign key constraint are not the primary key of the
# parent table and are not subject to a unique constraint using
# collating sequence specified in the CREATE TABLE, or The child table
# references the primary key of the parent without specifying the
# primary key columns and the number of primary key columns in the
# parent do not match the number of child key columns.
#
do_test e_fkey-20.1 {
  execsql {
    CREATE TABLE c1(c REFERENCES nosuchtable, d);

    CREATE TABLE p2(a, b, UNIQUE(a, b));
    CREATE TABLE c2(c, d, FOREIGN KEY(c, d) REFERENCES p2(a, x));
................................................................................
    do_test e_fkey-20.$tn.6 {
      catchsql "INSERT INTO $ptbl SELECT ?, ?"
    } [list 1 $err]
  }
}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-19353-43643
#
# Test the example of foreign key mismatch errors caused by implicitly
# mapping a child key to the primary key of the parent table when the
# child key consists of a different number of columns to that primary key.
# 
drop_all_tables
do_test e_fkey-21.1 {
................................................................................
  catchsql { INSERT INTO child10 VALUES(1, 2, 3) }
} {1 {foreign key mismatch}}
do_test e_fkey-21.8 {
  catchsql { INSERT INTO child10 VALUES(NULL, NULL, NULL) }
} {1 {foreign key mismatch}}

#-------------------------------------------------------------------------


# Test errors that are reported when creating the child table. 
# Specifically:
#
#   * different number of child and parent key columns, and
#   * child columns that do not exist.
#
# EVIDENCE-OF: R-23682-59820 By contrast, if foreign key errors can be
# recognized simply by looking at the definition of the child table and
# without having to consult the parent table definition, then the CREATE
# TABLE statement for the child table fails.
#
# These errors are reported whether or not FK support is enabled.
#
# EVIDENCE-OF: R-33883-28833 Foreign key DDL errors are reported
# regardless of whether or not foreign key constraints are enabled when
# the table is created.
#
drop_all_tables
foreach fk [list OFF ON] {
  execsql "PRAGMA foreign_keys = $fk"
  set i 0
  foreach {sql error} {
    "CREATE TABLE child1(a, b, FOREIGN KEY(a, b) REFERENCES p(c))"
................................................................................
test_efkey_60 3 0 "INSERT INTO p1 VALUES(239, 231)"
test_efkey_60 4 0 "INSERT INTO c1 VALUES(239, 231)"
test_efkey_60 5 1 "INSERT INTO c2 VALUES(239, 231)"
test_efkey_60 6 0 "INSERT INTO p2 VALUES(239, 231)"
test_efkey_60 7 0 "INSERT INTO c2 VALUES(239, 231)"

#-------------------------------------------------------------------------


# Test that an index on on the child key columns of an FK constraint
# is optional.
#
# EVIDENCE-OF: R-15417-28014 Indices are not required for child key
# columns
#
# /* EV: R-15741-50893 */
#
# Also test that if an index is created on the child key columns, it does
# not make a difference whether or not it is a UNIQUE index.
#
drop_all_tables
................................................................................
  test_efkey_61 $tn.2 0 "INSERT INTO parent VALUES(1, 2)"
  test_efkey_61 $tn.3 0 "INSERT INTO $c VALUES(1, 2)"

  execsql "DELETE FROM $c ; DELETE FROM parent"
}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-00279-52283
#
# Test an example showing that when a row is deleted from the parent 
# table, the child table is queried for orphaned rows as follows:
#
#   SELECT rowid FROM track WHERE trackartist = ?
#
# EVIDENCE-OF: R-23302-30956 If this SELECT returns any rows at all,
# then SQLite concludes that deleting the row from the parent table
# would violate the foreign key constraint and returns an error.

#
do_test e_fkey-25.1 {
  execsql {
    CREATE TABLE artist(
      artistid    INTEGER PRIMARY KEY, 
      artistname  TEXT
    );
................................................................................
do_test e_fkey-25.7 {
  concat \
    [execsql { SELECT rowid FROM track WHERE trackartist = 6 }]   \
    [catchsql { DELETE FROM artist WHERE artistid = 6 }]
} {2 1 {foreign key constraint failed}}

#-------------------------------------------------------------------------
# EVIDENCE-OF: R-54172-55848
#
# Test that when a row is deleted from the parent table of an FK 
# constraint, the child table is queried for orphaned rows. The
# query is equivalent to:
#
#   SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
#
................................................................................
#
# Also test that when a row is inserted into the parent table, or when the 
# parent key values of an existing row are modified, a query equivalent
# to the following is planned. In some cases it is not executed, but it
# is always planned.
#
#   SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value
#
# EVIDENCE-OF: R-61616-46700 Similar queries may be run if the content
# of the parent key is modified or a new row is inserted into the parent
# table.
#
#
drop_all_tables
do_test e_fkey-26.1 {
  execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)) }
} {}
foreach {tn sql} {

Changes to test/e_fts3.test.

16
17
18
19
20
21
22

23
24
25
26
27
28
29
..
42
43
44
45
46
47
48
49







50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
...
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
...
461
462
463
464
465
466
467

468








































































































































































































469
set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl


# Procs used to make the tests in this file easier to read.
#
proc ddl_test {tn ddl} {
  uplevel [list do_write_test e_fts3-$tn sqlite_master $ddl]
}
proc write_test {tn tbl sql} {
................................................................................
# that the example code in fts3.html works as expected. The tests run three
# times, with different values for DO_MALLOC_TEST.
# 
#   DO_MALLOC_TEST=0: Run tests with no OOM errors.
#   DO_MALLOC_TEST=1: Run tests with transient OOM errors.
#   DO_MALLOC_TEST=2: Run tests with persistent OOM errors.
#
foreach DO_MALLOC_TEST [lrange {0 1 2} 0 end] {








# Reset the database and database connection. If this iteration of the 
# [foreach] loop is testing with OOM errors, disable the lookaside buffer.
#
db close
file delete -force test.db test.db-journal
sqlite3 db test.db
if {$DO_MALLOC_TEST} { sqlite3_db_config_lookaside db 0 0 0 }


##########################################################################
# Test the example CREATE VIRTUAL TABLE statements in section 1.1 
# of fts3.in.
#
ddl_test   1.1.1.1 {CREATE VIRTUAL TABLE data USING fts3()}
read_test  1.1.1.2 {PRAGMA table_info(data)} {0 content {} 0 {} 0}
................................................................................
  INSERT INTO docs VALUES('"which is for Solomon," meaning that');
}
write_test 1.2.2.4 docs_content {
  INSERT INTO docs VALUES('the book is dedicated to Solomon.');
}
read_test  1.2.2.5 { SELECT count(*) FROM docs_segdir } {3}
write_test 1.2.2.6 docs_segdir {
  SELECT * FROM (SELECT optimize(docs) FROM docs LIMIT 1) WHERE 0;
}
read_test  1.2.2.7 { SELECT count(*) FROM docs_segdir } {1}
ddl_test   1.2.2.8 { DROP TABLE docs }

##########################################################################
# Test the examples in section 1.3 (querying FTS3 tables)
#
................................................................................
} {illegal first argument to snippet}
error_test 2.1.7 {
  SELECT snippet() FROM t1 WHERE a MATCH 'one'
} {unable to use function snippet in the requested context}
error_test 2.1.8 {
  SELECT snippet(a, b, 'A', 'B', 'C') FROM t1 WHERE a MATCH 'one'
} {wrong number of arguments to function snippet()}










































































































































































































finish_test







>







 







|
>
>
>
>
>
>
>








>







 







|







 







>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
..
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
...
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
...
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl
source $testdir/malloc_common.tcl

# Procs used to make the tests in this file easier to read.
#
proc ddl_test {tn ddl} {
  uplevel [list do_write_test e_fts3-$tn sqlite_master $ddl]
}
proc write_test {tn tbl sql} {
................................................................................
# that the example code in fts3.html works as expected. The tests run three
# times, with different values for DO_MALLOC_TEST.
# 
#   DO_MALLOC_TEST=0: Run tests with no OOM errors.
#   DO_MALLOC_TEST=1: Run tests with transient OOM errors.
#   DO_MALLOC_TEST=2: Run tests with persistent OOM errors.
#
foreach {DO_MALLOC_TEST enc} {
  0 utf-8
  1 utf-8
  2 utf-8
  1 utf-16
} {

#if {$DO_MALLOC_TEST} break

# Reset the database and database connection. If this iteration of the 
# [foreach] loop is testing with OOM errors, disable the lookaside buffer.
#
db close
file delete -force test.db test.db-journal
sqlite3 db test.db
if {$DO_MALLOC_TEST} { sqlite3_db_config_lookaside db 0 0 0 }
db eval "PRAGMA encoding = '$enc'"

##########################################################################
# Test the example CREATE VIRTUAL TABLE statements in section 1.1 
# of fts3.in.
#
ddl_test   1.1.1.1 {CREATE VIRTUAL TABLE data USING fts3()}
read_test  1.1.1.2 {PRAGMA table_info(data)} {0 content {} 0 {} 0}
................................................................................
  INSERT INTO docs VALUES('"which is for Solomon," meaning that');
}
write_test 1.2.2.4 docs_content {
  INSERT INTO docs VALUES('the book is dedicated to Solomon.');
}
read_test  1.2.2.5 { SELECT count(*) FROM docs_segdir } {3}
write_test 1.2.2.6 docs_segdir {
  INSERT INTO docs(docs) VALUES('optimize');
}
read_test  1.2.2.7 { SELECT count(*) FROM docs_segdir } {1}
ddl_test   1.2.2.8 { DROP TABLE docs }

##########################################################################
# Test the examples in section 1.3 (querying FTS3 tables)
#
................................................................................
} {illegal first argument to snippet}
error_test 2.1.7 {
  SELECT snippet() FROM t1 WHERE a MATCH 'one'
} {unable to use function snippet in the requested context}
error_test 2.1.8 {
  SELECT snippet(a, b, 'A', 'B', 'C') FROM t1 WHERE a MATCH 'one'
} {wrong number of arguments to function snippet()}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test the effect of an OOM error while installing the FTS3 module (i.e.
# opening a database handle). This case was not tested by the OOM testing
# of the document examples above.
#
do_malloc_test e_fts3-3 -tclbody { 
  if {[catch {sqlite3 db test.db}]} { error "out of memory" }
}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Verify the return values of the optimize() function. If no error occurs,
# the returned value should be "Index optimized" if the data structure
# was modified, or "Index already optimal" if it were not.
#
set DO_MALLOC_TEST 0
ddl_test   4.1 { CREATE VIRTUAL TABLE t4 USING fts3(a, b) }
write_test 4.2 t4_content {
  INSERT INTO t4 VALUES('In Xanadu', 'did Kubla Khan');
}
write_test 4.3 t4_content {
  INSERT INTO t4 VALUES('a stately pleasure', 'dome decree');
}
do_test e_fts3-4.4 {
  execsql { SELECT optimize(t4) FROM t4 LIMIT 1 } 
} {{Index optimized}}
do_test e_fts3-4.5 {
  execsql { SELECT optimize(t4) FROM t4 LIMIT 1 } 
} {{Index already optimal}}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test that the snippet function appears to work correctly with 1, 2, 3
# or 4 arguments passed to it.
#
set DO_MALLOC_TEST 0
ddl_test   5.1 { CREATE VIRTUAL TABLE t5 USING fts3(x) }
write_test 5.2 t5_content {
  INSERT INTO t5 VALUES('In Xanadu did Kubla Khan A stately pleasure-dome decree Where Alph, the sacred river, ran Through caverns measureless to man Down to a sunless sea.  So twice five miles of fertile ground With walls and towers were girdled round : And there were gardens bright with sinuous rills, Where blossomed many an incense-bearing tree ; And here were forests ancient as the hills, Enfolding sunny spots of greenery.');
}
read_test 5.3 { 
  SELECT snippet(t5) FROM t5 WHERE t5 MATCH 'miles'
} {{<b>...</b> Down to a sunless sea.  So twice five <b>miles</b> of fertile ground With walls and towers were <b>...</b>}}
read_test 5.4 { 
  SELECT snippet(t5, '<i>') FROM t5 WHERE t5 MATCH 'miles'
} {{<b>...</b> Down to a sunless sea.  So twice five <i>miles</b> of fertile ground With walls and towers were <b>...</b>}}
read_test 5.5 { 
  SELECT snippet(t5, '<i>', '</i>') FROM t5 WHERE t5 MATCH 'miles'
} {{<b>...</b> Down to a sunless sea.  So twice five <i>miles</i> of fertile ground With walls and towers were <b>...</b>}}
read_test 5.6 { 
  SELECT snippet(t5, '<i>', '</i>', 'XXX') FROM t5 WHERE t5 MATCH 'miles'
} {{XXX Down to a sunless sea.  So twice five <i>miles</i> of fertile ground With walls and towers were XXX}}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test that an empty MATCH expression returns an empty result set. As
# does passing a NULL value as a MATCH expression.
#
set DO_MALLOC_TEST 0
ddl_test   6.1 { CREATE VIRTUAL TABLE t6 USING fts3(x) }
write_test 6.2 t5_content { INSERT INTO t6 VALUES('a'); }
write_test 6.3 t5_content { INSERT INTO t6 VALUES('b'); }
write_test 6.4 t5_content { INSERT INTO t6 VALUES('c'); }
read_test  6.5 { SELECT * FROM t6 WHERE t6 MATCH '' } {}
read_test  6.6 { SELECT * FROM t6 WHERE x MATCH '' } {}
read_test  6.7 { SELECT * FROM t6 WHERE t6 MATCH NULL } {}
read_test  6.8 { SELECT * FROM t6 WHERE x MATCH NULL } {}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test a few facets of the FTS3 xFilter() callback implementation:
#
#   1. That the sqlite3_index_constraint.usable flag is respected.
#
#   2. That it is an error to use the "docid" or "rowid" column of
#      an FTS3 table as the LHS of a MATCH operator.
#
#   3. That it is an error to AND together two MATCH expressions in 
#      that refer to a single FTS3 table in a WHERE clause.
#
#
set DO_MALLOC_TEST 0
ddl_test   7.1.1 { CREATE VIRTUAL TABLE t7 USING fts3(a) }
ddl_test   7.1.2 { CREATE VIRTUAL TABLE t8 USING fts3(b) }
write_test 7.1.3 t7_content { INSERT INTO t7(docid, a) VALUES(4,'number four') }
write_test 7.1.4 t7_content { INSERT INTO t7(docid, a) VALUES(5,'number five') }
write_test 7.1.5 t8_content { INSERT INTO t8(docid, b) VALUES(4,'letter D') }
write_test 7.1.6 t8_content { INSERT INTO t8(docid, b) VALUES(5,'letter E') }
read_test  7.1.7 {
  SELECT a || ':' || b FROM t7 JOIN t8 USING(docid)
} {{number four:letter D} {number five:letter E}}

error_test 7.2.1 {
  SELECT * FROM t7 WHERE docid MATCH 'number'
} {unable to use function MATCH in the requested context}
error_test 7.2.2 {
  SELECT * FROM t7 WHERE rowid MATCH 'number'
} {unable to use function MATCH in the requested context}

error_test 7.3.1 {
  SELECT * FROM t7 WHERE a MATCH 'number' AND a MATCH 'four'
} {unable to use function MATCH in the requested context}
error_test 7.3.2 {
  SELECT * FROM t7, t8 WHERE a MATCH 'number' AND a MATCH 'four'
} {unable to use function MATCH in the requested context}
error_test 7.3.3 {
  SELECT * FROM t7, t8 WHERE b MATCH 'letter' AND b MATCH 'd'
} {unable to use function MATCH in the requested context}
read_test 7.3.4 {
  SELECT * FROM t7, t8 WHERE a MATCH 'number' AND b MATCH 'letter'
} {{number four} {letter D} {number four} {letter E} {number five} {letter D} {number five} {letter E}}
read_test 7.3.5 {
  SELECT * FROM t7 WHERE a MATCH 'number' AND docid = 4
} {{number four}}

#-------------------------------------------------------------------------
# Test the quoting of FTS3 table column names. Names may be quoted using
# any of "", '', ``` or [].
#
set DO_MALLOC_TEST 0
ddl_test  8.1.1 { CREATE VIRTUAL TABLE t9a USING fts3("c1", [c2]) }
ddl_test  8.1.2 { CREATE VIRTUAL TABLE t9b USING fts3('c1', `c2`) }
read_test 8.1.3 { PRAGMA table_info(t9a) } {0 c1 {} 0 {} 0 1 c2 {} 0 {} 0}
read_test 8.1.4 { PRAGMA table_info(t9b) } {0 c1 {} 0 {} 0 1 c2 {} 0 {} 0}
ddl_test  8.2.1 { CREATE VIRTUAL TABLE t9c USING fts3("c""1", 'c''2') }
read_test 8.2.2 { PRAGMA table_info(t9c) } {0 c\"1 {} 0 {} 0 1 c'2 {} 0 {} 0}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test that FTS3 tables can be renamed using the ALTER RENAME command.
# OOM errors are tested during ALTER RENAME commands also.
#
foreach DO_MALLOC_TEST {0 1 2} {
  db close
  file delete -force test.db test.db-journal
  sqlite3 db test.db
  if {$DO_MALLOC_TEST} { sqlite3_db_config_lookaside db 0 0 0 }

  ddl_test   9.1.1             { CREATE VIRTUAL TABLE t10 USING fts3(x) }
  write_test 9.1.2 t10_content { INSERT INTO t10 VALUES('fts3 tables') }
  write_test 9.1.3 t10_content { INSERT INTO t10 VALUES('are renameable') }

  read_test  9.1.4 {
    SELECT * FROM t10 WHERE t10 MATCH 'table*'
  } {{fts3 tables}}
  read_test  9.1.5 {
    SELECT * FROM t10 WHERE x MATCH 'rename*'
  } {{are renameable}}

  ddl_test   9.1.6             { ALTER TABLE t10 RENAME TO t11 }

  read_test  9.1.7 {
    SELECT * FROM t11 WHERE t11 MATCH 'table*'
  } {{fts3 tables}}
  read_test  9.1.8 {
    SELECT * FROM t11 WHERE x MATCH 'rename*'
  } {{are renameable}}
}
#-------------------------------------------------------------------------

#-------------------------------------------------------------------------
# Test a couple of cases involving corrupt data structures:
#
#   1) A case where a document referenced by the full-text index is
#      not present in the %_content table.
#
#   2) A badly formatted b-tree segment node.
#
set DO_MALLOC_TEST 0
ddl_test   10.1.1 { CREATE VIRTUAL TABLE ta USING fts3 }
write_test 10.1.2 ta_content { 
  INSERT INTO ta VALUES('During a summer vacation in 1790') }
write_test 10.1.3 ta_content {
  INSERT INTO ta VALUES('Wordsworth went on a walking tour') }
write_test 10.1.4 ta_content { DELETE FROM ta_content WHERE rowid = 2 }
read_test  10.1.5 {
  SELECT * FROM ta WHERE ta MATCH 'summer'
} {{During a summer vacation in 1790}}
error_test 10.1.6 {
  SELECT * FROM ta WHERE ta MATCH 'walking'
} {database disk image is malformed}

write_test 10.2.1 ta_content { DELETE FROM ta }
write_test 10.2.2 ta_content { 
  INSERT INTO ta VALUES('debate demonstrated the rising difficulty') }
write_test 10.2.3 ta_content { 
  INSERT INTO ta VALUES('Google released its browser beta') }

set blob [db one {SELECT root FROM ta_segdir WHERE rowid = 2}]
binary scan $blob "a6 a3 a*" start middle end
set middle "\x0E\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x06\x06"
set blob [binary format "a6 a* a*" $start $middle $end]
write_test 10.2.4 ta_segdir { 
  UPDATE ta_segdir SET root = $blob WHERE rowid = 2
}
error_test 10.2.5 {
  SELECT * FROM ta WHERE ta MATCH 'beta'
} {database disk image is malformed}


finish_test

Changes to test/fts3_common.tcl.

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
...
306
307
308
309
310
311
312
313




314
315
316
317
318
319
320
321
322
323
324
325
326
327

328




329

















330
331
332


333
334

335



336
337
338


339
340
341
342

343
344
345
346
347
348
349
  join $lDoc " "
}

###########################################################################

proc gobble_varint {varname} {
  upvar $varname blob
  set n [read_varint $blob ret]
  set blob [string range $blob $n end]
  return $ret
}
proc gobble_string {varname nLength} {
  upvar $varname blob
  set ret [string range $blob 0 [expr $nLength-1]]
  set blob [string range $blob $nLength end]
................................................................................
# by parameter $result, or (b) TCL throws an "out of memory" error.
#
# If DO_MALLOC_TEST is defined and set to zero, then the SELECT statement
# is executed just once. In this case the test case passes if the results
# match the expected results passed via parameter $result.
#
proc do_select_test {name sql result} {
  doPassiveTest $name $sql [list 0 $result]




}

proc do_error_test {name sql error} {
  doPassiveTest $name $sql [list 1 $error]
}

proc doPassiveTest {name sql catchres} {
  if {![info exists ::DO_MALLOC_TEST]} { set ::DO_MALLOC_TEST 1 }

  if {$::DO_MALLOC_TEST} {
    set answers [list {1 {out of memory}} $catchres]
    set modes [list 100000 transient 1 persistent]
  } else {
    set answers [list $catchres]

    set modes [list 0 nofail]




  }

















  set str [join $answers " OR "]

  foreach {nRepeat zName} $modes {


    for {set iFail 1} 1 {incr iFail} {
      if {$::DO_MALLOC_TEST} {sqlite3_memdebug_fail $iFail -repeat $nRepeat}





      set res [catchsql $sql]
      if {[lsearch -exact $answers $res]>=0} {
        set res $str


      }
      do_test $name.$zName.$iFail [list set {} $res] $str
      set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign]
      if {$nFail==0} break

    }
  }
}


#-------------------------------------------------------------------------
# Test a single write to the database. In this case a  "write" is a 







|







 







|
>
>
>
>



|


|


|
|
|
|
<
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


<
>
>
|
<
>

>
>
>
|
|
<
>
>
|
<
|
<
>







204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
...
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357
358
359

360
361
362
363
364
365
366

367
368
369

370

371
372
373
374
375
376
377
378
  join $lDoc " "
}

###########################################################################

proc gobble_varint {varname} {
  upvar $varname blob
  set n [read_fts3varint $blob ret]
  set blob [string range $blob $n end]
  return $ret
}
proc gobble_string {varname nLength} {
  upvar $varname blob
  set ret [string range $blob 0 [expr $nLength-1]]
  set blob [string range $blob $nLength end]
................................................................................
# by parameter $result, or (b) TCL throws an "out of memory" error.
#
# If DO_MALLOC_TEST is defined and set to zero, then the SELECT statement
# is executed just once. In this case the test case passes if the results
# match the expected results passed via parameter $result.
#
proc do_select_test {name sql result} {
  uplevel [list doPassiveTest 0 $name $sql [list 0 $result]]
}

proc do_restart_select_test {name sql result} {
  uplevel [list doPassiveTest 1 $name $sql [list 0 $result]]
}

proc do_error_test {name sql error} {
  uplevel [list doPassiveTest 0 $name $sql [list 1 $error]]
}

proc doPassiveTest {isRestart name sql catchres} {
  if {![info exists ::DO_MALLOC_TEST]} { set ::DO_MALLOC_TEST 1 }

  switch $::DO_MALLOC_TEST {
    0 { # No malloc failures.
      do_test $name [list catchsql $sql] $catchres
      return

    }
    1 { # Simulate transient failures.
      set nRepeat 1
      set zName "transient"
      set nStartLimit 100000
      set nBackup 1
    }
    2 { # Simulate persistent failures.
      set nRepeat 1
      set zName "persistent"
      set nStartLimit 100000
      set nBackup 1
    }
    3 { # Simulate transient failures with extra brute force.
      set nRepeat 100000
      set zName "ridiculous"
      set nStartLimit 1
      set nBackup 10
    }
  }

  # The set of acceptable results from running [catchsql $sql].
  #
  set answers [list {1 {out of memory}} $catchres]
  set str [join $answers " OR "]


  set nFail 1
  for {set iLimit $nStartLimit} {$nFail} {incr iLimit} {
    for {set iFail 1} {$nFail && $iFail<=$iLimit} {incr iFail} {

      for {set iTest 0} {$iTest<$nBackup && ($iFail-$iTest)>0} {incr iTest} {

        if {$isRestart} { sqlite3 db test.db }

        sqlite3_memdebug_fail [expr $iFail-$iTest] -repeat $nRepeat
        set res [uplevel [list catchsql $sql]]
        if {[lsearch -exact $answers $res]>=0} { set res $str }

        set testname "$name.$zName.$iFail"
        do_test "$name.$zName.$iLimit.$iFail" [list set {} $res] $str


        set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign]

      }
    }
  }
}


#-------------------------------------------------------------------------
# Test a single write to the database. In this case a  "write" is a 

Added test/fts3cov.test.











































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# 2009 December 03
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# The tests in this file are structural coverage tests. They are designed
# to complement the tests in fts3rnd.test and fts3doc.test. Between them,
# the three files should provide full coverage of the fts3 extension code.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl
source $testdir/malloc_common.tcl

set DO_MALLOC_TEST 0

#--------------------------------------------------------------------------
# When it first needs to read a block from the %_segments table, the FTS3 
# module compiles an SQL statement for that purpose. The statement is 
# stored and reused each subsequent time a block is read. This test case 
# tests the effects of an OOM error occuring while compiling the statement.
#
# Similarly, when FTS3 first needs to scan through a set of segment leaves
# to find a set of documents that matches a term, it allocates a string
# containing the text of the required SQL, and compiles one or more 
# statements to traverse the leaves. This test case tests that OOM errors
# that occur while allocating this string and statement are handled correctly
# also.
#
do_test fts3cov-1.1 {
  execsql { 
    CREATE VIRTUAL TABLE t1 USING fts3(x);
    INSERT INTO t1(t1) VALUES('nodesize=24');
    BEGIN;
      INSERT INTO t1 VALUES('Is the night chilly and dark?');
      INSERT INTO t1 VALUES('The night is chilly, but not dark.');
      INSERT INTO t1 VALUES('The thin gray cloud is spread on high,');
      INSERT INTO t1 VALUES('It covers but not hides the sky.');
    COMMIT;
    SELECT count(*)>0 FROM t1_segments;
  }
} {1}

set DO_MALLOC_TEST 1
do_restart_select_test fts3cov-1.2 {
  SELECT docid FROM t1 WHERE t1 MATCH 'chilly';
} {1 2}
set DO_MALLOC_TEST 0

#--------------------------------------------------------------------------
# When querying the full-text index, if an expected internal node block is 
# missing from the %_segments table, or if a NULL value is stored in the 
# %_segments table instead of a binary blob, database corruption should be 
# reported.
#
# Even with tiny 24 byte nodes, it takes a fair bit of data to produce a
# segment b-tree that uses the %_segments table to store internal nodes. 
#
do_test fts3cov-2.1 {
  execsql {
    INSERT INTO t1(t1) VALUES('nodesize=24');
    BEGIN;
      INSERT INTO t1 VALUES('The moon is behind, and at the full;');
      INSERT INTO t1 VALUES('And yet she looks both small and dull.');
      INSERT INTO t1 VALUES('The night is chill, the cloud is gray:');
      INSERT INTO t1 VALUES('''T is a month before the month of May,');
      INSERT INTO t1 VALUES('And the Spring comes slowly up this way.');
      INSERT INTO t1 VALUES('The lovely lady, Christabel,');
      INSERT INTO t1 VALUES('Whom her father loves so well,');
      INSERT INTO t1 VALUES('What makes her in the wood so late,');
      INSERT INTO t1 VALUES('A furlong from the castle gate?');
      INSERT INTO t1 VALUES('She had dreams all yesternight');
      INSERT INTO t1 VALUES('Of her own betrothed knight;');
      INSERT INTO t1 VALUES('And she in the midnight wood will pray');
      INSERT INTO t1 VALUES('For the weal of her lover that''s far away.');
    COMMIT;

    INSERT INTO t1(t1) VALUES('optimize');
    SELECT substr(hex(root), 1, 2) FROM t1_segdir;
  }
} {03}

# Test the "missing entry" case:
do_test fts3cov-2.1 {
  set root [db one {SELECT root FROM t1_segdir}]
  read_fts3varint [string range $root 1 end] left_child
  execsql { DELETE FROM t1_segments WHERE blockid = $left_child }
} {}
do_error_test fts3cov-2.2 {
  SELECT * FROM t1 WHERE t1 MATCH 'c*'
} {database disk image is malformed}

# Test the "replaced with NULL" case:
do_test fts3cov-2.3 {
  execsql { INSERT INTO t1_segments VALUES($left_child, NULL) }
} {}
do_error_test fts3cov-2.4 {
  SELECT * FROM t1 WHERE t1 MATCH 'cloud'
} {database disk image is malformed}

#--------------------------------------------------------------------------
# The following tests are to test the effects of OOM errors while storing
# terms in the pending-hash table. Specifically, while creating doclist
# blobs to store in the table. More specifically, to test OOM errors while
# appending column numbers to doclists. For example, if a doclist consists
# of:
#
#   <docid> <column 0 offset-list> 0x01 <column N> <column N offset-list>
#
# The following tests check that malloc errors encountered while appending
# the "0x01 <column N>" data to the dynamically growable blob used to 
# accumulate the doclist in memory are handled correctly.
#
do_test fts3cov-3.1 {
  set cols [list]
  set vals [list]
  for {set i 0} {$i < 120} {incr i} {
    lappend cols "col$i"
    lappend vals "'word'"
  }
  execsql "CREATE VIRTUAL TABLE t2 USING fts3([join $cols ,])"
} {}
set DO_MALLOC_TEST 1 
do_write_test fts3cov-3.2 t2_content "
  INSERT INTO t2(docid, [join $cols ,]) VALUES(1, [join $vals ,])
"
do_write_test fts3cov-3.3 t2_content "
  INSERT INTO t2(docid, [join $cols ,]) VALUES(200, [join $vals ,])
"
do_write_test fts3cov-3.4 t2_content "
  INSERT INTO t2(docid, [join $cols ,]) VALUES(60000, [join $vals ,])
"

#-------------------------------------------------------------------------
# If too much data accumulates in the pending-terms hash table, it is
# flushed to the database automatically, even if the transaction has not
# finished. The following tests check the effects of encountering an OOM 
# while doing this.
#
do_test fts3cov-4.1 {
  execsql {
    CREATE VIRTUAL TABLE t3 USING fts3(x);
    INSERT INTO t3(t3) VALUES('nodesize=24');
    INSERT INTO t3(t3) VALUES('maxpending=100');
  }
} {}
set DO_MALLOC_TEST 1 
do_write_test fts3cov-4.2 t3_content {
  INSERT INTO t3(docid, x)
    SELECT 1, 'Then Christabel stretched forth her hand,' UNION ALL
    SELECT 3, 'And comforted fair Geraldine:'             UNION ALL
    SELECT 4, '''O well, bright dame, may you command'    UNION ALL
    SELECT 5, 'The service of Sir Leoline;'               UNION ALL
    SELECT 2, 'And gladly our stout chivalry'             UNION ALL
    SELECT 7, 'Will he send forth, and friends withal,'   UNION ALL
    SELECT 8, 'To guide and guard you safe and free'      UNION ALL
    SELECT 6, 'Home to your noble father''s hall.'''
}

#-------------------------------------------------------------------------
# When building the internal tree structure for each segment b-tree, FTS3
# assumes that the content of each internal node will be less than
# $nodesize bytes, where $nodesize is the advisory node size. If this turns
# out to be untrue, then an extra buffer must be malloc'd for each term.
# This test case tests these paths and the effects of said mallocs failing
# by inserting insert a document with some fairly large terms into a
# full-text table with a very small node-size. 
#
# Test this handling of large terms in three contexts:
#
#   1. When flushing the pending-terms table.
#   2. When optimizing the data structures using the INSERT syntax. 
#   2. When optimizing the data structures using the deprecated SELECT syntax. 
#
do_test fts3cov-5.1 {
  execsql {
    CREATE VIRTUAL TABLE t4 USING fts3(x);
    INSERT INTO t4(t4) VALUES('nodesize=24');
  }
} {}
set DO_MALLOC_TEST 1

# Test when flushing pending-terms table.
do_write_test fts3cov-5.2 t4_content {
  INSERT INTO t4
    SELECT 'ItisanancientMarinerAndhestoppethoneofthreeAA' UNION ALL
    SELECT 'ItisanancientMarinerAndhestoppethoneofthreeBB' UNION ALL
    SELECT 'ItisanancientMarinerAndhestoppethoneofthreeCC' UNION ALL
    SELECT 'BythylonggreybeardandglitteringeyeNowwhereforestoppstAA' UNION ALL
    SELECT 'BythylonggreybeardandglitteringeyeNowwhereforestoppstBB' UNION ALL
    SELECT 'BythylonggreybeardandglitteringeyeNowwhereforestoppstCC'
}

# Test when optimizing via INSERT.
do_test fts3cov-5.3 { execsql { INSERT INTO t4 VALUES('extra!') } } {}
do_write_test fts3cov-5.2 t4_segments { INSERT INTO t4(t4) VALUES('optimize') }

# Test when optimizing via SELECT.
do_test fts3cov-5.5 { execsql { INSERT INTO t4 VALUES('more extra!') } } {}
do_write_test fts3cov-5.6 t4_segments {
  SELECT * FROM (SELECT optimize(t4) FROM t4 LIMIT 1)
  EXCEPT SELECT 'Index optimized'
}

#-------------------------------------------------------------------------
# When merging all segments at a given level to create a single segment
# at level+1, FTS3 runs a query of the form:
#
#   SELECT count(*) FROM %_segdir WHERE level = ?
#
# The query is compiled the first time this operation is required and
# reused thereafter. This test aims to test the effects of an OOM while
# preparing and executing this query for the first time.
#
# Then, keep inserting rows into the table so that the effects of an OOM
# while re-executing the same query can also be tested.
#
do_test fts3cov-6.1 {
  execsql { CREATE VIRTUAL TABLE t5 USING fts3(x) }
  for {set i 0} {$i<16} {incr i} { execsql "INSERT INTO t5 VALUES('term$i')" }
  execsql { SELECT count(*) FROM t5_segdir }
} {16}

# First time.
db close
sqlite3 db test.db
do_write_test fts3cov-6.2 t5_content {
  INSERT INTO t5 VALUES('segment number 16!');
}

# Second time.
do_test fts3cov-6.3 {
  for {set i 1} {$i<16} {incr i} { execsql "INSERT INTO t5 VALUES('term$i')" }
  execsql { SELECT count(*) FROM t5_segdir }
} {17}
do_write_test fts3cov-6.4 t5_content {
  INSERT INTO t5 VALUES('segment number 16!');
}

#-------------------------------------------------------------------------
# Update the docid of a row. Test this in two scenarios:
#
#   1. When the row being updated is the only row in the table.
#   2. When it is not.
#
# The two cases above take different paths because in case 1 all data 
# structures can simply be emptied before inserting the new row record.
# In case 2, the data structures actually have to be updated.
#
do_test fts3cov-7.1 {
  execsql {
    CREATE VIRTUAL TABLE t7 USING fts3(a, b, c);
    INSERT INTO t7 VALUES('A', 'B', 'C');
    UPDATE t7 SET docid = 5;
    SELECT docid, * FROM t7;
  }
} {5 A B C}
do_test fts3cov-7.2 {
  execsql {
    INSERT INTO t7 VALUES('D', 'E', 'F');
    UPDATE t7 SET docid = 1 WHERE docid = 6;
    SELECT docid, * FROM t7;
  }
} {1 D E F 5 A B C}

#-------------------------------------------------------------------------
# If a set of documents are modified within a transaction, the 
# pending-terms table must be flushed each time a document with a docid
# less than or equal to the previous docid is modified. 
#
# This test checks the effects of an OOM error occuring when the 
# pending-terms table is flushed for this reason as part of a DELETE 
# statement.
#
do_malloc_test fts3cov-8 -sqlprep {
  BEGIN;
    CREATE VIRTUAL TABLE t8 USING fts3;
    INSERT INTO t8 VALUES('the output of each batch run');
    INSERT INTO t8 VALUES('(possibly a day''s work)');
    INSERT INTO t8 VALUES('was written to two separate disks');
  COMMIT;
} -sqlbody {
  BEGIN;
    DELETE FROM t8 WHERE rowid = 3;
    DELETE FROM t8 WHERE rowid = 2;
    DELETE FROM t8 WHERE rowid = 1;
  COMMIT;
}

#-------------------------------------------------------------------------
# Test some branches in the code that handles "special" inserts like:
#
#   INSERT INTO t1(t1) VALUES('optimize');
#
# Also test that an optimize (INSERT method) works on an empty table.
#
set DO_MALLOC_TEST 0
do_test fts3cov-9.1 {
  execsql { CREATE VIRTUAL TABLE xx USING fts3 }
} {}
do_error_test fts3cov-9.2 {
  INSERT INTO xx(xx) VALUES('optimise');   -- British spelling
} {SQL logic error or missing database}
do_error_test fts3cov-9.3 {
  INSERT INTO xx(xx) VALUES('short');
} {SQL logic error or missing database}
do_error_test fts3cov-9.4 {
  INSERT INTO xx(xx) VALUES('waytoolongtobecorrect');
} {SQL logic error or missing database}
do_test fts3cov-9.5 {
  execsql { INSERT INTO xx(xx) VALUES('optimize') }
} {}

#-------------------------------------------------------------------------
# Test that a table can be optimized in the middle of a transaction when
# the pending-terms table is non-empty. This case involves some extra
# branches because data must be read not only from the database, but
# also from the pending-terms table.
#
do_malloc_test fts3cov-10 -sqlprep {
  CREATE VIRTUAL TABLE t10 USING fts3;
  INSERT INTO t10 VALUES('Optimising images for the web is a tricky business');
  BEGIN;
    INSERT INTO t10 VALUES('You have to get the right balance between');
} -sqlbody {
  INSERT INTO t10(t10) VALUES('optimize');
}

#-------------------------------------------------------------------------
# Test a full-text query for a term that was once in the index, but is
# no longer.
#
do_test fts3cov-11.1 {
  execsql { 
    CREATE VIRTUAL TABLE xx USING fts3;
    INSERT INTO xx VALUES('one two three');
    INSERT INTO xx VALUES('four five six');
    DELETE FROM xx WHERE docid = 1;
  }
  execsql { SELECT * FROM xx WHERE xx MATCH 'two' }
} {}


do_malloc_test fts3cov-12 -sqlprep {
  CREATE VIRTUAL TABLE t12 USING fts3;
  INSERT INTO t12 VALUES('is one of the two togther');
  BEGIN;
    INSERT INTO t12 VALUES('one which was appropriate at the time');
} -sqlbody {
  SELECT * FROM t12 WHERE t12 MATCH 'one'
}

do_malloc_test fts3cov-13 -sqlprep {
  PRAGMA encoding = 'UTF-16';
  CREATE VIRTUAL TABLE t13 USING fts3;
  INSERT INTO t13 VALUES('two scalar functions');
  INSERT INTO t13 VALUES('scalar two functions');
  INSERT INTO t13 VALUES('functions scalar two');
} -sqlbody {
  SELECT snippet(t13, '%%', '%%', '#') FROM t13 WHERE t13 MATCH 'two';
  SELECT snippet(t13, '%%', '%%') FROM t13 WHERE t13 MATCH 'two';
  SELECT snippet(t13, '%%') FROM t13 WHERE t13 MATCH 'two';
}

finish_test

Changes to test/fts3rnd.test.

4
5
6
7
8
9
10


































































11
12
13
14
15
16
17
18
19


20
21


22
23
24
25
26

27
28
29

30
31
32
33
34
35
36
..
67
68
69
70
71
72
73
74




75
76


77


78
79

80
81
82
83
84
85
86
...
140
141
142
143
144
145
146
147

148
149
150
151








152
153
154
155
156
157
158
...
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288


289
290
291
292
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Brute force (random data) tests for FTS3.
#



































































set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl



set nVocab 100
set lVocab [list]



# Generate a vocabulary of nVocab words. Each word is 3 characters long.
#
set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
for {set i 0} {$i < $nVocab} {incr i} {

  set    word [lindex $lChar [expr int(rand()*26)]]
  append word [lindex $lChar [expr int(rand()*26)]]
  append word [lindex $lChar [expr int(rand()*26)]]

  lappend lVocab $word
}

proc random_term {} {
  lindex $::lVocab [expr {int(rand()*$::nVocab)}]
}

................................................................................
  set doc  [generate_doc [expr int((rand()*100))]]
  lset ::t1($rowid) $iCol $doc
  execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
}

proc simple_phrase {zPrefix} {
  set ret [list]
  set pattern "*[string map {* \[a-z\]} $zPrefix]*"




  foreach {key value} [array get ::t1] {
    if {[string match $pattern $value]} { lappend ret $key }


  }


  lsort -integer $ret
}

proc simple_near {termlist nNear} {
  set ret [list]

  foreach {key value} [array get ::t1] {
    foreach v $value {

      set l [lsearch -exact -all $v [lindex $termlist 0]]
................................................................................
foreach nodesize {50 500 1000 2000} {
  catch { array unset ::t1 }

  # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
  #
  db transaction {
    catchsql { DROP TABLE t1 }
    execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c, test:$nodesize)"

    for {set i 0} {$i < 100} {incr i} { insert_row $i }
  }
  
  for {set iTest 1} {$iTest <= 100} {incr iTest} {








  
    # Delete one row, update one row and insert one row.
    #
    set rows [array names ::t1]
    set nRow [llength $rows]
    set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
    set iDelete $iUpdate
................................................................................
    while {$iDelete == $iUpdate} {
      set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
    }
    set iInsert $iUpdate
    while {[info exists ::t1($iInsert)]} {
      set iInsert [expr {int(rand()*1000000)}]
    }
    db transaction {
      insert_row $iInsert
      update_row $iUpdate
      delete_row $iDelete
    }

    # Pick 10 terms from the vocabulary. Check that the results of querying
    # the database for the set of documents containing each of these terms
    # is the same as the result obtained by scanning the contents of the Tcl 
    # array for each term.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [random_term]
      do_test fts3rnd-1.$nodesize.$iTest.1.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $term }
      } [simple_phrase $term]
    }

    # This time, use the first two characters of each term as a term prefix
    # to query for. Test that querying the Tcl array produces the same results
    # as querying the FTS3 table for the prefix.
    #
    for {set i 0} {$i < 10} {incr i} {
      set prefix [string range [random_term] 0 1]
      set match "${prefix}*"
      do_test fts3rnd-1.$nodesize.$iTest.2.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_phrase $match]
    }

    # Similar to the above, except for phrase queries.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [list [random_term] [random_term]]
      set match "\"$term\""
      do_test fts3rnd-1.$nodesize.$iTest.3.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_phrase $term]
    }

    # Three word phrases.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [list [random_term] [random_term] [random_term]]
      set match "\"$term\""
      do_test fts3rnd-1.$nodesize.$iTest.4.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_phrase $term]
    }

    # Three word phrases made up of term-prefixes.
    #
    for {set i 0} {$i < 10} {incr i} {
      set    query "[string range [random_term] 0 1]* "
      append query "[string range [random_term] 0 1]* "
      append query "[string range [random_term] 0 1]*"

      set match "\"$query\""
      do_test fts3rnd-1.$nodesize.$iTest.5.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_phrase $query]
    }

    # A NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < 10} {incr i} {
      set terms [list [random_term] [random_term]]
      set match [join $terms " NEAR "]
      do_test fts3rnd-1.$nodesize.$iTest.6.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_near $terms 10]
    }

    # A 3-way NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < 10} {incr i} {
      set terms [list [random_term] [random_term] [random_term]]
      set nNear 11
      set match [join $terms " NEAR/$nNear "]
      set fts3 [execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }]
      do_test fts3rnd-1.$nodesize.$iTest.7.$i {
        execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
      } [simple_near $terms $nNear]
    }
    
    # Set operations on simple term queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < 10} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set match "$term1 $op $term2"
        do_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
        } [$proc [simple_phrase $term1] [simple_phrase $term2]]
      }
    }
 
    # Set operations on NEAR queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < 10} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set term3 [random_term]
        set term4 [random_term]
        set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
        do_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }
        } [$proc                                  \
            [simple_near [list $term1 $term2] 10] \
            [simple_near [list $term3 $term4] 10]
          ]
      }
    }


  }
}

finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>
>


>
>





>


|
>







 







<
>
>
>
>

<
>
>
|
>
>
|

>







 







|
>



|
>
>
>
>
>
>
>
>







 







|



|








|
|







|
|

|
|





|


|
|





|


|
|





|
|
|
|


|
|





|


|
|





|




|
|










|



|
|











|





|
|






>
>




4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
...
139
140
141
142
143
144
145

146
147
148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
...
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
...
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Brute force (random data) tests for FTS3.
#

#-------------------------------------------------------------------------
#
# The FTS3 tests implemented in this file focus on testing that FTS3
# returns the correct set of documents for various types of full-text
# query. This is done using pseudo-randomly generated data and queries.
# The expected result of each query is calculated using Tcl code.
#
#   1. The database is initialized to contain a single table with three
#      columns. 100 rows are inserted into the table. Each of the three
#      values in each row is a document consisting of between 0 and 100
#      terms. Terms are selected from a vocabulary of $G(nVocab) terms.
#
#   2. The following is performed 100 times:
#
#      a. A row is inserted into the database. The row contents are 
#         generated as in step 1. The docid is a pseudo-randomly selected
#         value between 0 and 1000000.
# 
#      b. A psuedo-randomly selected row is updated. One of its columns is
#         set to contain a new document generated in the same way as the
#         documents in step 1.
# 
#      c. A psuedo-randomly selected row is deleted.
# 
#      d. For each of several types of fts3 queries, 10 SELECT queries
#         of the form:
# 
#           SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
# 
#         are evaluated. The results are compared to those calculated by
#         Tcl code in this file. The patterns used for the different query
#         types are:
# 
#           1.  query = <term>
#           2.  query = <prefix>
#           3.  query = "<term> <term>"
#           4.  query = "<term> <term> <term>"
#           5.  query = "<prefix> <prefix> <prefix>"
#           6.  query = <term> NEAR <term>
#           7.  query = <term> NEAR/11 <term> NEAR/11 <term>
#           8.  query = <term> OR <term>
#           9.  query = <term> NOT <term>
#           10. query = <term> AND <term>
#           11. query = <term> NEAR <term> OR <term> NEAR <term>
#           12. query = <term> NEAR <term> NOT <term> NEAR <term>
#           13. query = <term> NEAR <term> AND <term> NEAR <term>
# 
#         where <term> is a term psuedo-randomly selected from the vocabulary
#         and prefix is the first 2 characters of such a term followed by
#         a "*" character.
#     
#      Every second iteration, steps (a) through (d) above are performed
#      within a single transaction. This forces the queries in (d) to
#      read data from both the database and the in-memory hash table
#      that caches the full-text index entries created by steps (a), (b)
#      and (c) until the transaction is committed.
#
# The procedure above is run 5 times, using advisory fts3 node sizes of 50,
# 500, 1000 and 2000 bytes.
#
# After the test using an advisory node-size of 50, an OOM test is run using
# the database. This test is similar to step (d) above, except that it tests
# the effects of transient and persistent OOM conditions encountered while
# executing each query.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl

set G(nVocab) 100

set nVocab 100
set lVocab [list]

expr srand(0)

# Generate a vocabulary of nVocab words. Each word is 3 characters long.
#
set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
for {set i 0} {$i < $nVocab} {incr i} {
  set len [expr int(rand()*3)+2]
  set    word [lindex $lChar [expr int(rand()*26)]]
  append word [lindex $lChar [expr int(rand()*26)]]
  if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
  if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
  lappend lVocab $word
}

proc random_term {} {
  lindex $::lVocab [expr {int(rand()*$::nVocab)}]
}

................................................................................
  set doc  [generate_doc [expr int((rand()*100))]]
  lset ::t1($rowid) $iCol $doc
  execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
}

proc simple_phrase {zPrefix} {
  set ret [list]


  set reg [string map {* {[^ ]*}} $zPrefix]
  set reg " $reg "

  foreach {key value} [array get ::t1] {

    foreach col $value {
      if {[regexp $reg " $col "]} {lappend ret $key}
    }
  }

  lsort -uniq -integer $ret
}

proc simple_near {termlist nNear} {
  set ret [list]

  foreach {key value} [array get ::t1] {
    foreach v $value {

      set l [lsearch -exact -all $v [lindex $termlist 0]]
................................................................................
foreach nodesize {50 500 1000 2000} {
  catch { array unset ::t1 }

  # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
  #
  db transaction {
    catchsql { DROP TABLE t1 }
    execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)"
    execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
    for {set i 0} {$i < 100} {incr i} { insert_row $i }
  }
  
  for {set iTest 0} {$iTest <= 100} {incr iTest} {
    catchsql COMMIT

    set DO_MALLOC_TEST 0
    set nRep 10
    if {$iTest==100 && $nodesize==50} { 
      set DO_MALLOC_TEST 1 
      set nRep 2
    }
  
    # Delete one row, update one row and insert one row.
    #
    set rows [array names ::t1]
    set nRow [llength $rows]
    set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
    set iDelete $iUpdate
................................................................................
    while {$iDelete == $iUpdate} {
      set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
    }
    set iInsert $iUpdate
    while {[info exists ::t1($iInsert)]} {
      set iInsert [expr {int(rand()*1000000)}]
    }
    execsql BEGIN
      insert_row $iInsert
      update_row $iUpdate
      delete_row $iDelete
    if {0==($iTest%2)} { execsql COMMIT }

    # Pick 10 terms from the vocabulary. Check that the results of querying
    # the database for the set of documents containing each of these terms
    # is the same as the result obtained by scanning the contents of the Tcl 
    # array for each term.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [random_term]
      do_select_test fts3rnd-1.$nodesize.$iTest.1.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $term
      } [simple_phrase $term]
    }

    # This time, use the first two characters of each term as a term prefix
    # to query for. Test that querying the Tcl array produces the same results
    # as querying the FTS3 table for the prefix.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set prefix [string range [random_term] 0 end-1]
      set match "${prefix}*"
      do_select_test fts3rnd-1.$nodesize.$iTest.2.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $match]
    }

    # Similar to the above, except for phrase queries.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term]]
      set match "\"$term\""
      do_select_test fts3rnd-1.$nodesize.$iTest.3.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term] [random_term]]
      set match "\"$term\""
      do_select_test fts3rnd-1.$nodesize.$iTest.4.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases made up of term-prefixes.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set    query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]*"

      set match "\"$query\""
      do_select_test fts3rnd-1.$nodesize.$iTest.5.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $query]
    }

    # A NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term]]
      set match [join $terms " NEAR "]
      do_select_test fts3rnd-1.$nodesize.$iTest.6.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match 
      } [simple_near $terms 10]
    }

    # A 3-way NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term] [random_term]]
      set nNear 11
      set match [join $terms " NEAR/$nNear "]
      set fts3 [execsql { SELECT docid FROM t1 WHERE t1 MATCH $match }]
      do_select_test fts3rnd-1.$nodesize.$iTest.7.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_near $terms $nNear]
    }
    
    # Set operations on simple term queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set match "$term1 $op $term2"
        do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc [simple_phrase $term1] [simple_phrase $term2]]
      }
    }
 
    # Set operations on NEAR queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set term3 [random_term]
        set term4 [random_term]
        set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
        do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc                                  \
            [simple_near [list $term1 $term2] 10] \
            [simple_near [list $term3 $term4] 10]
          ]
      }
    }

    catchsql COMMIT
  }
}

finish_test

Added test/join6.test.





























































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# 2009 December 9
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for N-way joins (N>2) which make
# use of USING or NATURAL JOIN.  For such joins, the USING and
# NATURAL JOIN processing needs to search all tables to the left
# of the join looking for a match.  See ticket [f74beaabde]
# for additional information.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# The problem as initially reported on the mailing list:
#
do_test join6-1.1 {
  execsql {
    CREATE TABLE t1(a);
    CREATE TABLE t2(a);
    CREATE TABLE t3(a,b);
    INSERT INTO t1 VALUES(1);
    INSERT INTO t3 VALUES(1,2);

    SELECT * FROM t1 LEFT JOIN t2 USING(a) LEFT JOIN t3 USING(a);
  }
} {1 2}
do_test join6-1.2 {
  execsql {
    SELECT t1.a, t3.b 
      FROM t1 LEFT JOIN t2 ON t1.a=t2.a LEFT JOIN t3 ON t2.a=t3.a;
  }
} {1 {}}
do_test join6-1.3 {
  execsql {
    SELECT t1.a, t3.b
      FROM t1 LEFT JOIN t2 ON t1.a=t2.a LEFT JOIN t3 ON t1.a=t3.a;
  }
} {1 2}


do_test join6-2.1 {
  execsql {
    DROP TABLE t1;
    DROP TABLE t2;
    DROP TABLE t3;

    CREATE TABLE t1(x,y);
    CREATE TABLE t2(y,z);
    CREATE TABLE t3(x,z);

    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(3,4);

    INSERT INTO t2 VALUES(2,3);
    INSERT INTO t2 VALUES(4,5);

    INSERT INTO t3 VALUES(1,3);
    INSERT INTO t3 VALUES(3,5);

    SELECT * FROM t1 JOIN t2 USING (y) JOIN t3 USING(x);
  }
} {1 2 3 3 3 4 5 5}
do_test join6-2.2 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;
  }
} {1 2 3 3 4 5}


do_test join6-3.1 {
  execsql {
    DROP TABLE t1;
    DROP TABLE t2;
    DROP TABLE t3;

    CREATE TABLE t1(a,x,y);
    INSERT INTO t1 VALUES(1,91,92);
    INSERT INTO t1 VALUES(2,93,94);
    
    CREATE TABLE t2(b,y,z);
    INSERT INTO t2 VALUES(3,92,93);
    INSERT INTO t2 VALUES(4,94,95);
    
    CREATE TABLE t3(c,x,z);
    INSERT INTO t3 VALUES(5,91,93);
    INSERT INTO t3 VALUES(6,99,95);
    
    SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;
  }
} {1 91 92 3 93 5}
do_test join6-3.2 {
  execsql {
    SELECT * FROM t1 JOIN t2 NATURAL JOIN t3;
  }
} {1 91 92 3 92 93 5}
do_test join6-3.3 {
  execsql {
    SELECT * FROM t1 JOIN t2 USING(y) NATURAL JOIN t3;
  }
} {1 91 92 3 93 5}
do_test join6-3.4 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN t2 JOIN t3 USING(x,z);
  }
} {1 91 92 3 93 5}
do_test join6-3.5 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN t2 JOIN t3 USING(x);
  }
} {1 91 92 3 93 5 93}
do_test join6-3.6 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN t2 JOIN t3 USING(z);
  }
} {1 91 92 3 93 5 91 2 93 94 4 95 6 99}

do_test join6-4.1 {
  execsql {
    SELECT * FROM
       (SELECT 1 AS a, 91 AS x, 92 AS y UNION SELECT 2, 93, 94)
       NATURAL JOIN t2 NATURAL JOIN t3
  }
} {1 91 92 3 93 5}
do_test join6-4.2 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN
       (SELECT 3 AS b, 92 AS y, 93 AS z UNION SELECT 4, 94, 95)
       NATURAL JOIN t3
  }
} {1 91 92 3 93 5}
do_test join6-4.3 {
  execsql {
    SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN
       (SELECT 5 AS c, 91 AS x, 93 AS z UNION SELECT 6, 99, 95)
  }
} {1 91 92 3 93 5}











finish_test

Added test/tkt-31338dca7e.test.



























































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# 2009 December 16
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests to verify that ticket [31338dca7e] has been
# fixed.  Ticket [31338dca7e] demonstrates problems with the OR-clause
# optimization in joins where the WHERE clause is of the form
#
#     (x AND y) OR z
#
# And the x and y subterms from from different tables of the join.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test tkt-31338-1.1 {
  db eval {
    CREATE TABLE t1(x);
    CREATE TABLE t2(y);
    INSERT INTO t1 VALUES(111);
    INSERT INTO t1 VALUES(222);
    INSERT INTO t2 VALUES(333);
    INSERT INTO t2 VALUES(444);
    SELECT * FROM t1, t2
     WHERE (x=111 AND y!=444) OR x=222
     ORDER BY x, y;
  }
} {111 333 222 333 222 444}

do_test tkt-31338-1.2 {
  db eval {
    CREATE INDEX t1x ON t1(x);
    SELECT * FROM t1, t2
     WHERE (x=111 AND y!=444) OR x=222
     ORDER BY x, y;
  }
} {111 333 222 333 222 444}

do_test tkt-31338-2.1 {
  db eval {
    CREATE TABLE t3(v,w);
    CREATE TABLE t4(x,y);
    CREATE TABLE t5(z);
    INSERT INTO t3 VALUES(111,222);
    INSERT INTO t3 VALUES(333,444);
    INSERT INTO t4 VALUES(222,333);
    INSERT INTO t4 VALUES(444,555);
    INSERT INTO t5 VALUES(888);
    INSERT INTO t5 VALUES(999);
    
    SELECT * FROM t3, t4, t5
     WHERE (v=111 AND x=w AND z!=999) OR (v=333 AND x=444)
     ORDER BY v, w, x, y, z;
  }
} {111 222 222 333 888 333 444 444 555 888 333 444 444 555 999}

do_test tkt-31338-2.2 {
  db eval {
   CREATE INDEX t3v ON t3(v);
   CREATE INDEX t4x ON t4(x);
    SELECT * FROM t3, t4, t5
     WHERE (v=111 AND x=w AND z!=999) OR (v=333 AND x=444)
     ORDER BY v, w, x, y, z;
  }
} {111 222 222 333 888 333 444 444 555 888 333 444 444 555 999}


finish_test

Added test/tkt-78e04e52ea.test.









































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# 2009 December 8
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# Verify that we can create zero-length tables.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test tkt-78e04-1.0 {
  execsql {
    CREATE TABLE ""("" UNIQUE);
    CREATE TABLE t2(x);
    INSERT INTO "" VALUES(1);
    INSERT INTO t2 VALUES(2);
    SELECT * FROM "", t2;
  }
} {1 2}
do_test tkt-78e04-1.1 {
  catchsql {
    INSERT INTO "" VALUES(1);
  }
} {1 {column  is not unique}}
do_test tkt-78e04-1.2 {
  execsql {
    PRAGMA table_info("");
  }
} {0 {} {} 0 {} 0}
do_test tkt-78e04-1.3 {
  execsql {
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT * FROM "" WHERE "" LIKE 'abc%';
  }
} {0 0 {TABLE }}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 {TABLE t2 WITH INDEX }}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 {TABLE t2}}

finish_test

Added test/tkt-d82e3f3721.test.

































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# 2009 September 2
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests to verify that ticket [d82e3f3721] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test tkt-d82e3-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b);
    INSERT INTO t1 VALUES(null,'abc');
    INSERT INTO t1 VALUES(null,'def');
    DELETE FROM t1;
    INSERT INTO t1 VALUES(null,'ghi');
    SELECT * FROM t1;
  }
} {3 ghi}
do_test tkt-d82e3-1.2 {
  db eval {
    CREATE TEMP TABLE t2(a INTEGER PRIMARY KEY AUTOINCREMENT, b);
    INSERT INTO t2 VALUES(null,'jkl');
    INSERT INTO t2 VALUES(null,'mno');
    DELETE FROM t2;
    INSERT INTO t2 VALUES(null,'pqr');
    SELECT * FROM t2;
  }
} {3 pqr}
do_test tkt-d82e3-1.3 {
  db eval {
    SELECT 'main', * FROM main.sqlite_sequence
    UNION ALL
    SELECT 'temp', * FROM temp.sqlite_sequence
    ORDER BY 2
  }
} {main t1 3 temp t2 3}
do_test tkt-d82e3-1.4 {
  db eval {
    VACUUM;
    SELECT 'main', * FROM main.sqlite_sequence
    UNION ALL
    SELECT 'temp', * FROM temp.sqlite_sequence
    ORDER BY 2
  }
} {main t1 3 temp t2 3}

sqlite3 db2 test.db
do_test tkt-d82e3-2.1 {
  db eval {
    CREATE TEMP TABLE t3(x);
    INSERT INTO t3 VALUES(1);
  }
  db2 eval {
    CREATE TABLE t3(y,z);
    INSERT INTO t3 VALUES(8,9);
  }
  db eval {
    SELECT * FROM temp.t3 JOIN main.t3;
  }
} {1 8 9}
do_test tkt-d82e3-2.2 {
  db eval {
    VACUUM;
    SELECT * FROM temp.t3 JOIN main.t3;
  }
} {1 8 9}
db2 close

finish_test

Deleted test/tkt-d82e3f3721.txt.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# 2009 September 2
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests to verify that ticket [d82e3f3721] has been
# fixed.  
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test tkt-d82e3-1.1 {
  db eval {
    CREATE TABLE t1(a INTEGER PRIMARY KEY AUTOINCREMENT, b);
    INSERT INTO t1 VALUES(null,'abc');
    INSERT INTO t1 VALUES(null,'def');
    DELETE FROM t1;
    INSERT INTO t1 VALUES(null,'ghi');
    SELECT * FROM t1;
  }
} {3 ghi}
do_test tkt-d82e3-1.2 {
  db eval {
    CREATE TEMP TABLE t2(a INTEGER PRIMARY KEY AUTOINCREMENT, b);
    INSERT INTO t2 VALUES(null,'jkl');
    INSERT INTO t2 VALUES(null,'mno');
    DELETE FROM t2;
    INSERT INTO t2 VALUES(null,'pqr');
    SELECT * FROM t2;
  }
} {3 pqr}
do_test tkt-d82e3-1.3 {
  db eval {
    SELECT 'main', * FROM main.sqlite_sequence
    UNION ALL
    SELECT 'temp', * FROM temp.sqlite_sequence
    ORDER BY 2
  }
} {main t1 3 temp t2 3}
do_test tkt-d82e3-1.4 {
  db eval {
    VACUUM;
    SELECT 'main', * FROM main.sqlite_sequence
    UNION ALL
    SELECT 'temp', * FROM temp.sqlite_sequence
    ORDER BY 2
  }
} {main t1 3 temp t2 3}

sqlite3 db2 test.db
do_test tkt-d82e3-2.1 {
  db eval {
    CREATE TEMP TABLE t3(x);
    INSERT INTO t3 VALUES(1);
  }
  db2 eval {
    CREATE TABLE t3(y,z);
    INSERT INTO t3 VALUES(8,9);
  }
  db eval {
    SELECT * FROM temp.t3 JOIN main.t3;
  }
} {1 8 9}
do_test tkt-d82e3-2.2 {
  db eval {
    VACUUM;
    SELECT * FROM temp.t3 JOIN main.t3;
  }
} {1 8 9}

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































Changes to test/where8.test.

394
395
396
397
398
399
400




401
402
403
404
405
406
407
...
635
636
637
638
639
640
641








642
643
644
645
646
647
648
    INSERT INTO t4 VALUES(378678316.5, 'his', 'Alpine');
    INSERT INTO t4 VALUES('from', 'of', 'all');
    INSERT INTO t4 VALUES(0938446095, 'same', NULL);
    INSERT INTO t4 VALUES(0938446095, 'Alpine', NULL);
    INSERT INTO t4 VALUES('his', 'of', 378678316.5);
    INSERT INTO t4 VALUES(271.2019091, 'viewed', 3282306647);
    INSERT INTO t4 VALUES('hills', 'all', 'peak');




    COMMIT;
  }
} {}

catch {unset results}
catch {unset A}
catch {unset B}
................................................................................
193  { SELECT * FROM t3, t4 WHERE c >= g OR 'writings' >= c AND b = 'all' }
194  { SELECT * FROM t3, t4 WHERE 'remarkably' < g }
195  { SELECT * FROM t3, t4 WHERE a BETWEEN 'or' AND 'paintings' AND g <= f }
196  { SELECT * FROM t3, t4 WHERE 0938446095 > b OR g <= a OR h > b }
197  { SELECT * FROM t3, t4 WHERE g = 2643383279 AND f = g }
198  { SELECT * FROM t3, t4 WHERE g < 8979323846 }
199  { SELECT * FROM t3, t4 WHERE 'are' <= b }









  } {
    do_test where8-4.$A.$B.1 {
      unset -nocomplain R
      set R [execsql $sql]
      if {![info exists results($B)]} {
        set results($B) $R







>
>
>
>







 







>
>
>
>
>
>
>
>







394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
...
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    INSERT INTO t4 VALUES(378678316.5, 'his', 'Alpine');
    INSERT INTO t4 VALUES('from', 'of', 'all');
    INSERT INTO t4 VALUES(0938446095, 'same', NULL);
    INSERT INTO t4 VALUES(0938446095, 'Alpine', NULL);
    INSERT INTO t4 VALUES('his', 'of', 378678316.5);
    INSERT INTO t4 VALUES(271.2019091, 'viewed', 3282306647);
    INSERT INTO t4 VALUES('hills', 'all', 'peak');
    CREATE TABLE t5(s);
    INSERT INTO t5 VALUES('tab-t5');
    CREATE TABLE t6(t);
    INSERT INTO t6 VALUES(123456);
    COMMIT;
  }
} {}

catch {unset results}
catch {unset A}
catch {unset B}
................................................................................
193  { SELECT * FROM t3, t4 WHERE c >= g OR 'writings' >= c AND b = 'all' }
194  { SELECT * FROM t3, t4 WHERE 'remarkably' < g }
195  { SELECT * FROM t3, t4 WHERE a BETWEEN 'or' AND 'paintings' AND g <= f }
196  { SELECT * FROM t3, t4 WHERE 0938446095 > b OR g <= a OR h > b }
197  { SELECT * FROM t3, t4 WHERE g = 2643383279 AND f = g }
198  { SELECT * FROM t3, t4 WHERE g < 8979323846 }
199  { SELECT * FROM t3, t4 WHERE 'are' <= b }
200  { SELECT * FROM t3, t4 WHERE (a=1415926535 AND f=8628034825)
                               OR (a=6939937510 AND f=2643383279) }
201  { SELECT * FROM t3, t4, t5, t6
        WHERE (a=1415926535 AND f=8628034825 AND s!='hello' AND t!=5)
           OR (a=6939937510 AND f=2643383279 AND s='tab-t5' AND t=123456) }
202  { SELECT * FROM t3, t4, t5, t6
        WHERE (a=1415926535 AND f=8628034825 AND s!='hello' AND t==5)
           OR (a=6939937510 AND f=2643383279 AND s='tab-t5' AND t!=123456) }

  } {
    do_test where8-4.$A.$B.1 {
      unset -nocomplain R
      set R [execsql $sql]
      if {![info exists results($B)]} {
        set results($B) $R