SQLite

Check-in [4c5e276c90]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest trunk changes into the sessions branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1: 4c5e276c902e0b93cfc05bf2e1db966ecdac0ed0
User & Date: drh 2011-06-20 10:44:10.301
Context
2011-06-20
11:17
Merge trunk changes with sessions branch. (check-in: 699b884383 user: dan tags: sessions)
10:44
Merge the latest trunk changes into the sessions branch. (check-in: 4c5e276c90 user: drh tags: sessions)
2011-06-19
21:17
Do not run test tkt-2d1a5c67d.test in the inmemory_journal permutation since that test requires WAL mode which does not work with inmemory_journal. (check-in: 228c43c726 user: drh tags: trunk)
2011-05-30
13:39
Merge the latest trunk changes into the sessions branch. (check-in: 832886b1e6 user: drh tags: sessions)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
  $(TOP)/src/test_syscall.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_tclvar.c \
  $(TOP)/src/test_thread.c \
  $(TOP)/src/test_vfs.c \
  $(TOP)/src/test_wholenumber.c \
  $(TOP)/src/test_wsd.c       \
  $(TOP)/ext/fts3/fts3_term.c 


# Source code to the library files needed by the test fixture
#
TESTSRC2 = \
  $(TOP)/src/attach.c \
  $(TOP)/src/backup.c \
  $(TOP)/src/bitvec.c \







|
>







375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
  $(TOP)/src/test_syscall.c \
  $(TOP)/src/test_stat.c \
  $(TOP)/src/test_tclvar.c \
  $(TOP)/src/test_thread.c \
  $(TOP)/src/test_vfs.c \
  $(TOP)/src/test_wholenumber.c \
  $(TOP)/src/test_wsd.c       \
  $(TOP)/ext/fts3/fts3_term.c \
  $(TOP)/ext/fts3/fts3_test.c 

# Source code to the library files needed by the test fixture
#
TESTSRC2 = \
  $(TOP)/src/attach.c \
  $(TOP)/src/backup.c \
  $(TOP)/src/bitvec.c \
Added Makefile.msc.
































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
#
# nmake Makefile for SQLite
#

# The toplevel directory of the source tree.  This is the directory
# that contains this "Makefile.msc".
#
TOP = .

# Set this non-0 to create and use the SQLite amalgamation file.
#
USE_AMALGAMATION = 1

# Version numbers and release number for the SQLite being compiled.
#
VERSION = 3.7
VERSION_NUMBER = 3007007
RELEASE = 3.7.7

# C Compiler and options for use in building executables that
# will run on the platform that is doing the build.
#
BCC = cl.exe -O2

# C Compile and options for use in building executables that
# will run on the target platform.  (BCC and TCC are usually the
# same unless your are cross-compiling.)
#
TCC = cl.exe -W3 -O2 -DSQLITE_OS_WIN=1 -I. -I$(TOP)\src

# The mksqlite3c.tcl and mksqlite3h.tcl scripts will pull in 
# any extension header files by default.  For non-amalgamation
# builds, we need to make sure the compiler can find these.
#
!IF $(USE_AMALGAMATION)==0
TCC = $(TCC) -I$(TOP)\ext\fts3
TCC = $(TCC) -I$(TOP)\ext\rtree
!ENDIF

# Define -DNDEBUG to compile without debugging (i.e., for production usage)
# Omitting the define will cause extra debugging code to be inserted and
# includes extra comments when "EXPLAIN stmt" is used.
#
TCC = $(TCC) -DNDEBUG

# The library that programs using TCL must link against.
#
LIBTCL = tcl85.lib
TCLINCDIR = c:\tcl\include
TCLLIBDIR = c:\tcl\lib

# This is the command to use for tclsh - normally just "tclsh", but we may
# know the specific version we want to use
#
TCLSH_CMD = tclsh85

# Compiler options needed for programs that use the readline() library.
#
READLINE_FLAGS = -DHAVE_READLINE=0

# The library that programs using readline() must link against.
#
LIBREADLINE =

# Should the database engine be compiled threadsafe
#
TCC = $(TCC) -DSQLITE_THREADSAFE=1

# Do threads override each others locks by default (1), or do we test (-1)
#
TCC = $(TCC) -DSQLITE_THREAD_OVERRIDE_LOCK=-1

# Any target libraries which libsqlite must be linked against
#
TLIBS =

# Flags controlling use of the in memory btree implementation
#
# SQLITE_TEMP_STORE is 0 to force temporary tables to be in a file, 1 to
# default to file, 2 to default to memory, and 3 to force temporary
# tables to always be in memory.
#
TCC = $(TCC) -DSQLITE_TEMP_STORE=1

# Enable/disable loadable extensions, and other optional features
# based on configuration. (-DSQLITE_OMIT*, -DSQLITE_ENABLE*).
# The same set of OMIT and ENABLE flags should be passed to the
# LEMON parser generator and the mkkeywordhash tool as well.

# BEGIN standard options
OPT_FEATURE_FLAGS = $(OPT_FEATURE_FLAGS) -DSQLITE_ENABLE_FTS3=1
OPT_FEATURE_FLAGS = $(OPT_FEATURE_FLAGS) -DSQLITE_ENABLE_RTREE=1
OPT_FEATURE_FLAGS = $(OPT_FEATURE_FLAGS) -DSQLITE_ENABLE_COLUMN_METADATA=1
# END standard options

# BEGIN required Windows option
OPT_FEATURE_FLAGS = $(OPT_FEATURE_FLAGS) -DSQLITE_MAX_TRIGGER_DEPTH=100
# END required Windows option

TCC = $(TCC) $(OPT_FEATURE_FLAGS)

# Add in any optional parameters specified on the make commane line
# ie.  make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1".
TCC = $(TCC) $(OPTS)

# libtool compile/link
LTCOMPILE = $(TCC) -Fo$@
LTLINK = $(TCC) -Fe$@
LTLIB = lib.exe

# nawk compatible awk.
NAWK = .\gawk.exe

# You should not have to change anything below this line
###############################################################################

# Object files for the SQLite library (non-amalgamation).
#
LIBOBJS0 = alter.lo analyze.lo attach.lo auth.lo \
         backup.lo bitvec.lo btmutex.lo btree.lo build.lo \
         callback.lo complete.lo ctime.lo date.lo delete.lo \
         expr.lo fault.lo fkey.lo \
         fts3.lo fts3_aux.lo fts3_expr.lo fts3_hash.lo fts3_icu.lo fts3_porter.lo \
         fts3_snippet.lo fts3_tokenizer.lo fts3_tokenizer1.lo fts3_write.lo \
         func.lo global.lo hash.lo \
         icu.lo insert.lo journal.lo legacy.lo loadext.lo \
         main.lo malloc.lo mem0.lo mem1.lo mem2.lo mem3.lo mem5.lo \
         memjournal.lo \
         mutex.lo mutex_noop.lo mutex_os2.lo mutex_unix.lo mutex_w32.lo \
         notify.lo opcodes.lo os.lo os_os2.lo os_unix.lo os_win.lo \
         pager.lo parse.lo pcache.lo pcache1.lo pragma.lo prepare.lo printf.lo \
         random.lo resolve.lo rowset.lo rtree.lo select.lo status.lo \
         table.lo tokenize.lo trigger.lo \
         update.lo util.lo vacuum.lo \
         vdbe.lo vdbeapi.lo vdbeaux.lo vdbeblob.lo vdbemem.lo vdbetrace.lo \
         wal.lo walker.lo where.lo utf.lo vtab.lo

# Object files for the amalgamation.
#
LIBOBJS1 = sqlite3.lo

# Determine the real value of LIBOBJ based on the 'configure' script
#
!IF $(USE_AMALGAMATION)==0
LIBOBJ = $(LIBOBJS0)
!ELSE
LIBOBJ = $(LIBOBJS1)
!ENDIF

# All of the source code files.
#
SRC = \
  $(TOP)\src\alter.c \
  $(TOP)\src\analyze.c \
  $(TOP)\src\attach.c \
  $(TOP)\src\auth.c \
  $(TOP)\src\backup.c \
  $(TOP)\src\bitvec.c \
  $(TOP)\src\btmutex.c \
  $(TOP)\src\btree.c \
  $(TOP)\src\btree.h \
  $(TOP)\src\btreeInt.h \
  $(TOP)\src\build.c \
  $(TOP)\src\callback.c \
  $(TOP)\src\complete.c \
  $(TOP)\src\ctime.c \
  $(TOP)\src\date.c \
  $(TOP)\src\delete.c \
  $(TOP)\src\expr.c \
  $(TOP)\src\fault.c \
  $(TOP)\src\fkey.c \
  $(TOP)\src\func.c \
  $(TOP)\src\global.c \
  $(TOP)\src\hash.c \
  $(TOP)\src\hash.h \
  $(TOP)\src\hwtime.h \
  $(TOP)\src\insert.c \
  $(TOP)\src\journal.c \
  $(TOP)\src\legacy.c \
  $(TOP)\src\loadext.c \
  $(TOP)\src\main.c \
  $(TOP)\src\malloc.c \
  $(TOP)\src\mem0.c \
  $(TOP)\src\mem1.c \
  $(TOP)\src\mem2.c \
  $(TOP)\src\mem3.c \
  $(TOP)\src\mem5.c \
  $(TOP)\src\memjournal.c \
  $(TOP)\src\mutex.c \
  $(TOP)\src\mutex.h \
  $(TOP)\src\mutex_noop.c \
  $(TOP)\src\mutex_os2.c \
  $(TOP)\src\mutex_unix.c \
  $(TOP)\src\mutex_w32.c \
  $(TOP)\src\notify.c \
  $(TOP)\src\os.c \
  $(TOP)\src\os.h \
  $(TOP)\src\os_common.h \
  $(TOP)\src\os_os2.c \
  $(TOP)\src\os_unix.c \
  $(TOP)\src\os_win.c \
  $(TOP)\src\pager.c \
  $(TOP)\src\pager.h \
  $(TOP)\src\parse.y \
  $(TOP)\src\pcache.c \
  $(TOP)\src\pcache.h \
  $(TOP)\src\pcache1.c \
  $(TOP)\src\pragma.c \
  $(TOP)\src\prepare.c \
  $(TOP)\src\printf.c \
  $(TOP)\src\random.c \
  $(TOP)\src\resolve.c \
  $(TOP)\src\rowset.c \
  $(TOP)\src\select.c \
  $(TOP)\src\status.c \
  $(TOP)\src\shell.c \
  $(TOP)\src\sqlite.h.in \
  $(TOP)\src\sqlite3ext.h \
  $(TOP)\src\sqliteInt.h \
  $(TOP)\src\sqliteLimit.h \
  $(TOP)\src\table.c \
  $(TOP)\src\tclsqlite.c \
  $(TOP)\src\tokenize.c \
  $(TOP)\src\trigger.c \
  $(TOP)\src\utf.c \
  $(TOP)\src\update.c \
  $(TOP)\src\util.c \
  $(TOP)\src\vacuum.c \
  $(TOP)\src\vdbe.c \
  $(TOP)\src\vdbe.h \
  $(TOP)\src\vdbeapi.c \
  $(TOP)\src\vdbeaux.c \
  $(TOP)\src\vdbeblob.c \
  $(TOP)\src\vdbemem.c \
  $(TOP)\src\vdbetrace.c \
  $(TOP)\src\vdbeInt.h \
  $(TOP)\src\vtab.c \
  $(TOP)\src\wal.c \
  $(TOP)\src\wal.h \
  $(TOP)\src\walker.c \
  $(TOP)\src\where.c

# Source code for extensions
#
SRC = $(SRC) \
  $(TOP)\ext\fts1\fts1.c \
  $(TOP)\ext\fts1\fts1.h \
  $(TOP)\ext\fts1\fts1_hash.c \
  $(TOP)\ext\fts1\fts1_hash.h \
  $(TOP)\ext\fts1\fts1_porter.c \
  $(TOP)\ext\fts1\fts1_tokenizer.h \
  $(TOP)\ext\fts1\fts1_tokenizer1.c
SRC = $(SRC) \
  $(TOP)\ext\fts2\fts2.c \
  $(TOP)\ext\fts2\fts2.h \
  $(TOP)\ext\fts2\fts2_hash.c \
  $(TOP)\ext\fts2\fts2_hash.h \
  $(TOP)\ext\fts2\fts2_icu.c \
  $(TOP)\ext\fts2\fts2_porter.c \
  $(TOP)\ext\fts2\fts2_tokenizer.h \
  $(TOP)\ext\fts2\fts2_tokenizer.c \
  $(TOP)\ext\fts2\fts2_tokenizer1.c
SRC = $(SRC) \
  $(TOP)\ext\fts3\fts3.c \
  $(TOP)\ext\fts3\fts3.h \
  $(TOP)\ext\fts3\fts3Int.h \
  $(TOP)\ext\fts3\fts3_aux.c \
  $(TOP)\ext\fts3\fts3_expr.c \
  $(TOP)\ext\fts3\fts3_hash.c \
  $(TOP)\ext\fts3\fts3_hash.h \
  $(TOP)\ext\fts3\fts3_icu.c \
  $(TOP)\ext\fts3\fts3_porter.c \
  $(TOP)\ext\fts3\fts3_snippet.c \
  $(TOP)\ext\fts3\fts3_tokenizer.h \
  $(TOP)\ext\fts3\fts3_tokenizer.c \
  $(TOP)\ext\fts3\fts3_tokenizer1.c \
  $(TOP)\ext\fts3\fts3_write.c
SRC = $(SRC) \
  $(TOP)\ext\icu\sqliteicu.h \
  $(TOP)\ext\icu\icu.c
SRC = $(SRC) \
  $(TOP)\ext\rtree\rtree.h \
  $(TOP)\ext\rtree\rtree.c


# Generated source code files
#
SRC = $(SRC) \
  keywordhash.h \
  opcodes.c \
  opcodes.h \
  parse.c \
  parse.h \
  sqlite3.h

# Source code to the test files.
#
TESTSRC = \
  $(TOP)\src\test1.c \
  $(TOP)\src\test2.c \
  $(TOP)\src\test3.c \
  $(TOP)\src\test4.c \
  $(TOP)\src\test5.c \
  $(TOP)\src\test6.c \
  $(TOP)\src\test7.c \
  $(TOP)\src\test8.c \
  $(TOP)\src\test9.c \
  $(TOP)\src\test_autoext.c \
  $(TOP)\src\test_async.c \
  $(TOP)\src\test_backup.c \
  $(TOP)\src\test_btree.c \
  $(TOP)\src\test_config.c \
  $(TOP)\src\test_demovfs.c \
  $(TOP)\src\test_devsym.c \
  $(TOP)\src\test_func.c \
  $(TOP)\src\test_fuzzer.c \
  $(TOP)\src\test_hexio.c \
  $(TOP)\src\test_init.c \
  $(TOP)\src\test_intarray.c \
  $(TOP)\src\test_journal.c \
  $(TOP)\src\test_malloc.c \
  $(TOP)\src\test_multiplex.c \
  $(TOP)\src\test_mutex.c \
  $(TOP)\src\test_onefile.c \
  $(TOP)\src\test_osinst.c \
  $(TOP)\src\test_pcache.c \
  $(TOP)\src\test_quota.c \
  $(TOP)\src\test_rtree.c \
  $(TOP)\src\test_schema.c \
  $(TOP)\src\test_server.c \
  $(TOP)\src\test_superlock.c \
  $(TOP)\src\test_syscall.c \
  $(TOP)\src\test_stat.c \
  $(TOP)\src\test_tclvar.c \
  $(TOP)\src\test_thread.c \
  $(TOP)\src\test_vfs.c \
  $(TOP)\src\test_wholenumber.c \
  $(TOP)\src\test_wsd.c \
  $(TOP)\ext\fts3\fts3_term.c \
  $(TOP)\ext\fts3\fts3_test.c

# Source code to the library files needed by the test fixture
#
TESTSRC2 = \
  $(TOP)\src\attach.c \
  $(TOP)\src\backup.c \
  $(TOP)\src\bitvec.c \
  $(TOP)\src\btree.c \
  $(TOP)\src\build.c \
  $(TOP)\src\ctime.c \
  $(TOP)\src\date.c \
  $(TOP)\src\expr.c \
  $(TOP)\src\func.c \
  $(TOP)\src\insert.c \
  $(TOP)\src\wal.c \
  $(TOP)\src\mem5.c \
  $(TOP)\src\os.c \
  $(TOP)\src\os_os2.c \
  $(TOP)\src\os_unix.c \
  $(TOP)\src\os_win.c \
  $(TOP)\src\pager.c \
  $(TOP)\src\pragma.c \
  $(TOP)\src\prepare.c \
  $(TOP)\src\printf.c \
  $(TOP)\src\random.c \
  $(TOP)\src\pcache.c \
  $(TOP)\src\pcache1.c \
  $(TOP)\src\select.c \
  $(TOP)\src\tokenize.c \
  $(TOP)\src\utf.c \
  $(TOP)\src\util.c \
  $(TOP)\src\vdbeapi.c \
  $(TOP)\src\vdbeaux.c \
  $(TOP)\src\vdbe.c \
  $(TOP)\src\vdbemem.c \
  $(TOP)\src\vdbetrace.c \
  $(TOP)\src\where.c \
  parse.c \
  $(TOP)\ext\fts3\fts3.c \
  $(TOP)\ext\fts3\fts3_aux.c \
  $(TOP)\ext\fts3\fts3_expr.c \
  $(TOP)\ext\fts3\fts3_tokenizer.c \
  $(TOP)\ext\fts3\fts3_write.c \
  $(TOP)\ext\async\sqlite3async.c

# Header files used by all library source files.
#
HDR = \
   $(TOP)\src\btree.h \
   $(TOP)\src\btreeInt.h \
   $(TOP)\src\hash.h \
   $(TOP)\src\hwtime.h \
   keywordhash.h \
   $(TOP)\src\mutex.h \
   opcodes.h \
   $(TOP)\src\os.h \
   $(TOP)\src\os_common.h \
   $(TOP)\src\pager.h \
   $(TOP)\src\pcache.h \
   parse.h \
   sqlite3.h \
   $(TOP)\src\sqlite3ext.h \
   $(TOP)\src\sqliteInt.h \
   $(TOP)\src\sqliteLimit.h \
   $(TOP)\src\vdbe.h \
   $(TOP)\src\vdbeInt.h

# Header files used by extensions
#
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\fts1\fts1.h \
  $(TOP)\ext\fts1\fts1_hash.h \
  $(TOP)\ext\fts1\fts1_tokenizer.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\fts2\fts2.h \
  $(TOP)\ext\fts2\fts2_hash.h \
  $(TOP)\ext\fts2\fts2_tokenizer.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\fts3\fts3.h \
  $(TOP)\ext\fts3\fts3Int.h \
  $(TOP)\ext\fts3\fts3_hash.h \
  $(TOP)\ext\fts3\fts3_tokenizer.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\rtree\rtree.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\icu\sqliteicu.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\rtree\sqlite3rtree.h

# This is the default Makefile target.  The objects listed here
# are what get build when you type just "make" with no arguments.
#
all:	libsqlite3.lib sqlite3.exe libtclsqlite3.lib

libsqlite3.lib:	$(LIBOBJ)
	$(LTLIB) -OUT:$@ $(LIBOBJ) $(TLIBS)

libtclsqlite3.lib:	tclsqlite.lo libsqlite3.lib
	$(LTLIB) /LIBPATH:$(TCLLIBDIR) -OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS)

sqlite3.exe:	$(TOP)\src\shell.c libsqlite3.lib sqlite3.h
	$(LTLINK) $(READLINE_FLAGS) \
		$(TOP)\src\shell.c libsqlite3.lib \
		$(LIBREADLINE) $(TLIBS)

# This target creates a directory named "tsrc" and fills it with
# copies of all of the C source code and header files needed to
# build on the target system.  Some of the C source code and header
# files are automatically generated.  This target takes care of
# all that automatic generation.
#
.target_source:	$(SRC) $(TOP)\tool\vdbe-compress.tcl
	-rmdir /S/Q tsrc
	-mkdir tsrc
	for %i in ($(SRC)) do copy /Y %i tsrc
	del /Q tsrc\sqlite.h.in tsrc\parse.y
	$(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl <tsrc\vdbe.c >vdbe.new
	move vdbe.new tsrc\vdbe.c
	echo > .target_source

sqlite3.c:	.target_source $(TOP)\tool\mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl

# Rule to build the amalgamation
#
sqlite3.lo:	sqlite3.c
	$(LTCOMPILE) -c sqlite3.c

# Rules to build the LEMON compiler generator
#
lempar.c:	$(TOP)\src\lempar.c
	copy $(TOP)\src\lempar.c .

lemon.exe:	$(TOP)\tool\lemon.c lempar.c
	$(BCC) -Fe$@ $(TOP)\tool\lemon.c

# Rules to build individual *.lo files from generated *.c files. This
# applies to:
#
#     parse.lo
#     opcodes.lo
#
parse.lo:	parse.c $(HDR)
	$(LTCOMPILE) -c parse.c

opcodes.lo:	opcodes.c
	$(LTCOMPILE) -c opcodes.c

# Rules to build individual *.lo files from files in the src directory.
#
alter.lo:	$(TOP)\src\alter.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\alter.c

analyze.lo:	$(TOP)\src\analyze.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\analyze.c

attach.lo:	$(TOP)\src\attach.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\attach.c

auth.lo:	$(TOP)\src\auth.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\auth.c

backup.lo:	$(TOP)\src\backup.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\backup.c

bitvec.lo:	$(TOP)\src\bitvec.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\bitvec.c

btmutex.lo:	$(TOP)\src\btmutex.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\btmutex.c

btree.lo:	$(TOP)\src\btree.c $(HDR) $(TOP)\src\pager.h
	$(LTCOMPILE) -c $(TOP)\src\btree.c

build.lo:	$(TOP)\src\build.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\build.c

callback.lo:	$(TOP)\src\callback.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\callback.c

complete.lo:	$(TOP)\src\complete.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\complete.c

ctime.lo:	$(TOP)\src\ctime.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\ctime.c

date.lo:	$(TOP)\src\date.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\date.c

delete.lo:	$(TOP)\src\delete.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\delete.c

expr.lo:	$(TOP)\src\expr.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\expr.c

fault.lo:	$(TOP)\src\fault.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\fault.c

fkey.lo:	$(TOP)\src\fkey.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\fkey.c

func.lo:	$(TOP)\src\func.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\func.c

global.lo:	$(TOP)\src\global.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\global.c

hash.lo:	$(TOP)\src\hash.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\hash.c

insert.lo:	$(TOP)\src\insert.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\insert.c

journal.lo:	$(TOP)\src\journal.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\journal.c

legacy.lo:	$(TOP)\src\legacy.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\legacy.c

loadext.lo:	$(TOP)\src\loadext.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\loadext.c

main.lo:	$(TOP)\src\main.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\main.c

malloc.lo:	$(TOP)\src\malloc.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\malloc.c

mem0.lo:	$(TOP)\src\mem0.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mem0.c

mem1.lo:	$(TOP)\src\mem1.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mem1.c

mem2.lo:	$(TOP)\src\mem2.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mem2.c

mem3.lo:	$(TOP)\src\mem3.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mem3.c

mem5.lo:	$(TOP)\src\mem5.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mem5.c

memjournal.lo:	$(TOP)\src\memjournal.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\memjournal.c

mutex.lo:	$(TOP)\src\mutex.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mutex.c

mutex_noop.lo:	$(TOP)\src\mutex_noop.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mutex_noop.c

mutex_os2.lo:	$(TOP)\src\mutex_os2.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mutex_os2.c

mutex_unix.lo:	$(TOP)\src\mutex_unix.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mutex_unix.c

mutex_w32.lo:	$(TOP)\src\mutex_w32.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\mutex_w32.c

notify.lo:	$(TOP)\src\notify.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\notify.c

pager.lo:	$(TOP)\src\pager.c $(HDR) $(TOP)\src\pager.h
	$(LTCOMPILE) -c $(TOP)\src\pager.c

pcache.lo:	$(TOP)\src\pcache.c $(HDR) $(TOP)\src\pcache.h
	$(LTCOMPILE) -c $(TOP)\src\pcache.c

pcache1.lo:	$(TOP)\src\pcache1.c $(HDR) $(TOP)\src\pcache.h
	$(LTCOMPILE) -c $(TOP)\src\pcache1.c

os.lo:	$(TOP)\src\os.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\os.c

os_unix.lo:	$(TOP)\src\os_unix.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\os_unix.c

os_win.lo:	$(TOP)\src\os_win.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\os_win.c

os_os2.lo:	$(TOP)\src\os_os2.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\os_os2.c

pragma.lo:	$(TOP)\src\pragma.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\pragma.c

prepare.lo:	$(TOP)\src\prepare.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\prepare.c

printf.lo:	$(TOP)\src\printf.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\printf.c

random.lo:	$(TOP)\src\random.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\random.c

resolve.lo:	$(TOP)\src\resolve.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\resolve.c

rowset.lo:	$(TOP)\src\rowset.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\rowset.c

select.lo:	$(TOP)\src\select.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\select.c

status.lo:	$(TOP)\src\status.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\status.c

table.lo:	$(TOP)\src\table.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\table.c

tokenize.lo:	$(TOP)\src\tokenize.c keywordhash.h $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\tokenize.c

trigger.lo:	$(TOP)\src\trigger.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\trigger.c

update.lo:	$(TOP)\src\update.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\update.c

utf.lo:	$(TOP)\src\utf.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\utf.c

util.lo:	$(TOP)\src\util.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\util.c

vacuum.lo:	$(TOP)\src\vacuum.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vacuum.c

vdbe.lo:	$(TOP)\src\vdbe.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbe.c

vdbeapi.lo:	$(TOP)\src\vdbeapi.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbeapi.c

vdbeaux.lo:	$(TOP)\src\vdbeaux.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbeaux.c

vdbeblob.lo:	$(TOP)\src\vdbeblob.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbeblob.c

vdbemem.lo:	$(TOP)\src\vdbemem.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbemem.c

vdbetrace.lo:	$(TOP)\src\vdbetrace.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vdbetrace.c

vtab.lo:	$(TOP)\src\vtab.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\vtab.c

wal.lo:	$(TOP)\src\wal.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\wal.c

walker.lo:	$(TOP)\src\walker.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\walker.c

where.lo:	$(TOP)\src\where.c $(HDR)
	$(LTCOMPILE) -c $(TOP)\src\where.c

tclsqlite.lo:	$(TOP)\src\tclsqlite.c $(HDR)
	$(LTCOMPILE) -DUSE_TCL_STUBS=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c

tclsqlite-shell.lo:	$(TOP)\src\tclsqlite.c $(HDR)
	$(LTCOMPILE) -DTCLSH=1 -DBUILD_sqlite -I$(TCLINCDIR) -c $(TOP)\src\tclsqlite.c

tclsqlite3.exe:	tclsqlite-shell.lo libsqlite3.lib
	$(LTLINK) tclsqlite-shell.lo \
		/link /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)\mkopcodec.awk
	$(NAWK) "/#define OP_/ { print }" opcodes.h | sort /+45 | $(NAWK) -f $(TOP)\mkopcodec.awk >opcodes.c

opcodes.h:	parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk
	type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c

parse.c:	$(TOP)\src\parse.y lemon.exe $(TOP)\addopcodes.awk
	del /Q parse.y parse.h parse.h.temp
	copy $(TOP)\src\parse.y .
	.\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	move parse.h parse.h.temp
	$(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP) >sqlite3.h

mkkeywordhash.exe:	$(TOP)\tool\mkkeywordhash.c
	$(BCC) -Femkkeywordhash.exe $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c

keywordhash.h:	$(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe
	.\mkkeywordhash.exe >keywordhash.h



# Rules to build the extension objects.
#
icu.lo:	$(TOP)\ext\icu\icu.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\icu\icu.c

fts2.lo:	$(TOP)\ext\fts2\fts2.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2.c

fts2_hash.lo:	$(TOP)\ext\fts2\fts2_hash.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2_hash.c

fts2_icu.lo:	$(TOP)\ext\fts2\fts2_icu.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2_icu.c

fts2_porter.lo:	$(TOP)\ext\fts2\fts2_porter.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2_porter.c

fts2_tokenizer.lo:	$(TOP)\ext\fts2\fts2_tokenizer.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2_tokenizer.c

fts2_tokenizer1.lo:	$(TOP)\ext\fts2\fts2_tokenizer1.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts2\fts2_tokenizer1.c

fts3.lo:	$(TOP)\ext\fts3\fts3.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3.c

fts3_aux.lo:	$(TOP)\ext\fts3\fts3_aux.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_aux.c

fts3_expr.lo:	$(TOP)\ext\fts3\fts3_expr.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_expr.c

fts3_hash.lo:	$(TOP)\ext\fts3\fts3_hash.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_hash.c

fts3_icu.lo:	$(TOP)\ext\fts3\fts3_icu.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_icu.c

fts3_snippet.lo:	$(TOP)\ext\fts3\fts3_snippet.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_snippet.c

fts3_porter.lo:	$(TOP)\ext\fts3\fts3_porter.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_porter.c

fts3_tokenizer.lo:	$(TOP)\ext\fts3\fts3_tokenizer.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_tokenizer.c

fts3_tokenizer1.lo:	$(TOP)\ext\fts3\fts3_tokenizer1.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_tokenizer1.c

fts3_write.lo:	$(TOP)\ext\fts3\fts3_write.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\fts3\fts3_write.c

rtree.lo:	$(TOP)\ext\rtree\rtree.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\rtree\rtree.c


# Rules to build the 'testfixture' application.
#
# If using the amalgamation, use sqlite3.c directly to build the test
# fixture.  Otherwise link against libsqlite3.lib.  (This distinction is
# necessary because the test fixture requires non-API symbols which are
# hidden when the library is built via the amalgamation).
#
TESTFIXTURE_FLAGS = -DTCLSH=1 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1
TESTFIXTURE_FLAGS = $(TESTFIXTURE_FLAGS) -DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE

TESTFIXTURE_SRC0 = $(TESTSRC2) libsqlite3.lib
TESTFIXTURE_SRC1 = sqlite3.c
!IF $(USE_AMALGAMATION)==0
TESTFIXTURE_SRC = $(TESTSRC) $(TOP)\src\tclsqlite.c $(TESTFIXTURE_SRC0)
!ELSE
TESTFIXTURE_SRC = $(TESTSRC) $(TOP)\src\tclsqlite.c $(TESTFIXTURE_SRC1)
!ENDIF

testfixture.exe:	$(TESTFIXTURE_SRC) $(HDR)
	$(LTLINK) -DSQLITE_NO_SYNC=1 $(TESTFIXTURE_FLAGS) \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) /link /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)

fulltest:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\all.test

soaktest:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\all.test -soak=1

test:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\veryquick.test

spaceanal_tcl.h:	$(TOP)\tool\spaceanal.tcl
	$(NAWK) "/^[^#]/ { gsub(/\\/,\"\\\\\\\\\");gsub(/\\\"/,\"\\\\\\\"\");gsub(/^/,\"\\\"\");gsub(/$$/,\"\\n\\\"\");print }" \
		$(TOP)\tool\spaceanal.tcl >spaceanal_tcl.h

sqlite3_analyzer.exe:	$(TESTFIXTURE_SRC) spaceanal_tcl.h
	$(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \
		-DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) /link /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)

clean:
	del /Q *.lo *.lib *.obj sqlite3.exe libsqlite3.lib
	del /Q sqlite3.h opcodes.c opcodes.h
	del /Q lemon.exe lempar.c parse.*
	del /Q mkkeywordhash.exe keywordhash.h
	-rmdir /Q/S tsrc
	del /Q .target_source
	del /Q testfixture.exe testfixture.exp test.db
	del /Q sqlite3.dll sqlite3.lib sqlite3.exp sqlite3.def
	del /Q sqlite3.c
	del /Q sqlite3_analyzer.exe sqlite3_analyzer.exp spaceanal_tcl.h

#
# Windows section
#
dll: sqlite3.dll

sqlite3.def: libsqlite3.lib
	echo EXPORTS >sqlite3.def
	dumpbin /all libsqlite3.lib \
		| $(NAWK) "/ 1 _sqlite3_/ { sub(/^.* _/,\"\");print }" \
		| sort >>sqlite3.def

sqlite3.dll: $(LIBOBJ) sqlite3.def
	link /DLL /OUT:$@ /DEF:sqlite3.def $(LIBOBJ)
Changes to ext/fts3/fts3.c.
288
289
290
291
292
293
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
** older data.
**
** TODO(shess) Provide a VACUUM type operation to clear out all
** deletions and duplications.  This would basically be a forced merge
** into a single segment.
*/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
# define SQLITE_CORE 1
#endif

#include "fts3Int.h"

#include <assert.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>








>






<
<







288
289
290
291
292
293
294
295
296
297
298
299
300
301


302
303
304
305
306
307
308
** older data.
**
** TODO(shess) Provide a VACUUM type operation to clear out all
** deletions and duplications.  This would basically be a forced merge
** into a single segment.
*/

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
# define SQLITE_CORE 1
#endif



#include <assert.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
  *pVal += iVal;
}

/*
** When this function is called, *pp points to the first byte following a
** varint that is part of a doclist (or position-list, or any other list
** of varints). This function moves *pp to point to the start of that varint,
** and decrements the value stored in *pVal by the varint value.
**
** Argument pStart points to the first byte of the doclist that the
** varint is part of.
*/
static void fts3GetReverseDeltaVarint(
  char **pp, 
  char *pStart, 
  sqlite3_int64 *pVal
){
  sqlite3_int64 iVal;
  char *p = *pp;

  /* Pointer p now points at the first byte past the varint we are 
  ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
  ** clear on character p[-1]. */
  for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
  p++;
  *pp = p;

  sqlite3Fts3GetVarint(p, &iVal);
  *pVal -= iVal;
}

/*
** As long as *pp has not reached its end (pEnd), then do the same
** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
** But if we have reached the end of the varint, just set *pp=0 and
** leave *pVal unchanged.
*/
static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    fts3GetDeltaVarint(pp, pVal);
  }
}

/*
** The xDisconnect() virtual table method.
*/
static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table *)pVtab;







|




|















|
<
<
<
<
<
<
<
<
<
<
<
<
<
<







418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446














447
448
449
450
451
452
453
  *pVal += iVal;
}

/*
** When this function is called, *pp points to the first byte following a
** varint that is part of a doclist (or position-list, or any other list
** of varints). This function moves *pp to point to the start of that varint,
** and sets *pVal by the varint value.
**
** Argument pStart points to the first byte of the doclist that the
** varint is part of.
*/
static void fts3GetReverseVarint(
  char **pp, 
  char *pStart, 
  sqlite3_int64 *pVal
){
  sqlite3_int64 iVal;
  char *p = *pp;

  /* Pointer p now points at the first byte past the varint we are 
  ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
  ** clear on character p[-1]. */
  for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
  p++;
  *pp = p;

  sqlite3Fts3GetVarint(p, &iVal);
  *pVal = iVal;














}

/*
** The xDisconnect() virtual table method.
*/
static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table *)pVtab;
827
828
829
830
831
832
833




















































834
835
836
837
838
839
840
  fts3Appendf(pRc, &zRet, "?");
  for(i=0; i<p->nColumn; i++){
    fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
  }
  sqlite3_free(zFree);
  return zRet;
}





















































/*
** This function is the implementation of both the xConnect and xCreate
** methods of the FTS3 virtual table.
**
** The argv[] array contains the following:
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
  fts3Appendf(pRc, &zRet, "?");
  for(i=0; i<p->nColumn; i++){
    fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
  }
  sqlite3_free(zFree);
  return zRet;
}

static int fts3GobbleInt(const char **pp, int *pnOut){
  const char *p = *pp;
  int nInt = 0;
  for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
    nInt = nInt * 10 + (p[0] - '0');
  }
  if( p==*pp ) return SQLITE_ERROR;
  *pnOut = nInt;
  *pp = p;
  return SQLITE_OK;
}


static int fts3PrefixParameter(
  const char *zParam,             /* ABC in prefix=ABC parameter to parse */
  int *pnIndex,                   /* OUT: size of *apIndex[] array */
  struct Fts3Index **apIndex,     /* OUT: Array of indexes for this table */
  struct Fts3Index **apFree       /* OUT: Free this with sqlite3_free() */
){
  struct Fts3Index *aIndex;
  int nIndex = 1;

  if( zParam && zParam[0] ){
    const char *p;
    nIndex++;
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  *apIndex = *apFree = aIndex;
  *pnIndex = nIndex;
  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){
    const char *p = zParam;
    int i;
    for(i=1; i<nIndex; i++){
      int nPrefix;
      if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
      aIndex[i].nPrefix = nPrefix;
      p++;
    }
  }

  return SQLITE_OK;
}

/*
** This function is the implementation of both the xConnect and xCreate
** methods of the FTS3 virtual table.
**
** The argv[] array contains the following:
**
860
861
862
863
864
865
866
867
868
869
870








871
872
873
874
875
876
877
878
879
  int iCol;                       /* Column index */
  int nString = 0;                /* Bytes required to hold all column names */
  int nCol = 0;                   /* Number of columns in the FTS table */
  char *zCsr;                     /* Space for holding column names */
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */









  char *zCompress = 0;
  char *zUncompress = 0;

  assert( strlen(argv[0])==4 );
  assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
       || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
  );

  nDb = (int)strlen(argv[1]) + 1;







<



>
>
>
>
>
>
>
>
|
|







897
898
899
900
901
902
903

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
  int iCol;                       /* Column index */
  int nString = 0;                /* Bytes required to hold all column names */
  int nCol = 0;                   /* Number of columns in the FTS table */
  char *zCsr;                     /* Space for holding column names */
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */

  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  int nIndex;                     /* Size of aIndex[] array */
  struct Fts3Index *aIndex;       /* Array of indexes for this table */
  struct Fts3Index *aFree = 0;    /* Free this before returning */

  /* The results of parsing supported FTS4 key=value options: */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
  char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */

  assert( strlen(argv[0])==4 );
  assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
       || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
  );

  nDb = (int)strlen(argv[1]) + 1;
906
907
908
909
910
911
912













913
914
915




916


917
918
919
920



921
922
923


924








925
926

927


928
929

930




931
932
933




934

935
936
937
938
939
940
941
     && 0==sqlite3Fts3IsIdChar(z[8])
    ){
      rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
    }

    /* Check if it is an FTS4 special argument. */
    else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){













      if( !zVal ){
        rc = SQLITE_NOMEM;
        goto fts3_init_out;




      }


      if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
        if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
          bNoDocsize = 1;
        }else{



          *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
          rc = SQLITE_ERROR;
        }


      }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){








        zCompress = zVal;
        zVal = 0;

      }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){


        zUncompress = zVal;
        zVal = 0;

      }else{




        *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
        rc = SQLITE_ERROR;
      }




      sqlite3_free(zVal);

    }

    /* Otherwise, the argument is a column name. */
    else {
      nString += (int)(strlen(z) + 1);
      aCol[nCol++] = z;
    }







>
>
>
>
>
>
>
>
>
>
>
>
>


|
>
>
>
>
|
>
>
|
<
|

>
>
>
|
|
|
>
>
|
>
>
>
>
>
>
>
>
|
|
>
|
>
>
|
|
>
|
>
>
>
>
|
|
|
>
>
>
>
|
>







950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
     && 0==sqlite3Fts3IsIdChar(z[8])
    ){
      rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
    }

    /* Check if it is an FTS4 special argument. */
    else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
      struct Fts4Option {
        const char *zOpt;
        int nOpt;
        char **pzVar;
      } aFts4Opt[] = {
        { "matchinfo",   9, 0 },            /* 0 -> MATCHINFO */
        { "prefix",      6, 0 },            /* 1 -> PREFIX */
        { "compress",    8, 0 },            /* 2 -> COMPRESS */
        { "uncompress", 10, 0 },            /* 3 -> UNCOMPRESS */
        { "order",       5, 0 }             /* 4 -> ORDER */
      };

      int iOpt;
      if( !zVal ){
        rc = SQLITE_NOMEM;
      }else{
        for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
          struct Fts4Option *pOp = &aFts4Opt[iOpt];
          if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
            break;
          }
        }
        if( iOpt==SizeofArray(aFts4Opt) ){
          *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);

          rc = SQLITE_ERROR;
        }else{
          switch( iOpt ){
            case 0:               /* MATCHINFO */
              if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
                *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bNoDocsize = 1;
              break;

            case 1:               /* PREFIX */
              sqlite3_free(zPrefix);
              zPrefix = zVal;
              zVal = 0;
              break;

            case 2:               /* COMPRESS */
              sqlite3_free(zCompress);
              zCompress = zVal;
              zVal = 0;
              break;

            case 3:               /* UNCOMPRESS */
              sqlite3_free(zUncompress);
              zUncompress = zVal;
              zVal = 0;
              break;

            case 4:               /* ORDER */
              if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) 
               && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 3)) 
              ){
                *pzErr = sqlite3_mprintf("unrecognized order: %s", zVal);
                rc = SQLITE_ERROR;
              }
              bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
              break;
          }
        }
        sqlite3_free(zVal);
      }
    }

    /* Otherwise, the argument is a column name. */
    else {
      nString += (int)(strlen(z) + 1);
      aCol[nCol++] = z;
    }
951
952
953
954
955
956
957




958


959
960
961

962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979

980
981





982
983

984
985
986
987
988
989
990
991
992

  if( pTokenizer==0 ){
    rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }
  assert( pTokenizer );








  /* Allocate and populate the Fts3Table structure. */
  nByte = sizeof(Fts3Table) +              /* Fts3Table */
          nCol * sizeof(char *) +              /* azColumn */

          nName +                              /* zName */
          nDb +                                /* zDb */
          nString;                             /* Space for azColumn strings */
  p = (Fts3Table*)sqlite3_malloc(nByte);
  if( p==0 ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
  }
  memset(p, 0, nByte);
  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;
  p->nNodeSize = 1000;
  p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
  p->bHasDocsize = (isFts4 && bNoDocsize==0);
  p->bHasStat = isFts4;

  TESTONLY( p->inTransaction = -1 );
  TESTONLY( p->mxSavepoint = -1 );





  fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);


  /* Fill in the zName and zDb fields of the vtab structure. */
  zCsr = (char *)&p->azColumn[nCol];
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
  zCsr += nName;
  p->zDb = zCsr;
  memcpy(zCsr, argv[1], nDb);
  zCsr += nDb;








>
>
>
>
|
>
>

|

>














<



>


>
>
>
>
>
|
|
>

|







1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

  if( pTokenizer==0 ){
    rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }
  assert( pTokenizer );

  rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex, &aFree);
  if( rc==SQLITE_ERROR ){
    assert( zPrefix );
    *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix);
  }
  if( rc!=SQLITE_OK ) goto fts3_init_out;

  /* Allocate and populate the Fts3Table structure. */
  nByte = sizeof(Fts3Table) +                  /* Fts3Table */
          nCol * sizeof(char *) +              /* azColumn */
          nIndex * sizeof(struct Fts3Index) +  /* aIndex */
          nName +                              /* zName */
          nDb +                                /* zDb */
          nString;                             /* Space for azColumn strings */
  p = (Fts3Table*)sqlite3_malloc(nByte);
  if( p==0 ){
    rc = SQLITE_NOMEM;
    goto fts3_init_out;
  }
  memset(p, 0, nByte);
  p->db = db;
  p->nColumn = nCol;
  p->nPendingData = 0;
  p->azColumn = (char **)&p[1];
  p->pTokenizer = pTokenizer;

  p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
  p->bHasDocsize = (isFts4 && bNoDocsize==0);
  p->bHasStat = isFts4;
  p->bDescIdx = bDescIdx;
  TESTONLY( p->inTransaction = -1 );
  TESTONLY( p->mxSavepoint = -1 );

  p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
  memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
  p->nIndex = nIndex;
  for(i=0; i<nIndex; i++){
    fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
  }

  /* Fill in the zName and zDb fields of the vtab structure. */
  zCsr = (char *)&p->aIndex[nIndex];
  p->zName = zCsr;
  memcpy(zCsr, argv[2], nName);
  zCsr += nName;
  p->zDb = zCsr;
  memcpy(zCsr, argv[1], nDb);
  zCsr += nDb;

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

1027
1028
1029
1030
1031


1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042
1043
1044
1045
1046
1047
1048
  ** database. TODO: For xConnect(), it could verify that said tables exist.
  */
  if( isCreate ){
    rc = fts3CreateTables(p);
  }

  /* Figure out the page-size for the database. This is required in order to
  ** estimate the cost of loading large doclists from the database (see 
  ** function sqlite3Fts3SegReaderCost() for details).
  */
  fts3DatabasePageSize(&rc, p);


  /* Declare the table schema to SQLite. */
  fts3DeclareVtab(&rc, p);

fts3_init_out:


  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free((void *)aCol);
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){
      pTokenizer->pModule->xDestroy(pTokenizer);
    }
  }else{

    *ppVTab = &p->base;
  }
  return rc;
}

/*
** The xConnect() and xCreate() methods for the virtual table. All the







|
<
<

>





>
>










>







1117
1118
1119
1120
1121
1122
1123
1124


1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
  ** database. TODO: For xConnect(), it could verify that said tables exist.
  */
  if( isCreate ){
    rc = fts3CreateTables(p);
  }

  /* Figure out the page-size for the database. This is required in order to
  ** estimate the cost of loading large doclists from the database.  */


  fts3DatabasePageSize(&rc, p);
  p->nNodeSize = p->nPgsz-35;

  /* Declare the table schema to SQLite. */
  fts3DeclareVtab(&rc, p);

fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aFree);
  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free((void *)aCol);
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){
      pTokenizer->pModule->xDestroy(pTokenizer);
    }
  }else{
    assert( p->pSegments==0 );
    *ppVTab = &p->base;
  }
  return rc;
}

/*
** The xConnect() and xCreate() methods for the virtual table. All the
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142


1143
1144
1145
1146
1147
1148
1149
    struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
    if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
      if( pOrder->desc ){
        pInfo->idxStr = "DESC";
      }else{
        pInfo->idxStr = "ASC";
      }
    }
    pInfo->orderByConsumed = 1;
  }



  return SQLITE_OK;
}

/*
** Implementation of xOpen method.
*/
static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){







<
|
|
|
>
>







1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
    struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
    if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
      if( pOrder->desc ){
        pInfo->idxStr = "DESC";
      }else{
        pInfo->idxStr = "ASC";
      }

      pInfo->orderByConsumed = 1;
    }
  }

  assert( p->pSegments==0 );
  return SQLITE_OK;
}

/*
** Implementation of xOpen method.
*/
static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1171
1172
1173
1174
1175
1176
1177

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

1191
1192
1193
1194
1195
1196
1197
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr->aMatchinfo);

  sqlite3_free(pCsr);
  return SQLITE_OK;
}

/*
** Position the pCsr->pStmt statement so that it is on the row
** of the %_content table that contains the last match.  Return
** SQLITE_OK on success.  
*/
static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  if( pCsr->isRequireSeek ){
    pCsr->isRequireSeek = 0;
    sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);

    if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
      return SQLITE_OK;
    }else{
      int rc = sqlite3_reset(pCsr->pStmt);
      if( rc==SQLITE_OK ){
        /* If no row was found and no error has occured, then the %_content
        ** table is missing a row that is present in the full-text index.







>











<

>







1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

1294
1295
1296
1297
1298
1299
1300
1301
1302
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3_free(pCsr->aMatchinfo);
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_free(pCsr);
  return SQLITE_OK;
}

/*
** Position the pCsr->pStmt statement so that it is on the row
** of the %_content table that contains the last match.  Return
** SQLITE_OK on success.  
*/
static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  if( pCsr->isRequireSeek ){

    sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
    pCsr->isRequireSeek = 0;
    if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
      return SQLITE_OK;
    }else{
      int rc = sqlite3_reset(pCsr->pStmt);
      if( rc==SQLITE_OK ){
        /* If no row was found and no error has occured, then the %_content
        ** table is missing a row that is present in the full-text index.
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
  assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );

  if( rc==SQLITE_OK && iHeight>1 ){
    char *zBlob = 0;              /* Blob read from %_segments table */
    int nBlob;                    /* Size of zBlob in bytes */

    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }
      sqlite3_free(zBlob);
      piLeaf = 0;
      zBlob = 0;
    }

    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
    }
    if( rc==SQLITE_OK ){
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
    }
    sqlite3_free(zBlob);
  }








|









|







1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
  assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );

  if( rc==SQLITE_OK && iHeight>1 ){
    char *zBlob = 0;              /* Blob read from %_segments table */
    int nBlob;                    /* Size of zBlob in bytes */

    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }
      sqlite3_free(zBlob);
      piLeaf = 0;
      zBlob = 0;
    }

    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
    }
    if( rc==SQLITE_OK ){
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
    }
    sqlite3_free(zBlob);
  }

1750
1751
1752
1753
1754
1755
1756
1757












1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989














































































































































1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018




2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
  }
  *p++ = 0x00;
  *pp = p;
  return 1;
}

/*
** Merge two position-lists as required by the NEAR operator.












*/
static int fts3PoslistNearMerge(
  char **pp,                      /* Output buffer */
  char *aTmp,                     /* Temporary buffer space */
  int nRight,                     /* Maximum difference in token positions */
  int nLeft,                      /* Maximum difference in token positions */
  char **pp1,                     /* IN/OUT: Left input list */
  char **pp2                      /* IN/OUT: Right input list */
){
  char *p1 = *pp1;
  char *p2 = *pp2;

  if( !pp ){
    if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
    *pp1 = p1;
    *pp2 = p2;
    return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
  }else{
    char *pTmp1 = aTmp;
    char *pTmp2;
    char *aTmp2;
    int res = 1;

    fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
    aTmp2 = pTmp2 = pTmp1;
    *pp1 = p1;
    *pp2 = p2;
    fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
    if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
      fts3PoslistMerge(pp, &aTmp, &aTmp2);
    }else if( pTmp1!=aTmp ){
      fts3PoslistCopy(pp, &aTmp);
    }else if( pTmp2!=aTmp2 ){
      fts3PoslistCopy(pp, &aTmp2);
    }else{
      res = 0;
    }

    return res;
  }
}

/*
** Values that may be used as the first parameter to fts3DoclistMerge().
*/
#define MERGE_NOT        2        /* D + D -> D */
#define MERGE_AND        3        /* D + D -> D */
#define MERGE_OR         4        /* D + D -> D */
#define MERGE_POS_OR     5        /* P + P -> P */
#define MERGE_PHRASE     6        /* P + P -> D */
#define MERGE_POS_PHRASE 7        /* P + P -> P */
#define MERGE_NEAR       8        /* P + P -> D */
#define MERGE_POS_NEAR   9        /* P + P -> P */

/*
** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
** which is guaranteed to be large enough to hold the results. The number
** of bytes written to aBuffer is stored in *pnBuffer before returning.
**
** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
** occurs while allocating a temporary buffer as part of the merge operation,
** SQLITE_NOMEM is returned.
*/
static int fts3DoclistMerge(
  int mergetype,                  /* One of the MERGE_XXX constants */
  int nParam1,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  int nParam2,                    /* Used by MERGE_NEAR and MERGE_POS_NEAR */
  char *aBuffer,                  /* Pre-allocated output buffer */
  int *pnBuffer,                  /* OUT: Bytes written to aBuffer */
  char *a1,                       /* Buffer containing first doclist */
  int n1,                         /* Size of buffer a1 */
  char *a2,                       /* Buffer containing second doclist */
  int n2,                         /* Size of buffer a2 */
  int *pnDoc                      /* OUT: Number of docids in output */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;

  char *p = aBuffer;
  char *p1 = a1;
  char *p2 = a2;
  char *pEnd1 = &a1[n1];
  char *pEnd2 = &a2[n2];
  int nDoc = 0;

  assert( mergetype==MERGE_OR     || mergetype==MERGE_POS_OR 
       || mergetype==MERGE_AND    || mergetype==MERGE_NOT
       || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
       || mergetype==MERGE_NEAR   || mergetype==MERGE_POS_NEAR
  );

  if( !aBuffer ){
    *pnBuffer = 0;
    return SQLITE_NOMEM;
  }

  /* Read the first docid from each doclist */
  fts3GetDeltaVarint2(&p1, pEnd1, &i1);
  fts3GetDeltaVarint2(&p2, pEnd2, &i2);

  switch( mergetype ){
    case MERGE_OR:
    case MERGE_POS_OR:
      while( p1 || p2 ){
        if( p2 && p1 && i1==i2 ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( !p2 || (p1 && i1<i2) ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3PutDeltaVarint(&p, &iPrev, i2);
          if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;

    case MERGE_AND:
      while( p1 && p2 ){
        if( i1==i2 ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
          nDoc++;
        }else if( i1<i2 ){
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;

    case MERGE_NOT:
      while( p1 ){
        if( p2 && i1==i2 ){
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( !p2 || i1<i2 ){
          fts3PutDeltaVarint(&p, &iPrev, i1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;

    case MERGE_POS_PHRASE:
    case MERGE_PHRASE: {
      char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
      while( p1 && p2 ){
        if( i1==i2 ){
          char *pSave = p;
          sqlite3_int64 iPrevSave = iPrev;
          fts3PutDeltaVarint(&p, &iPrev, i1);
          if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
            p = pSave;
            iPrev = iPrevSave;
          }else{
            nDoc++;
          }
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( i1<i2 ){
          fts3PoslistCopy(0, &p1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3PoslistCopy(0, &p2);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      break;
    }

    default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
      char *aTmp = 0;
      char **ppPos = 0;

      if( mergetype==MERGE_POS_NEAR ){
        ppPos = &p;
        aTmp = sqlite3_malloc(2*(n1+n2+1));
        if( !aTmp ){
          return SQLITE_NOMEM;
        }
      }

      while( p1 && p2 ){
        if( i1==i2 ){
          char *pSave = p;
          sqlite3_int64 iPrevSave = iPrev;
          fts3PutDeltaVarint(&p, &iPrev, i1);

          if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
            iPrev = iPrevSave;
            p = pSave;
          }

          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }else if( i1<i2 ){
          fts3PoslistCopy(0, &p1);
          fts3GetDeltaVarint2(&p1, pEnd1, &i1);
        }else{
          fts3PoslistCopy(0, &p2);
          fts3GetDeltaVarint2(&p2, pEnd2, &i2);
        }
      }
      sqlite3_free(aTmp);
      break;
    }
  }

  if( pnDoc ) *pnDoc = nDoc;
  *pnBuffer = (int)(p-aBuffer);
  return SQLITE_OK;
}

/* 
** A pointer to an instance of this structure is used as the context 
** argument to sqlite3Fts3SegReaderIterate()
*/
typedef struct TermSelect TermSelect;
struct TermSelect {
  int isReqPos;
  char *aaOutput[16];             /* Malloc'd output buffer */
  int anOutput[16];               /* Size of output in bytes */
};















































































































































/*
** Merge all doclists in the TermSelect.aaOutput[] array into a single
** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
**
** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
** the responsibility of the caller to free any doclists left in the
** TermSelect.aaOutput[] array.
*/
static int fts3TermSelectMerge(TermSelect *pTS){
  int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
  char *aOut = 0;
  int nOut = 0;
  int i;

  /* Loop through the doclists in the aaOutput[] array. Merge them all
  ** into a single doclist.
  */
  for(i=0; i<SizeofArray(pTS->aaOutput); i++){
    if( pTS->aaOutput[i] ){
      if( !aOut ){
        aOut = pTS->aaOutput[i];
        nOut = pTS->anOutput[i];
        pTS->aaOutput[i] = 0;
      }else{
        int nNew = nOut + pTS->anOutput[i];
        char *aNew = sqlite3_malloc(nNew);
        if( !aNew ){




          sqlite3_free(aOut);
          return SQLITE_NOMEM;
        }
        fts3DoclistMerge(mergetype, 0, 0,
            aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
        );
        sqlite3_free(pTS->aaOutput[i]);
        sqlite3_free(aOut);
        pTS->aaOutput[i] = 0;
        aOut = aNew;
        nOut = nNew;
      }
    }







|
>
>
>
>
>
>
>
>
>
>
>
>












<
<
<
<
<
<
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<












>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










|
<














|
|
|
>
>
>
>

|

|
<
<







1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886






1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907





















































































































































































1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097


2098
2099
2100
2101
2102
2103
2104
  }
  *p++ = 0x00;
  *pp = p;
  return 1;
}

/*
** Merge two position-lists as required by the NEAR operator. The argument
** position lists correspond to the left and right phrases of an expression 
** like:
**
**     "phrase 1" NEAR "phrase number 2"
**
** Position list *pp1 corresponds to the left-hand side of the NEAR 
** expression and *pp2 to the right. As usual, the indexes in the position 
** lists are the offsets of the last token in each phrase (tokens "1" and "2" 
** in the example above).
**
** The output position list - written to *pp - is a copy of *pp2 with those
** entries that are not sufficiently NEAR entries in *pp1 removed.
*/
static int fts3PoslistNearMerge(
  char **pp,                      /* Output buffer */
  char *aTmp,                     /* Temporary buffer space */
  int nRight,                     /* Maximum difference in token positions */
  int nLeft,                      /* Maximum difference in token positions */
  char **pp1,                     /* IN/OUT: Left input list */
  char **pp2                      /* IN/OUT: Right input list */
){
  char *p1 = *pp1;
  char *p2 = *pp2;







  char *pTmp1 = aTmp;
  char *pTmp2;
  char *aTmp2;
  int res = 1;

  fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
  aTmp2 = pTmp2 = pTmp1;
  *pp1 = p1;
  *pp2 = p2;
  fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
  if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
    fts3PoslistMerge(pp, &aTmp, &aTmp2);
  }else if( pTmp1!=aTmp ){
    fts3PoslistCopy(pp, &aTmp);
  }else if( pTmp2!=aTmp2 ){
    fts3PoslistCopy(pp, &aTmp2);
  }else{
    res = 0;
  }

  return res;





















































































































































































}

/* 
** A pointer to an instance of this structure is used as the context 
** argument to sqlite3Fts3SegReaderIterate()
*/
typedef struct TermSelect TermSelect;
struct TermSelect {
  int isReqPos;
  char *aaOutput[16];             /* Malloc'd output buffer */
  int anOutput[16];               /* Size of output in bytes */
};


static void fts3GetDeltaVarint3(
  char **pp, 
  char *pEnd, 
  int bDescIdx,
  sqlite3_int64 *pVal
){
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    sqlite3_int64 iVal;
    *pp += sqlite3Fts3GetVarint(*pp, &iVal);
    if( bDescIdx ){
      *pVal -= iVal;
    }else{
      *pVal += iVal;
    }
  }
}

static void fts3PutDeltaVarint3(
  char **pp,                      /* IN/OUT: Output pointer */
  int bDescIdx,                   /* True for descending docids */
  sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
  int *pbFirst,                   /* IN/OUT: True after first int written */
  sqlite3_int64 iVal              /* Write this value to the list */
){
  sqlite3_int64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    iWrite = iVal - *piPrev;
  }else{
    iWrite = *piPrev - iVal;
  }
  assert( *pbFirst || *piPrev==0 );
  assert( *pbFirst==0 || iWrite>0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}

#define COMPARE_DOCID(i1, i2) ((bDescIdx?-1:1) * (i1-i2))

static int fts3DoclistOrMerge(
  int bDescIdx,                   /* True if arguments are desc */
  char *a1, int n1,               /* First doclist */
  char *a2, int n2,               /* Second doclist */
  char **paOut, int *pnOut        /* OUT: Malloc'd doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
  char *pEnd1 = &a1[n1];
  char *pEnd2 = &a2[n2];
  char *p1 = a1;
  char *p2 = a2;
  char *p;
  char *aOut;
  int bFirstOut = 0;

  *paOut = 0;
  *pnOut = 0;
  aOut = sqlite3_malloc(n1+n2);
  if( !aOut ) return SQLITE_NOMEM;

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
  while( p1 || p2 ){
    sqlite3_int64 iDiff = COMPARE_DOCID(i1, i2);

    if( p2 && p1 && iDiff==0 ){
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      fts3PoslistMerge(&p, &p1, &p2);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }else if( !p2 || (p1 && iDiff<0) ){
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }
  }

  *paOut = aOut;
  *pnOut = (p-aOut);
  return SQLITE_OK;
}

static void fts3DoclistPhraseMerge(
  int bDescIdx,                   /* True if arguments are desc */
  int nDist,                      /* Distance from left to right (1=adjacent) */
  char *aLeft, int nLeft,         /* Left doclist */
  char *aRight, int *pnRight      /* IN/OUT: Right/output doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
  char *pEnd1 = &aLeft[nLeft];
  char *pEnd2 = &aRight[*pnRight];
  char *p1 = aLeft;
  char *p2 = aRight;
  char *p;
  int bFirstOut = 0;
  char *aOut = aRight;

  assert( nDist>0 );

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);

  while( p1 && p2 ){
    sqlite3_int64 iDiff = COMPARE_DOCID(i1, i2);
    if( iDiff==0 ){
      char *pSave = p;
      sqlite3_int64 iPrevSave = iPrev;
      int bFirstOutSave = bFirstOut;

      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
        p = pSave;
        iPrev = iPrevSave;
        bFirstOut = bFirstOutSave;
      }
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }else if( iDiff<0 ){
      fts3PoslistCopy(0, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }
  }

  *pnRight = p - aOut;
}


/*
** Merge all doclists in the TermSelect.aaOutput[] array into a single
** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
**
** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
** the responsibility of the caller to free any doclists left in the
** TermSelect.aaOutput[] array.
*/
static int fts3TermSelectMerge(Fts3Table *p, TermSelect *pTS){

  char *aOut = 0;
  int nOut = 0;
  int i;

  /* Loop through the doclists in the aaOutput[] array. Merge them all
  ** into a single doclist.
  */
  for(i=0; i<SizeofArray(pTS->aaOutput); i++){
    if( pTS->aaOutput[i] ){
      if( !aOut ){
        aOut = pTS->aaOutput[i];
        nOut = pTS->anOutput[i];
        pTS->aaOutput[i] = 0;
      }else{
        int nNew;
        char *aNew;

        int rc = fts3DoclistOrMerge(p->bDescIdx, 
            pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
        );
        if( rc!=SQLITE_OK ){
          sqlite3_free(aOut);
          return rc;
        }



        sqlite3_free(pTS->aaOutput[i]);
        sqlite3_free(aOut);
        pTS->aaOutput[i] = 0;
        aOut = aNew;
        nOut = nNew;
      }
    }
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084


2085

2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

2110
2111
2112



2113

2114
2115
2116
2117
2118

2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137

2138

2139
2140
2141
2142
2143

2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170

2171

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

2190

2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236






















2237





















2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249


2250
2251



2252
2253
2254

2255

2256



2257




2258








2259

2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273

  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(zTerm);
  UNUSED_PARAMETER(nTerm);

  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). TODO: Add a way to transfer control of the
    ** aDoclist buffer from the caller so as to avoid the memcpy().
    */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
    }else{
      return SQLITE_NOMEM;
    }
  }else{
    int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
    char *aMerge = aDoclist;
    int nMerge = nDoclist;
    int iOut;

    for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
      char *aNew;
      int nNew;
      if( pTS->aaOutput[iOut]==0 ){
        assert( iOut>0 );
        pTS->aaOutput[iOut] = aMerge;
        pTS->anOutput[iOut] = nMerge;
        break;
      }




      nNew = nMerge + pTS->anOutput[iOut];
      aNew = sqlite3_malloc(nNew);
      if( !aNew ){
        if( aMerge!=aDoclist ){
          sqlite3_free(aMerge);
        }
        return SQLITE_NOMEM;
      }
      fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, 
          pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
      );

      if( iOut>0 ) sqlite3_free(aMerge);
      sqlite3_free(pTS->aaOutput[iOut]);
      pTS->aaOutput[iOut] = 0;

      aMerge = aNew;
      nMerge = nNew;
      if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
        pTS->aaOutput[iOut] = aMerge;
        pTS->anOutput[iOut] = nMerge;
      }
    }
  }

  return SQLITE_OK;
}




static int fts3DeferredTermSelect(

  Fts3DeferredToken *pToken,      /* Phrase token */
  int isTermPos,                  /* True to include positions */
  int *pnOut,                     /* OUT: Size of list */
  char **ppOut                    /* OUT: Body of list */
){

  char *aSource;
  int nSource;

  aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
  if( !aSource ){
    *pnOut = 0;
    *ppOut = 0;
  }else if( isTermPos ){
    *ppOut = sqlite3_malloc(nSource);
    if( !*ppOut ) return SQLITE_NOMEM;
    memcpy(*ppOut, aSource, nSource);
    *pnOut = nSource;
  }else{
    sqlite3_int64 docid;
    *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
    *ppOut = sqlite3_malloc(*pnOut);
    if( !*ppOut ) return SQLITE_NOMEM;
    sqlite3Fts3PutVarint(*ppOut, docid);
  }



  return SQLITE_OK;
}

int sqlite3Fts3SegReaderCursor(
  Fts3Table *p,                   /* FTS3 table handle */

  int iLevel,                     /* Level of segments to scan */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  int isScan,                     /* True to scan from zTerm to EOF */
  Fts3SegReaderCursor *pCsr       /* Cursor object to populate */
){
  int rc = SQLITE_OK;
  int rc2;
  int iAge = 0;
  sqlite3_stmt *pStmt = 0;
  Fts3SegReader *pPending = 0;

  assert( iLevel==FTS3_SEGCURSOR_ALL 
      ||  iLevel==FTS3_SEGCURSOR_PENDING 
      ||  iLevel>=0
  );
  assert( FTS3_SEGCURSOR_PENDING<0 );
  assert( FTS3_SEGCURSOR_ALL<0 );
  assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
  assert( isPrefix==0 || isScan==0 );


  memset(pCsr, 0, sizeof(Fts3SegReaderCursor));

  /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
  assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );

  if( iLevel<0 && isScan==0 ){

    rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
    if( rc==SQLITE_OK && pPending ){
      int nByte = (sizeof(Fts3SegReader *) * 16);
      pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
      if( pCsr->apSegment==0 ){
        rc = SQLITE_NOMEM;
      }else{
        pCsr->apSegment[0] = pPending;
        pCsr->nSegment = 1;
        pPending = 0;
      }
    }
  }

  if( iLevel!=FTS3_SEGCURSOR_PENDING ){
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
    }

    while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){


      /* Read the values returned by the SELECT into local variables. */
      sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
      sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
      sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
      int nRoot = sqlite3_column_bytes(pStmt, 4);
      char const *zRoot = sqlite3_column_blob(pStmt, 4);

      /* If nSegment is a multiple of 16 the array needs to be extended. */
      if( (pCsr->nSegment%16)==0 ){
        Fts3SegReader **apNew;
        int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
        apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
        if( !apNew ){
          rc = SQLITE_NOMEM;
          goto finished;
        }
        pCsr->apSegment = apNew;
      }

      /* If zTerm is not NULL, and this segment is not stored entirely on its
      ** root node, the range of leaves scanned can be reduced. Do this. */
      if( iStartBlock && zTerm ){
        sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
        rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
        if( rc!=SQLITE_OK ) goto finished;
        if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
      }
 
      rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
          iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
      );
      if( rc!=SQLITE_OK ) goto finished;
      pCsr->nSegment++;
      iAge++;
    }
  }

 finished:
  rc2 = sqlite3_reset(pStmt);
  if( rc==SQLITE_DONE ) rc = rc2;
  sqlite3Fts3SegReaderFree(pPending);

  return rc;
}













































static int fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3SegReaderCursor **ppSegcsr  /* OUT: Allocated seg-reader cursor */
){
  Fts3SegReaderCursor *pSegcsr;   /* Object to allocate and return */
  int rc = SQLITE_NOMEM;          /* Return code */

  pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
  if( pSegcsr ){


    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    int i;



    int nCost = 0;
    rc = sqlite3Fts3SegReaderCursor(
        p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);

  

    for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){



      rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);




    }








    pSegcsr->nCost = nCost;

  }

  *ppSegcsr = pSegcsr;
  return rc;
}

static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
  sqlite3Fts3SegReaderFinish(pSegcsr);
  sqlite3_free(pSegcsr);
}

/*
** This function retreives the doclist for the specified term (or term
** prefix) from the database. 







|
<
<








<





<
<





|
>
>

>
|
|
|
|
<
<
|
|
<
<
<

|
|
|
|
|
|
|
|
|
|
|
|
>



>
>
>
|
>
|
<
<
<

>
|
|
|
<
|
<
<
<
<
<
<
<
<
|
<
<
|
<
|
>
|
>



|

>





|



<

<

<
<
|
<
<
<
<
<
|
|
|
|
<
<
>
|
>
|
|
|
<
<
<
<
<
<
<
|
|
|
<


|

>

>








<
<
<
<
<
<
<
<
<
<
<
<









|
|


|
<






<




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|




|

|


|

>
>

|
>
>
>
|
|
|
>
|
>
|
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
|
>






|







2126
2127
2128
2129
2130
2131
2132
2133


2134
2135
2136
2137
2138
2139
2140
2141

2142
2143
2144
2145
2146


2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160


2161
2162



2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185



2186
2187
2188
2189
2190

2191








2192


2193

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212

2213

2214


2215





2216
2217
2218
2219


2220
2221
2222
2223
2224
2225







2226
2227
2228

2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243












2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257

2258
2259
2260
2261
2262
2263

2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370

  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(zTerm);
  UNUSED_PARAMETER(nTerm);

  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). */


    pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
    }else{
      return SQLITE_NOMEM;
    }
  }else{

    char *aMerge = aDoclist;
    int nMerge = nDoclist;
    int iOut;

    for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){


      if( pTS->aaOutput[iOut]==0 ){
        assert( iOut>0 );
        pTS->aaOutput[iOut] = aMerge;
        pTS->anOutput[iOut] = nMerge;
        break;
      }else{
        char *aNew;
        int nNew;

        int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, 
            pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
        );
        if( rc!=SQLITE_OK ){
          if( aMerge!=aDoclist ) sqlite3_free(aMerge);


          return rc;
        }




        if( aMerge!=aDoclist ) sqlite3_free(aMerge);
        sqlite3_free(pTS->aaOutput[iOut]);
        pTS->aaOutput[iOut] = 0;
  
        aMerge = aNew;
        nMerge = nNew;
        if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
          pTS->aaOutput[iOut] = aMerge;
          pTS->anOutput[iOut] = nMerge;
        }
      }
    }
  }
  return SQLITE_OK;
}

/*
** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
*/
static int fts3SegReaderCursorAppend(
  Fts3MultiSegReader *pCsr, 
  Fts3SegReader *pNew



){
  if( (pCsr->nSegment%16)==0 ){
    Fts3SegReader **apNew;
    int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
    apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);

    if( !apNew ){








      sqlite3Fts3SegReaderFree(pNew);


      return SQLITE_NOMEM;

    }
    pCsr->apSegment = apNew;
  }
  pCsr->apSegment[pCsr->nSegment++] = pNew;
  return SQLITE_OK;
}

static int fts3SegReaderCursor(
  Fts3Table *p,                   /* FTS3 table handle */
  int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
  int iLevel,                     /* Level of segments to scan */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  int isScan,                     /* True to scan from zTerm to EOF */
  Fts3MultiSegReader *pCsr       /* Cursor object to populate */
){
  int rc = SQLITE_OK;
  int rc2;

  sqlite3_stmt *pStmt = 0;




  /* If iLevel is less than 0 and this is not a scan, include a seg-reader 





  ** for the pending-terms. If this is a scan, then this call must be being
  ** made by an fts4aux module, not an FTS table. In this case calling
  ** Fts3SegReaderPending might segfault, as the data structures used by 
  ** fts4aux are not completely populated. So it's easiest to filter these


  ** calls out here.  */
  if( iLevel<0 && p->aIndex ){
    Fts3SegReader *pSeg = 0;
    rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix, &pSeg);
    if( rc==SQLITE_OK && pSeg ){
      rc = fts3SegReaderCursorAppend(pCsr, pSeg);







    }
  }


  if( iLevel!=FTS3_SEGCURSOR_PENDING ){
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3AllSegdirs(p, iIndex, iLevel, &pStmt);
    }

    while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
      Fts3SegReader *pSeg = 0;

      /* Read the values returned by the SELECT into local variables. */
      sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
      sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
      sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
      int nRoot = sqlite3_column_bytes(pStmt, 4);
      char const *zRoot = sqlite3_column_blob(pStmt, 4);













      /* If zTerm is not NULL, and this segment is not stored entirely on its
      ** root node, the range of leaves scanned can be reduced. Do this. */
      if( iStartBlock && zTerm ){
        sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
        rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
        if( rc!=SQLITE_OK ) goto finished;
        if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
      }
 
      rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, 
          iStartBlock, iLeavesEndBlock, iEndBlock, zRoot, nRoot, &pSeg
      );
      if( rc!=SQLITE_OK ) goto finished;
      rc = fts3SegReaderCursorAppend(pCsr, pSeg);

    }
  }

 finished:
  rc2 = sqlite3_reset(pStmt);
  if( rc==SQLITE_DONE ) rc = rc2;


  return rc;
}

/*
** Set up a cursor object for iterating through a full-text index or a 
** single level therein.
*/
int sqlite3Fts3SegReaderCursor(
  Fts3Table *p,                   /* FTS3 table handle */
  int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
  int iLevel,                     /* Level of segments to scan */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  int isScan,                     /* True to scan from zTerm to EOF */
  Fts3MultiSegReader *pCsr       /* Cursor object to populate */
){
  assert( iIndex>=0 && iIndex<p->nIndex );
  assert( iLevel==FTS3_SEGCURSOR_ALL
      ||  iLevel==FTS3_SEGCURSOR_PENDING 
      ||  iLevel>=0
  );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
  assert( isPrefix==0 || isScan==0 );

  /* "isScan" is only set to true by the ft4aux module, an ordinary
  ** full-text tables. */
  assert( isScan==0 || p->aIndex==0 );

  memset(pCsr, 0, sizeof(Fts3MultiSegReader));

  return fts3SegReaderCursor(
      p, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
  );
}

static int fts3SegReaderCursorAddZero(
  Fts3Table *p,
  const char *zTerm,
  int nTerm,
  Fts3MultiSegReader *pCsr
){
  return fts3SegReaderCursor(p, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr);
}


int sqlite3Fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
){
  Fts3MultiSegReader *pSegcsr;   /* Object to allocate and return */
  int rc = SQLITE_NOMEM;          /* Return code */

  pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
  if( pSegcsr ){
    int i;
    int bFound = 0;               /* True once an index has been found */
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;

    if( isPrefix ){
      for(i=1; bFound==0 && i<p->nIndex; i++){
        if( p->aIndex[i].nPrefix==nTerm ){
          bFound = 1;
          rc = sqlite3Fts3SegReaderCursor(
              p, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr);
          pSegcsr->bLookup = 1;
        }
      }

      for(i=1; bFound==0 && i<p->nIndex; i++){
        if( p->aIndex[i].nPrefix==nTerm+1 ){
          bFound = 1;
          rc = sqlite3Fts3SegReaderCursor(
              p, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
          );
          if( rc==SQLITE_OK ){
            rc = fts3SegReaderCursorAddZero(p, zTerm, nTerm, pSegcsr);
          }
        }
      }
    }

    if( bFound==0 ){
      rc = sqlite3Fts3SegReaderCursor(
          p, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
      );
      pSegcsr->bLookup = !isPrefix;
    }
  }

  *ppSegcsr = pSegcsr;
  return rc;
}

static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
  sqlite3Fts3SegReaderFinish(pSegcsr);
  sqlite3_free(pSegcsr);
}

/*
** This function retreives the doclist for the specified term (or term
** prefix) from the database. 
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
  Fts3PhraseToken *pTok,          /* Token to query for */
  int iColumn,                    /* Column to query (or -ve for all columns) */
  int isReqPos,                   /* True to include position lists in output */
  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int rc;                         /* Return code */
  Fts3SegReaderCursor *pSegcsr;   /* Seg-reader cursor for this term */
  TermSelect tsc;                 /* Context object for fts3TermSelectCb() */
  Fts3SegFilter filter;           /* Segment term filter configuration */

  pSegcsr = pTok->pSegcsr;
  memset(&tsc, 0, sizeof(TermSelect));
  tsc.isReqPos = isReqPos;








|







2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
  Fts3PhraseToken *pTok,          /* Token to query for */
  int iColumn,                    /* Column to query (or -ve for all columns) */
  int isReqPos,                   /* True to include position lists in output */
  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int rc;                         /* Return code */
  Fts3MultiSegReader *pSegcsr;   /* Seg-reader cursor for this term */
  TermSelect tsc;                 /* Context object for fts3TermSelectCb() */
  Fts3SegFilter filter;           /* Segment term filter configuration */

  pSegcsr = pTok->pSegcsr;
  memset(&tsc, 0, sizeof(TermSelect));
  tsc.isReqPos = isReqPos;

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
  ){
    rc = fts3TermSelectCb(p, (void *)&tsc, 
        pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
    );
  }

  if( rc==SQLITE_OK ){
    rc = fts3TermSelectMerge(&tsc);
  }
  if( rc==SQLITE_OK ){
    *ppOut = tsc.aaOutput[0];
    *pnOut = tsc.anOutput[0];
  }else{
    int i;
    for(i=0; i<SizeofArray(tsc.aaOutput); i++){







|







2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
  ){
    rc = fts3TermSelectCb(p, (void *)&tsc, 
        pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
    );
  }

  if( rc==SQLITE_OK ){
    rc = fts3TermSelectMerge(p, &tsc);
  }
  if( rc==SQLITE_OK ){
    *ppOut = tsc.aaOutput[0];
    *pnOut = tsc.anOutput[0];
  }else{
    int i;
    for(i=0; i<SizeofArray(tsc.aaOutput); i++){
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
      }
    }
  }

  return nDoc;
}

/*
** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
*/
static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
  int rc = SQLITE_OK;
  if( pExpr ){
    rc = fts3DeferExpression(pCsr, pExpr->pLeft);
    if( rc==SQLITE_OK ){
      rc = fts3DeferExpression(pCsr, pExpr->pRight);
    }
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int iCol = pExpr->pPhrase->iColumn;
      int i;
      for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
        Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
        if( pToken->pDeferred==0 ){
          rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
        }
      }
    }
  }
  return rc;
}

/*
** This function removes the position information from a doclist. When
** called, buffer aList (size *pnList bytes) contains a doclist that includes
** position information. This function removes the position information so
** that aList contains only docids, and adjusts *pnList to reflect the new
** (possibly reduced) size of the doclist.
*/
static void fts3DoclistStripPositions(
  char *aList,                    /* IN/OUT: Buffer containing doclist */
  int *pnList                     /* IN/OUT: Size of doclist in bytes */
){
  if( aList ){
    char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
    char *p = aList;              /* Input cursor */
    char *pOut = aList;           /* Output cursor */
  
    while( p<aEnd ){
      sqlite3_int64 delta;
      p += sqlite3Fts3GetVarint(p, &delta);
      fts3PoslistCopy(0, &p);
      pOut += sqlite3Fts3PutVarint(pOut, delta);
    }

    *pnList = (int)(pOut - aList);
  }
}

/* 
** Return a DocList corresponding to the phrase *pPhrase.
**
** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
** then no tokens in the phrase were looked up in the full-text index. This
** is only possible when this function is called from within xFilter(). The
** caller should assume that all documents match the phrase. The actual
** filtering will take place in xNext().
*/
static int fts3PhraseSelect(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  Fts3Phrase *pPhrase,            /* Phrase to return a doclist for */
  int isReqPos,                   /* True if output should contain positions */
  char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
  int *pnOut                      /* OUT: Size of buffer at *paOut */
){
  char *pOut = 0;
  int nOut = 0;
  int rc = SQLITE_OK;
  int ii;
  int iCol = pPhrase->iColumn;
  int isTermPos = (pPhrase->nToken>1 || isReqPos);
  Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
  int isFirst = 1;

  int iPrevTok = 0;
  int nDoc = 0;

  /* If this is an xFilter() evaluation, create a segment-reader for each
  ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
  ** evaluation, only create segment-readers if there are no Fts3DeferredToken
  ** objects attached to the phrase-tokens.
  */
  for(ii=0; ii<pPhrase->nToken; ii++){
    Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
    if( pTok->pSegcsr==0 ){
      if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
       || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0) 
       || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext) 
      ){
        rc = fts3TermSegReaderCursor(
            pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
        );
        if( rc!=SQLITE_OK ) return rc;
      }
    }
  }

  for(ii=0; ii<pPhrase->nToken; ii++){
    Fts3PhraseToken *pTok;        /* Token to find doclist for */
    int iTok = 0;                 /* The token being queried this iteration */
    char *pList = 0;              /* Pointer to token doclist */
    int nList = 0;                /* Size of buffer at pList */

    /* Select a token to process. If this is an xFilter() call, then tokens 
    ** are processed in order from least to most costly. Otherwise, tokens 
    ** are processed in the order in which they occur in the phrase.
    */
    if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
      assert( isReqPos );
      iTok = ii;
      pTok = &pPhrase->aToken[iTok];
      if( pTok->bFulltext==0 ) continue;
    }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
      iTok = ii;
      pTok = &pPhrase->aToken[iTok];
    }else{
      int nMinCost = 0x7FFFFFFF;
      int jj;

      /* Find the remaining token with the lowest cost. */
      for(jj=0; jj<pPhrase->nToken; jj++){
        Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
        if( pSegcsr && pSegcsr->nCost<nMinCost ){
          iTok = jj;
          nMinCost = pSegcsr->nCost;
        }
      }
      pTok = &pPhrase->aToken[iTok];

      /* This branch is taken if it is determined that loading the doclist
      ** for the next token would require more IO than loading all documents
      ** currently identified by doclist pOut/nOut. No further doclists will
      ** be loaded from the full-text index for this phrase.
      */
      if( nMinCost>nDoc && ii>0 ){
        rc = fts3DeferExpression(pCsr, pCsr->pExpr);
        break;
      }
    }

    if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
      rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
    }else{
      if( pTok->pSegcsr ){
        rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
      }
      pTok->bFulltext = 1;
    }
    assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
    if( rc!=SQLITE_OK ) break;

    if( isFirst ){
      pOut = pList;
      nOut = nList;
      if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
        nDoc = fts3DoclistCountDocids(1, pOut, nOut);
      }
      isFirst = 0;
      iPrevTok = iTok;
    }else{
      /* Merge the new term list and the current output. */
      char *aLeft, *aRight;
      int nLeft, nRight;
      int nDist;
      int mt;

      /* If this is the final token of the phrase, and positions were not
      ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
      ** This drops the position information from the output list.
      */
      mt = MERGE_POS_PHRASE;
      if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;

      assert( iPrevTok!=iTok );
      if( iPrevTok<iTok ){
        aLeft = pOut;
        nLeft = nOut;
        aRight = pList;
        nRight = nList;
        nDist = iTok-iPrevTok;
        iPrevTok = iTok;
      }else{
        aRight = pOut;
        nRight = nOut;
        aLeft = pList;
        nLeft = nList;
        nDist = iPrevTok-iTok;
      }
      pOut = aRight;
      fts3DoclistMerge(
          mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
      );
      sqlite3_free(aLeft);
    }
    assert( nOut==0 || pOut!=0 );
  }

  if( rc==SQLITE_OK ){
    if( ii!=pPhrase->nToken ){
      assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
      fts3DoclistStripPositions(pOut, &nOut);
    }
    *paOut = pOut;
    *pnOut = nOut;
  }else{
    sqlite3_free(pOut);
  }
  return rc;
}

/*
** This function merges two doclists according to the requirements of a
** NEAR operator.
**
** Both input doclists must include position information. The output doclist 
** includes position information if the first argument to this function
** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
*/
static int fts3NearMerge(
  int mergetype,                  /* MERGE_POS_NEAR or MERGE_NEAR */
  int nNear,                      /* Parameter to NEAR operator */
  int nTokenLeft,                 /* Number of tokens in LHS phrase arg */
  char *aLeft,                    /* Doclist for LHS (incl. positions) */
  int nLeft,                      /* Size of LHS doclist in bytes */
  int nTokenRight,                /* As nTokenLeft */
  char *aRight,                   /* As aLeft */
  int nRight,                     /* As nRight */
  char **paOut,                   /* OUT: Results of merge (malloced) */
  int *pnOut                      /* OUT: Sized of output buffer */
){
  char *aOut;                     /* Buffer to write output doclist to */
  int rc;                         /* Return code */

  assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );

  aOut = sqlite3_malloc(nLeft+nRight+1);
  if( aOut==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, 
      aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
    );
    if( rc!=SQLITE_OK ){
      sqlite3_free(aOut);
      aOut = 0;
    }
  }

  *paOut = aOut;
  return rc;
}

/*
** This function is used as part of the processing for the snippet() and
** offsets() functions.
**
** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
** have their respective doclists (including position information) loaded
** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
** each doclist that are not within nNear tokens of a corresponding entry
** in the other doclist.
*/
int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
  int rc;                         /* Return code */

  assert( pLeft->eType==FTSQUERY_PHRASE );
  assert( pRight->eType==FTSQUERY_PHRASE );
  assert( pLeft->isLoaded && pRight->isLoaded );

  if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
    sqlite3_free(pLeft->aDoclist);
    sqlite3_free(pRight->aDoclist);
    pRight->aDoclist = 0;
    pLeft->aDoclist = 0;
    rc = SQLITE_OK;
  }else{
    char *aOut;                   /* Buffer in which to assemble new doclist */
    int nOut;                     /* Size of buffer aOut in bytes */

    rc = fts3NearMerge(MERGE_POS_NEAR, nNear, 
        pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
        pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
        &aOut, &nOut
    );
    if( rc!=SQLITE_OK ) return rc;
    sqlite3_free(pRight->aDoclist);
    pRight->aDoclist = aOut;
    pRight->nDoclist = nOut;

    rc = fts3NearMerge(MERGE_POS_NEAR, nNear, 
        pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
        pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
        &aOut, &nOut
    );
    sqlite3_free(pLeft->aDoclist);
    pLeft->aDoclist = aOut;
    pLeft->nDoclist = nOut;
  }
  return rc;
}


/*
** Allocate an Fts3SegReaderArray for each token in the expression pExpr. 
** The allocated objects are stored in the Fts3PhraseToken.pArray member
** variables of each token structure.
*/
static int fts3ExprAllocateSegReaders(
  Fts3Cursor *pCsr,               /* FTS3 table */
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  int *pnExpr                     /* OUT: Number of AND'd expressions */
){
  int rc = SQLITE_OK;             /* Return code */

  assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
  if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
    (*pnExpr)++;
    pnExpr = 0;
  }

  if( pExpr->eType==FTSQUERY_PHRASE ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;

    for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
      Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
      if( pTok->pSegcsr==0 ){
        rc = fts3TermSegReaderCursor(
            pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
        );
      }
    }
  }else{ 
    rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
    if( rc==SQLITE_OK ){
      rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
    }
  }
  return rc;
}

/*
** Free the Fts3SegReaderArray objects associated with each token in the
** expression pExpr. In other words, this function frees the resources
** allocated by fts3ExprAllocateSegReaders().
*/
static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
  if( pExpr ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    if( pPhrase ){
      int kk;
      for(kk=0; kk<pPhrase->nToken; kk++){
        fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
        pPhrase->aToken[kk].pSegcsr = 0;
      }
    }
    fts3ExprFreeSegReaders(pExpr->pLeft);
    fts3ExprFreeSegReaders(pExpr->pRight);
  }
}

/*
** Return the sum of the costs of all tokens in the expression pExpr. This
** function must be called after Fts3SegReaderArrays have been allocated
** for all tokens using fts3ExprAllocateSegReaders().
*/
static int fts3ExprCost(Fts3Expr *pExpr){
  int nCost;                      /* Return value */
  if( pExpr->eType==FTSQUERY_PHRASE ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;
    nCost = 0;
    for(ii=0; ii<pPhrase->nToken; ii++){
      Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
      if( pSegcsr ) nCost += pSegcsr->nCost;
    }
  }else{
    nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
  }
  return nCost;
}

/*
** The following is a helper function (and type) for fts3EvalExpr(). It
** must be called after Fts3SegReaders have been allocated for every token
** in the expression. See the context it is called from in fts3EvalExpr()
** for further explanation.
*/
typedef struct ExprAndCost ExprAndCost;
struct ExprAndCost {
  Fts3Expr *pExpr;
  int nCost;
};
static void fts3ExprAssignCosts(
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  ExprAndCost **ppExprCost        /* OUT: Write to *ppExprCost */
){
  if( pExpr->eType==FTSQUERY_AND ){
    fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
    fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
  }else{
    (*ppExprCost)->pExpr = pExpr;
    (*ppExprCost)->nCost = fts3ExprCost(pExpr);
    (*ppExprCost)++;
  }
}

/*
** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
** the resulting doclist in *paOut and *pnOut. This routine mallocs for
** the space needed to store the output. The caller is responsible for
** freeing the space when it has finished.
**
** This function is called in two distinct contexts:
**
**   * From within the virtual table xFilter() method. In this case, the
**     output doclist contains entries for all rows in the table, based on
**     data read from the full-text index.
**
**     In this case, if the query expression contains one or more tokens that 
**     are very common, then the returned doclist may contain a superset of 
**     the documents that actually match the expression.
**
**   * From within the virtual table xNext() method. This call is only made
**     if the call from within xFilter() found that there were very common 
**     tokens in the query expression and did return a superset of the 
**     matching documents. In this case the returned doclist contains only
**     entries that correspond to the current row of the table. Instead of
**     reading the data for each token from the full-text index, the data is
**     already available in-memory in the Fts3PhraseToken.pDeferred structures.
**     See fts3EvalDeferred() for how it gets there.
**
** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
** required) Fts3Cursor.doDeferred==1.
**
** If the SQLite invokes the snippet(), offsets() or matchinfo() function
** as part of a SELECT on an FTS3 table, this function is called on each
** individual phrase expression in the query. If there were very common tokens
** found in the xFilter() call, then this function is called once for phrase
** for each row visited, and the returned doclist contains entries for the
** current row only. Otherwise, if there were no very common tokens, then this
** function is called once only for each phrase in the query and the returned
** doclist contains entries for all rows of the table.
**
** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
** result of a snippet(), offsets() or matchinfo() invocation.
*/
static int fts3EvalExpr(
  Fts3Cursor *p,                  /* Virtual table cursor handle */
  Fts3Expr *pExpr,                /* Parsed fts3 expression */
  char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
  int *pnOut,                     /* OUT: Size of buffer at *paOut */
  int isReqPos                    /* Require positions in output buffer */
){
  int rc = SQLITE_OK;             /* Return code */

  /* Zero the output parameters. */
  *paOut = 0;
  *pnOut = 0;

  if( pExpr ){
    assert( pExpr->eType==FTSQUERY_NEAR   || pExpr->eType==FTSQUERY_OR     
         || pExpr->eType==FTSQUERY_AND    || pExpr->eType==FTSQUERY_NOT
         || pExpr->eType==FTSQUERY_PHRASE
    );
    assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );

    if( pExpr->eType==FTSQUERY_PHRASE ){
      rc = fts3PhraseSelect(p, pExpr->pPhrase,
          isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
          paOut, pnOut
      );
      fts3ExprFreeSegReaders(pExpr);
    }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
      ExprAndCost *aExpr = 0;     /* Array of AND'd expressions and costs */
      int nExpr = 0;              /* Size of aExpr[] */
      char *aRet = 0;             /* Doclist to return to caller */
      int nRet = 0;               /* Length of aRet[] in bytes */
      int nDoc = 0x7FFFFFFF;

      assert( !isReqPos );

      rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
      if( rc==SQLITE_OK ){
        assert( nExpr>1 );
        aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
        if( !aExpr ) rc = SQLITE_NOMEM;
      }
      if( rc==SQLITE_OK ){
        int ii;                   /* Used to iterate through expressions */

        fts3ExprAssignCosts(pExpr, &aExpr);
        aExpr -= nExpr;
        for(ii=0; ii<nExpr; ii++){
          char *aNew;
          int nNew;
          int jj;
          ExprAndCost *pBest = 0;
  
          for(jj=0; jj<nExpr; jj++){
            ExprAndCost *pCand = &aExpr[jj];
            if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
              pBest = pCand;
            }
          }
  
          if( pBest->nCost>nDoc ){
            rc = fts3DeferExpression(p, p->pExpr);
            break;
          }else{
            rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
            if( rc!=SQLITE_OK ) break;
            pBest->pExpr = 0;
            if( ii==0 ){
              aRet = aNew;
              nRet = nNew;
              nDoc = fts3DoclistCountDocids(0, aRet, nRet);
            }else{
              fts3DoclistMerge(
                  MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
              );
              sqlite3_free(aNew);
            }
          }
        }
      }

      if( rc==SQLITE_OK ){
        *paOut = aRet;
        *pnOut = nRet;
      }else{
        assert( *paOut==0 );
        sqlite3_free(aRet);
      }
      sqlite3_free(aExpr);
      fts3ExprFreeSegReaders(pExpr);

    }else{
      char *aLeft;
      char *aRight;
      int nLeft;
      int nRight;

      assert( pExpr->eType==FTSQUERY_NEAR 
           || pExpr->eType==FTSQUERY_OR
           || pExpr->eType==FTSQUERY_NOT
           || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
      );

      if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
       && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
      ){
        switch( pExpr->eType ){
          case FTSQUERY_NEAR: {
            Fts3Expr *pLeft;
            Fts3Expr *pRight;
            int mergetype = MERGE_NEAR;
            if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
              mergetype = MERGE_POS_NEAR;
            }
            pLeft = pExpr->pLeft;
            while( pLeft->eType==FTSQUERY_NEAR ){ 
              pLeft=pLeft->pRight;
            }
            pRight = pExpr->pRight;
            assert( pRight->eType==FTSQUERY_PHRASE );
            assert( pLeft->eType==FTSQUERY_PHRASE );

            rc = fts3NearMerge(mergetype, pExpr->nNear, 
                pLeft->pPhrase->nToken, aLeft, nLeft,
                pRight->pPhrase->nToken, aRight, nRight,
                paOut, pnOut
            );
            sqlite3_free(aLeft);
            break;
          }

          case FTSQUERY_OR: {
            /* Allocate a buffer for the output. The maximum size is the
            ** sum of the sizes of the two input buffers. The +1 term is
            ** so that a buffer of zero bytes is never allocated - this can
            ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
            */
            char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
            rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
                aLeft, nLeft, aRight, nRight, 0
            );
            *paOut = aBuffer;
            sqlite3_free(aLeft);
            break;
          }

          default: {
            assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
            fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
                aLeft, nLeft, aRight, nRight, 0
            );
            *paOut = aLeft;
            break;
          }
        }
      }
      sqlite3_free(aRight);
    }
  }

  assert( rc==SQLITE_OK || *paOut==0 );
  return rc;
}

/*
** This function is called from within xNext() for each row visited by
** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
** was able to determine the exact set of matching rows, this function sets
** *pbRes to true and returns SQLITE_IO immediately.
**
** Otherwise, if evaluating the query expression within xFilter() returned a
** superset of the matching documents instead of an exact set (this happens
** when the query includes very common tokens and it is deemed too expensive to
** load their doclists from disk), this function tests if the current row
** really does match the FTS3 query.
**
** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
** is returned and *pbRes is set to true if the current row matches the
** FTS3 query (and should be included in the results returned to SQLite), or
** false otherwise.
*/
static int fts3EvalDeferred(
  Fts3Cursor *pCsr,               /* FTS3 cursor pointing at row to test */
  int *pbRes                      /* OUT: Set to true if row is a match */
){
  int rc = SQLITE_OK;
  if( pCsr->pDeferred==0 ){
    *pbRes = 1;
  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3Fts3FreeDeferredDoclists(pCsr);
      rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
    }
    if( rc==SQLITE_OK ){
      char *a = 0;
      int n = 0;
      rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
      assert( n>=0 );
      *pbRes = (n>0);
      sqlite3_free(a);
    }
  }
  return rc;
}

/*
** Advance the cursor to the next row in the %_content table that
** matches the search criteria.  For a MATCH search, this will be
** the next row that matches. For a full-table scan, this will be
** simply the next row in the %_content table.  For a docid lookup,
** this routine simply sets the EOF flag.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts3EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
  int res;
  int rc = SQLITE_OK;             /* Return code */
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;

  pCsr->eEvalmode = FTS3_EVAL_NEXT;
  do {
    if( pCsr->aDoclist==0 ){
      if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
        pCsr->isEof = 1;
        rc = sqlite3_reset(pCsr->pStmt);
        break;
      }
      pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
    }else{
      if( pCsr->desc==0 ){
        if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
          pCsr->isEof = 1;
          break;
        }
        fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
      }else{
        fts3GetReverseDeltaVarint(&pCsr->pNextId,pCsr->aDoclist,&pCsr->iPrevId);
        if( pCsr->pNextId<=pCsr->aDoclist ){
          pCsr->isEof = 1;
          break;
        }
      }
      sqlite3_reset(pCsr->pStmt);
      pCsr->isRequireSeek = 1;
      pCsr->isMatchinfoNeeded = 1;
    }
  }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );

  return rc;
}

/*
** This is the xFilter interface for the virtual table.  See
** the virtual table xFilter method documentation for additional
** information.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<












|
<

|
<
<
<
|
|
|
<
|

<
<
<
|
<
|
<
|
<
<
<
<
<
<
|
<
<
|
<
|







2457
2458
2459
2460
2461
2462
2463














































































































































































































































































































































































































































































































































































































































































2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476

2477
2478



2479
2480
2481

2482
2483



2484

2485

2486






2487


2488

2489
2490
2491
2492
2493
2494
2495
2496
      }
    }
  }

  return nDoc;
}















































































































































































































































































































































































































































































































































































































































































/*
** Advance the cursor to the next row in the %_content table that
** matches the search criteria.  For a MATCH search, this will be
** the next row that matches. For a full-table scan, this will be
** simply the next row in the %_content table.  For a docid lookup,
** this routine simply sets the EOF flag.
**
** Return SQLITE_OK if nothing goes wrong.  SQLITE_OK is returned
** even if we reach end-of-file.  The fts3EofMethod() will be called
** subsequently to determine whether or not an EOF was hit.
*/
static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
  int rc;

  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){



    if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
      pCsr->isEof = 1;
      rc = sqlite3_reset(pCsr->pStmt);

    }else{
      pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);



      rc = SQLITE_OK;

    }

  }else{






    rc = sqlite3Fts3EvalNext((Fts3Cursor *)pCursor);


  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/*
** This is the xFilter interface for the virtual table.  See
** the virtual table xFilter method documentation for additional
** information.
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114







3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127

3128
3129
3130
3131
3132
3133
3134
3135
3136
3137

3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149


3150


3151
3152

3153
3154
3155
3156
3157

3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246


3247
3248
3249
3250
3251
3252
3253
static int fts3FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  const char *azSql[] = {
    "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?",   /* non-full-scan */
    "SELECT %s FROM %Q.'%q_content' AS x ORDER BY docid %s", /* full-scan */
  };
  int rc;                         /* Return code */
  char *zSql;                     /* SQL statement used to access %_content */
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
  assert( p->pSegments==0 );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));








  if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
    int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
    const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);

    if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
      return SQLITE_NOMEM;
    }

    rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, 
        iCol, zQuery, -1, &pCsr->pExpr
    );
    if( rc!=SQLITE_OK ){
      if( rc==SQLITE_ERROR ){

        p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
                                          zQuery);
      }
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);

    sqlite3Fts3SegmentsClose(p);
    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
  }

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
  zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];


  zSql = sqlite3_mprintf(


      zSql, p->zReadExprlist, p->zDb, p->zName, (idxStr ? idxStr : "ASC")
  );

  if( !zSql ){
    rc = SQLITE_NOMEM;
  }else{
    rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
    sqlite3_free(zSql);

  }
  if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
    rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
  }
  pCsr->eSearch = (i16)idxNum;

  assert( pCsr->desc==0 );
  if( rc!=SQLITE_OK ) return rc;
  if( rc==SQLITE_OK && pCsr->nDoclist>0 && idxStr && idxStr[0]=='D' ){
    sqlite3_int64 iDocid = 0;
    char *csr = pCsr->aDoclist;
    while( csr<&pCsr->aDoclist[pCsr->nDoclist] ){
      fts3GetDeltaVarint(&csr, &iDocid);
    }
    pCsr->pNextId = csr;
    pCsr->iPrevId = iDocid;
    pCsr->desc = 1;
    pCsr->isRequireSeek = 1;
    pCsr->isMatchinfoNeeded = 1;
    pCsr->eEvalmode = FTS3_EVAL_NEXT;
    return SQLITE_OK;
  }
  return fts3NextMethod(pCursor);
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  return ((Fts3Cursor *)pCursor)->isEof;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  if( pCsr->aDoclist ){
    *pRowid = pCsr->iPrevId;
  }else{
    /* This branch runs if the query is implemented using a full-table scan
    ** (not using the full-text index). In this case grab the rowid from the
    ** SELECT statement.
    */
    assert( pCsr->isRequireSeek==0 );
    *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
  }
  return SQLITE_OK;
}

/* 
** This is the xColumn method, called by SQLite to request a value from
** the row that the supplied cursor currently points to.
*/
static int fts3ColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pContext,      /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  int rc;                         /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+1 );

  if( iCol==p->nColumn+1 ){
    /* This call is a request for the "docid" column. Since "docid" is an 
    ** alias for "rowid", use the xRowid() method to obtain the value.
    */
    sqlite3_int64 iRowid;
    rc = fts3RowidMethod(pCursor, &iRowid);
    sqlite3_result_int64(pContext, iRowid);
  }else if( iCol==p->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor.
    */
    sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
    rc = SQLITE_OK;
  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
    }
  }


  return rc;
}

/* 
** This function is the implementation of the xUpdate callback used by 
** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
** inserted, updated or deleted.







<
<
<
<
|


















>
>
>
>
>
>
>













>
|
<







|
>











|
>
>
|
>
>
|
<
>
|
<
<
|
|
>
|
|

<
<
<
<
|
<
<
<
<
<
|
<
<
<
<
<
<
<
|



















<
|
<
<
<
<
<
<
<
<












|










<
<
|





<






>
>







2509
2510
2511
2512
2513
2514
2515




2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556

2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583

2584
2585


2586
2587
2588
2589
2590
2591




2592





2593







2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613

2614








2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637


2638
2639
2640
2641
2642
2643

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
static int fts3FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){




  int rc;
  char *zSql;                     /* SQL statement used to access %_content */
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;

  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(nVal);

  assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
  assert( nVal==0 || nVal==1 );
  assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
  assert( p->pSegments==0 );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  if( idxStr ){
    pCsr->bDesc = (idxStr[0]=='D');
  }else{
    pCsr->bDesc = p->bDescIdx;
  }
  pCsr->eSearch = (i16)idxNum;

  if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
    int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
    const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);

    if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
      return SQLITE_NOMEM;
    }

    rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, 
        iCol, zQuery, -1, &pCsr->pExpr
    );
    if( rc!=SQLITE_OK ){
      if( rc==SQLITE_ERROR ){
        static const char *zErr = "malformed MATCH expression: [%s]";
        p->base.zErrMsg = sqlite3_mprintf(zErr, zQuery);

      }
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = sqlite3Fts3EvalStart(pCsr, pCsr->pExpr, 1);

    sqlite3Fts3SegmentsClose(p);
    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
  }

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
  if( idxNum==FTS3_FULLSCAN_SEARCH ){
    const char *zSort = (pCsr->bDesc ? "DESC" : "ASC");
    const char *zTmpl = "SELECT %s FROM %Q.'%q_content' AS x ORDER BY docid %s";
    zSql = sqlite3_mprintf(zTmpl, p->zReadExprlist, p->zDb, p->zName, zSort);
  }else{
    const char *zTmpl = "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?";
    zSql = sqlite3_mprintf(zTmpl, p->zReadExprlist, p->zDb, p->zName);

  }
  if( !zSql ) return SQLITE_NOMEM;


  rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
  sqlite3_free(zSql);
  if( rc!=SQLITE_OK ) return rc;

  if( idxNum==FTS3_DOCID_SEARCH ){
    rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);




    if( rc!=SQLITE_OK ) return rc;





  }








  return fts3NextMethod(pCursor);
}

/* 
** This is the xEof method of the virtual table. SQLite calls this 
** routine to find out if it has reached the end of a result set.
*/
static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
  return ((Fts3Cursor *)pCursor)->isEof;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. fts3
** exposes %_content.docid as the rowid for the virtual table. The
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;

  *pRowid = pCsr->iPrevId;








  return SQLITE_OK;
}

/* 
** This is the xColumn method, called by SQLite to request a value from
** the row that the supplied cursor currently points to.
*/
static int fts3ColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pContext,      /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  Fts3Table *p = (Fts3Table *)pCursor->pVtab;

  /* The column value supplied by SQLite must be in range. */
  assert( iCol>=0 && iCol<=p->nColumn+1 );

  if( iCol==p->nColumn+1 ){
    /* This call is a request for the "docid" column. Since "docid" is an 
    ** alias for "rowid", use the xRowid() method to obtain the value.
    */


    sqlite3_result_int64(pContext, pCsr->iPrevId);
  }else if( iCol==p->nColumn ){
    /* The extra column whose name is the same as the table.
    ** Return a blob which is a pointer to the cursor.
    */
    sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);

  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
    }
  }

  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/* 
** This function is the implementation of the xUpdate callback used by 
** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
** inserted, updated or deleted.
3273
3274
3275
3276
3277
3278
3279

3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296

3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353


3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442

/*
** Implementation of xBegin() method. This is a no-op.
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );

  assert( p->nPendingData==0 );
  assert( p->inTransaction!=1 );
  TESTONLY( p->inTransaction = 1 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts3SyncMethod().
*/
static int fts3CommitMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  assert( p->nPendingData==0 );
  assert( p->inTransaction!=0 );

  TESTONLY( p->inTransaction = 0 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts3RollbackMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table*)pVtab;
  sqlite3Fts3PendingTermsClear(p);
  assert( p->inTransaction!=0 );
  TESTONLY( p->inTransaction = 0 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}

/*
** Load the doclist associated with expression pExpr to pExpr->aDoclist.
** The loaded doclist contains positions as well as the document ids.
** This is used by the matchinfo(), snippet() and offsets() auxillary
** functions.
*/
int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
  int rc;
  assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
  assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
  rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
  return rc;
}

int sqlite3Fts3ExprLoadFtDoclist(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr,
  char **paDoclist,
  int *pnDoclist
){
  int rc;
  assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
  assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
  pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
  rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
  pCsr->eEvalmode = FTS3_EVAL_NEXT;
  return rc;
}


/*
** When called, *ppPoslist must point to the byte immediately following the
** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
** moves *ppPoslist so that it instead points to the first byte of the
** same position list.
*/
static void fts3ReversePoslist(char *pStart, char **ppPoslist){
  char *p = &(*ppPoslist)[-3];
  char c = p[1];


  while( p>pStart && (*p & 0x80) | c ){ 
    c = *p--; 
  }
  if( p>pStart ){ p = &p[2]; }
  while( *p++&0x80 );
  *ppPoslist = p;
}


/*
** After ExprLoadDoclist() (see above) has been called, this function is
** used to iterate/search through the position lists that make up the doclist
** stored in pExpr->aDoclist.
*/
char *sqlite3Fts3FindPositions(
  Fts3Cursor *pCursor,            /* Associate FTS3 cursor */
  Fts3Expr *pExpr,                /* Access this expressions doclist */
  sqlite3_int64 iDocid,           /* Docid associated with requested pos-list */
  int iCol                        /* Column of requested pos-list */
){
  assert( pExpr->isLoaded );
  if( pExpr->aDoclist ){
    char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
    char *pCsr;

    if( pExpr->pCurrent==0 ){
      if( pCursor->desc==0 ){
        pExpr->pCurrent = pExpr->aDoclist;
        pExpr->iCurrent = 0;
        fts3GetDeltaVarint(&pExpr->pCurrent, &pExpr->iCurrent);
      }else{
        pCsr = pExpr->aDoclist;
        while( pCsr<pEnd ){
          fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
          fts3PoslistCopy(0, &pCsr);
        }
        fts3ReversePoslist(pExpr->aDoclist, &pCsr);
        pExpr->pCurrent = pCsr;
      }
    }
    pCsr = pExpr->pCurrent;
    assert( pCsr );

    while( (pCursor->desc==0 && pCsr<pEnd) 
        || (pCursor->desc && pCsr>pExpr->aDoclist) 
    ){
      if( pCursor->desc==0 && pExpr->iCurrent<iDocid ){
        fts3PoslistCopy(0, &pCsr);
        if( pCsr<pEnd ){
          fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
        }
        pExpr->pCurrent = pCsr;
      }else if( pCursor->desc && pExpr->iCurrent>iDocid ){
        fts3GetReverseDeltaVarint(&pCsr, pExpr->aDoclist, &pExpr->iCurrent);
        fts3ReversePoslist(pExpr->aDoclist, &pCsr);
        pExpr->pCurrent = pCsr;
      }else{
        if( pExpr->iCurrent==iDocid ){
          int iThis = 0;
          if( iCol<0 ){
            /* If iCol is negative, return a pointer to the start of the
            ** position-list (instead of a pointer to the start of a list
            ** of offsets associated with a specific column).
            */
            return pCsr;
          }
          while( iThis<iCol ){
            fts3ColumnlistCopy(0, &pCsr);
            if( *pCsr==0x00 ) return 0;
            pCsr++;
            pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
          }
          if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
        }
        return 0;
      }
    }
  }

  return 0;
}

/*
** Helper function used by the implementation of the overloaded snippet(),
** offsets() and optimize() SQL functions.
**
** If the value passed as the third argument is a blob of size
** sizeof(Fts3Cursor*), then the blob contents are copied to the 
** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error







>

















>

















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








|
|
>
>








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720






























2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740










































































2741
2742
2743
2744
2745
2746
2747

/*
** Implementation of xBegin() method. This is a no-op.
*/
static int fts3BeginMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  assert( p->pSegments==0 );
  assert( p->nPendingData==0 );
  assert( p->inTransaction!=1 );
  TESTONLY( p->inTransaction = 1 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}

/*
** Implementation of xCommit() method. This is a no-op. The contents of
** the pending-terms hash-table have already been flushed into the database
** by fts3SyncMethod().
*/
static int fts3CommitMethod(sqlite3_vtab *pVtab){
  UNUSED_PARAMETER(pVtab);
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  assert( p->nPendingData==0 );
  assert( p->inTransaction!=0 );
  assert( p->pSegments==0 );
  TESTONLY( p->inTransaction = 0 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}

/*
** Implementation of xRollback(). Discard the contents of the pending-terms
** hash-table. Any changes made to the database are reverted by SQLite.
*/
static int fts3RollbackMethod(sqlite3_vtab *pVtab){
  Fts3Table *p = (Fts3Table*)pVtab;
  sqlite3Fts3PendingTermsClear(p);
  assert( p->inTransaction!=0 );
  TESTONLY( p->inTransaction = 0 );
  TESTONLY( p->mxSavepoint = -1; );
  return SQLITE_OK;
}































/*
** When called, *ppPoslist must point to the byte immediately following the
** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
** moves *ppPoslist so that it instead points to the first byte of the
** same position list.
*/
static void fts3ReversePoslist(char *pStart, char **ppPoslist){
  char *p = &(*ppPoslist)[-2];
  char c;

  while( p>pStart && (c=*p--)==0 );
  while( p>pStart && (*p & 0x80) | c ){ 
    c = *p--; 
  }
  if( p>pStart ){ p = &p[2]; }
  while( *p++&0x80 );
  *ppPoslist = p;
}











































































/*
** Helper function used by the implementation of the overloaded snippet(),
** offsets() and optimize() SQL functions.
**
** If the value passed as the third argument is a blob of size
** sizeof(Fts3Cursor*), then the blob contents are copied to the 
** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
    "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
    p->zDb, p->zName, zName
  );
  return rc;
}

static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint < iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  return sqlite3Fts3PendingTermsFlush(p);
}
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  UNUSED_PARAMETER(iSavepoint);
  UNUSED_PARAMETER(pVtab);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );







<

|
|
|
|







2965
2966
2967
2968
2969
2970
2971

2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
    "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
    p->zDb, p->zName, zName
  );
  return rc;
}

static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){

  UNUSED_PARAMETER(iSavepoint);
  assert( ((Fts3Table *)pVtab)->inTransaction );
  assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
  TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
  return fts3SyncMethod(pVtab);
}
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  UNUSED_PARAMETER(iSavepoint);
  UNUSED_PARAMETER(pVtab);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
3836
3837
3838
3839
3840
3841
3842






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































3843
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































#endif







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif


/*
** Allocate an Fts3MultiSegReader for each token in the expression headed
** by pExpr. 
**
** An Fts3SegReader object is a cursor that can seek or scan a range of
** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
** Fts3SegReader objects internally to provide an interface to seek or scan
** within the union of all segments of a b-tree. Hence the name.
**
** If the allocated Fts3MultiSegReader just seeks to a single entry in a
** segment b-tree (if the term is not a prefix or it is a prefix for which
** there exists prefix b-tree of the right length) then it may be traversed
** and merged incrementally. Otherwise, it has to be merged into an in-memory 
** doclist and then traversed.
*/
static void fts3EvalAllocateReaders(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int *pnToken,                   /* OUT: Total number of tokens in phrase. */
  int *pnOr,                      /* OUT: Total number of OR nodes in expr. */
  int *pRc
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      *pnToken += nToken;
      for(i=0; i<nToken; i++){
        Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
        int rc = sqlite3Fts3TermSegReaderCursor(pCsr, 
            pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
        );
        if( rc!=SQLITE_OK ){
          *pRc = rc;
          return;
        }
      }
      assert( pExpr->pPhrase->iDoclistToken==0 );
      pExpr->pPhrase->iDoclistToken = -1;
    }else{
      *pnOr += (pExpr->eType==FTSQUERY_OR);
      fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
      fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
    }
  }
}

static void fts3EvalPhraseMergeToken(
  Fts3Table *pTab,
  Fts3Phrase *p,
  int iToken,
  char *pList,
  int nList
){
  assert( iToken!=p->iDoclistToken );

  if( pList==0 ){
    sqlite3_free(p->doclist.aAll);
    p->doclist.aAll = 0;
    p->doclist.nAll = 0;
  }

  else if( p->iDoclistToken<0 ){
    p->doclist.aAll = pList;
    p->doclist.nAll = nList;
  }

  else if( p->doclist.aAll==0 ){
    sqlite3_free(pList);
  }

  else {
    char *pLeft;
    char *pRight;
    int nLeft;
    int nRight;
    int nDiff;

    if( p->iDoclistToken<iToken ){
      pLeft = p->doclist.aAll;
      nLeft = p->doclist.nAll;
      pRight = pList;
      nRight = nList;
      nDiff = iToken - p->iDoclistToken;
    }else{
      pRight = p->doclist.aAll;
      nRight = p->doclist.nAll;
      pLeft = pList;
      nLeft = nList;
      nDiff = p->iDoclistToken - iToken;
    }

    fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight);
    sqlite3_free(pLeft);
    p->doclist.aAll = pRight;
    p->doclist.nAll = nRight;
  }

  if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
}

static int fts3EvalPhraseLoad(
  Fts3Cursor *pCsr, 
  Fts3Phrase *p
){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int iToken;
  int rc = SQLITE_OK;

  for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
    Fts3PhraseToken *pToken = &p->aToken[iToken];
    assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );

    if( pToken->pSegcsr ){
      int nThis = 0;
      char *pThis = 0;
      rc = fts3TermSelect(pTab, pToken, p->iColumn, 1, &nThis, &pThis);
      if( rc==SQLITE_OK ){
        fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
      }
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}

static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
  int iToken;
  int rc = SQLITE_OK;

  int nMaxUndeferred = pPhrase->iDoclistToken;
  char *aPoslist = 0;
  int nPoslist = 0;
  int iPrev = -1;

  assert( pPhrase->doclist.bFreeList==0 );

  for(iToken=0; rc==SQLITE_OK && iToken<pPhrase->nToken; iToken++){
    Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
    Fts3DeferredToken *pDeferred = pToken->pDeferred;

    if( pDeferred ){
      char *pList;
      int nList;
      rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
      if( rc!=SQLITE_OK ) return rc;

      if( pList==0 ){
        sqlite3_free(aPoslist);
        pPhrase->doclist.pList = 0;
        pPhrase->doclist.nList = 0;
        return SQLITE_OK;

      }else if( aPoslist==0 ){
        aPoslist = pList;
        nPoslist = nList;

      }else{
        char *aOut = pList;
        char *p1 = aPoslist;
        char *p2 = aOut;

        assert( iPrev>=0 );
        fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
        sqlite3_free(aPoslist);
        aPoslist = pList;
        nPoslist = aOut - aPoslist;
        if( nPoslist==0 ){
          sqlite3_free(aPoslist);
          pPhrase->doclist.pList = 0;
          pPhrase->doclist.nList = 0;
          return SQLITE_OK;
        }
      }
      iPrev = iToken;
    }
  }

  if( iPrev>=0 ){
    if( nMaxUndeferred<0 ){
      pPhrase->doclist.pList = aPoslist;
      pPhrase->doclist.nList = nPoslist;
      pPhrase->doclist.iDocid = pCsr->iPrevId;
      pPhrase->doclist.bFreeList = 1;
    }else{
      int nDistance;
      char *p1;
      char *p2;
      char *aOut;

      if( nMaxUndeferred>iPrev ){
        p1 = aPoslist;
        p2 = pPhrase->doclist.pList;
        nDistance = nMaxUndeferred - iPrev;
      }else{
        p1 = pPhrase->doclist.pList;
        p2 = aPoslist;
        nDistance = iPrev - nMaxUndeferred;
      }

      aOut = (char *)sqlite3_malloc(nPoslist+8);
      if( !aOut ){
        sqlite3_free(aPoslist);
        return SQLITE_NOMEM;
      }
      
      pPhrase->doclist.pList = aOut;
      if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
        pPhrase->doclist.bFreeList = 1;
        pPhrase->doclist.nList = (aOut - pPhrase->doclist.pList);
      }else{
        sqlite3_free(aOut);
        pPhrase->doclist.pList = 0;
        pPhrase->doclist.nList = 0;
      }
      sqlite3_free(aPoslist);
    }
  }

  return SQLITE_OK;
}

/*
** This function is called for each Fts3Phrase in a full-text query 
** expression to initialize the mechanism for returning rows. Once this
** function has been called successfully on an Fts3Phrase, it may be
** used with fts3EvalPhraseNext() to iterate through the matching docids.
*/
static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
  int rc;
  Fts3PhraseToken *pFirst = &p->aToken[0];
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( pCsr->bDesc==pTab->bDescIdx 
   && bOptOk==1 
   && p->nToken==1 
   && pFirst->pSegcsr 
   && pFirst->pSegcsr->bLookup 
  ){
    /* Use the incremental approach. */
    int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
    rc = sqlite3Fts3MsrIncrStart(
        pTab, pFirst->pSegcsr, iCol, pFirst->z, pFirst->n);
    p->bIncr = 1;

  }else{
    /* Load the full doclist for the phrase into memory. */
    rc = fts3EvalPhraseLoad(pCsr, p);
    p->bIncr = 0;
  }

  assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
  return rc;
}

/*
** This function is used to iterate backwards (from the end to start) 
** through doclists.
*/
void sqlite3Fts3DoclistPrev(
  int bDescIdx,                   /* True if the doclist is desc */
  char *aDoclist,                 /* Pointer to entire doclist */
  int nDoclist,                   /* Length of aDoclist in bytes */
  char **ppIter,                  /* IN/OUT: Iterator pointer */
  sqlite3_int64 *piDocid,         /* IN/OUT: Docid pointer */
  int *pnList,                    /* IN/OUT: List length pointer */
  u8 *pbEof                       /* OUT: End-of-file flag */
){
  char *p = *ppIter;

  assert( nDoclist>0 );
  assert( *pbEof==0 );
  assert( p || *piDocid==0 );
  assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );

  if( p==0 ){
    sqlite3_int64 iDocid = 0;
    char *pNext = 0;
    char *pDocid = aDoclist;
    char *pEnd = &aDoclist[nDoclist];
    int iMul = 1;

    while( pDocid<pEnd ){
      sqlite3_int64 iDelta;
      pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
      iDocid += (iMul * iDelta);
      pNext = pDocid;
      fts3PoslistCopy(0, &pDocid);
      while( pDocid<pEnd && *pDocid==0 ) pDocid++;
      iMul = (bDescIdx ? -1 : 1);
    }

    *pnList = pEnd - pNext;
    *ppIter = pNext;
    *piDocid = iDocid;
  }else{
    int iMul = (bDescIdx ? -1 : 1);
    sqlite3_int64 iDelta;
    fts3GetReverseVarint(&p, aDoclist, &iDelta);
    *piDocid -= (iMul * iDelta);

    if( p==aDoclist ){
      *pbEof = 1;
    }else{
      char *pSave = p;
      fts3ReversePoslist(aDoclist, &p);
      *pnList = (pSave - p);
    }
    *ppIter = p;
  }
}

/*
** Attempt to move the phrase iterator to point to the next matching docid. 
** If an error occurs, return an SQLite error code. Otherwise, return 
** SQLITE_OK.
**
** If there is no "next" entry and no error occurs, then *pbEof is set to
** 1 before returning. Otherwise, if no error occurs and the iterator is
** successfully advanced, *pbEof is set to 0.
*/
static int fts3EvalPhraseNext(
  Fts3Cursor *pCsr, 
  Fts3Phrase *p, 
  u8 *pbEof
){
  int rc = SQLITE_OK;
  Fts3Doclist *pDL = &p->doclist;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( p->bIncr ){
    assert( p->nToken==1 );
    assert( pDL->pNextDocid==0 );
    rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, 
        &pDL->iDocid, &pDL->pList, &pDL->nList
    );
    if( rc==SQLITE_OK && !pDL->pList ){
      *pbEof = 1;
    }
  }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
    sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, 
        &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
    );
    pDL->pList = pDL->pNextDocid;
  }else{
    char *pIter;                            /* Used to iterate through aAll */
    char *pEnd = &pDL->aAll[pDL->nAll];     /* 1 byte past end of aAll */
    if( pDL->pNextDocid ){
      pIter = pDL->pNextDocid;
    }else{
      pIter = pDL->aAll;
    }

    if( pIter>=pEnd ){
      /* We have already reached the end of this doclist. EOF. */
      *pbEof = 1;
    }else{
      sqlite3_int64 iDelta;
      pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
      if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
        pDL->iDocid += iDelta;
      }else{
        pDL->iDocid -= iDelta;
      }
      pDL->pList = pIter;
      fts3PoslistCopy(0, &pIter);
      pDL->nList = (pIter - pDL->pList);

      /* pIter now points just past the 0x00 that terminates the position-
      ** list for document pDL->iDocid. However, if this position-list was
      ** edited in place by fts3EvalNearTrim2(), then pIter may not actually
      ** point to the start of the next docid value. The following line deals
      ** with this case by advancing pIter past the zero-padding added by
      ** fts3EvalNearTrim2().  */
      while( pIter<pEnd && *pIter==0 ) pIter++;

      pDL->pNextDocid = pIter;
      assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
      *pbEof = 0;
    }
  }

  return rc;
}

static void fts3EvalStartReaders(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int bOptOk,
  int *pRc
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      for(i=0; i<nToken; i++){
        if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
      }
      pExpr->bDeferred = (i==nToken);
      *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase);
    }else{
      fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc);
      fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc);
      pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
    }
  }
}

typedef struct Fts3TokenAndCost Fts3TokenAndCost;
struct Fts3TokenAndCost {
  Fts3Phrase *pPhrase;            /* The phrase the token belongs to */
  int iToken;                     /* Position of token in phrase */
  Fts3PhraseToken *pToken;        /* The token itself */
  Fts3Expr *pRoot; 
  int nOvfl;
  int iCol;                       /* The column the token must match */
};

static void fts3EvalTokenCosts(
  Fts3Cursor *pCsr, 
  Fts3Expr *pRoot, 
  Fts3Expr *pExpr, 
  Fts3TokenAndCost **ppTC,
  Fts3Expr ***ppOr,
  int *pRc
){
  if( *pRc==SQLITE_OK && pExpr ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      Fts3Phrase *pPhrase = pExpr->pPhrase;
      int i;
      for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
        Fts3TokenAndCost *pTC = (*ppTC)++;
        pTC->pPhrase = pPhrase;
        pTC->iToken = i;
        pTC->pRoot = pRoot;
        pTC->pToken = &pPhrase->aToken[i];
        pTC->iCol = pPhrase->iColumn;
        *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
      }
    }else if( pExpr->eType!=FTSQUERY_NOT ){
      if( pExpr->eType==FTSQUERY_OR ){
        pRoot = pExpr->pLeft;
        **ppOr = pRoot;
        (*ppOr)++;
      }
      fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
      if( pExpr->eType==FTSQUERY_OR ){
        pRoot = pExpr->pRight;
        **ppOr = pRoot;
        (*ppOr)++;
      }
      fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
    }
  }
}

static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
     ** of each doclist, has not yet been determined. Read the required 
     ** data from the %_stat table to calculate it.
     **
     ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
     ** varints, where nCol is the number of columns in the FTS3 table.
     ** The first varint is the number of documents currently stored in
     ** the table. The following nCol varints contain the total amount of
     ** data stored in all rows of each column of the table, from left
     ** to right.
     */
    int rc;
    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;

    rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
    if( rc!=SQLITE_OK ) return rc;
    a = sqlite3_column_blob(pStmt, 0);
    assert( a );

    pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
    a += sqlite3Fts3GetVarint(a, &nDoc);
    while( a<pEnd ){
      a += sqlite3Fts3GetVarint(a, &nByte);
    }
    if( nDoc==0 || nByte==0 ){
      sqlite3_reset(pStmt);
      return SQLITE_CORRUPT_VTAB;
    }

    pCsr->nDoc = nDoc;
    pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
    assert( pCsr->nRowAvg>0 ); 
    rc = sqlite3_reset(pStmt);
    if( rc!=SQLITE_OK ) return rc;
  }

  *pnPage = pCsr->nRowAvg;
  return SQLITE_OK;
}

static int fts3EvalSelectDeferred(
  Fts3Cursor *pCsr,
  Fts3Expr *pRoot,
  Fts3TokenAndCost *aTC,
  int nTC
){
  int nDocSize = 0;
  int nDocEst = 0;
  int rc = SQLITE_OK;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int ii;

  int nOvfl = 0;
  int nTerm = 0;

  for(ii=0; ii<nTC; ii++){
    if( aTC[ii].pRoot==pRoot ){
      nOvfl += aTC[ii].nOvfl;
      nTerm++;
    }
  }
  if( nOvfl==0 || nTerm<2 ) return SQLITE_OK;

  rc = fts3EvalAverageDocsize(pCsr, &nDocSize);

  for(ii=0; ii<nTerm && rc==SQLITE_OK; ii++){
    int jj;
    Fts3TokenAndCost *pTC = 0;

    for(jj=0; jj<nTC; jj++){
      if( aTC[jj].pToken && aTC[jj].pRoot==pRoot 
       && (!pTC || aTC[jj].nOvfl<pTC->nOvfl) 
      ){
        pTC = &aTC[jj];
      }
    }
    assert( pTC );

    /* At this point pTC points to the cheapest remaining token. */
    if( ii==0 ){
      if( pTC->nOvfl ){
        nDocEst = (pTC->nOvfl * pTab->nPgsz + pTab->nPgsz) / 10;
      }else{
        Fts3PhraseToken *pToken = pTC->pToken;
        int nList = 0;
        char *pList = 0;
        rc = fts3TermSelect(pTab, pToken, pTC->iCol, 1, &nList, &pList);
        assert( rc==SQLITE_OK || pList==0 );

        if( rc==SQLITE_OK ){
          nDocEst = fts3DoclistCountDocids(1, pList, nList);
          fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);
        }
      }
    }else{
      if( pTC->nOvfl>=(nDocEst*nDocSize) ){
        Fts3PhraseToken *pToken = pTC->pToken;
        rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
        fts3SegReaderCursorFree(pToken->pSegcsr);
        pToken->pSegcsr = 0;
      }
      nDocEst = 1 + (nDocEst/4);
    }
    pTC->pToken = 0;
  }

  return rc;
}

int sqlite3Fts3EvalStart(Fts3Cursor *pCsr, Fts3Expr *pExpr, int bOptOk){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int rc = SQLITE_OK;
  int nToken = 0;
  int nOr = 0;

  /* Allocate a MultiSegReader for each token in the expression. */
  fts3EvalAllocateReaders(pCsr, pExpr, &nToken, &nOr, &rc);

  /* Call fts3EvalPhraseStart() on all phrases in the expression. TODO:
  ** This call will eventually also be responsible for determining which
  ** tokens are 'deferred' until the document text is loaded into memory.
  **
  ** Each token in each phrase is dealt with using one of the following
  ** three strategies:
  **
  **   1. Entire doclist loaded into memory as part of the
  **      fts3EvalStartReaders() call.
  **
  **   2. Doclist loaded into memory incrementally, as part of each
  **      sqlite3Fts3EvalNext() call.
  **
  **   3. Token doclist is never loaded. Instead, documents are loaded into
  **      memory and scanned for the token as part of the sqlite3Fts3EvalNext()
  **      call. This is known as a "deferred" token.
  */

  /* If bOptOk is true, check if there are any tokens that should be deferred.
  */
  if( rc==SQLITE_OK && bOptOk && nToken>1 && pTab->bHasStat ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );
    apOr = (Fts3Expr **)&aTC[nToken];

    if( !aTC ){
      rc = SQLITE_NOMEM;
    }else{
      int ii;
      Fts3TokenAndCost *pTC = aTC;
      Fts3Expr **ppOr = apOr;

      fts3EvalTokenCosts(pCsr, 0, pExpr, &pTC, &ppOr, &rc);
      nToken = pTC-aTC;
      nOr = ppOr-apOr;

      if( rc==SQLITE_OK ){
        rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
        for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }

      sqlite3_free(aTC);
    }
  }

  fts3EvalStartReaders(pCsr, pExpr, bOptOk, &rc);
  return rc;
}

static void fts3EvalZeroPoslist(Fts3Phrase *pPhrase){
  if( pPhrase->doclist.bFreeList ){
    sqlite3_free(pPhrase->doclist.pList);
  }
  pPhrase->doclist.pList = 0;
  pPhrase->doclist.nList = 0;
  pPhrase->doclist.bFreeList = 0;
}

static int fts3EvalNearTrim2(
  int nNear,
  char *aTmp,                     /* Temporary space to use */
  char **paPoslist,               /* IN/OUT: Position list */
  int *pnToken,                   /* IN/OUT: Tokens in phrase of *paPoslist */
  Fts3Phrase *pPhrase             /* The phrase object to trim the doclist of */
){
  int nParam1 = nNear + pPhrase->nToken;
  int nParam2 = nNear + *pnToken;
  int nNew;
  char *p2; 
  char *pOut; 
  int res;

  assert( pPhrase->doclist.pList );

  p2 = pOut = pPhrase->doclist.pList;
  res = fts3PoslistNearMerge(
    &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
  );
  if( res ){
    nNew = (pOut - pPhrase->doclist.pList) - 1;
    assert( pPhrase->doclist.pList[nNew]=='\0' );
    assert( nNew<=pPhrase->doclist.nList && nNew>0 );
    memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
    pPhrase->doclist.nList = nNew;
    *paPoslist = pPhrase->doclist.pList;
    *pnToken = pPhrase->nToken;
  }

  return res;
}

static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
  int res = 1;

  /* The following block runs if pExpr is the root of a NEAR query.
  ** For example, the query:
  **
  **         "w" NEAR "x" NEAR "y" NEAR "z"
  **
  ** which is represented in tree form as:
  **
  **                               |
  **                          +--NEAR--+      <-- root of NEAR query
  **                          |        |
  **                     +--NEAR--+   "z"
  **                     |        |
  **                +--NEAR--+   "y"
  **                |        |
  **               "w"      "x"
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && pExpr->bEof==0
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
    int nTmp = 0;                 /* Bytes of temp space */
    char *aTmp;                   /* Temp space for PoslistNearMerge() */

    /* Allocate temporary working space. */
    for(p=pExpr; p->pLeft; p=p->pLeft){
      nTmp += p->pRight->pPhrase->doclist.nList;
    }
    nTmp += p->pPhrase->doclist.nList;
    aTmp = sqlite3_malloc(nTmp*2);
    if( !aTmp ){
      *pRc = SQLITE_NOMEM;
      res = 0;
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

      for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
        Fts3Phrase *pPhrase = p->pRight->pPhrase;
        int nNear = p->nNear;
        res = fts3EvalNearTrim2(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
  
      aPoslist = pExpr->pRight->pPhrase->doclist.pList;
      nToken = pExpr->pRight->pPhrase->nToken;
      for(p=pExpr->pLeft; p && res; p=p->pLeft){
        int nNear = p->pParent->nNear;
        Fts3Phrase *pPhrase = (
            p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
        );
        res = fts3EvalNearTrim2(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
    }

    sqlite3_free(aTmp);
  }

  return res;
}

/*
** This macro is used by the fts3EvalNext() function. The two arguments are
** 64-bit docid values. If the current query is "ORDER BY docid ASC", then
** the macro returns (i1 - i2). Or if it is "ORDER BY docid DESC", then
** it returns (i2 - i1). This allows the same code to be used for merging
** doclists in ascending or descending order.
*/
#define DOCID_CMP(i1, i2) ((pCsr->bDesc?-1:1) * (i1-i2))

static void fts3EvalNext(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int *pRc
){
  if( *pRc==SQLITE_OK ){
    assert( pExpr->bEof==0 );
    pExpr->bStart = 1;

    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        assert( !pLeft->bDeferred || !pRight->bDeferred );
        if( pLeft->bDeferred ){
          fts3EvalNext(pCsr, pRight, pRc);
          pExpr->iDocid = pRight->iDocid;
          pExpr->bEof = pRight->bEof;
        }else if( pRight->bDeferred ){
          fts3EvalNext(pCsr, pLeft, pRc);
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = pLeft->bEof;
        }else{
          fts3EvalNext(pCsr, pLeft, pRc);
          fts3EvalNext(pCsr, pRight, pRc);

          while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
            sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
            if( iDiff==0 ) break;
            if( iDiff<0 ){
              fts3EvalNext(pCsr, pLeft, pRc);
            }else{
              fts3EvalNext(pCsr, pRight, pRc);
            }
          }

          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
        }
        break;
      }
  
      case FTSQUERY_OR: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNext(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
          fts3EvalNext(pCsr, pRight, pRc);
        }else{
          fts3EvalNext(pCsr, pLeft, pRc);
          fts3EvalNext(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);
        iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
        if( pRight->bEof || (pLeft->bEof==0 &&  iCmp<0) ){
          pExpr->iDocid = pLeft->iDocid;
        }else{
          pExpr->iDocid = pRight->iDocid;
        }

        break;
      }

      case FTSQUERY_NOT: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;

        if( pRight->bStart==0 ){
          fts3EvalNext(pCsr, pRight, pRc);
          assert( *pRc!=SQLITE_OK || pRight->bStart );
        }

        fts3EvalNext(pCsr, pLeft, pRc);
        if( pLeft->bEof==0 ){
          while( !*pRc 
              && !pRight->bEof 
              && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 
          ){
            fts3EvalNext(pCsr, pRight, pRc);
          }
        }
        pExpr->iDocid = pLeft->iDocid;
        pExpr->bEof = pLeft->bEof;
        break;
      }

      default: {
        Fts3Phrase *pPhrase = pExpr->pPhrase;
        fts3EvalZeroPoslist(pPhrase);
        *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
        pExpr->iDocid = pPhrase->doclist.iDocid;
        break;
      }
    }
  }
}

static int fts3EvalDeferredTest(Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc){
  int bHit = 1;
  if( *pRc==SQLITE_OK ){
    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND:
        bHit = (
            fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc)
         && fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc)
         && fts3EvalNearTest(pExpr, pRc)
        );

        /* If the NEAR expression does not match any rows, zero the doclist for 
        ** all phrases involved in the NEAR. This is because the snippet(),
        ** offsets() and matchinfo() functions are not supposed to recognize 
        ** any instances of phrases that are part of unmatched NEAR queries. 
        ** For example if this expression:
        **
        **    ... MATCH 'a OR (b NEAR c)'
        **
        ** is matched against a row containing:
        **
        **        'a b d e'
        **
        ** then any snippet() should ony highlight the "a" term, not the "b"
        ** (as "b" is part of a non-matching NEAR clause).
        */
        if( bHit==0 
         && pExpr->eType==FTSQUERY_NEAR 
         && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
        ){
          Fts3Expr *p;
          for(p=pExpr; p->pPhrase==0; p=p->pLeft){
            if( p->pRight->iDocid==pCsr->iPrevId ){
              fts3EvalZeroPoslist(p->pRight->pPhrase);
            }
          }
          if( p->iDocid==pCsr->iPrevId ){
            fts3EvalZeroPoslist(p->pPhrase);
          }
        }

        break;

      case FTSQUERY_OR: {
        int bHit1 = fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc);
        int bHit2 = fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc);
        bHit = bHit1 || bHit2;
        break;
      }

      case FTSQUERY_NOT:
        bHit = (
            fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc)
         && !fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc)
        );
        break;

      default: {
        if( pCsr->pDeferred 
         && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
        ){
          Fts3Phrase *pPhrase = pExpr->pPhrase;
          assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
          if( pExpr->bDeferred ){
            fts3EvalZeroPoslist(pPhrase);
          }
          *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
          bHit = (pPhrase->doclist.pList!=0);
          pExpr->iDocid = pCsr->iPrevId;
        }else{
          bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
        }
        break;
      }
    }
  }
  return bHit;
}

/*
** Return 1 if both of the following are true:
**
**   1. *pRc is SQLITE_OK when this function returns, and
**
**   2. After scanning the current FTS table row for the deferred tokens,
**      it is determined that the row does not match the query.
**
** Or, if no error occurs and it seems the current row does match the FTS
** query, return 0.
*/
static int fts3EvalLoadDeferred(Fts3Cursor *pCsr, int *pRc){
  int rc = *pRc;
  int bMiss = 0;
  if( rc==SQLITE_OK ){
    if( pCsr->pDeferred ){
      rc = fts3CursorSeek(0, pCsr);
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
      }
    }
    bMiss = (0==fts3EvalDeferredTest(pCsr, pCsr->pExpr, &rc));
    sqlite3Fts3FreeDeferredDoclists(pCsr);
    *pRc = rc;
  }
  return (rc==SQLITE_OK && bMiss);
}

/*
** Advance to the next document that matches the FTS expression in
** Fts3Cursor.pExpr.
*/
int sqlite3Fts3EvalNext(Fts3Cursor *pCsr){
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Expr *pExpr = pCsr->pExpr;
  assert( pCsr->isEof==0 );
  if( pExpr==0 ){
    pCsr->isEof = 1;
  }else{
    do {
      if( pCsr->isRequireSeek==0 ){
        sqlite3_reset(pCsr->pStmt);
      }
      assert( sqlite3_data_count(pCsr->pStmt)==0 );
      fts3EvalNext(pCsr, pExpr, &rc);
      pCsr->isEof = pExpr->bEof;
      pCsr->isRequireSeek = 1;
      pCsr->isMatchinfoNeeded = 1;
      pCsr->iPrevId = pExpr->iDocid;
    }while( pCsr->isEof==0 && fts3EvalLoadDeferred(pCsr, &rc) );
  }
  return rc;
}

/*
** Restart interation for expression pExpr so that the next call to
** sqlite3Fts3EvalNext() visits the first row. Do not allow incremental 
** loading or merging of phrase doclists for this iteration.
**
** If *pRc is other than SQLITE_OK when this function is called, it is
** a no-op. If an error occurs within this function, *pRc is set to an
** SQLite error code before returning.
*/
static void fts3EvalRestart(
  Fts3Cursor *pCsr,
  Fts3Expr *pExpr,
  int *pRc
){
  if( pExpr && *pRc==SQLITE_OK ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;

    if( pPhrase ){
      fts3EvalZeroPoslist(pPhrase);
      if( pPhrase->bIncr ){
        assert( pPhrase->nToken==1 );
        assert( pPhrase->aToken[0].pSegcsr );
        sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr);
        *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
      }

      pPhrase->doclist.pNextDocid = 0;
      pPhrase->doclist.iDocid = 0;
    }

    pExpr->iDocid = 0;
    pExpr->bEof = 0;
    pExpr->bStart = 0;

    fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
    fts3EvalRestart(pCsr, pExpr->pRight, pRc);
  }
}

/*
** After allocating the Fts3Expr.aMI[] array for each phrase in the 
** expression rooted at pExpr, the cursor iterates through all rows matched
** by pExpr, calling this function for each row. This function increments
** the values in Fts3Expr.aMI[] according to the position-list currently
** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase 
** expression nodes.
*/
static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
  if( pExpr ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    if( pPhrase && pPhrase->doclist.pList ){
      int iCol = 0;
      char *p = pPhrase->doclist.pList;

      assert( *p );
      while( 1 ){
        u8 c = 0;
        int iCnt = 0;
        while( 0xFE & (*p | c) ){
          if( (c&0x80)==0 ) iCnt++;
          c = *p++ & 0x80;
        }

        /* aMI[iCol*3 + 1] = Number of occurrences
        ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
        */
        pExpr->aMI[iCol*3 + 1] += iCnt;
        pExpr->aMI[iCol*3 + 2] += (iCnt>0);
        if( *p==0x00 ) break;
        p++;
        p += sqlite3Fts3GetVarint32(p, &iCol);
      }
    }

    fts3EvalUpdateCounts(pExpr->pLeft);
    fts3EvalUpdateCounts(pExpr->pRight);
  }
}

/*
** Expression pExpr must be of type FTSQUERY_PHRASE.
**
** If it is not already allocated and populated, this function allocates and
** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
** of a NEAR expression, then it also allocates and populates the same array
** for all other phrases that are part of the NEAR expression.
**
** SQLITE_OK is returned if the aMI[] array is successfully allocated and
** populated. Otherwise, if an error occurs, an SQLite error code is returned.
*/
static int fts3EvalGatherStats(
  Fts3Cursor *pCsr,               /* Cursor object */
  Fts3Expr *pExpr                 /* FTSQUERY_PHRASE expression */
){
  int rc = SQLITE_OK;             /* Return code */

  assert( pExpr->eType==FTSQUERY_PHRASE );
  if( pExpr->aMI==0 ){
    Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
    Fts3Expr *pRoot;                /* Root of NEAR expression */
    Fts3Expr *p;                    /* Iterator used for several purposes */

    sqlite3_int64 iPrevId = pCsr->iPrevId;
    sqlite3_int64 iDocid;
    u8 bEof;

    /* Find the root of the NEAR expression */
    pRoot = pExpr;
    while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
      pRoot = pRoot->pParent;
    }
    iDocid = pRoot->iDocid;
    bEof = pRoot->bEof;
    assert( pRoot->bStart );

    /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
    for(p=pRoot; p; p=p->pLeft){
      Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
      assert( pE->aMI==0 );
      pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
      if( !pE->aMI ) return SQLITE_NOMEM;
      memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
    }

    fts3EvalRestart(pCsr, pRoot, &rc);

    while( pCsr->isEof==0 && rc==SQLITE_OK ){

      do {
        /* Ensure the %_content statement is reset. */
        if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
        assert( sqlite3_data_count(pCsr->pStmt)==0 );

        /* Advance to the next document */
        fts3EvalNext(pCsr, pRoot, &rc);
        pCsr->isEof = pRoot->bEof;
        pCsr->isRequireSeek = 1;
        pCsr->isMatchinfoNeeded = 1;
        pCsr->iPrevId = pRoot->iDocid;
      }while( pCsr->isEof==0 
           && pRoot->eType==FTSQUERY_NEAR 
           && fts3EvalLoadDeferred(pCsr, &rc) 
      );

      if( rc==SQLITE_OK && pCsr->isEof==0 ){
        fts3EvalUpdateCounts(pRoot);
      }
    }

    pCsr->isEof = 0;
    pCsr->iPrevId = iPrevId;

    if( bEof ){
      pRoot->bEof = bEof;
    }else{
      /* Caution: pRoot may iterate through docids in ascending or descending
      ** order. For this reason, even though it seems more defensive, the 
      ** do loop can not be written:
      **
      **   do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
      */
      fts3EvalRestart(pCsr, pRoot, &rc);
      do {
        fts3EvalNext(pCsr, pRoot, &rc);
        assert( pRoot->bEof==0 );
      }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
      fts3EvalLoadDeferred(pCsr, &rc);
    }
  }
  return rc;
}

/*
** This function is used by the matchinfo() module to query a phrase 
** expression node for the following information:
**
**   1. The total number of occurrences of the phrase in each column of 
**      the FTS table (considering all rows), and
**
**   2. For each column, the number of rows in the table for which the
**      column contains at least one instance of the phrase.
**
** If no error occurs, SQLITE_OK is returned and the values for each column
** written into the array aiOut as follows:
**
**   aiOut[iCol*3 + 1] = Number of occurrences
**   aiOut[iCol*3 + 2] = Number of rows containing at least one instance
**
** Caveats:
**
**   * If a phrase consists entirely of deferred tokens, then all output 
**     values are set to the number of documents in the table. In other
**     words we assume that very common tokens occur exactly once in each 
**     column of each row of the table.
**
**   * If a phrase contains some deferred tokens (and some non-deferred 
**     tokens), count the potential occurrence identified by considering
**     the non-deferred tokens instead of actual phrase occurrences.
**
**   * If the phrase is part of a NEAR expression, then only phrase instances
**     that meet the NEAR constraint are included in the counts.
*/
int sqlite3Fts3EvalPhraseStats(
  Fts3Cursor *pCsr,               /* FTS cursor handle */
  Fts3Expr *pExpr,                /* Phrase expression */
  u32 *aiOut                      /* Array to write results into (see above) */
){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int rc = SQLITE_OK;
  int iCol;

  if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
    assert( pCsr->nDoc>0 );
    for(iCol=0; iCol<pTab->nColumn; iCol++){
      aiOut[iCol*3 + 1] = pCsr->nDoc;
      aiOut[iCol*3 + 2] = pCsr->nDoc;
    }
  }else{
    rc = fts3EvalGatherStats(pCsr, pExpr);
    if( rc==SQLITE_OK ){
      assert( pExpr->aMI );
      for(iCol=0; iCol<pTab->nColumn; iCol++){
        aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
        aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
      }
    }
  }

  return rc;
}

/*
** The expression pExpr passed as the second argument to this function
** must be of type FTSQUERY_PHRASE. 
**
** The returned value is either NULL or a pointer to a buffer containing
** a position-list indicating the occurrences of the phrase in column iCol
** of the current row. 
**
** More specifically, the returned buffer contains 1 varint for each 
** occurence of the phrase in the column, stored using the normal (delta+2) 
** compression and is terminated by either an 0x01 or 0x00 byte. For example,
** if the requested column contains "a b X c d X X" and the position-list
** for 'X' is requested, the buffer returned may contain:
**
**     0x04 0x05 0x03 0x01   or   0x04 0x05 0x03 0x00
**
** This function works regardless of whether or not the phrase is deferred,
** incremental, or neither.
*/
char *sqlite3Fts3EvalPhrasePoslist(
  Fts3Cursor *pCsr,               /* FTS3 cursor object */
  Fts3Expr *pExpr,                /* Phrase to return doclist for */
  int iCol                        /* Column to return position list for */
){
  Fts3Phrase *pPhrase = pExpr->pPhrase;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  char *pIter = pPhrase->doclist.pList;
  int iThis;

  assert( iCol>=0 && iCol<pTab->nColumn );
  if( !pIter 
   || pExpr->bEof 
   || pExpr->iDocid!=pCsr->iPrevId
   || (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) 
  ){
    return 0;
  }

  assert( pPhrase->doclist.nList>0 );
  if( *pIter==0x01 ){
    pIter++;
    pIter += sqlite3Fts3GetVarint32(pIter, &iThis);
  }else{
    iThis = 0;
  }
  while( iThis<iCol ){
    fts3ColumnlistCopy(0, &pIter);
    if( *pIter==0x00 ) return 0;
    pIter++;
    pIter += sqlite3Fts3GetVarint32(pIter, &iThis);
  }

  return ((iCol==iThis)?pIter:0);
}

/*
** Free all components of the Fts3Phrase structure that were allocated by
** the eval module. Specifically, this means to free:
**
**   * the contents of pPhrase->doclist, and
**   * any Fts3MultiSegReader objects held by phrase tokens.
*/
void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
  if( pPhrase ){
    int i;
    sqlite3_free(pPhrase->doclist.aAll);
    fts3EvalZeroPoslist(pPhrase);
    memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
    for(i=0; i<pPhrase->nToken; i++){
      fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
      pPhrase->aToken[i].pSegcsr = 0;
    }
  }
}

#endif
Changes to ext/fts3/fts3Int.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21










22
23
24
25
26
27
28
/*
** 2009 Nov 12
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/

#ifndef _FTSINT_H
#define _FTSINT_H

#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif











#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single













<







>
>
>
>
>
>
>
>
>
>







1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
** 2009 Nov 12
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/

#ifndef _FTSINT_H
#define _FTSINT_H

#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
# define NDEBUG 1
#endif

/*
** FTS4 is really an extension for FTS3.  It is enabled using the
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

#ifdef SQLITE_ENABLE_FTS3
#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single
43
44
45
46
47
48
49





50
51
52
53
54
55


















56
57
58
59
60
61
62
/*
** Macro to return the number of elements in an array. SQLite has a
** similar macro called ArraySize(). Use a different name to avoid
** a collision when building an amalgamation with built-in FTS3.
*/
#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))






/*
** Maximum length of a varint encoded integer. The varint format is different
** from that used by SQLite, so the maximum length is 10, not 9.
*/
#define FTS3_VARINT_MAX 10



















/*
** The testcase() macro is only used by the amalgamation.  If undefined,
** make it a no-op.
*/
#ifndef testcase
# define testcase(X)
#endif







>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
** Macro to return the number of elements in an array. SQLite has a
** similar macro called ArraySize(). Use a different name to avoid
** a collision when building an amalgamation with built-in FTS3.
*/
#define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0])))


#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Maximum length of a varint encoded integer. The varint format is different
** from that used by SQLite, so the maximum length is 10, not 9.
*/
#define FTS3_VARINT_MAX 10

/*
** FTS4 virtual tables may maintain multiple indexes - one index of all terms
** in the document set and zero or more prefix indexes. All indexes are stored
** as one or more b+-trees in the %_segments and %_segdir tables. 
**
** It is possible to determine which index a b+-tree belongs to based on the
** value stored in the "%_segdir.level" column. Given this value L, the index
** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with
** level values between 0 and 1023 (inclusive) belong to index 0, all levels
** between 1024 and 2047 to index 1, and so on.
**
** It is considered impossible for an index to use more than 1024 levels. In 
** theory though this may happen, but only after at least 
** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables.
*/
#define FTS3_SEGDIR_MAXLEVEL      1024
#define FTS3_SEGDIR_MAXLEVEL_STR "1024"

/*
** The testcase() macro is only used by the amalgamation.  If undefined,
** make it a no-op.
*/
#ifndef testcase
# define testcase(X)
#endif
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162


163
164
165
166
167
168





169





170
171
172
173
174
175
176
177
178
179
180

typedef struct Fts3Table Fts3Table;
typedef struct Fts3Cursor Fts3Cursor;
typedef struct Fts3Expr Fts3Expr;
typedef struct Fts3Phrase Fts3Phrase;
typedef struct Fts3PhraseToken Fts3PhraseToken;


typedef struct Fts3SegFilter Fts3SegFilter;
typedef struct Fts3DeferredToken Fts3DeferredToken;
typedef struct Fts3SegReader Fts3SegReader;
typedef struct Fts3SegReaderCursor Fts3SegReaderCursor;

/*
** A connection to a fulltext index is an instance of the following
** structure. The xCreate and xConnect methods create an instance
** of this structure and xDestroy and xDisconnect free that instance.
** All other methods receive a pointer to the structure as one of their
** arguments.
*/
struct Fts3Table {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  sqlite3 *db;                    /* The database connection */
  const char *zDb;                /* logical database name */
  const char *zName;              /* virtual table name */
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[24];

  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasStat;                    /* True if %_stat table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */

  int nPgsz;                      /* Page size for host database */
  char *zSegmentsTbl;             /* Name of %_segments table */
  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */



  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.





  */





  int nMaxPendingData;
  int nPendingData;
  sqlite_int64 iPrevDocid;
  Fts3Hash pendingTerms;

#if defined(SQLITE_DEBUG)
  /* State variables used for validating that the transaction control
  ** methods of the virtual table are called at appropriate times.  These
  ** values do not contribution to the FTS computation; they are used for
  ** verifying the SQLite core.
  */







>



|




















|







>




>
>
|





>
>
>
>
>

>
>
>
>
>
|
|
|
<







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225

typedef struct Fts3Table Fts3Table;
typedef struct Fts3Cursor Fts3Cursor;
typedef struct Fts3Expr Fts3Expr;
typedef struct Fts3Phrase Fts3Phrase;
typedef struct Fts3PhraseToken Fts3PhraseToken;

typedef struct Fts3Doclist Fts3Doclist;
typedef struct Fts3SegFilter Fts3SegFilter;
typedef struct Fts3DeferredToken Fts3DeferredToken;
typedef struct Fts3SegReader Fts3SegReader;
typedef struct Fts3MultiSegReader Fts3MultiSegReader;

/*
** A connection to a fulltext index is an instance of the following
** structure. The xCreate and xConnect methods create an instance
** of this structure and xDestroy and xDisconnect free that instance.
** All other methods receive a pointer to the structure as one of their
** arguments.
*/
struct Fts3Table {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  sqlite3 *db;                    /* The database connection */
  const char *zDb;                /* logical database name */
  const char *zName;              /* virtual table name */
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[27];

  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasStat;                    /* True if %_stat table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */
  u8 bDescIdx;                    /* True if doclists are in reverse order */
  int nPgsz;                      /* Page size for host database */
  char *zSegmentsTbl;             /* Name of %_segments table */
  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */

  /* TODO: Fix the first paragraph of this comment.
  **
  ** The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
  ** inserted record.
  **
  ** A single FTS4 table may have multiple full-text indexes. For each index
  ** there is an entry in the aIndex[] array. Index 0 is an index of all the
  ** terms that appear in the document set. Each subsequent index in aIndex[]
  ** is an index of prefixes of a specific length.
  */
  int nIndex;                     /* Size of aIndex[] */
  struct Fts3Index {
    int nPrefix;                  /* Prefix length (0 for main terms index) */
    Fts3Hash hPending;            /* Pending terms table for this index */
  } *aIndex;
  int nMaxPendingData;            /* Max pending data before flush to disk */
  int nPendingData;               /* Current bytes of pending data */
  sqlite_int64 iPrevDocid;        /* Docid of most recently inserted document */


#if defined(SQLITE_DEBUG)
  /* State variables used for validating that the transaction control
  ** methods of the virtual table are called at appropriate times.  These
  ** values do not contribution to the FTS computation; they are used for
  ** verifying the SQLite core.
  */
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
  Fts3Expr *pExpr;                /* Parsed MATCH query string */
  int nPhrase;                    /* Number of matchable phrases in query */
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */
  char *aDoclist;                 /* List of docids for full-text queries */
  int nDoclist;                   /* Size of buffer at aDoclist */
  int desc;                       /* True to sort in descending order */
  int eEvalmode;                  /* An FTS3_EVAL_XX constant */
  int nRowAvg;                    /* Average size of database rows, in pages */


  int isMatchinfoNeeded;          /* True when aMatchinfo[] needs filling in */
  u32 *aMatchinfo;                /* Information about most recent match */
  int nMatchinfo;                 /* Number of elements in aMatchinfo[] */
  char *zMatchinfo;               /* Matchinfo specification */
};








|


>







242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
  Fts3Expr *pExpr;                /* Parsed MATCH query string */
  int nPhrase;                    /* Number of matchable phrases in query */
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */
  char *aDoclist;                 /* List of docids for full-text queries */
  int nDoclist;                   /* Size of buffer at aDoclist */
  u8 bDesc;                       /* True to sort in descending order */
  int eEvalmode;                  /* An FTS3_EVAL_XX constant */
  int nRowAvg;                    /* Average size of database rows, in pages */
  int nDoc;                       /* Documents in table */

  int isMatchinfoNeeded;          /* True when aMatchinfo[] needs filling in */
  u32 *aMatchinfo;                /* Information about most recent match */
  int nMatchinfo;                 /* Number of elements in aMatchinfo[] */
  char *zMatchinfo;               /* Matchinfo specification */
};

230
231
232
233
234
235
236












237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254


255

256
257
258





259


260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276








277
278
279
280
281
282
283
284
285
286


287
288
289
290
291
292
293
294
295
296
297
298
299
** indicating that all columns should be searched,
** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
*/
#define FTS3_FULLSCAN_SEARCH 0    /* Linear scan of %_content table */
#define FTS3_DOCID_SEARCH    1    /* Lookup by rowid on %_content table */
#define FTS3_FULLTEXT_SEARCH 2    /* Full-text index search */













/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.
**
** The nDocMatch and nMatch variables contain data that may be used by the
** matchinfo() function. They are populated when the full-text index is 
** queried for hits on the phrase. If one or more tokens in the phrase
** are deferred, the nDocMatch and nMatch variables are populated based
** on the assumption that the 
*/
struct Fts3PhraseToken {
  char *z;                        /* Text of the token */
  int n;                          /* Number of bytes in buffer z */
  int isPrefix;                   /* True if token ends with a "*" character */
  int bFulltext;                  /* True if full-text index was used */
  Fts3SegReaderCursor *pSegcsr;   /* Segment-reader for this token */


  Fts3DeferredToken *pDeferred;   /* Deferred token object for this token */

};

struct Fts3Phrase {





  /* Variables populated by fts3_expr.c when parsing a MATCH expression */


  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */
  int isNot;                 /* Phrase prefixed by unary not (-) operator */
  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
};

/*
** A tree of these objects forms the RHS of a MATCH operator.
**
** If Fts3Expr.eType is either FTSQUERY_NEAR or FTSQUERY_PHRASE and isLoaded
** is true, then aDoclist points to a malloced buffer, size nDoclist bytes, 
** containing the results of the NEAR or phrase query in FTS3 doclist
** format. As usual, the initial "Length" field found in doclists stored
** on disk is omitted from this buffer.
**
** Variable pCurrent always points to the start of a docid field within
** aDoclist. Since the doclist is usually scanned in docid order, this can








** be used to accelerate seeking to the required docid within the doclist.
*/
struct Fts3Expr {
  int eType;                 /* One of the FTSQUERY_XXX values defined below */
  int nNear;                 /* Valid if eType==FTSQUERY_NEAR */
  Fts3Expr *pParent;         /* pParent->pLeft==this or pParent->pRight==this */
  Fts3Expr *pLeft;           /* Left operand */
  Fts3Expr *pRight;          /* Right operand */
  Fts3Phrase *pPhrase;       /* Valid if eType==FTSQUERY_PHRASE */



  int isLoaded;              /* True if aDoclist/nDoclist are initialized. */
  char *aDoclist;            /* Buffer containing doclist */
  int nDoclist;              /* Size of aDoclist in bytes */

  sqlite3_int64 iCurrent;
  char *pCurrent;
};

/*
** Candidate values for Fts3Query.eType. Note that the order of the first
** four values is in order of precedence when parsing expressions. For 
** example, the following:
**







>
>
>
>
>
>
>
>
>
>
>
>





<
<
<
<
<
<





|
|
>
>

>



>
>
>
>
>
|
>
>


<






|
|
|
|
|

|
|
>
>
>
>
>
>
>
>
|









>
>
|
|
|

<
|







276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299






300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369
** indicating that all columns should be searched,
** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4.
*/
#define FTS3_FULLSCAN_SEARCH 0    /* Linear scan of %_content table */
#define FTS3_DOCID_SEARCH    1    /* Lookup by rowid on %_content table */
#define FTS3_FULLTEXT_SEARCH 2    /* Full-text index search */


struct Fts3Doclist {
  char *aAll;                    /* Array containing doclist (or NULL) */
  int nAll;                      /* Size of a[] in bytes */
  char *pNextDocid;              /* Pointer to next docid */

  sqlite3_int64 iDocid;          /* Current docid (if pList!=0) */
  int bFreeList;                 /* True if pList should be sqlite3_free()d */
  char *pList;                   /* Pointer to position list following iDocid */
  int nList;                     /* Length of position list */
} doclist;

/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.






*/
struct Fts3PhraseToken {
  char *z;                        /* Text of the token */
  int n;                          /* Number of bytes in buffer z */
  int isPrefix;                   /* True if token ends with a "*" character */

  /* Variables above this point are populated when the expression is
  ** parsed (by code in fts3_expr.c). Below this point the variables are
  ** used when evaluating the expression. */
  Fts3DeferredToken *pDeferred;   /* Deferred token object for this token */
  Fts3MultiSegReader *pSegcsr;    /* Segment-reader for this token */
};

struct Fts3Phrase {
  /* Cache of doclist for this phrase. */
  Fts3Doclist doclist;
  int bIncr;                 /* True if doclist is loaded incrementally */
  int iDoclistToken;

  /* Variables below this point are populated by fts3_expr.c when parsing 
  ** a MATCH expression. Everything above is part of the evaluation phase. 
  */
  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */

  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
};

/*
** A tree of these objects forms the RHS of a MATCH operator.
**
** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist 
** points to a malloced buffer, size nDoclist bytes, containing the results 
** of this phrase query in FTS3 doclist format. As usual, the initial 
** "Length" field found in doclists stored on disk is omitted from this 
** buffer.
**
** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global
** matchinfo data. If it is not NULL, it points to an array of size nCol*3,
** where nCol is the number of columns in the queried FTS table. The array
** is populated as follows:
**
**   aMI[iCol*3 + 0] = Undefined
**   aMI[iCol*3 + 1] = Number of occurrences
**   aMI[iCol*3 + 2] = Number of rows containing at least one instance
**
** The aMI array is allocated using sqlite3_malloc(). It should be freed 
** when the expression node is.
*/
struct Fts3Expr {
  int eType;                 /* One of the FTSQUERY_XXX values defined below */
  int nNear;                 /* Valid if eType==FTSQUERY_NEAR */
  Fts3Expr *pParent;         /* pParent->pLeft==this or pParent->pRight==this */
  Fts3Expr *pLeft;           /* Left operand */
  Fts3Expr *pRight;          /* Right operand */
  Fts3Phrase *pPhrase;       /* Valid if eType==FTSQUERY_PHRASE */

  /* The following are used by the fts3_eval.c module. */
  sqlite3_int64 iDocid;      /* Current docid */
  u8 bEof;                   /* True this expression is at EOF already */
  u8 bStart;                 /* True if iDocid is valid */
  u8 bDeferred;              /* True if this expression is entirely deferred */


  u32 *aMI;
};

/*
** Candidate values for Fts3Query.eType. Note that the order of the first
** four values is in order of precedence when parsing expressions. For 
** example, the following:
**
313
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339
340
341
342

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369



370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396
397
/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**);

void sqlite3Fts3SegReaderFree(Fts3SegReader *);
int sqlite3Fts3SegReaderCost(Fts3Cursor *, Fts3SegReader *, int *);
int sqlite3Fts3AllSegdirs(Fts3Table*, int, sqlite3_stmt **);
int sqlite3Fts3ReadLock(Fts3Table *);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*);

int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);

void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);
void sqlite3Fts3SegmentsClose(Fts3Table *);


#define FTS3_SEGCURSOR_PENDING -1
#define FTS3_SEGCURSOR_ALL     -2

int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3SegReaderCursor*, Fts3SegFilter*);
int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3SegReaderCursor *);
void sqlite3Fts3SegReaderFinish(Fts3SegReaderCursor *);

int sqlite3Fts3SegReaderCursor(
    Fts3Table *, int, const char *, int, int, int, Fts3SegReaderCursor *);

/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
#define FTS3_SEGMENT_REQUIRE_POS   0x00000001
#define FTS3_SEGMENT_IGNORE_EMPTY  0x00000002
#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
#define FTS3_SEGMENT_PREFIX        0x00000008
#define FTS3_SEGMENT_SCAN          0x00000010

/* Type passed as 4th argument to SegmentReaderIterate() */
struct Fts3SegFilter {
  const char *zTerm;
  int nTerm;
  int iCol;
  int flags;
};

struct Fts3SegReaderCursor {
  /* Used internally by sqlite3Fts3SegReaderXXX() calls */
  Fts3SegReader **apSegment;      /* Array of Fts3SegReader objects */
  int nSegment;                   /* Size of apSegment array */
  int nAdvance;                   /* How many seg-readers to advance */
  Fts3SegFilter *pFilter;         /* Pointer to filter object */
  char *aBuffer;                  /* Buffer to merge doclists in */
  int nBuffer;                    /* Allocated size of aBuffer[] in bytes */




  /* Cost of running this iterator. Used by fts3.c only. */
  int nCost;


  /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
  char *zTerm;                    /* Pointer to term buffer */
  int nTerm;                      /* Size of zTerm in bytes */
  char *aDoclist;                 /* Pointer to doclist buffer */
  int nDoclist;                   /* Size of aDoclist[] in bytes */
};

/* fts3.c */
int sqlite3Fts3PutVarint(char *, sqlite3_int64);
int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
int sqlite3Fts3GetVarint32(const char *, int *);
int sqlite3Fts3VarintLen(sqlite3_uint64);
void sqlite3Fts3Dequote(char *);


char *sqlite3Fts3FindPositions(Fts3Cursor *, Fts3Expr *, sqlite3_int64, int);
int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *, Fts3Expr *);
int sqlite3Fts3ExprLoadFtDoclist(Fts3Cursor *, Fts3Expr *, char **, int *);
int sqlite3Fts3ExprNearTrim(Fts3Expr *, Fts3Expr *, int);

/* fts3_tokenizer.c */
const char *sqlite3Fts3NextToken(const char *, int *);
int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, 
    sqlite3_tokenizer **, char **
);







|
>

<
|

|








<


>
|
|

|
|
|
>

|
















|








>
>
>
|
|
>














>

<
|
<
<







383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

463


464
465
466
467
468
469
470
/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(
  Fts3Table*,int,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3SegReader *);

int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, sqlite3_stmt **);
int sqlite3Fts3ReadLock(Fts3Table *);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);

int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);

void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);

void sqlite3Fts3SegmentsClose(Fts3Table *);

/* Special values interpreted by sqlite3SegReaderCursor() */
#define FTS3_SEGCURSOR_PENDING        -1
#define FTS3_SEGCURSOR_ALL            -2

int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*);
int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *);
void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *);

int sqlite3Fts3SegReaderCursor(
    Fts3Table *, int, int, const char *, int, int, int, Fts3MultiSegReader *);

/* Flags allowed as part of the 4th argument to SegmentReaderIterate() */
#define FTS3_SEGMENT_REQUIRE_POS   0x00000001
#define FTS3_SEGMENT_IGNORE_EMPTY  0x00000002
#define FTS3_SEGMENT_COLUMN_FILTER 0x00000004
#define FTS3_SEGMENT_PREFIX        0x00000008
#define FTS3_SEGMENT_SCAN          0x00000010

/* Type passed as 4th argument to SegmentReaderIterate() */
struct Fts3SegFilter {
  const char *zTerm;
  int nTerm;
  int iCol;
  int flags;
};

struct Fts3MultiSegReader {
  /* Used internally by sqlite3Fts3SegReaderXXX() calls */
  Fts3SegReader **apSegment;      /* Array of Fts3SegReader objects */
  int nSegment;                   /* Size of apSegment array */
  int nAdvance;                   /* How many seg-readers to advance */
  Fts3SegFilter *pFilter;         /* Pointer to filter object */
  char *aBuffer;                  /* Buffer to merge doclists in */
  int nBuffer;                    /* Allocated size of aBuffer[] in bytes */

  int iColFilter;                 /* If >=0, filter for this column */
  int bRestart;

  /* Used by fts3.c only. */
  int nCost;                      /* Cost of running iterator */
  int bLookup;                    /* True if a lookup of a single entry. */

  /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */
  char *zTerm;                    /* Pointer to term buffer */
  int nTerm;                      /* Size of zTerm in bytes */
  char *aDoclist;                 /* Pointer to doclist buffer */
  int nDoclist;                   /* Size of aDoclist[] in bytes */
};

/* fts3.c */
int sqlite3Fts3PutVarint(char *, sqlite3_int64);
int sqlite3Fts3GetVarint(const char *, sqlite_int64 *);
int sqlite3Fts3GetVarint32(const char *, int *);
int sqlite3Fts3VarintLen(sqlite3_uint64);
void sqlite3Fts3Dequote(char *);
void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*);


int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *);



/* fts3_tokenizer.c */
const char *sqlite3Fts3NextToken(const char *, int *);
int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *);
int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, 
    sqlite3_tokenizer **, char **
);
413
414
415
416
417
418
419
























420
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

/* fts3_aux.c */
int sqlite3Fts3InitAux(sqlite3 *db);

























#endif /* _FTSINT_H */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

/* fts3_aux.c */
int sqlite3Fts3InitAux(sqlite3 *db);

int sqlite3Fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
);

void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);

int sqlite3Fts3EvalStart(Fts3Cursor *, Fts3Expr *, int);
int sqlite3Fts3EvalNext(Fts3Cursor *pCsr);

int sqlite3Fts3MsrIncrStart(
    Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
int sqlite3Fts3MsrIncrNext(
    Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
char *sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol); 
int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);

#endif /* SQLITE_ENABLE_FTS3 */
#endif /* _FTSINT_H */
Changes to ext/fts3/fts3_aux.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/*
** 2011 Jan 27
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"
#include <string.h>
#include <assert.h>

typedef struct Fts3auxTable Fts3auxTable;
typedef struct Fts3auxCursor Fts3auxCursor;

struct Fts3auxTable {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  Fts3Table *pFts3Tab;
};

struct Fts3auxCursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  Fts3SegReaderCursor csr;        /* Must be right after "base" */
  Fts3SegFilter filter;
  char *zStop;
  int nStop;                      /* Byte-length of string zStop */
  int isEof;                      /* True if cursor is at EOF */
  sqlite3_int64 iRowid;           /* Current rowid */

  int iCol;                       /* Current value of 'col' column */













|


<













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
** 2011 Jan 27
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)


#include <string.h>
#include <assert.h>

typedef struct Fts3auxTable Fts3auxTable;
typedef struct Fts3auxCursor Fts3auxCursor;

struct Fts3auxTable {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  Fts3Table *pFts3Tab;
};

struct Fts3auxCursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  Fts3MultiSegReader csr;        /* Must be right after "base" */
  Fts3SegFilter filter;
  char *zStop;
  int nStop;                      /* Byte-length of string zStop */
  int isEof;                      /* True if cursor is at EOF */
  sqlite3_int64 iRowid;           /* Current rowid */

  int iCol;                       /* Current value of 'col' column */
92
93
94
95
96
97
98

99
100
101
102
103
104
105
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;


  memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
  memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
  sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);

  *ppVtab = (sqlite3_vtab *)p;
  return SQLITE_OK;







>







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;
  p->pFts3Tab->nIndex = 1;

  memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
  memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
  sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);

  *ppVtab = (sqlite3_vtab *)p;
  return SQLITE_OK;
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  if( idxNum&FTS4AUX_LE_CONSTRAINT ){
    int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0;
    pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx]));
    pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]);
    if( pCsr->zStop==0 ) return SQLITE_NOMEM;
  }

  rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL,
      pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
  }

  if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);







|







372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
  if( idxNum&FTS4AUX_LE_CONSTRAINT ){
    int iIdx = (idxNum&FTS4AUX_GE_CONSTRAINT) ? 1 : 0;
    pCsr->zStop = sqlite3_mprintf("%s", sqlite3_value_text(apVal[iIdx]));
    pCsr->nStop = sqlite3_value_bytes(apVal[iIdx]);
    if( pCsr->zStop==0 ) return SQLITE_NOMEM;
  }

  rc = sqlite3Fts3SegReaderCursor(pFts3, 0, FTS3_SEGCURSOR_ALL,
      pCsr->filter.zTerm, pCsr->filter.nTerm, 0, isScan, &pCsr->csr
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
  }

  if( rc==SQLITE_OK ) rc = fts3auxNextMethod(pCursor);
Changes to ext/fts3/fts3_expr.c.
11
12
13
14
15
16
17

18
19
20
21
22
23
24
******************************************************************************
**
** This module contains code that implements a parser for fts3 query strings
** (the right-hand argument to the MATCH operator). Because the supported 
** syntax is relatively simple, the whole tokenizer/parser system is
** hand-coded. 
*/

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/*
** By default, this module parses the legacy syntax that has been 
** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
** is defined, then it uses the new syntax. The differences between
** the new and the old syntaxes are:







>







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
******************************************************************************
**
** This module contains code that implements a parser for fts3 query strings
** (the right-hand argument to the MATCH operator). Because the supported 
** syntax is relatively simple, the whole tokenizer/parser system is
** hand-coded. 
*/
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/*
** By default, this module parses the legacy syntax that has been 
** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
** is defined, then it uses the new syntax. The differences between
** the new and the old syntaxes are:
73
74
75
76
77
78
79
80
81
82
83








84
85
86
87
88
89

90
91
92
93
94
95
96
#endif

/*
** Default span for NEAR operators.
*/
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10

#include "fts3Int.h"
#include <string.h>
#include <assert.h>









typedef struct ParseContext ParseContext;
struct ParseContext {
  sqlite3_tokenizer *pTokenizer;      /* Tokenizer module */
  const char **azCol;                 /* Array of column names for fts3 table */
  int nCol;                           /* Number of entries in azCol[] */
  int iDefaultCol;                    /* Default column to query */

  sqlite3_context *pCtx;              /* Write error message here */
  int nNest;                          /* Number of nested brackets */
};

/*
** This function is equivalent to the standard isspace() function. 
**







<



>
>
>
>
>
>
>
>






>







74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#endif

/*
** Default span for NEAR operators.
*/
#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10


#include <string.h>
#include <assert.h>

/*
** isNot:
**   This variable is used by function getNextNode(). When getNextNode() is
**   called, it sets ParseContext.isNot to true if the 'next node' is a 
**   FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
**   FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
**   zero.
*/
typedef struct ParseContext ParseContext;
struct ParseContext {
  sqlite3_tokenizer *pTokenizer;      /* Tokenizer module */
  const char **azCol;                 /* Array of column names for fts3 table */
  int nCol;                           /* Number of entries in azCol[] */
  int iDefaultCol;                    /* Default column to query */
  int isNot;                          /* True if getNextNode() sees a unary - */
  sqlite3_context *pCtx;              /* Write error message here */
  int nNest;                          /* Number of nested brackets */
};

/*
** This function is equivalent to the standard isspace() function. 
**
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);

        if( iEnd<n && z[iEnd]=='*' ){
          pRet->pPhrase->aToken[0].isPrefix = 1;
          iEnd++;
        }
        if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
          pRet->pPhrase->isNot = 1;
        }
      }
      nConsumed = iEnd;
    }

    pModule->xClose(pCursor);
  }







|







177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);

        if( iEnd<n && z[iEnd]=='*' ){
          pRet->pPhrase->aToken[0].isPrefix = 1;
          iEnd++;
        }
        if( !sqlite3_fts3_enable_parentheses && iStart>0 && z[iStart-1]=='-' ){
          pParse->isNot = 1;
        }
      }
      nConsumed = iEnd;
    }

    pModule->xClose(pCursor);
  }
220
221
222
223
224
225
226






















227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245

246
247
248
249
250
251
252
253
254
255
256



257
258
259
260
261
262
263
264
265
266
267
268
269
270
271




272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
  int rc;
  Fts3Expr *p = 0;
  sqlite3_tokenizer_cursor *pCursor = 0;
  char *zTemp = 0;
  int nTemp = 0;























  rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
  if( rc==SQLITE_OK ){
    int ii;
    pCursor->pTokenizer = pTokenizer;
    for(ii=0; rc==SQLITE_OK; ii++){
      const char *zToken;
      int nToken, iBegin, iEnd, iPos;
      rc = pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
      if( rc==SQLITE_OK ){
        int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
        p = fts3ReallocOrFree(p, nByte+ii*sizeof(Fts3PhraseToken));
        zTemp = fts3ReallocOrFree(zTemp, nTemp + nToken);
        if( !p || !zTemp ){
          goto no_mem;
        }

        if( ii==0 ){
          memset(p, 0, nByte);
          p->pPhrase = (Fts3Phrase *)&p[1];
        }

        p->pPhrase = (Fts3Phrase *)&p[1];
        memset(&p->pPhrase->aToken[ii], 0, sizeof(Fts3PhraseToken));
        p->pPhrase->nToken = ii+1;
        p->pPhrase->aToken[ii].n = nToken;
        memcpy(&zTemp[nTemp], zToken, nToken);
        nTemp += nToken;
        if( iEnd<nInput && zInput[iEnd]=='*' ){
          p->pPhrase->aToken[ii].isPrefix = 1;
        }else{
          p->pPhrase->aToken[ii].isPrefix = 0;
        }



      }
    }

    pModule->xClose(pCursor);
    pCursor = 0;
  }

  if( rc==SQLITE_DONE ){
    int jj;
    char *zNew = NULL;
    int nNew = 0;
    int nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
    nByte += (p?(p->pPhrase->nToken-1):0) * sizeof(Fts3PhraseToken);
    p = fts3ReallocOrFree(p, nByte + nTemp);
    if( !p ){




      goto no_mem;
    }
    if( zTemp ){
      zNew = &(((char *)p)[nByte]);
      memcpy(zNew, zTemp, nTemp);
    }else{
      memset(p, 0, nByte+nTemp);
    }
    p->pPhrase = (Fts3Phrase *)&p[1];
    for(jj=0; jj<p->pPhrase->nToken; jj++){
      p->pPhrase->aToken[jj].z = &zNew[nNew];
      nNew += p->pPhrase->aToken[jj].n;
    }
    sqlite3_free(zTemp);
    p->eType = FTSQUERY_PHRASE;
    p->pPhrase->iColumn = pParse->iDefaultCol;
    rc = SQLITE_OK;
  }

  *ppExpr = p;
  return rc;
no_mem:








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





|
|
|

|
|
|
<
|
|
>
|
<
<
|
>
|
|
|
<
|
|
<
<
<
<
|
>
>
>









|
|
<
<
|
|
>
>
>
>
|
|
<
|
|
<
|
|
<

|
|

<
<
<







229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273


274
275
276
277
278

279
280




281
282
283
284
285
286
287
288
289
290
291
292
293
294
295


296
297
298
299
300
301
302
303

304
305

306
307

308
309
310
311



312
313
314
315
316
317
318
  sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
  int rc;
  Fts3Expr *p = 0;
  sqlite3_tokenizer_cursor *pCursor = 0;
  char *zTemp = 0;
  int nTemp = 0;

  const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
  int nToken = 0;

  /* The final Fts3Expr data structure, including the Fts3Phrase,
  ** Fts3PhraseToken structures token buffers are all stored as a single 
  ** allocation so that the expression can be freed with a single call to
  ** sqlite3_free(). Setting this up requires a two pass approach.
  **
  ** The first pass, in the block below, uses a tokenizer cursor to iterate
  ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
  ** to assemble data in two dynamic buffers:
  **
  **   Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
  **             structure, followed by the array of Fts3PhraseToken 
  **             structures. This pass only populates the Fts3PhraseToken array.
  **
  **   Buffer zTemp: Contains copies of all tokens.
  **
  ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
  ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
  ** structures.
  */
  rc = pModule->xOpen(pTokenizer, zInput, nInput, &pCursor);
  if( rc==SQLITE_OK ){
    int ii;
    pCursor->pTokenizer = pTokenizer;
    for(ii=0; rc==SQLITE_OK; ii++){
      const char *zByte;
      int nByte, iBegin, iEnd, iPos;
      rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
      if( rc==SQLITE_OK ){
        Fts3PhraseToken *pToken;

        p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));

        if( !p ) goto no_mem;

        zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
        if( !zTemp ) goto no_mem;



        assert( nToken==ii );
        pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
        memset(pToken, 0, sizeof(Fts3PhraseToken));


        memcpy(&zTemp[nTemp], zByte, nByte);
        nTemp += nByte;





        pToken->n = nByte;
        pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
        nToken = ii+1;
      }
    }

    pModule->xClose(pCursor);
    pCursor = 0;
  }

  if( rc==SQLITE_DONE ){
    int jj;
    char *zBuf = 0;



    p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
    if( !p ) goto no_mem;
    memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
    p->eType = FTSQUERY_PHRASE;
    p->pPhrase = (Fts3Phrase *)&p[1];
    p->pPhrase->iColumn = pParse->iDefaultCol;
    p->pPhrase->nToken = nToken;


    zBuf = (char *)&p->pPhrase->aToken[nToken];
    memcpy(zBuf, zTemp, nTemp);

    sqlite3_free(zTemp);


    for(jj=0; jj<p->pPhrase->nToken; jj++){
      p->pPhrase->aToken[jj].z = zBuf;
      zBuf += p->pPhrase->aToken[jj].n;
    }



    rc = SQLITE_OK;
  }

  *ppExpr = p;
  return rc;
no_mem:

336
337
338
339
340
341
342


343
344
345
346
347
348
349
  int iCol;
  int iColLen;
  int rc;
  Fts3Expr *pRet = 0;

  const char *zInput = z;
  int nInput = n;



  /* Skip over any whitespace before checking for a keyword, an open or
  ** close bracket, or a quoted string. 
  */
  while( nInput>0 && fts3isspace(*zInput) ){
    nInput--;
    zInput++;







>
>







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  int iCol;
  int iColLen;
  int rc;
  Fts3Expr *pRet = 0;

  const char *zInput = z;
  int nInput = n;

  pParse->isNot = 0;

  /* Skip over any whitespace before checking for a keyword, an open or
  ** close bracket, or a quoted string. 
  */
  while( nInput>0 && fts3isspace(*zInput) ){
    nInput--;
    zInput++;
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    Fts3Expr *p = 0;
    int nByte = 0;
    rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
    if( rc==SQLITE_OK ){
      int isPhrase;

      if( !sqlite3_fts3_enable_parentheses 
       && p->eType==FTSQUERY_PHRASE && p->pPhrase->isNot 
      ){
        /* Create an implicit NOT operator. */
        Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr));
        if( !pNot ){
          sqlite3Fts3ExprFree(p);
          rc = SQLITE_NOMEM;
          goto exprparse_out;
        }
        pNot->eType = FTSQUERY_NOT;
        pNot->pRight = p;
        if( pNotBranch ){
          pNot->pLeft = pNotBranch;
        }
        pNotBranch = pNot;
        p = pPrev;
      }else{
        int eType = p->eType;
        assert( eType!=FTSQUERY_PHRASE || !p->pPhrase->isNot );
        isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);

        /* The isRequirePhrase variable is set to true if a phrase or
        ** an expression contained in parenthesis is required. If a
        ** binary operator (AND, OR, NOT or NEAR) is encounted when
        ** isRequirePhrase is set, this is a syntax error.
        */







|

















<







581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612
    Fts3Expr *p = 0;
    int nByte = 0;
    rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
    if( rc==SQLITE_OK ){
      int isPhrase;

      if( !sqlite3_fts3_enable_parentheses 
       && p->eType==FTSQUERY_PHRASE && pParse->isNot 
      ){
        /* Create an implicit NOT operator. */
        Fts3Expr *pNot = fts3MallocZero(sizeof(Fts3Expr));
        if( !pNot ){
          sqlite3Fts3ExprFree(p);
          rc = SQLITE_NOMEM;
          goto exprparse_out;
        }
        pNot->eType = FTSQUERY_NOT;
        pNot->pRight = p;
        if( pNotBranch ){
          pNot->pLeft = pNotBranch;
        }
        pNotBranch = pNot;
        p = pPrev;
      }else{
        int eType = p->eType;

        isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);

        /* The isRequirePhrase variable is set to true if a phrase or
        ** an expression contained in parenthesis is required. If a
        ** binary operator (AND, OR, NOT or NEAR) is encounted when
        ** isRequirePhrase is set, this is a syntax error.
        */
736
737
738
739
740
741
742

743
744

745
746
747
748
749
750
751
752
}

/*
** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
*/
void sqlite3Fts3ExprFree(Fts3Expr *p){
  if( p ){

    sqlite3Fts3ExprFree(p->pLeft);
    sqlite3Fts3ExprFree(p->pRight);

    sqlite3_free(p->aDoclist);
    sqlite3_free(p);
  }
}

/****************************************************************************
*****************************************************************************
** Everything after this point is just test code.







>


>
|







761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
}

/*
** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
*/
void sqlite3Fts3ExprFree(Fts3Expr *p){
  if( p ){
    assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
    sqlite3Fts3ExprFree(p->pLeft);
    sqlite3Fts3ExprFree(p->pRight);
    sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
    sqlite3_free(p->aMI);
    sqlite3_free(p);
  }
}

/****************************************************************************
*****************************************************************************
** Everything after this point is just test code.
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
*/
static char *exprToString(Fts3Expr *pExpr, char *zBuf){
  switch( pExpr->eType ){
    case FTSQUERY_PHRASE: {
      Fts3Phrase *pPhrase = pExpr->pPhrase;
      int i;
      zBuf = sqlite3_mprintf(
          "%zPHRASE %d %d", zBuf, pPhrase->iColumn, pPhrase->isNot);
      for(i=0; zBuf && i<pPhrase->nToken; i++){
        zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, 
            pPhrase->aToken[i].n, pPhrase->aToken[i].z,
            (pPhrase->aToken[i].isPrefix?"+":"")
        );
      }
      return zBuf;







|







823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
*/
static char *exprToString(Fts3Expr *pExpr, char *zBuf){
  switch( pExpr->eType ){
    case FTSQUERY_PHRASE: {
      Fts3Phrase *pPhrase = pExpr->pPhrase;
      int i;
      zBuf = sqlite3_mprintf(
          "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
      for(i=0; zBuf && i<pPhrase->nToken; i++){
        zBuf = sqlite3_mprintf("%z %.*s%s", zBuf, 
            pPhrase->aToken[i].n, pPhrase->aToken[i].z,
            (pPhrase->aToken[i].isPrefix?"+":"")
        );
      }
      return zBuf;
Changes to ext/fts3/fts3_hash.c.
19
20
21
22
23
24
25

26
27
28
29
30
31
32
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"







>







19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"
Changes to ext/fts3/fts3_icu.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*
** 2007 June 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a tokenizer for fts3 based on the ICU library.
** 
** $Id: fts3_icu.c,v 1.3 2008/09/01 18:34:20 danielk1977 Exp $
*/

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifdef SQLITE_ENABLE_ICU

#include <assert.h>
#include <string.h>
#include "fts3_tokenizer.h"













<
<

|







1
2
3
4
5
6
7
8
9
10
11
12


13
14
15
16
17
18
19
20
21
/*
** 2007 June 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a tokenizer for fts3 based on the ICU library.


*/
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifdef SQLITE_ENABLE_ICU

#include <assert.h>
#include <string.h>
#include "fts3_tokenizer.h"

Changes to ext/fts3/fts3_porter.c.
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "fts3_tokenizer.h"







<
<

>







18
19
20
21
22
23
24


25
26
27
28
29
30
31
32
33
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/


#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "fts3_tokenizer.h"
Changes to ext/fts3/fts3_snippet.c.
1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
/*
** 2009 Oct 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"
#include <string.h>
#include <assert.h>

/*
** Characters that may appear in the second argument to matchinfo().
*/
#define FTS3_MATCHINFO_NPHRASE   'p'        /* 1 value */













>


<







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
/*
** 2009 Oct 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)


#include <string.h>
#include <assert.h>

/*
** Characters that may appear in the second argument to matchinfo().
*/
#define FTS3_MATCHINFO_NPHRASE   'p'        /* 1 value */
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  int (*x)(Fts3Expr*,int,void*),  /* Callback function to invoke for phrases */
  void *pCtx                      /* Second argument to pass to callback */
){
  int iPhrase = 0;                /* Variable used as the phrase counter */
  return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
}

/*
** The argument to this function is always a phrase node. Its doclist 
** (Fts3Expr.aDoclist[]) and the doclists associated with all phrase nodes
** to the left of this one in the query tree have already been loaded.
**
** If this phrase node is part of a series of phrase nodes joined by 
** NEAR operators (and is not the left-most of said series), then elements are
** removed from the phrases doclist consistent with the NEAR restriction. If
** required, elements may be removed from the doclists of phrases to the
** left of this one that are part of the same series of NEAR operator 
** connected phrases.
**
** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
*/
static int fts3ExprNearTrim(Fts3Expr *pExpr){
  int rc = SQLITE_OK;
  Fts3Expr *pParent = pExpr->pParent;

  assert( pExpr->eType==FTSQUERY_PHRASE );
  while( rc==SQLITE_OK
   && pParent 
   && pParent->eType==FTSQUERY_NEAR 
   && pParent->pRight==pExpr 
  ){
    /* This expression (pExpr) is the right-hand-side of a NEAR operator. 
    ** Find the expression to the left of the same operator.
    */
    int nNear = pParent->nNear;
    Fts3Expr *pLeft = pParent->pLeft;

    if( pLeft->eType!=FTSQUERY_PHRASE ){
      assert( pLeft->eType==FTSQUERY_NEAR );
      assert( pLeft->pRight->eType==FTSQUERY_PHRASE );
      pLeft = pLeft->pRight;
    }

    rc = sqlite3Fts3ExprNearTrim(pLeft, pExpr, nNear);

    pExpr = pLeft;
    pParent = pExpr->pParent;
  }

  return rc;
}

/*
** This is an fts3ExprIterate() callback used while loading the doclists
** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
** fts3ExprLoadDoclists().
*/
static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
  int rc = SQLITE_OK;

  LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;

  UNUSED_PARAMETER(iPhrase);

  p->nPhrase++;
  p->nToken += pExpr->pPhrase->nToken;

  if( pExpr->isLoaded==0 ){
    rc = sqlite3Fts3ExprLoadDoclist(p->pCsr, pExpr);
    pExpr->isLoaded = 1;
    if( rc==SQLITE_OK ){
      rc = fts3ExprNearTrim(pExpr);
    }
  }

  return rc;
}

/*
** Load the doclists for each phrase in the query associated with FTS3 cursor
** pCsr. 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







>





|
<
<
<
<
<
<
<
<







172
173
174
175
176
177
178













































179
180
181
182
183
184
185
186
187
188
189
190
191
192








193
194
195
196
197
198
199
  int (*x)(Fts3Expr*,int,void*),  /* Callback function to invoke for phrases */
  void *pCtx                      /* Second argument to pass to callback */
){
  int iPhrase = 0;                /* Variable used as the phrase counter */
  return fts3ExprIterate2(pExpr, &iPhrase, x, pCtx);
}














































/*
** This is an fts3ExprIterate() callback used while loading the doclists
** for each phrase into Fts3Expr.aDoclist[]/nDoclist. See also
** fts3ExprLoadDoclists().
*/
static int fts3ExprLoadDoclistsCb(Fts3Expr *pExpr, int iPhrase, void *ctx){
  int rc = SQLITE_OK;
  Fts3Phrase *pPhrase = pExpr->pPhrase;
  LoadDoclistCtx *p = (LoadDoclistCtx *)ctx;

  UNUSED_PARAMETER(iPhrase);

  p->nPhrase++;
  p->nToken += pPhrase->nToken;









  return rc;
}

/*
** Load the doclists for each phrase in the query associated with FTS3 cursor
** pCsr. 
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
  SnippetIter *p = (SnippetIter *)ctx;
  SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
  char *pCsr;

  pPhrase->nToken = pExpr->pPhrase->nToken;

  pCsr = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->pCsr->iPrevId, p->iCol);
  if( pCsr ){
    int iFirst = 0;
    pPhrase->pList = pCsr;
    fts3GetDeltaPosition(&pCsr, &iFirst);
    pPhrase->pHead = pCsr;
    pPhrase->pTail = pCsr;
    pPhrase->iHead = iFirst;







|







359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
static int fts3SnippetFindPositions(Fts3Expr *pExpr, int iPhrase, void *ctx){
  SnippetIter *p = (SnippetIter *)ctx;
  SnippetPhrase *pPhrase = &p->aPhrase[iPhrase];
  char *pCsr;

  pPhrase->nToken = pExpr->pPhrase->nToken;

  pCsr = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol);
  if( pCsr ){
    int iFirst = 0;
    pPhrase->pList = pCsr;
    fts3GetDeltaPosition(&pCsr, &iFirst);
    pPhrase->pHead = pCsr;
    pPhrase->pTail = pCsr;
    pPhrase->iHead = iFirst;
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    if( !c ) nEntry++;
  }

  *ppCollist = pEnd;
  return nEntry;
}

static void fts3LoadColumnlistCounts(char **pp, u32 *aOut, int isGlobal){
  char *pCsr = *pp;
  while( *pCsr ){
    int nHit;
    sqlite3_int64 iCol = 0;
    if( *pCsr==0x01 ){
      pCsr++;
      pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
    }
    nHit = fts3ColumnlistCount(&pCsr);
    assert( nHit>0 );
    if( isGlobal ){
      aOut[iCol*3+1]++;
    }
    aOut[iCol*3] += nHit;
  }
  pCsr++;
  *pp = pCsr;
}

/*
** fts3ExprIterate() callback used to collect the "global" matchinfo stats
** for a single query. 
**
** fts3ExprIterate() callback to load the 'global' elements of a
** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements 
** of the matchinfo array that are constant for all rows returned by the 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







716
717
718
719
720
721
722




















723
724
725
726
727
728
729
    if( !c ) nEntry++;
  }

  *ppCollist = pEnd;
  return nEntry;
}





















/*
** fts3ExprIterate() callback used to collect the "global" matchinfo stats
** for a single query. 
**
** fts3ExprIterate() callback to load the 'global' elements of a
** FTS3_MATCHINFO_HITS matchinfo array. The global stats are those elements 
** of the matchinfo array that are constant for all rows returned by the 
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892


893
894
895
896
897
898
899
900
*/
static int fts3ExprGlobalHitsCb(
  Fts3Expr *pExpr,                /* Phrase expression node */
  int iPhrase,                    /* Phrase number (numbered from zero) */
  void *pCtx                      /* Pointer to MatchInfo structure */
){
  MatchInfo *p = (MatchInfo *)pCtx;
  Fts3Cursor *pCsr = p->pCursor;
  char *pIter;
  char *pEnd;
  char *pFree = 0;
  u32 *aOut = &p->aMatchinfo[3*iPhrase*p->nCol];

  assert( pExpr->isLoaded );
  assert( pExpr->eType==FTSQUERY_PHRASE );

  if( pCsr->pDeferred ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;
    for(ii=0; ii<pPhrase->nToken; ii++){
      if( pPhrase->aToken[ii].bFulltext ) break;
    }
    if( ii<pPhrase->nToken ){
      int nFree = 0;
      int rc = sqlite3Fts3ExprLoadFtDoclist(pCsr, pExpr, &pFree, &nFree);
      if( rc!=SQLITE_OK ) return rc;
      pIter = pFree;
      pEnd = &pFree[nFree];
    }else{
      int iCol;                   /* Column index */
      for(iCol=0; iCol<p->nCol; iCol++){
        aOut[iCol*3 + 1] = (u32)p->nDoc;
        aOut[iCol*3 + 2] = (u32)p->nDoc;
      }
      return SQLITE_OK;
    }
  }else{
    pIter = pExpr->aDoclist;
    pEnd = &pExpr->aDoclist[pExpr->nDoclist];
  }

  /* Fill in the global hit count matrix row for this phrase. */
  while( pIter<pEnd ){
    while( *pIter++ & 0x80 );      /* Skip past docid. */
    fts3LoadColumnlistCounts(&pIter, &aOut[1], 1);
  }

  sqlite3_free(pFree);
  return SQLITE_OK;
}

/*
** fts3ExprIterate() callback used to collect the "local" part of the
** FTS3_MATCHINFO_HITS array. The local stats are those elements of the 
** array that are different for each row returned by the query.
*/
static int fts3ExprLocalHitsCb(
  Fts3Expr *pExpr,                /* Phrase expression node */
  int iPhrase,                    /* Phrase number */
  void *pCtx                      /* Pointer to MatchInfo structure */
){
  MatchInfo *p = (MatchInfo *)pCtx;
  int iStart = iPhrase * p->nCol * 3;
  int i;

  for(i=0; i<p->nCol; i++) p->aMatchinfo[iStart+i*3] = 0;

  if( pExpr->aDoclist ){
    char *pCsr;

    pCsr = sqlite3Fts3FindPositions(p->pCursor, pExpr, p->pCursor->iPrevId, -1);
    if( pCsr ){


      fts3LoadColumnlistCounts(&pCsr, &p->aMatchinfo[iStart], 0);
    }
  }

  return SQLITE_OK;
}

static int fts3MatchinfoCheck(







|
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
















|
<
<

|
<

>
>
|







749
750
751
752
753
754
755
756



757
758




































759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775


776
777

778
779
780
781
782
783
784
785
786
787
788
*/
static int fts3ExprGlobalHitsCb(
  Fts3Expr *pExpr,                /* Phrase expression node */
  int iPhrase,                    /* Phrase number (numbered from zero) */
  void *pCtx                      /* Pointer to MatchInfo structure */
){
  MatchInfo *p = (MatchInfo *)pCtx;
  return sqlite3Fts3EvalPhraseStats(



      p->pCursor, pExpr, &p->aMatchinfo[3*iPhrase*p->nCol]
  );




































}

/*
** fts3ExprIterate() callback used to collect the "local" part of the
** FTS3_MATCHINFO_HITS array. The local stats are those elements of the 
** array that are different for each row returned by the query.
*/
static int fts3ExprLocalHitsCb(
  Fts3Expr *pExpr,                /* Phrase expression node */
  int iPhrase,                    /* Phrase number */
  void *pCtx                      /* Pointer to MatchInfo structure */
){
  MatchInfo *p = (MatchInfo *)pCtx;
  int iStart = iPhrase * p->nCol * 3;
  int i;

  for(i=0; i<p->nCol; i++){


    char *pCsr;
    pCsr = sqlite3Fts3EvalPhrasePoslist(p->pCursor, pExpr, i);

    if( pCsr ){
      p->aMatchinfo[iStart+i*3] = fts3ColumnlistCount(&pCsr);
    }else{
      p->aMatchinfo[iStart+i*3] = 0;
    }
  }

  return SQLITE_OK;
}

static int fts3MatchinfoCheck(
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
** iterating through a multi-column position-list corresponding to the
** hits for a single phrase on a single row in order to calculate the
** values for a matchinfo() FTS3_MATCHINFO_LCS request.
*/
typedef struct LcsIterator LcsIterator;
struct LcsIterator {
  Fts3Expr *pExpr;                /* Pointer to phrase expression */
  char *pRead;                    /* Cursor used to iterate through aDoclist */
  int iPosOffset;                 /* Tokens count up to end of this phrase */
  int iCol;                       /* Current column number */
  int iPos;                       /* Current position */
};

/* 
** If LcsIterator.iCol is set to the following value, the iterator has
** finished iterating through all offsets for all columns.
*/







<

|







860
861
862
863
864
865
866

867
868
869
870
871
872
873
874
875
** iterating through a multi-column position-list corresponding to the
** hits for a single phrase on a single row in order to calculate the
** values for a matchinfo() FTS3_MATCHINFO_LCS request.
*/
typedef struct LcsIterator LcsIterator;
struct LcsIterator {
  Fts3Expr *pExpr;                /* Pointer to phrase expression */

  int iPosOffset;                 /* Tokens count up to end of this phrase */
  char *pRead;                    /* Cursor used to iterate through aDoclist */
  int iPos;                       /* Current position */
};

/* 
** If LcsIterator.iCol is set to the following value, the iterator has
** finished iterating through all offsets for all columns.
*/
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
*/
static int fts3LcsIteratorAdvance(LcsIterator *pIter){
  char *pRead = pIter->pRead;
  sqlite3_int64 iRead;
  int rc = 0;

  pRead += sqlite3Fts3GetVarint(pRead, &iRead);
  if( iRead==0 ){
    pIter->iCol = LCS_ITERATOR_FINISHED;
    rc = 1;
  }else{
    if( iRead==1 ){
      pRead += sqlite3Fts3GetVarint(pRead, &iRead);
      pIter->iCol = (int)iRead;
      pIter->iPos = pIter->iPosOffset;
      pRead += sqlite3Fts3GetVarint(pRead, &iRead);
      rc = 1;
    }
    pIter->iPos += (int)(iRead-2);
  }

  pIter->pRead = pRead;
  return rc;
}
  







|
|


<
<
<
<
<
<
<







892
893
894
895
896
897
898
899
900
901
902







903
904
905
906
907
908
909
*/
static int fts3LcsIteratorAdvance(LcsIterator *pIter){
  char *pRead = pIter->pRead;
  sqlite3_int64 iRead;
  int rc = 0;

  pRead += sqlite3Fts3GetVarint(pRead, &iRead);
  if( iRead==0 || iRead==1 ){
    pRead = 0;
    rc = 1;
  }else{







    pIter->iPos += (int)(iRead-2);
  }

  pIter->pRead = pRead;
  return rc;
}
  
1047
1048
1049
1050
1051
1052
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074




1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
  /* Allocate and populate the array of LcsIterator objects. The array
  ** contains one element for each matchable phrase in the query.
  **/
  aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
  if( !aIter ) return SQLITE_NOMEM;
  memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
  (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);

  for(i=0; i<pInfo->nPhrase; i++){
    LcsIterator *pIter = &aIter[i];
    nToken -= pIter->pExpr->pPhrase->nToken;
    pIter->iPosOffset = nToken;
    pIter->pRead = sqlite3Fts3FindPositions(pCsr,pIter->pExpr,pCsr->iPrevId,-1);
    if( pIter->pRead ){
      pIter->iPos = pIter->iPosOffset;
      fts3LcsIteratorAdvance(&aIter[i]);
    }else{
      pIter->iCol = LCS_ITERATOR_FINISHED;
    }
  }

  for(iCol=0; iCol<pInfo->nCol; iCol++){
    int nLcs = 0;                 /* LCS value for this column */
    int nLive = 0;                /* Number of iterators in aIter not at EOF */

    /* Loop through the iterators in aIter[]. Set nLive to the number of
    ** iterators that point to a position-list corresponding to column iCol.
    */
    for(i=0; i<pInfo->nPhrase; i++){




      assert( aIter[i].iCol>=iCol );
      if( aIter[i].iCol==iCol ) nLive++;
    }

    /* The following loop runs until all iterators in aIter[] have finished
    ** iterating through positions in column iCol. Exactly one of the 
    ** iterators is advanced each time the body of the loop is run.
    */
    while( nLive>0 ){
      LcsIterator *pAdv = 0;      /* The iterator to advance by one position */
      int nThisLcs = 0;           /* LCS for the current iterator positions */

      for(i=0; i<pInfo->nPhrase; i++){
        LcsIterator *pIter = &aIter[i];
        if( iCol!=pIter->iCol ){  
          /* This iterator is already at EOF for this column. */
          nThisLcs = 0;
        }else{
          if( pAdv==0 || pIter->iPos<pAdv->iPos ){
            pAdv = pIter;
          }
          if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){







>




<
<
<
<
<
<
<






<
<
<

>
>
>
>
|
|
|
|
|
<
<
<






|







927
928
929
930
931
932
933
934
935
936
937
938







939
940
941
942
943
944



945
946
947
948
949
950
951
952
953
954



955
956
957
958
959
960
961
962
963
964
965
966
967
968
  /* Allocate and populate the array of LcsIterator objects. The array
  ** contains one element for each matchable phrase in the query.
  **/
  aIter = sqlite3_malloc(sizeof(LcsIterator) * pCsr->nPhrase);
  if( !aIter ) return SQLITE_NOMEM;
  memset(aIter, 0, sizeof(LcsIterator) * pCsr->nPhrase);
  (void)fts3ExprIterate(pCsr->pExpr, fts3MatchinfoLcsCb, (void*)aIter);

  for(i=0; i<pInfo->nPhrase; i++){
    LcsIterator *pIter = &aIter[i];
    nToken -= pIter->pExpr->pPhrase->nToken;
    pIter->iPosOffset = nToken;







  }

  for(iCol=0; iCol<pInfo->nCol; iCol++){
    int nLcs = 0;                 /* LCS value for this column */
    int nLive = 0;                /* Number of iterators in aIter not at EOF */




    for(i=0; i<pInfo->nPhrase; i++){
      LcsIterator *pIt = &aIter[i];
      pIt->pRead = sqlite3Fts3EvalPhrasePoslist(pCsr, pIt->pExpr, iCol);
      if( pIt->pRead ){
        pIt->iPos = pIt->iPosOffset;
        fts3LcsIteratorAdvance(&aIter[i]);
        nLive++;
      }
    }




    while( nLive>0 ){
      LcsIterator *pAdv = 0;      /* The iterator to advance by one position */
      int nThisLcs = 0;           /* LCS for the current iterator positions */

      for(i=0; i<pInfo->nPhrase; i++){
        LcsIterator *pIter = &aIter[i];
        if( pIter->pRead==0 ){
          /* This iterator is already at EOF for this column. */
          nThisLcs = 0;
        }else{
          if( pAdv==0 || pIter->iPos<pAdv->iPos ){
            pAdv = pIter;
          }
          if( nThisLcs==0 || pIter->iPos==pIter[-1].iPos ){
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
  TermOffsetCtx *p = (TermOffsetCtx *)ctx;
  int nTerm;                      /* Number of tokens in phrase */
  int iTerm;                      /* For looping through nTerm phrase terms */
  char *pList;                    /* Pointer to position list for phrase */
  int iPos = 0;                   /* First position in position-list */

  UNUSED_PARAMETER(iPhrase);
  pList = sqlite3Fts3FindPositions(p->pCsr, pExpr, p->iDocid, p->iCol);
  nTerm = pExpr->pPhrase->nToken;
  if( pList ){
    fts3GetDeltaPosition(&pList, &iPos);
    assert( iPos>=0 );
  }

  for(iTerm=0; iTerm<nTerm; iTerm++){







|







1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
  TermOffsetCtx *p = (TermOffsetCtx *)ctx;
  int nTerm;                      /* Number of tokens in phrase */
  int iTerm;                      /* For looping through nTerm phrase terms */
  char *pList;                    /* Pointer to position list for phrase */
  int iPos = 0;                   /* First position in position-list */

  UNUSED_PARAMETER(iPhrase);
  pList = sqlite3Fts3EvalPhrasePoslist(p->pCsr, pExpr, p->iCol);
  nTerm = pExpr->pPhrase->nToken;
  if( pList ){
    fts3GetDeltaPosition(&pList, &iPos);
    assert( iPos>=0 );
  }

  for(iTerm=0; iTerm<nTerm; iTerm++){
Changes to ext/fts3/fts3_term.c.
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
******************************************************************************
**
** This file is not part of the production FTS code. It is only used for
** testing. It contains a virtual table implementation that provides direct 
** access to the full-text index of an FTS table. 
*/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifdef SQLITE_TEST

#include "fts3Int.h"
#include <string.h>
#include <assert.h>

typedef struct Fts3termTable Fts3termTable;
typedef struct Fts3termCursor Fts3termCursor;

struct Fts3termTable {
  sqlite3_vtab base;              /* Base class used by SQLite core */

  Fts3Table *pFts3Tab;
};

struct Fts3termCursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  Fts3SegReaderCursor csr;        /* Must be right after "base" */
  Fts3SegFilter filter;

  int isEof;                      /* True if cursor is at EOF */
  char *pNext;

  sqlite3_int64 iRowid;           /* Current 'rowid' value */
  sqlite3_int64 iDocid;           /* Current 'docid' value */







>



<








>





|







11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
******************************************************************************
**
** This file is not part of the production FTS code. It is only used for
** testing. It contains a virtual table implementation that provides direct 
** access to the full-text index of an FTS table. 
*/

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
#ifdef SQLITE_TEST


#include <string.h>
#include <assert.h>

typedef struct Fts3termTable Fts3termTable;
typedef struct Fts3termCursor Fts3termCursor;

struct Fts3termTable {
  sqlite3_vtab base;              /* Base class used by SQLite core */
  int iIndex;                     /* Index for Fts3Table.aIndex[] */
  Fts3Table *pFts3Tab;
};

struct Fts3termCursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  Fts3MultiSegReader csr;        /* Must be right after "base" */
  Fts3SegFilter filter;

  int isEof;                      /* True if cursor is at EOF */
  char *pNext;

  sqlite3_int64 iRowid;           /* Current 'rowid' value */
  sqlite3_int64 iDocid;           /* Current 'docid' value */
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73




74
75
76
77
78
79
80
/*
** This function does all the work for both the xConnect and xCreate methods.
** These tables have no persistent representation of their own, so xConnect
** and xCreate are identical operations.
*/
static int fts3termConnectMethod(
  sqlite3 *db,                    /* Database connection */
  void *pUnused,                  /* Unused */
  int argc,                       /* Number of elements in argv array */
  const char * const *argv,       /* xCreate/xConnect argument array */
  sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
  char **pzErr                    /* OUT: sqlite3_malloc'd error message */
){
  char const *zDb;                /* Name of database (e.g. "main") */
  char const *zFts3;              /* Name of fts3 table */
  int nDb;                        /* Result of strlen(zDb) */
  int nFts3;                      /* Result of strlen(zFts3) */
  int nByte;                      /* Bytes of space to allocate here */
  int rc;                         /* value returned by declare_vtab() */
  Fts3termTable *p;                /* Virtual table object to return */


  UNUSED_PARAMETER(pUnused);





  /* The user should specify a single argument - the name of an fts3 table. */
  if( argc!=4 ){
    *pzErr = sqlite3_mprintf(
        "wrong number of arguments to fts4term constructor"
    );
    return SQLITE_ERROR;







|












>

<
>
>
>
>







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
/*
** This function does all the work for both the xConnect and xCreate methods.
** These tables have no persistent representation of their own, so xConnect
** and xCreate are identical operations.
*/
static int fts3termConnectMethod(
  sqlite3 *db,                    /* Database connection */
  void *pCtx,                     /* Non-zero for an fts4prefix table */
  int argc,                       /* Number of elements in argv array */
  const char * const *argv,       /* xCreate/xConnect argument array */
  sqlite3_vtab **ppVtab,          /* OUT: New sqlite3_vtab object */
  char **pzErr                    /* OUT: sqlite3_malloc'd error message */
){
  char const *zDb;                /* Name of database (e.g. "main") */
  char const *zFts3;              /* Name of fts3 table */
  int nDb;                        /* Result of strlen(zDb) */
  int nFts3;                      /* Result of strlen(zFts3) */
  int nByte;                      /* Bytes of space to allocate here */
  int rc;                         /* value returned by declare_vtab() */
  Fts3termTable *p;                /* Virtual table object to return */
  int iIndex = 0;


  if( argc==5 ){
    iIndex = atoi(argv[4]);
    argc--;
  }

  /* The user should specify a single argument - the name of an fts3 table. */
  if( argc!=4 ){
    *pzErr = sqlite3_mprintf(
        "wrong number of arguments to fts4term constructor"
    );
    return SQLITE_ERROR;
93
94
95
96
97
98
99


100
101
102
103
104
105
106
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;



  memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
  memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
  sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);

  *ppVtab = (sqlite3_vtab *)p;
  return SQLITE_OK;







>
>







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  if( !p ) return SQLITE_NOMEM;
  memset(p, 0, nByte);

  p->pFts3Tab = (Fts3Table *)&p[1];
  p->pFts3Tab->zDb = (char *)&p->pFts3Tab[1];
  p->pFts3Tab->zName = &p->pFts3Tab->zDb[nDb+1];
  p->pFts3Tab->db = db;
  p->pFts3Tab->nIndex = iIndex+1;
  p->iIndex = iIndex;

  memcpy((char *)p->pFts3Tab->zDb, zDb, nDb);
  memcpy((char *)p->pFts3Tab->zName, zFts3, nFts3);
  sqlite3Fts3Dequote((char *)p->pFts3Tab->zName);

  *ppVtab = (sqlite3_vtab *)p;
  return SQLITE_OK;
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;

  Fts3Table *pFts3 = ((Fts3termTable *)pCursor->pVtab)->pFts3Tab;
  int rc;

  UNUSED_PARAMETER(nVal);
  UNUSED_PARAMETER(idxNum);
  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(apVal);

  assert( idxStr==0 && idxNum==0 );

  /* In case this cursor is being reused, close and zero it. */
  testcase(pCsr->filter.zTerm);
  sqlite3Fts3SegReaderFinish(&pCsr->csr);
  memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);

  pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
  pCsr->filter.flags |= FTS3_SEGMENT_SCAN;

  rc = sqlite3Fts3SegReaderCursor(pFts3, FTS3_SEGCURSOR_ALL,
      pCsr->filter.zTerm, pCsr->filter.nTerm, 0, 1, &pCsr->csr
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
  }
  if( rc==SQLITE_OK ){
    rc = fts3termNextMethod(pCursor);







>
|

















|







247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts3termCursor *pCsr = (Fts3termCursor *)pCursor;
  Fts3termTable *p = (Fts3termTable *)pCursor->pVtab;
  Fts3Table *pFts3 = p->pFts3Tab;
  int rc;

  UNUSED_PARAMETER(nVal);
  UNUSED_PARAMETER(idxNum);
  UNUSED_PARAMETER(idxStr);
  UNUSED_PARAMETER(apVal);

  assert( idxStr==0 && idxNum==0 );

  /* In case this cursor is being reused, close and zero it. */
  testcase(pCsr->filter.zTerm);
  sqlite3Fts3SegReaderFinish(&pCsr->csr);
  memset(&pCsr->csr, 0, ((u8*)&pCsr[1]) - (u8*)&pCsr->csr);

  pCsr->filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
  pCsr->filter.flags |= FTS3_SEGMENT_SCAN;

  rc = sqlite3Fts3SegReaderCursor(pFts3, p->iIndex, FTS3_SEGCURSOR_ALL,
      pCsr->filter.zTerm, pCsr->filter.nTerm, 0, 1, &pCsr->csr
  );
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts3SegReaderStart(pFts3, &pCsr->csr, &pCsr->filter);
  }
  if( rc==SQLITE_OK ){
    rc = fts3termNextMethod(pCursor);
Added ext/fts3/fts3_test.c.
































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
** 2011 Jun 13
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file is not part of the production FTS code. It is only used for
** testing. It contains a Tcl command that can be used to test if a document
** matches an FTS NEAR expression.
*/

#include <tcl.h>
#include <string.h>
#include <assert.h>

#define NM_MAX_TOKEN 12

typedef struct NearPhrase NearPhrase;
typedef struct NearDocument NearDocument;
typedef struct NearToken NearToken;

struct NearDocument {
  int nToken;                     /* Length of token in bytes */
  NearToken *aToken;              /* Token array */
};

struct NearToken {
  int n;                          /* Length of token in bytes */
  const char *z;                  /* Pointer to token string */
};

struct NearPhrase {
  int nNear;                      /* Preceding NEAR value */
  int nToken;                     /* Number of tokens in this phrase */
  NearToken aToken[NM_MAX_TOKEN]; /* Array of tokens in this phrase */
};

static int nm_phrase_match(
  NearPhrase *p,
  NearToken *aToken
){
  int ii;

  for(ii=0; ii<p->nToken; ii++){
    NearToken *pToken = &p->aToken[ii];
    if( pToken->n>0 && pToken->z[pToken->n-1]=='*' ){
      if( aToken[ii].n<(pToken->n-1) ) return 0;
      if( memcmp(aToken[ii].z, pToken->z, pToken->n-1) ) return 0;
    }else{
      if( aToken[ii].n!=pToken->n ) return 0;
      if( memcmp(aToken[ii].z, pToken->z, pToken->n) ) return 0;
    }
  }

  return 1;
}

static int nm_near_chain(
  int iDir,                       /* Direction to iterate through aPhrase[] */
  NearDocument *pDoc,             /* Document to match against */
  int iPos,                       /* Position at which iPhrase was found */
  int nPhrase,                    /* Size of phrase array */
  NearPhrase *aPhrase,            /* Phrase array */
  int iPhrase                     /* Index of phrase found */
){
  int iStart;
  int iStop;
  int ii;
  int nNear;
  int iPhrase2;
  NearPhrase *p;
  NearPhrase *pPrev;

  assert( iDir==1 || iDir==-1 );

  if( iDir==1 ){
    if( (iPhrase+1)==nPhrase ) return 1;
    nNear = aPhrase[iPhrase+1].nNear;
  }else{
    if( iPhrase==0 ) return 1;
    nNear = aPhrase[iPhrase].nNear;
  }
  pPrev = &aPhrase[iPhrase];
  iPhrase2 = iPhrase+iDir;
  p = &aPhrase[iPhrase2];

  iStart = iPos - nNear - p->nToken;
  iStop = iPos + nNear + pPrev->nToken;

  if( iStart<0 ) iStart = 0;
  if( iStop > pDoc->nToken - p->nToken ) iStop = pDoc->nToken - p->nToken;

  for(ii=iStart; ii<=iStop; ii++){
    if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
      if( nm_near_chain(iDir, pDoc, ii, nPhrase, aPhrase, iPhrase2) ) return 1;
    }
  }

  return 0;
}

static int nm_match_count(
  NearDocument *pDoc,             /* Document to match against */
  int nPhrase,                    /* Size of phrase array */
  NearPhrase *aPhrase,            /* Phrase array */
  int iPhrase                     /* Index of phrase to count matches for */
){
  int nOcc = 0;
  int ii;
  NearPhrase *p = &aPhrase[iPhrase];

  for(ii=0; ii<(pDoc->nToken + 1 - p->nToken); ii++){
    if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
      /* Test forward NEAR chain (i>iPhrase) */
      if( 0==nm_near_chain(1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;

      /* Test reverse NEAR chain (i<iPhrase) */
      if( 0==nm_near_chain(-1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;

      /* This is a real match. Increment the counter. */
      nOcc++;
    }
  } 

  return nOcc;
}

/*
** Tclcmd: fts3_near_match DOCUMENT EXPR ?OPTIONS?
*/
static int fts3_near_match_cmd(
  ClientData clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int nTotal = 0;
  int rc;
  int ii;
  int nPhrase;
  NearPhrase *aPhrase = 0;
  NearDocument doc = {0, 0};
  Tcl_Obj **apDocToken;
  Tcl_Obj *pRet;
  Tcl_Obj *pPhrasecount = 0;
  
  Tcl_Obj **apExprToken;
  int nExprToken;

  /* Must have 3 or more arguments. */
  if( objc<3 || (objc%2)==0 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DOCUMENT EXPR ?OPTION VALUE?...");
    rc = TCL_ERROR;
    goto near_match_out;
  }

  for(ii=3; ii<objc; ii+=2){
    enum NM_enum { NM_PHRASECOUNTS };
    struct TestnmSubcmd {
      char *zName;
      enum NM_enum eOpt;
    } aOpt[] = {
      { "-phrasecountvar", NM_PHRASECOUNTS },
      { 0, 0 }
    };
    int iOpt;
    if( Tcl_GetIndexFromObjStruct(
        interp, objv[ii], aOpt, sizeof(aOpt[0]), "option", 0, &iOpt) 
    ){
      return TCL_ERROR;
    }

    switch( aOpt[iOpt].eOpt ){
      case NM_PHRASECOUNTS:
        pPhrasecount = objv[ii+1];
        break;
    }
  }

  rc = Tcl_ListObjGetElements(interp, objv[1], &doc.nToken, &apDocToken);
  if( rc!=TCL_OK ) goto near_match_out;
  doc.aToken = (NearToken *)ckalloc(doc.nToken*sizeof(NearToken));
  for(ii=0; ii<doc.nToken; ii++){
    doc.aToken[ii].z = Tcl_GetStringFromObj(apDocToken[ii], &doc.aToken[ii].n);
  }

  rc = Tcl_ListObjGetElements(interp, objv[2], &nExprToken, &apExprToken);
  if( rc!=TCL_OK ) goto near_match_out;

  nPhrase = (nExprToken + 1) / 2;
  aPhrase = (NearPhrase *)ckalloc(nPhrase * sizeof(NearPhrase));
  memset(aPhrase, 0, nPhrase * sizeof(NearPhrase));
  for(ii=0; ii<nPhrase; ii++){
    Tcl_Obj *pPhrase = apExprToken[ii*2];
    Tcl_Obj **apToken;
    int nToken;
    int jj;

    rc = Tcl_ListObjGetElements(interp, pPhrase, &nToken, &apToken);
    if( rc!=TCL_OK ) goto near_match_out;
    if( nToken>NM_MAX_TOKEN ){
      Tcl_AppendResult(interp, "Too many tokens in phrase", 0);
      rc = TCL_ERROR;
      goto near_match_out;
    }
    for(jj=0; jj<nToken; jj++){
      NearToken *pT = &aPhrase[ii].aToken[jj];
      pT->z = Tcl_GetStringFromObj(apToken[jj], &pT->n);
    }
    aPhrase[ii].nToken = nToken;
  }
  for(ii=1; ii<nPhrase; ii++){
    Tcl_Obj *pNear = apExprToken[2*ii-1];
    int nNear;
    rc = Tcl_GetIntFromObj(interp, pNear, &nNear);
    if( rc!=TCL_OK ) goto near_match_out;
    aPhrase[ii].nNear = nNear;
  }

  pRet = Tcl_NewObj();
  Tcl_IncrRefCount(pRet);
  for(ii=0; ii<nPhrase; ii++){
    int nOcc = nm_match_count(&doc, nPhrase, aPhrase, ii);
    Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nOcc));
    nTotal += nOcc;
  }
  if( pPhrasecount ){
    Tcl_ObjSetVar2(interp, pPhrasecount, 0, pRet, 0);
  }
  Tcl_DecrRefCount(pRet);
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(nTotal>0));

 near_match_out: 
  ckfree((char *)aPhrase);
  ckfree((char *)doc.aToken);
  return rc;
}

/*
**   Tclcmd: fts3_configure_incr_load ?CHUNKSIZE THRESHOLD?
**
** Normally, FTS uses hard-coded values to determine the minimum doclist
** size eligible for incremental loading, and the size of the chunks loaded
** when a doclist is incrementally loaded. This command allows the built-in
** values to be overridden for testing purposes.
**
** If present, the first argument is the chunksize in bytes to load doclists
** in. The second argument is the minimum doclist size in bytes to use
** incremental loading with.
**
** Whether or not the arguments are present, this command returns a list of
** two integers - the initial chunksize and threshold when the command is
** invoked. This can be used to restore the default behaviour after running
** tests. For example:
**
**    # Override incr-load settings for testing:
**    set cfg [fts3_configure_incr_load $new_chunksize $new_threshold]
**
**    .... run tests ....
**
**    # Restore initial incr-load settings:
**    eval fts3_configure_incr_load $cfg
*/
static int fts3_configure_incr_load_cmd(
  ClientData clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
#ifdef SQLITE_ENABLE_FTS3
  extern int test_fts3_node_chunksize;
  extern int test_fts3_node_chunk_threshold;
  int iArg1;
  int iArg2;
  Tcl_Obj *pRet;

  if( objc!=1 && objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?CHUNKSIZE THRESHOLD?");
    return TCL_ERROR;
  }

  pRet = Tcl_NewObj();
  Tcl_IncrRefCount(pRet);
  Tcl_ListObjAppendElement(
      interp, pRet, Tcl_NewIntObj(test_fts3_node_chunksize));
  Tcl_ListObjAppendElement(
      interp, pRet, Tcl_NewIntObj(test_fts3_node_chunk_threshold));

  if( objc==3 ){
    int iArg1;
    int iArg2;
    if( Tcl_GetIntFromObj(interp, objv[1], &iArg1)
     || Tcl_GetIntFromObj(interp, objv[2], &iArg2)
    ){
      Tcl_DecrRefCount(pRet);
      return TCL_ERROR;
    }
    test_fts3_node_chunksize = iArg1;
    test_fts3_node_chunk_threshold = iArg2;
  }

  Tcl_SetObjResult(interp, pRet);
  Tcl_DecrRefCount(pRet);
#endif
  return TCL_OK;
}

int Sqlitetestfts3_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
  Tcl_CreateObjCommand(interp, 
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  return TCL_OK;
}
Changes to ext/fts3/fts3_tokenizer.c.
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "sqlite3ext.h"
#ifndef SQLITE_CORE
  SQLITE_EXTENSION_INIT1
#endif



#include "fts3Int.h"
#include <assert.h>
#include <string.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 
** hash table. This function may be called as follows:
**







<
<




>

>
|







19
20
21
22
23
24
25


26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/


#include "sqlite3ext.h"
#ifndef SQLITE_CORE
  SQLITE_EXTENSION_INIT1
#endif
#include "fts3Int.h"

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <string.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 
** hash table. This function may be called as follows:
**
Changes to ext/fts3/fts3_tokenizer1.c.
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"


#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "fts3_tokenizer.h"







<
<

>







18
19
20
21
22
23
24


25
26
27
28
29
30
31
32
33
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/


#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "fts3_tokenizer.h"
Changes to ext/fts3/fts3_write.c.
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38



























39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
** This file is part of the SQLite FTS3 extension module. Specifically,
** this file contains code to insert, update and delete rows from FTS3
** tables. It also contains code to merge FTS3 b-tree segments. Some
** of the sub-routines used to merge segments are also used by the query 
** code in fts3.c.
*/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include "fts3Int.h"
#include <string.h>
#include <assert.h>
#include <stdlib.h>

/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end 
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
** of 920 bytes is allocated for it.
**
** This means that if we have a pointer into a buffer containing node data,
** it is always safe to read up to two varints from it without risking an
** overread, even if the node data is corrupted.
*/
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)




























typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*
** Data structure used while accumulating terms in the pending-terms hash
** table. The hash table entry maps from term (a string) to a malloc'd
** instance of this structure.

*/
struct PendingList {
  int nData;
  char *aData;
  int nSpace;
  sqlite3_int64 iLastDocid;
  sqlite3_int64 iLastCol;







>


<
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>





<
<
|
>







13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


71
72
73
74
75
76
77
78
79
** This file is part of the SQLite FTS3 extension module. Specifically,
** this file contains code to insert, update and delete rows from FTS3
** tables. It also contains code to merge FTS3 b-tree segments. Some
** of the sub-routines used to merge segments are also used by the query 
** code in fts3.c.
*/

#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)


#include <string.h>
#include <assert.h>
#include <stdlib.h>

/*
** When full-text index nodes are loaded from disk, the buffer that they
** are loaded into has the following number of bytes of padding at the end 
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
** of 920 bytes is allocated for it.
**
** This means that if we have a pointer into a buffer containing node data,
** it is always safe to read up to two varints from it without risking an
** overread, even if the node data is corrupted.
*/
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)

/*
** Under certain circumstances, b-tree nodes (doclists) can be loaded into
** memory incrementally instead of all at once. This can be a big performance
** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
** method before retrieving all query results (as may happen, for example,
** if a query has a LIMIT clause).
**
** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD 
** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
** The code is written so that the hard lower-limit for each of these values 
** is 1. Clearly such small values would be inefficient, but can be useful 
** for testing purposes.
**
** If this module is built with SQLITE_TEST defined, these constants may
** be overridden at runtime for testing purposes. File fts3_test.c contains
** a Tcl interface to read and write the values.
*/
#ifdef SQLITE_TEST
int test_fts3_node_chunksize = (4*1024);
int test_fts3_node_chunk_threshold = (4*1024)*4;
# define FTS3_NODE_CHUNKSIZE       test_fts3_node_chunksize
# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
#else
# define FTS3_NODE_CHUNKSIZE (4*1024) 
# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
#endif

typedef struct PendingList PendingList;
typedef struct SegmentNode SegmentNode;
typedef struct SegmentWriter SegmentWriter;

/*


** An instance of the following data structure is used to build doclists
** incrementally. See function fts3PendingListAppend() for details.
*/
struct PendingList {
  int nData;
  char *aData;
  int nSpace;
  sqlite3_int64 iLastDocid;
  sqlite3_int64 iLastCol;
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95



96
97
98
99
100
101
102
103
104
105
106
107
108
109


110

111
112
113
114
115
116
117
** a contiguous set of segment b-tree leaf nodes. Although the details of
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
**   sqlite3Fts3SegReaderNew()
**   sqlite3Fts3SegReaderFree()
**   sqlite3Fts3SegReaderCost()
**   sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
**   fts3SegReaderNext()
**   fts3SegReaderFirstDocid()
**   fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */

  sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
  sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
  sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
  sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */

  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */



  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
  char *zTerm;                    /* Pointer to current term */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used to iterate through the current doclist */


  char *pOffsetList;

  sqlite3_int64 iDocid;
};

#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])

/*







<


















>
>
>













|
>
>

>







96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
** a contiguous set of segment b-tree leaf nodes. Although the details of
** this structure are only manipulated by code in this file, opaque handles
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
** terms when querying the full-text index. See functions:
**
**   sqlite3Fts3SegReaderNew()
**   sqlite3Fts3SegReaderFree()

**   sqlite3Fts3SegReaderIterate()
**
** Methods used to manipulate Fts3SegReader structures:
**
**   fts3SegReaderNext()
**   fts3SegReaderFirstDocid()
**   fts3SegReaderNextDocid()
*/
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */

  sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
  sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
  sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
  sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */

  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */
  int nPopulate;                  /* If >0, bytes of buffer aNode[] loaded */
  sqlite3_blob *pBlob;            /* If not NULL, blob handle to read node */

  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
  char *zTerm;                    /* Pointer to current term */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used by fts3SegReaderNextDocid() to iterate 
  ** through the current doclist (aDoclist/nDoclist).
  */
  char *pOffsetList;
  int nOffsetList;                /* For descending pending seg-readers only */
  sqlite3_int64 iDocid;
};

#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])

/*
141
142
143
144
145
146
147








148
149
150
151
152
153
154
** the interior part of the segment b+-tree structures (everything except
** the leaf nodes). These functions and type are only ever used by code
** within the fts3SegWriterXXX() family of functions described above.
**
**   fts3NodeAddTerm()
**   fts3NodeWrite()
**   fts3NodeFree()








*/
struct SegmentNode {
  SegmentNode *pParent;           /* Parent node (or NULL for root node) */
  SegmentNode *pRight;            /* Pointer to right-sibling */
  SegmentNode *pLeftmost;         /* Pointer to left-most node of this depth */
  int nEntry;                     /* Number of terms written to node so far */
  char *zTerm;                    /* Pointer to previous term buffer */







>
>
>
>
>
>
>
>







172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
** the interior part of the segment b+-tree structures (everything except
** the leaf nodes). These functions and type are only ever used by code
** within the fts3SegWriterXXX() family of functions described above.
**
**   fts3NodeAddTerm()
**   fts3NodeWrite()
**   fts3NodeFree()
**
** When a b+tree is written to the database (either as a result of a merge
** or the pending-terms table being flushed), leaves are written into the 
** database file as soon as they are completely populated. The interior of
** the tree is assembled in memory and written out only once all leaves have
** been populated and stored. This is Ok, as the b+-tree fanout is usually
** very large, meaning that the interior of the tree consumes relatively 
** little memory.
*/
struct SegmentNode {
  SegmentNode *pParent;           /* Parent node (or NULL for root node) */
  SegmentNode *pRight;            /* Pointer to right-sibling */
  SegmentNode *pLeftmost;         /* Pointer to left-most node of this depth */
  int nEntry;                     /* Number of terms written to node so far */
  char *zTerm;                    /* Pointer to previous term buffer */
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188





189
190
191
192
193
194
195
#define SQL_DELETE_ALL_STAT            6
#define SQL_SELECT_CONTENT_BY_ROWID    7
#define SQL_NEXT_SEGMENT_INDEX         8
#define SQL_INSERT_SEGMENTS            9
#define SQL_NEXT_SEGMENTS_ID          10
#define SQL_INSERT_SEGDIR             11
#define SQL_SELECT_LEVEL              12
#define SQL_SELECT_ALL_LEVEL          13
#define SQL_SELECT_LEVEL_COUNT        14
#define SQL_SELECT_SEGDIR_COUNT_MAX   15
#define SQL_DELETE_SEGDIR_BY_LEVEL    16
#define SQL_DELETE_SEGMENTS_RANGE     17
#define SQL_CONTENT_INSERT            18
#define SQL_DELETE_DOCSIZE            19
#define SQL_REPLACE_DOCSIZE           20
#define SQL_SELECT_DOCSIZE            21
#define SQL_SELECT_DOCTOTAL           22
#define SQL_REPLACE_DOCTOTAL          23






/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**







|

|
|







>
>
>
>
>







210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#define SQL_DELETE_ALL_STAT            6
#define SQL_SELECT_CONTENT_BY_ROWID    7
#define SQL_NEXT_SEGMENT_INDEX         8
#define SQL_INSERT_SEGMENTS            9
#define SQL_NEXT_SEGMENTS_ID          10
#define SQL_INSERT_SEGDIR             11
#define SQL_SELECT_LEVEL              12
#define SQL_SELECT_LEVEL_RANGE        13
#define SQL_SELECT_LEVEL_COUNT        14
#define SQL_SELECT_SEGDIR_MAX_LEVEL   15
#define SQL_DELETE_SEGDIR_LEVEL       16
#define SQL_DELETE_SEGMENTS_RANGE     17
#define SQL_CONTENT_INSERT            18
#define SQL_DELETE_DOCSIZE            19
#define SQL_REPLACE_DOCSIZE           20
#define SQL_SELECT_DOCSIZE            21
#define SQL_SELECT_DOCTOTAL           22
#define SQL_REPLACE_DOCTOTAL          23

#define SQL_SELECT_ALL_PREFIX_LEVEL   24
#define SQL_DELETE_ALL_TERMS_SEGDIR   25

#define SQL_DELETE_SEGDIR_RANGE       26

/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237





238
239
240
241
242
243
244
/* 10 */  "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
/* 11 */  "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",

          /* Return segments in order from oldest to newest.*/ 
/* 12 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
            "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
/* 13 */  "SELECT idx, start_block, leaves_end_block, end_block, root "

            "FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC",

/* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */  "SELECT count(*), max(level) FROM %Q.'%q_segdir'",

/* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%s)",
/* 19 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */  "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 23 */  "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",





  };
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  







>
|


|









>
>
>
>
>







262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/* 10 */  "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
/* 11 */  "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",

          /* Return segments in order from oldest to newest.*/ 
/* 12 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
            "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
/* 13 */  "SELECT idx, start_block, leaves_end_block, end_block, root "
            "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
            "ORDER BY level DESC, idx ASC",

/* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */  "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",

/* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%s)",
/* 19 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */  "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 23 */  "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
/* 24 */  "",
/* 25 */  "",

/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",

  };
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  
386
387
388
389
390
391
392
393





394
395





396

397




398

399
400


401
402
403
404
405
406
407
**
**   0: idx
**   1: start_block
**   2: leaves_end_block
**   3: end_block
**   4: root
*/
int sqlite3Fts3AllSegdirs(Fts3Table *p, int iLevel, sqlite3_stmt **ppStmt){





  int rc;
  sqlite3_stmt *pStmt = 0;





  if( iLevel<0 ){

    rc = fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, &pStmt, 0);




  }else{

    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
    if( rc==SQLITE_OK ) sqlite3_bind_int(pStmt, 1, iLevel);


  }
  *ppStmt = pStmt;
  return rc;
}


/*







|
>
>
>
>
>


>
>
>
>
>

>
|
>
>
>
>

>

|
>
>







436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
**
**   0: idx
**   1: start_block
**   2: leaves_end_block
**   3: end_block
**   4: root
*/
int sqlite3Fts3AllSegdirs(
  Fts3Table *p,                   /* FTS3 table */
  int iIndex,                     /* Index for p->aIndex[] */
  int iLevel,                     /* Level to select */
  sqlite3_stmt **ppStmt           /* OUT: Compiled statement */
){
  int rc;
  sqlite3_stmt *pStmt = 0;

  assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  if( iLevel<0 ){
    /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
      sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL-1);
    }
  }else{
    /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int(pStmt, 1, iLevel+iIndex*FTS3_SEGDIR_MAXLEVEL);
    }
  }
  *ppStmt = pStmt;
  return rc;
}


/*
507
508
509
510
511
512
513









































514
515
516
517
518
519
520
  *pRc = rc;
  if( p!=*pp ){
    *pp = p;
    return 1;
  }
  return 0;
}










































/*
** Tokenize the nul-terminated string zText and add all tokens to the
** pending-terms hash-table. The docid used is that currently stored in
** p->iPrevDocid, and the column is specified by argument iCol.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
  *pRc = rc;
  if( p!=*pp ){
    *pp = p;
    return 1;
  }
  return 0;
}

/*
** Free a PendingList object allocated by fts3PendingListAppend().
*/
static void fts3PendingListDelete(PendingList *pList){
  sqlite3_free(pList);
}

/*
** Add an entry to one of the pending-terms hash tables.
*/
static int fts3PendingTermsAddOne(
  Fts3Table *p,
  int iCol,
  int iPos,
  Fts3Hash *pHash,                /* Pending terms hash table to add entry to */
  const char *zToken,
  int nToken
){
  PendingList *pList;
  int rc = SQLITE_OK;

  pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
  if( pList ){
    p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
  }
  if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
    if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
      /* Malloc failed while inserting the new entry. This can only 
      ** happen if there was no previous entry for this token.
      */
      assert( 0==fts3HashFind(pHash, zToken, nToken) );
      sqlite3_free(pList);
      rc = SQLITE_NOMEM;
    }
  }
  if( rc==SQLITE_OK ){
    p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
  }
  return rc;
}

/*
** Tokenize the nul-terminated string zText and add all tokens to the
** pending-terms hash-table. The docid used is that currently stored in
** p->iPrevDocid, and the column is specified by argument iCol.
**
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588


589


590


591
592
593
594
595
596
597
  }
  pCsr->pTokenizer = pTokenizer;

  xNext = pModule->xNext;
  while( SQLITE_OK==rc
      && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
  ){
    PendingList *pList;
 
    if( iPos>=nWord ) nWord = iPos+1;

    /* Positions cannot be negative; we use -1 as a terminator internally.
    ** Tokens must have a non-zero length.
    */
    if( iPos<0 || !zToken || nToken<=0 ){
      rc = SQLITE_ERROR;
      break;
    }

    pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken);
    if( pList ){
      p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
    }
    if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
      if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){
        /* Malloc failed while inserting the new entry. This can only 
        ** happen if there was no previous entry for this token.
        */
        assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) );
        sqlite3_free(pList);
        rc = SQLITE_NOMEM;
      }
    }


    if( rc==SQLITE_OK ){


      p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));


    }
  }

  pModule->xClose(pCsr);
  *pnWord = nWord;
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}







<
|










|
<
<
<
|
<
<
<
<
|
|
<
|
<
>
>
|
>
>
|
>
>







665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683



684




685
686

687

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
  }
  pCsr->pTokenizer = pTokenizer;

  xNext = pModule->xNext;
  while( SQLITE_OK==rc
      && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
  ){

    int i;
    if( iPos>=nWord ) nWord = iPos+1;

    /* Positions cannot be negative; we use -1 as a terminator internally.
    ** Tokens must have a non-zero length.
    */
    if( iPos<0 || !zToken || nToken<=0 ){
      rc = SQLITE_ERROR;
      break;
    }

    /* Add the term to the terms index */



    rc = fts3PendingTermsAddOne(




        p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
    );

    

    /* Add the term to each of the prefix indexes that it is not too 
    ** short for. */
    for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
      struct Fts3Index *pIndex = &p->aIndex[i];
      if( nToken<pIndex->nPrefix ) continue;
      rc = fts3PendingTermsAddOne(
          p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
      );
    }
  }

  pModule->xClose(pCsr);
  *pnWord = nWord;
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}
613
614
615
616
617
618
619
620
621
622


623

624
625

626
627

628
629
630
631
632
633
634
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

/*
** Discard the contents of the pending-terms hash table. 
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){


  Fts3HashElem *pElem;

  for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
    sqlite3_free(fts3HashData(pElem));

  }
  fts3HashClear(&p->pendingTerms);

  p->nPendingData = 0;
}

/*
** This function is called by the xUpdate() method as part of an INSERT
** operation. It adds entries for each term in the new record to the
** pendingTerms hash table.







|


>
>
|
>
|
|
>
|
|
>







718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

/*
** Discard the contents of the pending-terms hash tables. 
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
  int i;
  for(i=0; i<p->nIndex; i++){
    Fts3HashElem *pElem;
    Fts3Hash *pHash = &p->aIndex[i].hPending;
    for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
      PendingList *pList = (PendingList *)fts3HashData(pElem);
      fts3PendingListDelete(pList);
    }
    fts3HashClear(pHash);
  }
  p->nPendingData = 0;
}

/*
** This function is called by the xUpdate() method as part of an INSERT
** operation. It adds entries for each term in the new record to the
** pendingTerms hash table.
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800





801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
  *pRC = rc;
}

/*
** Forward declaration to account for the circular dependency between
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
*/
static int fts3SegmentMerge(Fts3Table *, int);

/* 
** This function allocates a new level iLevel index in the segdir table.
** Usually, indexes are allocated within a level sequentially starting
** with 0, so the allocated index is one greater than the value returned
** by:
**
**   SELECT max(idx) FROM %_segdir WHERE level = :iLevel
**
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
** level, they are merged into a single level (iLevel+1) segment and the 
** allocated index is 0.
**
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
** returned. Otherwise, an SQLite error code is returned.
*/
static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){





  int rc;                         /* Return Code */
  sqlite3_stmt *pNextIdx;         /* Query for next idx at level iLevel */
  int iNext = 0;                  /* Result of query pNextIdx */

  /* Set variable iNext to the next available segdir index at level iLevel. */
  rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pNextIdx, 1, iLevel);
    if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
      iNext = sqlite3_column_int(pNextIdx, 0);
    }
    rc = sqlite3_reset(pNextIdx);
  }

  if( rc==SQLITE_OK ){
    /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
    ** full, merge all segments in level iLevel into a single iLevel+1
    ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
    ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
    */
    if( iNext>=FTS3_MERGE_COUNT ){
      rc = fts3SegmentMerge(p, iLevel);
      *piIdx = 0;
    }else{
      *piIdx = iNext;
    }
  }

  return rc;







|
















|
>
>
>
>
>







|













|







886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
  *pRC = rc;
}

/*
** Forward declaration to account for the circular dependency between
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
*/
static int fts3SegmentMerge(Fts3Table *, int, int);

/* 
** This function allocates a new level iLevel index in the segdir table.
** Usually, indexes are allocated within a level sequentially starting
** with 0, so the allocated index is one greater than the value returned
** by:
**
**   SELECT max(idx) FROM %_segdir WHERE level = :iLevel
**
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
** level, they are merged into a single level (iLevel+1) segment and the 
** allocated index is 0.
**
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
** returned. Otherwise, an SQLite error code is returned.
*/
static int fts3AllocateSegdirIdx(
  Fts3Table *p, 
  int iIndex,                     /* Index for p->aIndex */
  int iLevel, 
  int *piIdx
){
  int rc;                         /* Return Code */
  sqlite3_stmt *pNextIdx;         /* Query for next idx at level iLevel */
  int iNext = 0;                  /* Result of query pNextIdx */

  /* Set variable iNext to the next available segdir index at level iLevel. */
  rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pNextIdx, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
    if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
      iNext = sqlite3_column_int(pNextIdx, 0);
    }
    rc = sqlite3_reset(pNextIdx);
  }

  if( rc==SQLITE_OK ){
    /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
    ** full, merge all segments in level iLevel into a single iLevel+1
    ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
    ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
    */
    if( iNext>=FTS3_MERGE_COUNT ){
      rc = fts3SegmentMerge(p, iIndex, iLevel);
      *piIdx = 0;
    }else{
      *piIdx = iNext;
    }
  }

  return rc;
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

884
885
886
887
888




889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911





































912
913
914
915
916
917
918





919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949


950
951
952
953
954
955
956
957
958
959
960
961

962
963





964
965
966





967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986




987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013











1014
1015



1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

1029
1030
1031
1032

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042



1043
1044
1045
1046
1047
1048
1049
1050
1051
1052


1053
1054
1055
1056
1057

1058










































1059
1060



1061
1062
1063
1064

1065


1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080


1081
1082
1083
1084
1085
1086
1087
1088
1089




1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

1162
1163
1164
1165
1166
1167
1168
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iBlockid,         /* Access the row with blockid=$iBlockid */
  char **paBlob,                  /* OUT: Blob data in malloc'd buffer */
  int *pnBlob                     /* OUT: Size of blob data */

){
  int rc;                         /* Return code */

  /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
  assert( pnBlob);

  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);

    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{




        rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
        memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
        if( rc!=SQLITE_OK ){
          sqlite3_free(aByte);
          aByte = 0;
        }
      }
      *paBlob = aByte;
    }
    *pnBlob = nByte;
  }

  return rc;
}

/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}






































/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){





  char *pNext;                    /* Cursor variable */
  int nPrefix;                    /* Number of bytes in term prefix */
  int nSuffix;                    /* Number of bytes in term suffix */

  if( !pReader->aDoclist ){
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
    int rc;                       /* Return code from Fts3ReadBlock() */

    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        pReader->zTerm = (char *)fts3HashKey(pElem);
        pReader->nTerm = fts3HashKeysize(pElem);
        pReader->nNode = pReader->nDoclist = pList->nData + 1;
        pReader->aNode = pReader->aDoclist = pList->aData;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }
      return SQLITE_OK;
    }

    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);


    }
    pReader->aNode = 0;

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode

    );
    if( rc!=SQLITE_OK ) return rc;





    pNext = pReader->aNode;
  }
  





  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted.  
  */
  pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
  pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
  if( nPrefix<0 || nSuffix<=0 
   || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] 
  ){
    return SQLITE_CORRUPT_VTAB;
  }

  if( nPrefix+nSuffix>pReader->nTermAlloc ){
    int nNew = (nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }




  memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
  pReader->nTerm = nPrefix+nSuffix;
  pNext += nSuffix;
  pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] 
   || pReader->aDoclist[pReader->nDoclist-1]
  ){
    return SQLITE_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

/*
** Set the SegReader to point to the first docid in the doclist associated
** with the current term.
*/
static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){
  int n;
  assert( pReader->aDoclist );
  assert( !pReader->pOffsetList );











  n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
  pReader->pOffsetList = &pReader->aDoclist[n];



}

/*
** Advance the SegReader to point to the next docid in the doclist
** associated with the current term.
** 
** If arguments ppOffsetList and pnOffsetList are not NULL, then 
** *ppOffsetList is set to point to the first column-offset list
** in the doclist entry (i.e. immediately past the docid varint).
** *pnOffsetList is set to the length of the set of column-offset
** lists, not including the nul-terminator byte. For example:
*/
static void fts3SegReaderNextDocid(

  Fts3SegReader *pReader,
  char **ppOffsetList,
  int *pnOffsetList
){

  char *p = pReader->pOffsetList;
  char c = 0;

  /* Pointer p currently points at the first byte of an offset list. The
  ** following two lines advance it to point one byte past the end of
  ** the same offset list.
  */
  while( *p | c ) c = *p++ & 0x80;
  p++;




  /* If required, populate the output variables with a pointer to and the
  ** size of the previous offset-list.
  */
  if( ppOffsetList ){
    *ppOffsetList = pReader->pOffsetList;
    *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
  }

  /* If there are no more entries in the doclist, set pOffsetList to
  ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and


  ** Fts3SegReader.pOffsetList to point to the next offset list before
  ** returning.
  */
  if( p>=&pReader->aDoclist[pReader->nDoclist] ){
    pReader->pOffsetList = 0;

  }else{










































    sqlite3_int64 iDelta;
    pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);



    pReader->iDocid += iDelta;
  }
}


/*


** This function is called to estimate the amount of data that will be 
** loaded from the disk If SegReaderIterate() is called on this seg-reader,
** in units of average document size.
** 
** This can be used as follows: If the caller has a small doclist that 
** contains references to N documents, and is considering merging it with
** a large doclist (size X "average documents"), it may opt not to load
** the large doclist if X>N.
*/
int sqlite3Fts3SegReaderCost(
  Fts3Cursor *pCsr,               /* FTS3 cursor handle */
  Fts3SegReader *pReader,         /* Segment-reader handle */
  int *pnCost                     /* IN/OUT: Number of bytes read */
){
  Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;


  int rc = SQLITE_OK;             /* Return code */
  int nCost = 0;                  /* Cost in bytes to return */
  int pgsz = p->nPgsz;            /* Database page size */

  /* If this seg-reader is reading the pending-terms table, or if all data
  ** for the segment is stored on the root page of the b-tree, then the cost
  ** is zero. In this case all required data is already in main memory.
  */
  if( p->bHasStat 




   && !fts3SegReaderIsPending(pReader) 
   && !fts3SegReaderIsRootOnly(pReader) 
  ){
    int nBlob = 0;
    sqlite3_int64 iBlock;

    if( pCsr->nRowAvg==0 ){
      /* The average document size, which is required to calculate the cost
      ** of each doclist, has not yet been determined. Read the required 
      ** data from the %_stat table to calculate it.
      **
      ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
      ** varints, where nCol is the number of columns in the FTS3 table.
      ** The first varint is the number of documents currently stored in
      ** the table. The following nCol varints contain the total amount of
      ** data stored in all rows of each column of the table, from left
      ** to right.
      */
      sqlite3_stmt *pStmt;
      sqlite3_int64 nDoc = 0;
      sqlite3_int64 nByte = 0;
      const char *pEnd;
      const char *a;

      rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
      if( rc!=SQLITE_OK ) return rc;
      a = sqlite3_column_blob(pStmt, 0);
      assert( a );

      pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
      a += sqlite3Fts3GetVarint(a, &nDoc);
      while( a<pEnd ){
        a += sqlite3Fts3GetVarint(a, &nByte);
      }
      if( nDoc==0 || nByte==0 ){
        sqlite3_reset(pStmt);
        return SQLITE_CORRUPT_VTAB;
      }

      pCsr->nRowAvg = (int)(((nByte / nDoc) + pgsz) / pgsz);
      assert( pCsr->nRowAvg>0 ); 
      rc = sqlite3_reset(pStmt);
      if( rc!=SQLITE_OK ) return rc;
    }

    /* Assume that a blob flows over onto overflow pages if it is larger
    ** than (pgsz-35) bytes in size (the file-format documentation
    ** confirms this).
    */
    for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
      rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob);
      if( rc!=SQLITE_OK ) break;
      if( (nBlob+35)>pgsz ){
        int nOvfl = (nBlob + 34)/pgsz;
        nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
      }
    }
  }

  *pnCost += nCost;
  return rc;
}

/*
** Free all allocations associated with the iterator passed as the 
** second argument.
*/
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
  if( pReader && !fts3SegReaderIsPending(pReader) ){
    sqlite3_free(pReader->zTerm);
    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);

    }
  }
  sqlite3_free(pReader);
}

/*
** Allocate a new SegReader object.







|
>




















>





>
>
>
>









<













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






|
>
>
>
>
>











<



















>
>











|
>


>
>
>
>
>


|
>
>
>
>
>

|
<

















>
>
>
>












|










|
|


>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>












|
>
|
|
|

>



<
<
<
<
<
|

>
>
>
|
|
<
|
|
|
|
|
|
|
>
>
|
|
<
<
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
|
|
|
|
>
|
>
>
|
|
<
<
<
<
<
<
<
|
|
|
|


>
>
|
<
|

<
<
<
<
|
>
>
>
>
|
|
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
<
|
|
|
|
|












>







971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228





1229
1230
1231
1232
1233
1234
1235

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246


1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306







1307
1308
1309
1310
1311
1312
1313
1314
1315

1316
1317




1318
1319
1320
1321
1322
1323
1324
1325
1326

1327

















1328
1329


























1330
1331
1332

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iBlockid,         /* Access the row with blockid=$iBlockid */
  char **paBlob,                  /* OUT: Blob data in malloc'd buffer */
  int *pnBlob,                    /* OUT: Size of blob data */
  int *pnLoad                     /* OUT: Bytes actually loaded */
){
  int rc;                         /* Return code */

  /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
  assert( pnBlob);

  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    *pnBlob = nByte;
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
      if( !aByte ){
        rc = SQLITE_NOMEM;
      }else{
        if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
          nByte = FTS3_NODE_CHUNKSIZE;
          *pnLoad = nByte;
        }
        rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
        memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
        if( rc!=SQLITE_OK ){
          sqlite3_free(aByte);
          aByte = 0;
        }
      }
      *paBlob = aByte;
    }

  }

  return rc;
}

/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}
    
static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
  int nRead;                      /* Number of bytes to read */
  int rc;                         /* Return code */

  nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
  rc = sqlite3_blob_read(
      pReader->pBlob, 
      &pReader->aNode[pReader->nPopulate],
      nRead,
      pReader->nPopulate
  );

  if( rc==SQLITE_OK ){
    pReader->nPopulate += nRead;
    memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
    if( pReader->nPopulate==pReader->nNode ){
      sqlite3_blob_close(pReader->pBlob);
      pReader->pBlob = 0;
      pReader->nPopulate = 0;
    }
  }
  return rc;
}

static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
  int rc = SQLITE_OK;
  assert( !pReader->pBlob 
       || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
  );
  while( pReader->pBlob && rc==SQLITE_OK 
     &&  (pFrom - pReader->aNode + nByte)>pReader->nPopulate
  ){
    rc = fts3SegReaderIncrRead(pReader);
  }
  return rc;
}

/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(
  Fts3Table *p, 
  Fts3SegReader *pReader,
  int bIncr
){
  int rc;                         /* Return code of various sub-routines */
  char *pNext;                    /* Cursor variable */
  int nPrefix;                    /* Number of bytes in term prefix */
  int nSuffix;                    /* Number of bytes in term suffix */

  if( !pReader->aDoclist ){
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){


    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);
        pReader->zTerm = (char *)fts3HashKey(pElem);
        pReader->nTerm = fts3HashKeysize(pElem);
        pReader->nNode = pReader->nDoclist = pList->nData + 1;
        pReader->aNode = pReader->aDoclist = pList->aData;
        pReader->ppNextElem++;
        assert( pReader->aNode );
      }
      return SQLITE_OK;
    }

    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
      sqlite3_blob_close(pReader->pBlob);
      pReader->pBlob = 0;
    }
    pReader->aNode = 0;

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, 
        (bIncr ? &pReader->nPopulate : 0)
    );
    if( rc!=SQLITE_OK ) return rc;
    assert( pReader->pBlob==0 );
    if( bIncr && pReader->nPopulate<pReader->nNode ){
      pReader->pBlob = p->pSegments;
      p->pSegments = 0;
    }
    pNext = pReader->aNode;
  }

  assert( !fts3SegReaderIsPending(pReader) );

  rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
  if( rc!=SQLITE_OK ) return rc;
  
  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted. */

  pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
  pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
  if( nPrefix<0 || nSuffix<=0 
   || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] 
  ){
    return SQLITE_CORRUPT_VTAB;
  }

  if( nPrefix+nSuffix>pReader->nTermAlloc ){
    int nNew = (nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }

  rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
  if( rc!=SQLITE_OK ) return rc;

  memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
  pReader->nTerm = nPrefix+nSuffix;
  pNext += nSuffix;
  pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] 
   || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
  ){
    return SQLITE_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

/*
** Set the SegReader to point to the first docid in the doclist associated
** with the current term.
*/
static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
  int rc = SQLITE_OK;
  assert( pReader->aDoclist );
  assert( !pReader->pOffsetList );
  if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
    u8 bEof = 0;
    pReader->iDocid = 0;
    pReader->nOffsetList = 0;
    sqlite3Fts3DoclistPrev(0,
        pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, 
        &pReader->iDocid, &pReader->nOffsetList, &bEof
    );
  }else{
    rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
    if( rc==SQLITE_OK ){
      int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
      pReader->pOffsetList = &pReader->aDoclist[n];
    }
  }
  return rc;
}

/*
** Advance the SegReader to point to the next docid in the doclist
** associated with the current term.
** 
** If arguments ppOffsetList and pnOffsetList are not NULL, then 
** *ppOffsetList is set to point to the first column-offset list
** in the doclist entry (i.e. immediately past the docid varint).
** *pnOffsetList is set to the length of the set of column-offset
** lists, not including the nul-terminator byte. For example:
*/
static int fts3SegReaderNextDocid(
  Fts3Table *pTab,
  Fts3SegReader *pReader,         /* Reader to advance to next docid */
  char **ppOffsetList,            /* OUT: Pointer to current position-list */
  int *pnOffsetList               /* OUT: Length of *ppOffsetList in bytes */
){
  int rc = SQLITE_OK;
  char *p = pReader->pOffsetList;
  char c = 0;






  assert( p );

  if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
    /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
    ** Pending-terms doclists are always built up in ascending order, so
    ** we have to iterate through them backwards here. */
    u8 bEof = 0;

    if( ppOffsetList ){
      *ppOffsetList = pReader->pOffsetList;
      *pnOffsetList = pReader->nOffsetList - 1;
    }
    sqlite3Fts3DoclistPrev(0,
        pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
        &pReader->nOffsetList, &bEof
    );
    if( bEof ){
      pReader->pOffsetList = 0;
    }else{


      pReader->pOffsetList = p;
    }
  }else{
    char *pEnd = &pReader->aDoclist[pReader->nDoclist];

    /* Pointer p currently points at the first byte of an offset list. The
    ** following block advances it to point one byte past the end of
    ** the same offset list. */
    while( 1 ){
  
      /* The following line of code (and the "p++" below the while() loop) is
      ** normally all that is required to move pointer p to the desired 
      ** position. The exception is if this node is being loaded from disk
      ** incrementally and pointer "p" now points to the first byte passed
      ** the populated part of pReader->aNode[].
      */
      while( *p | c ) c = *p++ & 0x80;
      assert( *p==0 );
  
      if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
      rc = fts3SegReaderIncrRead(pReader);
      if( rc!=SQLITE_OK ) return rc;
    }
    p++;
  
    /* If required, populate the output variables with a pointer to and the
    ** size of the previous offset-list.
    */
    if( ppOffsetList ){
      *ppOffsetList = pReader->pOffsetList;
      *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
    }

    while( p<pEnd && *p==0 ) p++;
  
    /* If there are no more entries in the doclist, set pOffsetList to
    ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
    ** Fts3SegReader.pOffsetList to point to the next offset list before
    ** returning.
    */
    if( p>=pEnd ){
      pReader->pOffsetList = 0;
    }else{
      rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
      if( rc==SQLITE_OK ){
        sqlite3_int64 iDelta;
        pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
        if( pTab->bDescIdx ){
          pReader->iDocid -= iDelta;
        }else{
          pReader->iDocid += iDelta;
        }
      }
    }
  }

  return SQLITE_OK;
}









int sqlite3Fts3MsrOvfl(
  Fts3Cursor *pCsr, 
  Fts3MultiSegReader *pMsr,
  int *pnOvfl
){
  Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
  int nOvfl = 0;
  int ii;
  int rc = SQLITE_OK;

  int pgsz = p->nPgsz;





  assert( p->bHasStat );
  assert( pgsz>0 );

  for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
    Fts3SegReader *pReader = pMsr->apSegment[ii];
    if( !fts3SegReaderIsPending(pReader) 
     && !fts3SegReaderIsRootOnly(pReader) 
    ){
      int jj;

      for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){

















        int nBlob;
        rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);


























        if( rc!=SQLITE_OK ) break;
        if( (nBlob+35)>pgsz ){
          nOvfl += (nBlob + 34)/pgsz;

        }
      }
    }
  }
  *pnOvfl = nOvfl;
  return rc;
}

/*
** Free all allocations associated with the iterator passed as the 
** second argument.
*/
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
  if( pReader && !fts3SegReaderIsPending(pReader) ){
    sqlite3_free(pReader->zTerm);
    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
      sqlite3_blob_close(pReader->pBlob);
    }
  }
  sqlite3_free(pReader);
}

/*
** Allocate a new SegReader object.
1231
1232
1233
1234
1235
1236
1237















1238
1239
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249

1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284


1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
  }
  return c;
}

/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.















*/
int sqlite3Fts3SegReaderPending(
  Fts3Table *p,                   /* Virtual table handle */

  const char *zTerm,              /* Term to search for */
  int nTerm,                      /* Size of buffer zTerm */
  int isPrefix,                   /* True for a term-prefix query */
  Fts3SegReader **ppReader        /* OUT: SegReader for pending-terms */
){
  Fts3SegReader *pReader = 0;     /* Fts3SegReader object to return */
  Fts3HashElem **aElem = 0;       /* Array of term hash entries to scan */
  int nElem = 0;                  /* Size of array at aElem */
  int rc = SQLITE_OK;             /* Return Code */



  if( isPrefix ){
    int nAlloc = 0;               /* Size of allocated array at aElem */
    Fts3HashElem *pE = 0;         /* Iterator variable */

    for(pE=fts3HashFirst(&p->pendingTerms); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }
          aElem = aElem2;
        }

        aElem[nElem++] = pE;
      }
    }

    /* If more than one term matches the prefix, sort the Fts3HashElem
    ** objects in term order using qsort(). This uses the same comparison
    ** callback as is used when flushing terms to disk.
    */
    if( nElem>1 ){
      qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
    }

  }else{


    Fts3HashElem *pE = fts3HashFindElem(&p->pendingTerms, zTerm, nTerm);
    if( pE ){
      aElem = &pE;
      nElem = 1;
    }
  }

  if( nElem>0 ){
    int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
    if( !pReader ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pReader, 0, nByte);
      pReader->iIdx = 0x7FFFFFFF;
      pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
      memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
    }
  }

  if( isPrefix ){
    sqlite3_free(aElem);
  }
  *ppReader = pReader;
  return rc;
}

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>


|






>

>
|



|
















>













>
>
|



















|







1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
  }
  return c;
}

/*
** This function is used to allocate an Fts3SegReader that iterates through
** a subset of the terms stored in the Fts3Table.pendingTerms array.
**
** If the isPrefixIter parameter is zero, then the returned SegReader iterates
** through each term in the pending-terms table. Or, if isPrefixIter is
** non-zero, it iterates through each term and its prefixes. For example, if
** the pending terms hash table contains the terms "sqlite", "mysql" and
** "firebird", then the iterator visits the following 'terms' (in the order
** shown):
**
**   f fi fir fire fireb firebi firebir firebird
**   m my mys mysq mysql
**   s sq sql sqli sqlit sqlite
**
** Whereas if isPrefixIter is zero, the terms visited are:
**
**   firebird mysql sqlite
*/
int sqlite3Fts3SegReaderPending(
  Fts3Table *p,                   /* Virtual table handle */
  int iIndex,                     /* Index for p->aIndex */
  const char *zTerm,              /* Term to search for */
  int nTerm,                      /* Size of buffer zTerm */
  int bPrefix,                    /* True for a prefix iterator */
  Fts3SegReader **ppReader        /* OUT: SegReader for pending-terms */
){
  Fts3SegReader *pReader = 0;     /* Fts3SegReader object to return */
  Fts3HashElem **aElem = 0;       /* Array of term hash entries to scan */
  int nElem = 0;                  /* Size of array at aElem */
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Hash *pHash;

  pHash = &p->aIndex[iIndex].hPending;
  if( bPrefix ){
    int nAlloc = 0;               /* Size of allocated array at aElem */
    Fts3HashElem *pE = 0;         /* Iterator variable */

    for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
      char *zKey = (char *)fts3HashKey(pE);
      int nKey = fts3HashKeysize(pE);
      if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
        if( nElem==nAlloc ){
          Fts3HashElem **aElem2;
          nAlloc += 16;
          aElem2 = (Fts3HashElem **)sqlite3_realloc(
              aElem, nAlloc*sizeof(Fts3HashElem *)
          );
          if( !aElem2 ){
            rc = SQLITE_NOMEM;
            nElem = 0;
            break;
          }
          aElem = aElem2;
        }

        aElem[nElem++] = pE;
      }
    }

    /* If more than one term matches the prefix, sort the Fts3HashElem
    ** objects in term order using qsort(). This uses the same comparison
    ** callback as is used when flushing terms to disk.
    */
    if( nElem>1 ){
      qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
    }

  }else{
    /* The query is a simple term lookup that matches at most one term in
    ** the index. All that is required is a straight hash-lookup. */
    Fts3HashElem *pE = fts3HashFindElem(pHash, zTerm, nTerm);
    if( pE ){
      aElem = &pE;
      nElem = 1;
    }
  }

  if( nElem>0 ){
    int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
    pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
    if( !pReader ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pReader, 0, nByte);
      pReader->iIdx = 0x7FFFFFFF;
      pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
      memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
    }
  }

  if( bPrefix ){
    sqlite3_free(aElem);
  }
  *ppReader = pReader;
  return rc;
}

/*
1358
1359
1360
1361
1362
1363
1364












1365
1366
1367
1368
1369
1370
1371
  int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
  if( rc==0 ){
    if( pLhs->iDocid==pRhs->iDocid ){
      rc = pRhs->iIdx - pLhs->iIdx;
    }else{
      rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
    }












  }
  assert( pLhs->aNode && pRhs->aNode );
  return rc;
}

/*
** Compare the term that the Fts3SegReader object passed as the first argument







>
>
>
>
>
>
>
>
>
>
>
>







1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
  int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
  if( rc==0 ){
    if( pLhs->iDocid==pRhs->iDocid ){
      rc = pRhs->iIdx - pLhs->iIdx;
    }else{
      rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
    }
  }
  assert( pLhs->aNode && pRhs->aNode );
  return rc;
}
static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
  int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
  if( rc==0 ){
    if( pLhs->iDocid==pRhs->iDocid ){
      rc = pRhs->iIdx - pLhs->iIdx;
    }else{
      rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
    }
  }
  assert( pLhs->aNode && pRhs->aNode );
  return rc;
}

/*
** Compare the term that the Fts3SegReader object passed as the first argument
1910
1911
1912
1913
1914
1915
1916
1917
1918


1919
1920
1921
1922
1923
1924
1925

1926






1927
1928


1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951

1952
1953
1954
1955
1956
1957
1958
    }
    rc = sqlite3_reset(pStmt);
  }
  return rc;
}

/*
** Set *pnSegment to the total number of segments in the database. Set
** *pnMax to the largest segment level in the database (segment levels


** are stored in the 'level' column of the %_segdir table).
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){
  sqlite3_stmt *pStmt;
  int rc;








  rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;


  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    *pnSegment = sqlite3_column_int(pStmt, 0);
    *pnMax = sqlite3_column_int(pStmt, 1);
  }
  return sqlite3_reset(pStmt);
}

/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
** it:
** 
**   1) Deletes all %_segments entries for the segments associated with 
**      each of the SegReader objects in the array passed as the third 
**      argument, and
**
**   2) deletes all %_segdir entries with level iLevel, or all %_segdir
**      entries regardless of level if (iLevel<0).
**
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
*/
static int fts3DeleteSegdir(
  Fts3Table *p,                   /* Virtual table handle */

  int iLevel,                     /* Level of %_segdir entries to delete */
  Fts3SegReader **apSegment,      /* Array of SegReader objects */
  int nReader                     /* Size of array apSegment */
){
  int rc;                         /* Return Code */
  int i;                          /* Iterator variable */
  sqlite3_stmt *pDelete;          /* SQL statement to delete rows */







<
|
>
>
|



|


>

>
>
>
>
>
>
|

>
>

<
|




















>







2132
2133
2134
2135
2136
2137
2138

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
    }
    rc = sqlite3_reset(pStmt);
  }
  return rc;
}

/*

** Set *pnMax to the largest segment level in the database for the index
** iIndex.
**
** Segment levels are stored in the 'level' column of the %_segdir table.
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentMaxLevel(Fts3Table *p, int iIndex, int *pnMax){
  sqlite3_stmt *pStmt;
  int rc;
  assert( iIndex>=0 && iIndex<p->nIndex );

  /* Set pStmt to the compiled version of:
  **
  **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
  **
  ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
  */
  rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
  sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL - 1);
  if( SQLITE_ROW==sqlite3_step(pStmt) ){

    *pnMax = sqlite3_column_int(pStmt, 0);
  }
  return sqlite3_reset(pStmt);
}

/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
** it:
** 
**   1) Deletes all %_segments entries for the segments associated with 
**      each of the SegReader objects in the array passed as the third 
**      argument, and
**
**   2) deletes all %_segdir entries with level iLevel, or all %_segdir
**      entries regardless of level if (iLevel<0).
**
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
*/
static int fts3DeleteSegdir(
  Fts3Table *p,                   /* Virtual table handle */
  int iIndex,                     /* Index for p->aIndex */
  int iLevel,                     /* Level of %_segdir entries to delete */
  Fts3SegReader **apSegment,      /* Array of SegReader objects */
  int nReader                     /* Size of array apSegment */
){
  int rc;                         /* Return Code */
  int i;                          /* Iterator variable */
  sqlite3_stmt *pDelete;          /* SQL statement to delete rows */
1967
1968
1969
1970
1971
1972
1973

1974
1975

1976
1977

1978
1979
1980
1981
1982




1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
      rc = sqlite3_reset(pDelete);
    }
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }


  if( iLevel==FTS3_SEGCURSOR_ALL ){
    fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);

  }else if( iLevel==FTS3_SEGCURSOR_PENDING ){
    sqlite3Fts3PendingTermsClear(p);

  }else{
    assert( iLevel>=0 );
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, iLevel);




      sqlite3_step(pDelete);
      rc = sqlite3_reset(pDelete);
    }
  }

  return rc;
}

/*
** When this function is called, buffer *ppList (size *pnList bytes) contains 
** a position list that may (or may not) feature multiple columns. This







>

|
>
|
|
>

<
|

|
>
>
>
>
|
|
|
<







2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223

2224
2225
2226
2227
2228
2229
2230
      rc = sqlite3_reset(pDelete);
    }
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }

  assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
  if( iLevel==FTS3_SEGCURSOR_ALL ){
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
      sqlite3_bind_int(pDelete, 2, (iIndex+1) * FTS3_SEGDIR_MAXLEVEL - 1);
    }
  }else{

    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
    }
  }

  if( rc==SQLITE_OK ){
    sqlite3_step(pDelete);
    rc = sqlite3_reset(pDelete);
  }


  return rc;
}

/*
** When this function is called, buffer *ppList (size *pnList bytes) contains 
** a position list that may (or may not) feature multiple columns. This
2027
2028
2029
2030
2031
2032
2033
























2034
2035

















2036

2037
















2038





2039


2040
2041















2042











2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058

















































2059
2060

































2061
2062
2063

2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079



2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
    p += sqlite3Fts3GetVarint32(p, &iCurrent);
  }

  *ppList = pList;
  *pnList = nList;
}

























int sqlite3Fts3SegReaderStart(
  Fts3Table *p,                   /* Virtual table handle */

















  Fts3SegReaderCursor *pCsr,      /* Cursor object */

  Fts3SegFilter *pFilter          /* Restrictions on range of iteration */
















){





  int i;



  /* Initialize the cursor object */















  pCsr->pFilter = pFilter;












  /* If the Fts3SegFilter defines a specific term (or term prefix) to search 
  ** for, then advance each segment iterator until it points to a term of
  ** equal or greater value than the specified term. This prevents many
  ** unnecessary merge/sort operations for the case where single segment
  ** b-tree leaf nodes contain more than one term.
  */
  for(i=0; i<pCsr->nSegment; i++){
    int nTerm = pFilter->nTerm;
    const char *zTerm = pFilter->zTerm;
    Fts3SegReader *pSeg = pCsr->apSegment[i];
    do {
      int rc = fts3SegReaderNext(p, pSeg);
      if( rc!=SQLITE_OK ) return rc;
    }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
  }

















































  fts3SegReaderSort(
      pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp);


































  return SQLITE_OK;
}


int sqlite3Fts3SegReaderStep(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3SegReaderCursor *pCsr       /* Cursor object */
){
  int rc = SQLITE_OK;

  int isIgnoreEmpty =  (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
  int isRequirePos =   (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
  int isColFilter =    (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
  int isPrefix =       (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
  int isScan =         (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);

  Fts3SegReader **apSegment = pCsr->apSegment;
  int nSegment = pCsr->nSegment;
  Fts3SegFilter *pFilter = pCsr->pFilter;




  if( pCsr->nSegment==0 ) return SQLITE_OK;

  do {
    int nMerge;
    int i;
  
    /* Advance the first pCsr->nAdvance entries in the apSegment[] array
    ** forward. Then sort the list in order of current term again.  
    */
    for(i=0; i<pCsr->nAdvance; i++){
      rc = fts3SegReaderNext(p, apSegment[i]);
      if( rc!=SQLITE_OK ) return rc;
    }
    fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
    pCsr->nAdvance = 0;

    /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
    assert( rc==SQLITE_OK );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
|
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>







|
<
<


|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



>



|












>
>
>











|







2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378


2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
    p += sqlite3Fts3GetVarint32(p, &iCurrent);
  }

  *ppList = pList;
  *pnList = nList;
}

/*
** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
** existing data). Grow the buffer if required.
**
** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
** trying to resize the buffer, return SQLITE_NOMEM.
*/
static int fts3MsrBufferData(
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  char *pList,
  int nList
){
  if( nList>pMsr->nBuffer ){
    char *pNew;
    pMsr->nBuffer = nList*2;
    pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
    if( !pNew ) return SQLITE_NOMEM;
    pMsr->aBuffer = pNew;
  }

  memcpy(pMsr->aBuffer, pList, nList);
  return SQLITE_OK;
}

int sqlite3Fts3MsrIncrNext(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pMsr,       /* Multi-segment-reader handle */
  sqlite3_int64 *piDocid,         /* OUT: Docid value */
  char **paPoslist,               /* OUT: Pointer to position list */
  int *pnPoslist                  /* OUT: Size of position list in bytes */
){
  int nMerge = pMsr->nAdvance;
  Fts3SegReader **apSegment = pMsr->apSegment;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  if( nMerge==0 ){
    *paPoslist = 0;
    return SQLITE_OK;
  }

  while( 1 ){
    Fts3SegReader *pSeg;
    pSeg = pMsr->apSegment[0];

    if( pSeg->pOffsetList==0 ){
      *paPoslist = 0;
      break;
    }else{
      int rc;
      char *pList;
      int nList;
      int j;
      sqlite3_int64 iDocid = apSegment[0]->iDocid;

      rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
      j = 1;
      while( rc==SQLITE_OK 
        && j<nMerge
        && apSegment[j]->pOffsetList
        && apSegment[j]->iDocid==iDocid
      ){
        rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
        j++;
      }
      if( rc!=SQLITE_OK ) return rc;
      fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);

      if( pMsr->iColFilter>=0 ){
        fts3ColumnFilter(pMsr->iColFilter, &pList, &nList);
      }

      if( nList>0 ){
        if( fts3SegReaderIsPending(apSegment[0]) ){
          rc = fts3MsrBufferData(pMsr, pList, nList+1);
          if( rc!=SQLITE_OK ) return rc;
          *paPoslist = pMsr->aBuffer;
          assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
        }else{
          *paPoslist = pList;
        }
        *piDocid = iDocid;
        *pnPoslist = nList;
        break;
      }
    }
  }

  return SQLITE_OK;
}

static int fts3SegReaderStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  const char *zTerm,              /* Term searched for (or NULL) */
  int nTerm                       /* Length of zTerm in bytes */
){
  int i;
  int nSeg = pCsr->nSegment;

  /* If the Fts3SegFilter defines a specific term (or term prefix) to search 
  ** for, then advance each segment iterator until it points to a term of
  ** equal or greater value than the specified term. This prevents many
  ** unnecessary merge/sort operations for the case where single segment
  ** b-tree leaf nodes contain more than one term.
  */
  for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){


    Fts3SegReader *pSeg = pCsr->apSegment[i];
    do {
      int rc = fts3SegReaderNext(p, pSeg, 0);
      if( rc!=SQLITE_OK ) return rc;
    }while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
  }
  fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);

  return SQLITE_OK;
}

int sqlite3Fts3SegReaderStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  Fts3SegFilter *pFilter          /* Restrictions on range of iteration */
){
  pCsr->pFilter = pFilter;
  return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
}

int sqlite3Fts3MsrIncrStart(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr,       /* Cursor object */
  int iCol,                       /* Column to match on. */
  const char *zTerm,              /* Term to iterate through a doclist for */
  int nTerm                       /* Number of bytes in zTerm */
){
  int i;
  int rc;
  int nSegment = pCsr->nSegment;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  assert( pCsr->pFilter==0 );
  assert( zTerm && nTerm>0 );

  /* Advance each segment iterator until it points to the term zTerm/nTerm. */
  rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
  if( rc!=SQLITE_OK ) return rc;

  /* Determine how many of the segments actually point to zTerm/nTerm. */
  for(i=0; i<nSegment; i++){
    Fts3SegReader *pSeg = pCsr->apSegment[i];
    if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
      break;
    }
  }
  pCsr->nAdvance = i;

  /* Advance each of the segments to point to the first docid. */
  for(i=0; i<pCsr->nAdvance; i++){
    rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
    if( rc!=SQLITE_OK ) return rc;
  }
  fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);

  assert( iCol<0 || iCol<p->nColumn );
  pCsr->iColFilter = iCol;

  return SQLITE_OK;
}

/*
** This function is called on a MultiSegReader that has been started using
** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
** have been made. Calling this function puts the MultiSegReader in such
** a state that if the next two calls are:
**
**   sqlite3Fts3SegReaderStart()
**   sqlite3Fts3SegReaderStep()
**
** then the entire doclist for the term is available in 
** MultiSegReader.aDoclist/nDoclist.
*/
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
  int i;                          /* Used to iterate through segment-readers */

  assert( pCsr->zTerm==0 );
  assert( pCsr->nTerm==0 );
  assert( pCsr->aDoclist==0 );
  assert( pCsr->nDoclist==0 );

  pCsr->nAdvance = 0;
  pCsr->bRestart = 1;
  for(i=0; i<pCsr->nSegment; i++){
    pCsr->apSegment[i]->pOffsetList = 0;
    pCsr->apSegment[i]->nOffsetList = 0;
    pCsr->apSegment[i]->iDocid = 0;
  }

  return SQLITE_OK;
}


int sqlite3Fts3SegReaderStep(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3MultiSegReader *pCsr        /* Cursor object */
){
  int rc = SQLITE_OK;

  int isIgnoreEmpty =  (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
  int isRequirePos =   (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
  int isColFilter =    (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
  int isPrefix =       (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
  int isScan =         (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);

  Fts3SegReader **apSegment = pCsr->apSegment;
  int nSegment = pCsr->nSegment;
  Fts3SegFilter *pFilter = pCsr->pFilter;
  int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
    p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
  );

  if( pCsr->nSegment==0 ) return SQLITE_OK;

  do {
    int nMerge;
    int i;
  
    /* Advance the first pCsr->nAdvance entries in the apSegment[] array
    ** forward. Then sort the list in order of current term again.  
    */
    for(i=0; i<pCsr->nAdvance; i++){
      rc = fts3SegReaderNext(p, apSegment[i], 0);
      if( rc!=SQLITE_OK ) return rc;
    }
    fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
    pCsr->nAdvance = 0;

    /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
    assert( rc==SQLITE_OK );
2123
2124
2125
2126
2127
2128
2129
2130






2131

2132

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166












2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201

2202
2203
2204
2205
2206
2207
2208
2209
2210
        && apSegment[nMerge]->nTerm==pCsr->nTerm 
        && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
    ){
      nMerge++;
    }

    assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
    if( nMerge==1 && !isIgnoreEmpty ){






      pCsr->aDoclist = apSegment[0]->aDoclist;

      pCsr->nDoclist = apSegment[0]->nDoclist;

      rc = SQLITE_ROW;
    }else{
      int nDoclist = 0;           /* Size of doclist */
      sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */

      /* The current term of the first nMerge entries in the array
      ** of Fts3SegReader objects is the same. The doclists must be merged
      ** and a single term returned with the merged doclist.
      */
      for(i=0; i<nMerge; i++){
        fts3SegReaderFirstDocid(apSegment[i]);
      }
      fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp);
      while( apSegment[0]->pOffsetList ){
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid
        ){
          fts3SegReaderNextDocid(apSegment[j], 0, 0);
          j++;
        }

        if( isColFilter ){
          fts3ColumnFilter(pFilter->iCol, &pList, &nList);
        }

        if( !isIgnoreEmpty || nList>0 ){












          nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0);
          if( nDoclist+nByte>pCsr->nBuffer ){
            char *aNew;
            pCsr->nBuffer = (nDoclist+nByte)*2;
            aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
            if( !aNew ){
              return SQLITE_NOMEM;
            }
            pCsr->aBuffer = aNew;
          }
          nDoclist += sqlite3Fts3PutVarint(
              &pCsr->aBuffer[nDoclist], iDocid-iPrev
          );
          iPrev = iDocid;
          if( isRequirePos ){
            memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
            nDoclist += nList;
            pCsr->aBuffer[nDoclist++] = '\0';
          }
        }

        fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp);
      }
      if( nDoclist>0 ){
        pCsr->aDoclist = pCsr->aBuffer;
        pCsr->nDoclist = nDoclist;
        rc = SQLITE_ROW;
      }
    }
    pCsr->nAdvance = nMerge;
  }while( rc==SQLITE_OK );

  return rc;
}


void sqlite3Fts3SegReaderFinish(
  Fts3SegReaderCursor *pCsr       /* Cursor object */
){
  if( pCsr ){
    int i;
    for(i=0; i<pCsr->nSegment; i++){
      sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
    }
    sqlite3_free(pCsr->apSegment);







|
>
>
>
>
>
>
|
>
|
>
|









|

|






|





|








>
>
>
>
>
>
>
>
>
>
>
>
|









|
<
<








|













>

|







2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609


2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
        && apSegment[nMerge]->nTerm==pCsr->nTerm 
        && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
    ){
      nMerge++;
    }

    assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
    if( nMerge==1 
     && !isIgnoreEmpty 
     && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
    ){
      pCsr->nDoclist = apSegment[0]->nDoclist;
      if( fts3SegReaderIsPending(apSegment[0]) ){
        rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
        pCsr->aDoclist = pCsr->aBuffer;
      }else{
        pCsr->aDoclist = apSegment[0]->aDoclist;
      }
      if( rc==SQLITE_OK ) rc = SQLITE_ROW;
    }else{
      int nDoclist = 0;           /* Size of doclist */
      sqlite3_int64 iPrev = 0;    /* Previous docid stored in doclist */

      /* The current term of the first nMerge entries in the array
      ** of Fts3SegReader objects is the same. The doclists must be merged
      ** and a single term returned with the merged doclist.
      */
      for(i=0; i<nMerge; i++){
        fts3SegReaderFirstDocid(p, apSegment[i]);
      }
      fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
      while( apSegment[0]->pOffsetList ){
        int j;                    /* Number of segments that share a docid */
        char *pList;
        int nList;
        int nByte;
        sqlite3_int64 iDocid = apSegment[0]->iDocid;
        fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
        j = 1;
        while( j<nMerge
            && apSegment[j]->pOffsetList
            && apSegment[j]->iDocid==iDocid
        ){
          fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
          j++;
        }

        if( isColFilter ){
          fts3ColumnFilter(pFilter->iCol, &pList, &nList);
        }

        if( !isIgnoreEmpty || nList>0 ){

          /* Calculate the 'docid' delta value to write into the merged 
          ** doclist. */
          sqlite3_int64 iDelta;
          if( p->bDescIdx && nDoclist>0 ){
            iDelta = iPrev - iDocid;
          }else{
            iDelta = iDocid - iPrev;
          }
          assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
          assert( nDoclist>0 || iDelta==iDocid );

          nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
          if( nDoclist+nByte>pCsr->nBuffer ){
            char *aNew;
            pCsr->nBuffer = (nDoclist+nByte)*2;
            aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
            if( !aNew ){
              return SQLITE_NOMEM;
            }
            pCsr->aBuffer = aNew;
          }
          nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);


          iPrev = iDocid;
          if( isRequirePos ){
            memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
            nDoclist += nList;
            pCsr->aBuffer[nDoclist++] = '\0';
          }
        }

        fts3SegReaderSort(apSegment, nMerge, j, xCmp);
      }
      if( nDoclist>0 ){
        pCsr->aDoclist = pCsr->aBuffer;
        pCsr->nDoclist = nDoclist;
        rc = SQLITE_ROW;
      }
    }
    pCsr->nAdvance = nMerge;
  }while( rc==SQLITE_OK );

  return rc;
}


void sqlite3Fts3SegReaderFinish(
  Fts3MultiSegReader *pCsr       /* Cursor object */
){
  if( pCsr ){
    int i;
    for(i=0; i<pCsr->nSegment; i++){
      sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
    }
    sqlite3_free(pCsr->apSegment);
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236

2237







2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251





2252
2253
2254
2255
2256
2257
2258

2259
2260
2261
2262

2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

2278
2279

2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292



2293




2294
2295
2296
2297
2298
2299
2300
** currently present in the database.
**
** If this function is called with iLevel<0, but there is only one
** segment in the database, SQLITE_DONE is returned immediately. 
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
  int rc;                         /* Return code */
  int iIdx = 0;                   /* Index of new segment */
  int iNewLevel = 0;              /* Level to create new segment at */
  SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
  Fts3SegFilter filter;           /* Segment term filter condition */
  Fts3SegReaderCursor csr;        /* Cursor to iterate through level(s) */









  rc = sqlite3Fts3SegReaderCursor(p, iLevel, 0, 0, 1, 0, &csr);
  if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;

  if( iLevel==FTS3_SEGCURSOR_ALL ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database. The index
    ** of the new segment is always 0.  */
    int nDummy; /* TODO: Remove this */
    if( csr.nSegment==1 ){
      rc = SQLITE_DONE;
      goto finished;
    }
    rc = fts3SegmentCountMax(p, &nDummy, &iNewLevel);





  }else{
    /* This call is to merge all segments at level iLevel. Find the next
    ** available segment index at level iLevel+1. The call to
    ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 
    ** a single iLevel+2 segment if necessary.  */
    iNewLevel = iLevel+1;
    rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);

  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( csr.nSegment>0 );
  assert( iNewLevel>=0 );


  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (iLevel==FTS3_SEGCURSOR_ALL ? FTS3_SEGMENT_IGNORE_EMPTY : 0);

  rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
  while( SQLITE_OK==rc ){
    rc = sqlite3Fts3SegReaderStep(p, &csr);
    if( rc!=SQLITE_ROW ) break;
    rc = fts3SegWriterAdd(p, &pWriter, 1, 
        csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( pWriter );


  rc = fts3DeleteSegdir(p, iLevel, csr.apSegment, csr.nSegment);
  if( rc!=SQLITE_OK ) goto finished;

  rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);

 finished:
  fts3SegWriterFree(pWriter);
  sqlite3Fts3SegReaderFinish(&csr);
  return rc;
}


/* 
** Flush the contents of pendingTerms to a level 0 segment.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){



  return fts3SegmentMerge(p, FTS3_SEGCURSOR_PENDING);




}

/*
** Encode N integers as varints into a blob.
*/
static void fts3EncodeIntArray(
  int N,             /* The number of integers to encode */







|


|


|
>

>
>
>
>
>
>
>
|





|
|
<




|
>
>
>
>
>

|



<
|
>



|
>



|











>
|
|
>










|


>
>
>
|
>
>
>
>







2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684

2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
** currently present in the database.
**
** If this function is called with iLevel<0, but there is only one
** segment in the database, SQLITE_DONE is returned immediately. 
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iIndex, int iLevel){
  int rc;                         /* Return code */
  int iIdx = 0;                   /* Index of new segment */
  int iNewLevel = 0;              /* Level/index to create new segment at */
  SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
  Fts3SegFilter filter;           /* Segment term filter condition */
  Fts3MultiSegReader csr;        /* Cursor to iterate through level(s) */
  int bIgnoreEmpty = 0;           /* True to ignore empty segments */

  assert( iLevel==FTS3_SEGCURSOR_ALL
       || iLevel==FTS3_SEGCURSOR_PENDING
       || iLevel>=0
  );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  rc = sqlite3Fts3SegReaderCursor(p, iIndex, iLevel, 0, 0, 1, 0, &csr);
  if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;

  if( iLevel==FTS3_SEGCURSOR_ALL ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database for this
    ** index. The idx of the new segment is always 0.  */

    if( csr.nSegment==1 ){
      rc = SQLITE_DONE;
      goto finished;
    }
    rc = fts3SegmentMaxLevel(p, iIndex, &iNewLevel);
    bIgnoreEmpty = 1;

  }else if( iLevel==FTS3_SEGCURSOR_PENDING ){
    iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL; 
    rc = fts3AllocateSegdirIdx(p, iIndex, 0, &iIdx);
  }else{
    /* This call is to merge all segments at level iLevel. find the next
    ** available segment index at level iLevel+1. The call to
    ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to 
    ** a single iLevel+2 segment if necessary.  */

    rc = fts3AllocateSegdirIdx(p, iIndex, iLevel+1, &iIdx);
    iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL + iLevel+1;
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( csr.nSegment>0 );
  assert( iNewLevel>=(iIndex*FTS3_SEGDIR_MAXLEVEL) );
  assert( iNewLevel<((iIndex+1)*FTS3_SEGDIR_MAXLEVEL) );

  memset(&filter, 0, sizeof(Fts3SegFilter));
  filter.flags = FTS3_SEGMENT_REQUIRE_POS;
  filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);

  rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
  while( SQLITE_OK==rc ){
    rc = sqlite3Fts3SegReaderStep(p, &csr);
    if( rc!=SQLITE_ROW ) break;
    rc = fts3SegWriterAdd(p, &pWriter, 1, 
        csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
  }
  if( rc!=SQLITE_OK ) goto finished;
  assert( pWriter );

  if( iLevel!=FTS3_SEGCURSOR_PENDING ){
    rc = fts3DeleteSegdir(p, iIndex, iLevel, csr.apSegment, csr.nSegment);
    if( rc!=SQLITE_OK ) goto finished;
  }
  rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);

 finished:
  fts3SegWriterFree(pWriter);
  sqlite3Fts3SegReaderFinish(&csr);
  return rc;
}


/* 
** Flush the contents of pendingTerms to level 0 segments.
*/
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
  int rc = SQLITE_OK;
  int i;
  for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
    rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_PENDING);
    if( rc==SQLITE_DONE ) rc = SQLITE_OK;
  }
  sqlite3Fts3PendingTermsClear(p);
  return rc;
}

/*
** Encode N integers as varints into a blob.
*/
static void fts3EncodeIntArray(
  int N,             /* The number of integers to encode */
2436
2437
2438
2439
2440
2441
2442

















2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
    return;
  }
  sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
  sqlite3_step(pStmt);
  *pRC = sqlite3_reset(pStmt);
  sqlite3_free(a);
}


















/*
** Handle a 'special' INSERT of the form:
**
**   "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only 
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
  int rc;                         /* Return Code */
  const char *zVal = (const char *)sqlite3_value_text(pVal);
  int nVal = sqlite3_value_bytes(pVal);

  if( !zVal ){
    return SQLITE_NOMEM;
  }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
    rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
    if( rc==SQLITE_DONE ){
      rc = SQLITE_OK;
    }else{
      sqlite3Fts3PendingTermsClear(p);
    }
#ifdef SQLITE_TEST
  }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
    p->nNodeSize = atoi(&zVal[9]);
    rc = SQLITE_OK;
  }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }

  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/*
** Return the deferred doclist associated with deferred token pDeferred.
** This function assumes that sqlite3Fts3CacheDeferredDoclists() has already
** been called to allocate and populate the doclist.
*/
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *pDeferred, int *pnByte){
  if( pDeferred->pList ){
    *pnByte = pDeferred->pList->nData;
    return pDeferred->pList->aData;
  }
  *pnByte = 0;
  return 0;
}

/*
** Helper fucntion for FreeDeferredDoclists(). This function removes all
** references to deferred doclists from within the tree of Fts3Expr 
** structures headed by 
*/
static void fts3DeferredDoclistClear(Fts3Expr *pExpr){
  if( pExpr ){
    fts3DeferredDoclistClear(pExpr->pLeft);
    fts3DeferredDoclistClear(pExpr->pRight);
    if( pExpr->isLoaded ){
      sqlite3_free(pExpr->aDoclist);
      pExpr->isLoaded = 0;
      pExpr->aDoclist = 0;
      pExpr->nDoclist = 0;
      pExpr->pCurrent = 0;
      pExpr->iCurrent = 0;
    }
  }
}

/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
    sqlite3_free(pDef->pList);
    pDef->pList = 0;
  }
  if( pCsr->pDeferred ){
    fts3DeferredDoclistClear(pCsr->pExpr);
  }
}

/*
** Free all entries in the pCsr->pDeffered list. Entries are added to 
** this list using sqlite3Fts3DeferToken().
*/
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  Fts3DeferredToken *pNext;
  for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
    pNext = pDef->pNext;
    sqlite3_free(pDef->pList);
    sqlite3_free(pDef);
  }
  pCsr->pDeferred = 0;
}

/*
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















|
<
<
<
<
<












<



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







|


<
<
<











|







2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930





2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942

2943
2944
2945


































2946
2947
2948
2949
2950
2951
2952
2953
2954
2955



2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
    return;
  }
  sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
  sqlite3_step(pStmt);
  *pRC = sqlite3_reset(pStmt);
  sqlite3_free(a);
}

static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
  int i;
  int bSeenDone = 0;
  int rc = SQLITE_OK;
  for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
    rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_ALL);
    if( rc==SQLITE_DONE ){
      bSeenDone = 1;
      rc = SQLITE_OK;
    }
  }
  sqlite3Fts3SegmentsClose(p);
  sqlite3Fts3PendingTermsClear(p);

  return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
}

/*
** Handle a 'special' INSERT of the form:
**
**   "INSERT INTO tbl(tbl) VALUES(<expr>)"
**
** Argument pVal contains the result of <expr>. Currently the only 
** meaningful value to insert is the text 'optimize'.
*/
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
  int rc;                         /* Return Code */
  const char *zVal = (const char *)sqlite3_value_text(pVal);
  int nVal = sqlite3_value_bytes(pVal);

  if( !zVal ){
    return SQLITE_NOMEM;
  }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
    rc = fts3DoOptimize(p, 0);





#ifdef SQLITE_TEST
  }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
    p->nNodeSize = atoi(&zVal[9]);
    rc = SQLITE_OK;
  }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
    p->nMaxPendingData = atoi(&zVal[11]);
    rc = SQLITE_OK;
#endif
  }else{
    rc = SQLITE_ERROR;
  }


  return rc;
}



































/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
    fts3PendingListDelete(pDef->pList);
    pDef->pList = 0;
  }



}

/*
** Free all entries in the pCsr->pDeffered list. Entries are added to 
** this list using sqlite3Fts3DeferToken().
*/
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  Fts3DeferredToken *pNext;
  for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
    pNext = pDef->pNext;
    fts3PendingListDelete(pDef->pList);
    sqlite3_free(pDef);
  }
  pCsr->pDeferred = 0;
}

/*
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
2597
2598
2599
2600
2601
2602
2603



























2604
2605
2606
2607
2608
2609
2610
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);
      }
    }
  }

  return rc;
}




























/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
int sqlite3Fts3DeferToken(
  Fts3Cursor *pCsr,               /* Fts3 table cursor */
  Fts3PhraseToken *pToken,        /* Token to defer */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
        rc = fts3PendingListAppendVarint(&pDef->pList, 0);
      }
    }
  }

  return rc;
}

int sqlite3Fts3DeferredTokenList(
  Fts3DeferredToken *p, 
  char **ppData, 
  int *pnData
){
  char *pRet;
  int nSkip;
  sqlite3_int64 dummy;

  *ppData = 0;
  *pnData = 0;

  if( p->pList==0 ){
    return SQLITE_OK;
  }

  pRet = (char *)sqlite3_malloc(p->pList->nData);
  if( !pRet ) return SQLITE_NOMEM;

  nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
  *pnData = p->pList->nData - nSkip;
  *ppData = pRet;
  
  memcpy(pRet, &p->pList->aData[nSkip], *pnData);
  return SQLITE_OK;
}

/*
** Add an entry for token pToken to the pCsr->pDeferred list.
*/
int sqlite3Fts3DeferToken(
  Fts3Cursor *pCsr,               /* Fts3 table cursor */
  Fts3PhraseToken *pToken,        /* Token to defer */
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694

2695
2696
2697
2698
2699



2700
2701
2702
2703
2704
2705
2706
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */
  u32 *aSzIns;                    /* Sizes of inserted documents */
  u32 *aSzDel;                    /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;

  assert( p->pSegments==0 );

  /* Check for a "special" INSERT operation. One of the form:
  **
  **   INSERT INTO xyz(xyz) VALUES('command');
  */
  if( nArg>1 
   && sqlite3_value_type(apVal[0])==SQLITE_NULL 
   && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL 
  ){
    return fts3SpecialInsert(p, apVal[p->nColumn+2]);

  }

  /* Allocate space to hold the change in document sizes */
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
  if( aSzIns==0 ) return SQLITE_NOMEM;



  aSzDel = &aSzIns[p->nColumn+1];
  memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);

  /* If this is an INSERT operation, or an UPDATE that modifies the rowid
  ** value, then this operation requires constraint handling.
  **
  ** If the on-conflict mode is REPLACE, this means that the existing row







|














|
>




|
>
>
>







3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
  sqlite3_value **apVal,          /* Array of arguments */
  sqlite_int64 *pRowid            /* OUT: The affected (or effected) rowid */
){
  Fts3Table *p = (Fts3Table *)pVtab;
  int rc = SQLITE_OK;             /* Return Code */
  int isRemove = 0;               /* True for an UPDATE or DELETE */
  sqlite3_int64 iRemove = 0;      /* Rowid removed by UPDATE or DELETE */
  u32 *aSzIns = 0;                /* Sizes of inserted documents */
  u32 *aSzDel;                    /* Sizes of deleted documents */
  int nChng = 0;                  /* Net change in number of documents */
  int bInsertDone = 0;

  assert( p->pSegments==0 );

  /* Check for a "special" INSERT operation. One of the form:
  **
  **   INSERT INTO xyz(xyz) VALUES('command');
  */
  if( nArg>1 
   && sqlite3_value_type(apVal[0])==SQLITE_NULL 
   && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL 
  ){
    rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
    goto update_out;
  }

  /* Allocate space to hold the change in document sizes */
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
  if( aSzIns==0 ){
    rc = SQLITE_NOMEM;
    goto update_out;
  }
  aSzDel = &aSzIns[p->nColumn+1];
  memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);

  /* If this is an INSERT operation, or an UPDATE that modifies the rowid
  ** value, then this operation requires constraint handling.
  **
  ** If the on-conflict mode is REPLACE, this means that the existing row
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
      }else{
        rc = fts3InsertData(p, apVal, pRowid);
        bInsertDone = 1;
      }
    }
  }
  if( rc!=SQLITE_OK ){
    sqlite3_free(aSzIns);
    return rc;
  }

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
    rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
    isRemove = 1;







|
<







3200
3201
3202
3203
3204
3205
3206
3207

3208
3209
3210
3211
3212
3213
3214
      }else{
        rc = fts3InsertData(p, apVal, pRowid);
        bInsertDone = 1;
      }
    }
  }
  if( rc!=SQLITE_OK ){
    goto update_out;

  }

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
    rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
    isRemove = 1;
2776
2777
2778
2779
2780
2781
2782

2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
    nChng++;
  }

  if( p->bHasStat ){
    fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
  }


  sqlite3_free(aSzIns);
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/* 
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
*/
int sqlite3Fts3Optimize(Fts3Table *p){
  int rc;
  rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
  if( rc==SQLITE_OK ){
    rc = fts3SegmentMerge(p, FTS3_SEGCURSOR_ALL);
    if( rc==SQLITE_OK ){
      rc = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
      if( rc==SQLITE_OK ){
        sqlite3Fts3PendingTermsClear(p);
      }
    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

#endif







>














|
|
|
|
<
<










3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258


3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
    nChng++;
  }

  if( p->bHasStat ){
    fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
  }

 update_out:
  sqlite3_free(aSzIns);
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

/* 
** Flush any data in the pending-terms hash table to disk. If successful,
** merge all segments in the database (including the new segment, if 
** there was any data to flush) into a single segment. 
*/
int sqlite3Fts3Optimize(Fts3Table *p){
  int rc;
  rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
  if( rc==SQLITE_OK ){
    rc = fts3DoOptimize(p, 1);
    if( rc==SQLITE_OK || rc==SQLITE_DONE ){
      int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
      if( rc2!=SQLITE_OK ) rc = rc2;


    }else{
      sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
      sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
    }
  }
  sqlite3Fts3SegmentsClose(p);
  return rc;
}

#endif
Changes to main.mk.
217
218
219
220
221
222
223

224
225
226
227
228
229
230
  parse.h \
  sqlite3.h


# Source code to the test files.
#
TESTSRC = \

  $(TOP)/src/test1.c \
  $(TOP)/src/test2.c \
  $(TOP)/src/test3.c \
  $(TOP)/src/test4.c \
  $(TOP)/src/test5.c \
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \







>







217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
  parse.h \
  sqlite3.h


# Source code to the test files.
#
TESTSRC = \
  $(TOP)/ext/fts3/fts3_test.c \
  $(TOP)/src/test1.c \
  $(TOP)/src/test2.c \
  $(TOP)/src/test3.c \
  $(TOP)/src/test4.c \
  $(TOP)/src/test5.c \
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \
Changes to src/alter.c.
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

  /* Drop the table and index from the internal schema.  */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC);
  }
#endif
}

/*
** Parameter zName is the name of a table that is about to be altered
** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).







|






|







354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

  /* Drop the table and index from the internal schema.  */
  sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);

  /* Reload the table, index and permanent trigger schemas. */
  zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName);
  if( !zWhere ) return;
  sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);

#ifndef SQLITE_OMIT_TRIGGER
  /* Now, if the table is not stored in the temp database, reload any temp 
  ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. 
  */
  if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){
    sqlite3VdbeAddParseSchemaOp(v, 1, zWhere);
  }
#endif
}

/*
** Parameter zName is the name of a table that is about to be altered
** (either with ALTER TABLE ... RENAME TO or ALTER TABLE ... ADD COLUMN).
Changes to src/btree.c.
853
854
855
856
857
858
859


860
861
862
863
864
865
866
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))



/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;







>
>







853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))


/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477

4478
4479
4480
4481
4482
4483
4484
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    int c;

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    if( biasRight ){
      pCur->aiIdx[pCur->iPage] = (u16)upr;
    }else{
      pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
    }
    for(;;){
      int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
      u8 *pCell;                          /* Pointer to current cell in pPage */


      pCur->info.nSize = 0;
      pCell = findCell(pPage, idx) + pPage->childPtrSize;
      if( pPage->intKey ){
        i64 nCellKey;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, dummy);







|















|

|


<


>







4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476

4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    int c;

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    if( biasRight ){
      pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
    }else{
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
    }
    for(;;){

      u8 *pCell;                          /* Pointer to current cell in pPage */

      assert( idx==pCur->aiIdx[pCur->iPage] );
      pCur->info.nSize = 0;
      pCell = findCell(pPage, idx) + pPage->childPtrSize;
      if( pPage->intKey ){
        i64 nCellKey;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, dummy);
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
        lwr = idx+1;
      }else{
        upr = idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);







|







4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
        lwr = idx+1;
      }else{
        upr = idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
    }
    assert( lwr==upr+1 );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396

5397
5398
5399
5400
5401
5402
5403
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  int i;          /* Loop counter */
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */

  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );







<



>







5388
5389
5390
5391
5392
5393
5394

5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){

  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  u8 *endPtr;     /* End of loop */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
5414
5415
5416
5417
5418
5419
5420
5421

5422

5423
5424
5425
5426
5427
5428
5429
5430
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){

    ptr[0] = ptr[2];

    ptr[1] = ptr[3];
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*







|
>
|
>
|







5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  endPtr = &data[pPage->cellOffset + 2*pPage->nCell - 2];
  assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
  while( ptr<endPtr ){
    *(u16*)ptr = *(u16*)&ptr[2];
    ptr += 2;
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*
5456
5457
5458
5459
5460
5461
5462

5463
5464
5465
5466
5467
5468
5469
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */


  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );







>







5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */
  u8 *endPtr;       /* End of the loop */

  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
5506
5507
5508
5509
5510
5511
5512
5513


5514

5515
5516
5517
5518
5519
5520
5521
5522
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){


      ptr[0] = ptr[-2];

      ptr[1] = ptr[-1];
    }
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.







|
>
>
|
>
|







5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    ptr = &data[end];
    endPtr = &data[ins];
    assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
    while( ptr>endPtr ){
      *(u16*)ptr = *(u16*)&ptr[-2];
      ptr -= 2;
    }
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
5553
5554
5555
5556
5557
5558
5559

5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );

  pCellptr = &data[pPage->cellOffset + nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){

    pCellptr -= 2;
    cellbody -= aSize[i];
    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], aSize[i]);
  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
  pPage->nCell = (u16)nCell;
}








>

|

|







5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );

  pCellptr = &data[pPage->cellOffset + nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){
    u16 sz = aSize[i];
    pCellptr -= 2;
    cellbody -= sz;
    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], sz);
  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
  pPage->nCell = (u16)nCell;
}

6010
6011
6012
6013
6014
6015
6016

6017
6018
6019
6020
6021
6022











6023
6024
6025
6026
6027
6028
6029
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;

    for(j=0; j<limit; j++){
      assert( nCell<nMaxCells );
      apCell[nCell] = findOverflowCell(pOld, j);
      szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
      nCell++;
    }











    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;







>
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>







6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;
    if( pOld->nOverflow>0 ){
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findOverflowCell(pOld, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }else{
      u8 *aData = pOld->aData;
      u16 maskPage = pOld->maskPage;
      u16 cellOffset = pOld->cellOffset;
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }       
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
Changes to src/build.c.
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
                         pParse->nTab, pParse->nMaxArg, pParse->explain,
                         pParse->isMultiWrite && pParse->mayAbort);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;







|
<
<







196
197
198
199
200
201
202
203


204
205
206
207
208
209
210
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
#endif
    assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
    /* A minimum of one cursor is required if autoincrement is used
    *  See ticket [a696379c1f08866] */
    if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
    sqlite3VdbeMakeReady(v, pParse);


    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else{
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
        sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;







|
|







1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite3VdbeAddParseSchemaOp(v, iDb,
               sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(pParse, iDb);
      sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
         sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 
         P4_DYNAMIC);
      sqlite3VdbeAddOp1(v, OP_Expire, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct constraint check







|
|
<







2813
2814
2815
2816
2817
2818
2819
2820
2821

2822
2823
2824
2825
2826
2827
2828

    /* Fill the index with data and reparse the schema. Code an OP_Expire
    ** to invalidate all pre-compiled statements.
    */
    if( pTblName ){
      sqlite3RefillIndex(pParse, pIndex, iMem);
      sqlite3ChangeCookie(pParse, iDb);
      sqlite3VdbeAddParseSchemaOp(v, iDb,
         sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));

      sqlite3VdbeAddOp1(v, OP_Expire, 0);
    }
  }

  /* When adding an index to the list of indices for a table, make
  ** sure all indices labeled OE_Replace come after all those labeled
  ** OE_Ignore.  This is necessary for the correct constraint check
Changes to src/delete.c.
404
405
406
407
408
409
410

411
412
413
414
415
416
417

    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, (char*)pVTab, P4_VTAB);

      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
    }







>







404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

    /* Delete the row */
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( IsVirtual(pTab) ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      sqlite3VtabMakeWritable(pParse, pTab);
      sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, (char*)pVTab, P4_VTAB);
      sqlite3VdbeChangeP5(v, OE_Abort);
      sqlite3MayAbort(pParse);
    }else
#endif
    {
      int count = (pParse->nested==0);    /* True to count changes */
      sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, count, pTrigger, OE_Default);
    }
Changes to src/expr.c.
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575





















576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

593
594
595

596
597

598

599
600
601
602
603
604
605
606
607
608
609
610
611
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    pExpr->iColumn = (ynVar)(++pParse->nVar);
  }else if( z[0]=='?' ){
    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
    ** use it as the variable number */
    i64 i;
    int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
    pExpr->iColumn = (ynVar)i;
    testcase( i==0 );
    testcase( i==1 );
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
    if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
    }
    if( i>pParse->nVar ){
      pParse->nVar = (int)i;
    }
  }else{





















    /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
    ** number as the prior appearance of the same name, or if the name
    ** has never appeared before, reuse the same variable number
    */
    int i;
    u32 n;
    n = sqlite3Strlen30(z);
    for(i=0; i<pParse->nVarExpr; i++){
      Expr *pE = pParse->apVarExpr[i];
      assert( pE!=0 );
      if( memcmp(pE->u.zToken, z, n)==0 && pE->u.zToken[n]==0 ){
        pExpr->iColumn = pE->iColumn;
        break;
      }
    }
    if( i>=pParse->nVarExpr ){
      pExpr->iColumn = (ynVar)(++pParse->nVar);

      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
        pParse->apVarExpr =

            sqlite3DbReallocOrFree(
              db,

              pParse->apVarExpr,

              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
            );
      }
      if( !db->mallocFailed ){
        assert( pParse->apVarExpr!=0 );
        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
      }
    }
  } 
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    sqlite3ErrorMsg(pParse, "too many SQL variables");
  }
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
<
<
|
|
<
<
|
|
|
|
<
|
>
|
<
|
>
|
<
>
|
>
|
<

|
|
|







551
552
553
554
555
556
557

















558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584


585
586


587
588
589
590

591
592
593

594
595
596

597
598
599
600

601
602
603
604
605
606
607
608
609
610
611
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    pExpr->iColumn = (ynVar)(++pParse->nVar);

















  }else{
    ynVar x = 0;
    u32 n = sqlite3Strlen30(z);
    if( z[0]=='?' ){
      /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
      ** use it as the variable number */
      i64 i;
      int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
      pExpr->iColumn = x = (ynVar)i;
      testcase( i==0 );
      testcase( i==1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
      testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
      if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
        sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
            db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
        x = 0;
      }
      if( i>pParse->nVar ){
        pParse->nVar = (int)i;
      }
    }else{
      /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
      ** number as the prior appearance of the same name, or if the name
      ** has never appeared before, reuse the same variable number
      */
      ynVar i;


      for(i=0; i<pParse->nzVar; i++){
        if( pParse->azVar[i] && memcmp(pParse->azVar[i],z,n+1)==0 ){


          pExpr->iColumn = x = (ynVar)i+1;
          break;
        }
      }

      if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
    }
    if( x>0 ){

      if( x>pParse->nzVar ){
        char **a;
        a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));

        if( a==0 ) return;  /* Error reported through db->mallocFailed */
        pParse->azVar = a;
        memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
        pParse->nzVar = x;

      }
      if( z[0]!='?' || pParse->azVar[x-1]==0 ){
        sqlite3DbFree(db, pParse->azVar[x-1]);
        pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
      }
    }
  } 
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
    sqlite3ErrorMsg(pParse, "too many SQL variables");
  }
}
2341
2342
2343
2344
2345
2346
2347


2348
2349
2350
2351
2352
2353
2354
2355
#endif
    case TK_VARIABLE: {
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      assert( pExpr->u.zToken!=0 );
      assert( pExpr->u.zToken[0]!=0 );
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
      if( pExpr->u.zToken[1]!=0 ){


        sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }







>
>
|







2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
#endif
    case TK_VARIABLE: {
      assert( !ExprHasProperty(pExpr, EP_IntValue) );
      assert( pExpr->u.zToken!=0 );
      assert( pExpr->u.zToken[0]!=0 );
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
      if( pExpr->u.zToken[1]!=0 ){
        assert( pExpr->u.zToken[0]=='?' 
             || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
        sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
      }
      break;
    }
    case TK_REGISTER: {
      inReg = pExpr->iTable;
      break;
    }
Changes to src/fkey.c.
382
383
384
385
386
387
388
389






390
391
392
393
394





395

396
397
398
399
400
401
402
      for(i=0; i<nCol; i++){
        sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
      }
  
      /* If the parent table is the same as the child table, and we are about
      ** to increment the constraint-counter (i.e. this is an INSERT operation),
      ** then check if the row being inserted matches itself. If so, do not
      ** increment the constraint-counter.  */






      if( pTab==pFKey->pFrom && nIncr==1 ){
        int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
        for(i=0; i<nCol; i++){
          int iChild = aiCol[i]+1+regData;
          int iParent = pIdx->aiColumn[i]+1+regData;





          sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);

        }
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
      }
  
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
      sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
      sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);







|
>
>
>
>
>
>





>
>
>
>
>

>







382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
      for(i=0; i<nCol; i++){
        sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
      }
  
      /* If the parent table is the same as the child table, and we are about
      ** to increment the constraint-counter (i.e. this is an INSERT operation),
      ** then check if the row being inserted matches itself. If so, do not
      ** increment the constraint-counter. 
      **
      ** If any of the parent-key values are NULL, then the row cannot match 
      ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
      ** of the parent-key values are NULL (at this point it is known that
      ** none of the child key values are).
      */
      if( pTab==pFKey->pFrom && nIncr==1 ){
        int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
        for(i=0; i<nCol; i++){
          int iChild = aiCol[i]+1+regData;
          int iParent = pIdx->aiColumn[i]+1+regData;
          assert( aiCol[i]!=pTab->iPKey );
          if( pIdx->aiColumn[i]==pTab->iPKey ){
            /* The parent key is a composite key that includes the IPK column */
            iParent = regData;
          }
          sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
          sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
        }
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
      }
  
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
      sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
      sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
Changes to src/func.c.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, all characters are
** able to participate in upper-case-to-lower-case mappings in EBCDIC
** whereas only characters less than 0x80 do in ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A,C)    (*(A++))
# define GlogUpperToLower(A)     A = sqlite3UpperToLower[A]
#else
# define GlogUpperToLower(A)     if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
#endif

static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case.  Thus  'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator







|
|

|







502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size.  Also, all characters are
** able to participate in upper-case-to-lower-case mappings in EBCDIC
** whereas only characters less than 0x80 do in ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A,C)  (*(A++))
# define GlogUpperToLower(A)   A = sqlite3UpperToLower[A]
#else
# define GlogUpperToLower(A)   if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; }
#endif

static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case.  Thus  'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
**
**         abc[*]xyz        Matches "abc*xyz" only
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  const int esc                    /* The escape character */
){
  int c, c2;
  int invert;
  int seen;
  u8 matchOne = pInfo->matchOne;
  u8 matchAll = pInfo->matchAll;
  u8 matchSet = pInfo->matchSet;
  u8 noCase = pInfo->noCase; 
  int prevEscape = 0;     /* True if the previous character was 'escape' */







|

|







548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
**
**         abc[*]xyz        Matches "abc*xyz" only
*/
static int patternCompare(
  const u8 *zPattern,              /* The glob pattern */
  const u8 *zString,               /* The string to compare against the glob */
  const struct compareInfo *pInfo, /* Information about how to do the compare */
  u32 esc                          /* The escape character */
){
  u32 c, c2;
  int invert;
  int seen;
  u8 matchOne = pInfo->matchOne;
  u8 matchAll = pInfo->matchAll;
  u8 matchSet = pInfo->matchSet;
  u8 noCase = pInfo->noCase; 
  int prevEscape = 0;     /* True if the previous character was 'escape' */
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
      }
      return 0;
    }else if( !prevEscape && c==matchOne ){
      if( sqlite3Utf8Read(zString, &zString)==0 ){
        return 0;
      }
    }else if( c==matchSet ){
      int prior_c = 0;
      assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
      seen = 0;
      invert = 0;
      c = sqlite3Utf8Read(zString, &zString);
      if( c==0 ) return 0;
      c2 = sqlite3Utf8Read(zPattern, &zPattern);
      if( c2=='^' ){







|







604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
      }
      return 0;
    }else if( !prevEscape && c==matchOne ){
      if( sqlite3Utf8Read(zString, &zString)==0 ){
        return 0;
      }
    }else if( c==matchSet ){
      u32 prior_c = 0;
      assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
      seen = 0;
      invert = 0;
      c = sqlite3Utf8Read(zString, &zString);
      if( c==0 ) return 0;
      c2 = sqlite3Utf8Read(zPattern, &zPattern);
      if( c2=='^' ){
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  int escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);

  zB = sqlite3_value_text(argv[0]);
  zA = sqlite3_value_text(argv[1]);

  /* Limit the length of the LIKE or GLOB pattern to avoid problems







|







680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
*/
static void likeFunc(
  sqlite3_context *context, 
  int argc, 
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);

  zB = sqlite3_value_text(argv[0]);
  zA = sqlite3_value_text(argv[1]);

  /* Limit the length of the LIKE or GLOB pattern to avoid problems
Changes to src/main.c.
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
      if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
        zVfs = zVal;
      }else{
        struct OpenMode {
          const char *z;
          int mode;
        } *aMode = 0;
        char *zModeType;
        int mask;
        int limit;

        if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
          static struct OpenMode aCacheMode[] = {
            { "shared",  SQLITE_OPEN_SHAREDCACHE },
            { "private", SQLITE_OPEN_PRIVATECACHE },
            { 0, 0 }
          };







|
|
|







1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
      if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){
        zVfs = zVal;
      }else{
        struct OpenMode {
          const char *z;
          int mode;
        } *aMode = 0;
        char *zModeType = 0;
        int mask = 0;
        int limit = 0;

        if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){
          static struct OpenMode aCacheMode[] = {
            { "shared",  SQLITE_OPEN_SHAREDCACHE },
            { "private", SQLITE_OPEN_PRIVATECACHE },
            { 0, 0 }
          };
Changes to src/os_unix.c.
3533
3534
3535
3536
3537
3538
3539
3540

3541
3542
3543
3544
3545
3546
3547
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int h;                     /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  int nRegion;               /* Size of array apRegion */

  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */
#ifdef SQLITE_DEBUG
  u8 exclMask;               /* Mask of exclusive locks held */
  u8 sharedMask;             /* Mask of shared locks held */
  u8 nextShmId;              /* Next available unixShm.id value */







|
>







3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int h;                     /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  u16 nRegion;               /* Size of array apRegion */
  u8 isReadonly;             /* True if read-only */
  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */
#ifdef SQLITE_DEBUG
  u8 exclMask;               /* Mask of exclusive locks held */
  u8 sharedMask;             /* Mask of shared locks held */
  u8 nextShmId;              /* Next available unixShm.id value */
3780
3781
3782
3783
3784
3785
3786








3787
3788

3789
3790
3791
3792
3793
3794
3795
      goto shm_open_err;
    }

    if( pInode->bProcessLock==0 ){
      pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
                               (sStat.st_mode & 0777));
      if( pShmNode->h<0 ){








        rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
        goto shm_open_err;

      }
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){







>
>
>
>
>
>
>
>
|
|
>







3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
      goto shm_open_err;
    }

    if( pInode->bProcessLock==0 ){
      pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
                               (sStat.st_mode & 0777));
      if( pShmNode->h<0 ){
        const char *zRO;
        zRO = sqlite3_uri_parameter(pDbFd->zPath, "readonly_shm");
        if( zRO && sqlite3GetBoolean(zRO) ){
          pShmNode->h = robust_open(zShmFilename, O_RDONLY,
                                    (sStat.st_mode & 0777));
          pShmNode->isReadonly = 1;
        }
        if( pShmNode->h<0 ){
          rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
          goto shm_open_err;
        }
      }
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3920
3921
3922
3923
3924
3925
3926
3927

3928
3929
3930
3931
3932
3933
3934
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while(pShmNode->nRegion<=iRegion){
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, 

            MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{







|
>







3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
      rc = SQLITE_IOERR_NOMEM;
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while(pShmNode->nRegion<=iRegion){
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = mmap(0, szRegion,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
3946
3947
3948
3949
3950
3951
3952

3953
3954
3955
3956
3957
3958
3959

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }

  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**







>







3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }
  if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**
Changes to src/pcache1.c.
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  pCache = (PCache1 *)sqlite3_malloc(sz);
  if( pCache ){
    memset(pCache, 0, sz);
    if( separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1_g.grp;
    }
    pCache->pGroup = pGroup;
    pCache->szPage = szPage;
    pCache->bPurgeable = (bPurgeable ? 1 : 0);
    if( bPurgeable ){
      pCache->nMin = 10;
      pcache1EnterMutex(pGroup);







|







570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
  pCache = (PCache1 *)sqlite3_malloc(sz);
  if( pCache ){
    memset(pCache, 0, sz);
    if( separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }
    pCache->pGroup = pGroup;
    pCache->szPage = szPage;
    pCache->bPurgeable = (bPurgeable ? 1 : 0);
    if( bPurgeable ){
      pCache->nMin = 10;
      pcache1EnterMutex(pGroup);
Changes to src/pragma.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"

/* Ignore this whole file if pragmas are disabled
*/
#if !defined(SQLITE_OMIT_PRAGMA)

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done







<
<
<
<







9
10
11
12
13
14
15




16
17
18
19
20
21
22
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"





/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite3BtreeSetSafetyLevel().  The is done
48
49
50
51
52
53
54






55
56
57
58
59
60
61

/*
** Interpret the given string as a boolean value.
*/
u8 sqlite3GetBoolean(const char *z){
  return getSafetyLevel(z)&1;
}







/*
** Interpret the given string as a locking mode value.
*/
static int getLockingMode(const char *z){
  if( z ){
    if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;







>
>
>
>
>
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

/*
** Interpret the given string as a boolean value.
*/
u8 sqlite3GetBoolean(const char *z){
  return getSafetyLevel(z)&1;
}

/* The sqlite3GetBoolean() function is used by other modules but the
** remainder of this file is specific to PRAGMA processing.  So omit
** the rest of the file if PRAGMAs are omitted from the build.
*/
#if !defined(SQLITE_OMIT_PRAGMA)

/*
** Interpret the given string as a locking mode value.
*/
static int getLockingMode(const char *z){
  if( z ){
    if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
Changes to src/shell.c.
2298
2299
2300
2301
2302
2303
2304





2305
2306
2307
2308
2309
2310
2311
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  





  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);
    }
  }else







>
>
>
>
>







2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
    
  if( HAS_TIMER && c=='t' && n>=5 && strncmp(azArg[0], "timer", n)==0
   && nArg==2
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n",
        sqlite3_libversion(), sqlite3_sourceid());
  }else

  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);
    }
  }else
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s\n", sqlite3_libversion());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;







|







2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
    }else if( strcmp(z,"-echo")==0 ){
      data.echoOn = 1;
    }else if( strcmp(z,"-stats")==0 ){
      data.statsOn = 1;
    }else if( strcmp(z,"-bail")==0 ){
      bail_on_error = 1;
    }else if( strcmp(z,"-version")==0 ){
      printf("%s %s\n", sqlite3_libversion(), sqlite3_sourceid());
      return 0;
    }else if( strcmp(z,"-interactive")==0 ){
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;
      printf(
        "SQLite version %s\n"
        "Enter \".help\" for instructions\n"
        "Enter SQL statements terminated with a \";\"\n",
        sqlite3_libversion()
      );
      zHome = find_home_dir();
      if( zHome ){
        nHistory = strlen30(zHome) + 20;
        if( (zHistory = malloc(nHistory))!=0 ){
          sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome);
        }







|


|







2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
    /* Run commands received from standard input
    */
    if( stdin_is_interactive ){
      char *zHome;
      char *zHistory = 0;
      int nHistory;
      printf(
        "SQLite version %s %.19s\n"
        "Enter \".help\" for instructions\n"
        "Enter SQL statements terminated with a \";\"\n",
        sqlite3_libversion(), sqlite3_sourceid()
      );
      zHome = find_home_dir();
      if( zHome ){
        nHistory = strlen30(zHome) + 20;
        if( (zHistory = malloc(nHistory))!=0 ){
          sqlite3_snprintf(nHistory, zHistory,"%s/.sqlite_history", zHome);
        }
Changes to src/sqlite.h.in.
450
451
452
453
454
455
456


457
458
459
460
461
462
463
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))



/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.







>
>







450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))

/*
** CAPI3REF: Flags For File Open Operations
**
** These bit values are intended for use in the
** 3rd parameter to the [sqlite3_open_v2()] interface and
** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
Changes to src/sqliteInt.h.
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
** Schema objects are automatically deallocated when the last Btree that
** references them is destroyed.   The TEMP Schema is manually freed by
** sqlite3_close().
*
** A thread must be holding a mutex on the corresponding Btree in order
** to access Schema content.  This implies that the thread must also be
** holding a mutex on the sqlite3 connection pointer that owns the Btree.
** For a TEMP Schema, on the connection mutex is required.
*/
struct Schema {
  int schema_cookie;   /* Database schema version number for this file */
  int iGeneration;     /* Generation counter.  Incremented with each change */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */







|







679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
** Schema objects are automatically deallocated when the last Btree that
** references them is destroyed.   The TEMP Schema is manually freed by
** sqlite3_close().
*
** A thread must be holding a mutex on the corresponding Btree in order
** to access Schema content.  This implies that the thread must also be
** holding a mutex on the sqlite3 connection pointer that owns the Btree.
** For a TEMP Schema, only the connection mutex is required.
*/
struct Schema {
  int schema_cookie;   /* Database schema version number for this file */
  int iGeneration;     /* Generation counter.  Incremented with each change */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
  Hash trigHash;       /* All triggers indexed by name */
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
  u8 disableTriggers;  /* True to disable triggers */
  double nQueryLoop;   /* Estimated number of iterations of a query */

  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */
  int nVarExpr;        /* Number of used slots in apVarExpr[] */
  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
  Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */







<
|
|







2234
2235
2236
2237
2238
2239
2240

2241
2242
2243
2244
2245
2246
2247
2248
2249
  u8 disableTriggers;  /* True to disable triggers */
  double nQueryLoop;   /* Estimated number of iterations of a query */

  /* Above is constant between recursions.  Below is reset before and after
  ** each recursion */

  int nVar;            /* Number of '?' variables seen in the SQL so far */

  int nzVar;           /* Number of available slots in azVar[] */
  char **azVar;        /* Pointers to names of parameters */
  Vdbe *pReprepare;    /* VM being reprepared (sqlite3Reprepare()) */
  int nAlias;          /* Number of aliased result set columns */
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
  int *aAlias;         /* Register used to hold aliased result */
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
  Token sNameToken;    /* Token with unqualified schema object name */
  Token sLastToken;    /* The last token parsed */
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
int sqlite3FixExprList(DbFixer*, ExprList*);
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
int sqlite3AtoF(const char *z, double*, int, u8);
int sqlite3GetInt32(const char *, int*);
int sqlite3Atoi(const char*);
int sqlite3Utf16ByteLen(const void *pData, int nChar);
int sqlite3Utf8CharLen(const char *pData, int nByte);
int sqlite3Utf8Read(const u8*, const u8**);

/*
** Routines to read and write variable-length integers.  These used to
** be defined locally, but now we use the varint routines in the util.c
** file.  Code should use the MACRO forms below, as the Varint32 versions
** are coded to assume the single byte case is already handled (which 
** the MACRO form does).







|







2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
int sqlite3FixExprList(DbFixer*, ExprList*);
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
int sqlite3AtoF(const char *z, double*, int, u8);
int sqlite3GetInt32(const char *, int*);
int sqlite3Atoi(const char*);
int sqlite3Utf16ByteLen(const void *pData, int nChar);
int sqlite3Utf8CharLen(const char *pData, int nByte);
u32 sqlite3Utf8Read(const u8*, const u8**);

/*
** Routines to read and write variable-length integers.  These used to
** be defined locally, but now we use the varint routines in the util.c
** file.  Code should use the MACRO forms below, as the Varint32 versions
** are coded to assume the single byte case is already handled (which 
** the MACRO form does).
Changes to src/tclsqlite.c.
3729
3730
3731
3732
3733
3734
3735




3736
3737
3738
3739
3740
3741
3742
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
    extern int Sqlitetestwholenumber_Init(Tcl_Interp*);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    extern int TestSession_Init(Tcl_Interp*);
#endif




#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);
    Zipvfs_Init(interp);
#endif

    Sqliteconfig_Init(interp);
    Sqlitetest1_Init(interp);







>
>
>
>







3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
    extern int Sqlitetestwholenumber_Init(Tcl_Interp*);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    extern int TestSession_Init(Tcl_Interp*);
#endif
#ifdef SQLITE_ENABLE_FTS3
    extern int Sqlitetestfts3_Init(Tcl_Interp *interp);
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);
    Zipvfs_Init(interp);
#endif

    Sqliteconfig_Init(interp);
    Sqlitetest1_Init(interp);
3771
3772
3773
3774
3775
3776
3777



3778
3779
3780
3781
3782
3783
3784
    SqliteSuperlock_Init(interp);
    SqlitetestSyscall_Init(interp);
    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    TestSession_Init(interp);
#endif




    Tcl_CreateObjCommand(interp,"load_testfixture_extensions",init_all_cmd,0,0);

#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }







>
>
>







3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
    SqliteSuperlock_Init(interp);
    SqlitetestSyscall_Init(interp);
    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    TestSession_Init(interp);
#endif
#ifdef SQLITE_ENABLE_FTS3
    Sqlitetestfts3_Init(interp);
#endif

    Tcl_CreateObjCommand(interp,"load_testfixture_extensions",init_all_cmd,0,0);

#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }
Changes to src/test1.c.
160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
    case SQLITE_IOERR_BLOCKED:       zName = "SQLITE_IOERR_BLOCKED";     break;
    case SQLITE_IOERR_NOMEM:         zName = "SQLITE_IOERR_NOMEM";       break;
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;

    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*







|
>







160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    case SQLITE_IOERR_BLOCKED:       zName = "SQLITE_IOERR_BLOCKED";     break;
    case SQLITE_IOERR_NOMEM:         zName = "SQLITE_IOERR_NOMEM";       break;
    case SQLITE_IOERR_ACCESS:        zName = "SQLITE_IOERR_ACCESS";      break;
    case SQLITE_IOERR_CHECKRESERVEDLOCK:
                               zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break;
    case SQLITE_IOERR_LOCK:          zName = "SQLITE_IOERR_LOCK";        break;
    case SQLITE_CORRUPT_VTAB:        zName = "SQLITE_CORRUPT_VTAB";      break;
    case SQLITE_READONLY_RECOVERY:   zName = "SQLITE_READONLY_RECOVERY"; break;
    case SQLITE_READONLY_CANTLOCK:   zName = "SQLITE_READONLY_CANTLOCK"; break;
    default:                         zName = "SQLITE_Unknown";           break;
  }
  return zName;
}
#define t1ErrorName sqlite3TestErrorName

/*
Changes to src/test_quota.c.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    pSubOpen = quotaSubOpen(pConn);
    rc = pOrigVfs->xOpen(pOrigVfs, zName, pSubOpen, flags, pOutFlags);
    if( rc==SQLITE_OK ){
      for(pFile=pGroup->pFiles; pFile && strcmp(pFile->zFilename, zName);
          pFile=pFile->pNext){}
      if( pFile==0 ){
        int nName = strlen(zName);
        pFile = sqlite3_malloc( sizeof(*pFile) + nName + 1 );
        if( pFile==0 ){
          quotaLeave();
          pSubOpen->pMethods->xClose(pSubOpen);
          return SQLITE_NOMEM;
        }
        memset(pFile, 0, sizeof(*pFile));
        pFile->zFilename = (char*)&pFile[1];







|







319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    pSubOpen = quotaSubOpen(pConn);
    rc = pOrigVfs->xOpen(pOrigVfs, zName, pSubOpen, flags, pOutFlags);
    if( rc==SQLITE_OK ){
      for(pFile=pGroup->pFiles; pFile && strcmp(pFile->zFilename, zName);
          pFile=pFile->pNext){}
      if( pFile==0 ){
        int nName = strlen(zName);
        pFile = (quotaFile *)sqlite3_malloc( sizeof(*pFile) + nName + 1 );
        if( pFile==0 ){
          quotaLeave();
          pSubOpen->pMethods->xClose(pSubOpen);
          return SQLITE_NOMEM;
        }
        memset(pFile, 0, sizeof(*pFile));
        pFile->zFilename = (char*)&pFile[1];
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
  }
  if( pGroup==0 ){
    int nPattern = strlen(zPattern);
    if( iLimit<=0 ){
      quotaLeave();
      return SQLITE_OK;
    }
    pGroup = sqlite3_malloc( sizeof(*pGroup) + nPattern + 1 );
    if( pGroup==0 ){
      quotaLeave();
      return SQLITE_NOMEM;
    }
    memset(pGroup, 0, sizeof(*pGroup));
    pGroup->zPattern = (char*)&pGroup[1];
    memcpy((char *)pGroup->zPattern, zPattern, nPattern+1);







|







679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
  }
  if( pGroup==0 ){
    int nPattern = strlen(zPattern);
    if( iLimit<=0 ){
      quotaLeave();
      return SQLITE_OK;
    }
    pGroup = (quotaGroup *)sqlite3_malloc( sizeof(*pGroup) + nPattern + 1 );
    if( pGroup==0 ){
      quotaLeave();
      return SQLITE_NOMEM;
    }
    memset(pGroup, 0, sizeof(*pGroup));
    pGroup->zPattern = (char*)&pGroup[1];
    memcpy((char *)pGroup->zPattern, zPattern, nPattern+1);
Changes to src/tokenize.c.
349
350
351
352
353
354
355
356
357

358

359
360
361
362
363
364
365
366
367
368
369
      return i;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case 'x': case 'X': {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;
        for(i=2; (c=z[i])!=0 && c!='\''; i++){
          if( !sqlite3Isxdigit(c) ){

            *tokenType = TK_ILLEGAL;

          }
        }
        if( i%2 || !c ) *tokenType = TK_ILLEGAL;
        if( c ) i++;
        return i;
      }
      /* Otherwise fall through to the next case */
    }
#endif
    default: {
      if( !IdChar(*z) ){







<
|
>
|
>
|
<
<
|







349
350
351
352
353
354
355

356
357
358
359
360


361
362
363
364
365
366
367
368
      return i;
    }
#ifndef SQLITE_OMIT_BLOB_LITERAL
    case 'x': case 'X': {
      testcase( z[0]=='x' ); testcase( z[0]=='X' );
      if( z[1]=='\'' ){
        *tokenType = TK_BLOB;

        for(i=2; sqlite3Isxdigit(z[i]); i++){}
        if( z[i]!='\'' || i%2 ){
          *tokenType = TK_ILLEGAL;
          while( z[i] && z[i]!='\'' ){ i++; }
        }


        if( z[i] ) i++;
        return i;
      }
      /* Otherwise fall through to the next case */
    }
#endif
    default: {
      if( !IdChar(*z) ){
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nVarExpr==0 );
  assert( pParse->nVarExprAlloc==0 );
  assert( pParse->apVarExpr==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;







|
<
|







407
408
409
410
411
412
413
414

415
416
417
418
419
420
421
422
  if( pEngine==0 ){
    db->mallocFailed = 1;
    return SQLITE_NOMEM;
  }
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );

  assert( pParse->azVar==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
504
505
506
507
508
509
510

511
512
513
514
515
516
517
518
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  sqlite3DeleteTrigger(db, pParse->pNewTrigger);

  sqlite3DbFree(db, pParse->apVarExpr);
  sqlite3DbFree(db, pParse->aAlias);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
  }
  while( pParse->pZombieTab ){







>
|







502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
  sqlite3DbFree(db, pParse->azVar);
  sqlite3DbFree(db, pParse->aAlias);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
  }
  while( pParse->pZombieTab ){
Changes to src/trigger.c.
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    sqlite3NestedParse(pParse,
       "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
       pTrig->table, z);
    sqlite3DbFree(db, z);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf(
        db, "type='trigger' AND name='%q'", zName), P4_DYNAMIC
    );
  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);







|
|
<







297
298
299
300
301
302
303
304
305

306
307
308
309
310
311
312
    z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n);
    sqlite3NestedParse(pParse,
       "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')",
       db->aDb[iDb].zName, SCHEMA_TABLE(iDb), zName,
       pTrig->table, z);
    sqlite3DbFree(db, z);
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddParseSchemaOp(v, iDb,
        sqlite3MPrintf(db, "type='trigger' AND name='%q'", zName));

  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite3HashInsert(pHash, zName, sqlite3Strlen30(zName), pTrig);
Changes to src/update.c.
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  if( nIdx>0 ){
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
    if( aRegIdx==0 ) goto update_cleanup;
  }
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngRowid ){
      reg = ++pParse->nMem;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ){
          reg = ++pParse->nMem;
          break;







|







240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
  if( nIdx>0 ){
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx );
    if( aRegIdx==0 ) goto update_cleanup;
  }
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( hasFK || chngRowid ){
      reg = ++pParse->nMem;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nColumn; i++){
        if( aXRef[pIdx->aiColumn[i]]>=0 ){
          reg = ++pParse->nMem;
          break;
Changes to src/utf.c.
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
      c = (c<<6) + (0x3f & *(zIn++));                      \
    }                                                      \
    if( c<0x80                                             \
        || (c&0xFFFFF800)==0xD800                          \
        || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
  }
int sqlite3Utf8Read(
  const unsigned char *zIn,       /* First byte of UTF-8 character */
  const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
){
  unsigned int c;

  /* Same as READ_UTF8() above but without the zTerm parameter.
  ** For this routine, we assume the UTF8 string is always zero-terminated.







|







159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
      c = (c<<6) + (0x3f & *(zIn++));                      \
    }                                                      \
    if( c<0x80                                             \
        || (c&0xFFFFF800)==0xD800                          \
        || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
  }
u32 sqlite3Utf8Read(
  const unsigned char *zIn,       /* First byte of UTF-8 character */
  const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
){
  unsigned int c;

  /* Same as READ_UTF8() above but without the zTerm parameter.
  ** For this routine, we assume the UTF8 string is always zero-terminated.
Changes to src/vdbe.c.
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );

  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;







>







994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
** If the parameter is named, then its name appears in P4 and P3==1.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
1404
1405
1406
1407
1408
1409
1410










1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;










  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }

  /* If any auxiliary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
    pOp->p4type = P4_VDBEFUNC;
  }

  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
    rc = ctx.isError;
  }

  /* Copy the result of the function into register P3 */







>
>
>
>
>
>
>
>
>
>










<
<
<
<
<
<
<
<
<







1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431









1432
1433
1434
1435
1436
1437
1438
    assert( pOp[-1].p4type==P4_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = pOp[-1].p4.pColl;
  }
  db->lastRowid = lastRowid;
  (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
  lastRowid = db->lastRowid;

  /* If any auxiliary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
    pOp->p4type = P4_VDBEFUNC;
  }

  if( db->mallocFailed ){
    /* Even though a malloc() has failed, the implementation of the
    ** user function may have called an sqlite3_result_XXX() function
    ** to return a value. The following call releases any resources
    ** associated with such a value.
    */
    sqlite3VdbeMemRelease(&ctx.s);
    goto no_mem;
  }










  /* If the function returned an error, throw an exception */
  if( ctx.isError ){
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
    rc = ctx.isError;
  }

  /* Copy the result of the function into register P3 */
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
  flags3 = pIn3->flags;
  if( (pIn1->flags | pIn3->flags)&MEM_Null ){
    /* One or both operands are NULL */
    if( pOp->p5 & SQLITE_NULLEQ ){
      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
      ** or not both operands are null.
      */
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];







|







|







1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
  u16 flags1;         /* Copy of initial value of pIn1->flags */
  u16 flags3;         /* Copy of initial value of pIn3->flags */

  pIn1 = &aMem[pOp->p1];
  pIn3 = &aMem[pOp->p3];
  flags1 = pIn1->flags;
  flags3 = pIn3->flags;
  if( (flags1 | flags3)&MEM_Null ){
    /* One or both operands are NULL */
    if( pOp->p5 & SQLITE_NULLEQ ){
      /* If SQLITE_NULLEQ is set (which will only happen if the operator is
      ** OP_Eq or OP_Ne) then take the jump or not depending on whether
      ** or not both operands are null.
      */
      assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
      res = (flags1 & flags3 & MEM_Null)==0;
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);

#ifndef SQLITE_OMIT_VIRTUAL_TABLE
      /* This call is Ok even if this savepoint is actually a transaction
      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
      ** If this is a transaction savepoint being opened, it is guaranteed
      ** that the db->aVTrans[] array is empty.  */
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);







|







2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
      */
      sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite3Strlen30(zName);

#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* This call is Ok even if this savepoint is actually a transaction
      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
      ** If this is a transaction savepoint being opened, it is guaranteed
      ** that the db->aVTrans[] array is empty.  */
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
5930
5931
5932
5933
5934
5935
5936

5937
5938
5939
5940
5941
5942
5943
5944
5945
5946


5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;


  zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
  if( zTrace ){
    if( db->xTrace ){
      char *z = sqlite3VdbeExpandSql(p, zTrace);
      db->xTrace(db->pTraceArg, z);
      sqlite3DbFree(db, z);
    }
#ifdef SQLITE_DEBUG
    if( (db->flags & SQLITE_SqlTrace)!=0 ){


      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
    }
#endif /* SQLITE_DEBUG */
  }
  break;
}
#endif


/* Opcode: Noop * * * * *
**







>

|
<
<
|
|
|
|

|
>
>
|
|

<







5932
5933
5934
5935
5936
5937
5938
5939
5940
5941


5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952

5953
5954
5955
5956
5957
5958
5959
/* Opcode: Trace * * * P4 *
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
*/
case OP_Trace: {
  char *zTrace;
  char *z;

  if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){


    z = sqlite3VdbeExpandSql(p, zTrace);
    db->xTrace(db->pTraceArg, z);
    sqlite3DbFree(db, z);
  }
#ifdef SQLITE_DEBUG
  if( (db->flags & SQLITE_SqlTrace)!=0
   && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
  ){
    sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
  }
#endif /* SQLITE_DEBUG */

  break;
}
#endif


/* Opcode: Noop * * * * *
**
Changes to src/vdbe.h.
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
int sqlite3VdbeAddOp0(Vdbe*,int);
int sqlite3VdbeAddOp1(Vdbe*,int,int);
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);

void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
  void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);

int sqlite3VdbeReset(Vdbe*);
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);







>













|








>







170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
int sqlite3VdbeAddOp0(Vdbe*,int);
int sqlite3VdbeAddOp1(Vdbe*,int,int);
int sqlite3VdbeAddOp2(Vdbe*,int,int,int);
int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int);
int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int);
int sqlite3VdbeAddOp4Int(Vdbe*,int,int,int,int,int);
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeAddParseSchemaOp(Vdbe*,int,char*);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3);
void sqlite3VdbeChangeP5(Vdbe*, u8 P5);
void sqlite3VdbeJumpHere(Vdbe*, int addr);
void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N);
void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite3VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeRunOnlyOnce(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeDeleteObject(sqlite3*,Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,Parse*);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
#ifdef SQLITE_DEBUG
  int sqlite3VdbeAssertMayAbort(Vdbe *, int);
  void sqlite3VdbeTrace(Vdbe*,FILE*);
#endif
void sqlite3VdbeResetStepResult(Vdbe*);
void sqlite3VdbeRewind(Vdbe*);
int sqlite3VdbeReset(Vdbe*);
void sqlite3VdbeSetNumCols(Vdbe*,int);
int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*));
void sqlite3VdbeCountChanges(Vdbe*);
sqlite3 *sqlite3VdbeDb(Vdbe*);
void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int);
void sqlite3VdbeSwap(Vdbe*,Vdbe*);
Changes to src/vdbeInt.h.
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */

  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 okVar;               /* True if azVar[] has been initialized */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 usesStmtJournal;     /* True if uses a statement journal */







>




<







283
284
285
286
287
288
289
290
291
292
293
294

295
296
297
298
299
300
301
  u32 magic;              /* Magic number for sanity checking */
  char *zErrMsg;          /* Error message written here */
  Vdbe *pPrev,*pNext;     /* Linked list of VDBEs with the same Vdbe.db */
  VdbeCursor **apCsr;     /* One element of this array for each open cursor */
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
  ynVar nzVar;            /* Number of entries in azVar[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
  u8 errorAction;         /* Recovery action to do in case of an error */

  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 usesStmtJournal;     /* True if uses a statement journal */
Changes to src/vdbeapi.c.
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}








|







98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeRewind(v);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
** This routine is added to support DBD::SQLite.  
*/
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}

/*
** Create a mapping from variable numbers to variable names
** in the Vdbe.azVar[] array, if such a mapping does not already
** exist.
*/
static void createVarMap(Vdbe *p){
  if( !p->okVar ){
    int j;
    Op *pOp;
    sqlite3_mutex_enter(p->db->mutex);
    /* The race condition here is harmless.  If two threads call this
    ** routine on the same Vdbe at the same time, they both might end
    ** up initializing the Vdbe.azVar[] array.  That is a little extra
    ** work but it results in the same answer.
    */
    for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
      if( pOp->opcode==OP_Variable ){
        assert( pOp->p1>0 && pOp->p1<=p->nVar );
        p->azVar[pOp->p1-1] = pOp->p4.z;
      }
    }
    p->okVar = 1;
    sqlite3_mutex_leave(p->db->mutex);
  }
}

/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nVar ){
    return 0;
  }
  createVarMap(p);
  return p->azVar[i-1];
}

/*
** Given a wildcard parameter name, return the index of the variable
** with that name.  If there is no variable with the given name,
** return 0.
*/
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
  int i;
  if( p==0 ){
    return 0;
  }
  createVarMap(p); 
  if( zName ){
    for(i=0; i<p->nVar; i++){
      const char *z = p->azVar[i];
      if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








|


<













<

|







1183
1184
1185
1186
1187
1188
1189


























1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

1214
1215
1216
1217
1218
1219
1220
1221
1222
** This routine is added to support DBD::SQLite.  
*/
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}



























/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nzVar ){
    return 0;
  }

  return p->azVar[i-1];
}

/*
** Given a wildcard parameter name, return the index of the variable
** with that name.  If there is no variable with the given name,
** return 0.
*/
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
  int i;
  if( p==0 ){
    return 0;
  }

  if( zName ){
    for(i=0; i<p->nzVar; i++){
      const char *z = p->azVar[i];
      if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
Changes to src/vdbeaux.c.
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;
  p->expired = 0;
  if( op==OP_ParseSchema ){
    /* Any program that uses the OP_ParseSchema opcode needs to lock
    ** all btrees. */
    int j;
    for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
  }
#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;







<
<
<
<
<
<
<







153
154
155
156
157
158
159







160
161
162
163
164
165
166
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;
  pOp->p3 = p3;
  pOp->p4.p = 0;
  pOp->p4type = P4_NOTUSED;







#ifdef SQLITE_DEBUG
  pOp->zComment = 0;
  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
#endif
#ifdef VDBE_PROFILE
  pOp->cycles = 0;
  pOp->cnt = 0;
197
198
199
200
201
202
203














204
205
206
207
208
209
210
  const char *zP4,    /* The P4 operand */
  int p4type          /* P4 operand type */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
  return addr;
}















/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
  const char *zP4,    /* The P4 operand */
  int p4type          /* P4 operand type */
){
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
  return addr;
}

/*
** Add an OP_ParseSchema opcode.  This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also local all btrees.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
  sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
  for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite3VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
  int op,             /* The new opcode */
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419

1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

































































1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495





1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
  }else{
    *pnByte += nByte;
  }
  return pBuf;
}

/*
** Prepare a virtual machine for execution.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
** VDBE_MAGIC_RUN.
**
** This function may be called more than once on a single virtual machine.
** The first call is made while compiling the SQL statement. Subsequent
** calls are made as part of the process of resetting a statement to be
** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor 
** and isExplain parameters are only passed correct values the first time
** the function is called. On subsequent calls, from sqlite3_reset(), nVar
** is passed -1 and nMem, nCursor and isExplain are all passed zero.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */
  int nArg,                      /* Maximum number of args in SubPrograms */
  int isExplain,                 /* True if the EXPLAIN keywords is present */
  int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */
){

  int n;
  sqlite3 *db = p->db;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

  /* There should be at least one opcode.
  */
  assert( p->nOp>0 );

  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
  p->magic = VDBE_MAGIC_RUN;


































































  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate space for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in. This is only done the
  ** first time this function is called for a given VDBE, not when it is
  ** being called from sqlite3_reset() to reset the virtual machine.
  */
  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
    u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */
    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */
    int nByte;                              /* How much extra memory needed */

    resolveP2Values(p, &nArg);
    p->usesStmtJournal = (u8)usesStmtJournal;
    if( isExplain && nMem<10 ){
      nMem = 10;
    }
    memset(zCsr, 0, zEnd-zCsr);
    zCsr += (zCsr - (u8*)0)&7;
    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

    /* Memory for registers, parameters, cursor, etc, is allocated in two
    ** passes.  On the first pass, we try to reuse unused space at the 
    ** end of the opcode array.  If we are unable to satisfy all memory
    ** requirements by reusing the opcode array tail, then the second
    ** pass will fill in the rest using a fresh allocation.  
    **
    ** This two-pass approach that reuses as much memory as possible from
    ** the leftover space at the end of the opcode array can significantly
    ** reduce the amount of memory held by a prepared statement.
    */
    do {
      nByte = 0;
      p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
      p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
      p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
      p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                            &zCsr, zEnd, &nByte);
      if( nByte ){
        p->pFree = sqlite3DbMallocZero(db, nByte);
      }
      zCsr = p->pFree;
      zEnd = &zCsr[nByte];
    }while( nByte && !db->mallocFailed );

    p->nCursor = (u16)nCursor;
    if( p->aVar ){
      p->nVar = (ynVar)nVar;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;
        p->aVar[n].db = db;
      }
    }





    if( p->aMem ){
      p->aMem--;                      /* aMem[] goes from 1..nMem */
      p->nMem = nMem;                 /*       not from 0..nMem-1 */
      for(n=1; n<=nMem; n++){
        p->aMem[n].flags = MEM_Null;
        p->aMem[n].db = db;
      }
    }
  }
#ifdef SQLITE_DEBUG
  for(n=1; n<p->nMem; n++){
    assert( p->aMem[n].db==db );
  }
#endif

  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->explain |= isExplain;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  {
    int i;
    for(i=0; i<p->nOp; i++){
      p->aOp[i].cnt = 0;
      p->aOp[i].cycles = 0;
    }
  }
#endif
}

/*
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){







<
<
|
<
|
<
<
<
<
<
<
<
<
<
<

|
<
<
<
<
<
<
<
<
>
|
<
|










>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|
<
<

<
|
|
<

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
>
>
>
>
>
|
|
|
|
|
|
|
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<







1395
1396
1397
1398
1399
1400
1401


1402

1403










1404
1405








1406
1407

1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496


1497

1498
1499

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555










1556








1557






1558
1559
1560
1561
1562
1563
1564
  }else{
    *pnByte += nByte;
  }
  return pBuf;
}

/*


** Rewind the VDBE back to the beginning in preparation for

** running it.










*/
void sqlite3VdbeRewind(Vdbe *p){








#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
  int i;

#endif
  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

  /* There should be at least one opcode.
  */
  assert( p->nOp>0 );

  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
  p->magic = VDBE_MAGIC_RUN;

#ifdef SQLITE_DEBUG
  for(i=1; i<p->nMem; i++){
    assert( p->aMem[i].db==p->db );
  }
#endif
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){
    p->aOp[i].cnt = 0;
    p->aOp[i].cycles = 0;
  }
#endif
}

/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine.  This involves things such
** as allocating stack space and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().  
**
** This function may be called exact once on a each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run.  After this routine is called, futher calls to 
** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  Parse *pParse                  /* Parsing context */
){
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int n;                         /* Loop counter */
  u8 *zCsr;                      /* Memory available for allocation */
  u8 *zEnd;                      /* First byte past allocated memory */
  int nByte;                     /* How much extra memory is needed */

  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  db = p->db;
  assert( db->mallocFailed==0 );
  nVar = pParse->nVar;
  nMem = pParse->nMem;
  nCursor = pParse->nTab;
  nArg = pParse->nMaxArg;
  
  /* For each cursor required, also allocate a memory cell. Memory
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  ** the vdbe program. Instead they are used to allocate space for
  ** VdbeCursor/BtCursor structures. The blob of memory associated with 
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  ** stores the blob of memory associated with cursor 1, etc.
  **
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.


  */

  zCsr = (u8*)&p->aOp[p->nOp];       /* Memory avaliable for allocation */
  zEnd = (u8*)&p->aOp[p->nOpAlloc];  /* First byte past end of zCsr[] */


  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover space at the end of the opcode array can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    nByte = 0;
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = (u16)nCursor;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
    for(n=1; n<=nMem; n++){
      p->aMem[n].flags = MEM_Null;
      p->aMem[n].db = db;
    }
  }










  p->explain = pParse->explain;








  sqlite3VdbeRewind(p);






}

/*
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2396
2397
2398
2399
2400
2401
2402

2403
2404
2405
2406
2407
2408
2409
2410

2411
2412
2413
2414
2415
2416
2417
** Free all memory associated with the Vdbe passed as the second argument.
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection.
*/
void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;

  assert( p->db==0 || p->db==db );
  releaseMemArray(p->aVar, p->nVar);
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }

  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}







>








>







2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
** Free all memory associated with the Vdbe passed as the second argument.
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection.
*/
void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
  SubProgram *pSub, *pNext;
  int i;
  assert( p->db==0 || p->db==db );
  releaseMemArray(p->aVar, p->nVar);
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  for(pSub=p->pProgram; pSub; pSub=pNext){
    pNext = pSub->pNext;
    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aLabel);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
  sqlite3DbFree(db, p);
}
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871

2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884

2885
2886
2887
2888
2889
2890
2891
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    pMem->flags = 0;
    pMem->zMalloc = 0;
    pMem->z = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object.
*/
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){

  int i;
  Mem *pMem;

  assert( p!=0 );
  assert( p->flags & UNPACKED_NEED_DESTROY );
  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
    /* The unpacked record is always constructed by the
    ** sqlite3VdbeUnpackRecord() function above, which makes all
    ** strings and blobs static.  And none of the elements are
    ** ever transformed, so there is never anything to delete.
    */
    if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
  }

  if( p->flags & UNPACKED_NEED_FREE ){
    sqlite3DbFree(p->pKeyInfo->db, p);
  }
}

/*
** This function compares the two table rows or index records







|















>













>







2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
  u = 0;
  while( idx<szHdr && u<p->nField && d<=nKey ){
    u32 serial_type;

    idx += getVarint32(&aKey[idx], serial_type);
    pMem->enc = pKeyInfo->enc;
    pMem->db = pKeyInfo->db;
    /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
    pMem->zMalloc = 0;
    pMem->z = 0;
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
    pMem++;
    u++;
  }
  assert( u<=pKeyInfo->nField + 1 );
  p->nField = u;
  return (void*)p;
}

/*
** This routine destroys a UnpackedRecord object.
*/
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
#ifdef SQLITE_DEBUG
  int i;
  Mem *pMem;

  assert( p!=0 );
  assert( p->flags & UNPACKED_NEED_DESTROY );
  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
    /* The unpacked record is always constructed by the
    ** sqlite3VdbeUnpackRecord() function above, which makes all
    ** strings and blobs static.  And none of the elements are
    ** ever transformed, so there is never anything to delete.
    */
    if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
  }
#endif
  if( p->flags & UNPACKED_NEED_FREE ){
    sqlite3DbFree(p->pKeyInfo->db, p);
  }
}

/*
** This function compares the two table rows or index records
Changes to src/vdbeblob.c.
293
294
295
296
297
298
299



300
301
302
303
304
305
306
307
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){



        sqlite3VdbeMakeReady(v, 1, 1, 1, 0, 0, 0);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);







>
>
>
|







293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite3VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite3VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite3VdbeMakeReady(v, pParse);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite3BtreeLeaveAll(db);
Changes to src/vtab.c.
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    );
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This







|







379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    );
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This
Changes to src/wal.c.
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438







439
440
441
442
443
444
445
  int nWiData;               /* Size of array apWiData */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* True if the WAL file is open read-only */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
#define WAL_HEAPMEMORY_MODE 2








/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*







|















>
>
>
>
>
>
>







416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
  int nWiData;               /* Size of array apWiData */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
#define WAL_HEAPMEMORY_MODE 2

/*
** Possible values for WAL.readOnly
*/
#define WAL_RDWR        0    /* Normal read/write connection */
#define WAL_RDONLY      1    /* The WAL file is readonly */
#define WAL_SHM_RDONLY  2    /* The SHM file is readonly */

/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*
525
526
527
528
529
530
531




532
533
534
535
536
537
538
    if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
      pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
      if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
          pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
      );




    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}







>
>
>
>







532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
      pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
      if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
    }else{
      rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
          pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
      );
      if( rc==SQLITE_READONLY ){
        pWal->readOnly |= WAL_SHM_RDONLY;
        rc = SQLITE_OK;
      }
    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
  pRet->zWalName = zWalName;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);

  /* Open file handle on the write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = 1;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{







|







1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
  pRet->zWalName = zWalName;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);

  /* Open file handle on the write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = WAL_RDONLY;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3OsClose(pRet->pWalFd);
    sqlite3_free(pRet);
  }else{
1913
1914
1915
1916
1917
1918
1919






1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934

1935
1936
1937
1938
1939
1940
1941
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( badHdr==0 || pWal->writeLock==0 );






  if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
    pWal->writeLock = 1;
    if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
      badHdr = walIndexTryHdr(pWal, pChanged);
      if( badHdr ){
        /* If the wal-index header is still malformed even while holding
        ** a WRITE lock, it can only mean that the header is corrupted and
        ** needs to be reconstructed.  So run recovery to do exactly that.
        */
        rc = walIndexRecover(pWal);
        *pChanged = 1;
      }
    }
    pWal->writeLock = 0;
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);

  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){







>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.
          */
          rc = walIndexRecover(pWal);
          *pChanged = 1;
        }
      }
      pWal->writeLock = 0;
      walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    }
  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2114
2115
2116
2117
2118
2119
2120

2121

2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {

    if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){

      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY );
      return WAL_RETRY;
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the







>
|
>













|
|







2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
      return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the
2771
2772
2773
2774
2775
2776
2777

2778
2779
2780
2781
2782
2783
2784
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );


  WALTRACE(("WAL%p: checkpoint begins\n", pWal));
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */
    return rc;







>







2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */
    return rc;
Changes to test/e_uri.test.
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
  set e
}

# EVIDENCE-OF: R-35840-33204 If URI filename interpretation is enabled,
# and the filename argument begins with "file:", then the filename is
# interpreted as a URI.
#
# EVIDENCE-OF: R-00067-59538 URI filename interpretation is enabled if
# the SQLITE_OPEN_URI flag is is set in the fourth argument to
# sqlite3_open_v2(), or if it has been enabled globally using the
# SQLITE_CONFIG_URI option with the sqlite3_config() method.

#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE]

  # Tests with SQLITE_CONFIG_URI configured to false. URI intepretation is
  # only enabled if the SQLITE_OPEN_URI flag is specified.
  sqlite3_shutdown







|


|
>







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  set e
}

# EVIDENCE-OF: R-35840-33204 If URI filename interpretation is enabled,
# and the filename argument begins with "file:", then the filename is
# interpreted as a URI.
#
# EVIDENCE-OF: R-32637-34037 URI filename interpretation is enabled if
# the SQLITE_OPEN_URI flag is is set in the fourth argument to
# sqlite3_open_v2(), or if it has been enabled globally using the
# SQLITE_CONFIG_URI option with the sqlite3_config() method or by the
# SQLITE_USE_URI compile-time option.
#
if {$tcl_platform(platform) == "unix"} {
  set flags [list SQLITE_OPEN_READWRITE SQLITE_OPEN_CREATE]

  # Tests with SQLITE_CONFIG_URI configured to false. URI intepretation is
  # only enabled if the SQLITE_OPEN_URI flag is specified.
  sqlite3_shutdown
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167
168
169
170
171
172
173
174
      set e [sqlite3_errmsg $DB]
      sqlite3_close $DB
      set e
    } $error
  }
}

# EVIDENCE-OF: R-43804-65312 The 'fragment' component of a URI, if
# present, is always ignored.
#
#   It is difficult to test that something is ignore correctly. So these tests
#   just show that adding a fragment does not interfere with the pathname or
#   parameters passed through to the VFS xOpen() methods.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db#abc}     {[pwd]/test.db {}}
    2    {file:test.db?a=b#abc} {[pwd]/test.db {a b}}
    3    {file:test.db?a=b#?c=d} {[pwd]/test.db {a b}}
  " {
    do_test 3.$tn { parse_uri $uri } $parse
  }
}

# EVIDENCE-OF: R-00273-20588 SQLite uses the 'path' component of the URI
# as the path to the database file to open.
#
# EVIDENCE-OF: R-28659-11035 If the path begins with a '/' character,
# then it is interpreted as an absolute path.
#
# EVIDENCE-OF: R-39349-47203 If it does not begin with a '/', it is

# interpreted as a relative path.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db}             {[pwd]/test.db {}}
    2    {file:/test.db}            {/test.db {}}
    3    {file:///test.db}          {/test.db {}}
    4    {file://localhost/test.db} {/test.db {}}







|
|















|
|




|
>
|







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      set e [sqlite3_errmsg $DB]
      sqlite3_close $DB
      set e
    } $error
  }
}

# EVIDENCE-OF: R-45981-25528 The fragment component of a URI, if
# present, is ignored.
#
#   It is difficult to test that something is ignore correctly. So these tests
#   just show that adding a fragment does not interfere with the pathname or
#   parameters passed through to the VFS xOpen() methods.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db#abc}     {[pwd]/test.db {}}
    2    {file:test.db?a=b#abc} {[pwd]/test.db {a b}}
    3    {file:test.db?a=b#?c=d} {[pwd]/test.db {a b}}
  " {
    do_test 3.$tn { parse_uri $uri } $parse
  }
}

# EVIDENCE-OF: R-62557-09390 SQLite uses the path component of the URI
# as the name of the disk file which contains the database.
#
# EVIDENCE-OF: R-28659-11035 If the path begins with a '/' character,
# then it is interpreted as an absolute path.
#
# EVIDENCE-OF: R-46234-61323 If the path does not begin with a '/'
# (meaning that the authority section is omitted from the URI) then the
# path is interpreted as a relative path.
#
if {$tcl_platform(platform) == "unix"} {
  foreach {tn uri parse} "
    1    {file:test.db}             {[pwd]/test.db {}}
    2    {file:/test.db}            {/test.db {}}
    3    {file:///test.db}          {/test.db {}}
    4    {file://localhost/test.db} {/test.db {}}
Changes to test/fkey3.test.
16
17
18
19
20
21
22


23
24
25
26
27
28
29
set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!foreignkey||!trigger} {
  finish_test
  return
}



# Create a table and some data to work with.
#
do_test fkey3-1.1 {
  execsql {
    PRAGMA foreign_keys=ON;
    CREATE TABLE t1(x INTEGER PRIMARY KEY);







>
>







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!foreignkey||!trigger} {
  finish_test
  return
}

set testprefix fkey3

# Create a table and some data to work with.
#
do_test fkey3-1.1 {
  execsql {
    PRAGMA foreign_keys=ON;
    CREATE TABLE t1(x INTEGER PRIMARY KEY);
73
74
75
76
77
78
79








































































































80
    INSERT INTO t2 VALUES(100);
    INSERT INTO t2 VALUES(101);
    SELECT 1, x FROM t1;
    SELECT 2, y FROM t2;
  }
} {1 100 1 101 2 100 2 101}









































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    INSERT INTO t2 VALUES(100);
    INSERT INTO t2 VALUES(101);
    SELECT 1, x FROM t1;
    SELECT 2, y FROM t2;
  }
} {1 100 1 101 2 100 2 101}


#-------------------------------------------------------------------------
# The following tests - fkey-3.* - test some edge cases to do with 
# inserting rows into tables that have foreign keys where the parent
# table is the same as the child table. Especially cases where the
# new row being inserted matches itself.
#
do_execsql_test 3.1.1 {
  CREATE TABLE t3(a, b, c, d, 
    UNIQUE(a, b),
    FOREIGN KEY(c, d) REFERENCES t3(a, b)
  );
  INSERT INTO t3 VALUES(1, 2, 1, 2);
} {}
do_catchsql_test 3.1.2 {
  INSERT INTO t3 VALUES(NULL, 2, 5, 2);
} {1 {foreign key constraint failed}}
do_catchsql_test 3.1.3 {
  INSERT INTO t3 VALUES(NULL, 3, 5, 2);
} {1 {foreign key constraint failed}}

do_execsql_test 3.2.1 {
  CREATE TABLE t4(a UNIQUE, b REFERENCES t4(a));
}
do_catchsql_test 3.2.2 {
  INSERT INTO t4 VALUES(NULL, 1);
} {1 {foreign key constraint failed}}

do_execsql_test 3.3.1 {
  CREATE TABLE t5(a INTEGER PRIMARY KEY, b REFERENCES t5(a));
  INSERT INTO t5 VALUES(NULL, 1);
} {}
do_catchsql_test 3.3.2 {
  INSERT INTO t5 VALUES(NULL, 3);
} {1 {foreign key constraint failed}}

do_execsql_test 3.4.1 {
  CREATE TABLE t6(a INTEGER PRIMARY KEY, b, c, d,
    FOREIGN KEY(c, d) REFERENCES t6(a, b)
  );
  CREATE UNIQUE INDEX t6i ON t6(b, a);
}
do_execsql_test 3.4.2  { INSERT INTO t6 VALUES(NULL, 'a', 1, 'a'); } {}
do_execsql_test 3.4.3  { INSERT INTO t6 VALUES(2, 'a', 2, 'a');    } {}
do_execsql_test 3.4.4  { INSERT INTO t6 VALUES(NULL, 'a', 1, 'a'); } {}
do_execsql_test 3.4.5  { INSERT INTO t6 VALUES(5, 'a', 2, 'a'); } {}
do_catchsql_test 3.4.6 { 
  INSERT INTO t6 VALUES(NULL, 'a', 65, 'a');    
} {1 {foreign key constraint failed}}

do_execsql_test 3.4.7 {
  INSERT INTO t6 VALUES(100, 'one', 100, 'one');
  DELETE FROM t6 WHERE a = 100;
}
do_execsql_test 3.4.8 {
  INSERT INTO t6 VALUES(100, 'one', 100, 'one');
  UPDATE t6 SET c = 1, d = 'a' WHERE a = 100;
  DELETE FROM t6 WHERE a = 100;
}

do_execsql_test 3.5.1 {
  CREATE TABLE t7(a, b, c, d INTEGER PRIMARY KEY,
    FOREIGN KEY(c, d) REFERENCES t7(a, b)
  );
  CREATE UNIQUE INDEX t7i ON t7(a, b);
}
do_execsql_test 3.5.2  { INSERT INTO t7 VALUES('x', 1, 'x', NULL) } {}
do_execsql_test 3.5.3  { INSERT INTO t7 VALUES('x', 2, 'x', 2) } {}
do_catchsql_test 3.5.4  { 
  INSERT INTO t7 VALUES('x', 450, 'x', NULL);
} {1 {foreign key constraint failed}}
do_catchsql_test 3.5.5  { 
  INSERT INTO t7 VALUES('x', 450, 'x', 451);
} {1 {foreign key constraint failed}}


do_execsql_test 3.6.1 {
  CREATE TABLE t8(a, b, c, d, e, FOREIGN KEY(c, d) REFERENCES t8(a, b));
  CREATE UNIQUE INDEX t8i1 ON t8(a, b);
  CREATE UNIQUE INDEX t8i2 ON t8(c);
  INSERT INTO t8 VALUES(1, 1, 1, 1, 1);
}
do_catchsql_test 3.6.2 { 
  UPDATE t8 SET d = 2; 
} {1 {foreign key constraint failed}}
do_execsql_test 3.6.3 { UPDATE t8 SET d = 1; }
do_execsql_test 3.6.4 { UPDATE t8 SET e = 2; }

do_catchsql_test 3.6.5 {
  CREATE TABLE TestTable (
    id INTEGER PRIMARY KEY,
    name text,
    source_id integer not null,
    parent_id integer,

    foreign key(source_id, parent_id) references TestTable(source_id, id)
  );
  CREATE UNIQUE INDEX testindex on TestTable(source_id, id);
  PRAGMA foreign_keys=1;
  INSERT INTO TestTable VALUES (1, 'parent', 1, null);
  INSERT INTO TestTable VALUES (2, 'child', 1, 1);
  UPDATE TestTable SET parent_id=1000 where id=2;
} {1 {foreign key constraint failed}}

finish_test
Added test/fts3auto.test.
































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# 2011 June 10
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
ifcapable !fts3 { finish_test ; return }
source $testdir/fts3_common.tcl
source $testdir/malloc_common.tcl

set testprefix fts3auto
set sfep $sqlite_fts3_enable_parentheses
set sqlite_fts3_enable_parentheses 1

#--------------------------------------------------------------------------
# Start of Tcl infrastructure used by tests. The entry points are:
#
#   do_fts3query_test
#   fts3_make_deferrable
#   fts3_zero_long_segments 
#

#
#    do_fts3query_test TESTNAME ?OPTIONS? TABLE MATCHEXPR
#
# This proc runs several test cases on FTS3/4 table $TABLE using match
# expression $MATCHEXPR. All documents in $TABLE must be formatted so that
# they can be "tokenized" using the Tcl list commands (llength, lindex etc.).
# The name and column names used by $TABLE must not require any quoting or
# escaping when used in SQL statements.
#
# $MATCHINFO may be any expression accepted by the FTS4 MATCH operator, 
# except that the "<column-name>:token" syntax is not supported. Tcl list
# commands are used to tokenize the expression. Any parenthesis must appear
# either as separate list elements, or as the first (for opening) or last
# (for closing) character of a list element. i.e. the expression "(a OR b)c"
# will not be parsed correctly, but "( a OR b) c" will.
#
# Available OPTIONS are:
#
#     -deferred TOKENLIST
#
# If the "deferred" option is supplied, it is passed a list of tokens that
# are deferred by FTS and result in the relevant matchinfo() stats being an
# approximation. 
#
set sqlite_fts3_enable_parentheses 1
proc do_fts3query_test {tn args} {

  set nArg [llength $args]
  if {$nArg < 2 || ($nArg % 2)} {
    set cmd do_fts3query_test
    error "wrong # args: should be \"$cmd ?-deferred LIST? TABLE MATCHEXPR\""
  }
  set tbl   [lindex $args [expr $nArg-2]]
  set match [lindex $args [expr $nArg-1]]
  set deferred [list]

  foreach {k v} [lrange $args 0 [expr $nArg-3]] {
    switch -- $k {
      -deferred {
        set deferred $v
      }
      default {
        error "bad option \"$k\": must be -deferred"
      }
    }
  }

  get_near_results $tbl $match $deferred aMatchinfo

  set matchinfo_asc [list]
  foreach docid [lsort -integer -incr [array names aMatchinfo]] {
    lappend matchinfo_asc $docid $aMatchinfo($docid)
  }
  set matchinfo_desc [list]
  foreach docid [lsort -integer -decr [array names aMatchinfo]] {
    lappend matchinfo_desc $docid $aMatchinfo($docid)
  }

  set title "(\"$match\" -> [llength [array names aMatchinfo]] rows)"

  do_execsql_test $tn$title.1 "
    SELECT docid FROM $tbl WHERE $tbl MATCH '$match' ORDER BY docid ASC
  " [lsort -integer -incr [array names aMatchinfo]] 

  do_execsql_test $tn$title.2 "
    SELECT docid FROM $tbl WHERE $tbl MATCH '$match' ORDER BY docid DESC
  " [lsort -integer -decr [array names aMatchinfo]] 

  do_execsql_test $tn$title.3 "
    SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl 
    WHERE $tbl MATCH '$match' ORDER BY docid DESC
  " $matchinfo_desc

  do_execsql_test $tn$title.4 "
    SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl 
    WHERE $tbl MATCH '$match' ORDER BY docid ASC
  " $matchinfo_asc
}

#    fts3_make_deferrable TABLE TOKEN
#
proc fts3_make_deferrable {tbl token} {

  set stmt [sqlite3_prepare db "SELECT * FROM $tbl" -1 dummy]
  set name [sqlite3_column_name $stmt 0]
  sqlite3_finalize $stmt

  set nRow [db one "SELECT count(*) FROM $tbl"]
  set pgsz [db one "PRAGMA page_size"]
  execsql BEGIN
  for {set i 0} {$i < ($nRow * $pgsz * 1.2)/100} {incr i} {
    set doc [string repeat "$token " 100]
    execsql "INSERT INTO $tbl ($name) VALUES(\$doc)"
  }
  execsql "INSERT INTO $tbl ($name) VALUES('aaaaaaa ${token}aaaaa')"
  execsql COMMIT

  return [expr $nRow*$pgsz]
}

#    fts3_zero_long_segments TABLE ?LIMIT?
#
proc fts3_zero_long_segments {tbl limit} {
  execsql " 
    UPDATE ${tbl}_segments 
    SET block = zeroblob(length(block)) 
    WHERE length(block)>$limit
  "
  return [db changes]
}


proc mit {blob} {
  set scan(littleEndian) i*
  set scan(bigEndian) I*
  binary scan $blob $scan($::tcl_platform(byteOrder)) r
  return $r
}
db func mit mit

proc fix_near_expr {expr} { 
  set out [list]
  lappend out [lindex $expr 0]
  foreach {a b} [lrange $expr 1 end] {
    if {[string match -nocase near $a]}   { set a 10 }
    if {[string match -nocase near/* $a]} { set a [string range $a 5 end] }
    lappend out $a
    lappend out $b
  }
  return $out
}

proc get_single_near_results {tbl expr deferred arrayvar nullvar} {
  upvar $arrayvar aMatchinfo
  upvar $nullvar nullentry
  catch {array unset aMatchinfo}

  set expr [fix_near_expr $expr]

  # Calculate the expected results using [fts3_near_match]. The following
  # loop populates the "hits" and "counts" arrays as follows:
  # 
  #   1. For each document in the table that matches the NEAR expression,
  #      hits($docid) is set to 1. The set of docids that match the expression
  #      can therefore be found using [array names hits].
  #
  #   2. For each column of each document in the table, counts($docid,$iCol)
  #      is set to the -phrasecountvar output.
  #
  set res [list]
  catch { array unset hits }
  db eval "SELECT docid, * FROM $tbl" d {
    set iCol 0
    foreach col [lrange $d(*) 1 end] {
      set docid $d(docid)
      set hit [fts3_near_match $d($col) $expr -p counts($docid,$iCol)]
      if {$hit} { set hits($docid) 1 }
      incr iCol
    }
  }
  set nPhrase [expr ([llength $expr]+1)/2]
  set nCol $iCol

  # This block populates the nHit and nDoc arrays. For each phrase/column
  # in the query/table, array elements are set as follows:
  #
  #   nHit($iPhrase,$iCol) - Total number of hits for phrase $iPhrase in 
  #                          column $iCol.
  #
  #   nDoc($iPhrase,$iCol) - Number of documents with at least one hit for
  #                          phrase $iPhrase in column $iCol.
  #
  for {set iPhrase 0} {$iPhrase < $nPhrase} {incr iPhrase} {
    for {set iCol 0} {$iCol < $nCol} {incr iCol} {
      set nHit($iPhrase,$iCol) 0
      set nDoc($iPhrase,$iCol) 0
    }
  }
  foreach key [array names counts] {
    set iCol [lindex [split $key ,] 1]
    set iPhrase 0
    foreach c $counts($key) {
      if {$c>0} { incr nDoc($iPhrase,$iCol) 1 }
      incr nHit($iPhrase,$iCol) $c
      incr iPhrase
    }
  }

  if {[llength $deferred] && [llength $expr]==1} {
    set phrase [lindex $expr 0]
    set rewritten [list]
    set partial 0
    foreach tok $phrase {
      if {[lsearch $deferred $tok]>=0} {
        lappend rewritten *
      } else {
        lappend rewritten $tok
        set partial 1
      }
    }
    if {$partial==0} {
      set tblsize [db one "SELECT count(*) FROM $tbl"]
      for {set iCol 0} {$iCol < $nCol} {incr iCol} {
        set nHit(0,$iCol) $tblsize
        set nDoc(0,$iCol) $tblsize
      }
    } elseif {$rewritten != $phrase} {
      while {[lindex $rewritten end] == "*"} {
        set rewritten [lrange $rewritten 0 end-1]
      }
      while {[lindex $rewritten 0] == "*"} {
        set rewritten [lrange $rewritten 1 end]
      }
      get_single_near_results $tbl [list $rewritten] {} aRewrite nullentry
      foreach docid [array names hits] {
        set aMatchinfo($docid) $aRewrite($docid)
      }
      return
    }
  }

  # Set up the aMatchinfo array. For each document, set aMatchinfo($docid) to
  # contain the output of matchinfo('x') for the document.
  #
  foreach docid [array names hits] {
    set mi [list]
    for {set iPhrase 0} {$iPhrase<$nPhrase} {incr iPhrase} {
      for {set iCol 0} {$iCol<$nCol} {incr iCol} {
        lappend mi [lindex $counts($docid,$iCol) $iPhrase]
        lappend mi $nHit($iPhrase,$iCol)
        lappend mi $nDoc($iPhrase,$iCol)
      }
    }
    set aMatchinfo($docid) $mi
  }

  # Set up the nullentry output.
  #
  set nullentry [list]
  for {set iPhrase 0} {$iPhrase<$nPhrase} {incr iPhrase} {
    for {set iCol 0} {$iCol<$nCol} {incr iCol} {
      lappend nullentry 0 $nHit($iPhrase,$iCol) $nDoc($iPhrase,$iCol)
    }
  }
}


proc matching_brackets {expr} {
  if {[string range $expr 0 0]!="(" || [string range $expr end end] !=")"} { 
    return 0 
  }

  set iBracket 1
  set nExpr [string length $expr]
  for {set i 1} {$iBracket && $i < $nExpr} {incr i} {
    set c [string range $expr $i $i]
    if {$c == "("} {incr iBracket}
    if {$c == ")"} {incr iBracket -1}
  }

  return [expr ($iBracket==0 && $i==$nExpr)]
}

proc get_near_results {tbl expr deferred arrayvar {nullvar ""}} {
  upvar $arrayvar aMatchinfo
  if {$nullvar != ""} { upvar $nullvar nullentry }

  set expr [string trim $expr]
  while { [matching_brackets $expr] } {
    set expr [string trim [string range $expr 1 end-1]]
  }

  set prec(NOT) 1
  set prec(AND) 2
  set prec(OR)  3

  set currentprec 0
  set iBracket 0
  set expr_length [llength $expr]
  for {set i 0} {$i < $expr_length} {incr i} {
    set op [lindex $expr $i]
    if {$iBracket==0 && [info exists prec($op)] && $prec($op)>=$currentprec } {
      set opidx $i
      set currentprec $prec($op)
    } else {
      for {set j 0} {$j < [string length $op]} {incr j} {
        set c [string range $op $j $j]
        if {$c == "("} { incr iBracket +1 }
        if {$c == ")"} { incr iBracket -1 }
      }
    }
  }
  if {$iBracket!=0} { error "mismatched brackets in: $expr" }

  if {[info exists opidx]==0} {
    get_single_near_results $tbl $expr $deferred aMatchinfo nullentry
  } else {
    set eLeft  [lrange $expr 0 [expr $opidx-1]]
    set eRight [lrange $expr [expr $opidx+1] end]

    get_near_results $tbl $eLeft  $deferred aLeft  nullleft
    get_near_results $tbl $eRight $deferred aRight nullright

    switch -- [lindex $expr $opidx] {
      "NOT" {
        foreach hit [array names aLeft] {
          if {0==[info exists aRight($hit)]} {
            set aMatchinfo($hit) $aLeft($hit)
          }
        }
        set nullentry $nullleft
      }

      "AND" {
        foreach hit [array names aLeft] {
          if {[info exists aRight($hit)]} {
            set aMatchinfo($hit) [concat $aLeft($hit) $aRight($hit)]
          }
        }
        set nullentry [concat $nullleft $nullright]
      }

      "OR" {
        foreach hit [array names aLeft] {
          if {[info exists aRight($hit)]} {
            set aMatchinfo($hit) [concat $aLeft($hit) $aRight($hit)]
            unset aRight($hit)
          } else {
            set aMatchinfo($hit) [concat $aLeft($hit) $nullright]
          }
        }
        foreach hit [array names aRight] {
          set aMatchinfo($hit) [concat $nullleft $aRight($hit)]
        }

        set nullentry [concat $nullleft $nullright]
      }
    }
  }
}


# End of test procs. Actual tests are below this line.
#--------------------------------------------------------------------------

#--------------------------------------------------------------------------
# The following test cases - fts3auto-1.* - focus on testing the Tcl 
# command [fts3_near_match], which is used by other tests in this file.
#
proc test_fts3_near_match {tn doc expr res} {
  fts3_near_match $doc $expr -phrasecountvar p
  uplevel do_test [list $tn] [list [list set {} $p]] [list $res]
}

test_fts3_near_match 1.1.1 {a b c a b} a                   {2}
test_fts3_near_match 1.1.2 {a b c a b} {a 5 b 6 c}         {2 2 1}
test_fts3_near_match 1.1.3 {a b c a b} {"a b"}             {2}
test_fts3_near_match 1.1.4 {a b c a b} {"b c"}             {1}
test_fts3_near_match 1.1.5 {a b c a b} {"c c"}             {0}

test_fts3_near_match 1.2.1 "a b c d e f g" {b 2 f}         {0 0}
test_fts3_near_match 1.2.2 "a b c d e f g" {b 3 f}         {1 1}
test_fts3_near_match 1.2.3 "a b c d e f g" {f 2 b}         {0 0}
test_fts3_near_match 1.2.4 "a b c d e f g" {f 3 b}         {1 1}
test_fts3_near_match 1.2.5 "a b c d e f g" {"a b" 2 "f g"} {0 0}
test_fts3_near_match 1.2.6 "a b c d e f g" {"a b" 3 "f g"} {1 1}

set A "a b c d e f g h i j k l m n o p q r s t u v w x y z"
test_fts3_near_match 1.3.1 $A {"c d" 5 "i j" 1 "e f"}      {0 0 0}
test_fts3_near_match 1.3.2 $A {"c d" 5 "i j" 2 "e f"}      {1 1 1}

#--------------------------------------------------------------------------
# Test cases fts3auto-2.* run some simple tests using the 
# [do_fts3query_test] proc.
#
foreach {tn create} {
  1    "fts4(a, b)"
  2    "fts4(a, b, order=DESC)"
  3    "fts4(a, b, order=ASC)"
  4    "fts4(a, b, prefix=1)"
  5    "fts4(a, b, order=DESC, prefix=1)"
  6    "fts4(a, b, order=ASC, prefix=1)"
} {
  do_test 2.$tn.1 {
    catchsql { DROP TABLE t1 }
    execsql  "CREATE VIRTUAL TABLE t1 USING $create"
    for {set i 0} {$i<32} {incr i} {
      set doc [list]
      if {$i&0x01} {lappend doc one}
      if {$i&0x02} {lappend doc two}
      if {$i&0x04} {lappend doc three}
      if {$i&0x08} {lappend doc four}
      if {$i&0x10} {lappend doc five}
      execsql { INSERT INTO t1 VALUES($doc, null) }
    }
  } {}

  foreach {tn2 expr} {
    1     {one}
    2     {one NEAR/1 five}
    3     {t*}
    4     {t* NEAR/0 five}
    5     {o* NEAR/1 f*}
    6     {one NEAR five NEAR two NEAR four NEAR three}
    7     {one NEAR xyz}
    8     {one OR two}
    9     {one AND two}
    10    {one NOT two}
    11    {one AND two OR three}
    12    {three OR one AND two}
    13    {(three OR one) AND two}
    14    {(three OR one) AND two NOT (five NOT four)}
    15    {"one two"}
    16    {"one two" NOT "three four"}
  } {
    do_fts3query_test 2.$tn.2.$tn2 t1 $expr
  }
}

#--------------------------------------------------------------------------
# Some test cases involving deferred tokens.
#

foreach {tn create} {
  1    "fts4(x)"
  2    "fts4(x, order=DESC)"
} {
  catchsql { DROP TABLE t1 }
  execsql  "CREATE VIRTUAL TABLE t1 USING $create"
  do_execsql_test 3.$tn.1 {
    INSERT INTO t1(docid, x) VALUES(-2, 'a b c d e f g h i j k');
    INSERT INTO t1(docid, x) VALUES(-1, 'b c d e f g h i j k a');
    INSERT INTO t1(docid, x) VALUES(0, 'c d e f g h i j k a b');
    INSERT INTO t1(docid, x) VALUES(1, 'd e f g h i j k a b c');
    INSERT INTO t1(docid, x) VALUES(2, 'e f g h i j k a b c d');
    INSERT INTO t1(docid, x) VALUES(3, 'f g h i j k a b c d e');
    INSERT INTO t1(docid, x) VALUES(4, 'a c e g i k');
    INSERT INTO t1(docid, x) VALUES(5, 'a d g j');
    INSERT INTO t1(docid, x) VALUES(6, 'c a b');
  }

  set limit [fts3_make_deferrable t1 c]

  do_fts3query_test 3.$tn.2.1 t1 {a OR c}

  do_test 3.$tn.3 { 
    fts3_zero_long_segments t1 $limit 
  } {1}

  foreach {tn2 expr def} {
    1     {a NEAR c}            {}
    2     {a AND c}             c
    3     {"a c"}               c
    4     {"c a"}               c
    5     {"a c" NEAR/1 g}      {}
    6     {"a c" NEAR/0 g}      {}
  } {
    do_fts3query_test 3.$tn.4.$tn2 -deferred $def t1 $expr
  }
}

#--------------------------------------------------------------------------
# 
foreach {tn create} {
  1    "fts4(x, y)"
  2    "fts4(x, y, order=DESC)"
  3    "fts4(x, y, order=DESC, prefix=2)"
} {

  execsql [subst {
    DROP TABLE t1;
    CREATE VIRTUAL TABLE t1 USING $create;
    INSERT INTO t1 VALUES('one two five four five', '');
    INSERT INTO t1 VALUES('', 'one two five four five');
    INSERT INTO t1 VALUES('one two', 'five four five');
  }]

  do_fts3query_test 4.$tn.1.1 t1 {one AND five}
  do_fts3query_test 4.$tn.1.2 t1 {one NEAR five}
  do_fts3query_test 4.$tn.1.3 t1 {one NEAR/1 five}
  do_fts3query_test 4.$tn.1.4 t1 {one NEAR/2 five}
  do_fts3query_test 4.$tn.1.5 t1 {one NEAR/3 five}

  do_test 4.$tn.2 { 
    set limit [fts3_make_deferrable t1 five]
    execsql { INSERT INTO t1(t1) VALUES('optimize') }
    expr {[fts3_zero_long_segments t1 $limit]>0}
  } {1}

  do_fts3query_test 4.$tn.3.1 -deferred five t1 {one AND five}
  do_fts3query_test 4.$tn.3.2 -deferred five t1 {one NEAR five}
  do_fts3query_test 4.$tn.3.3 -deferred five t1 {one NEAR/1 five}
  do_fts3query_test 4.$tn.3.4 -deferred five t1 {one NEAR/2 five}

  do_fts3query_test 4.$tn.3.5 -deferred five t1 {one NEAR/3 five}

  do_fts3query_test 4.$tn.4.1 -deferred fi* t1 {on* AND fi*}
  do_fts3query_test 4.$tn.4.2 -deferred fi* t1 {on* NEAR fi*}
  do_fts3query_test 4.$tn.4.3 -deferred fi* t1 {on* NEAR/1 fi*}
  do_fts3query_test 4.$tn.4.4 -deferred fi* t1 {on* NEAR/2 fi*}
  do_fts3query_test 4.$tn.4.5 -deferred fi* t1 {on* NEAR/3 fi*}
}

#--------------------------------------------------------------------------
# The following test cases - fts3auto-5.* - focus on using prefix indexes.
#
set chunkconfig [fts3_configure_incr_load 1 1]
foreach {tn create pending} {
  2    "fts4(a, b, order=ASC, prefix=1)"             1

  1    "fts4(a, b)"                                  1
  3    "fts4(a, b, order=ASC,  prefix=1,3)"          0
  4    "fts4(a, b, order=DESC, prefix=2,4)"          0
  5    "fts4(a, b, order=DESC, prefix=1)"            0
  6    "fts4(a, b, order=ASC,  prefix=1,3)"          0
} {

  execsql [subst {
    DROP TABLE IF EXISTS t1;
    CREATE VIRTUAL TABLE t1 USING $create;
  }]

  if {$pending} {execsql BEGIN}

  foreach {a b} {
    "the song of songs which is solomons"
    "let him kiss me with the kisses of his mouth for thy love is better than wine"
    "because of the savour of thy good ointments thy name is as ointment poured forth therefore do the virgins love thee"
    "draw me we will run after thee the king hath brought me into his chambers we will be glad and rejoice in thee we will remember thy love more than wine the upright love thee"
    "i am black but comely o ye daughters of jerusalem as the tents of kedar as the curtains of solomon"
    "look not upon me because i am black because the sun hath looked upon me my mothers children were angry with me they made me the keeper of the vineyards but mine own vineyard have i not kept"
    "tell me o thou whom my soul loveth where thou feedest where thou makest thy flock to rest at noon for why should i be as one that turneth aside by the flocks of thy companions?"
    "if thou know not o thou fairest among women go thy way forth by the footsteps of the flock and feed thy kids beside the shepherds tents"
    "i have compared thee o my love to a company of horses in pharaohs chariots"
    "thy cheeks are comely with rows of jewels thy neck with chains of gold"
    "we will make thee borders of gold with studs of silver"
    "while the king sitteth at his table my spikenard sendeth forth the smell thereof"
    "a bundle of myrrh is my wellbeloved unto me he shall lie all night betwixt my breasts"
    "my beloved is unto me as a cluster of camphire in the vineyards of en gedi"
    "behold thou art fair my love behold thou art fair thou hast doves eyes"
    "behold thou art fair my beloved yea pleasant also our bed is green"
    "the beams of our house are cedar and our rafters of fir"
  } {
    execsql {INSERT INTO t1(a, b) VALUES($a, $b)}
  }


  do_fts3query_test 5.$tn.1.1 t1 {s*}
  do_fts3query_test 5.$tn.1.2 t1 {so*}
  do_fts3query_test 5.$tn.1.3 t1 {"s* o*"}
  do_fts3query_test 5.$tn.1.4 t1 {b* NEAR/3 a*}
  do_fts3query_test 5.$tn.1.5 t1 {a*}
  do_fts3query_test 5.$tn.1.6 t1 {th* NEAR/5 a* NEAR/5 w*}
  do_fts3query_test 5.$tn.1.7 t1 {"b* th* art* fair*"}

  if {$pending} {execsql COMMIT}
}
eval fts3_configure_incr_load $chunkconfig

set sqlite_fts3_enable_parentheses $sfep
finish_test

Changes to test/fts3defer.test.
16
17
18
19
20
21
22


23
24
25
26
27
28
29
ifcapable !fts3 {
  finish_test
  return
}

set sqlite_fts3_enable_parentheses 1



set ::testprefix fts3defer

#--------------------------------------------------------------------------
# Test cases fts3defer-1.* are the "warm body" cases. The database contains
# one row with 15000 instances of the token "a". This makes the doclist for
# "a" so large that FTS3 will avoid loading it in most cases.
#







>
>







16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ifcapable !fts3 {
  finish_test
  return
}

set sqlite_fts3_enable_parentheses 1

set fts3_simple_deferred_tokens_only 1

set ::testprefix fts3defer

#--------------------------------------------------------------------------
# Test cases fts3defer-1.* are the "warm body" cases. The database contains
# one row with 15000 instances of the token "a". This makes the doclist for
# "a" so large that FTS3 will avoid loading it in most cases.
#
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

  do_select_test 1.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk xnxhf'
  } {13 29 40 47 48 52 63 92}
  do_select_test 1.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk eh'
  } {100}
if {$tn==3} breakpoint
  do_select_test 1.3 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk ubwrfqnbjf'
  } {7 70 98}
  do_select_test 1.4 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'duszemmzl jk'
  } {3 5 8 10 13 18 20 23 32 37 41 43 55 60 65 67 72 74 76 81 94 96 97}
  do_select_test 1.5 {







<







255
256
257
258
259
260
261

262
263
264
265
266
267
268

  do_select_test 1.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk xnxhf'
  } {13 29 40 47 48 52 63 92}
  do_select_test 1.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk eh'
  } {100}

  do_select_test 1.3 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'jk ubwrfqnbjf'
  } {7 70 98}
  do_select_test 1.4 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'duszemmzl jk'
  } {3 5 8 10 13 18 20 23 32 37 41 43 55 60 65 67 72 74 76 81 94 96 97}
  do_select_test 1.5 {
278
279
280
281
282
283
284


285
286
287
288
289
290
291

292
293
294
295
296
297
298
  } {68 100}
  do_select_test 1.9 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'zm ubwrfqnbjf'
  } {7 70 98}
  do_select_test 1.10 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'z* vgsld'
  } {10 13 17 31 35 51 58 88 89 90 93 100}


  do_select_test 1.11 {
    SELECT rowid FROM t1 
    WHERE t1 MATCH '(
      zdu OR zexh OR zf OR zhbrzadb OR zidhxhbtv OR 
      zk OR zkhdvkw OR zm OR zsmhnf
    ) vgsld'
  } {10 13 17 31 35 51 58 88 89 90 93 100}


  do_select_test 2.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm agmckuiu"'
  } {3 24 52 53}
  do_select_test 2.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm zf"'
  } {33 53 75 88 101}







>
>
|
|
|
|
|
|
|
>







279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
  } {68 100}
  do_select_test 1.9 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'zm ubwrfqnbjf'
  } {7 70 98}
  do_select_test 1.10 {
    SELECT rowid FROM t1 WHERE t1 MATCH 'z* vgsld'
  } {10 13 17 31 35 51 58 88 89 90 93 100}

  if { $fts3_simple_deferred_tokens_only==0 } {
    do_select_test 1.11 {
      SELECT rowid FROM t1 
      WHERE t1 MATCH '(
        zdu OR zexh OR zf OR zhbrzadb OR zidhxhbtv OR 
        zk OR zkhdvkw OR zm OR zsmhnf
      ) vgsld'
    } {10 13 17 31 35 51 58 88 89 90 93 100}
  }

  do_select_test 2.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm agmckuiu"'
  } {3 24 52 53}
  do_select_test 2.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm zf"'
  } {33 53 75 88 101}
360
361
362
363
364
365
366

367
368
369
370
371
372
373
  # The following block of tests runs normally with FTS3 or FTS4 without the
  # long doclists zeroed. And with OOM-injection for FTS4 with long doclists
  # zeroed. Change this by messing with the [set dmt_modes] commands above.
  #
  foreach DO_MALLOC_TEST $dmt_modes {
    
    # Phrase search.

    do_select_test 5.$DO_MALLOC_TEST.1 {
      SELECT rowid FROM t1 WHERE t1 MATCH '"jk mjpavjuhw"'
    } {8 15 36 64 67 72}

    # Multiple tokens search.
    do_select_test 5.$DO_MALLOC_TEST.2 {
      SELECT rowid FROM t1 WHERE t1 MATCH 'duszemmzl zm'







>







364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  # The following block of tests runs normally with FTS3 or FTS4 without the
  # long doclists zeroed. And with OOM-injection for FTS4 with long doclists
  # zeroed. Change this by messing with the [set dmt_modes] commands above.
  #
  foreach DO_MALLOC_TEST $dmt_modes {
    
    # Phrase search.
    #
    do_select_test 5.$DO_MALLOC_TEST.1 {
      SELECT rowid FROM t1 WHERE t1 MATCH '"jk mjpavjuhw"'
    } {8 15 36 64 67 72}

    # Multiple tokens search.
    do_select_test 5.$DO_MALLOC_TEST.2 {
      SELECT rowid FROM t1 WHERE t1 MATCH 'duszemmzl zm'
412
413
414
415
416
417
418

419
420
421

422
423
424
425
426
427
428
  } {10}
  do_select_test 6.2.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"jk xduvfhk"'
  } {8}
  do_select_test 6.2.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm azavwm"'
  } {15 26 92 96}

  do_select_test 6.2.3 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"jk xduvfhk" OR "zm azavwm"'
  } {8 15 26 92 96}

}

set testprefix fts3defer

do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE x1 USING fts4(a, b);
  INSERT INTO x1 VALUES('a b c', 'd e f');







>
|
|
|
>







417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
  } {10}
  do_select_test 6.2.1 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"jk xduvfhk"'
  } {8}
  do_select_test 6.2.2 {
    SELECT rowid FROM t1 WHERE t1 MATCH '"zm azavwm"'
  } {15 26 92 96}
  if {$fts3_simple_deferred_tokens_only==0} {
    do_select_test 6.2.3 {
      SELECT rowid FROM t1 WHERE t1 MATCH '"jk xduvfhk" OR "zm azavwm"'
    } {8 15 26 92 96}
  }
}

set testprefix fts3defer

do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE x1 USING fts4(a, b);
  INSERT INTO x1 VALUES('a b c', 'd e f');
Changes to test/fts3defer2.test.
44
45
46
47
48
49
50




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  INSERT INTO t1(t1) VALUES('optimize');
}
do_execsql_test 1.1.4 {
  SELECT count(*) FROM t1_segments WHERE length(block)>10000;
  UPDATE t1_segments SET block = zeroblob(length(block)) WHERE length(block)>10000;
} {2}





do_execsql_test 1.2.1 {
  SELECT content FROM t1 WHERE t1 MATCH 'f (e NEAR/2 a)';
} {{a b c d e f a x y}}

do_execsql_test 1.2.2 {
  SELECT snippet(t1, '[', ']'), offsets(t1), mit(matchinfo(t1, 'pcxnal'))
  FROM t1 WHERE t1 MATCH 'f (e NEAR/2 a)';
} [list                              \
   {a b c d [e] [f] [a] x y}         \
   {0 1 8 1 0 0 10 1 0 2 12 1}       \
   [list 3 1   1 1 1   1 8 8   1 8 8   8 5001 9]
]

do_execsql_test 1.2.3 {
  SELECT snippet(t1, '[', ']'), offsets(t1), mit(matchinfo(t1, 'pcxnal'))
  FROM t1 WHERE t1 MATCH 'f (e NEAR/3 a)';
} [list                                 \
   {[a] b c d [e] [f] [a] x y}          \
   {0 2 0 1 0 1 8 1 0 0 10 1 0 2 12 1}  \
   [list 3 1   1 1 1   1 8 8   2 8 8   8 5001 9]
]

do_execsql_test 1.3.1 { DROP TABLE t1 }

#-----------------------------------------------------------------------------
# Test cases fts3defer2-2.* focus specifically on the matchinfo function.
# 







>
>
>
>










|








|







44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  INSERT INTO t1(t1) VALUES('optimize');
}
do_execsql_test 1.1.4 {
  SELECT count(*) FROM t1_segments WHERE length(block)>10000;
  UPDATE t1_segments SET block = zeroblob(length(block)) WHERE length(block)>10000;
} {2}

do_execsql_test 1.2.0 {
  SELECT content FROM t1 WHERE t1 MATCH 'f (e a)';
} {{a b c d e f a x y}}

do_execsql_test 1.2.1 {
  SELECT content FROM t1 WHERE t1 MATCH 'f (e NEAR/2 a)';
} {{a b c d e f a x y}}

do_execsql_test 1.2.2 {
  SELECT snippet(t1, '[', ']'), offsets(t1), mit(matchinfo(t1, 'pcxnal'))
  FROM t1 WHERE t1 MATCH 'f (e NEAR/2 a)';
} [list                              \
   {a b c d [e] [f] [a] x y}         \
   {0 1 8 1 0 0 10 1 0 2 12 1}       \
   [list 3 1   1 1 1   1 1 1   1 1 1   8 5001 9]
]

do_execsql_test 1.2.3 {
  SELECT snippet(t1, '[', ']'), offsets(t1), mit(matchinfo(t1, 'pcxnal'))
  FROM t1 WHERE t1 MATCH 'f (e NEAR/3 a)';
} [list                                 \
   {[a] b c d [e] [f] [a] x y}          \
   {0 2 0 1 0 1 8 1 0 0 10 1 0 2 12 1}  \
   [list 3 1   1 1 1   1 1 1   2 2 1   8 5001 9]
]

do_execsql_test 1.3.1 { DROP TABLE t1 }

#-----------------------------------------------------------------------------
# Test cases fts3defer2-2.* focus specifically on the matchinfo function.
# 
95
96
97
98
99
100
101






102
103
104
105
106
107
108
109
110
  do_execsql_test 2.2.$tn.1 {
    SELECT mit(matchinfo(t2, 'pcxnal')) FROM t2 WHERE t2 MATCH 'a b';
  } [list                                          \
    [list 2 1  1 54 54  1 3 3  54 372 8]        \
    [list 2 1  1 54 54  1 3 3  54 372 7]        \
  ]







  set sqlite_fts3_enable_parentheses 1
  do_execsql_test 2.2.$tn.2 {
    SELECT mit(matchinfo(t2, 'x')) FROM t2 WHERE t2 MATCH 'g OR (g z)';
  } [list                                       \
    [list 1 2 2  1 2 2   1 54 54]               \
    [list 1 2 2  1 2 2   0 54 54]               \
  ]
  set sqlite_fts3_enable_parentheses 0
}







>
>
>
>
>
>

|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
  do_execsql_test 2.2.$tn.1 {
    SELECT mit(matchinfo(t2, 'pcxnal')) FROM t2 WHERE t2 MATCH 'a b';
  } [list                                          \
    [list 2 1  1 54 54  1 3 3  54 372 8]        \
    [list 2 1  1 54 54  1 3 3  54 372 7]        \
  ]

  do_execsql_test 2.2.$tn.2 {
    SELECT mit(matchinfo(t2, 'x')) FROM t2 WHERE t2 MATCH 'g z';
  } [list                                       \
    [list 1 2 2  1 54 54]                       \
  ]

  set sqlite_fts3_enable_parentheses 1
  do_execsql_test 2.2.$tn.3 {
    SELECT mit(matchinfo(t2, 'x')) FROM t2 WHERE t2 MATCH 'g OR (g z)';
  } [list                                       \
    [list 1 2 2  1 2 2   1 54 54]               \
    [list 1 2 2  1 2 2   0 54 54]               \
  ]
  set sqlite_fts3_enable_parentheses 0
}
Changes to test/fts3matchinfo.test.
64
65
66
67
68
69
70


71


72
73
74
75
76
77
78
  CREATE VIRTUAL TABLE t3 USING fts3(mtchinfo=fts3);
  INSERT INTO t3(mtchinfo) VALUES('Beside the lake, beneath the trees');
  SELECT mtchinfo FROM t3;
} {{Beside the lake, beneath the trees}}

do_execsql_test 3.2 {
  CREATE VIRTUAL TABLE xx USING FTS4;


  SELECT * FROM xx WHERE xx MATCH 'abc';


  SELECT * FROM xx WHERE xx MATCH 'a b c';
}


#--------------------------------------------------------------------------
# Proc [do_matchinfo_test] is used to test the FTSX matchinfo() function.
#







>
>

>
>







64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
  CREATE VIRTUAL TABLE t3 USING fts3(mtchinfo=fts3);
  INSERT INTO t3(mtchinfo) VALUES('Beside the lake, beneath the trees');
  SELECT mtchinfo FROM t3;
} {{Beside the lake, beneath the trees}}

do_execsql_test 3.2 {
  CREATE VIRTUAL TABLE xx USING FTS4;
}
do_execsql_test 3.3 {
  SELECT * FROM xx WHERE xx MATCH 'abc';
}
do_execsql_test 3.4 {
  SELECT * FROM xx WHERE xx MATCH 'a b c';
}


#--------------------------------------------------------------------------
# Proc [do_matchinfo_test] is used to test the FTSX matchinfo() function.
#
236
237
238
239
240
241
242



243
244
245

246
247
248
249
250
251
252
do_matchinfo_test 4.2.3 t5 {t5 MATCH 'a b a'}       { s {3} }
do_matchinfo_test 4.2.4 t5 {t5 MATCH 'a a a'}       { s {3 1} }
do_matchinfo_test 4.2.5 t5 {t5 MATCH '"a b" "a b"'} { s {2} }
do_matchinfo_test 4.2.6 t5 {t5 MATCH 'a OR b'}      { s {1 2 1} }

do_execsql_test 4.3.0 "INSERT INTO t5 VALUES('x y [string repeat {b } 50000]')";




do_matchinfo_test 4.3.1 t5 {t5 MATCH 'a a'} { 
  x {{5 8 2   5 5 5} {3 8 2   3 5 5}}
  s {2 1} 

}

do_matchinfo_test 4.3.2 t5 {t5 MATCH 'a b'}         { s {2} }
do_matchinfo_test 4.3.3 t5 {t5 MATCH 'a b a'}       { s {3} }
do_matchinfo_test 4.3.4 t5 {t5 MATCH 'a a a'}       { s {3 1} }
do_matchinfo_test 4.3.5 t5 {t5 MATCH '"a b" "a b"'} { s {2} }
do_matchinfo_test 4.3.6 t5 {t5 MATCH 'a OR b'}      { s {1 2 1 1} }







>
>
>
|
|
|
>







240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
do_matchinfo_test 4.2.3 t5 {t5 MATCH 'a b a'}       { s {3} }
do_matchinfo_test 4.2.4 t5 {t5 MATCH 'a a a'}       { s {3 1} }
do_matchinfo_test 4.2.5 t5 {t5 MATCH '"a b" "a b"'} { s {2} }
do_matchinfo_test 4.2.6 t5 {t5 MATCH 'a OR b'}      { s {1 2 1} }

do_execsql_test 4.3.0 "INSERT INTO t5 VALUES('x y [string repeat {b } 50000]')";

# It used to be that the second 'a' token would be deferred. That doesn't
# work any longer.
if 0 {
  do_matchinfo_test 4.3.1 t5 {t5 MATCH 'a a'} { 
    x {{5 8 2   5 5 5} {3 8 2   3 5 5}}
    s {2 1} 
  }
}

do_matchinfo_test 4.3.2 t5 {t5 MATCH 'a b'}         { s {2} }
do_matchinfo_test 4.3.3 t5 {t5 MATCH 'a b a'}       { s {3} }
do_matchinfo_test 4.3.4 t5 {t5 MATCH 'a a a'}       { s {3 1} }
do_matchinfo_test 4.3.5 t5 {t5 MATCH '"a b" "a b"'} { s {2} }
do_matchinfo_test 4.3.6 t5 {t5 MATCH 'a OR b'}      { s {1 2 1 1} }
Added test/fts3prefix.test.






















































































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# 2011 May 04
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#*************************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the FTS3 module.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix fts3prefix

ifcapable !fts3 {
  finish_test
  return
}

# This proc tests that the prefixes index appears to represent the same content
# as the terms index.
#
proc fts3_terms_and_prefixes {db tbl prefixlengths} {

  set iIndex 0
  foreach len $prefixlengths {
    incr iIndex
    $db eval {
      DROP TABLE IF EXISTS fts3check1;
      DROP TABLE IF EXISTS fts3check2;
    }
    $db eval "CREATE VIRTUAL TABLE fts3check1 USING fts4term($tbl, 0);"
    $db eval "CREATE VIRTUAL TABLE fts3check2 USING fts4term($tbl, $iIndex);"

    $db eval {
      DROP TABLE IF EXISTS temp.terms;
      DROP TABLE IF EXISTS temp.prefixes;
      CREATE TEMP TABLE terms AS SELECT * FROM fts3check1;
      CREATE TEMP TABLE prefixes AS SELECT * FROM fts3check2;
      CREATE INDEX temp.idx ON prefixes(term);
      DROP TABLE fts3check1;
      DROP TABLE fts3check2;
    }

    set nExpect 0
    $db eval { SELECT term, docid, col, pos FROM temp.terms } a {
      if {[string length $a(term)]<$len} continue
      incr nExpect
      set prefix [string range $a(term) 0 [expr $len-1]]
      set r [$db one { 
        SELECT count(*) FROM temp.prefixes WHERE 
        term = $prefix AND docid = $a(docid) AND col = $a(col) AND pos = $a(pos)
      }]
      if {$r != 1} {
        error "$t, $a(docid), $a(col), $a(pos)"
      }
    }

    set nCount [$db one {SELECT count(*) FROM temp.prefixes}]
    if {$nCount != $nExpect} {
      error "prefixes.count(*) is $nCount expected $nExpect"
    }
  
    execsql { DROP TABLE temp.prefixes }
    execsql { DROP TABLE temp.terms }

    set list [list]
    $db eval "
      SELECT sum( 1 << (16*(level%1024)) ) AS total, (level/1024) AS tree 
      FROM ${tbl}_segdir GROUP BY tree
    " {
      lappend list [list $total $tree]
    }

    if { [lsort -integer -index 0 $list] != [lsort -integer -index 1 $list] } {
      error "inconsistent tree structures: $list"
    }
  }

  return ""
}
proc fts3_tap_test {tn db tbl lens} {
  uplevel [list do_test $tn [list fts3_terms_and_prefixes $db $tbl $lens] ""]
}

#-------------------------------------------------------------------------
# Test cases 1.* are a sanity check. They test that the prefixes index is
# being constructed correctly for the simplest possible case.
#
do_execsql_test 1.1 {
  CREATE VIRTUAL TABLE t1 USING fts4(prefix='1,3,6');

  CREATE VIRTUAL TABLE p1 USING fts4term(t1, 1);
  CREATE VIRTUAL TABLE p2 USING fts4term(t1, 2);
  CREATE VIRTUAL TABLE p3 USING fts4term(t1, 3);
  CREATE VIRTUAL TABLE terms USING fts4term(t1);
}
do_execsql_test 1.2 {
  INSERT INTO t1 VALUES('sqlite mysql firebird');
}
do_execsql_test 1.3.1 { SELECT term FROM p1 } {f m s}
do_execsql_test 1.3.2 { SELECT term FROM p2 } {fir mys sql}
do_execsql_test 1.3.3 { SELECT term FROM p3 } {firebi sqlite}
do_execsql_test 1.4 {
  SELECT term FROM terms;
} {firebird mysql sqlite}

fts3_tap_test 1.5 db t1 {1 3 6}

#-------------------------------------------------------------------------
# A slightly more complicated dataset. This test also verifies that DELETE
# operations do not corrupt the prefixes index.
#
do_execsql_test 2.1 {
  INSERT INTO t1 VALUES('FTS3 and FTS4 are an SQLite virtual table modules');
  INSERT INTO t1 VALUES('that allows users to perform full-text searches on');
  INSERT INTO t1 VALUES('a set of documents. The most common (and');
  INSERT INTO t1 VALUES('effective) way to describe full-text searches is');
  INSERT INTO t1 VALUES('"what Google, Yahoo and Altavista do with');
  INSERT INTO t1 VALUES('documents placed on the World Wide Web". Users');
  INSERT INTO t1 VALUES('input a term, or series of terms, perhaps');
  INSERT INTO t1 VALUES('connected by a binary operator or grouped together');
  INSERT INTO t1 VALUES('into a phrase, and the full-text query system');
  INSERT INTO t1 VALUES('finds the set of documents that best matches those');
  INSERT INTO t1 VALUES('terms considering the operators and groupings the');
  INSERT INTO t1 VALUES('user has specified. This article describes the');
  INSERT INTO t1 VALUES('deployment and usage of FTS3 and FTS4.');
  INSERT INTO t1 VALUES('FTS1 and FTS2 are obsolete full-text search');
  INSERT INTO t1 VALUES('modules for SQLite. There are known issues with');
  INSERT INTO t1 VALUES('these older modules and their use should be');
  INSERT INTO t1 VALUES('avoided. Portions of the original FTS3 code were');
  INSERT INTO t1 VALUES('contributed to the SQLite project by Scott Hess of');
  INSERT INTO t1 VALUES('Google. It is now developed and maintained as part');
  INSERT INTO t1 VALUES('of SQLite. ');
}
fts3_tap_test 2.2 db t1 {1 3 6}
do_execsql_test 2.3 { DELETE FROM t1 WHERE docid%2; }
fts3_tap_test 2.4 db t1 {1 3 6}

do_execsql_test 2.5 { INSERT INTO t1(t1) VALUES('optimize') }
fts3_tap_test 2.6 db t1 {1 3 6}

do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE t2 USING fts4(prefix='1,2,3');
  INSERT INTO t2 VALUES('On 12 September the wind direction turned and');
  INSERT INTO t2 VALUES('William''s fleet sailed. A storm blew up and the');
  INSERT INTO t2 VALUES('fleet was forced to take shelter at');
  INSERT INTO t2 VALUES('Saint-Valery-sur-Somme and again wait for the wind');
  INSERT INTO t2 VALUES('to change. On 27 September the Norman fleet');
  INSERT INTO t2 VALUES('finally set sail, landing in England at Pevensey');
  INSERT INTO t2 VALUES('Bay (Sussex) on 28 September. William then moved');
  INSERT INTO t2 VALUES('to Hastings, a few miles to the east, where he');
  INSERT INTO t2 VALUES('built a prefabricated wooden castle for a base of');
  INSERT INTO t2 VALUES('operations. From there, he ravaged the hinterland');
  INSERT INTO t2 VALUES('and waited for Harold''s return from the north.');
  INSERT INTO t2 VALUES('On 12 September the wind direction turned and');
  INSERT INTO t2 VALUES('William''s fleet sailed. A storm blew up and the');
  INSERT INTO t2 VALUES('fleet was forced to take shelter at');
  INSERT INTO t2 VALUES('Saint-Valery-sur-Somme and again wait for the wind');
  INSERT INTO t2 VALUES('to change. On 27 September the Norman fleet');
  INSERT INTO t2 VALUES('finally set sail, landing in England at Pevensey');
  INSERT INTO t2 VALUES('Bay (Sussex) on 28 September. William then moved');
  INSERT INTO t2 VALUES('to Hastings, a few miles to the east, where he');
  INSERT INTO t2 VALUES('built a prefabricated wooden castle for a base of');
  INSERT INTO t2 VALUES('operations. From there, he ravaged the hinterland');
  INSERT INTO t2 VALUES('and waited for Harold''s return from the north.');
}

fts3_tap_test 3.2 db t2 {1 2 3}
do_execsql_test 3.3 { SELECT optimize(t2) FROM t2 LIMIT 1 } {{Index optimized}}
fts3_tap_test 3.4 db t2 {1 2 3}


#-------------------------------------------------------------------------
# Simple tests for reading the prefix-index.
#
do_execsql_test 4.1 {
  CREATE VIRTUAL TABLE t3 USING fts4(prefix="1,4");
  INSERT INTO t3 VALUES('one two three');
  INSERT INTO t3 VALUES('four five six');
  INSERT INTO t3 VALUES('seven eight nine');
}
do_execsql_test 4.2 {
  SELECT * FROM t3 WHERE t3 MATCH 'f*'
} {{four five six}}
do_execsql_test 4.3 {
  SELECT * FROM t3 WHERE t3 MATCH 'four*'
} {{four five six}}
do_execsql_test 4.4 {
  SELECT * FROM t3 WHERE t3 MATCH 's*'
} {{four five six} {seven eight nine}}
do_execsql_test 4.5 {
  SELECT * FROM t3 WHERE t3 MATCH 'sev*'
} {{seven eight nine}}
do_execsql_test 4.6 {
  SELECT * FROM t3 WHERE t3 MATCH 'one*'
} {{one two three}}

finish_test
Changes to test/fts3rnd.test.
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173


174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

  #lsort -uniq -integer $ret
  set ret
}

# This [proc] is used to test the FTS3 matchinfo() function.
# 
proc simple_token_matchinfo {zToken} {

  set nDoc(0) 0
  set nDoc(1) 0
  set nDoc(2) 0
  set nHit(0) 0
  set nHit(1) 0
  set nHit(2) 0




  foreach key [array names ::t1] {
    set value $::t1($key)
    set a($key) [list]
    foreach i {0 1 2} col $value {
      set hit [llength [lsearch -all $col $zToken]]
      lappend a($key) $hit
      incr nHit($i) $hit
      if {$hit>0} { incr nDoc($i) }
    }
  }

  set ret [list]
  foreach docid [lsort -integer [array names a]] {
    if { [lindex [lsort -integer $a($docid)] end] } {
      set matchinfo [list 1 3]
      foreach i {0 1 2} hit $a($docid) {
        lappend matchinfo $hit $nHit($i) $nDoc($i)
      }
      lappend ret $docid $matchinfo
    }







|








>
>













|







158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

  #lsort -uniq -integer $ret
  set ret
}

# This [proc] is used to test the FTS3 matchinfo() function.
# 
proc simple_token_matchinfo {zToken bDesc} {

  set nDoc(0) 0
  set nDoc(1) 0
  set nDoc(2) 0
  set nHit(0) 0
  set nHit(1) 0
  set nHit(2) 0

  set dir -inc
  if {$bDesc} { set dir -dec }

  foreach key [array names ::t1] {
    set value $::t1($key)
    set a($key) [list]
    foreach i {0 1 2} col $value {
      set hit [llength [lsearch -all $col $zToken]]
      lappend a($key) $hit
      incr nHit($i) $hit
      if {$hit>0} { incr nDoc($i) }
    }
  }

  set ret [list]
  foreach docid [lsort -integer $dir [array names a]] {
    if { [lindex [lsort -integer $a($docid)] end] } {
      set matchinfo [list 1 3]
      foreach i {0 1 2} hit $a($docid) {
        lappend matchinfo $hit $nHit($i) $nDoc($i)
      }
      lappend ret $docid $matchinfo
    }
258
259
260
261
262
263
264

265






266

267
268






269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288


289
290
291
292
293
294
295
proc mit {blob} {
  set scan(littleEndian) i*
  set scan(bigEndian) I*
  binary scan $blob $scan($::tcl_platform(byteOrder)) r
  return $r
}
db func mit mit








set sqlite_fts3_enable_parentheses 1


foreach nodesize {50 500 1000 2000} {






  catch { array unset ::t1 }


  # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
  #
  db transaction {
    catchsql { DROP TABLE t1 }
    execsql "CREATE VIRTUAL TABLE t1 USING fts3(a, b, c)"
    execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
    for {set i 0} {$i < 100} {incr i} { insert_row $i }
  }
  
  for {set iTest 1} {$iTest <= 100} {incr iTest} {
    catchsql COMMIT

    set DO_MALLOC_TEST 0
    set nRep 10
    if {$iTest==100 && $nodesize==50} { 
      set DO_MALLOC_TEST 1 
      set nRep 2
    }


  
    # Delete one row, update one row and insert one row.
    #
    set rows [array names ::t1]
    set nRow [llength $rows]
    set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
    set iDelete $iUpdate







>

>
>
>
>
>
>
|
>

|
>
>
>
>
>
>

>





|




|








>
>







260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
proc mit {blob} {
  set scan(littleEndian) i*
  set scan(bigEndian) I*
  binary scan $blob $scan($::tcl_platform(byteOrder)) r
  return $r
}
db func mit mit
set sqlite_fts3_enable_parentheses 1

proc do_orderbydocid_test {tn sql res} {
  uplevel [list do_select_test $tn.asc "$sql ORDER BY docid ASC" $res]
  uplevel [list do_select_test $tn.desc "$sql ORDER BY docid DESC" \
    [lsort -int -dec $res]
  ]
}

set NUM_TRIALS 100

foreach {nodesize order} {
  50    DESC
  50    ASC
  500   ASC
  1000  DESC
  2000  ASC
} {
  catch { array unset ::t1 }
  set testname "$nodesize/$order"

  # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
  #
  db transaction {
    catchsql { DROP TABLE t1 }
    execsql "CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, order=$order)"
    execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
    for {set i 0} {$i < 100} {incr i} { insert_row $i }
  }
  
  for {set iTest 1} {$iTest <= $NUM_TRIALS} {incr iTest} {
    catchsql COMMIT

    set DO_MALLOC_TEST 0
    set nRep 10
    if {$iTest==100 && $nodesize==50} { 
      set DO_MALLOC_TEST 1 
      set nRep 2
    }

    set ::testprefix fts3rnd-1.$testname.$iTest
  
    # Delete one row, update one row and insert one row.
    #
    set rows [array names ::t1]
    set nRow [llength $rows]
    set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
    set iDelete $iUpdate
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

322




323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370


371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    execsql BEGIN
      insert_row $iInsert
      update_row $iUpdate
      delete_row $iDelete
    if {0==($iTest%2)} { execsql COMMIT }

    if {0==($iTest%2)} { 
      do_test fts3rnd-1.$nodesize.$iTest.0 { fts3_integrity_check t1 } ok 
    }

    # Pick 10 terms from the vocabulary. Check that the results of querying
    # the database for the set of documents containing each of these terms
    # is the same as the result obtained by scanning the contents of the Tcl 
    # array for each term.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [random_term]
      do_select_test fts3rnd-1.$nodesize.$iTest.1.$i {
        SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term

      } [simple_token_matchinfo $term]




    }

    # This time, use the first two characters of each term as a term prefix
    # to query for. Test that querying the Tcl array produces the same results
    # as querying the FTS3 table for the prefix.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set prefix [string range [random_term] 0 end-1]
      set match "${prefix}*"
      do_select_test fts3rnd-1.$nodesize.$iTest.2.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $match]
    }

    # Similar to the above, except for phrase queries.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term]]
      set match "\"$term\""
      do_select_test fts3rnd-1.$nodesize.$iTest.3.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term] [random_term]]
      set match "\"$term\""
      do_select_test fts3rnd-1.$nodesize.$iTest.4.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases made up of term-prefixes.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set    query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]*"

      set match "\"$query\""
      do_select_test fts3rnd-1.$nodesize.$iTest.5.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $query]
    }

    # A NEAR query with terms as the arguments.


    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term]]
      set match [join $terms " NEAR "]
      do_select_test fts3rnd-1.$nodesize.$iTest.6.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match 
      } [simple_near $terms 10]
    }

    # A 3-way NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term] [random_term]]
      set nNear 11
      set match [join $terms " NEAR/$nNear "]
      do_select_test fts3rnd-1.$nodesize.$iTest.7.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_near $terms $nNear]
    }
    
    # Set operations on simple term queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set match "$term1 $op $term2"
        do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc [simple_phrase $term1] [simple_phrase $term2]]
      }
    }
 
    # Set operations on NEAR queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set term3 [random_term]
        set term4 [random_term]
        set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
        do_select_test fts3rnd-1.$nodesize.$iTest.$tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc                                  \
            [simple_near [list $term1 $term2] 10] \
            [simple_near [list $term3 $term4] 10]
          ]
      }
    }

    catchsql COMMIT
  }
}

finish_test







|









|

>
|
>
>
>
>









|









|









|












|




|
>
>




|










|















|








|
|
|







|













322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    execsql BEGIN
      insert_row $iInsert
      update_row $iUpdate
      delete_row $iDelete
    if {0==($iTest%2)} { execsql COMMIT }

    if {0==($iTest%2)} { 
      #do_test 0 { fts3_integrity_check t1 } ok 
    }

    # Pick 10 terms from the vocabulary. Check that the results of querying
    # the database for the set of documents containing each of these terms
    # is the same as the result obtained by scanning the contents of the Tcl 
    # array for each term.
    #
    for {set i 0} {$i < 10} {incr i} {
      set term [random_term]
      do_select_test 1.$i.asc {
        SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
        ORDER BY docid ASC
      } [simple_token_matchinfo $term 0]
      do_select_test 1.$i.desc {
        SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
        ORDER BY docid DESC
      } [simple_token_matchinfo $term 1]
    }

    # This time, use the first two characters of each term as a term prefix
    # to query for. Test that querying the Tcl array produces the same results
    # as querying the FTS3 table for the prefix.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set prefix [string range [random_term] 0 end-1]
      set match "${prefix}*"
      do_orderbydocid_test 2.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $match]
    }

    # Similar to the above, except for phrase queries.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term]]
      set match "\"$term\""
      do_orderbydocid_test 3.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set term [list [random_term] [random_term] [random_term]]
      set match "\"$term\""
      do_orderbydocid_test 4.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $term]
    }

    # Three word phrases made up of term-prefixes.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set    query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]* "
      append query "[string range [random_term] 0 end-1]*"

      set match "\"$query\""
      do_orderbydocid_test 5.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_phrase $query]
    }

    # A NEAR query with terms as the arguments:
    #
    #     ... MATCH '$term1 NEAR $term2' ...
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term]]
      set match [join $terms " NEAR "]
      do_orderbydocid_test 6.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match 
      } [simple_near $terms 10]
    }

    # A 3-way NEAR query with terms as the arguments.
    #
    for {set i 0} {$i < $nRep} {incr i} {
      set terms [list [random_term] [random_term] [random_term]]
      set nNear 11
      set match [join $terms " NEAR/$nNear "]
      do_orderbydocid_test 7.$i {
        SELECT docid FROM t1 WHERE t1 MATCH $match
      } [simple_near $terms $nNear]
    }
    
    # Set operations on simple term queries.
    #
    foreach {tn op proc} {
      8  OR  setop_or
      9  NOT setop_not
      10 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set match "$term1 $op $term2"
        do_orderbydocid_test $tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc [simple_phrase $term1] [simple_phrase $term2]]
      }
    }
 
    # Set operations on NEAR queries.
    #
    foreach {tn op proc} {
      11 OR  setop_or
      12 NOT setop_not
      13 AND setop_and
    } {
      for {set i 0} {$i < $nRep} {incr i} {
        set term1 [random_term]
        set term2 [random_term]
        set term3 [random_term]
        set term4 [random_term]
        set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
        do_orderbydocid_test $tn.$i {
          SELECT docid FROM t1 WHERE t1 MATCH $match
        } [$proc                                  \
            [simple_near [list $term1 $term2] 10] \
            [simple_near [list $term3 $term4] 10]
          ]
      }
    }

    catchsql COMMIT
  }
}

finish_test
Changes to test/fts3sort.test.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44











45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61




62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106




107



































108


# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}

set testprefix fts3sort

proc build_database {nRow} {
  db close
  forcedelete test.db
  sqlite3 db test.db

  set vocab [list    aa ab ac   ba bb bc    ca cb cc   da]
  expr srand(0)

  execsql { CREATE VIRTUAL TABLE t1 USING fts4 }
  for {set i 0} {$i < $nRow} {incr i} {
    set v [expr int(rand()*1000000)]
    set doc [list]
    for {set div 1} {$div < 1000000} {set div [expr $div*10]} {
      lappend doc [lindex $vocab [expr ($v/$div) % 10]]
    }
    execsql { INSERT INTO t1 VALUES($doc) }
  }
}












set nRow 1000
do_test 1.0 {
  build_database $nRow
  execsql { SELECT count(*) FROM t1 }
} $nRow

foreach {tn query} {
  1   "SELECT docid, * FROM t1"
  2   "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa'"
  3   "SELECT docid, * FROM t1 WHERE t1 MATCH 'a*'"
  4   "SELECT docid, quote(matchinfo(t1)) FROM t1 WHERE t1 MATCH 'a*'"
  5   "SELECT docid, quote(matchinfo(t1,'pcnxals')) FROM t1 WHERE t1 MATCH 'b*'"
  6   "SELECT docid, * FROM t1 WHERE t1 MATCH 'a* b* c*'"
  7   "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa OR da'"
  8   "SELECT docid, * FROM t1 WHERE t1 MATCH 'nosuchtoken'"
  9   "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR da'"
  10  "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR nosuchtoken'"




} {

  unset -nocomplain A B C D
  set A_list [list]
  set B_list [list]
  set C_list [list]
  set D_list [list]

  unset -nocomplain X
  db eval "$query ORDER BY rowid ASC"  X  { 
    set A($X(docid)) [array get X] 
    lappend A_list $X(docid)
  }
  unset -nocomplain X
  db eval "$query ORDER BY rowid DESC" X  { 
    set B($X(docid)) [array get X] 
    lappend B_list $X(docid)
  }
  unset -nocomplain X
  db eval "$query ORDER BY docid ASC"  X  { 
    set C($X(docid)) [array get X] 
    lappend C_list $X(docid)
  }
  unset -nocomplain X
  db eval "$query ORDER BY docid DESC" X  { 
    set D($X(docid)) [array get X] 
    lappend D_list $X(docid)
  }

  do_test 1.$tn.1 { set A_list } [lsort -integer -increasing $A_list]
  do_test 1.$tn.2 { set B_list } [lsort -integer -decreasing $B_list]
  do_test 1.$tn.3 { set C_list } [lsort -integer -increasing $C_list]
  do_test 1.$tn.4 { set D_list } [lsort -integer -decreasing $D_list]

  unset -nocomplain DATA
  unset -nocomplain X
  db eval "$query" X  { 
    set DATA($X(docid)) [array get X] 
  }

  do_test 1.$tn.5 { lsort [array get A] } [lsort [array get DATA]]
  do_test 1.$tn.6 { lsort [array get B] } [lsort [array get DATA]]
  do_test 1.$tn.7 { lsort [array get C] } [lsort [array get DATA]]
  do_test 1.$tn.8 { lsort [array get D] } [lsort [array get DATA]]
}








































finish_test








<

|







|










>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|










>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

# If SQLITE_ENABLE_FTS3 is defined, omit this file.
ifcapable !fts3 {
  finish_test
  return
}



proc build_database {nRow param} {
  db close
  forcedelete test.db
  sqlite3 db test.db

  set vocab [list    aa ab ac   ba bb bc    ca cb cc   da]
  expr srand(0)

  execsql "CREATE VIRTUAL TABLE t1 USING fts4($param)"
  for {set i 0} {$i < $nRow} {incr i} {
    set v [expr int(rand()*1000000)]
    set doc [list]
    for {set div 1} {$div < 1000000} {set div [expr $div*10]} {
      lappend doc [lindex $vocab [expr ($v/$div) % 10]]
    }
    execsql { INSERT INTO t1 VALUES($doc) }
  }
}

set testprefix fts3sort

unset -nocomplain CONTROL
foreach {t param} {
  1     ""
  2     "order=asc"
  3     "order=desc"
} {

  set testprefix fts3sort-1.$t

  set nRow 1000
  do_test 1.0 {
    build_database $nRow $param
    execsql { SELECT count(*) FROM t1 }
  } $nRow
  
  foreach {tn query} {
  1   "SELECT docid, * FROM t1"
  2   "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa'"
  3   "SELECT docid, * FROM t1 WHERE t1 MATCH 'a*'"
  4   "SELECT docid, quote(matchinfo(t1)) FROM t1 WHERE t1 MATCH 'a*'"
  5   "SELECT docid, quote(matchinfo(t1,'pcnxals')) FROM t1 WHERE t1 MATCH 'b*'"
  6   "SELECT docid, * FROM t1 WHERE t1 MATCH 'a* b* c*'"
  7   "SELECT docid, * FROM t1 WHERE t1 MATCH 'aa OR da'"
  8   "SELECT docid, * FROM t1 WHERE t1 MATCH 'nosuchtoken'"
  9   "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR da'"
  10  "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa OR nosuchtoken'"
  11  "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH 'aa NEAR bb'"
  12  "SELECT docid, snippet(t1) FROM t1 WHERE t1 MATCH '\"aa bb\"'"
  13  "SELECT docid, content FROM t1 WHERE t1 MATCH 'aa NEAR/2 bb NEAR/3 cc'"
  14  "SELECT docid, content FROM t1 WHERE t1 MATCH '\"aa bb cc\"'"
  } {
  
    unset -nocomplain A B C D
    set A_list [list]
    set B_list [list]
    set C_list [list]
    set D_list [list]
  
    unset -nocomplain X
    db eval "$query ORDER BY rowid ASC"  X  { 
      set A($X(docid)) [array get X] 
      lappend A_list $X(docid)
    }
    unset -nocomplain X
    db eval "$query ORDER BY rowid DESC" X  { 
      set B($X(docid)) [array get X] 
      lappend B_list $X(docid)
    }
    unset -nocomplain X
    db eval "$query ORDER BY docid ASC"  X  { 
      set C($X(docid)) [array get X] 
      lappend C_list $X(docid)
    }
    unset -nocomplain X
    db eval "$query ORDER BY docid DESC" X  { 
      set D($X(docid)) [array get X] 
      lappend D_list $X(docid)
    }
  
    do_test $tn.1 { set A_list } [lsort -integer -increasing $A_list]
    do_test $tn.2 { set B_list } [lsort -integer -decreasing $B_list]
    do_test $tn.3 { set C_list } [lsort -integer -increasing $C_list]
    do_test $tn.4 { set D_list } [lsort -integer -decreasing $D_list]
  
    unset -nocomplain DATA
    unset -nocomplain X
    db eval "$query" X  { 
      set DATA($X(docid)) [array get X] 
    }
  
    do_test $tn.5 { lsort [array get A] } [lsort [array get DATA]]
    do_test $tn.6 { lsort [array get B] } [lsort [array get DATA]]
    do_test $tn.7 { lsort [array get C] } [lsort [array get DATA]]
    do_test $tn.8 { lsort [array get D] } [lsort [array get DATA]]

    if {[info exists CONTROL($tn)]} {
      do_test $tn.9 { set CONTROL($tn) } [lsort [array get DATA]]
    } else {
      set CONTROL($tn) [lsort [array get DATA]]
    }
  }
}
unset -nocomplain CONTROL

set testprefix fts3sort

#-------------------------------------------------------------------------
# Tests for parsing the "order=asc" and "order=desc" directives.
#
foreach {tn param res} {
  1 "order=asc"             {0 {}}
  2 "order=desc"            {0 {}}
  3 "order=dec"             {1 {unrecognized order: dec}}
  4 "order=xxx, order=asc"  {1 {unrecognized order: xxx}}
  5 "order=desc, order=asc" {0 {}}
} {
  execsql { DROP TABLE IF EXISTS t1 }
  do_catchsql_test 2.1.$tn "
    CREATE VIRTUAL TABLE t1 USING fts4(a, b, $param)
  " $res
}

do_execsql_test 2.2 {
  BEGIN;
    CREATE VIRTUAL TABLE t2 USING fts4(order=desc);
    INSERT INTO t2 VALUES('aa bb');
    INSERT INTO t2 VALUES('bb cc');
    INSERT INTO t2 VALUES('cc aa');
    SELECT docid FROM t2 WHERE t2 MATCH 'aa';
  END;
} {3 1}
do_execsql_test 2.3 {
  SELECT docid FROM t2 WHERE t2 MATCH 'aa';
} {3 1}

finish_test

Changes to test/hook.test.
271
272
273
274
275
276
277




























278
279
280
281
282
283
284
      SELECT * FROM t1 EXCEPT SELECT * FROM t3;
      SELECT * FROM t1 ORDER BY b;
      SELECT * FROM t1 GROUP BY b;
    }
    set ::update_hook
  } [list]
}




























db update_hook {}
#
#----------------------------------------------------------------------------

#----------------------------------------------------------------------------
# Test the rollback-hook. The rollback-hook is a bit more complicated than
# either the commit or update hooks because a rollback can happen 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
      SELECT * FROM t1 EXCEPT SELECT * FROM t3;
      SELECT * FROM t1 ORDER BY b;
      SELECT * FROM t1 GROUP BY b;
    }
    set ::update_hook
  } [list]
}

do_test hook-4.4 {
  execsql {
    CREATE TABLE t4(a UNIQUE, b);
    INSERT INTO t4 VALUES(1, 'a');
    INSERT INTO t4 VALUES(2, 'b');
  }
  set ::update_hook [list]
  execsql {
    REPLACE INTO t4 VALUES(1, 'c');
  }
  set ::update_hook
} [list INSERT main t4 3 ]
do_execsql_test hook-4.4.1 {
  SELECT * FROM t4 ORDER BY a;
} {1 c 2 b}
do_test hook-4.4.2 {
  set ::update_hook [list]
  execsql {
    PRAGMA recursive_triggers = on;
    REPLACE INTO t4 VALUES(1, 'd');
  }
  set ::update_hook
} [list INSERT main t4 4 ]
do_execsql_test hook-4.4.3 {
  SELECT * FROM t4 ORDER BY a;
} {1 d 2 b}

db update_hook {}
#
#----------------------------------------------------------------------------

#----------------------------------------------------------------------------
# Test the rollback-hook. The rollback-hook is a bit more complicated than
# either the commit or update hooks because a rollback can happen 
Changes to test/lock_common.tcl.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    proc csql1 {sql} { list [catch { sql1 $sql } msg] $msg }
    proc csql2 {sql} { list [catch { sql2 $sql } msg] $msg }
    proc csql3 {sql} { list [catch { sql3 $sql } msg] $msg }

    uplevel set $varname $tn
    uplevel $script

    code2 { db2 close }
    code3 { db3 close }
    catch { close $::code2_chan }
    catch { close $::code3_chan }
    catch { db close }
  }
}

# Launch another testfixture process to be controlled by this one. A







|
|







51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    proc csql1 {sql} { list [catch { sql1 $sql } msg] $msg }
    proc csql2 {sql} { list [catch { sql2 $sql } msg] $msg }
    proc csql3 {sql} { list [catch { sql3 $sql } msg] $msg }

    uplevel set $varname $tn
    uplevel $script

    catch { code2 { db2 close } }
    catch { code3 { db3 close } }
    catch { close $::code2_chan }
    catch { close $::code3_chan }
    catch { db close }
  }
}

# Launch another testfixture process to be controlled by this one. A
Changes to test/malloc.test.
889
890
891
892
893
894
895












896
897
898
899
900
901
902
    sqlite3 db test.db
    sqlite3_db_config_lookaside db 0 0 0
    add_test_collate db 0 0 1
  } -sqlbody {
    SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc'
  }
}













# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}








>
>
>
>
>
>
>
>
>
>
>
>







889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    sqlite3 db test.db
    sqlite3_db_config_lookaside db 0 0 0
    add_test_collate db 0 0 1
  } -sqlbody {
    SELECT * FROM t4 AS t41, t4 AS t42 WHERE t41.x>'ddd' AND t42.x>'ccc'
  }
}

# Test that if an OOM error occurs, aux-data is still correctly destroyed.
# This test case was causing either a memory-leak or an assert() failure
# at one point, depending on the configuration.
#
do_malloc_test 39 -tclprep {
  sqlite3 db test.db
} -sqlbody {
  SELECT test_auxdata('abc', 'def');
} -cleanup {
  db close
}

# Ensure that no file descriptors were leaked.
do_test malloc-99.X {
  catch {db close}
  set sqlite_open_file_count
} {0}

Changes to test/multiplex.test.
568
569
570
571
572
573
574

575
576
577
578
579
580
581
}

#-------------------------------------------------------------------------
# Test that you can vacuum a multiplex'ed DB.  

ifcapable vacuum {


do_test multiplex-6.0.0 {
  multiplex_delete test.db
  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.db
  multiplex_set db main 4096 16
} {SQLITE_OK}








>







568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
}

#-------------------------------------------------------------------------
# Test that you can vacuum a multiplex'ed DB.  

ifcapable vacuum {

sqlite3_multiplex_shutdown
do_test multiplex-6.0.0 {
  multiplex_delete test.db
  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.db
  multiplex_set db main 4096 16
} {SQLITE_OK}

Changes to test/pager1.test.
437
438
439
440
441
442
443


444
445
446
447
448
449
450
      INSERT INTO t1 SELECT a_string(204), a_string(304) FROM t1;
      REPLACE INTO t2 SELECT * FROM t1;
    COMMIT;
  }
  db close
  tstvfs delete
} {}


do_test pager1.4.2.2 {
  faultsim_restore_and_reopen
  execsql {
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {4 ok}







>
>







437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
      INSERT INTO t1 SELECT a_string(204), a_string(304) FROM t1;
      REPLACE INTO t2 SELECT * FROM t1;
    COMMIT;
  }
  db close
  tstvfs delete
} {}

if {$::tcl_platform(platform)!="windows"} {
do_test pager1.4.2.2 {
  faultsim_restore_and_reopen
  execsql {
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {4 ok}
469
470
471
472
473
474
475

476
477
478
479
480
481
482
  hexio_write test.db-journal [expr [file size test.db-journal]-20] 123456
  foreach f [glob test.db-mj*] { file delete -force $f }
  execsql {
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {4 ok}


do_test pager1.4.3.1 {
  testvfs tstvfs -default 1
  tstvfs filter xSync
  tstvfs script xSyncCallback
  proc xSyncCallback {method file args} {
    set file [file tail $file]







>







471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  hexio_write test.db-journal [expr [file size test.db-journal]-20] 123456
  foreach f [glob test.db-mj*] { file delete -force $f }
  execsql {
    SELECT count(*) FROM t1;
    PRAGMA integrity_check;
  }
} {4 ok}
}

do_test pager1.4.3.1 {
  testvfs tstvfs -default 1
  tstvfs filter xSync
  tstvfs script xSyncCallback
  proc xSyncCallback {method file args} {
    set file [file tail $file]
1544
1545
1546
1547
1548
1549
1550

1551
1552
1553
1554
1555
1556
1557
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /*  32 */
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /*  64 */
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /* 128 */
  COMMIT;
  UPDATE t1 SET b = a_string(400);
} {persist}


# Run transactions of increasing sizes. Eventually, one (or more than one)
# of these will write just enough content that one of the old headers created 
# by the transaction in the block above lies immediately after the content
# journalled by the current transaction.
#
for {set nUp 1} {$nUp<64} {incr nUp} {
  do_execsql_test pager1-13.1.2.$nUp.1 { 







>







1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /*  32 */
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /*  64 */
    INSERT INTO t1 SELECT NULL, a_string(400) FROM t1;          /* 128 */
  COMMIT;
  UPDATE t1 SET b = a_string(400);
} {persist}

if {$::tcl_platform(platform)!="windows"} {
# Run transactions of increasing sizes. Eventually, one (or more than one)
# of these will write just enough content that one of the old headers created 
# by the transaction in the block above lies immediately after the content
# journalled by the current transaction.
#
for {set nUp 1} {$nUp<64} {incr nUp} {
  do_execsql_test pager1-13.1.2.$nUp.1 { 
1566
1567
1568
1569
1570
1571
1572
1573


1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

1593
1594
1595
1596
1597
1598
1599
    execsql { SELECT sum(length(b)) FROM t1 } db2
  } [expr {128*400 - ($nUp-1)}]
  do_test pager1-13.1.2.$nUp.4 {
    execsql { PRAGMA integrity_check } db2
  } {ok}
  db2 close
}



# Same test as above. But this time with an index on the table.
#
do_execsql_test pager1-13.2.1 {
  CREATE INDEX i1 ON t1(b);
  UPDATE t1 SET b = a_string(400);
} {}
for {set nUp 1} {$nUp<64} {incr nUp} {
  do_execsql_test pager1-13.2.2.$nUp.1 { 
    UPDATE t1 SET b = a_string(399) WHERE a <= $nUp
  } {}
  do_execsql_test pager1-13.2.2.$nUp.2 { PRAGMA integrity_check } {ok} 
  sqlite3 db2 sv_test.db
  do_test pager1-13.2.2.$nUp.3 {
    execsql { SELECT sum(length(b)) FROM t1 } db2
  } [expr {128*400 - ($nUp-1)}]
  do_test pager1-13.2.2.$nUp.4 {
    execsql { PRAGMA integrity_check } db2
  } {ok}
  db2 close

}

db close
tv delete

#-------------------------------------------------------------------------
# Test specal "PRAGMA journal_mode=OFF" test cases.







|
>
>



















>







1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
    execsql { SELECT sum(length(b)) FROM t1 } db2
  } [expr {128*400 - ($nUp-1)}]
  do_test pager1-13.1.2.$nUp.4 {
    execsql { PRAGMA integrity_check } db2
  } {ok}
  db2 close
}
}

if {$::tcl_platform(platform)!="windows"} {
# Same test as above. But this time with an index on the table.
#
do_execsql_test pager1-13.2.1 {
  CREATE INDEX i1 ON t1(b);
  UPDATE t1 SET b = a_string(400);
} {}
for {set nUp 1} {$nUp<64} {incr nUp} {
  do_execsql_test pager1-13.2.2.$nUp.1 { 
    UPDATE t1 SET b = a_string(399) WHERE a <= $nUp
  } {}
  do_execsql_test pager1-13.2.2.$nUp.2 { PRAGMA integrity_check } {ok} 
  sqlite3 db2 sv_test.db
  do_test pager1-13.2.2.$nUp.3 {
    execsql { SELECT sum(length(b)) FROM t1 } db2
  } [expr {128*400 - ($nUp-1)}]
  do_test pager1-13.2.2.$nUp.4 {
    execsql { PRAGMA integrity_check } db2
  } {ok}
  db2 close
}
}

db close
tv delete

#-------------------------------------------------------------------------
# Test specal "PRAGMA journal_mode=OFF" test cases.
Changes to test/pagerfault.test.
15
16
17
18
19
20
21





22
23
24
25
26
27
28
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl

if {[permutation] == "inmemory_journal"} {
  finish_test
  return
}






set a_string_counter 1
proc a_string {n} {
  global a_string_counter
  incr a_string_counter
  string range [string repeat "${a_string_counter}." $n] 1 $n
}







>
>
>
>
>







15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
source $testdir/lock_common.tcl
source $testdir/malloc_common.tcl

if {[permutation] == "inmemory_journal"} {
  finish_test
  return
}

if {$::tcl_platform(platform)=="windows"} {
  finish_test
  return
}

set a_string_counter 1
proc a_string {n} {
  global a_string_counter
  incr a_string_counter
  string range [string repeat "${a_string_counter}." $n] 1 $n
}
Changes to test/permutations.test.
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194
195
} -files {
  fts3aa.test fts3ab.test fts3ac.test fts3ad.test fts3ae.test
  fts3af.test fts3ag.test fts3ah.test fts3ai.test fts3aj.test
  fts3ak.test fts3al.test fts3am.test fts3an.test fts3ao.test
  fts3atoken.test fts3b.test fts3c.test fts3cov.test fts3d.test
  fts3defer.test fts3defer2.test fts3e.test fts3expr.test fts3expr2.test 
  fts3near.test fts3query.test fts3shared.test fts3snippet.test 


  fts3fault.test fts3malloc.test fts3matchinfo.test

  fts3aux1.test fts3comp1.test
}


lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#







>



|







178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
} -files {
  fts3aa.test fts3ab.test fts3ac.test fts3ad.test fts3ae.test
  fts3af.test fts3ag.test fts3ah.test fts3ai.test fts3aj.test
  fts3ak.test fts3al.test fts3am.test fts3an.test fts3ao.test
  fts3atoken.test fts3b.test fts3c.test fts3cov.test fts3d.test
  fts3defer.test fts3defer2.test fts3e.test fts3expr.test fts3expr2.test 
  fts3near.test fts3query.test fts3shared.test fts3snippet.test 
  fts3sort.test

  fts3fault.test fts3malloc.test fts3matchinfo.test

  fts3aux1.test fts3comp1.test fts3auto.test
}


lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
  pager1.test async4.test corrupt.test filefmt.test pager2.test
  corrupt5.test corruptA.test pageropt.test

  # Exclude stmt.test, which expects sub-journals to use temporary files.
  stmt.test

  # WAL mode is different.
  wal*
}]

ifcapable mem3 {
  test_suite "memsys3" -description {
    Run tests using the allocator in mem3.c.
  } -files [test_set $::allquicktests -exclude {
    autovacuum.test           delete3.test              manydb.test







|







528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  pager1.test async4.test corrupt.test filefmt.test pager2.test
  corrupt5.test corruptA.test pageropt.test

  # Exclude stmt.test, which expects sub-journals to use temporary files.
  stmt.test

  # WAL mode is different.
  wal* tkt-2d1a5c67d.test
}]

ifcapable mem3 {
  test_suite "memsys3" -description {
    Run tests using the allocator in mem3.c.
  } -files [test_set $::allquicktests -exclude {
    autovacuum.test           delete3.test              manydb.test
Changes to test/tester.tcl.
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  set L2 [list]
  foreach l $L {lappend L2 $l}
  set L2
}
    
proc do_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test $testname [list "execsql {$sql}"] [list [list {*}$result]]
}
proc do_catchsql_test {testname sql result} {
  fix_testname testname
  uplevel do_test $testname [list "catchsql {$sql}"] [list $result]
}
proc do_eqp_test {name sql res} {
  uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
}

#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST







|



|







376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  set L2 [list]
  foreach l $L {lappend L2 $l}
  set L2
}
    
proc do_execsql_test {testname sql {result {}}} {
  fix_testname testname
  uplevel do_test [list $testname] [list "execsql {$sql}"] [list [list {*}$result]]
}
proc do_catchsql_test {testname sql result} {
  fix_testname testname
  uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result]
}
proc do_eqp_test {name sql res} {
  uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res]
}

#-------------------------------------------------------------------------
#   Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST
Changes to test/trace2.test.
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "-- INSERT INTO 'main'.'x1_segdir' VALUES(?,?,?,?,?,?)"
  }

  do_trace_test 2.3 {
    INSERT INTO x1(x1) VALUES('optimize');
  } {
    "INSERT INTO x1(x1) VALUES('optimize');"
    "-- SELECT idx, start_block, leaves_end_block, end_block, root FROM 'main'.'x1_segdir' ORDER BY level DESC, idx ASC"
    "-- SELECT count(*), max(level) FROM 'main'.'x1_segdir'"
    "-- SELECT coalesce((SELECT max(blockid) FROM 'main'.'x1_segments') + 1, 1)"
    "-- DELETE FROM 'main'.'x1_segdir'"
    "-- INSERT INTO 'main'.'x1_segdir' VALUES(?,?,?,?,?,?)"
  }
}

finish_test







|
|

|





137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "-- INSERT INTO 'main'.'x1_segdir' VALUES(?,?,?,?,?,?)"
  }

  do_trace_test 2.3 {
    INSERT INTO x1(x1) VALUES('optimize');
  } {
    "INSERT INTO x1(x1) VALUES('optimize');"
    "-- SELECT idx, start_block, leaves_end_block, end_block, root FROM 'main'.'x1_segdir' WHERE level BETWEEN ? AND ?ORDER BY level DESC, idx ASC"
    "-- SELECT max(level) FROM 'main'.'x1_segdir' WHERE level BETWEEN ? AND ?"
    "-- SELECT coalesce((SELECT max(blockid) FROM 'main'.'x1_segments') + 1, 1)"
    "-- DELETE FROM 'main'.'x1_segdir' WHERE level BETWEEN ? AND ?"
    "-- INSERT INTO 'main'.'x1_segdir' VALUES(?,?,?,?,?,?)"
  }
}

finish_test
Changes to test/wal7.test.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    PRAGMA journal_size_limit=25000;
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 SELECT x FROM t1;
  }
  file size test.db-wal
} 25000


# Case 3:  Size limit of zero.
#







|







57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    PRAGMA journal_size_limit=25000;
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 VALUES(1);
  }
  file size test.db-wal
} 25000


# Case 3:  Size limit of zero.
#
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    PRAGMA journal_size_limit=0;
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 SELECT x FROM t1;
  }
  set sz [file size test.db-wal]
  expr {$sz>0 && $sz<10000}
} 1


# Case 4:  Size limit set before going WAL
#
do_test wal7-4.0 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    PRAGMA page_size=1024;
    PRAGMA journal_size_limit=25000;
    PRAGMA journal_mode=WAL;
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 SELECT x FROM t1;
  }
  set sz [file size test.db-wal]
} 25000





finish_test







|


|



















|









79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    PRAGMA journal_size_limit=0;
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 VALUES(1);
  }
  set sz [file size test.db-wal]
  expr {$sz>0 && $sz<13700}
} 1


# Case 4:  Size limit set before going WAL
#
do_test wal7-4.0 {
  db close
  forcedelete test.db
  sqlite3 db test.db
  db eval {
    PRAGMA page_size=1024;
    PRAGMA journal_size_limit=25000;
    PRAGMA journal_mode=WAL;
    PRAGMA wal_autocheckpoint=50;  -- 50 pages
    CREATE TABLE t1(x, y UNIQUE);
    INSERT INTO t1 VALUES(1,2);
    INSERT INTO t1 VALUES(zeroblob(200000),4);
    CREATE TABLE t2(z);
    DELETE FROM t1;
    INSERT INTO t2 VALUES(1);
  }
  set sz [file size test.db-wal]
} 25000





finish_test
Added test/walro.test.


































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# 2011 May 09
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file contains tests for using WAL databases in read-only mode.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
source $testdir/lock_common.tcl
set ::testprefix walro

# These tests are only going to work on unix.
#
if {$::tcl_platform(platform) != "unix"} {
  finish_test
  return
}

do_multiclient_test tn {
  # Do not run tests with the connections in the same process.
  #
  if {$tn==2} continue
  
  # Close all connections and delete the database.
  #
  code1 { db close  }
  code2 { db2 close }
  code3 { db3 close }
  forcedelete test.db
  forcedelete walro

  foreach c {code1 code2 code3} {
    $c {
      sqlite3_shutdown
      sqlite3_config_uri 1
    }
  }

  file mkdir walro

  do_test 1.1.1 {
    code2 { sqlite3 db2 test.db }
    sql2 { 
      PRAGMA journal_mode = WAL;
      CREATE TABLE t1(x, y);
      INSERT INTO t1 VALUES('a', 'b');
    }
    file exists test.db-shm
  } {1}

  do_test 1.1.2 {
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
  } {}

  do_test 1.1.3 { sql1 "SELECT * FROM t1" }                {a b}
  do_test 1.1.4 { sql2 "INSERT INTO t1 VALUES('c', 'd')" } {}
  do_test 1.1.5 { sql1 "SELECT * FROM t1" }                {a b c d}

  # Check that the read-only connection cannot write or checkpoint the db.
  #
  do_test 1.1.6 { 
    csql1 "INSERT INTO t1 VALUES('e', 'f')" 
  } {1 {attempt to write a readonly database}}
  do_test 1.1.7 { 
    csql1 "PRAGMA wal_checkpoint"
  } {1 {attempt to write a readonly database}}

  do_test 1.1.9  { sql2 "INSERT INTO t1 VALUES('e', 'f')" } {}
  do_test 1.1.10 { sql1 "SELECT * FROM t1" }                {a b c d e f}

  do_test 1.1.11 { 
    sql2 {
      INSERT INTO t1 VALUES('g', 'h');
      PRAGMA wal_checkpoint;
    }
    set {} {}
  } {}
  do_test 1.1.12 { sql1 "SELECT * FROM t1" }                {a b c d e f g h}
  do_test 1.1.13  { sql2 "INSERT INTO t1 VALUES('i', 'j')" } {}

  do_test 1.2.1 {
    code2 { db2 close }
    code1 { db close }
    list [file exists test.db-wal] [file exists test.db-shm]
  } {1 1}
  do_test 1.2.2 {
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    sql1 { SELECT * FROM t1 }
  } {a b c d e f g h i j}

  do_test 1.2.3 {
    code1 { db close }
    file attributes test.db-shm -permissions rw-r--r--
    hexio_write test.db-shm 0 01020304 
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    csql1 { SELECT * FROM t1 }
  } {1 {attempt to write a readonly database}}
  do_test 1.2.4 {
    code1 { sqlite3_extended_errcode db } 
  } {SQLITE_READONLY_RECOVERY}

  do_test 1.2.5 {
    file attributes test.db-shm -permissions rw-r--r--
    code2 { sqlite3 db2 test.db }
    sql2 "SELECT * FROM t1" 
  } {a b c d e f g h i j}
  file attributes test.db-shm -permissions r--r--r--
  do_test 1.2.6 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j}

  do_test 1.2.7 { 
    sql2 {
      PRAGMA wal_checkpoint;
      INSERT INTO t1 VALUES('k', 'l');
    }
    set {} {}
  } {}
  do_test 1.2.8 { sql1 "SELECT * FROM t1" } {a b c d e f g h i j k l}

  # Now check that if the readonly_shm option is not supplied, or if it
  # is set to zero, it is not possible to connect to the database without
  # read-write access to the shm.
  do_test 1.3.1 {
    code1 { db close }
    code1 { sqlite3 db test.db }
    csql1 { SELECT * FROM t1 }
  } {1 {unable to open database file}}

  # Also test that if the -shm file can be opened for read/write access,
  # it is, even if readonly_shm=1 is present in the URI.
  do_test 1.3.2.1 {
    code1 { db close }
    code2 { db2 close }
    file exists test.db-shm
  } {0}
  do_test 1.3.2.2 {
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    sql1 { SELECT * FROM t1 }
  } {a b c d e f g h i j k l}
  do_test 1.3.2.3 {
    code1 { db close }
    close [open test.db-shm w]
    file attributes test.db-shm -permissions r--r--r--
    code1 { sqlite3 db file:test.db?readonly_shm=1 }
    csql1 { SELECT * FROM t1 }
  } {1 {attempt to write a readonly database}}
  do_test 1.3.2.4 {
    code1 { sqlite3_extended_errcode db } 
  } {SQLITE_READONLY_RECOVERY}
}

finish_test
Added tool/build-shell.sh.










































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/bin/sh
#
# This script demonstrates how to do a full-featured build of the sqlite3
# command-line shell on Linux.
#
# SQLite source code should be in a sibling directory named "sqlite".  For
# example, put SQLite sources in ~/sqlite/sqlite and run this script from
# ~/sqlite/bld.  There should be an appropriate Makefile in the current
# directory as well.
#
make sqlite3.c
gcc -o sqlite3 -g -Os -I. \
   -DSQLITE_THREADSAFE=0 \
   -DSQLITE_ENABLE_VFSTRACE \
   -DSQLITE_ENABLE_STAT2 \
   -DSQLITE_ENABLE_FTS3 \
   -DSQLITE_ENABLE_RTREE \
   -DHAVE_READLINE \
   -DHAVE_USLEEP=1 \
   ../sqlite/src/shell.c ../sqlite/src/test_vfstrace.c \
   sqlite3.c -ldl -lreadline -lncurses
Changes to tool/lemon.c.
3430
3431
3432
3433
3434
3435
3436




3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
  int i,j;                  /* Loop counters */
  int hash;                 /* For hashing the name of a type */
  const char *name;         /* Name of the parser */

  /* Allocate and initialize types[] and allocate stddt[] */
  arraysize = lemp->nsymbol * 2;
  types = (char**)calloc( arraysize, sizeof(char*) );




  for(i=0; i<arraysize; i++) types[i] = 0;
  maxdtlength = 0;
  if( lemp->vartype ){
    maxdtlength = lemonStrlen(lemp->vartype);
  }
  for(i=0; i<lemp->nsymbol; i++){
    int len;
    struct symbol *sp = lemp->symbols[i];
    if( sp->datatype==0 ) continue;
    len = lemonStrlen(sp->datatype);
    if( len>maxdtlength ) maxdtlength = len;
  }
  stddt = (char*)malloc( maxdtlength*2 + 1 );
  if( types==0 || stddt==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }

  /* Build a hash table of datatypes. The ".dtnum" field of each symbol
  ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
  ** used for terminal symbols.  If there is no %default_type defined then







>
>
>
>













|







3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
  int i,j;                  /* Loop counters */
  int hash;                 /* For hashing the name of a type */
  const char *name;         /* Name of the parser */

  /* Allocate and initialize types[] and allocate stddt[] */
  arraysize = lemp->nsymbol * 2;
  types = (char**)calloc( arraysize, sizeof(char*) );
  if( types==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }
  for(i=0; i<arraysize; i++) types[i] = 0;
  maxdtlength = 0;
  if( lemp->vartype ){
    maxdtlength = lemonStrlen(lemp->vartype);
  }
  for(i=0; i<lemp->nsymbol; i++){
    int len;
    struct symbol *sp = lemp->symbols[i];
    if( sp->datatype==0 ) continue;
    len = lemonStrlen(sp->datatype);
    if( len>maxdtlength ) maxdtlength = len;
  }
  stddt = (char*)malloc( maxdtlength*2 + 1 );
  if( stddt==0 ){
    fprintf(stderr,"Out of memory.\n");
    exit(1);
  }

  /* Build a hash table of datatypes. The ".dtnum" field of each symbol
  ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
  ** used for terminal symbols.  If there is no %default_type defined then
Changes to tool/mksqlite3c.tcl.
42
43
44
45
46
47
48


49
50
51
52
53
54
55
}
close $in

# Open the output file and write a header comment at the beginning
# of the file.
#
set out [open sqlite3.c w]


set today [clock format [clock seconds] -format "%Y-%m-%d %H:%M:%S UTC" -gmt 1]
puts $out [subst \
{/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version $VERSION.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be







>
>







42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
}
close $in

# Open the output file and write a header comment at the beginning
# of the file.
#
set out [open sqlite3.c w]
# Force the output to use unix line endings, even on Windows.
# fconfigure $out -translation lf
set today [clock format [clock seconds] -format "%Y-%m-%d %H:%M:%S UTC" -gmt 1]
puts $out [subst \
{/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version $VERSION.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
Changes to tool/mksqlite3h.tcl.
60
61
62
63
64
65
66



67
68
69
70
71
72
73
}
close $in

# Set up patterns for recognizing API declarations.
#
set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+sqlite3_[_a-zA-Z0-9]+(\[|;| =)}
set declpattern {^ *[a-zA-Z][a-zA-Z_0-9 ]+ \**sqlite3_[_a-zA-Z0-9]+\(}




# Process the src/sqlite.h.in ext/rtree/sqlite3rtree.h files.
#
foreach file [list $TOP/src/sqlite.h.in $TOP/ext/rtree/sqlite3rtree.h] {
  set in [open $file]
  while {![eof $in]} {
  







>
>
>







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
}
close $in

# Set up patterns for recognizing API declarations.
#
set varpattern {^[a-zA-Z][a-zA-Z_0-9 *]+sqlite3_[_a-zA-Z0-9]+(\[|;| =)}
set declpattern {^ *[a-zA-Z][a-zA-Z_0-9 ]+ \**sqlite3_[_a-zA-Z0-9]+\(}

# Force the output to use unix line endings, even on Windows.
fconfigure stdout -translation lf

# Process the src/sqlite.h.in ext/rtree/sqlite3rtree.h files.
#
foreach file [list $TOP/src/sqlite.h.in $TOP/ext/rtree/sqlite3rtree.h] {
  set in [open $file]
  while {![eof $in]} {
  
Changes to tool/shell1.test.
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: missing argument for option: -nullvalue} $res]
} {1 1}

# -version             show SQLite version
do_test shell1-1.16.1 {
  catchcmd "-version test.db" "" 

} {0 3.7.7}

#----------------------------------------------------------------------------
# Test cases shell1-2.*: Basic "dot" command token parsing.
#

# check first token handling
do_test shell1-2.1.1 {







|
>
|







195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
  set rc [lindex $res 0]
  list $rc \
       [regexp {Error: missing argument for option: -nullvalue} $res]
} {1 1}

# -version             show SQLite version
do_test shell1-1.16.1 {
  set x [catchcmd "-version test.db" ""]
  regexp {0 \{3.\d.\d+ 20\d\d-[01]\d-\d\d \d\d:\d\d:\d\d [0-9a-f]+\}} $x 
} 1

#----------------------------------------------------------------------------
# Test cases shell1-2.*: Basic "dot" command token parsing.
#

# check first token handling
do_test shell1-2.1.1 {
Added tool/symbols.sh.




































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/bin/sh
#
# Run this script in a directory that contains a valid SQLite makefile in
# order to verify that unintentionally exported symbols.
#
make sqlite3.c

echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_ENABLE_ICU \
  sqlite3.c
nm sqlite3.o | grep ' T ' | sort -k 3

echo '****** Surplus symbols from a build including RTREE, FTS4 & ICU ******'
nm sqlite3.o | grep ' T ' | grep -v ' sqlite3_'

echo '****** Dependencies of the core. No extensions. No OS interface *******'
gcc -c -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_OS_OTHER -DSQLITE_THREADSAFE=0 \
  sqlite3.c
nm sqlite3.o | grep ' U ' | sort -k 3

echo '****** Dependencies including RTREE & FTS4 *******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  sqlite3.c
nm sqlite3.o | grep ' U ' | sort -k 3
Added tool/warnings.sh.




























>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
make sqlite3.c
echo '********** No optimizations.  Includes FTS4 and RTREE *********'
gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c
echo '********** Optimized -O3.  Includes FTS4 and RTREE *********'
gcc -O3 -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c