Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the OS-X branch to include all trunk changes through version 3.6.22. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA1: |
541e2b488e4e40706e457c6d3b5647d5 |
User & Date: | drh 2010-01-06 13:12:48.000 |
Context
2010-01-19
| ||
23:50 | robustness fixes for preventing a finalized statement from being reused (check-in: a7a0c8d644 user: adam tags: apple-osx) | |
2010-01-06
| ||
13:12 | Update the OS-X branch to include all trunk changes through version 3.6.22. (check-in: 541e2b488e user: drh tags: apple-osx) | |
13:07 | Fix an issue with lemon generating incorrect grammars. This issue does not effect SQLite. (check-in: 077a6bee2d user: drh tags: trunk) | |
2009-12-23
| ||
18:06 | Fix the main.mk makefile so that the sqlrr extension is built into the amalgamation correctly. (check-in: a3204d8a21 user: drh tags: apple-osx) | |
Changes
Changes to VERSION.
|
| | | 1 | 3.6.22 |
Changes to configure.
1 2 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. | | | 1 2 3 4 5 6 7 8 9 10 | #! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.62 for sqlite 3.6.22. # # Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, # 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## --------------------- ## ## M4sh Initialization. ## |
︙ | ︙ | |||
739 740 741 742 743 744 745 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' | | | | 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 | MFLAGS= MAKEFLAGS= SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='sqlite' PACKAGE_TARNAME='sqlite' PACKAGE_VERSION='3.6.22' PACKAGE_STRING='sqlite 3.6.22' PACKAGE_BUGREPORT='' # Factoring default headers for most tests. ac_includes_default="\ #include <stdio.h> #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> |
︙ | ︙ | |||
1483 1484 1485 1486 1487 1488 1489 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF | | | 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 | # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures sqlite 3.6.22 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. |
︙ | ︙ | |||
1548 1549 1550 1551 1552 1553 1554 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in | | | 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 | --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of sqlite 3.6.22:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] |
︙ | ︙ | |||
1666 1667 1668 1669 1670 1671 1672 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF | | | | 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 | cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF sqlite configure 3.6.22 generated by GNU Autoconf 2.62 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by sqlite $as_me 3.6.22, which was generated by GNU Autoconf 2.62. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { |
︙ | ︙ | |||
13968 13969 13970 13971 13972 13973 13974 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" | | | 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 | exec 6>&1 # Save the log message, to keep $[0] and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by sqlite $as_me 3.6.22, which was generated by GNU Autoconf 2.62. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ |
︙ | ︙ | |||
14021 14022 14023 14024 14025 14026 14027 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ | | | 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 | $config_commands Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_version="\\ sqlite config.status 3.6.22 configured by $0, generated by GNU Autoconf 2.62, with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" Copyright (C) 2008 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." |
︙ | ︙ |
Changes to ext/fts3/fts3.c.
︙ | ︙ | |||
793 794 795 796 797 798 799 800 801 802 803 804 805 806 | ** on the xClose method of the virtual table interface. */ static int fulltextClose(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; sqlite3_finalize(pCsr->pStmt); sqlite3Fts3ExprFree(pCsr->pExpr); sqlite3_free(pCsr->aDoclist); sqlite3_free(pCsr); return SQLITE_OK; } static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ if( pCsr->isRequireSeek ){ pCsr->isRequireSeek = 0; | > | 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 | ** on the xClose method of the virtual table interface. */ static int fulltextClose(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; sqlite3_finalize(pCsr->pStmt); sqlite3Fts3ExprFree(pCsr->pExpr); sqlite3_free(pCsr->aDoclist); sqlite3_free(pCsr->aMatchinfo); sqlite3_free(pCsr); return SQLITE_OK; } static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ if( pCsr->isRequireSeek ){ pCsr->isRequireSeek = 0; |
︙ | ︙ | |||
838 839 840 841 842 843 844 845 846 847 848 849 850 851 | } }else if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){ pCsr->isEof = 1; }else{ sqlite3_reset(pCsr->pStmt); fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId); pCsr->isRequireSeek = 1; } return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains the | > | 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | } }else if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){ pCsr->isEof = 1; }else{ sqlite3_reset(pCsr->pStmt); fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId); pCsr->isRequireSeek = 1; pCsr->isMatchinfoOk = 1; } return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains the |
︙ | ︙ | |||
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 | sqlite3_int64 iVal /* Write this value to the list */ ){ assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; while( *pEnd | c ) c = *pEnd++ & 0x80; pEnd++; if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } | > > > > > > > > > > > > > > > > | 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 | sqlite3_int64 iVal /* Write this value to the list */ ){ assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a position-list. */ static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* The end of a position list is marked by a zero encoded as an FTS3 ** varint. A single 0x00 byte. Except, if the 0x00 byte is preceded by ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail ** of some other, multi-byte, value. ** ** The following block moves pEnd to point to the first byte that is not ** immediately preceded by a byte with the 0x80 bit set. Then increments ** pEnd once more so that it points to the byte immediately following the ** last byte in the position-list. */ while( *pEnd | c ) c = *pEnd++ & 0x80; pEnd++; if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } |
︙ | ︙ | |||
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 | assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR || mergetype==MERGE_AND || mergetype==MERGE_NOT || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR ); if( !aBuffer ){ return SQLITE_NOMEM; } /* Read the first docid from each doclist */ fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); | > | 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 | assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR || mergetype==MERGE_AND || mergetype==MERGE_NOT || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR ); if( !aBuffer ){ *pnBuffer = 0; return SQLITE_NOMEM; } /* Read the first docid from each doclist */ fts3GetDeltaVarint2(&p1, pEnd1, &i1); fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
︙ | ︙ | |||
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 | if( ii==pPhrase->nToken-1 && !isReqPos ){ mergetype = MERGE_PHRASE; } fts3DoclistMerge(mergetype, 0, 0, pList, &nOut, pOut, nOut, pList, nList); sqlite3_free(pOut); pOut = pList; } } if( rc==SQLITE_OK ){ *paOut = pOut; *pnOut = nOut; }else{ sqlite3_free(pOut); } return rc; } /* ** Evaluate the full-text expression pExpr against fts3 table pTab. Store ** the resulting doclist in *paOut and *pnOut. */ static int evalFts3Expr( Fts3Table *p, /* Virtual table handle */ Fts3Expr *pExpr, /* Parsed fts3 expression */ char **paOut, /* OUT: Pointer to malloc'd result buffer */ | > | > | | > > > | > > > | | | | 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 | if( ii==pPhrase->nToken-1 && !isReqPos ){ mergetype = MERGE_PHRASE; } fts3DoclistMerge(mergetype, 0, 0, pList, &nOut, pOut, nOut, pList, nList); sqlite3_free(pOut); pOut = pList; } assert( nOut==0 || pOut!=0 ); } if( rc==SQLITE_OK ){ *paOut = pOut; *pnOut = nOut; }else{ sqlite3_free(pOut); } return rc; } /* ** Evaluate the full-text expression pExpr against fts3 table pTab. Store ** the resulting doclist in *paOut and *pnOut. */ static int evalFts3Expr( Fts3Table *p, /* Virtual table handle */ Fts3Expr *pExpr, /* Parsed fts3 expression */ char **paOut, /* OUT: Pointer to malloc'd result buffer */ int *pnOut, /* OUT: Size of buffer at *paOut */ int isReqPos /* Require positions in output buffer */ ){ int rc = SQLITE_OK; /* Return code */ /* Zero the output parameters. */ *paOut = 0; *pnOut = 0; if( pExpr ){ assert( pExpr->eType==FTSQUERY_PHRASE || pExpr->eType==FTSQUERY_NEAR || isReqPos==0 ); if( pExpr->eType==FTSQUERY_PHRASE ){ rc = fts3PhraseSelect(p, pExpr->pPhrase, isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR), paOut, pnOut ); }else{ char *aLeft; char *aRight; int nLeft; int nRight; if( 0==(rc = evalFts3Expr(p, pExpr->pRight, &aRight, &nRight, isReqPos)) && 0==(rc = evalFts3Expr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos)) ){ assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT ); switch( pExpr->eType ){ case FTSQUERY_NEAR: { Fts3Expr *pLeft; Fts3Expr *pRight; int mergetype = isReqPos ? MERGE_POS_NEAR : MERGE_NEAR; int nParam1; int nParam2; char *aBuffer; if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){ mergetype = MERGE_POS_NEAR; } |
︙ | ︙ | |||
1864 1865 1866 1867 1868 1869 1870 | } rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr ); if( rc!=SQLITE_OK ) return rc; | | | 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 | } rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr ); if( rc!=SQLITE_OK ) return rc; rc = evalFts3Expr(p, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0); pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } if( rc!=SQLITE_OK ) return rc; return fts3NextMethod(pCursor); } |
︙ | ︙ | |||
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 | ** Implementation of xRollback(). Discard the contents of the pending-terms ** hash-table. Any changes made to the database are reverted by SQLite. */ static int fts3RollbackMethod(sqlite3_vtab *pVtab){ sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab); return SQLITE_OK; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. ** ** If the value passed as the third argument is a blob of size ** sizeof(Fts3Cursor*), then the blob contents are copied to the | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 | ** Implementation of xRollback(). Discard the contents of the pending-terms ** hash-table. Any changes made to the database are reverted by SQLite. */ static int fts3RollbackMethod(sqlite3_vtab *pVtab){ sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab); return SQLITE_OK; } /* ** Load the doclist associated with expression pExpr to pExpr->aDoclist. ** The loaded doclist contains positions as well as the document ids. ** This is used by the matchinfo(), snippet() and offsets() auxillary ** functions. */ int sqlite3Fts3ExprLoadDoclist(Fts3Table *pTab, Fts3Expr *pExpr){ return evalFts3Expr(pTab, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1); } /* ** After ExprLoadDoclist() (see above) has been called, this function is ** used to iterate through the position lists that make up the doclist ** stored in pExpr->aDoclist. */ char *sqlite3Fts3FindPositions( Fts3Expr *pExpr, /* Access this expressions doclist */ sqlite3_int64 iDocid, /* Docid associated with requested pos-list */ int iCol /* Column of requested pos-list */ ){ assert( pExpr->isLoaded ); if( pExpr->aDoclist ){ char *pEnd = &pExpr->aDoclist[pExpr->nDoclist]; char *pCsr = pExpr->pCurrent; assert( pCsr ); while( pCsr<pEnd ){ if( pExpr->iCurrent<iDocid ){ fts3PoslistCopy(0, &pCsr); fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent); pExpr->pCurrent = pCsr; }else{ if( pExpr->iCurrent==iDocid ){ int iThis = 0; if( iCol<0 ){ /* If iCol is negative, return a pointer to the start of the ** position-list (instead of a pointer to the start of a list ** of offsets associated with a specific column). */ return pCsr; } while( iThis<iCol ){ fts3ColumnlistCopy(0, &pCsr); if( *pCsr==0x00 ) return 0; pCsr++; pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis); } if( iCol==iThis ) return pCsr; } return 0; } } } return 0; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. ** ** If the value passed as the third argument is a blob of size ** sizeof(Fts3Cursor*), then the blob contents are copied to the |
︙ | ︙ | |||
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 | } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis); } } /* ** Implementation of the offsets() function for FTS3 */ static void fts3OffsetsFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 | } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis); } } /* ** Implementation of the snippet2() function for FTS3 */ static void fts3Snippet2Func( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of apVal[] array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ const char *zStart = "<b>"; const char *zEnd = "</b>"; const char *zEllipsis = "<b>...</b>"; int iCol = -1; int nToken = 10; /* There must be at least one argument passed to this function (otherwise ** the non-overloaded version would have been called instead of this one). */ assert( nVal>=1 ); if( nVal>6 ){ sqlite3_result_error(pContext, "wrong number of arguments to function snippet()", -1); return; } if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; switch( nVal ){ case 6: nToken = sqlite3_value_int(apVal[5]); case 5: iCol = sqlite3_value_int(apVal[4]); case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet2(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 */ static void fts3OffsetsFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ |
︙ | ︙ | |||
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 | sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); break; default: sqlite3_result_error_code(pContext, rc); break; } } /* ** This routine implements the xFindFunction method for the FTS3 ** virtual table. */ static int fts3FindFunctionMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* Unused */ ){ struct Overloaded { const char *zName; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aOverload[] = { { "snippet", fts3SnippetFunc }, { "offsets", fts3OffsetsFunc }, { "optimize", fts3OptimizeFunc }, }; int i; /* Iterator variable */ UNUSED_PARAMETER(pVtab); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(ppArg); | > > > > > > > > > > > > > > > > > > > > > > > | 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 | sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); break; default: sqlite3_result_error_code(pContext, rc); break; } } /* ** Implementation of the matchinfo() function for FTS3 */ static void fts3MatchinfoFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ if( nVal!=1 ){ sqlite3_result_error(pContext, "wrong number of arguments to function matchinfo()", -1); return; } if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ sqlite3Fts3Matchinfo(pContext, pCsr); } } /* ** This routine implements the xFindFunction method for the FTS3 ** virtual table. */ static int fts3FindFunctionMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* Unused */ ){ struct Overloaded { const char *zName; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aOverload[] = { { "snippet", fts3SnippetFunc }, { "snippet2", fts3Snippet2Func }, { "offsets", fts3OffsetsFunc }, { "optimize", fts3OptimizeFunc }, { "matchinfo", fts3MatchinfoFunc }, }; int i; /* Iterator variable */ UNUSED_PARAMETER(pVtab); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(ppArg); |
︙ | ︙ | |||
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 | /* Create the virtual table wrapper around the hash-table and overload ** the two scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) ){ return sqlite3_create_module_v2( db, "fts3", &fts3Module, (void *)pHash, hashDestroy ); } | > > | 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 | /* Create the virtual table wrapper around the hash-table and overload ** the two scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet2", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) ){ return sqlite3_create_module_v2( db, "fts3", &fts3Module, (void *)pHash, hashDestroy ); } |
︙ | ︙ |
Changes to ext/fts3/fts3Int.h.
︙ | ︙ | |||
66 67 68 69 70 71 72 73 74 75 76 77 78 79 | # define ALWAYS(x) (x) # define NEVER(X) (x) /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ /* ** Macro used to suppress compiler warnings for unused parameters. */ #define UNUSED_PARAMETER(x) (void)(x) #endif typedef struct Fts3Table Fts3Table; | > > | 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | # define ALWAYS(x) (x) # define NEVER(X) (x) /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ typedef unsigned int u32; /* 4-byte unsigned integer */ typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */ /* ** Macro used to suppress compiler warnings for unused parameters. */ #define UNUSED_PARAMETER(x) (void)(x) #endif typedef struct Fts3Table Fts3Table; |
︙ | ︙ | |||
142 143 144 145 146 147 148 149 150 151 152 153 154 155 | u8 isRequireSeek; /* True if must seek pStmt to %_content row */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ Fts3Expr *pExpr; /* Parsed MATCH query string */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ }; /* ** The Fts3Cursor.eSearch member is always set to one of the following. ** Actualy, Fts3Cursor.eSearch can be greater than or equal to ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index ** of the column to be searched. For example, in | > > | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 | u8 isRequireSeek; /* True if must seek pStmt to %_content row */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ Fts3Expr *pExpr; /* Parsed MATCH query string */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ int isMatchinfoOk; /* True when aMatchinfo[] matches iPrevId */ u32 *aMatchinfo; }; /* ** The Fts3Cursor.eSearch member is always set to one of the following. ** Actualy, Fts3Cursor.eSearch can be greater than or equal to ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index ** of the column to be searched. For example, in |
︙ | ︙ | |||
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | int n; /* Number of bytes in buffer pointed to by z */ int isPrefix; /* True if token ends in with a "*" character */ } aToken[1]; /* One entry for each token in the phrase */ }; /* ** A tree of these objects forms the RHS of a MATCH operator. */ struct Fts3Expr { int eType; /* One of the FTSQUERY_XXX values defined below */ int nNear; /* Valid if eType==FTSQUERY_NEAR */ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ Fts3Expr *pLeft; /* Left operand */ Fts3Expr *pRight; /* Right operand */ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ }; /* ** Candidate values for Fts3Query.eType. Note that the order of the first ** four values is in order of precedence when parsing expressions. For ** example, the following: ** | > > > > > > > > > > > > > > > > > | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | int n; /* Number of bytes in buffer pointed to by z */ int isPrefix; /* True if token ends in with a "*" character */ } aToken[1]; /* One entry for each token in the phrase */ }; /* ** A tree of these objects forms the RHS of a MATCH operator. ** ** If Fts3Expr.eType is either FTSQUERY_NEAR or FTSQUERY_PHRASE and isLoaded ** is true, then aDoclist points to a malloced buffer, size nDoclist bytes, ** containing the results of the NEAR or phrase query in FTS3 doclist ** format. As usual, the initial "Length" field found in doclists stored ** on disk is omitted from this buffer. ** ** Variable pCurrent always points to the start of a docid field within ** aDoclist. Since the doclist is usually scanned in docid order, this can ** be used to accelerate seeking to the required docid within the doclist. */ struct Fts3Expr { int eType; /* One of the FTSQUERY_XXX values defined below */ int nNear; /* Valid if eType==FTSQUERY_NEAR */ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ Fts3Expr *pLeft; /* Left operand */ Fts3Expr *pRight; /* Right operand */ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ int isLoaded; /* True if aDoclist/nDoclist are initialized. */ char *aDoclist; /* Buffer containing doclist */ int nDoclist; /* Size of aDoclist in bytes */ sqlite3_int64 iCurrent; char *pCurrent; }; /* ** Candidate values for Fts3Query.eType. Note that the order of the first ** four values is in order of precedence when parsing expressions. For ** example, the following: ** |
︙ | ︙ | |||
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | /* fts3.c */ int sqlite3Fts3PutVarint(char *, sqlite3_int64); int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); int sqlite3Fts3GetVarint32(const char *, int *); int sqlite3Fts3VarintLen(sqlite3_uint64); void sqlite3Fts3Dequote(char *); /* fts3_tokenizer.c */ const char *sqlite3Fts3NextToken(const char *, int *); int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, sqlite3_tokenizer **, const char **, char ** ); /* fts3_snippet.c */ void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); void sqlite3Fts3Snippet(sqlite3_context*, Fts3Cursor*, const char *, const char *, const char * ); /* fts3_expr.c */ int sqlite3Fts3ExprParse(sqlite3_tokenizer *, char **, int, int, const char *, int, Fts3Expr ** ); void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); #endif #endif /* _FTSINT_H */ | > > > > > > > | 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | /* fts3.c */ int sqlite3Fts3PutVarint(char *, sqlite3_int64); int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); int sqlite3Fts3GetVarint32(const char *, int *); int sqlite3Fts3VarintLen(sqlite3_uint64); void sqlite3Fts3Dequote(char *); char *sqlite3Fts3FindPositions(Fts3Expr *, sqlite3_int64, int); int sqlite3Fts3ExprLoadDoclist(Fts3Table *, Fts3Expr *); /* fts3_tokenizer.c */ const char *sqlite3Fts3NextToken(const char *, int *); int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, sqlite3_tokenizer **, const char **, char ** ); /* fts3_snippet.c */ void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); void sqlite3Fts3Snippet(sqlite3_context*, Fts3Cursor*, const char *, const char *, const char * ); void sqlite3Fts3Snippet2(sqlite3_context *, Fts3Cursor *, const char *, const char *, const char *, int, int ); void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *); /* fts3_expr.c */ int sqlite3Fts3ExprParse(sqlite3_tokenizer *, char **, int, int, const char *, int, Fts3Expr ** ); void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); #endif #endif /* _FTSINT_H */ |
Changes to ext/fts3/fts3_expr.c.
︙ | ︙ | |||
731 732 733 734 735 736 737 738 739 740 741 742 743 744 | /* ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). */ void sqlite3Fts3ExprFree(Fts3Expr *p){ if( p ){ sqlite3Fts3ExprFree(p->pLeft); sqlite3Fts3ExprFree(p->pRight); sqlite3_free(p); } } /**************************************************************************** ***************************************************************************** ** Everything after this point is just test code. | > | 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 | /* ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse(). */ void sqlite3Fts3ExprFree(Fts3Expr *p){ if( p ){ sqlite3Fts3ExprFree(p->pLeft); sqlite3Fts3ExprFree(p->pRight); sqlite3_free(p->aDoclist); sqlite3_free(p); } } /**************************************************************************** ***************************************************************************** ** Everything after this point is just test code. |
︙ | ︙ |
Changes to ext/fts3/fts3_snippet.c.
︙ | ︙ | |||
726 727 728 729 730 731 732 733 734 | sqlite3_result_error_nomem(pCtx); } }else{ sqlite3_result_error_nomem(pCtx); } fts3SnippetFree(p); } #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 | sqlite3_result_error_nomem(pCtx); } }else{ sqlite3_result_error_nomem(pCtx); } fts3SnippetFree(p); } /************************************************************************* ** Below this point is the alternative, experimental snippet() implementation. */ #define SNIPPET_BUFFER_CHUNK 64 #define SNIPPET_BUFFER_SIZE SNIPPET_BUFFER_CHUNK*4 #define SNIPPET_BUFFER_MASK (SNIPPET_BUFFER_SIZE-1) static void fts3GetDeltaPosition(char **pp, int *piPos){ int iVal; *pp += sqlite3Fts3GetVarint32(*pp, &iVal); *piPos += (iVal-2); } /* ** Iterate through all phrase nodes in an FTS3 query, except those that ** are part of a sub-tree that is the right-hand-side of a NOT operator. ** For each phrase node found, the supplied callback function is invoked. ** ** If the callback function returns anything other than SQLITE_OK, ** the iteration is abandoned and the error code returned immediately. ** Otherwise, SQLITE_OK is returned after a callback has been made for ** all eligible phrase nodes. */ static int fts3ExprIterate( Fts3Expr *pExpr, /* Expression to iterate phrases of */ int (*x)(Fts3Expr *, void *), /* Callback function to invoke for phrases */ void *pCtx /* Second argument to pass to callback */ ){ int rc; int eType = pExpr->eType; if( eType==FTSQUERY_NOT ){ rc = SQLITE_OK; }else if( eType!=FTSQUERY_PHRASE ){ assert( pExpr->pLeft && pExpr->pRight ); rc = fts3ExprIterate(pExpr->pLeft, x, pCtx); if( rc==SQLITE_OK ){ rc = fts3ExprIterate(pExpr->pRight, x, pCtx); } }else{ rc = x(pExpr, pCtx); } return rc; } typedef struct LoadDoclistCtx LoadDoclistCtx; struct LoadDoclistCtx { Fts3Table *pTab; /* FTS3 Table */ int nPhrase; /* Number of phrases so far */ }; static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, void *ctx){ int rc = SQLITE_OK; LoadDoclistCtx *p = (LoadDoclistCtx *)ctx; p->nPhrase++; if( pExpr->isLoaded==0 ){ rc = sqlite3Fts3ExprLoadDoclist(p->pTab, pExpr); pExpr->isLoaded = 1; if( rc==SQLITE_OK && pExpr->aDoclist ){ pExpr->pCurrent = pExpr->aDoclist; pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent); } } return rc; } static int fts3ExprLoadDoclists(Fts3Cursor *pCsr, int *pnPhrase){ int rc; LoadDoclistCtx sCtx = {0, 0}; sCtx.pTab = (Fts3Table *)pCsr->base.pVtab; rc = fts3ExprIterate(pCsr->pExpr, fts3ExprLoadDoclistsCb, (void *)&sCtx); *pnPhrase = sCtx.nPhrase; return rc; } /* ** Each call to this function populates a chunk of a snippet-buffer ** SNIPPET_BUFFER_CHUNK bytes in size. ** ** Return true if the end of the data has been reached (and all subsequent ** calls to fts3LoadSnippetBuffer() with the same arguments will be no-ops), ** or false otherwise. */ static int fts3LoadSnippetBuffer( int iPos, /* Document token offset to load data for */ u8 *aBuffer, /* Circular snippet buffer to populate */ int nList, /* Number of position lists in appList */ char **apList, /* IN/OUT: nList position list pointers */ int *aiPrev /* IN/OUT: Previous positions read */ ){ int i; int nFin = 0; assert( (iPos&(SNIPPET_BUFFER_CHUNK-1))==0 ); memset(&aBuffer[iPos&SNIPPET_BUFFER_MASK], 0, SNIPPET_BUFFER_CHUNK); for(i=0; i<nList; i++){ int iPrev = aiPrev[i]; char *pList = apList[i]; if( !pList ){ nFin++; continue; } while( iPrev<(iPos+SNIPPET_BUFFER_CHUNK) ){ if( iPrev>=iPos ){ aBuffer[iPrev&SNIPPET_BUFFER_MASK] = (u8)(i+1); } if( 0==((*pList)&0xFE) ){ nFin++; break; } fts3GetDeltaPosition(&pList, &iPrev); } aiPrev[i] = iPrev; apList[i] = pList; } return (nFin==nList); } typedef struct SnippetCtx SnippetCtx; struct SnippetCtx { Fts3Cursor *pCsr; int iCol; int iPhrase; int *aiPrev; int *anToken; char **apList; }; static int fts3SnippetFindPositions(Fts3Expr *pExpr, void *ctx){ SnippetCtx *p = (SnippetCtx *)ctx; int iPhrase = p->iPhrase++; char *pCsr; p->anToken[iPhrase] = pExpr->pPhrase->nToken; pCsr = sqlite3Fts3FindPositions(pExpr, p->pCsr->iPrevId, p->iCol); if( pCsr ){ int iVal; pCsr += sqlite3Fts3GetVarint32(pCsr, &iVal); p->apList[iPhrase] = pCsr; p->aiPrev[iPhrase] = iVal-2; } return SQLITE_OK; } static void fts3SnippetCnt( int iIdx, int nSnippet, int *anCnt, u8 *aBuffer, int *anToken, u64 *pHlmask ){ int iSub = (iIdx-1)&SNIPPET_BUFFER_MASK; int iAdd = (iIdx+nSnippet-1)&SNIPPET_BUFFER_MASK; int iSub2 = (iIdx+(nSnippet/3)-1)&SNIPPET_BUFFER_MASK; int iAdd2 = (iIdx+(nSnippet*2/3)-1)&SNIPPET_BUFFER_MASK; u64 h = *pHlmask; anCnt[ aBuffer[iSub] ]--; anCnt[ aBuffer[iSub2] ]--; anCnt[ aBuffer[iAdd] ]++; anCnt[ aBuffer[iAdd2] ]++; h = h >> 1; if( aBuffer[iAdd] ){ int j; for(j=anToken[aBuffer[iAdd]-1]; j>=1; j--){ h |= (u64)1 << (nSnippet-j); } } *pHlmask = h; } static int fts3SnippetScore(int n, int *anCnt){ int j; int iScore = 0; for(j=1; j<=n; j++){ int nCnt = anCnt[j]; iScore += nCnt + (nCnt ? 1000 : 0); } return iScore; } static int fts3BestSnippet( int nSnippet, /* Desired snippet length */ Fts3Cursor *pCsr, /* Cursor to create snippet for */ int iCol, /* Index of column to create snippet from */ int *piPos, /* OUT: Starting token for best snippet */ u64 *pHlmask /* OUT: Highlight mask for best snippet */ ){ int rc; /* Return Code */ u8 aBuffer[SNIPPET_BUFFER_SIZE];/* Circular snippet buffer */ int *aiPrev; /* Used by fts3LoadSnippetBuffer() */ int *anToken; /* Number of tokens in each phrase */ char **apList; /* Array of position lists */ int *anCnt; /* Running totals of phrase occurences */ int nList; int i; u64 hlmask = 0; /* Current mask of highlighted terms */ u64 besthlmask = 0; /* Mask of highlighted terms for iBestPos */ int iBestPos = 0; /* Starting position of 'best' snippet */ int iBestScore = 0; /* Score of best snippet higher->better */ SnippetCtx sCtx; /* Iterate through the phrases in the expression to count them. The same ** callback makes sure the doclists are loaded for each phrase. */ rc = fts3ExprLoadDoclists(pCsr, &nList); if( rc!=SQLITE_OK ){ return rc; } /* Now that it is known how many phrases there are, allocate and zero ** the required arrays using malloc(). */ apList = sqlite3_malloc( sizeof(u8*)*nList + /* apList */ sizeof(int)*(nList) + /* anToken */ sizeof(int)*nList + /* aiPrev */ sizeof(int)*(nList+1) /* anCnt */ ); if( !apList ){ return SQLITE_NOMEM; } memset(apList, 0, sizeof(u8*)*nList+sizeof(int)*nList+sizeof(int)*nList); anToken = (int *)&apList[nList]; aiPrev = &anToken[nList]; anCnt = &aiPrev[nList]; /* Initialize the contents of the aiPrev and aiList arrays. */ sCtx.pCsr = pCsr; sCtx.iCol = iCol; sCtx.apList = apList; sCtx.aiPrev = aiPrev; sCtx.anToken = anToken; sCtx.iPhrase = 0; (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sCtx); /* Load the first two chunks of data into the buffer. */ memset(aBuffer, 0, SNIPPET_BUFFER_SIZE); fts3LoadSnippetBuffer(0, aBuffer, nList, apList, aiPrev); fts3LoadSnippetBuffer(SNIPPET_BUFFER_CHUNK, aBuffer, nList, apList, aiPrev); /* Set the initial contents of the highlight-mask and anCnt[] array. */ for(i=1-nSnippet; i<=0; i++){ fts3SnippetCnt(i, nSnippet, anCnt, aBuffer, anToken, &hlmask); } iBestScore = fts3SnippetScore(nList, anCnt); besthlmask = hlmask; iBestPos = 0; for(i=1; 1; i++){ int iScore; if( 0==(i&(SNIPPET_BUFFER_CHUNK-1)) ){ int iLoad = i + SNIPPET_BUFFER_CHUNK; if( fts3LoadSnippetBuffer(iLoad, aBuffer, nList, apList, aiPrev) ) break; } /* Figure out how highly a snippet starting at token offset i scores ** according to fts3SnippetScore(). If it is higher than any previously ** considered position, save the current position, score and hlmask as ** the best snippet candidate found so far. */ fts3SnippetCnt(i, nSnippet, anCnt, aBuffer, anToken, &hlmask); iScore = fts3SnippetScore(nList, anCnt); if( iScore>iBestScore ){ iBestPos = i; iBestScore = iScore; besthlmask = hlmask; } } sqlite3_free(apList); *piPos = iBestPos; *pHlmask = besthlmask; return SQLITE_OK; } typedef struct StrBuffer StrBuffer; struct StrBuffer { char *z; int n; int nAlloc; }; static int fts3StringAppend( StrBuffer *pStr, const char *zAppend, int nAppend ){ if( nAppend<0 ){ nAppend = (int)strlen(zAppend); } if( pStr->n+nAppend+1>=pStr->nAlloc ){ int nAlloc = pStr->nAlloc+nAppend+100; char *zNew = sqlite3_realloc(pStr->z, nAlloc); if( !zNew ){ return SQLITE_NOMEM; } pStr->z = zNew; pStr->nAlloc = nAlloc; } memcpy(&pStr->z[pStr->n], zAppend, nAppend); pStr->n += nAppend; pStr->z[pStr->n] = '\0'; return SQLITE_OK; } static int fts3SnippetText( Fts3Cursor *pCsr, /* FTS3 Cursor */ const char *zDoc, /* Document to extract snippet from */ int nDoc, /* Size of zDoc in bytes */ int nSnippet, /* Number of tokens in extracted snippet */ int iPos, /* Index of first document token in snippet */ u64 hlmask, /* Bitmask of terms to highlight in snippet */ const char *zOpen, /* String inserted before highlighted term */ const char *zClose, /* String inserted after highlighted term */ const char *zEllipsis, char **pzSnippet /* OUT: Snippet text */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc; /* Return code */ int iCurrent = 0; int iStart = 0; int iEnd; sqlite3_tokenizer_module *pMod; /* Tokenizer module methods object */ sqlite3_tokenizer_cursor *pC; /* Tokenizer cursor open on zDoc/nDoc */ const char *ZDUMMY; /* Dummy arguments used with tokenizer */ int DUMMY1, DUMMY2, DUMMY3; /* Dummy arguments used with tokenizer */ StrBuffer res = {0, 0, 0}; /* Result string */ /* Open a token cursor on the document. Read all tokens up to and ** including token iPos (the first token of the snippet). Set variable ** iStart to the byte offset in zDoc of the start of token iPos. */ pMod = (sqlite3_tokenizer_module *)pTab->pTokenizer->pModule; rc = pMod->xOpen(pTab->pTokenizer, zDoc, nDoc, &pC); while( rc==SQLITE_OK && iCurrent<iPos ){ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iStart, &DUMMY2, &iCurrent); } iEnd = iStart; if( rc==SQLITE_OK && iStart>0 ){ rc = fts3StringAppend(&res, zEllipsis, -1); } while( rc==SQLITE_OK ){ int iBegin; int iFin; rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &iBegin, &iFin, &iCurrent); if( rc==SQLITE_OK ){ if( iCurrent>=(iPos+nSnippet) ){ rc = SQLITE_DONE; }else{ iEnd = iFin; if( hlmask & ((u64)1 << (iCurrent-iPos)) ){ if( fts3StringAppend(&res, &zDoc[iStart], iBegin-iStart) || fts3StringAppend(&res, zOpen, -1) || fts3StringAppend(&res, &zDoc[iBegin], iEnd-iBegin) || fts3StringAppend(&res, zClose, -1) ){ rc = SQLITE_NOMEM; } iStart = iEnd; } } } } assert( rc!=SQLITE_OK ); if( rc==SQLITE_DONE ){ rc = fts3StringAppend(&res, &zDoc[iStart], iEnd-iStart); if( rc==SQLITE_OK ){ rc = pMod->xNext(pC, &ZDUMMY, &DUMMY1, &DUMMY2, &DUMMY3, &iCurrent); if( rc==SQLITE_OK ){ rc = fts3StringAppend(&res, zEllipsis, -1); }else if( rc==SQLITE_DONE ){ rc = fts3StringAppend(&res, &zDoc[iEnd], -1); } } } pMod->xClose(pC); if( rc!=SQLITE_OK ){ sqlite3_free(res.z); }else{ *pzSnippet = res.z; } return rc; } /* ** An instance of this structure is used to collect the 'global' part of ** the matchinfo statistics. The 'global' part consists of the following: ** ** 1. The number of phrases in the query (nPhrase). ** ** 2. The number of columns in the FTS3 table (nCol). ** ** 3. A matrix of (nPhrase*nCol) integers containing the sum of the ** number of hits for each phrase in each column across all rows ** of the table. ** ** The total size of the global matchinfo array, assuming the number of ** columns is N and the number of phrases is P is: ** ** 2 + P*(N+1) ** ** The number of hits for the 3rd phrase in the second column is found ** using the expression: ** ** aGlobal[2 + P*(1+2) + 1] */ typedef struct MatchInfo MatchInfo; struct MatchInfo { Fts3Table *pTab; /* FTS3 Table */ Fts3Cursor *pCursor; /* FTS3 Cursor */ int iPhrase; /* Number of phrases so far */ int nCol; /* Number of columns in table */ u32 *aGlobal; /* Pre-allocated buffer */ }; /* ** This function is used to count the entries in a column-list (delta-encoded ** list of term offsets within a single column of a single row). */ static int fts3ColumnlistCount(char **ppCollist){ char *pEnd = *ppCollist; char c = 0; int nEntry = 0; /* A column-list is terminated by either a 0x01 or 0x00. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; if( !c ) nEntry++; } *ppCollist = pEnd; return nEntry; } static void fts3LoadColumnlistCounts(char **pp, u32 *aOut){ char *pCsr = *pp; while( *pCsr ){ sqlite3_int64 iCol = 0; if( *pCsr==0x01 ){ pCsr++; pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); } aOut[iCol] += fts3ColumnlistCount(&pCsr); } pCsr++; *pp = pCsr; } /* ** fts3ExprIterate() callback used to collect the "global" matchinfo stats ** for a single query. */ static int fts3ExprGlobalMatchinfoCb( Fts3Expr *pExpr, /* Phrase expression node */ void *pCtx /* Pointer to MatchInfo structure */ ){ MatchInfo *p = (MatchInfo *)pCtx; char *pCsr; char *pEnd; const int iStart = 2 + p->nCol*p->iPhrase; assert( pExpr->isLoaded ); /* Fill in the global hit count matrix row for this phrase. */ pCsr = pExpr->aDoclist; pEnd = &pExpr->aDoclist[pExpr->nDoclist]; while( pCsr<pEnd ){ while( *pCsr++ & 0x80 ); fts3LoadColumnlistCounts(&pCsr, &p->aGlobal[iStart]); } p->iPhrase++; return SQLITE_OK; } static int fts3ExprLocalMatchinfoCb( Fts3Expr *pExpr, /* Phrase expression node */ void *pCtx /* Pointer to MatchInfo structure */ ){ MatchInfo *p = (MatchInfo *)pCtx; int iPhrase = p->iPhrase++; if( pExpr->aDoclist ){ char *pCsr; int iOffset = 2 + p->nCol*(p->aGlobal[0]+iPhrase); memset(&p->aGlobal[iOffset], 0, p->nCol*sizeof(u32)); pCsr = sqlite3Fts3FindPositions(pExpr, p->pCursor->iPrevId, -1); if( pCsr ) fts3LoadColumnlistCounts(&pCsr, &p->aGlobal[iOffset]); } return SQLITE_OK; } /* ** Populate pCsr->aMatchinfo[] with data for the current row. The 'matchinfo' ** data is an array of 32-bit unsigned integers (C type u32). */ static int fts3GetMatchinfo(Fts3Cursor *pCsr){ MatchInfo g; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( pCsr->aMatchinfo==0 ){ int rc; int nPhrase; int nMatchinfo; g.pTab = pTab; g.nCol = pTab->nColumn; g.iPhrase = 0; rc = fts3ExprLoadDoclists(pCsr, &nPhrase); if( rc!=SQLITE_OK ){ return rc; } nMatchinfo = 2 + 2*g.nCol*nPhrase; g.iPhrase = 0; g.aGlobal = (u32 *)sqlite3_malloc(sizeof(u32)*nMatchinfo); if( !g.aGlobal ){ return SQLITE_NOMEM; } memset(g.aGlobal, 0, sizeof(u32)*nMatchinfo); g.aGlobal[0] = nPhrase; g.aGlobal[1] = g.nCol; (void)fts3ExprIterate(pCsr->pExpr, fts3ExprGlobalMatchinfoCb, (void *)&g); pCsr->aMatchinfo = g.aGlobal; } g.pTab = pTab; g.pCursor = pCsr; g.nCol = pTab->nColumn; g.iPhrase = 0; g.aGlobal = pCsr->aMatchinfo; if( pCsr->isMatchinfoOk ){ (void)fts3ExprIterate(pCsr->pExpr, fts3ExprLocalMatchinfoCb, (void *)&g); pCsr->isMatchinfoOk = 0; } return SQLITE_OK; } void sqlite3Fts3Snippet2( sqlite3_context *pCtx, /* SQLite function call context */ Fts3Cursor *pCsr, /* Cursor object */ const char *zStart, /* Snippet start text - "<b>" */ const char *zEnd, /* Snippet end text - "</b>" */ const char *zEllipsis, /* Snippet ellipsis text - "<b>...</b>" */ int iCol, /* Extract snippet from this column */ int nToken /* Approximate number of tokens in snippet */ ){ int rc; int iPos = 0; u64 hlmask = 0; char *z = 0; int nDoc; const char *zDoc; rc = fts3BestSnippet(nToken, pCsr, iCol, &iPos, &hlmask); nDoc = sqlite3_column_bytes(pCsr->pStmt, iCol+1); zDoc = (const char *)sqlite3_column_text(pCsr->pStmt, iCol+1); if( rc==SQLITE_OK ){ rc = fts3SnippetText( pCsr, zDoc, nDoc, nToken, iPos, hlmask, zStart, zEnd, zEllipsis, &z); } if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pCtx, rc); }else{ sqlite3_result_text(pCtx, z, -1, sqlite3_free); } } void sqlite3Fts3Matchinfo(sqlite3_context *pContext, Fts3Cursor *pCsr){ int rc = fts3GetMatchinfo(pCsr); if( rc!=SQLITE_OK ){ sqlite3_result_error_code(pContext, rc); }else{ int n = sizeof(u32)*(2+pCsr->aMatchinfo[0]*pCsr->aMatchinfo[1]*2); sqlite3_result_blob(pContext, pCsr->aMatchinfo, n, SQLITE_TRANSIENT); } } #endif |
Changes to ext/fts3/fts3_tokenizer.h.
︙ | ︙ | |||
140 141 142 143 144 145 146 147 148 | /* Tokenizer implementations will typically add additional fields */ }; struct sqlite3_tokenizer_cursor { sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ /* Tokenizer implementations will typically add additional fields */ }; #endif /* _FTS3_TOKENIZER_H_ */ | > > > > | 140 141 142 143 144 145 146 147 148 149 150 151 152 | /* Tokenizer implementations will typically add additional fields */ }; struct sqlite3_tokenizer_cursor { sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ /* Tokenizer implementations will typically add additional fields */ }; int fts3_global_term_cnt(int iTerm, int iCol); int fts3_term_cnt(int iTerm, int iCol); #endif /* _FTS3_TOKENIZER_H_ */ |
Changes to ext/fts3/fts3_write.c.
︙ | ︙ | |||
2224 2225 2226 2227 2228 2229 2230 | const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3SegmentMerge(p, -1); | | > | 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 | const char *zVal = (const char *)sqlite3_value_text(pVal); int nVal = sqlite3_value_bytes(pVal); if( !zVal ){ return SQLITE_NOMEM; }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ rc = fts3SegmentMerge(p, -1); if( rc==SQLITE_DONE ){ rc = SQLITE_OK; }else{ sqlite3Fts3PendingTermsClear(p); } #ifdef SQLITE_TEST }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ p->nNodeSize = atoi(&zVal[9]); rc = SQLITE_OK; }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ |
︙ | ︙ |
Changes to ext/icu/icu.c.
︙ | ︙ | |||
450 451 452 453 454 455 456 | struct IcuScalar { const char *zName; /* Function name */ int nArg; /* Number of arguments */ int enc; /* Optimal text encoding */ void *pContext; /* sqlite3_user_data() context */ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } scalars[] = { | | | 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | struct IcuScalar { const char *zName; /* Function name */ int nArg; /* Number of arguments */ int enc; /* Optimal text encoding */ void *pContext; /* sqlite3_user_data() context */ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } scalars[] = { {"regexp", 2, SQLITE_ANY, 0, icuRegexpFunc}, {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16}, {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16}, |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
3413 3414 3415 3416 3417 3418 3419 | &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } | < | 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 | &db->aDb[1].pBt); if( rc!=SQLITE_OK ){ sqlite3ErrorMsg(pParse, "unable to open a temporary database " "file for storing temporary tables"); pParse->rc = rc; return 1; } assert( db->aDb[1].pSchema ); sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), db->dfltJournalMode); } return 0; } |
︙ | ︙ |
Changes to src/complete.c.
︙ | ︙ | |||
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | /* ** Token types used by the sqlite3_complete() routine. See the header ** comments on that procedure for additional information. */ #define tkSEMI 0 #define tkWS 1 #define tkOTHER 2 #define tkEXPLAIN 3 #define tkCREATE 4 #define tkTEMP 5 #define tkTRIGGER 6 #define tkEND 7 /* ** Return TRUE if the given SQL string ends in a semicolon. ** ** Special handling is require for CREATE TRIGGER statements. ** Whenever the CREATE TRIGGER keywords are seen, the statement ** must end with ";END;". ** | > > | > > | | | | | | | | > | | > | | | | | | | | | > | | | 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | /* ** Token types used by the sqlite3_complete() routine. See the header ** comments on that procedure for additional information. */ #define tkSEMI 0 #define tkWS 1 #define tkOTHER 2 #ifndef SQLITE_OMIT_TRIGGER #define tkEXPLAIN 3 #define tkCREATE 4 #define tkTEMP 5 #define tkTRIGGER 6 #define tkEND 7 #endif /* ** Return TRUE if the given SQL string ends in a semicolon. ** ** Special handling is require for CREATE TRIGGER statements. ** Whenever the CREATE TRIGGER keywords are seen, the statement ** must end with ";END;". ** ** This implementation uses a state machine with 8 states: ** ** (0) INVALID We have not yet seen a non-whitespace character. ** ** (1) START At the beginning or end of an SQL statement. This routine ** returns 1 if it ends in the START state and 0 if it ends ** in any other state. ** ** (2) NORMAL We are in the middle of statement which ends with a single ** semicolon. ** ** (3) EXPLAIN The keyword EXPLAIN has been seen at the beginning of ** a statement. ** ** (4) CREATE The keyword CREATE has been seen at the beginning of a ** statement, possibly preceeded by EXPLAIN and/or followed by ** TEMP or TEMPORARY ** ** (5) TRIGGER We are in the middle of a trigger definition that must be ** ended by a semicolon, the keyword END, and another semicolon. ** ** (6) SEMI We've seen the first semicolon in the ";END;" that occurs at ** the end of a trigger definition. ** ** (7) END We've seen the ";END" of the ";END;" that occurs at the end ** of a trigger difinition. ** ** Transitions between states above are determined by tokens extracted ** from the input. The following tokens are significant: ** ** (0) tkSEMI A semicolon. ** (1) tkWS Whitespace. ** (2) tkOTHER Any other SQL token. ** (3) tkEXPLAIN The "explain" keyword. ** (4) tkCREATE The "create" keyword. ** (5) tkTEMP The "temp" or "temporary" keyword. ** (6) tkTRIGGER The "trigger" keyword. ** (7) tkEND The "end" keyword. ** ** Whitespace never causes a state transition and is always ignored. ** This means that a SQL string of all whitespace is invalid. ** ** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed ** to recognize the end of a trigger can be omitted. All we have to do ** is look for a semicolon that is not part of an string or comment. */ int sqlite3_complete(const char *zSql){ u8 state = 0; /* Current state, using numbers defined in header comment */ u8 token; /* Value of the next token */ #ifndef SQLITE_OMIT_TRIGGER /* A complex statement machine used to detect the end of a CREATE TRIGGER ** statement. This is the normal case. */ static const u8 trans[8][8] = { /* Token: */ /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ /* 0 INVALID: */ { 1, 0, 2, 3, 4, 2, 2, 2, }, /* 1 START: */ { 1, 1, 2, 3, 4, 2, 2, 2, }, /* 2 NORMAL: */ { 1, 2, 2, 2, 2, 2, 2, 2, }, /* 3 EXPLAIN: */ { 1, 3, 3, 2, 4, 2, 2, 2, }, /* 4 CREATE: */ { 1, 4, 2, 2, 2, 4, 5, 2, }, /* 5 TRIGGER: */ { 6, 5, 5, 5, 5, 5, 5, 5, }, /* 6 SEMI: */ { 6, 6, 5, 5, 5, 5, 5, 7, }, /* 7 END: */ { 1, 7, 5, 5, 5, 5, 5, 5, }, }; #else /* If triggers are not supported by this compile then the statement machine ** used to detect the end of a statement is much simplier */ static const u8 trans[3][3] = { /* Token: */ /* State: ** SEMI WS OTHER */ /* 0 INVALID: */ { 1, 0, 2, }, /* 1 START: */ { 1, 1, 2, }, /* 2 NORMAL: */ { 1, 2, 2, }, }; #endif /* SQLITE_OMIT_TRIGGER */ while( *zSql ){ switch( *zSql ){ case ';': { /* A semicolon */ token = tkSEMI; |
︙ | ︙ | |||
155 156 157 158 159 160 161 | } case '-': { /* SQL-style comments from "--" to end of line */ if( zSql[1]!='-' ){ token = tkOTHER; break; } while( *zSql && *zSql!='\n' ){ zSql++; } | | | 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | } case '-': { /* SQL-style comments from "--" to end of line */ if( zSql[1]!='-' ){ token = tkOTHER; break; } while( *zSql && *zSql!='\n' ){ zSql++; } if( *zSql==0 ) return state==1; token = tkWS; break; } case '[': { /* Microsoft-style identifiers in [...] */ zSql++; while( *zSql && *zSql!=']' ){ zSql++; } if( *zSql==0 ) return 0; |
︙ | ︙ | |||
239 240 241 242 243 244 245 | } break; } } state = trans[state][token]; zSql++; } | | | 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | } break; } } state = trans[state][token]; zSql++; } return state==1; } #ifndef SQLITE_OMIT_UTF16 /* ** This routine is the same as the sqlite3_complete() routine described ** above, except that the parameter is required to be UTF-16 encoded, not ** UTF-8. |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
360 361 362 363 364 365 366 | int regRowid; /* Actual register containing rowids */ /* Collect rowids of every row to be deleted. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK); if( pWInfo==0 ) goto delete_from_cleanup; | | | 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | int regRowid; /* Actual register containing rowids */ /* Collect rowids of every row to be deleted. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK); if( pWInfo==0 ) goto delete_from_cleanup; regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid); sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid); if( db->flags & SQLITE_CountRows ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } sqlite3WhereEnd(pWInfo); /* Delete every item whose key was written to the list during the |
︙ | ︙ | |||
626 627 628 629 630 631 632 | sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); | < | 626 627 628 629 630 631 632 633 634 635 636 | sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); } sqlite3ReleaseTempRange(pParse, regBase, nCol+1); return regBase; } |
Changes to src/expr.c.
︙ | ︙ | |||
223 224 225 226 227 228 229 | if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } | < < < < < < < < < < < < < < < < < < < < < < < < | 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | if( !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pRight); } } return pColl; } /* ** Generate code for a comparison operator. */ static int codeCompare( Parse *pParse, /* The parsing (and code generating) context */ Expr *pLeft, /* The left operand */ Expr *pRight, /* The right operand */ |
︙ | ︙ | |||
1978 1979 1980 1981 1982 1983 1984 | int minLru; int idxLru; struct yColCache *p; assert( iReg>0 ); /* Register numbers are always positive */ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ | > > > > > > | > > > > > > < > > > < | 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | int minLru; int idxLru; struct yColCache *p; assert( iReg>0 ); /* Register numbers are always positive */ assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ /* The SQLITE_ColumnCache flag disables the column cache. This is used ** for testing only - to verify that SQLite always gets the same answer ** with and without the column cache. */ if( pParse->db->flags & SQLITE_ColumnCache ) return; /* First replace any existing entry. ** ** Actually, the way the column cache is currently used, we are guaranteed ** that the object will never already be in cache. Verify this guarantee. */ #ifndef NDEBUG for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ #if 0 /* This code wold remove the entry from the cache if it existed */ if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){ cacheEntryClear(pParse, p); p->iLevel = pParse->iCacheLevel; p->iReg = iReg; p->lru = pParse->iCacheCnt++; return; } #endif assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); } #endif /* Find an empty slot and replace it */ for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ if( p->iReg==0 ){ p->iLevel = pParse->iCacheLevel; p->iTable = iTab; p->iColumn = iCol; p->iReg = iReg; p->tempReg = 0; p->lru = pParse->iCacheCnt++; return; } } /* Replace the last recently used */ |
︙ | ︙ | |||
2019 2020 2021 2022 2023 2024 2025 | } if( ALWAYS(idxLru>=0) ){ p = &pParse->aColCache[idxLru]; p->iLevel = pParse->iCacheLevel; p->iTable = iTab; p->iColumn = iCol; p->iReg = iReg; | < | | | > | > | 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 | } if( ALWAYS(idxLru>=0) ){ p = &pParse->aColCache[idxLru]; p->iLevel = pParse->iCacheLevel; p->iTable = iTab; p->iColumn = iCol; p->iReg = iReg; p->tempReg = 0; p->lru = pParse->iCacheCnt++; return; } } /* ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. ** Purge the range of registers from the column cache. */ void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ int i; int iLast = iReg + nReg - 1; struct yColCache *p; for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ int r = p->iReg; if( r>=iReg && r<=iLast ){ cacheEntryClear(pParse, p); p->iReg = 0; } } } /* |
︙ | ︙ | |||
2093 2094 2095 2096 2097 2098 2099 | ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in a register. An effort ** is made to store the column value in register iReg, but this is ** not guaranteed. The location of the column value is returned. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. | < < < < < < | < | < | 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 | ** Generate code that will extract the iColumn-th column from ** table pTab and store the column value in a register. An effort ** is made to store the column value in register iReg, but this is ** not guaranteed. The location of the column value is returned. ** ** There must be an open cursor to pTab in iTable when this routine ** is called. If iColumn<0 then code is generated that extracts the rowid. */ int sqlite3ExprCodeGetColumn( Parse *pParse, /* Parsing and code generating context */ Table *pTab, /* Description of the table we are reading from */ int iColumn, /* Index of the table column */ int iTable, /* The cursor pointing to the table */ int iReg /* Store results here */ ){ Vdbe *v = pParse->pVdbe; int i; struct yColCache *p; for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ p->lru = pParse->iCacheCnt++; sqlite3ExprCachePinRegister(pParse, p->iReg); return p->iReg; } } assert( v!=0 ); if( iColumn<0 ){ |
︙ | ︙ | |||
2152 2153 2154 2155 2156 2157 2158 | } /* ** Record the fact that an affinity change has occurred on iCount ** registers starting with iStart. */ void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ | | < < < < < < < < | 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 | } /* ** Record the fact that an affinity change has occurred on iCount ** registers starting with iStart. */ void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ sqlite3ExprCacheRemove(pParse, iStart, iCount); } /* ** Generate code to move content from registers iFrom...iFrom+nReg-1 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. */ void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
︙ | ︙ | |||
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 | int i; if( NEVER(iFrom==iTo) ) return; for(i=0; i<nReg; i++){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); } } /* ** Return true if any register in the range iFrom..iTo (inclusive) ** is used as part of the column cache. */ static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ int r = p->iReg; | > > > > | > | 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 | int i; if( NEVER(iFrom==iTo) ) return; for(i=0; i<nReg; i++){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i); } } #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* ** Return true if any register in the range iFrom..iTo (inclusive) ** is used as part of the column cache. ** ** This routine is used within assert() and testcase() macros only ** and does not appear in a normal build. */ static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ int i; struct yColCache *p; for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ int r = p->iReg; if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ } return 0; } #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ /* ** If the last instruction coded is an ephemeral copy of any of ** the registers in the nReg registers beginning with iReg, then ** convert the last instruction from OP_SCopy to OP_Copy. */ void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ |
︙ | ︙ | |||
2325 2326 2327 2328 2329 2330 2331 | } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckBase>0 ); inReg = pExpr->iColumn + pParse->ckBase; }else{ | < | < | 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 | } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckBase>0 ); inReg = pExpr->iColumn + pParse->ckBase; }else{ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, pExpr->iColumn, pExpr->iTable, target); } break; } case TK_INTEGER: { codeInteger(v, pExpr, 0, target); break; } |
︙ | ︙ | |||
2445 2446 2447 2448 2449 2450 2451 | assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); | | | | | | 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 | assert( TK_NE==OP_Ne ); testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } |
︙ | ︙ | |||
2602 2603 2604 2605 2606 2607 2608 | */ if( pDef->flags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); | | | 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 | */ if( pDef->flags & SQLITE_FUNC_COALESCE ){ int endCoalesce = sqlite3VdbeMakeLabel(v); assert( nFarg>=2 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); for(i=1; i<nFarg; i++){ sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); sqlite3ExprCacheRemove(pParse, target, 1); sqlite3ExprCachePush(pParse); sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); sqlite3ExprCachePop(pParse, 1); } sqlite3VdbeResolveLabel(v, endCoalesce); break; } |
︙ | ︙ | |||
2657 2658 2659 2660 2661 2662 2663 | } sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } | < | 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 | } sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, (char*)pDef, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nFarg); if( nFarg ){ sqlite3ReleaseTempRange(pParse, r1, nFarg); } break; } #ifndef SQLITE_OMIT_SUBQUERY case TK_EXISTS: case TK_SELECT: { testcase( op==TK_EXISTS ); testcase( op==TK_SELECT ); |
︙ | ︙ | |||
2698 2699 2700 2701 2702 2703 2704 | ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pLeft = pExpr->pLeft; struct ExprList_item *pLItem = pExpr->x.pList->a; Expr *pRight = pLItem->pExpr; | | | | 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 | ** Z is stored in pExpr->pList->a[1].pExpr. */ case TK_BETWEEN: { Expr *pLeft = pExpr->pLeft; struct ExprList_item *pLItem = pExpr->x.pList->a; Expr *pRight = pLItem->pExpr; r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); testcase( regFree1==0 ); testcase( regFree2==0 ); r3 = sqlite3GetTempReg(pParse); r4 = sqlite3GetTempReg(pParse); codeCompare(pParse, pLeft, pRight, OP_Ge, r1, r2, r3, SQLITE_STOREP2); pLItem++; |
︙ | ︙ | |||
3234 3235 3236 3237 3238 3239 3240 | testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); | | | | | | 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 | testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( op==TK_IS ); testcase( op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (op==TK_IS) ? TK_EQ : TK_NE; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } |
︙ | ︙ | |||
3377 3378 3379 3380 3381 3382 3383 | testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); | | | | | | 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 | testcase( op==TK_LT ); testcase( op==TK_LE ); testcase( op==TK_GT ); testcase( op==TK_GE ); testcase( op==TK_EQ ); testcase( op==TK_NE ); testcase( jumpIfNull==0 ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, jumpIfNull); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } case TK_IS: case TK_ISNOT: { testcase( pExpr->op==TK_IS ); testcase( pExpr->op==TK_ISNOT ); r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, r1, r2, dest, SQLITE_NULLEQ); testcase( regFree1==0 ); testcase( regFree2==0 ); break; } |
︙ | ︙ | |||
3737 3738 3739 3740 3741 3742 3743 | /* ** Allocate or deallocate a block of nReg consecutive registers */ int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; i = pParse->iRangeReg; n = pParse->nRangeReg; | > | > | 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 | /* ** Allocate or deallocate a block of nReg consecutive registers */ int sqlite3GetTempRange(Parse *pParse, int nReg){ int i, n; i = pParse->iRangeReg; n = pParse->nRangeReg; if( nReg<=n ){ assert( !usedAsColumnCache(pParse, i, i+n-1) ); pParse->iRangeReg += nReg; pParse->nRangeReg -= nReg; }else{ i = pParse->nMem+1; pParse->nMem += nReg; } return i; } void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ sqlite3ExprCacheRemove(pParse, iReg, nReg); if( nReg>pParse->nRangeReg ){ pParse->nRangeReg = nReg; pParse->iRangeReg = iReg; } } |
Changes to src/main.c.
︙ | ︙ | |||
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 | sqlite3 *db = va_arg(ap, sqlite3*); int x = va_arg(ap,int); sqlite3_mutex_enter(db->mutex); sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); sqlite3_mutex_leave(db->mutex); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 | sqlite3 *db = va_arg(ap, sqlite3*); int x = va_arg(ap,int); sqlite3_mutex_enter(db->mutex); sqlite3BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0); sqlite3_mutex_leave(db->mutex); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) ** ** Enable or disable various optimizations for testing purposes. The ** argument N is a bitmask of optimizations to be disabled. For normal ** operation N should be 0. The idea is that a test program (like the ** SQL Logic Test or SLT test module) can run the same SQL multiple times ** with various optimizations disabled to verify that the same answer ** is obtained in every case. */ case SQLITE_TESTCTRL_OPTIMIZATIONS: { sqlite3 *db = va_arg(ap, sqlite3*); int x = va_arg(ap,int); db->flags = (x & SQLITE_OptMask) | (db->flags & ~SQLITE_OptMask); break; } #ifdef SQLITE_N_KEYWORD /* sqlite3_test_control(SQLITE_TESTCTRL_ISKEYWORD, const char *zWord) ** ** If zWord is a keyword recognized by the parser, then return the ** number of keywords. Or if zWord is not a keyword, return 0. ** ** This test feature is only available in the amalgamation since ** the SQLITE_N_KEYWORD macro is not defined in this file if SQLite ** is built using separate source files. */ case SQLITE_TESTCTRL_ISKEYWORD: { const char *zWord = va_arg(ap, const char*); int n = sqlite3Strlen30(zWord); rc = (sqlite3KeywordCode((u8*)zWord, n)!=TK_ID) ? SQLITE_N_KEYWORD : 0; break; } #endif } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; } |
Changes to src/mem2.c.
︙ | ︙ | |||
205 206 207 208 209 210 211 212 213 214 215 216 217 218 | /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Allocate nByte bytes of memory. */ static void *sqlite3MemMalloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; | > > > > > > > > > > > > > > > > > > > > > > > > > | 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | /* ** Round up a request size to the next valid allocation size. */ static int sqlite3MemRoundup(int n){ return ROUND8(n); } /* ** Fill a buffer with pseudo-random bytes. This is used to preset ** the content of a new memory allocation to unpredictable values and ** to clear the content of a freed allocation to unpredictable values. */ static void randomFill(char *pBuf, int nByte){ unsigned int x, y, r; x = SQLITE_PTR_TO_INT(pBuf); y = nByte | 1; while( nByte >= 4 ){ x = (x>>1) ^ (-(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(int*)pBuf = r; pBuf += 4; nByte -= 4; } while( nByte-- > 0 ){ x = (x>>1) ^ (-(x&1) & 0xd0000001); y = y*1103515245 + 12345; r = x ^ y; *(pBuf++) = r & 0xff; } } /* ** Allocate nByte bytes of memory. */ static void *sqlite3MemMalloc(int nByte){ struct MemBlockHdr *pHdr; void **pBt; |
︙ | ︙ | |||
256 257 258 259 260 261 262 | if( mem.nTitle ){ memcpy(z, mem.zTitle, mem.nTitle); } pHdr->iSize = nByte; adjustStats(nByte, +1); pInt = (int*)&pHdr[1]; pInt[nReserve/sizeof(int)] = REARGUARD; | > | | 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | if( mem.nTitle ){ memcpy(z, mem.zTitle, mem.nTitle); } pHdr->iSize = nByte; adjustStats(nByte, +1); pInt = (int*)&pHdr[1]; pInt[nReserve/sizeof(int)] = REARGUARD; randomFill((char*)pInt, nByte); memset(((char*)pInt)+nByte, 0x65, nReserve-nByte); p = (void*)pInt; } sqlite3_mutex_leave(mem.mutex); return p; } /* |
︙ | ︙ | |||
292 293 294 295 296 297 298 | }else{ assert( mem.pLast==pHdr ); mem.pLast = pHdr->pPrev; } z = (char*)pBt; z -= pHdr->nTitle; adjustStats(pHdr->iSize, -1); | | | | 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | }else{ assert( mem.pLast==pHdr ); mem.pLast = pHdr->pPrev; } z = (char*)pBt; z -= pHdr->nTitle; adjustStats(pHdr->iSize, -1); randomFill(z, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + pHdr->iSize + sizeof(int) + pHdr->nTitle); free(z); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation. ** |
︙ | ︙ | |||
316 317 318 319 320 321 322 | void *pNew; assert( mem.disallow==0 ); pOldHdr = sqlite3MemsysGetHeader(pPrior); pNew = sqlite3MemMalloc(nByte); if( pNew ){ memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize); if( nByte>pOldHdr->iSize ){ | | | 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 | void *pNew; assert( mem.disallow==0 ); pOldHdr = sqlite3MemsysGetHeader(pPrior); pNew = sqlite3MemMalloc(nByte); if( pNew ){ memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize); if( nByte>pOldHdr->iSize ){ randomFill(&((char*)pNew)[pOldHdr->iSize], nByte - pOldHdr->iSize); } sqlite3MemFree(pPrior); } return pNew; } /* |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
4029 4030 4031 4032 4033 4034 4035 | ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a resusable file descriptor are not dire. */ if( 0==stat(zPath, &sStat) ){ | | < < < | > > > > | | | 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 | ** For this reason, if an error occurs in the stat() call here, it is ** ignored and -1 is returned. The caller will try to open a new file ** descriptor on the same path, fail, and return an error to SQLite. ** ** Even if a subsequent open() call does succeed, the consequences of ** not searching for a resusable file descriptor are not dire. */ if( 0==stat(zPath, &sStat) ){ struct unixOpenCnt *pOpen; unixEnterMutex(); pOpen = openList; while( pOpen && (pOpen->fileId.dev!=sStat.st_dev || pOpen->fileId.ino!=sStat.st_ino) ){ pOpen = pOpen->pNext; } if( pOpen ){ UnixUnusedFd **pp; for(pp=&pOpen->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); pUnused = *pp; if( pUnused ){ *pp = pUnused->pNext; } } unixLeaveMutex(); } |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
3858 3859 3860 3861 3862 3863 3864 | if( pgno<=pPager->dbOrigSize ){ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); testcase( rc==SQLITE_NOMEM ); } TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); testcase( rc==SQLITE_NOMEM ); sqlite3EndBenignMalloc(); | < < > | 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 | if( pgno<=pPager->dbOrigSize ){ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); testcase( rc==SQLITE_NOMEM ); } TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); testcase( rc==SQLITE_NOMEM ); sqlite3EndBenignMalloc(); } memset(pPg->pData, 0, pPager->pageSize); IOTRACE(("ZERO %p %d\n", pPager, pgno)); }else{ assert( pPg->pPager==pPager ); rc = readDbPage(pPg); if( rc!=SQLITE_OK ){ goto pager_acquire_err; } |
︙ | ︙ |
Changes to src/prepare.c.
︙ | ︙ | |||
468 469 470 471 472 473 474 | db->mallocFailed = 1; } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the | | | 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | db->mallocFailed = 1; } if( rc!=SQLITE_OK ) return; openedTransaction = 1; } /* Read the schema cookie from the database. If it does not match the ** value stored as part of the in-memory schema representation, ** set Parse.rc to SQLITE_SCHEMA. */ sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ pParse->rc = SQLITE_SCHEMA; } /* Close the transaction, if one was opened. */ |
︙ | ︙ |
Changes to src/resolve.c.
︙ | ︙ | |||
239 240 241 242 243 244 245 | pTab = pParse->pTriggerTab; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; | < < < | | | | | | | | | > > | 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | pTab = pParse->pTriggerTab; } if( pTab ){ int iCol; pSchema = pTab->pSchema; cntTab++; for(iCol=0; iCol<pTab->nCol; iCol++){ Column *pCol = &pTab->aCol[iCol]; if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ if( iCol==pTab->iPKey ){ iCol = -1; } break; } } if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) ){ iCol = -1; /* IMP: R-44911-55124 */ } if( iCol<pTab->nCol ){ cnt++; if( iCol<0 ){ pExpr->affinity = SQLITE_AFF_INTEGER; }else if( pExpr->iTable==0 ){ testcase( iCol==31 ); |
︙ | ︙ | |||
278 279 280 281 282 283 284 | #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ cnt = 1; | | | 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | #endif /* !defined(SQLITE_OMIT_TRIGGER) */ /* ** Perhaps the name is a reference to the ROWID */ if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ cnt = 1; pExpr->iColumn = -1; /* IMP: R-44911-55124 */ pExpr->affinity = SQLITE_AFF_INTEGER; } /* ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z ** might refer to an result-set alias. This happens, for example, when ** we are resolving names in the WHERE clause of the following command: |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
953 954 955 956 957 958 959 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ | | | 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 | assert( pTab && pExpr->pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ /* If iCol is less than zero, then the expression requests the ** rowid of the sub-select or view. This expression is legal (see ** test case misc2.2.2) - it always evaluates to NULL. */ NameContext sNC; Expr *p = pS->pEList->a[iCol].pExpr; sNC.pSrcList = pS->pSrc; |
︙ | ︙ | |||
2514 2515 2516 2517 2518 2519 2520 | ** aggregates. ** ** (10) The subquery does not use aggregates or the outer query does not ** use LIMIT. ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** | | | 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 | ** aggregates. ** ** (10) The subquery does not use aggregates or the outer query does not ** use LIMIT. ** ** (11) The subquery and the outer query do not both have ORDER BY clauses. ** ** (**) Not implemented. Subsumed into restriction (3). Was previously ** a separate restriction deriving from ticket #350. ** ** (13) The subquery and outer query do not both use LIMIT ** ** (14) The subquery does not use OFFSET ** ** (15) The outer query is not part of a compound select or the |
︙ | ︙ | |||
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 | struct SrcList_item *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; /* Check to see if flattening is permitted. Return 0 if not. */ assert( p!=0 ); assert( p->pPrior==0 ); /* Unable to flatten compound queries */ pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); pSubitem = &pSrc->a[iFrom]; iParent = pSubitem->iCursor; pSub = pSubitem->pSelect; assert( pSub!=0 ); if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ | > | 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 | struct SrcList_item *pSubitem; /* The subquery */ sqlite3 *db = pParse->db; /* Check to see if flattening is permitted. Return 0 if not. */ assert( p!=0 ); assert( p->pPrior==0 ); /* Unable to flatten compound queries */ if( db->flags & SQLITE_QueryFlattener ) return 0; pSrc = p->pSrc; assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); pSubitem = &pSrc->a[iFrom]; iParent = pSubitem->iCursor; pSub = pSubitem->pSelect; assert( pSub!=0 ); if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
︙ | ︙ | |||
3485 3486 3487 3488 3489 3490 3491 | pColl = pParse->db->pDfltColl; } sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); | < > | 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 | pColl = pParse->db->pDfltColl; } sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); } sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, (void*)pF->pFunc, P4_FUNCDEF); sqlite3VdbeChangeP5(v, (u8)nArg); sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sqlite3ReleaseTempRange(pParse, regAgg, nArg); if( addrNext ){ sqlite3VdbeResolveLabel(v, addrNext); sqlite3ExprCacheClear(pParse); } } for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); |
︙ | ︙ | |||
3912 3913 3914 3915 3916 3917 3918 | for(i=0; i<sAggInfo.nColumn; i++){ struct AggInfo_col *pCol = &sAggInfo.aCol[i]; if( pCol->iSorterColumn>=j ){ int r1 = j + regBase; int r2; r2 = sqlite3ExprCodeGetColumn(pParse, | | | 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 | for(i=0; i<sAggInfo.nColumn; i++){ struct AggInfo_col *pCol = &sAggInfo.aCol[i]; if( pCol->iSorterColumn>=j ){ int r1 = j + regBase; int r2; r2 = sqlite3ExprCodeGetColumn(pParse, pCol->pTab, pCol->iColumn, pCol->iTable, r1); if( r1!=r2 ){ sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); } j++; } } regRecord = sqlite3GetTempReg(pParse); |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 | zLine[n] = 0; eol = 1; break; } while( zLine[n] ){ n++; } if( n>0 && zLine[n-1]=='\n' ){ n--; zLine[n] = 0; eol = 1; } } zLine = realloc( zLine, n+1 ); return zLine; } | > | 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 | zLine[n] = 0; eol = 1; break; } while( zLine[n] ){ n++; } if( n>0 && zLine[n-1]=='\n' ){ n--; if( n>0 && zLine[n-1]=='\r' ) n--; zLine[n] = 0; eol = 1; } } zLine = realloc( zLine, n+1 ); return zLine; } |
︙ | ︙ | |||
1828 1829 1830 1831 1832 1833 1834 | sqlite3 *db, /* An open database */ const char *zSql, /* SQL to be evaluated */ int (*xCallback)(void*,int,char**,char**,int*), /* Callback function */ /* (not the same as sqlite3_exec) */ struct callback_data *pArg, /* Pointer to struct callback_data */ char **pzErrMsg /* Error msg written here */ ){ | | | < | | 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | sqlite3 *db, /* An open database */ const char *zSql, /* SQL to be evaluated */ int (*xCallback)(void*,int,char**,char**,int*), /* Callback function */ /* (not the same as sqlite3_exec) */ struct callback_data *pArg, /* Pointer to struct callback_data */ char **pzErrMsg /* Error msg written here */ ){ sqlite3_stmt *pStmt = NULL; /* Statement to execute. */ int rc = SQLITE_OK; /* Return Code */ const char *zLeftover; /* Tail of unprocessed SQL */ if( pzErrMsg ){ *pzErrMsg = NULL; } while( zSql[0] && (SQLITE_OK == rc) ){ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zLeftover); |
︙ | ︙ | |||
1912 1913 1914 1915 1916 1917 1918 | }else{ do{ rc = sqlite3_step(pStmt); } while( rc == SQLITE_ROW ); } } | | | < < < < < < | | < < < < < < < < < | > > | 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 | }else{ do{ rc = sqlite3_step(pStmt); } while( rc == SQLITE_ROW ); } } /* Finalize the statement just executed. If this fails, save a ** copy of the error message. Otherwise, set zSql to point to the ** next statement to execute. */ rc = sqlite3_finalize(pStmt); if( rc==SQLITE_OK ){ zSql = zLeftover; while( isspace(zSql[0]) ) zSql++; }else if( pzErrMsg ){ *pzErrMsg = save_err_msg(db); } } } /* end while */ return rc; } |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
1557 1558 1559 1560 1561 1562 1563 | ** [database connection]. Setting a new busy handler clears any ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] ** will also set or clear the busy handler. ** ** The busy callback should not take any actions which modify the ** database connection that invoked the busy handler. Any such actions ** result in undefined behavior. | | | 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 | ** [database connection]. Setting a new busy handler clears any ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()] ** will also set or clear the busy handler. ** ** The busy callback should not take any actions which modify the ** database connection that invoked the busy handler. Any such actions ** result in undefined behavior. ** ** A busy handler must not close the database connection ** or [prepared statement] that invoked the busy handler. */ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* ** CAPI3REF: Set A Busy Timeout |
︙ | ︙ | |||
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 | ** as the first argument to [sqlite3_test_control()]. ** ** These parameters and their meanings are subject to change ** without notice. These values are for testing purposes only. ** Applications should not use any of these parameters or the ** [sqlite3_test_control()] interface. */ #define SQLITE_TESTCTRL_PRNG_SAVE 5 #define SQLITE_TESTCTRL_PRNG_RESTORE 6 #define SQLITE_TESTCTRL_PRNG_RESET 7 #define SQLITE_TESTCTRL_BITVEC_TEST 8 #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 /* ** CAPI3REF: SQLite Runtime Status ** EXPERIMENTAL ** ** ^This interface is used to retrieve runtime status information ** about the preformance of SQLite, and optionally to reset various | > > > > | 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 | ** as the first argument to [sqlite3_test_control()]. ** ** These parameters and their meanings are subject to change ** without notice. These values are for testing purposes only. ** Applications should not use any of these parameters or the ** [sqlite3_test_control()] interface. */ #define SQLITE_TESTCTRL_FIRST 5 #define SQLITE_TESTCTRL_PRNG_SAVE 5 #define SQLITE_TESTCTRL_PRNG_RESTORE 6 #define SQLITE_TESTCTRL_PRNG_RESET 7 #define SQLITE_TESTCTRL_BITVEC_TEST 8 #define SQLITE_TESTCTRL_FAULT_INSTALL 9 #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10 #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 #define SQLITE_TESTCTRL_LAST 16 /* ** CAPI3REF: SQLite Runtime Status ** EXPERIMENTAL ** ** ^This interface is used to retrieve runtime status information ** about the preformance of SQLite, and optionally to reset various |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
894 895 896 897 898 899 900 | /* ** A macro to discover the encoding of a database. */ #define ENC(db) ((db)->aDb[0].pSchema->enc) /* | | < < < < | < | | | | | | | | | | | | | | < | | | | > > > > > > > > > > > > | 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 | /* ** A macro to discover the encoding of a database. */ #define ENC(db) ((db)->aDb[0].pSchema->enc) /* ** Possible values for the sqlite3.flags. */ #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ /* DELETE, or UPDATE and return */ /* the count using a callback. */ #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ /* result set is empty */ #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when ** accessing read-only databases */ #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ #define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */ #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ /* ** Bits of the sqlite3.flags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. ** These must be the low-order bits of the flags field. */ #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ #define SQLITE_IndexCover 0x10 /* Disable index covering table */ #define SQLITE_OptMask 0x1f /* Mask of all disablable opts */ /* ** Possible values for the sqlite.magic field. ** The numbers are obtained at random and have no special meaning, other ** than being distinct from one another. */ #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ |
︙ | ︙ | |||
1638 1639 1640 1641 1642 1643 1644 | #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x0008 /* Expression contains one or more errors */ #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ | < | | | | | | | 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 | #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ #define EP_Error 0x0008 /* Expression contains one or more errors */ #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ #define EP_FixedDest 0x0200 /* Result needed in a specific register */ #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */ /* ** The following are the meanings of bits in the Expr.flags2 field. */ #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ |
︙ | ︙ | |||
2123 2124 2125 2126 2127 2128 2129 | int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ u8 nColCache; /* Number of entries in the column cache */ u8 iColCache; /* Next entry of the cache to replace */ struct yColCache { int iTable; /* Table cursor number */ int iColumn; /* Table column number */ | < | 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 | int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ u8 nColCache; /* Number of entries in the column cache */ u8 iColCache; /* Next entry of the cache to replace */ struct yColCache { int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ int iReg; /* Reg with value of this column. 0 means none. */ int lru; /* Least recently used entry has the smallest value */ } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ u32 writeMask; /* Start a write transaction on these databases */ u32 cookieMask; /* Bitmask of schema verified databases */ |
︙ | ︙ | |||
2642 2643 2644 2645 2646 2647 2648 | #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); void sqlite3WhereEnd(WhereInfo*); | | | | 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 | #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); #endif void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); void sqlite3WhereEnd(WhereInfo*); int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); void sqlite3ExprCodeMove(Parse*, int, int, int); void sqlite3ExprCodeCopy(Parse*, int, int, int); void sqlite3ExprCacheStore(Parse*, int, int, int); void sqlite3ExprCachePush(Parse*); void sqlite3ExprCachePop(Parse*, int); void sqlite3ExprCacheRemove(Parse*, int, int); void sqlite3ExprCacheClear(Parse*); void sqlite3ExprCacheAffinityChange(Parse*, int, int); void sqlite3ExprHardCopy(Parse*,int,int); int sqlite3ExprCode(Parse*, Expr*, int); int sqlite3ExprCodeTemp(Parse*, Expr*, int*); int sqlite3ExprCodeTarget(Parse*, Expr*, int); int sqlite3ExprCodeAndCache(Parse*, Expr*, int); |
︙ | ︙ |
Changes to src/vacuum.c.
︙ | ︙ | |||
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ char *zSql = 0; /* SQL statements */ int saved_flags; /* Saved value of the db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ int nRes; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->flags &= ~SQLITE_ForeignKeys; pMain = db->aDb[0].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a | > > > | 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 | int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ char *zSql = 0; /* SQL statements */ int saved_flags; /* Saved value of the db->flags */ int saved_nChange; /* Saved value of db->nChange */ int saved_nTotalChange; /* Saved value of db->nTotalChange */ void (*saved_xTrace)(void*,const char*); /* Saved db->xTrace */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ int nRes; if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_xTrace = db->xTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->flags &= ~SQLITE_ForeignKeys; db->xTrace = 0; pMain = db->aDb[0].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a |
︙ | ︙ | |||
279 280 281 282 283 284 285 286 287 288 289 290 291 292 | rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1); end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. | > | 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 | rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes,1); end_of_vacuum: /* Restore the original value of db->flags */ db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->xTrace = saved_xTrace; /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
3659 3660 3661 3662 3663 3664 3665 | v = sqlite3BtreeGetCachedRowid(pC->pCursor); if( v==0 ){ rc = sqlite3BtreeLast(pC->pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ | | | | 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 | v = sqlite3BtreeGetCachedRowid(pC->pCursor); if( v==0 ){ rc = sqlite3BtreeLast(pC->pCursor, &res); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( res ){ v = 1; /* IMP: R-61914-48074 */ }else{ assert( sqlite3BtreeCursorIsValid(pC->pCursor) ); rc = sqlite3BtreeKeySize(pC->pCursor, &v); assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */ if( v==MAX_ROWID ){ pC->useRandomRowid = 1; }else{ v++; /* IMP: R-29538-34987 */ } } } #ifndef SQLITE_OMIT_AUTOINCREMENT if( pOp->p3 ){ /* Assert that P3 is a valid memory cell. */ |
︙ | ︙ | |||
3691 3692 3693 3694 3695 3696 3697 | pMem = &aMem[pOp->p3]; } REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ | | > > > > > | | 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 | pMem = &aMem[pOp->p3]; } REGISTER_TRACE(pOp->p3, pMem); sqlite3VdbeMemIntegerify(pMem); assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ rc = SQLITE_FULL; /* IMP: R-12275-61338 */ goto abort_due_to_error; } if( v<pMem->u.i+1 ){ v = pMem->u.i + 1; } pMem->u.i = v; } #endif sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0); } if( pC->useRandomRowid ){ /* IMPLEMENTATION-OF: R-48598-02938 If the largest ROWID is equal to the ** largest possible integer (9223372036854775807) then the database ** engine starts picking candidate ROWIDs at random until it finds one ** that is not previously used. */ assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is ** an AUTOINCREMENT table. */ v = db->lastRowid; cnt = 0; do{ if( cnt==0 && (v&0xffffff)==v ){ v++; }else{ sqlite3_randomness(sizeof(v), &v); if( cnt<5 ) v &= 0xffffff; } rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 0, &res); cnt++; }while( cnt<100 && rc==SQLITE_OK && res==0 ); if( rc==SQLITE_OK && res==0 ){ rc = SQLITE_FULL; /* IMP: R-38219-53002 */ goto abort_due_to_error; } } pC->rowidIsValid = 0; pC->deferredMoveto = 0; pC->cacheStatus = CACHE_STALE; } |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 | ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ | > > > | | | | | | > > > | | > > > > > > > > > | 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 | ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p->explain==1, each instruction is listed. When ** p->explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p->explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ int sqlite3VdbeList( Vdbe *p /* The VDBE */ ){ int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram **apSub = 0; /* Array of sub-vdbes */ Mem *pSub = 0; /* Memory cell hold array of subprogs */ sqlite3 *db = p->db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ assert( p->explain ); assert( p->magic==VDBE_MAGIC_RUN ); assert( db->magic==SQLITE_MAGIC_BUSY ); assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray(pMem, 8); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ db->mallocFailed = 1; return SQLITE_ERROR; } /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p->nOp; if( p->explain==1 ){ /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ assert( p->nMem>9 ); pSub = &p->aMem[9]; if( pSub->flags&MEM_Blob ){ /* On the first call to sqlite3_step(), pSub will hold a NULL. It is ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ nSub = pSub->n/sizeof(Vdbe*); apSub = (SubProgram **)pSub->z; } for(i=0; i<nSub; i++){ nRow += apSub[i]->nOp; } } |
︙ | ︙ | |||
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 | p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); }else{ char *z; Op *pOp; if( i<p->nOp ){ pOp = &p->aOp[i]; }else{ int j; i -= p->nOp; for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } | > > > > | 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 | p->rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); }else{ char *z; Op *pOp; if( i<p->nOp ){ /* The output line number is small enough that we are still in the ** main program. */ pOp = &p->aOp[i]; }else{ /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p->nOp; for(j=0; i>=apSub[j]->nOp; j++){ i -= apSub[j]->nOp; } pOp = &apSub[j]->aOp[i]; } |
︙ | ︙ | |||
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 | pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; if( pOp->p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; j<nSub; j++){ if( apSub[j]==pOp->p4.pProgram ) break; } if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ | > > > > > | 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 | pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30(pMem->z); pMem->type = SQLITE_TEXT; pMem->enc = SQLITE_UTF8; pMem++; /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ if( pOp->p4type==P4_SUBPROGRAM ){ int nByte = (nSub+1)*sizeof(SubProgram*); int j; for(j=0; j<nSub; j++){ if( apSub[j]==pOp->p4.pProgram ) break; } if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
3156 3157 3158 3159 3160 3161 3162 | /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; | | | 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 | /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); sqlite3ExprCode(pParse, pRight, regBase+nEq); sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); if( zAff ){ if( sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE){ /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ |
︙ | ︙ | |||
3291 3292 3293 3294 3295 3296 3297 | if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ struct SrcList_item *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3StackAllocRaw(pParse->db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; | > | | 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 | if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ struct SrcList_item *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3StackAllocRaw(pParse->db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (i16)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ pOrTab = pWInfo->pTabList; |
︙ | ︙ | |||
3332 3333 3334 3335 3336 3337 3338 | WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); if( pSubWInfo ){ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, | | | 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 | WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); if( pSubWInfo ){ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); } sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); /* The pSubWInfo->untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The |
︙ | ︙ |
Changes to test/check.test.
︙ | ︙ | |||
235 236 237 238 239 240 241 | } {1 10} do_test check-4.3 { execsql { UPDATE t4 SET x=4, y=3; SELECT * FROM t4 } } {4 3} | | | | | | | | | 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 | } {1 10} do_test check-4.3 { execsql { UPDATE t4 SET x=4, y=3; SELECT * FROM t4 } } {4 3} do_test check-4.4 { execsql { UPDATE t4 SET x=12, y=2; SELECT * FROM t4 } } {12 2} do_test check-4.5 { execsql { UPDATE t4 SET x=12, y=-22; SELECT * FROM t4 } } {12 -22} do_test check-4.6 { catchsql { UPDATE t4 SET x=0, y=1; } } {1 {constraint failed}} do_test check-4.7 { execsql { SELECT * FROM t4; } } {12 -22} do_test check-4.8 { execsql { PRAGMA ignore_check_constraints=ON; UPDATE t4 SET x=0, y=1; SELECT * FROM t4; } } {0 1} do_test check-4.9 { catchsql { PRAGMA ignore_check_constraints=OFF; UPDATE t4 SET x=0, y=2; } } {1 {constraint failed}} ifcapable vacuum { do_test check_4.10 { catchsql { VACUUM } } {0 {}} } do_test check-5.1 { |
︙ | ︙ |
Changes to test/e_fkey.test.
︙ | ︙ | |||
95 96 97 98 99 100 101 | #------------------------------------------------------------------------- # Test the effects of defining OMIT_FOREIGN_KEY. # # EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then # foreign key definitions cannot even be parsed (attempting to specify a # foreign key definition is a syntax error). # | < < | 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | #------------------------------------------------------------------------- # Test the effects of defining OMIT_FOREIGN_KEY. # # EVIDENCE-OF: R-58428-36660 If OMIT_FOREIGN_KEY is defined, then # foreign key definitions cannot even be parsed (attempting to specify a # foreign key definition is a syntax error). # # Specifically, test that foreign key constraints cannot even be parsed # in such a build. # reset_db ifcapable !foreignkey { do_test e_fkey-3.1 { execsql { CREATE TABLE p(i PRIMARY KEY) } |
︙ | ︙ | |||
325 326 327 328 329 330 331 | execsql { UPDATE track SET trackartist = NULL WHERE trackid = 1; DELETE FROM artist WHERE artistid = 5; } } {} #------------------------------------------------------------------------- | < < | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | execsql { UPDATE track SET trackartist = NULL WHERE trackid = 1; DELETE FROM artist WHERE artistid = 5; } } {} #------------------------------------------------------------------------- # Test that the following is true fo all rows in the track table: # # trackartist IS NULL OR # EXISTS(SELECT 1 FROM artist WHERE artistid=trackartist) # # EVIDENCE-OF: R-52486-21352 Expressed in SQL, this means that for every # row in the track table, the following expression evaluates to true: |
︙ | ︙ | |||
384 385 386 387 388 389 390 | set t [expr int(rand()*50)] set sql [subst [lindex $Template [expr int(rand()*6)]]] test_r52486_21352 $i $sql } #------------------------------------------------------------------------- | < < | 380 381 382 383 384 385 386 387 388 389 390 391 392 393 | set t [expr int(rand()*50)] set sql [subst [lindex $Template [expr int(rand()*6)]]] test_r52486_21352 $i $sql } #------------------------------------------------------------------------- # Check that a NOT NULL constraint can be added to the example schema # to prohibit NULL child keys from being inserted. # # EVIDENCE-OF: R-42412-59321 Tip: If the application requires a stricter # relationship between artist and track, where NULL values are not # permitted in the trackartist column, simply add the appropriate "NOT # NULL" constraint to the schema. |
︙ | ︙ | |||
414 415 416 417 418 419 420 | } } {} do_test e_fkey-12.2 { catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } } {1 {track.trackartist may not be NULL}} #------------------------------------------------------------------------- | | | 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | } } {} do_test e_fkey-12.2 { catchsql { INSERT INTO track VALUES(14, 'Mr. Bojangles', NULL) } } {1 {track.trackartist may not be NULL}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-16127-35442 # # Test an example from foreignkeys.html. # drop_all_tables do_test e_fkey-13.1 { execsql { CREATE TABLE artist( |
︙ | ︙ | |||
458 459 460 461 462 463 464 | INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; INSERT INTO track VALUES(15, 'Boogie Woogie', 3); } } {} #------------------------------------------------------------------------- | | | 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | INSERT INTO artist VALUES(3, 'Sammy Davis Jr.'); UPDATE track SET trackartist = 3 WHERE trackname = 'Mr. Bojangles'; INSERT INTO track VALUES(15, 'Boogie Woogie', 3); } } {} #------------------------------------------------------------------------- # EVIDENCE-OF: R-15958-50233 # # Test the second example from the first section of foreignkeys.html. # do_test e_fkey-14.1 { catchsql { DELETE FROM artist WHERE artistname = 'Frank Sinatra'; } |
︙ | ︙ | |||
878 879 880 881 882 883 884 | do_test e_fkey-22.$fk.[incr i] { catchsql $sql } [list 1 $error] } } #------------------------------------------------------------------------- | < < > > > > > | 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 | do_test e_fkey-22.$fk.[incr i] { catchsql $sql } [list 1 $error] } } #------------------------------------------------------------------------- # Test that a REFERENCING clause that does not specify parent key columns # implicitly maps to the primary key of the parent table. # # EVIDENCE-OF: R-43879-08025 Attaching a "REFERENCES <parent-table>" # clause to a column definition creates a foreign # key constraint that maps the column to the primary key of # <parent-table>. # do_test e_fkey-23.1 { execsql { CREATE TABLE p1(a, b, PRIMARY KEY(a, b)); CREATE TABLE p2(a, b PRIMARY KEY); CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p1); CREATE TABLE c2(a, b REFERENCES p2); |
︙ | ︙ | |||
911 912 913 914 915 916 917 | #------------------------------------------------------------------------- # Test that an index on on the child key columns of an FK constraint # is optional. # # EVIDENCE-OF: R-15417-28014 Indices are not required for child key # columns # | < < > > > | 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | #------------------------------------------------------------------------- # Test that an index on on the child key columns of an FK constraint # is optional. # # EVIDENCE-OF: R-15417-28014 Indices are not required for child key # columns # # Also test that if an index is created on the child key columns, it does # not make a difference whether or not it is a UNIQUE index. # # EVIDENCE-OF: R-15741-50893 The child key index does not have to be # (and usually will not be) a UNIQUE index. # drop_all_tables do_test e_fkey-24.1 { execsql { CREATE TABLE parent(x, y, UNIQUE(y, x)); CREATE TABLE c1(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); CREATE TABLE c2(a, b, FOREIGN KEY(a, b) REFERENCES parent(x, y)); |
︙ | ︙ | |||
1008 1009 1010 1011 1012 1013 1014 | do_test e_fkey-25.7 { concat \ [execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \ [catchsql { DELETE FROM artist WHERE artistid = 6 }] } {2 1 {foreign key constraint failed}} #------------------------------------------------------------------------- | | > < < | 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 | do_test e_fkey-25.7 { concat \ [execsql { SELECT rowid FROM track WHERE trackartist = 6 }] \ [catchsql { DELETE FROM artist WHERE artistid = 6 }] } {2 1 {foreign key constraint failed}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-47936-10044 Or, more generally: # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value # # Test that when a row is deleted from the parent table of an FK # constraint, the child table is queried for orphaned rows. The # query is equivalent to: # # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value # # Also test that when a row is inserted into the parent table, or when the # parent key values of an existing row are modified, a query equivalent # to the following is planned. In some cases it is not executed, but it # is always planned. # # SELECT rowid FROM <child-table> WHERE <child-key> = :parent_key_value # |
︙ | ︙ | |||
1068 1069 1070 1071 1072 1073 1074 | do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update execsql {DROP TABLE child} } #------------------------------------------------------------------------- | | | 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | do_test e_fkey-26.$tn.1 { eqp "DELETE FROM parent WHERE 1" } $delete do_test e_fkey-26.$tn.2 { eqp "UPDATE parent set x=?, y=?" } $update execsql {DROP TABLE child} } #------------------------------------------------------------------------- # EVIDENCE-OF: R-14553-34013 # # Test the example schema at the end of section 3. Also test that is # is "efficient". In this case "efficient" means that foreign key # related operations on the parent table do not provoke linear scans. # drop_all_tables do_test e_fkey-27.1 { |
︙ | ︙ | |||
1112 1113 1114 1115 1116 1117 1118 | ########################################################################### ### SECTION 4.1: Composite Foreign Key Constraints ########################################################################### #------------------------------------------------------------------------- | | | > | 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | ########################################################################### ### SECTION 4.1: Composite Foreign Key Constraints ########################################################################### #------------------------------------------------------------------------- # Check that parent and child keys must have the same number of columns. # # EVIDENCE-OF: R-41062-34431 Parent and child keys must have the same # cardinality. # foreach {tn sql err} { 1 "CREATE TABLE c(jj REFERENCES p(x, y))" {foreign key on jj should reference only one column of table p} 2 "CREATE TABLE c(jj REFERENCES p())" {near ")": syntax error} |
︙ | ︙ | |||
1159 1160 1161 1162 1163 1164 1165 | CREATE TABLE c(a REFERENCES p); } catchsql {DELETE FROM p} } {1 {foreign key mismatch}} #------------------------------------------------------------------------- | | | 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 | CREATE TABLE c(a REFERENCES p); } catchsql {DELETE FROM p} } {1 {foreign key mismatch}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-24676-09859 # # Test the example schema in the "Composite Foreign Key Constraints" # section. # do_test e_fkey-29.1 { execsql { CREATE TABLE album( |
︙ | ︙ | |||
1198 1199 1200 1201 1202 1203 1204 | catchsql { INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever'); } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- | < < | > | < < < < < < < > > > > > | 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 | catchsql { INSERT INTO song VALUES(2, 'Elvis Presley', 'Elvis Is Back!', 'Fever'); } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-33626-48418 In SQLite, if any of the child key columns # (in this case songartist and songalbum) are NULL, then there is no # requirement for a corresponding row in the parent table. # do_test e_fkey-30.1 { execsql { INSERT INTO song VALUES(2, 'Elvis Presley', NULL, 'Fever'); INSERT INTO song VALUES(3, NULL, 'Elvis Is Back', 'Soldier Boy'); } } {} ########################################################################### ### SECTION 4.2: Deferred Foreign Key Constraints ########################################################################### #------------------------------------------------------------------------- # Test that if a statement violates an immediate FK constraint, and the # database does not satisfy the FK constraint once all effects of the # statement have been applied, an error is reported and the effects of # the statement rolled back. # # EVIDENCE-OF: R-09323-30470 If a statement modifies the contents of the # database so that an immediate foreign key constraint is in violation # at the conclusion the statement, an exception is thrown and the # effects of the statement are reverted. # drop_all_tables do_test e_fkey-31.1 { execsql { CREATE TABLE king(a, b, PRIMARY KEY(a)); CREATE TABLE prince(c REFERENCES king, d); } |
︙ | ︙ | |||
1272 1273 1274 1275 1276 1277 1278 | execsql { COMMIT; SELECT * FROM king; } } {1 {} 2 {}} #------------------------------------------------------------------------- | < < < < < > > > > > > > > > > > > > > | 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 | execsql { COMMIT; SELECT * FROM king; } } {1 {} 2 {}} #------------------------------------------------------------------------- # Test that if a deferred constraint is violated within a transaction, # nothing happens immediately and the database is allowed to persist # in a state that does not satisfy the FK constraint. However attempts # to COMMIT the transaction fail until the FK constraint is satisfied. # # EVIDENCE-OF: R-49178-21358 By contrast, if a statement modifies the # contents of the database such that a deferred foreign key constraint # is violated, the violation is not reported immediately. # # EVIDENCE-OF: R-39692-12488 Deferred foreign key constraints are not # checked until the transaction tries to COMMIT. # # EVIDENCE-OF: R-55147-47664 For as long as the user has an open # transaction, the database is allowed to exist in a state that violates # any number of deferred foreign key constraints. # # EVIDENCE-OF: R-29604-30395 However, COMMIT will fail as long as # foreign key constraints remain in violation. # proc test_efkey_34 {tn isError sql} { do_test e_fkey-32.$tn " catchsql {$sql} " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] } drop_all_tables |
︙ | ︙ | |||
1303 1304 1305 1306 1307 1308 1309 | test_efkey_34 5 1 "COMMIT" test_efkey_34 6 0 "INSERT INTO ll VALUES(10)" test_efkey_34 7 1 "COMMIT" test_efkey_34 8 0 "INSERT INTO ll VALUES(5)" test_efkey_34 9 0 "COMMIT" #------------------------------------------------------------------------- | < < > > > > > > | 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 | test_efkey_34 5 1 "COMMIT" test_efkey_34 6 0 "INSERT INTO ll VALUES(10)" test_efkey_34 7 1 "COMMIT" test_efkey_34 8 0 "INSERT INTO ll VALUES(5)" test_efkey_34 9 0 "COMMIT" #------------------------------------------------------------------------- # When not running inside a transaction, a deferred constraint is similar # to an immediate constraint (violations are reported immediately). # # EVIDENCE-OF: R-56844-61705 If the current statement is not inside an # explicit transaction (a BEGIN/COMMIT/ROLLBACK block), then an implicit # transaction is committed as soon as the statement has finished # executing. In this case deferred constraints behave the same as # immediate constraints. # drop_all_tables proc test_efkey_35 {tn isError sql} { do_test e_fkey-33.$tn " catchsql {$sql} " [lindex {{0 {}} {1 {foreign key constraint failed}}} $isError] } |
︙ | ︙ | |||
1329 1330 1331 1332 1333 1334 1335 | } {} test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')" test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')" test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')" #------------------------------------------------------------------------- | | | < < > > > | > | 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 | } {} test_efkey_35 2 1 "INSERT INTO child VALUES('x', 'y')" test_efkey_35 3 0 "INSERT INTO parent VALUES('x', 'y')" test_efkey_35 4 0 "INSERT INTO child VALUES('x', 'y')" #------------------------------------------------------------------------- # EVIDENCE-OF: R-12782-61841 # # Test that an FK constraint is made deferred by adding the following # to the definition: # # DEFERRABLE INITIALLY DEFERRED # # EVIDENCE-OF: R-09005-28791 # # Also test that adding any of the following to a foreign key definition # makes the constraint IMMEDIATE: # # NOT DEFERRABLE INITIALLY DEFERRED # NOT DEFERRABLE INITIALLY IMMEDIATE # NOT DEFERRABLE # DEFERRABLE INITIALLY IMMEDIATE # DEFERRABLE # # Foreign keys are IMMEDIATE by default (if there is no DEFERRABLE or NOT # DEFERRABLE clause). # # EVIDENCE-OF: R-35290-16460 Foreign key constraints are immediate by # default. # # EVIDENCE-OF: R-30323-21917 Each foreign key constraint in SQLite is # classified as either immediate or deferred. # drop_all_tables do_test e_fkey-34.1 { execsql { CREATE TABLE parent(x, y, z, PRIMARY KEY(x,y,z)); CREATE TABLE c1(a, b, c, FOREIGN KEY(a, b, c) REFERENCES parent NOT DEFERRABLE INITIALLY DEFERRED |
︙ | ︙ | |||
1449 1450 1451 1452 1453 1454 1455 | test_efkey_29 31 "UPDATE c5 SET a = 10" 1 test_efkey_29 31 "UPDATE c6 SET a = 10" 1 test_efkey_29 31 "UPDATE c7 SET a = 10" 0 test_efkey_29 32 "COMMIT" 1 test_efkey_29 33 "ROLLBACK" 0 #------------------------------------------------------------------------- | | | 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 | test_efkey_29 31 "UPDATE c5 SET a = 10" 1 test_efkey_29 31 "UPDATE c6 SET a = 10" 1 test_efkey_29 31 "UPDATE c7 SET a = 10" 0 test_efkey_29 32 "COMMIT" 1 test_efkey_29 33 "ROLLBACK" 0 #------------------------------------------------------------------------- # EVIDENCE-OF: R-24499-57071 # # Test an example from foreignkeys.html dealing with a deferred foreign # key constraint. # do_test e_fkey-35.1 { drop_all_tables execsql { |
︙ | ︙ | |||
1483 1484 1485 1486 1487 1488 1489 | execsql { INSERT INTO artist VALUES(5, 'Bing Crosby'); COMMIT; } } {} #------------------------------------------------------------------------- | | > | > | | 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 | execsql { INSERT INTO artist VALUES(5, 'Bing Crosby'); COMMIT; } } {} #------------------------------------------------------------------------- # Verify that a nested savepoint may be released without satisfying # deferred foreign key constraints. # # EVIDENCE-OF: R-07223-48323 A nested savepoint transaction may be # RELEASEd while the database is in a state that does not satisfy a # deferred foreign key constraint. # drop_all_tables do_test e_fkey-36.1 { execsql { CREATE TABLE t1(a PRIMARY KEY, b REFERENCES t1 DEFERRABLE INITIALLY DEFERRED ); |
︙ | ︙ | |||
1519 1520 1521 1522 1523 1524 1525 | UPDATE t1 SET a = 5 WHERE a = 4; COMMIT; } } {} #------------------------------------------------------------------------- | < < > > > > > > | 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 | UPDATE t1 SET a = 5 WHERE a = 4; COMMIT; } } {} #------------------------------------------------------------------------- # Check that a transaction savepoint (an outermost savepoint opened when # the database was in auto-commit mode) cannot be released without # satisfying deferred foreign key constraints. It may be rolled back. # # EVIDENCE-OF: R-44295-13823 A transaction savepoint (a non-nested # savepoint that was opened while there was not currently an open # transaction), on the other hand, is subject to the same restrictions # as a COMMIT - attempting to RELEASE it while the database is in such a # state will fail. # do_test e_fkey-37.1 { execsql { SAVEPOINT one; SAVEPOINT two; INSERT INTO t1 VALUES(6, 7); RELEASE two; |
︙ | ︙ | |||
1558 1559 1560 1561 1562 1563 1564 | catchsql {RELEASE one} } {1 {foreign key constraint failed}} do_test e_fkey-37.6 { execsql {ROLLBACK TO one ; RELEASE one} } {} #------------------------------------------------------------------------- | < < > > > > > | 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 | catchsql {RELEASE one} } {1 {foreign key constraint failed}} do_test e_fkey-37.6 { execsql {ROLLBACK TO one ; RELEASE one} } {} #------------------------------------------------------------------------- # Test that if a COMMIT operation fails due to deferred foreign key # constraints, any nested savepoints remain open. # # EVIDENCE-OF: R-37736-42616 If a COMMIT statement (or the RELEASE of a # transaction SAVEPOINT) fails because the database is currently in a # state that violates a deferred foreign key constraint and there are # currently nested savepoints, the nested savepoints remain open. # do_test e_fkey-38.1 { execsql { DELETE FROM t1 WHERE a>3; SELECT * FROM t1; } } {1 1 2 2 3 3} |
︙ | ︙ | |||
1619 1620 1621 1622 1623 1624 1625 | } {1 1 2 2 3 3 4 4 5 5} ########################################################################### ### SECTION 4.3: ON DELETE and ON UPDATE Actions ########################################################################### #------------------------------------------------------------------------- | < < | > > > > > > | 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 | } {1 1 2 2 3 3 4 4 5 5} ########################################################################### ### SECTION 4.3: ON DELETE and ON UPDATE Actions ########################################################################### #------------------------------------------------------------------------- # Test that configured ON DELETE and ON UPDATE actions take place when # deleting or modifying rows of the parent table, respectively. # # EVIDENCE-OF: R-48270-44282 Foreign key ON DELETE and ON UPDATE clauses # are used to configure actions that take place when deleting rows from # the parent table (ON DELETE), or modifying the parent key values of # existing rows (ON UPDATE). # # Test that a single FK constraint may have different actions configured # for ON DELETE and ON UPDATE. # # EVIDENCE-OF: R-48124-63225 A single foreign key constraint may have # different actions configured for ON DELETE and ON UPDATE. # do_test e_fkey-39.1 { execsql { CREATE TABLE p(a, b PRIMARY KEY, c); CREATE TABLE c1(d, e, f DEFAULT 'k0' REFERENCES p ON UPDATE SET DEFAULT ON DELETE SET NULL |
︙ | ︙ | |||
1668 1669 1670 1671 1672 1673 1674 | CREATE UNIQUE INDEX pi ON p(c); REPLACE INTO p VALUES(5, 'k5', 'III'); SELECT * FROM c1; } } {1 xx k0 2 xx {} 3 xx {}} #------------------------------------------------------------------------- | < < | > > > > > | 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 | CREATE UNIQUE INDEX pi ON p(c); REPLACE INTO p VALUES(5, 'k5', 'III'); SELECT * FROM c1; } } {1 xx k0 2 xx {} 3 xx {}} #------------------------------------------------------------------------- # Each foreign key in the system has an ON UPDATE and ON DELETE action, # either "NO ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". # # EVIDENCE-OF: R-33326-45252 The ON DELETE and ON UPDATE action # associated with each foreign key in an SQLite database is one of "NO # ACTION", "RESTRICT", "SET NULL", "SET DEFAULT" or "CASCADE". # # If none is specified explicitly, "NO ACTION" is the default. # # EVIDENCE-OF: R-19803-45884 If an action is not explicitly specified, # it defaults to "NO ACTION". # drop_all_tables do_test e_fkey-40.1 { execsql { CREATE TABLE parent(x PRIMARY KEY, y); CREATE TABLE child1(a, b REFERENCES parent ON UPDATE NO ACTION ON DELETE RESTRICT |
︙ | ︙ | |||
1716 1717 1718 1719 1720 1721 1722 | 8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} 9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} } { do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes } #------------------------------------------------------------------------- | < < > > > > | 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 | 8 child7 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} 9 child8 {0 0 parent b {} {NO ACTION} {NO ACTION} NONE} } { do_test e_fkey-40.$tn { execsql "PRAGMA foreign_key_list($zTab)" } $lRes } #------------------------------------------------------------------------- # Test that "NO ACTION" means that nothing happens to a child row when # it's parent row is updated or deleted. # # EVIDENCE-OF: R-19971-54976 Configuring "NO ACTION" means just that: # when a parent key is modified or deleted from the database, no special # action is taken. # drop_all_tables do_test e_fkey-41.1 { execsql { CREATE TABLE parent(p1, p2, PRIMARY KEY(p1, p2)); CREATE TABLE child(c1, c2, FOREIGN KEY(c1, c2) REFERENCES parent |
︙ | ︙ | |||
1753 1754 1755 1756 1757 1758 1759 | catchsql COMMIT } {1 {foreign key constraint failed}} do_test e_fkey-41.4 { execsql ROLLBACK } {} #------------------------------------------------------------------------- | < < > > > > > | 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 | catchsql COMMIT } {1 {foreign key constraint failed}} do_test e_fkey-41.4 { execsql ROLLBACK } {} #------------------------------------------------------------------------- # Test that "RESTRICT" means the application is prohibited from deleting # or updating a parent table row when there exists one or more child keys # mapped to it. # # EVIDENCE-OF: R-04272-38653 The "RESTRICT" action means that the # application is prohibited from deleting (for ON DELETE RESTRICT) or # modifying (for ON UPDATE RESTRICT) a parent key when there exists one # or more child keys mapped to it. # drop_all_tables do_test e_fkey-41.1 { execsql { CREATE TABLE parent(p1, p2); CREATE UNIQUE INDEX parent_i ON parent(p1, p2); CREATE TABLE child1(c1, c2, |
︙ | ︙ | |||
1788 1789 1790 1791 1792 1793 1794 | catchsql { DELETE FROM parent WHERE p1 = 'a' } } {1 {foreign key constraint failed}} do_test e_fkey-41.4 { catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- | < < > > > > > > > | 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 | catchsql { DELETE FROM parent WHERE p1 = 'a' } } {1 {foreign key constraint failed}} do_test e_fkey-41.4 { catchsql { UPDATE parent SET p2 = 'e' WHERE p1 = 'c' } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- # Test that RESTRICT is slightly different from NO ACTION for IMMEDIATE # constraints, in that it is enforced immediately, not at the end of the # statement. # # EVIDENCE-OF: R-37997-42187 The difference between the effect of a # RESTRICT action and normal foreign key constraint enforcement is that # the RESTRICT action processing happens as soon as the field is updated # - not at the end of the current statement as it would with an # immediate constraint, or at the end of the current transaction as it # would with a deferred constraint. # drop_all_tables do_test e_fkey-42.1 { execsql { CREATE TABLE parent(x PRIMARY KEY); CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT); CREATE TABLE child2(c REFERENCES parent ON UPDATE NO ACTION); |
︙ | ︙ | |||
1874 1875 1876 1877 1878 1879 1880 | execsql { REPLACE INTO parent VALUES('key2'); SELECT * FROM child2; } } {key2} #------------------------------------------------------------------------- | | | > > | > | 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 | execsql { REPLACE INTO parent VALUES('key2'); SELECT * FROM child2; } } {key2} #------------------------------------------------------------------------- # Test that RESTRICT is enforced immediately, even for a DEFERRED constraint. # # EVIDENCE-OF: R-24179-60523 Even if the foreign key constraint it is # attached to is deferred, configuring a RESTRICT action causes SQLite # to return an error immediately if a parent key with dependent child # keys is deleted or modified. # drop_all_tables do_test e_fkey-43.1 { execsql { CREATE TABLE parent(x PRIMARY KEY); CREATE TABLE child1(c REFERENCES parent ON UPDATE RESTRICT DEFERRABLE INITIALLY DEFERRED |
︙ | ︙ | |||
1947 1948 1949 1950 1951 1952 1953 | execsql { UPDATE child2 SET c = NULL; COMMIT; } } {} #------------------------------------------------------------------------- | | | > > > > | 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 | execsql { UPDATE child2 SET c = NULL; COMMIT; } } {} #------------------------------------------------------------------------- # Test SET NULL actions. # # EVIDENCE-OF: R-03353-05327 If the configured action is "SET NULL", # then when a parent key is deleted (for ON DELETE SET NULL) or modified # (for ON UPDATE SET NULL), the child key columns of all rows in the # child table that mapped to the parent key are set to contain SQL NULL # values. # drop_all_tables do_test e_fkey-44.1 { execsql { CREATE TABLE pA(x PRIMARY KEY); CREATE TABLE cA(c REFERENCES pA ON DELETE SET NULL); CREATE TABLE cB(c REFERENCES pA ON UPDATE SET NULL); |
︙ | ︙ | |||
1986 1987 1988 1989 1990 1991 1992 | } } {X'8765'} do_test e_fkey-44.5 { execsql { SELECT quote(c) FROM cB } } {NULL} #------------------------------------------------------------------------- | | | > > | 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 | } } {X'8765'} do_test e_fkey-44.5 { execsql { SELECT quote(c) FROM cB } } {NULL} #------------------------------------------------------------------------- # Test SET DEFAULT actions. # # EVIDENCE-OF: R-43054-54832 The "SET DEFAULT" actions are similar to # "SET NULL", except that each of the child key columns is set to # contain the columns default value instead of NULL. # drop_all_tables do_test e_fkey-45.1 { execsql { CREATE TABLE pA(x PRIMARY KEY); CREATE TABLE cA(c DEFAULT X'0000' REFERENCES pA ON DELETE SET DEFAULT); CREATE TABLE cB(c DEFAULT X'9999' REFERENCES pA ON UPDATE SET DEFAULT); |
︙ | ︙ | |||
2026 2027 2028 2029 2030 2031 2032 | } } {X'0000' X'9999' X'8765'} do_test e_fkey-45.5 { execsql { SELECT quote(c) FROM cB } } {X'9999'} #------------------------------------------------------------------------- | > > | < > | > > | 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 | } } {X'0000' X'9999' X'8765'} do_test e_fkey-45.5 { execsql { SELECT quote(c) FROM cB } } {X'9999'} #------------------------------------------------------------------------- # Test ON DELETE CASCADE actions. # # EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or # update operation on the parent key to each dependent child key. # # EVIDENCE-OF: R-61809-62207 For an "ON DELETE CASCADE" action, this # means that each row in the child table that was associated with the # deleted parent row is also deleted. # drop_all_tables do_test e_fkey-46.1 { execsql { CREATE TABLE p1(a, b UNIQUE); CREATE TABLE c1(c REFERENCES p1(b) ON DELETE CASCADE, d); INSERT INTO p1 VALUES(NULL, NULL); |
︙ | ︙ | |||
2063 2064 2065 2066 2067 2068 2069 | } {{} {}} do_test e_fkey-46.4 { execsql { SELECT * FROM p1 } } {} #------------------------------------------------------------------------- | | > | > > | > | 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 | } {{} {}} do_test e_fkey-46.4 { execsql { SELECT * FROM p1 } } {} #------------------------------------------------------------------------- # Test ON UPDATE CASCADE actions. # # EVIDENCE-OF: R-13877-64542 For an "ON UPDATE CASCADE" action, it means # that the values stored in each dependent child key are modified to # match the new parent key values. # # EVIDENCE-OF: R-61376-57267 A "CASCADE" action propagates the delete or # update operation on the parent key to each dependent child key. # drop_all_tables do_test e_fkey-47.1 { execsql { CREATE TABLE p1(a, b UNIQUE); CREATE TABLE c1(c REFERENCES p1(b) ON UPDATE CASCADE, d); INSERT INTO p1 VALUES(NULL, NULL); |
︙ | ︙ | |||
2105 2106 2107 2108 2109 2110 2111 | } } {{} {} 4 11 5 10} do_test e_fkey-46.5 { execsql { SELECT * FROM p1 } } {{} 6 4 11 5 10} #------------------------------------------------------------------------- | | | 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 | } } {{} {} 4 11 5 10} do_test e_fkey-46.5 { execsql { SELECT * FROM p1 } } {{} 6 4 11 5 10} #------------------------------------------------------------------------- # EVIDENCE-OF: R-65058-57158 # # Test an example from the "ON DELETE and ON UPDATE Actions" section # of foreignkeys.html. # drop_all_tables do_test e_fkey-48.1 { execsql { |
︙ | ︙ | |||
2144 2145 2146 2147 2148 2149 2150 | } {2 {Frank Sinatra} 100 {Dean Martin}} do_test e_fkey-48.4 { execsql { SELECT * FROM track } } {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2} #------------------------------------------------------------------------- | < < > > > > | 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 | } {2 {Frank Sinatra} 100 {Dean Martin}} do_test e_fkey-48.4 { execsql { SELECT * FROM track } } {11 {That's Amore} 100 12 {Christmas Blues} 100 13 {My Way} 2} #------------------------------------------------------------------------- # Verify that adding an FK action does not absolve the user of the # requirement not to violate the foreign key constraint. # # EVIDENCE-OF: R-53968-51642 Configuring an ON UPDATE or ON DELETE # action does not mean that the foreign key constraint does not need to # be satisfied. # drop_all_tables do_test e_fkey-49.1 { execsql { CREATE TABLE parent(a COLLATE nocase, b, c, PRIMARY KEY(c, a)); CREATE TABLE child(d DEFAULT 'a', e, f DEFAULT 'c', FOREIGN KEY(f, d) REFERENCES parent ON UPDATE SET DEFAULT |
︙ | ︙ | |||
2182 2183 2184 2185 2186 2187 2188 | } {ONE two three} do_test e_fkey-49.4 { catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- | | < > > > > > > | 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 | } {ONE two three} do_test e_fkey-49.4 { catchsql { UPDATE parent SET a = '' WHERE a = 'oNe' } } {1 {foreign key constraint failed}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-11856-19836 # # Test an example from the "ON DELETE and ON UPDATE Actions" section # of foreignkeys.html. This example shows that adding an "ON DELETE DEFAULT" # clause does not abrogate the need to satisfy the foreign key constraint # (R-28220-46694). # # EVIDENCE-OF: R-28220-46694 For example, if an "ON DELETE SET DEFAULT" # action is configured, but there is no row in the parent table that # corresponds to the default values of the child key columns, deleting a # parent key while dependent child keys exist still causes a foreign key # violation. # drop_all_tables do_test e_fkey-50.1 { execsql { CREATE TABLE artist( artistid INTEGER PRIMARY KEY, artistname TEXT |
︙ | ︙ | |||
2223 2224 2225 2226 2227 2228 2229 | execsql { SELECT * FROM artist } } {0 {Unknown Artist}} do_test e_fkey-50.5 { execsql { SELECT * FROM track } } {14 {Mr. Bojangles} 0} #------------------------------------------------------------------------- | | | 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 | execsql { SELECT * FROM artist } } {0 {Unknown Artist}} do_test e_fkey-50.5 { execsql { SELECT * FROM track } } {14 {Mr. Bojangles} 0} #------------------------------------------------------------------------- # EVIDENCE-OF: R-09564-22170 # # Check that the order of steps in an UPDATE or DELETE on a parent # table is as follows: # # 1. Execute applicable BEFORE trigger programs, # 2. Check local (non foreign key) constraints, # 3. Update or delete the row in the parent table, |
︙ | ︙ | |||
2275 2276 2277 2278 2279 2280 2281 | UPDATE parent SET x = 22; SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child; } } {22 23 21 xxx 23} #------------------------------------------------------------------------- | < < > > > > | 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 | UPDATE parent SET x = 22; SELECT * FROM parent UNION ALL SELECT 'xxx' UNION ALL SELECT a FROM child; } } {22 23 21 xxx 23} #------------------------------------------------------------------------- # Verify that ON UPDATE actions only actually take place if the parent key # is set to a new value that is distinct from the old value. The default # collation sequence and affinity are used to determine if the new value # is 'distinct' from the old or not. # # EVIDENCE-OF: R-27383-10246 An ON UPDATE action is only taken if the # values of the parent key are modified so that the new parent key # values are not equal to the old. # drop_all_tables do_test e_fkey-52.1 { execsql { CREATE TABLE zeus(a INTEGER COLLATE NOCASE, b, PRIMARY KEY(a, b)); CREATE TABLE apollo(c, d, FOREIGN KEY(c, d) REFERENCES zeus ON UPDATE CASCADE |
︙ | ︙ | |||
2329 2330 2331 2332 2333 2334 2335 | execsql { UPDATE zeus SET b = NULL; SELECT typeof(c), c, typeof(d), d FROM apollo; } } {integer 1 null {}} #------------------------------------------------------------------------- | | | 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 | execsql { UPDATE zeus SET b = NULL; SELECT typeof(c), c, typeof(d), d FROM apollo; } } {integer 1 null {}} #------------------------------------------------------------------------- # EVIDENCE-OF: R-35129-58141 # # Test an example from the "ON DELETE and ON UPDATE Actions" section # of foreignkeys.html. This example demonstrates that ON UPDATE actions # only take place if at least one parent key column is set to a value # that is distinct from its previous value. # drop_all_tables |
︙ | ︙ | |||
2363 2364 2365 2366 2367 2368 2369 | } {null} ########################################################################### ### SECTION 5: CREATE, ALTER and DROP TABLE commands ########################################################################### #------------------------------------------------------------------------- | > > | < > | > > | > < < > > > | 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 | } {null} ########################################################################### ### SECTION 5: CREATE, ALTER and DROP TABLE commands ########################################################################### #------------------------------------------------------------------------- # Test that parent keys are not checked when tables are created. # # EVIDENCE-OF: R-36018-21755 The parent key definitions of foreign key # constraints are not checked when a table is created. # # EVIDENCE-OF: R-25384-39337 There is nothing stopping the user from # creating a foreign key definition that refers to a parent table that # does not exist, or to parent key columns that do not exist or are not # collectively bound by a PRIMARY KEY or UNIQUE constraint. # # Child keys are checked to ensure all component columns exist. If parent # key columns are explicitly specified, SQLite checks to make sure there # are the same number of columns in the child and parent keys. (TODO: This # is tested but does not correspond to any testable statement.) # # Also test that the above statements are true regardless of whether or not # foreign keys are enabled: "A CREATE TABLE command operates the same whether # or not foreign key constraints are enabled." # # EVIDENCE-OF: R-08908-23439 A CREATE TABLE command operates the same # whether or not foreign key constraints are enabled. # foreach {tn zCreateTbl lRes} { 1 "CREATE TABLE t1(a, b REFERENCES t1)" {0 {}} 2 "CREATE TABLE t1(a, b REFERENCES t2)" {0 {}} 3 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t1)" {0 {}} 4 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} 5 "CREATE TABLE t1(a, b, FOREIGN KEY(a,b) REFERENCES t2)" {0 {}} |
︙ | ︙ | |||
2406 2407 2408 2409 2410 2411 2412 | drop_all_tables execsql {PRAGMA foreign_keys = ON} catchsql $zCreateTbl } $lRes } #------------------------------------------------------------------------- | | > > > < < | > > > > > > > | 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 | drop_all_tables execsql {PRAGMA foreign_keys = ON} catchsql $zCreateTbl } $lRes } #------------------------------------------------------------------------- # EVIDENCE-OF: R-47952-62498 It is not possible to use the "ALTER TABLE # ... ADD COLUMN" syntax to add a column that includes a REFERENCES # clause, unless the default value of the new column is NULL. Attempting # to do so returns an error. # proc test_efkey_6 {tn zAlter isError} { drop_all_tables do_test e_fkey-56.$tn.1 " execsql { CREATE TABLE tbl(a, b) } [list catchsql $zAlter] " [lindex {{0 {}} {1 {Cannot add a REFERENCES column with non-NULL default value}}} $isError] } test_efkey_6 1 "ALTER TABLE tbl ADD COLUMN c REFERENCES xx" 0 test_efkey_6 2 "ALTER TABLE tbl ADD COLUMN c DEFAULT NULL REFERENCES xx" 0 test_efkey_6 3 "ALTER TABLE tbl ADD COLUMN c DEFAULT 0 REFERENCES xx" 1 #------------------------------------------------------------------------- # Test that ALTER TABLE adjusts REFERENCES clauses when the parent table # is RENAMED. # # EVIDENCE-OF: R-47080-02069 If an "ALTER TABLE ... RENAME TO" command # is used to rename a table that is the parent table of one or more # foreign key constraints, the definitions of the foreign key # constraints are modified to refer to the parent table by its new name # # Test that these adjustments are visible in the sqlite_master table. # # EVIDENCE-OF: R-63827-54774 The text of the child CREATE TABLE # statement or statements stored in the sqlite_master table are modified # to reflect the new parent table name. # do_test e_fkey-56.1 { drop_all_tables execsql { CREATE TABLE 'p 1 "parent one"'(a REFERENCES 'p 1 "parent one"', b, PRIMARY KEY(b)); CREATE TABLE c1(c, d REFERENCES 'p 1 "parent one"' ON UPDATE CASCADE); |
︙ | ︙ | |||
2471 2472 2473 2474 2475 2476 2477 | {CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \ {CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \ {CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \ {CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \ ] #------------------------------------------------------------------------- | < < < > > > > > > > > | 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 | {CREATE TABLE "p"(a REFERENCES "p", b, PRIMARY KEY(b))} \ {CREATE TABLE c1(c, d REFERENCES "p" ON UPDATE CASCADE)} \ {CREATE TABLE c2(e, f, FOREIGN KEY(f) REFERENCES "p" ON UPDATE CASCADE)} \ {CREATE TABLE c3(e, 'f col 2', FOREIGN KEY('f col 2') REFERENCES "p" ON UPDATE CASCADE)} \ ] #------------------------------------------------------------------------- # Check that a DROP TABLE does an implicit DELETE FROM. Which does not # cause any triggers to fire, but does fire foreign key actions. # # EVIDENCE-OF: R-14208-23986 If foreign key constraints are enabled when # it is prepared, the DROP TABLE command performs an implicit DELETE to # remove all rows from the table before dropping it. # # EVIDENCE-OF: R-11078-03945 The implicit DELETE does not cause any SQL # triggers to fire, but may invoke foreign key actions or constraint # violations. # do_test e_fkey-57.1 { drop_all_tables execsql { CREATE TABLE p(a, b, PRIMARY KEY(a, b)); CREATE TABLE c1(c, d, FOREIGN KEY(c, d) REFERENCES p ON DELETE SET NULL); |
︙ | ︙ | |||
2537 2538 2539 2540 2541 2542 2543 | DELETE FROM p; SELECT * FROM log; ROLLBACK; } } {{delete 1}} #------------------------------------------------------------------------- | < < > > > | 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 | DELETE FROM p; SELECT * FROM log; ROLLBACK; } } {{delete 1}} #------------------------------------------------------------------------- # If an IMMEDIATE foreign key fails as a result of a DROP TABLE, the # DROP TABLE command fails. # # EVIDENCE-OF: R-32768-47925 If an immediate foreign key constraint is # violated, the DROP TABLE statement fails and the table is not dropped. # do_test e_fkey-58.1 { execsql { DELETE FROM c1; DELETE FROM c2; DELETE FROM c3; } execsql { INSERT INTO c5 VALUES('a', 'b') } |
︙ | ︙ | |||
2569 2570 2571 2572 2573 2574 2575 | SELECT * FROM p; SELECT * FROM c5; ROLLBACK; } } {a b a b} #------------------------------------------------------------------------- | < < > > > > > | 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 | SELECT * FROM p; SELECT * FROM c5; ROLLBACK; } } {a b a b} #------------------------------------------------------------------------- # If a DEFERRED foreign key fails as a result of a DROP TABLE, attempting # to commit the transaction fails unless the violation is fixed. # # EVIDENCE-OF: R-05903-08460 If a deferred foreign key constraint is # violated, then an error is reported when the user attempts to commit # the transaction if the foreign key constraint violations still exist # at that point. # do_test e_fkey-59.1 { execsql { DELETE FROM c1 ; DELETE FROM c2 ; DELETE FROM c3 ; DELETE FROM c4 ; DELETE FROM c5 ; DELETE FROM c6 ; DELETE FROM c7 } |
︙ | ︙ | |||
2601 2602 2603 2604 2605 2606 2607 | } {1 {foreign key constraint failed}} do_test e_fkey-59.5 { execsql { INSERT INTO p VALUES('a', 'b') } execsql COMMIT } {} #------------------------------------------------------------------------- | < < > > > | 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 | } {1 {foreign key constraint failed}} do_test e_fkey-59.5 { execsql { INSERT INTO p VALUES('a', 'b') } execsql COMMIT } {} #------------------------------------------------------------------------- # Any "foreign key mismatch" errors encountered while running an implicit # "DELETE FROM tbl" are ignored. # # EVIDENCE-OF: R-57242-37005 Any "foreign key mismatch" errors # encountered as part of an implicit DELETE are ignored. # drop_all_tables do_test e_fkey-60.1 { execsql { PRAGMA foreign_keys = OFF; CREATE TABLE p(a PRIMARY KEY, b REFERENCES nosuchtable); |
︙ | ︙ | |||
2648 2649 2650 2651 2652 2653 2654 | } {1 {foreign key mismatch}} do_test e_fkey-60.6 { execsql { DROP TABLE c2 } execsql { DELETE FROM p } } {} #------------------------------------------------------------------------- | < < > > > | 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 | } {1 {foreign key mismatch}} do_test e_fkey-60.6 { execsql { DROP TABLE c2 } execsql { DELETE FROM p } } {} #------------------------------------------------------------------------- # Test that the special behaviours of ALTER and DROP TABLE are only # activated when foreign keys are enabled. Special behaviours are: # # 1. ADD COLUMN not allowing a REFERENCES clause with a non-NULL # default value. # 2. Modifying foreign key definitions when a parent table is RENAMEd. # 3. Running an implicit DELETE FROM command as part of DROP TABLE. # # EVIDENCE-OF: R-54142-41346 The properties of the DROP TABLE and ALTER # TABLE commands described above only apply if foreign keys are enabled. # do_test e_fkey-61.1.1 { drop_all_tables execsql { CREATE TABLE t1(a, b) } catchsql { ALTER TABLE t1 ADD COLUMN c DEFAULT 'xxx' REFERENCES t2 } } {1 {Cannot add a REFERENCES column with non-NULL default value}} do_test e_fkey-61.1.2 { execsql { PRAGMA foreign_keys = OFF } |
︙ | ︙ | |||
2723 2724 2725 2726 2727 2728 2729 | } {} ########################################################################### ### SECTION 6: Limits and Unsupported Features ########################################################################### #------------------------------------------------------------------------- | < < < > > > > > > | 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 | } {} ########################################################################### ### SECTION 6: Limits and Unsupported Features ########################################################################### #------------------------------------------------------------------------- # Test that MATCH clauses are parsed, but SQLite treats every foreign key # constraint as if it were "MATCH SIMPLE". # # EVIDENCE-OF: R-24728-13230 SQLite parses MATCH clauses (i.e. does not # report a syntax error if you specify one), but does not enforce them. # # EVIDENCE-OF: R-24450-46174 All foreign key constraints in SQLite are # handled as if MATCH SIMPLE were specified. # foreach zMatch [list SIMPLE PARTIAL FULL Simple parTIAL FuLL ] { drop_all_tables do_test e_fkey-62.$zMatch.1 { execsql " CREATE TABLE p(a, b, c, PRIMARY KEY(b, c)); CREATE TABLE c(d, e, f, FOREIGN KEY(e, f) REFERENCES p MATCH $zMatch); |
︙ | ︙ | |||
2756 2757 2758 2759 2760 2761 2762 | # Check that the FK is enforced properly if there are no NULL values # in the child key columns. catchsql { INSERT INTO c VALUES('a', 2, 4) } } {1 {foreign key constraint failed}} } #------------------------------------------------------------------------- | < < > > > | 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 | # Check that the FK is enforced properly if there are no NULL values # in the child key columns. catchsql { INSERT INTO c VALUES('a', 2, 4) } } {1 {foreign key constraint failed}} } #------------------------------------------------------------------------- # Test that SQLite does not support the SET CONSTRAINT statement. And # that it is possible to create both immediate and deferred constraints. # # EVIDENCE-OF: R-21599-16038 In SQLite, a foreign key constraint is # permanently marked as deferred or immediate when it is created. # drop_all_tables do_test e_fkey-62.1 { catchsql { SET CONSTRAINTS ALL IMMEDIATE } } {1 {near "SET": syntax error}} do_test e_fkey-62.2 { catchsql { SET CONSTRAINTS ALL DEFERRED } |
︙ | ︙ | |||
2796 2797 2798 2799 2800 2801 2802 | execsql { DELETE FROM cd; COMMIT; } } {} #------------------------------------------------------------------------- | < < > > > > > | 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 | execsql { DELETE FROM cd; COMMIT; } } {} #------------------------------------------------------------------------- # Test that the maximum recursion depth of foreign key action programs is # governed by the SQLITE_MAX_TRIGGER_DEPTH and SQLITE_LIMIT_TRIGGER_DEPTH # settings. # # EVIDENCE-OF: R-42264-30503 The SQLITE_MAX_TRIGGER_DEPTH and # SQLITE_LIMIT_TRIGGER_DEPTH settings determine the maximum allowable # depth of trigger program recursion. For the purposes of these limits, # foreign key actions are considered trigger programs. # proc test_on_delete_recursion {limit} { drop_all_tables execsql { BEGIN; CREATE TABLE t0(a PRIMARY KEY, b); INSERT INTO t0 VALUES('x0', NULL); |
︙ | ︙ | |||
2879 2880 2881 2882 2883 2884 2885 | test_on_update_recursion 6 } {1 {too many levels of trigger recursion}} do_test e_fkey-63.2.5 { sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 } {5} #------------------------------------------------------------------------- | < < > > > | 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 | test_on_update_recursion 6 } {1 {too many levels of trigger recursion}} do_test e_fkey-63.2.5 { sqlite3_limit db SQLITE_LIMIT_TRIGGER_DEPTH 1000000 } {5} #------------------------------------------------------------------------- # The setting of the recursive_triggers pragma does not affect foreign # key actions. # # EVIDENCE-OF: R-51769-32730 The PRAGMA recursive_triggers setting does # not not affect the operation of foreign key actions. # foreach recursive_triggers_setting [list 0 1 ON OFF] { drop_all_tables execsql "PRAGMA recursive_triggers = $recursive_triggers_setting" do_test e_fkey-64.$recursive_triggers_setting.1 { execsql { |
︙ | ︙ |
Added test/fts3query.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | # 2009 December 20 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains tests of fts3 queries that have been useful during # the development process as well as some that have been useful in tracking # down bugs. They are not focused on any particular functionality. # set testdir [file dirname $argv0] source $testdir/tester.tcl # If this build does not include FTS3, skip the tests in this file. # ifcapable !fts3 { finish_test ; return } source $testdir/fts3_common.tcl set DO_MALLOC_TEST 0 do_test fts3query-1.1 { execsql { CREATE VIRTUAL TABLE t1 USING fts3(x); BEGIN; INSERT INTO t1 VALUES('The source code for SQLite is in the public'); } } {} do_select_test fts3query-1.2 { SELECT * FROM t1; } {{The source code for SQLite is in the public}} do_select_test fts3query-1.3 { SELECT * FROM t1 WHERE t1 MATCH 'sqlite' } {{The source code for SQLite is in the public}} do_test fts3query-1.4 { execsql {COMMIT} } {} do_select_test fts3query-1.5 { SELECT * FROM t1; } {{The source code for SQLite is in the public}} do_select_test fts3query-1.6 { SELECT * FROM t1 WHERE t1 MATCH 'sqlite' } {{The source code for SQLite is in the public}} set sqlite_fts3_enable_parentheses 1 do_test fts3query-2.1 { execsql { CREATE VIRTUAL TABLE zoink USING fts3; INSERT INTO zoink VALUES('The apple falls far from the tree'); } } {} do_test fts3query-2.2 { execsql { SELECT docid FROM zoink WHERE zoink MATCH '(apple oranges) AND apple' } } {} do_test fts3query-2.3 { execsql { SELECT docid FROM zoink WHERE zoink MATCH 'apple AND (oranges apple)' } } {} set sqlite_fts3_enable_parentheses 0 do_test fts3query-3.1 { execsql { CREATE VIRTUAL TABLE foobar using FTS3(description, tokenize porter); INSERT INTO foobar (description) values (' Filed under: Emerging Technologies, EV/Plug-in, Hybrid, Chevrolet, GM, ZENN 2011 Chevy Volt - Click above for high-res image gallery There are 16 days left in the month of December. Besides being time for most Americans to kick their Christmas shopping sessions into high gear and start planning their resolutions for 2010, it also means that there''s precious little time for EEStor to "deliver functional technology" to Zenn Motors as promised. Still, the promises held out by the secretive company are too great for us to forget about entirely. We''d love for EEStor''s claims to be independently verified and proven accurate, as would just about anyone else looking to break free of petroleum in fav '); } } {} do_test fts3query-3.2 { execsql { SELECT docid FROM foobar WHERE description MATCH '"high sp d"' } } {} proc mit {blob} { set scan(littleEndian) i* set scan(bigEndian) I* binary scan $blob $scan($::tcl_platform(byteOrder)) r return $r } db func mit mit do_test fts3query-3.3 { execsql { SELECT mit(matchinfo(foobar)) FROM foobar WHERE foobar MATCH 'the' } } {{1 1 3 3}} finish_test |
Changes to test/fts3rnd.test.
︙ | ︙ | |||
143 144 145 146 147 148 149 | proc simple_phrase {zPrefix} { set ret [list] set reg [string map {* {[^ ]*}} $zPrefix] set reg " $reg " | > | > | | > > > > > > > > > > > > > > > > > > > > > > | 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | proc simple_phrase {zPrefix} { set ret [list] set reg [string map {* {[^ ]*}} $zPrefix] set reg " $reg " foreach key [lsort -integer [array names ::t1]] { set value $::t1($key) set cnt [list] foreach col $value { if {[regexp $reg " $col "]} { lappend ret $key ; break } } } #lsort -uniq -integer $ret set ret } proc simple_token_matchinfo {zToken} { set total(0) 0 set total(1) 0 set total(2) 0 foreach key [lsort -integer [array names ::t1]] { set value $::t1($key) set cnt [list] foreach i {0 1 2} col $value { set n [llength [lsearch -all $col $zToken]] lappend cnt $n incr total($i) $n } if {[lindex [lsort $cnt] end]} { lappend ret $key [concat 1 3 XXX $cnt] } } string map [list XXX "$total(0) $total(1) $total(2)"] $ret } proc simple_near {termlist nNear} { set ret [list] foreach {key value} [array get ::t1] { foreach v $value { |
︙ | ︙ | |||
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | } proc setop_and {A B} { foreach b $B { set n($b) {} } set ret [list] foreach a $A { if {[info exists n($a)]} {lappend ret $a} } return $ret } set sqlite_fts3_enable_parentheses 1 foreach nodesize {50 500 1000 2000} { catch { array unset ::t1 } # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows. # db transaction { catchsql { DROP TABLE t1 } execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)" execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')" for {set i 0} {$i < 100} {incr i} { insert_row $i } } | > > > > > > > > | | 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | } proc setop_and {A B} { foreach b $B { set n($b) {} } set ret [list] foreach a $A { if {[info exists n($a)]} {lappend ret $a} } return $ret } proc mit {blob} { set scan(littleEndian) i* set scan(bigEndian) I* binary scan $blob $scan($::tcl_platform(byteOrder)) r return $r } db func mit mit set sqlite_fts3_enable_parentheses 1 foreach nodesize {50 500 1000 2000} { catch { array unset ::t1 } # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows. # db transaction { catchsql { DROP TABLE t1 } execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)" execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')" for {set i 0} {$i < 100} {incr i} { insert_row $i } } for {set iTest 1} {$iTest <= 100} {incr iTest} { catchsql COMMIT set DO_MALLOC_TEST 0 set nRep 10 if {$iTest==100 && $nodesize==50} { set DO_MALLOC_TEST 1 set nRep 2 |
︙ | ︙ | |||
261 262 263 264 265 266 267 | # the database for the set of documents containing each of these terms # is the same as the result obtained by scanning the contents of the Tcl # array for each term. # for {set i 0} {$i < 10} {incr i} { set term [random_term] do_select_test fts3rnd-1.$nodesize.$iTest.1.$i { | | | | 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | # the database for the set of documents containing each of these terms # is the same as the result obtained by scanning the contents of the Tcl # array for each term. # for {set i 0} {$i < 10} {incr i} { set term [random_term] do_select_test fts3rnd-1.$nodesize.$iTest.1.$i { SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term } [simple_token_matchinfo $term] } # This time, use the first two characters of each term as a term prefix # to query for. Test that querying the Tcl array produces the same results # as querying the FTS3 table for the prefix. # for {set i 0} {$i < $nRep} {incr i} { |
︙ | ︙ |
Changes to test/fuzz2.test.
︙ | ︙ | |||
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | } {1} do_test fuzz2-2.11 { fuzzcatch {UPDATE OR IGNORE "AAAAAA" . "AAAAAA" SET "AAAAAA" = NOT #96} } {1} do_test fuzz2-2.12 { fuzzcatch {SELECT - #196} } {1} do_test fuzz2-3.0 { fuzzcatch {CREATE TRIGGER "AAAAAA" . "AAAAAA" AFTER UPDATE OF "AAAAAA" , "AAAAAA" ON "AAAAAA" . "AAAAAA" FOR EACH ROW BEGIN UPDATE AAAAAA SET "AAAAAA" = #162; END} } {1} do_test fuzz2-3.1 { fuzzcatch {CREATE TRIGGER IF NOT EXISTS "AAAAAA" UPDATE ON "AAAAAA" . AAAAAA FOR EACH ROW BEGIN DELETE FROM "AAAAAA" ; INSERT INTO AAAAAA ( "AAAAAA" ) SELECT DISTINCT "AAAAAA" "AAAAAA" , #167 AAAAAA , "AAAAAA" . * ORDER BY "AAAAAA" ASC , x'414141414141' BETWEEN RAISE ( FAIL , "AAAAAA" ) AND AAAAAA ( * ) NOT NULL DESC LIMIT AAAAAA ; REPLACE INTO AAAAAA ( AAAAAA ) VALUES ( AAAAAA ( * ) ) ; END} } {1} do_test fuzz2-3.2 { fuzzcatch {CREATE TEMP TRIGGER IF NOT EXISTS AAAAAA . "AAAAAA" BEFORE UPDATE OF "AAAAAA" ON AAAAAA . "AAAAAA" BEGIN SELECT ALL * , #175 "AAAAAA" FROM "AAAAAA" . AAAAAA; END} } {1} do_test fuzz2-4.0 { fuzzcatch {ATTACH DATABASE #168 AS whatever} } {1} do_test fuzz2-4.1 { fuzzcatch {DETACH #133} } {1} do_test fuzz2-5.0 { | > > > > > > | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | } {1} do_test fuzz2-2.11 { fuzzcatch {UPDATE OR IGNORE "AAAAAA" . "AAAAAA" SET "AAAAAA" = NOT #96} } {1} do_test fuzz2-2.12 { fuzzcatch {SELECT - #196} } {1} ifcapable {trigger} { # Only do the following tests if triggers are enabled do_test fuzz2-3.0 { fuzzcatch {CREATE TRIGGER "AAAAAA" . "AAAAAA" AFTER UPDATE OF "AAAAAA" , "AAAAAA" ON "AAAAAA" . "AAAAAA" FOR EACH ROW BEGIN UPDATE AAAAAA SET "AAAAAA" = #162; END} } {1} do_test fuzz2-3.1 { fuzzcatch {CREATE TRIGGER IF NOT EXISTS "AAAAAA" UPDATE ON "AAAAAA" . AAAAAA FOR EACH ROW BEGIN DELETE FROM "AAAAAA" ; INSERT INTO AAAAAA ( "AAAAAA" ) SELECT DISTINCT "AAAAAA" "AAAAAA" , #167 AAAAAA , "AAAAAA" . * ORDER BY "AAAAAA" ASC , x'414141414141' BETWEEN RAISE ( FAIL , "AAAAAA" ) AND AAAAAA ( * ) NOT NULL DESC LIMIT AAAAAA ; REPLACE INTO AAAAAA ( AAAAAA ) VALUES ( AAAAAA ( * ) ) ; END} } {1} do_test fuzz2-3.2 { fuzzcatch {CREATE TEMP TRIGGER IF NOT EXISTS AAAAAA . "AAAAAA" BEFORE UPDATE OF "AAAAAA" ON AAAAAA . "AAAAAA" BEGIN SELECT ALL * , #175 "AAAAAA" FROM "AAAAAA" . AAAAAA; END} } {1} } ;# End of ifcapable {trigger} do_test fuzz2-4.0 { fuzzcatch {ATTACH DATABASE #168 AS whatever} } {1} do_test fuzz2-4.1 { fuzzcatch {DETACH #133} } {1} do_test fuzz2-5.0 { |
︙ | ︙ |
Changes to test/main.test.
︙ | ︙ | |||
21 22 23 24 25 26 27 | ifcapable {complete} { # Tests of the sqlite_complete() function. # do_test main-1.1 { db complete {This is a test} } {0} | | | | > > > | | > > > > > > > > > > > > > > > > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | ifcapable {complete} { # Tests of the sqlite_complete() function. # do_test main-1.1 { db complete {This is a test} } {0} do_test main-1.2.0 { db complete { } } {0} do_test main-1.2.1 { db complete {} } {0} do_test main-1.3.0 { db complete { -- a comment ; } } {0} do_test main-1.3.1 { db complete { /* a comment ; */ } } {0} do_test main-1.4.0 { db complete { -- a comment ; ; } } {1} do_test main-1.4.1 { db complete { /* a comment ; */ ; } } {1} do_test main-1.4.2 { db complete { /* a comment ; */ ; } } {1} do_test main-1.5 { db complete {DROP TABLE 'xyz;} } {0} do_test main-1.6 { db complete {DROP TABLE 'xyz';} } {1} |
︙ | ︙ |
Changes to test/schema.test.
︙ | ︙ | |||
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | # The schema cookie now has the same value as it did when SQL statement # $::STMT was prepared. So unless it has been expired, it would be # possible to run the "CREATE TABLE t4" statement and create a # duplicate table. list [sqlite3_step $::STMT] [sqlite3_finalize $::STMT] } {SQLITE_ERROR SQLITE_SCHEMA} do_test schema-13.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM sqlite_master" -1 dummy] db function hello hello db function hello {} db auth auth proc auth {args} { if {[lindex $args 0] == "SQLITE_READ"} {return SQLITE_DENY} return SQLITE_OK } sqlite3_step $S } {SQLITE_SCHEMA} do_test schema-13.2 { sqlite3_step $S } {SQLITE_SCHEMA} do_test schema-13.3 { sqlite3_finalize $S } {SQLITE_SCHEMA} finish_test | > > > > | 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | # The schema cookie now has the same value as it did when SQL statement # $::STMT was prepared. So unless it has been expired, it would be # possible to run the "CREATE TABLE t4" statement and create a # duplicate table. list [sqlite3_step $::STMT] [sqlite3_finalize $::STMT] } {SQLITE_ERROR SQLITE_SCHEMA} ifcapable {auth} { do_test schema-13.1 { set S [sqlite3_prepare_v2 db "SELECT * FROM sqlite_master" -1 dummy] db function hello hello db function hello {} db auth auth proc auth {args} { if {[lindex $args 0] == "SQLITE_READ"} {return SQLITE_DENY} return SQLITE_OK } sqlite3_step $S } {SQLITE_SCHEMA} do_test schema-13.2 { sqlite3_step $S } {SQLITE_SCHEMA} do_test schema-13.3 { sqlite3_finalize $S } {SQLITE_SCHEMA} } finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
960 961 962 963 964 965 966 | close $t close $f } } # Drop all tables in database [db] proc drop_all_tables {{db db}} { | > | | > > | > | 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 | close $t close $f } } # Drop all tables in database [db] proc drop_all_tables {{db db}} { ifcapable trigger&&foreignkey { set pk [$db one "PRAGMA foreign_keys"] $db eval "PRAGMA foreign_keys = OFF" } foreach {t type} [$db eval { SELECT name, type FROM sqlite_master WHERE type IN('table', 'view') AND name NOT like 'sqlite_%' }] { $db eval "DROP $type $t" } ifcapable trigger&&foreignkey { $db eval "PRAGMA foreign_keys = $pk" } } # If the library is compiled with the SQLITE_DEFAULT_AUTOVACUUM macro set # to non-zero, then set the global variable $AUTOVACUUM to 1. set AUTOVACUUM $sqlite_options(default_autovacuum) |
︙ | ︙ |
Changes to test/tkt-3fe897352e.test.
︙ | ︙ | |||
12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # # This file implements tests to verify that ticket [3fe897352e8d8] has been # fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl do_test tkt-3fe89-1.1 { db close sqlite3 db :memory: db eval { PRAGMA encoding=UTF8; CREATE TABLE t1(x); | > > > > > > > | 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # # This file implements tests to verify that ticket [3fe897352e8d8] has been # fixed. # set testdir [file dirname $argv0] source $testdir/tester.tcl # The following tests use hex_to_utf16be() and hex_to_utf16le() which # which are only available if SQLite is built with UTF16 support. ifcapable {!utf16} { finish_test return } do_test tkt-3fe89-1.1 { db close sqlite3 db :memory: db eval { PRAGMA encoding=UTF8; CREATE TABLE t1(x); |
︙ | ︙ |
Changes to test/trace.test.
︙ | ︙ | |||
55 56 57 58 59 60 61 | db close sqlite3 db test.db; set DB [sqlite3_connection_pointer db] do_test trace-2.1 { set STMT [sqlite3_prepare $DB {INSERT INTO t1 VALUES(2,3)} -1 TAIL] db trace trace_proc proc trace_proc sql { global TRACE_OUT | | | | > | > > > > > > | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | db close sqlite3 db test.db; set DB [sqlite3_connection_pointer db] do_test trace-2.1 { set STMT [sqlite3_prepare $DB {INSERT INTO t1 VALUES(2,3)} -1 TAIL] db trace trace_proc proc trace_proc sql { global TRACE_OUT lappend TRACE_OUT [string trim $sql] } set TRACE_OUT {} sqlite3_step $STMT set TRACE_OUT } {{INSERT INTO t1 VALUES(2,3)}} do_test trace-2.2 { set TRACE_OUT {} sqlite3_reset $STMT set TRACE_OUT } {} do_test trace-2.3 { sqlite3_step $STMT set TRACE_OUT } {{INSERT INTO t1 VALUES(2,3)}} do_test trace-2.4 { set TRACE_OUT {} execsql {SELECT * FROM t1} } {1 2 2 3 2 3} do_test trace-2.5 { set TRACE_OUT } {{SELECT * FROM t1}} catch {sqlite3_finalize $STMT} do_test trace-2.6 { set TRACE_OUT {} db eval VACUUM set TRACE_OUT } {VACUUM} # Similar tests, but this time for profiling. # do_test trace-3.1 { set rc [catch {db profile 1 2 3} msg] lappend rc $msg } {1 {wrong # args: should be "db profile ?CALLBACK?"}} |
︙ | ︙ | |||
118 119 120 121 122 123 124 | db close sqlite3 db test.db; set DB [sqlite3_connection_pointer db] do_test trace-4.1 { set STMT [sqlite3_prepare $DB {INSERT INTO t2 VALUES(2,3)} -1 TAIL] db trace trace_proc proc profile_proc {sql tm} { global TRACE_OUT | | | | > | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | db close sqlite3 db test.db; set DB [sqlite3_connection_pointer db] do_test trace-4.1 { set STMT [sqlite3_prepare $DB {INSERT INTO t2 VALUES(2,3)} -1 TAIL] db trace trace_proc proc profile_proc {sql tm} { global TRACE_OUT lappend TRACE_OUT [string trim $sql] } set TRACE_OUT {} sqlite3_step $STMT set TRACE_OUT } {{INSERT INTO t2 VALUES(2,3)}} do_test trace-4.2 { set TRACE_OUT {} sqlite3_reset $STMT set TRACE_OUT } {} do_test trace-4.3 { sqlite3_step $STMT set TRACE_OUT } {{INSERT INTO t2 VALUES(2,3)}} do_test trace-4.4 { set TRACE_OUT {} execsql {SELECT * FROM t1} } {1 2 2 3 2 3} do_test trace-4.5 { set TRACE_OUT } {{SELECT * FROM t1}} catch {sqlite3_finalize $STMT} # Trigger tracing. # ifcapable trigger { do_test trace-5.1 { db eval { |
︙ | ︙ | |||
225 226 227 228 229 230 231 | CREATE TABLE t6([$::t6str],"?1"); INSERT INTO t6 VALUES(1,2); } db trace trace_proc set TRACE_OUT {} execsql {SELECT '$::t6str', [$::t6str], $::t6str, ?1, "?1", $::t6str FROM t6} } {{$::t6str} 1 {test-six y'all} {test-six y'all} 2 {test-six y'all}} | | | 233 234 235 236 237 238 239 240 241 242 243 244 245 | CREATE TABLE t6([$::t6str],"?1"); INSERT INTO t6 VALUES(1,2); } db trace trace_proc set TRACE_OUT {} execsql {SELECT '$::t6str', [$::t6str], $::t6str, ?1, "?1", $::t6str FROM t6} } {{$::t6str} 1 {test-six y'all} {test-six y'all} 2 {test-six y'all}} do_test trace-6.201 { set TRACE_OUT } {{SELECT '$::t6str', [$::t6str], 'test-six y''all', 'test-six y''all', "?1", 'test-six y''all' FROM t6}} finish_test |
Added test/triggerD.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 | # 2009 December 29 # # The author disclaims copyright to this source code. In place of # a legal notice', here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Verify that when columns named "rowid", "oid", and "_rowid_" appear # in a table as ordinary columns (not as the INTEGER PRIMARY KEY) then # the use of these columns in triggers will refer to the column and not # to the actual ROWID. Ticket [34d2ae1c6d08b5271ba5e5592936d4a1d913ffe3] # set testdir [file dirname $argv0] source $testdir/tester.tcl ifcapable {!trigger} { finish_test return } # Triggers on tables where the table has ordinary columns named # rowid, oid, and _rowid_. # do_test triggerD-1.1 { db eval { CREATE TABLE t1(rowid, oid, _rowid_, x); CREATE TABLE log(a,b,c,d,e); CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN INSERT INTO log VALUES('r1', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN INSERT INTO log VALUES('r2', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN INSERT INTO log VALUES('r3.old', old.rowid, old.oid, old._rowid_, old.x); INSERT INTO log VALUES('r3.new', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN INSERT INTO log VALUES('r4.old', old.rowid, old.oid, old._rowid_, old.x); INSERT INTO log VALUES('r4.new', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r5 BEFORE DELETE ON t1 BEGIN INSERT INTO log VALUES('r5', old.rowid, old.oid, old._rowid_, old.x); END; CREATE TRIGGER r6 AFTER DELETE ON t1 BEGIN INSERT INTO log VALUES('r6', old.rowid, old.oid, old._rowid_, old.x); END; } } {} do_test triggerD-1.2 { db eval { INSERT INTO t1 VALUES(100,200,300,400); SELECT * FROM log } } {r1 100 200 300 400 r2 100 200 300 400} do_test triggerD-1.3 { db eval { DELETE FROM log; UPDATE t1 SET rowid=rowid+1; SELECT * FROM log } } {r3.old 100 200 300 400 r3.new 101 200 300 400 r4.old 100 200 300 400 r4.new 101 200 300 400} do_test triggerD-1.4 { db eval { DELETE FROM log; DELETE FROM t1; SELECT * FROM log } } {r5 101 200 300 400 r6 101 200 300 400} # Triggers on tables where the table does not have ordinary columns named # rowid, oid, and _rowid_. # do_test triggerD-2.1 { db eval { DROP TABLE t1; CREATE TABLE t1(w,x,y,z); CREATE TRIGGER r1 BEFORE INSERT ON t1 BEGIN INSERT INTO log VALUES('r1', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r2 AFTER INSERT ON t1 BEGIN INSERT INTO log VALUES('r2', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r3 BEFORE UPDATE ON t1 BEGIN INSERT INTO log VALUES('r3.old', old.rowid, old.oid, old._rowid_, old.x); INSERT INTO log VALUES('r3.new', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r4 AFTER UPDATE ON t1 BEGIN INSERT INTO log VALUES('r4.old', old.rowid, old.oid, old._rowid_, old.x); INSERT INTO log VALUES('r4.new', new.rowid, new.oid, new._rowid_, new.x); END; CREATE TRIGGER r5 BEFORE DELETE ON t1 BEGIN INSERT INTO log VALUES('r5', old.rowid, old.oid, old._rowid_, old.x); END; CREATE TRIGGER r6 AFTER DELETE ON t1 BEGIN INSERT INTO log VALUES('r6', old.rowid, old.oid, old._rowid_, old.x); END; } } {} do_test triggerD-2.2 { db eval { DELETE FROM log; INSERT INTO t1 VALUES(100,200,300,400); SELECT * FROM log; } } {r1 -1 -1 -1 200 r2 1 1 1 200} do_test triggerD-2.3 { db eval { DELETE FROM log; UPDATE t1 SET x=x+1; SELECT * FROM log } } {r3.old 1 1 1 200 r3.new 1 1 1 201 r4.old 1 1 1 200 r4.new 1 1 1 201} do_test triggerD-2.4 { db eval { DELETE FROM log; DELETE FROM t1; SELECT * FROM log } } {r5 1 1 1 201 r6 1 1 1 201} finish_test |
Changes to tool/lemon.c.
︙ | ︙ | |||
487 488 489 490 491 492 493 494 495 496 497 498 499 500 | ** into the current action table. Then reset the transaction set back ** to an empty set in preparation for a new round of acttab_action() calls. ** ** Return the offset into the action table of the new transaction. */ int acttab_insert(acttab *p){ int i, j, k, n; assert( p->nLookahead>0 ); /* Make sure we have enough space to hold the expanded action table ** in the worst case. The worst case occurs if the transaction set ** must be appended to the current action table */ n = p->mxLookahead + 1; | > > | | | | 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | ** into the current action table. Then reset the transaction set back ** to an empty set in preparation for a new round of acttab_action() calls. ** ** Return the offset into the action table of the new transaction. */ int acttab_insert(acttab *p){ int i, j, k, n; int nActtab; /* Number of slots in the p->aAction[] table */ assert( p->nLookahead>0 ); /* Make sure we have enough space to hold the expanded action table ** in the worst case. The worst case occurs if the transaction set ** must be appended to the current action table */ n = p->mxLookahead + 1; nActtab = p->nAction + n; if( nActtab >= p->nActionAlloc ){ int oldAlloc = p->nActionAlloc; p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; p->aAction = realloc( p->aAction, sizeof(p->aAction[0])*p->nActionAlloc); if( p->aAction==0 ){ fprintf(stderr,"malloc failed\n"); exit(1); } for(i=oldAlloc; i<p->nActionAlloc; i++){ p->aAction[i].lookahead = -1; p->aAction[i].action = -1; } } /* Scan the existing action table looking for an offset where we can ** insert the current transaction set. Fall out of the loop when that ** offset is found. In the worst case, we fall out of the loop when ** i reaches nActtab, which means we append the new transaction set. ** ** i is the index in p->aAction[] where p->mnLookahead is inserted. */ for(i=nActtab-1; i>=0; i--){ /* First look for an existing action table entry that can be reused */ if( p->aAction[i].lookahead==p->mnLookahead ){ if( p->aAction[i].action!=p->mnAction ) continue; for(j=0; j<p->nLookahead; j++){ k = p->aLookahead[j].lookahead - p->mnLookahead + i; if( k<0 || k>=p->nAction ) break; if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
︙ | ︙ | |||
539 540 541 542 543 544 545 | if( n==p->nLookahead ){ break; /* Same as a prior transaction set */ } } } if( i<0 ){ /* If no reusable entry is found, look for an empty slot */ | | | 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | if( n==p->nLookahead ){ break; /* Same as a prior transaction set */ } } } if( i<0 ){ /* If no reusable entry is found, look for an empty slot */ for(i=0; i<nActtab; i++){ if( p->aAction[i].lookahead<0 ){ for(j=0; j<p->nLookahead; j++){ k = p->aLookahead[j].lookahead - p->mnLookahead + i; if( k<0 ) break; if( p->aAction[k].lookahead>=0 ) break; } if( j<p->nLookahead ) continue; |
︙ | ︙ |
Changes to tool/mkkeywordhash.c.
︙ | ︙ | |||
592 593 594 595 596 597 598 599 600 601 | printf(" }\n"); printf(" }\n"); printf(" return TK_ID;\n"); printf("}\n"); printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n"); printf(" return keywordCode((char*)z, n);\n"); printf("}\n"); return 0; } | > | 592 593 594 595 596 597 598 599 600 601 602 | printf(" }\n"); printf(" }\n"); printf(" return TK_ID;\n"); printf("}\n"); printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n"); printf(" return keywordCode((char*)z, n);\n"); printf("}\n"); printf("#define SQLITE_N_KEYWORD %d\n", nKeyword); return 0; } |
Changes to tool/shell1.test.
︙ | ︙ | |||
19 20 21 22 23 24 25 | # shell1-1.*: Basic command line option handling. # shell1-2.*: Basic "dot" command token parsing. # shell1-3.*: Basic test that "dot" command can be called. # package require sqlite3 | | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # shell1-1.*: Basic command line option handling. # shell1-2.*: Basic "dot" command token parsing. # shell1-3.*: Basic test that "dot" command can be called. # package require sqlite3 set CLI "./sqlite3" proc do_test {name cmd expected} { puts -nonewline "$name ..." set res [uplevel $cmd] if {$res eq $expected} { puts Ok } else { |
︙ | ︙ | |||
43 44 45 46 47 48 49 | } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } | | | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 | } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } proc catchcmd {db {cmd ""}} { global CLI set out [open cmds.txt w] puts $out $cmd close $out set line "exec $CLI $db < cmds.txt" set rc [catch { eval $line } msg] list $rc $msg |
︙ | ︙ | |||
75 76 77 78 79 80 81 | do_test shell1-1.1.2 { set res [catchcmd "-bad test.db \"select 3\" \"select 4\"" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: too many options: "select 4"} $res] } {1 1} # error on extra options | | | | 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | do_test shell1-1.1.2 { set res [catchcmd "-bad test.db \"select 3\" \"select 4\"" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: too many options: "select 4"} $res] } {1 1} # error on extra options do_test shell1-1.1.3 { set res [catchcmd "-bad FOO test.db BAD" ".quit"] set rc [lindex $res 0] list $rc \ [regexp {Error: too many options: "BAD"} $res] } {1 1} # -help do_test shell1-1.2.1 { set res [catchcmd "-help test.db" ""] set rc [lindex $res 0] list $rc \ [regexp {Usage} $res] \ [regexp {\-init} $res] \ [regexp {\-version} $res] } {1 1 1 1} # -init filename read/process named file do_test shell1-1.3.1 { catchcmd "-init FOO test.db" "" } {0 {}} do_test shell1-1.3.2 { set res [catchcmd "-init FOO test.db .quit BAD" ""] set rc [lindex $res 0] list $rc \ [regexp {Error: too many options: "BAD"} $res] } {1 1} |
︙ | ︙ | |||
191 192 193 194 195 196 197 | list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 | list $rc \ [regexp {Error: missing argument for option: -nullvalue} $res] } {1 1} # -version show SQLite version do_test shell1-1.16.1 { catchcmd "-version test.db" "" } {0 3.6.22} #---------------------------------------------------------------------------- # Test cases shell1-2.*: Basic "dot" command token parsing. # # check first token handling do_test shell1-2.1.1 { catchcmd "test.db" ".foo" } {1 {Error: unknown command or invalid arguments: "foo". Enter ".help" for help}} do_test shell1-2.1.2 { catchcmd "test.db" ".\"foo OFF\"" } {1 {Error: unknown command or invalid arguments: "foo OFF". Enter ".help" for help}} do_test shell1-2.1.3 { catchcmd "test.db" ".\'foo OFF\'" } {1 {Error: unknown command or invalid arguments: "foo OFF". Enter ".help" for help}} # unbalanced quotes do_test shell1-2.2.1 { catchcmd "test.db" ".\"foo OFF" } {1 {Error: unknown command or invalid arguments: "foo OFF". Enter ".help" for help}} do_test shell1-2.2.2 { catchcmd "test.db" ".\'foo OFF" } {1 {Error: unknown command or invalid arguments: "foo OFF". Enter ".help" for help}} do_test shell1-2.2.3 { catchcmd "test.db" ".explain \"OFF" } {0 {}} do_test shell1-2.2.4 { catchcmd "test.db" ".explain \'OFF" } {0 {}} do_test shell1-2.2.5 { catchcmd "test.db" ".mode \"insert FOO" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} do_test shell1-2.2.6 { catchcmd "test.db" ".mode \'insert FOO" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} # check multiple tokens, and quoted tokens do_test shell1-2.3.1 { catchcmd "test.db" ".explain 1" } {0 {}} do_test shell1-2.3.2 { catchcmd "test.db" ".explain on" } {0 {}} do_test shell1-2.3.3 { catchcmd "test.db" ".explain \"1 2 3\"" } {0 {}} do_test shell1-2.3.4 { catchcmd "test.db" ".explain \"OFF\"" } {0 {}} do_test shell1-2.3.5 { catchcmd "test.db" ".\'explain\' \'OFF\'" } {0 {}} do_test shell1-2.3.6 { catchcmd "test.db" ".explain \'OFF\'" } {0 {}} do_test shell1-2.3.7 { catchcmd "test.db" ".\'explain\' \'OFF\'" } {0 {}} # check quoted args are unquoted do_test shell1-2.4.1 { catchcmd "test.db" ".mode FOO" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} do_test shell1-2.4.2 { catchcmd "test.db" ".mode csv" } {0 {}} do_test shell1-2.4.2 { catchcmd "test.db" ".mode \"csv\"" } {0 {}} #---------------------------------------------------------------------------- # Test cases shell1-3.*: Basic test that "dot" command can be called. # # .backup ?DB? FILE Backup DB (default "main") to FILE do_test shell1-3.1.1 { catchcmd "test.db" ".backup" } {1 {Error: unknown command or invalid arguments: "backup". Enter ".help" for help}} do_test shell1-3.1.2 { catchcmd "test.db" ".backup FOO" } {0 {}} do_test shell1-3.1.3 { catchcmd "test.db" ".backup FOO BAR" } {1 {Error: unknown database FOO}} do_test shell1-3.1.4 { # too many arguments catchcmd "test.db" ".backup FOO BAR BAD" } {1 {Error: unknown command or invalid arguments: "backup". Enter ".help" for help}} # .bail ON|OFF Stop after hitting an error. Default OFF do_test shell1-3.2.1 { catchcmd "test.db" ".bail" } {1 {Error: unknown command or invalid arguments: "bail". Enter ".help" for help}} do_test shell1-3.2.2 { catchcmd "test.db" ".bail ON" } {0 {}} do_test shell1-3.2.3 { catchcmd "test.db" ".bail OFF" } {0 {}} do_test shell1-3.2.4 { # too many arguments catchcmd "test.db" ".bail OFF BAD" } {1 {Error: unknown command or invalid arguments: "bail". Enter ".help" for help}} # .databases List names and files of attached databases do_test shell1-3.3.1 { set res [catchcmd "test.db" ".databases"] regexp {0.*main.*test\.db} $res } {1} do_test shell1-3.3.2 { # too many arguments catchcmd "test.db" ".databases BAD" } {1 {Error: unknown command or invalid arguments: "databases". Enter ".help" for help}} # .dump ?TABLE? ... Dump the database in an SQL text format # If TABLE specified, only dump tables matching # LIKE pattern TABLE. do_test shell1-3.4.1 { set res [catchcmd "test.db" ".dump"] list [regexp {BEGIN TRANSACTION;} $res] \ [regexp {COMMIT;} $res] } {1 1} do_test shell1-3.4.2 { set res [catchcmd "test.db" ".dump FOO"] list [regexp {BEGIN TRANSACTION;} $res] \ [regexp {COMMIT;} $res] } {1 1} do_test shell1-3.4.3 { # too many arguments catchcmd "test.db" ".dump FOO BAD" } {1 {Error: unknown command or invalid arguments: "dump". Enter ".help" for help}} # .echo ON|OFF Turn command echo on or off do_test shell1-3.5.1 { catchcmd "test.db" ".echo" } {1 {Error: unknown command or invalid arguments: "echo". Enter ".help" for help}} do_test shell1-3.5.2 { catchcmd "test.db" ".echo ON" } {0 {}} do_test shell1-3.5.3 { catchcmd "test.db" ".echo OFF" } {0 {}} do_test shell1-3.5.4 { # too many arguments catchcmd "test.db" ".echo OFF BAD" } {1 {Error: unknown command or invalid arguments: "echo". Enter ".help" for help}} # .exit Exit this program do_test shell1-3.6.1 { catchcmd "test.db" ".exit" } {0 {}} do_test shell1-3.6.2 { # too many arguments catchcmd "test.db" ".exit BAD" } {1 {Error: unknown command or invalid arguments: "exit". Enter ".help" for help}} # .explain ON|OFF Turn output mode suitable for EXPLAIN on or off. do_test shell1-3.7.1 { catchcmd "test.db" ".explain" # explain is the exception to the booleans. without an option, it turns it on. } {0 {}} do_test shell1-3.7.2 { catchcmd "test.db" ".explain ON" } {0 {}} do_test shell1-3.7.3 { catchcmd "test.db" ".explain OFF" } {0 {}} do_test shell1-3.7.4 { # too many arguments catchcmd "test.db" ".explain OFF BAD" } {1 {Error: unknown command or invalid arguments: "explain". Enter ".help" for help}} # .genfkey ?OPTIONS? Options are: # --no-drop: Do not drop old fkey triggers. # --ignore-errors: Ignore tables with fkey errors # --exec: Execute generated SQL immediately # See file tool/genfkey.README in the source # distribution for further information. do_test shell1-3.8.1 { catchcmd "test.db" ".genfkey" } {0 {}} do_test shell1-3.8.2 { catchcmd "test.db" ".genfkey FOO" } {1 {unknown option: FOO}} # .header(s) ON|OFF Turn display of headers on or off do_test shell1-3.9.1 { catchcmd "test.db" ".header" } {1 {Error: unknown command or invalid arguments: "header". Enter ".help" for help}} do_test shell1-3.9.2 { catchcmd "test.db" ".header ON" } {0 {}} do_test shell1-3.9.3 { catchcmd "test.db" ".header OFF" } {0 {}} do_test shell1-3.9.4 { # too many arguments catchcmd "test.db" ".header OFF BAD" } {1 {Error: unknown command or invalid arguments: "header". Enter ".help" for help}} do_test shell1-3.9.5 { catchcmd "test.db" ".headers" } {1 {Error: unknown command or invalid arguments: "headers". Enter ".help" for help}} do_test shell1-3.9.6 { catchcmd "test.db" ".headers ON" } {0 {}} do_test shell1-3.9.7 { catchcmd "test.db" ".headers OFF" } {0 {}} do_test shell1-3.9.8 { # too many arguments catchcmd "test.db" ".headers OFF BAD" } {1 {Error: unknown command or invalid arguments: "headers". Enter ".help" for help}} # .help Show this message do_test shell1-3.10.1 { set res [catchcmd "test.db" ".help"] # look for a few of the possible help commands list [regexp {.help} $res] \ [regexp {.quit} $res] \ [regexp {.show} $res] } {1 1 1} do_test shell1-3.10.2 { # we allow .help to take extra args (it is help after all) set res [catchcmd "test.db" ".help BAD"] # look for a few of the possible help commands list [regexp {.help} $res] \ [regexp {.quit} $res] \ [regexp {.show} $res] } {1 1 1} # .import FILE TABLE Import data from FILE into TABLE do_test shell1-3.11.1 { catchcmd "test.db" ".import" } {1 {Error: unknown command or invalid arguments: "import". Enter ".help" for help}} do_test shell1-3.11.2 { catchcmd "test.db" ".import FOO" } {1 {Error: unknown command or invalid arguments: "import". Enter ".help" for help}} do_test shell1-3.11.2 { catchcmd "test.db" ".import FOO BAR" } {1 {Error: no such table: BAR}} do_test shell1-3.11.3 { # too many arguments catchcmd "test.db" ".import FOO BAR BAD" } {1 {Error: unknown command or invalid arguments: "import". Enter ".help" for help}} # .indices ?TABLE? Show names of all indices # If TABLE specified, only show indices for tables # matching LIKE pattern TABLE. do_test shell1-3.12.1 { catchcmd "test.db" ".indices" } {0 {}} do_test shell1-3.12.2 { catchcmd "test.db" ".indices FOO" } {0 {}} do_test shell1-3.12.3 { # too many arguments catchcmd "test.db" ".indices FOO BAD" } {1 {Error: unknown command or invalid arguments: "indices". Enter ".help" for help}} # .mode MODE ?TABLE? Set output mode where MODE is one of: # csv Comma-separated values # column Left-aligned columns. (See .width) # html HTML <table> code # insert SQL insert statements for TABLE # line One value per line # list Values delimited by .separator string # tabs Tab-separated values # tcl TCL list elements do_test shell1-3.13.1 { catchcmd "test.db" ".mode" } {1 {Error: unknown command or invalid arguments: "mode". Enter ".help" for help}} do_test shell1-3.13.2 { catchcmd "test.db" ".mode FOO" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} do_test shell1-3.13.3 { catchcmd "test.db" ".mode csv" } {0 {}} do_test shell1-3.13.4 { catchcmd "test.db" ".mode column" } {0 {}} do_test shell1-3.13.5 { catchcmd "test.db" ".mode html" } {0 {}} do_test shell1-3.13.6 { catchcmd "test.db" ".mode insert" } {0 {}} do_test shell1-3.13.7 { catchcmd "test.db" ".mode line" } {0 {}} do_test shell1-3.13.8 { catchcmd "test.db" ".mode list" } {0 {}} do_test shell1-3.13.9 { catchcmd "test.db" ".mode tabs" } {0 {}} do_test shell1-3.13.10 { catchcmd "test.db" ".mode tcl" } {0 {}} do_test shell1-3.13.11 { # too many arguments catchcmd "test.db" ".mode tcl BAD" } {1 {Error: invalid arguments: "BAD". Enter ".help" for help}} # don't allow partial mode type matches do_test shell1-3.13.12 { catchcmd "test.db" ".mode l" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} do_test shell1-3.13.13 { catchcmd "test.db" ".mode li" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} do_test shell1-3.13.14 { catchcmd "test.db" ".mode lin" } {1 {Error: mode should be one of: column csv html insert line list tabs tcl}} # .nullvalue STRING Print STRING in place of NULL values do_test shell1-3.14.1 { catchcmd "test.db" ".nullvalue" } {1 {Error: unknown command or invalid arguments: "nullvalue". Enter ".help" for help}} do_test shell1-3.14.2 { catchcmd "test.db" ".nullvalue FOO" } {0 {}} do_test shell1-3.14.3 { # too many arguments catchcmd "test.db" ".nullvalue FOO BAD" } {1 {Error: unknown command or invalid arguments: "nullvalue". Enter ".help" for help}} # .output FILENAME Send output to FILENAME do_test shell1-3.15.1 { catchcmd "test.db" ".output" } {1 {Error: unknown command or invalid arguments: "output". Enter ".help" for help}} do_test shell1-3.15.2 { catchcmd "test.db" ".output FOO" } {0 {}} do_test shell1-3.15.3 { # too many arguments catchcmd "test.db" ".output FOO BAD" } {1 {Error: unknown command or invalid arguments: "output". Enter ".help" for help}} # .output stdout Send output to the screen do_test shell1-3.16.1 { catchcmd "test.db" ".output stdout" } {0 {}} do_test shell1-3.16.2 { # too many arguments catchcmd "test.db" ".output stdout BAD" } {1 {Error: unknown command or invalid arguments: "output". Enter ".help" for help}} # .prompt MAIN CONTINUE Replace the standard prompts do_test shell1-3.17.1 { catchcmd "test.db" ".prompt" } {1 {Error: unknown command or invalid arguments: "prompt". Enter ".help" for help}} do_test shell1-3.17.2 { catchcmd "test.db" ".prompt FOO" } {0 {}} do_test shell1-3.17.3 { catchcmd "test.db" ".prompt FOO BAR" } {0 {}} do_test shell1-3.17.4 { # too many arguments catchcmd "test.db" ".prompt FOO BAR BAD" } {1 {Error: unknown command or invalid arguments: "prompt". Enter ".help" for help}} # .quit Exit this program do_test shell1-3.18.1 { catchcmd "test.db" ".quit" } {0 {}} do_test shell1-3.18.2 { # too many arguments catchcmd "test.db" ".quit BAD" } {1 {Error: unknown command or invalid arguments: "quit". Enter ".help" for help}} # .read FILENAME Execute SQL in FILENAME do_test shell1-3.19.1 { catchcmd "test.db" ".read" } {1 {Error: unknown command or invalid arguments: "read". Enter ".help" for help}} do_test shell1-3.19.2 { file delete -force FOO catchcmd "test.db" ".read FOO" } {1 {Error: cannot open "FOO"}} do_test shell1-3.19.3 { # too many arguments catchcmd "test.db" ".read FOO BAD" } {1 {Error: unknown command or invalid arguments: "read". Enter ".help" for help}} # .restore ?DB? FILE Restore content of DB (default "main") from FILE do_test shell1-3.20.1 { catchcmd "test.db" ".restore" } {1 {Error: unknown command or invalid arguments: "restore". Enter ".help" for help}} do_test shell1-3.20.2 { catchcmd "test.db" ".restore FOO" } {0 {}} do_test shell1-3.20.3 { catchcmd "test.db" ".restore FOO BAR" } {1 {Error: unknown database FOO}} do_test shell1-3.20.4 { # too many arguments catchcmd "test.db" ".restore FOO BAR BAD" } {1 {Error: unknown command or invalid arguments: "restore". Enter ".help" for help}} # .schema ?TABLE? Show the CREATE statements # If TABLE specified, only show tables matching # LIKE pattern TABLE. do_test shell1-3.21.1 { catchcmd "test.db" ".schema" } {0 {}} do_test shell1-3.21.2 { catchcmd "test.db" ".schema FOO" } {0 {}} do_test shell1-3.21.3 { # too many arguments catchcmd "test.db" ".schema FOO BAD" } {1 {Error: unknown command or invalid arguments: "schema". Enter ".help" for help}} # .separator STRING Change separator used by output mode and .import do_test shell1-3.22.1 { catchcmd "test.db" ".separator" } {1 {Error: unknown command or invalid arguments: "separator". Enter ".help" for help}} do_test shell1-3.22.2 { catchcmd "test.db" ".separator FOO" } {0 {}} do_test shell1-3.22.3 { # too many arguments catchcmd "test.db" ".separator FOO BAD" } {1 {Error: unknown command or invalid arguments: "separator". Enter ".help" for help}} # .show Show the current values for various settings do_test shell1-3.23.1 { set res [catchcmd "test.db" ".show"] list [regexp {echo:} $res] \ [regexp {explain:} $res] \ [regexp {headers:} $res] \ [regexp {mode:} $res] \ [regexp {nullvalue:} $res] \ [regexp {output:} $res] \ [regexp {separator:} $res] \ [regexp {width:} $res] } {1 1 1 1 1 1 1 1} do_test shell1-3.23.2 { # too many arguments catchcmd "test.db" ".show BAD" } {1 {Error: unknown command or invalid arguments: "show". Enter ".help" for help}} # .tables ?TABLE? List names of tables # If TABLE specified, only list tables matching # LIKE pattern TABLE. do_test shell1-3.24.1 { catchcmd "test.db" ".tables" } {0 {}} do_test shell1-3.24.2 { catchcmd "test.db" ".tables FOO" } {0 {}} do_test shell1-3.24.3 { # too many arguments catchcmd "test.db" ".tables FOO BAD" } {1 {Error: unknown command or invalid arguments: "tables". Enter ".help" for help}} # .timeout MS Try opening locked tables for MS milliseconds do_test shell1-3.25.1 { catchcmd "test.db" ".timeout" } {1 {Error: unknown command or invalid arguments: "timeout". Enter ".help" for help}} do_test shell1-3.25.2 { catchcmd "test.db" ".timeout zzz" # this should be treated the same as a '0' timeout } {0 {}} do_test shell1-3.25.3 { catchcmd "test.db" ".timeout 1" } {0 {}} do_test shell1-3.25.4 { # too many arguments catchcmd "test.db" ".timeout 1 BAD" } {1 {Error: unknown command or invalid arguments: "timeout". Enter ".help" for help}} # .width NUM NUM ... Set column widths for "column" mode do_test shell1-3.26.1 { catchcmd "test.db" ".width" } {1 {Error: unknown command or invalid arguments: "width". Enter ".help" for help}} do_test shell1-3.26.2 { catchcmd "test.db" ".width xxx" # this should be treated the same as a '0' width for col 1 } {0 {}} do_test shell1-3.26.3 { catchcmd "test.db" ".width xxx yyy" # this should be treated the same as a '0' width for col 1 and 2 } {0 {}} do_test shell1-3.26.4 { catchcmd "test.db" ".width 1 1" # this should be treated the same as a '1' width for col 1 and 2 } {0 {}} # .timer ON|OFF Turn the CPU timer measurement on or off do_test shell1-3.27.1 { catchcmd "test.db" ".timer" } {1 {Error: unknown command or invalid arguments: "timer". Enter ".help" for help}} do_test shell1-3.27.2 { catchcmd "test.db" ".timer ON" } {0 {}} do_test shell1-3.27.3 { catchcmd "test.db" ".timer OFF" } {0 {}} do_test shell1-3.27.4 { # too many arguments catchcmd "test.db" ".timer OFF BAD" } {1 {Error: unknown command or invalid arguments: "timer". Enter ".help" for help}} # |
Changes to tool/shell2.test.
︙ | ︙ | |||
17 18 19 20 21 22 23 | # Test plan: # # shell2-1.*: Misc. test of various tickets and reported errors. # package require sqlite3 | | | 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # Test plan: # # shell2-1.*: Misc. test of various tickets and reported errors. # package require sqlite3 set CLI "./sqlite3" proc do_test {name cmd expected} { puts -nonewline "$name ..." set res [uplevel $cmd] if {$res eq $expected} { puts Ok } else { |
︙ | ︙ | |||
41 42 43 44 45 46 47 | } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } | | | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } proc catchcmd {db {cmd ""}} { global CLI set out [open cmds.txt w] puts $out $cmd close $out set line "exec $CLI $db < cmds.txt" set rc [catch { eval $line } msg] list $rc $msg |
︙ | ︙ | |||
77 78 79 80 81 82 83 | # Ticket [f5cb008a65]. do_test shell2-1.2.1 { set rc [catch { eval exec $CLI \":memory:\" \"select 3\" \"select 4\" } msg] list $rc \ [regexp {Error: too many options: "select 4"} $msg] } {1 1} | > > > | > > > > > > > > > > > > > | 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | # Ticket [f5cb008a65]. do_test shell2-1.2.1 { set rc [catch { eval exec $CLI \":memory:\" \"select 3\" \"select 4\" } msg] list $rc \ [regexp {Error: too many options: "select 4"} $msg] } {1 1} # Test a problem reported on the mailing list. The shell was at one point # returning the generic SQLITE_ERROR message ("SQL error or missing database") # instead of the "too many levels..." message in the test below. # do_test shell2-1.3 { catchcmd "-batch test.db" { PRAGMA recursive_triggers = ON; CREATE TABLE t5(a PRIMARY KEY, b, c); INSERT INTO t5 VALUES(1, 2, 3); CREATE TRIGGER au_tble AFTER UPDATE ON t5 BEGIN UPDATE OR IGNORE t5 SET a = new.a, c = 10; END; UPDATE OR REPLACE t5 SET a = 4 WHERE a = 1; } } {1 {Error: near line 9: too many levels of trigger recursion}} |
Added tool/shell3.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | # 2009 Dec 16 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # The focus of this file is testing the CLI shell tool. # # $Id: shell2.test,v 1.7 2009/07/17 16:54:48 shaneh Exp $ # # Test plan: # # shell3-1.*: Basic tests for running SQL statments from command line. # shell3-2.*: Basic tests for running SQL file from command line. # package require sqlite3 set CLI "./sqlite3" proc do_test {name cmd expected} { puts -nonewline "$name ..." set res [uplevel $cmd] if {$res eq $expected} { puts Ok } else { puts Error puts " Got: $res" puts " Expected: $expected" exit } } proc execsql {sql} { uplevel [list db eval $sql] } proc catchsql {sql} { set rc [catch {uplevel [list db eval $sql]} msg] list $rc $msg } proc catchcmd {db {cmd ""}} { global CLI set out [open cmds.txt w] puts $out $cmd close $out set line "exec $CLI $db < cmds.txt" set rc [catch { eval $line } msg] list $rc $msg } file delete -force test.db test.db.journal sqlite3 db test.db #---------------------------------------------------------------------------- # shell3-1.*: Basic tests for running SQL statments from command line. # # Run SQL statement from command line do_test shell3-1.1 { file delete -force foo.db set rc [ catchcmd "foo.db \"CREATE TABLE t1(a);\"" ] set fexist [file exist foo.db] list $rc $fexist } {{0 {}} 1} do_test shell3-1.2 { catchcmd "foo.db" ".tables" } {0 t1} do_test shell3-1.3 { catchcmd "foo.db \"DROP TABLE t1;\"" } {0 {}} do_test shell3-1.4 { catchcmd "foo.db" ".tables" } {0 {}} do_test shell3-1.5 { catchcmd "foo.db \"CREATE TABLE t1(a); DROP TABLE t1;\"" } {0 {}} do_test shell3-1.6 { catchcmd "foo.db" ".tables" } {0 {}} do_test shell3-1.7 { catchcmd "foo.db \"CREATE TABLE\"" } {1 {Error: near "TABLE": syntax error}} #---------------------------------------------------------------------------- # shell3-2.*: Basic tests for running SQL file from command line. # # Run SQL file from command line do_test shell3-2.1 { file delete -force foo.db set rc [ catchcmd "foo.db" "CREATE TABLE t1(a);" ] set fexist [file exist foo.db] list $rc $fexist } {{0 {}} 1} do_test shell3-2.2 { catchcmd "foo.db" ".tables" } {0 t1} do_test shell3-2.3 { catchcmd "foo.db" "DROP TABLE t1;" } {0 {}} do_test shell3-2.4 { catchcmd "foo.db" ".tables" } {0 {}} do_test shell3-2.5 { catchcmd "foo.db" "CREATE TABLE t1(a); DROP TABLE t1;" } {0 {}} do_test shell3-2.6 { catchcmd "foo.db" ".tables" } {0 {}} do_test shell3-2.7 { catchcmd "foo.db" "CREATE TABLE" } {1 {Error: incomplete SQL: CREATE TABLE}} |