SQLite

Check-in [4ab1ffd45d]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge updates from trunk.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | winrt
Files: files | file ages | folders
SHA1: 4ab1ffd45d4c25368b9b393a3336068b747d8b22
User & Date: mistachkin 2012-03-19 23:32:26.041
Context
2012-03-20
02:10
Remove version information from the MSVC makefile as it is no longer necessary. (check-in: 6f0c1f9761 user: mistachkin tags: winrt)
2012-03-19
23:32
Merge updates from trunk. (check-in: 4ab1ffd45d user: mistachkin tags: winrt)
23:28
Fix typo, use the syscall table for osOutputDebugStringA. (check-in: 9598c2a398 user: mistachkin tags: winrt)
17:42
Add additional test cases to e_insert.test. Update evidence marks. no changes to core code. (check-in: 036395c0a8 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts3/fts3.c.
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
** The pointer returned points to memory obtained from sqlite3_malloc(). It
** is the callers responsibility to call sqlite3_free() to release this
** memory.
*/
static char *fts3QuoteId(char const *zInput){
  int nRet;
  char *zRet;
  nRet = 2 + strlen(zInput)*2 + 1;
  zRet = sqlite3_malloc(nRet);
  if( zRet ){
    int i;
    char *z = zRet;
    *(z++) = '"';
    for(i=0; zInput[i]; i++){
      if( zInput[i]=='"' ) *(z++) = '"';







|







737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
** The pointer returned points to memory obtained from sqlite3_malloc(). It
** is the callers responsibility to call sqlite3_free() to release this
** memory.
*/
static char *fts3QuoteId(char const *zInput){
  int nRet;
  char *zRet;
  nRet = 2 + (int)strlen(zInput)*2 + 1;
  zRet = sqlite3_malloc(nRet);
  if( zRet ){
    int i;
    char *z = zRet;
    *(z++) = '"';
    for(i=0; zInput[i]; i++){
      if( zInput[i]=='"' ) *(z++) = '"';
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

    /* Loop through the returned columns. Set nStr to the number of bytes of
    ** space required to store a copy of each column name, including the
    ** nul-terminator byte.  */
    nCol = sqlite3_column_count(pStmt);
    for(i=0; i<nCol; i++){
      const char *zCol = sqlite3_column_name(pStmt, i);
      nStr += strlen(zCol) + 1;
    }

    /* Allocate and populate the array to return. */
    azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
    if( azCol==0 ){
      rc = SQLITE_NOMEM;
    }else{
      char *p = (char *)&azCol[nCol];
      for(i=0; i<nCol; i++){
        const char *zCol = sqlite3_column_name(pStmt, i);
        int n = strlen(zCol)+1;
        memcpy(p, zCol, n);
        azCol[i] = p;
        p += n;
      }
    }
    sqlite3_finalize(pStmt);








|










|







993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

    /* Loop through the returned columns. Set nStr to the number of bytes of
    ** space required to store a copy of each column name, including the
    ** nul-terminator byte.  */
    nCol = sqlite3_column_count(pStmt);
    for(i=0; i<nCol; i++){
      const char *zCol = sqlite3_column_name(pStmt, i);
      nStr += (int)strlen(zCol) + 1;
    }

    /* Allocate and populate the array to return. */
    azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
    if( azCol==0 ){
      rc = SQLITE_NOMEM;
    }else{
      char *p = (char *)&azCol[nCol];
      for(i=0; i<nCol; i++){
        const char *zCol = sqlite3_column_name(pStmt, i);
        int n = (int)strlen(zCol)+1;
        memcpy(p, zCol, n);
        azCol[i] = p;
        p += n;
      }
    }
    sqlite3_finalize(pStmt);

1219
1220
1221
1222
1223
1224
1225

1226
1227
1228
1229
1230
1231
1232
1233

      /* If a languageid= option was specified, remove the language id
      ** column from the aCol[] array. */ 
      if( rc==SQLITE_OK && zLanguageid ){
        int j;
        for(j=0; j<nCol; j++){
          if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){

            memmove(&aCol[j], &aCol[j+1], (nCol-j) * sizeof(aCol[0]));
            nCol--;
            break;
          }
        }
      }
    }
  }







>
|







1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234

      /* If a languageid= option was specified, remove the language id
      ** column from the aCol[] array. */ 
      if( rc==SQLITE_OK && zLanguageid ){
        int j;
        for(j=0; j<nCol; j++){
          if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
            int k;
            for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
            nCol--;
            break;
          }
        }
      }
    }
  }
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *paOut = aOut;
  *pnOut = (p-aOut);
  assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
  return SQLITE_OK;
}

/*
** This function does a "phrase" merge of two doclists. In a phrase merge,
** the output contains a copy of each position from the right-hand input







|







2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *paOut = aOut;
  *pnOut = (int)(p-aOut);
  assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
  return SQLITE_OK;
}

/*
** This function does a "phrase" merge of two doclists. In a phrase merge,
** the output contains a copy of each position from the right-hand input
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *pnRight = p - aOut;
}

/*
** Argument pList points to a position list nList bytes in size. This
** function checks to see if the position list contains any entries for
** a token in position 0 (of any column). If so, it writes argument iDelta
** to the output buffer pOut, followed by a position list consisting only







|







2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *pnRight = (int)(p - aOut);
}

/*
** Argument pList points to a position list nList bytes in size. This
** function checks to see if the position list contains any entries for
** a token in position 0 (of any column). If so, it writes argument iDelta
** to the output buffer pOut, followed by a position list consisting only
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
        char *p1 = aPoslist;
        char *p2 = aOut;

        assert( iPrev>=0 );
        fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
        sqlite3_free(aPoslist);
        aPoslist = pList;
        nPoslist = aOut - aPoslist;
        if( nPoslist==0 ){
          sqlite3_free(aPoslist);
          pPhrase->doclist.pList = 0;
          pPhrase->doclist.nList = 0;
          return SQLITE_OK;
        }
      }







|







3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
        char *p1 = aPoslist;
        char *p2 = aOut;

        assert( iPrev>=0 );
        fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
        sqlite3_free(aPoslist);
        aPoslist = pList;
        nPoslist = (int)(aOut - aPoslist);
        if( nPoslist==0 ){
          sqlite3_free(aPoslist);
          pPhrase->doclist.pList = 0;
          pPhrase->doclist.nList = 0;
          return SQLITE_OK;
        }
      }
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
        sqlite3_free(aPoslist);
        return SQLITE_NOMEM;
      }
      
      pPhrase->doclist.pList = aOut;
      if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
        pPhrase->doclist.bFreeList = 1;
        pPhrase->doclist.nList = (aOut - pPhrase->doclist.pList);
      }else{
        sqlite3_free(aOut);
        pPhrase->doclist.pList = 0;
        pPhrase->doclist.nList = 0;
      }
      sqlite3_free(aPoslist);
    }







|







3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
        sqlite3_free(aPoslist);
        return SQLITE_NOMEM;
      }
      
      pPhrase->doclist.pList = aOut;
      if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
        pPhrase->doclist.bFreeList = 1;
        pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
      }else{
        sqlite3_free(aOut);
        pPhrase->doclist.pList = 0;
        pPhrase->doclist.nList = 0;
      }
      sqlite3_free(aPoslist);
    }
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
      iDocid += (iMul * iDelta);
      pNext = pDocid;
      fts3PoslistCopy(0, &pDocid);
      while( pDocid<pEnd && *pDocid==0 ) pDocid++;
      iMul = (bDescIdx ? -1 : 1);
    }

    *pnList = pEnd - pNext;
    *ppIter = pNext;
    *piDocid = iDocid;
  }else{
    int iMul = (bDescIdx ? -1 : 1);
    sqlite3_int64 iDelta;
    fts3GetReverseVarint(&p, aDoclist, &iDelta);
    *piDocid -= (iMul * iDelta);

    if( p==aDoclist ){
      *pbEof = 1;
    }else{
      char *pSave = p;
      fts3ReversePoslist(aDoclist, &p);
      *pnList = (pSave - p);
    }
    *ppIter = p;
  }
}

/*
** Attempt to move the phrase iterator to point to the next matching docid. 







|













|







3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
      iDocid += (iMul * iDelta);
      pNext = pDocid;
      fts3PoslistCopy(0, &pDocid);
      while( pDocid<pEnd && *pDocid==0 ) pDocid++;
      iMul = (bDescIdx ? -1 : 1);
    }

    *pnList = (int)(pEnd - pNext);
    *ppIter = pNext;
    *piDocid = iDocid;
  }else{
    int iMul = (bDescIdx ? -1 : 1);
    sqlite3_int64 iDelta;
    fts3GetReverseVarint(&p, aDoclist, &iDelta);
    *piDocid -= (iMul * iDelta);

    if( p==aDoclist ){
      *pbEof = 1;
    }else{
      char *pSave = p;
      fts3ReversePoslist(aDoclist, &p);
      *pnList = (int)(pSave - p);
    }
    *ppIter = p;
  }
}

/*
** Attempt to move the phrase iterator to point to the next matching docid. 
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
      if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
        pDL->iDocid += iDelta;
      }else{
        pDL->iDocid -= iDelta;
      }
      pDL->pList = pIter;
      fts3PoslistCopy(0, &pIter);
      pDL->nList = (pIter - pDL->pList);

      /* pIter now points just past the 0x00 that terminates the position-
      ** list for document pDL->iDocid. However, if this position-list was
      ** edited in place by fts3EvalNearTrim(), then pIter may not actually
      ** point to the start of the next docid value. The following line deals
      ** with this case by advancing pIter past the zero-padding added by
      ** fts3EvalNearTrim().  */







|







3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
      if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
        pDL->iDocid += iDelta;
      }else{
        pDL->iDocid -= iDelta;
      }
      pDL->pList = pIter;
      fts3PoslistCopy(0, &pIter);
      pDL->nList = (int)(pIter - pDL->pList);

      /* pIter now points just past the 0x00 that terminates the position-
      ** list for document pDL->iDocid. However, if this position-list was
      ** edited in place by fts3EvalNearTrim(), then pIter may not actually
      ** point to the start of the next docid value. The following line deals
      ** with this case by advancing pIter past the zero-padding added by
      ** fts3EvalNearTrim().  */
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
      rc = SQLITE_NOMEM;
    }else{
      int ii;
      Fts3TokenAndCost *pTC = aTC;
      Fts3Expr **ppOr = apOr;

      fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
      nToken = pTC-aTC;
      nOr = ppOr-apOr;

      if( rc==SQLITE_OK ){
        rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
        for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }







|
|







4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
      rc = SQLITE_NOMEM;
    }else{
      int ii;
      Fts3TokenAndCost *pTC = aTC;
      Fts3Expr **ppOr = apOr;

      fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
      nToken = (int)(pTC-aTC);
      nOr = (int)(ppOr-apOr);

      if( rc==SQLITE_OK ){
        rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
        for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
  assert( pPhrase->doclist.pList );

  p2 = pOut = pPhrase->doclist.pList;
  res = fts3PoslistNearMerge(
    &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
  );
  if( res ){
    nNew = (pOut - pPhrase->doclist.pList) - 1;
    assert( pPhrase->doclist.pList[nNew]=='\0' );
    assert( nNew<=pPhrase->doclist.nList && nNew>0 );
    memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
    pPhrase->doclist.nList = nNew;
    *paPoslist = pPhrase->doclist.pList;
    *pnToken = pPhrase->nToken;
  }







|







4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
  assert( pPhrase->doclist.pList );

  p2 = pOut = pPhrase->doclist.pList;
  res = fts3PoslistNearMerge(
    &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
  );
  if( res ){
    nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
    assert( pPhrase->doclist.pList[nNew]=='\0' );
    assert( nNew<=pPhrase->doclist.nList && nNew>0 );
    memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
    pPhrase->doclist.nList = nNew;
    *paPoslist = pPhrase->doclist.pList;
    *pnToken = pPhrase->nToken;
  }
Changes to ext/fts3/fts3_aux.c.
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    *pzErr = sqlite3_mprintf(
        "wrong number of arguments to fts4aux constructor"
    );
    return SQLITE_ERROR;
  }

  zDb = argv[1]; 
  nDb = strlen(zDb);
  zFts3 = argv[3];
  nFts3 = strlen(zFts3);

  rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
  if( rc!=SQLITE_OK ) return rc;

  nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
  p = (Fts3auxTable *)sqlite3_malloc(nByte);
  if( !p ) return SQLITE_NOMEM;







|

|







75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    *pzErr = sqlite3_mprintf(
        "wrong number of arguments to fts4aux constructor"
    );
    return SQLITE_ERROR;
  }

  zDb = argv[1]; 
  nDb = (int)strlen(zDb);
  zFts3 = argv[3];
  nFts3 = (int)strlen(zFts3);

  rc = sqlite3_declare_vtab(db, FTS3_TERMS_SCHEMA);
  if( rc!=SQLITE_OK ) return rc;

  nByte = sizeof(Fts3auxTable) + sizeof(Fts3Table) + nDb + nFts3 + 2;
  p = (Fts3auxTable *)sqlite3_malloc(nByte);
  if( !p ) return SQLITE_NOMEM;
Changes to ext/fts3/fts3_porter.c.
626
627
628
629
630
631
632

633
634
635
636
637
638
639
static const sqlite3_tokenizer_module porterTokenizerModule = {
  0,
  porterCreate,
  porterDestroy,
  porterOpen,
  porterClose,
  porterNext,

};

/*
** Allocate a new porter tokenizer.  Return a pointer to the new
** tokenizer in *ppModule
*/
void sqlite3Fts3PorterTokenizerModule(







>







626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
static const sqlite3_tokenizer_module porterTokenizerModule = {
  0,
  porterCreate,
  porterDestroy,
  porterOpen,
  porterClose,
  porterNext,
  0
};

/*
** Allocate a new porter tokenizer.  Return a pointer to the new
** tokenizer in *ppModule
*/
void sqlite3Fts3PorterTokenizerModule(
Changes to ext/fts3/fts3_tokenizer1.c.
214
215
216
217
218
219
220

221
222
223
224
225
226
227
static const sqlite3_tokenizer_module simpleTokenizerModule = {
  0,
  simpleCreate,
  simpleDestroy,
  simpleOpen,
  simpleClose,
  simpleNext,

};

/*
** Allocate a new simple tokenizer.  Return a pointer to the new
** tokenizer in *ppModule
*/
void sqlite3Fts3SimpleTokenizerModule(







>







214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
static const sqlite3_tokenizer_module simpleTokenizerModule = {
  0,
  simpleCreate,
  simpleDestroy,
  simpleOpen,
  simpleClose,
  simpleNext,
  0,
};

/*
** Allocate a new simple tokenizer.  Return a pointer to the new
** tokenizer in *ppModule
*/
void sqlite3Fts3SimpleTokenizerModule(
Changes to ext/fts3/fts3_write.c.
430
431
432
433
434
435
436























437
438
439
440
441
442

443
444
445

446

447
448
449
450
451
452
453
  }else{
    rc = SQLITE_OK;
  }

  return rc;
}
























static sqlite3_int64 getAbsoluteLevel(
  Fts3Table *p, 
  int iLangid, 
  int iIndex, 
  int iLevel
){

  assert( iLangid>=0 );
  assert( p->nIndex>0 );
  assert( iIndex>=0 && iIndex<p->nIndex );

  return (iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL + iLevel;

}


/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** return SQLITE_OK. If an error occurs while preparing the statement, 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






>



>
|
>







430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
  }else{
    rc = SQLITE_OK;
  }

  return rc;
}

/*
** FTS maintains a separate indexes for each language-id (a 32-bit integer).
** Within each language id, a separate index is maintained to store the
** document terms, and each configured prefix size (configured the FTS 
** "prefix=" option). And each index consists of multiple levels ("relative
** levels").
**
** All three of these values (the language id, the specific index and the
** level within the index) are encoded in 64-bit integer values stored
** in the %_segdir table on disk. This function is used to convert three
** separate component values into the single 64-bit integer value that
** can be used to query the %_segdir table.
**
** Specifically, each language-id/index combination is allocated 1024 
** 64-bit integer level values ("absolute levels"). The main terms index
** for language-id 0 is allocate values 0-1023. The first prefix index
** (if any) for language-id 0 is allocated values 1024-2047. And so on.
** Language 1 indexes are allocated immediately following language 0.
**
** So, for a system with nPrefix prefix indexes configured, the block of
** absolute levels that corresponds to language-id iLangid and index 
** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
*/
static sqlite3_int64 getAbsoluteLevel(
  Fts3Table *p, 
  int iLangid, 
  int iIndex, 
  int iLevel
){
  sqlite3_int64 iBase;            /* First absolute level for iLangid/iIndex */
  assert( iLangid>=0 );
  assert( p->nIndex>0 );
  assert( iIndex>=0 && iIndex<p->nIndex );

  iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
  return iBase + iLevel;
}


/*
** Set *ppStmt to a statement handle that may be used to iterate through
** all rows in the %_segdir table, from oldest to newest. If successful,
** return SQLITE_OK. If an error occurs while preparing the statement, 
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
**   3: end_block
**   4: root
*/
int sqlite3Fts3AllSegdirs(
  Fts3Table *p,                   /* FTS3 table */
  int iLangid,                    /* Language being queried */
  int iIndex,                     /* Index for p->aIndex[] */
  int iLevel,                     /* Level to select */
  sqlite3_stmt **ppStmt           /* OUT: Compiled statement */
){
  int rc;
  sqlite3_stmt *pStmt = 0;

  assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  if( iLevel<0 ){
    /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
      sqlite3_bind_int(pStmt, 2, 
          getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
      );
    }
  }else{
    /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
    }
  }
  *ppStmt = pStmt;
  return rc;
}









|














|







|







490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
**   3: end_block
**   4: root
*/
int sqlite3Fts3AllSegdirs(
  Fts3Table *p,                   /* FTS3 table */
  int iLangid,                    /* Language being queried */
  int iIndex,                     /* Index for p->aIndex[] */
  int iLevel,                     /* Level to select (relative level) */
  sqlite3_stmt **ppStmt           /* OUT: Compiled statement */
){
  int rc;
  sqlite3_stmt *pStmt = 0;

  assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
  assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
  assert( iIndex>=0 && iIndex<p->nIndex );

  if( iLevel<0 ){
    /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
      sqlite3_bind_int64(pStmt, 2, 
          getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
      );
    }
  }else{
    /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
    rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
    if( rc==SQLITE_OK ){ 
      sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
    }
  }
  *ppStmt = pStmt;
  return rc;
}


1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
}

/* 
** Insert a record into the %_segdir table.
*/
static int fts3WriteSegdir(
  Fts3Table *p,                   /* Virtual table handle */
  int iLevel,                     /* Value for "level" field */
  int iIdx,                       /* Value for "idx" field */
  sqlite3_int64 iStartBlock,      /* Value for "start_block" field */
  sqlite3_int64 iLeafEndBlock,    /* Value for "leaves_end_block" field */
  sqlite3_int64 iEndBlock,        /* Value for "end_block" field */
  char *zRoot,                    /* Blob value for "root" field */
  int nRoot                       /* Number of bytes in buffer zRoot */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int(pStmt, 1, iLevel);
    sqlite3_bind_int(pStmt, 2, iIdx);
    sqlite3_bind_int64(pStmt, 3, iStartBlock);
    sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
    sqlite3_bind_int64(pStmt, 5, iEndBlock);
    sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);







|










|







1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
}

/* 
** Insert a record into the %_segdir table.
*/
static int fts3WriteSegdir(
  Fts3Table *p,                   /* Virtual table handle */
  sqlite3_int64 iLevel,           /* Value for "level" field (absolute level) */
  int iIdx,                       /* Value for "idx" field */
  sqlite3_int64 iStartBlock,      /* Value for "start_block" field */
  sqlite3_int64 iLeafEndBlock,    /* Value for "leaves_end_block" field */
  sqlite3_int64 iEndBlock,        /* Value for "end_block" field */
  char *zRoot,                    /* Blob value for "root" field */
  int nRoot                       /* Number of bytes in buffer zRoot */
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pStmt, 1, iLevel);
    sqlite3_bind_int(pStmt, 2, iIdx);
    sqlite3_bind_int64(pStmt, 3, iStartBlock);
    sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
    sqlite3_bind_int64(pStmt, 5, iEndBlock);
    sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
** database. This function must be called after all terms have been added
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
** returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterFlush(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentWriter *pWriter,         /* SegmentWriter to flush to the db */
  int iLevel,                     /* Value for 'level' column of %_segdir */
  int iIdx                        /* Value for 'idx' column of %_segdir */
){
  int rc;                         /* Return code */
  if( pWriter->pTree ){
    sqlite3_int64 iLast = 0;      /* Largest block id written to database */
    sqlite3_int64 iLastLeaf;      /* Largest leaf block id written to db */
    char *zRoot = NULL;           /* Pointer to buffer containing root node */







|







2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
** database. This function must be called after all terms have been added
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
** returned. Otherwise, an SQLite error code.
*/
static int fts3SegWriterFlush(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentWriter *pWriter,         /* SegmentWriter to flush to the db */
  sqlite3_int64 iLevel,           /* Value for 'level' column of %_segdir */
  int iIdx                        /* Value for 'idx' column of %_segdir */
){
  int rc;                         /* Return code */
  if( pWriter->pTree ){
    sqlite3_int64 iLast = 0;      /* Largest block id written to database */
    sqlite3_int64 iLastLeaf;      /* Largest leaf block id written to db */
    char *zRoot = NULL;           /* Pointer to buffer containing root node */
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentMaxLevel(
  Fts3Table *p, 
  int iLangid,
  int iIndex, 
  int *pnMax
){
  sqlite3_stmt *pStmt;
  int rc;
  assert( iIndex>=0 && iIndex<p->nIndex );

  /* Set pStmt to the compiled version of:
  **
  **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
  **
  ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
  */
  rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_bind_int(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
  sqlite3_bind_int(pStmt, 2, 
      getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
  );
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    *pnMax = sqlite3_column_int(pStmt, 0);
  }
  return sqlite3_reset(pStmt);
}

/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,







|













|
|



|







2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
**
** Return SQLITE_OK if successful, or an SQLite error code if not.
*/
static int fts3SegmentMaxLevel(
  Fts3Table *p, 
  int iLangid,
  int iIndex, 
  sqlite3_int64 *pnMax
){
  sqlite3_stmt *pStmt;
  int rc;
  assert( iIndex>=0 && iIndex<p->nIndex );

  /* Set pStmt to the compiled version of:
  **
  **   SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
  **
  ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
  */
  rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
  sqlite3_bind_int64(pStmt, 2, 
      getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
  );
  if( SQLITE_ROW==sqlite3_step(pStmt) ){
    *pnMax = sqlite3_column_int64(pStmt, 0);
  }
  return sqlite3_reset(pStmt);
}

/*
** This function is used after merging multiple segments into a single large
** segment to delete the old, now redundant, segment b-trees. Specifically,
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317

2318

2319
2320
2321
2322
2323
2324
2325
    return rc;
  }

  assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
  if( iLevel==FTS3_SEGCURSOR_ALL ){
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
      sqlite3_bind_int(pDelete, 2, 
          getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
      );
    }
  }else{
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
    if( rc==SQLITE_OK ){

      sqlite3_bind_int(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));

    }
  }

  if( rc==SQLITE_OK ){
    sqlite3_step(pDelete);
    rc = sqlite3_reset(pDelete);
  }







|
|






>
|
>







2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
    return rc;
  }

  assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
  if( iLevel==FTS3_SEGCURSOR_ALL ){
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
      sqlite3_bind_int64(pDelete, 2, 
          getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
      );
    }
  }else{
    rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(
          pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
      );
    }
  }

  if( rc==SQLITE_OK ){
    sqlite3_step(pDelete);
    rc = sqlite3_reset(pDelete);
  }
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
  Fts3Table *p, 
  int iLangid,                    /* Language id to merge */
  int iIndex,                     /* Index in p->aIndex[] to merge */
  int iLevel                      /* Level to merge */
){
  int rc;                         /* Return code */
  int iIdx = 0;                   /* Index of new segment */
  int iNewLevel = 0;              /* Level/index to create new segment at */
  SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
  Fts3SegFilter filter;           /* Segment term filter condition */
  Fts3MultiSegReader csr;         /* Cursor to iterate through level(s) */
  int bIgnoreEmpty = 0;           /* True to ignore empty segments */

  assert( iLevel==FTS3_SEGCURSOR_ALL
       || iLevel==FTS3_SEGCURSOR_PENDING







|







2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
  Fts3Table *p, 
  int iLangid,                    /* Language id to merge */
  int iIndex,                     /* Index in p->aIndex[] to merge */
  int iLevel                      /* Level to merge */
){
  int rc;                         /* Return code */
  int iIdx = 0;                   /* Index of new segment */
  sqlite3_int64 iNewLevel = 0;    /* Level/index to create new segment at */
  SegmentWriter *pWriter = 0;     /* Used to write the new, merged, segment */
  Fts3SegFilter filter;           /* Segment term filter condition */
  Fts3MultiSegReader csr;         /* Cursor to iterate through level(s) */
  int bIgnoreEmpty = 0;           /* True to ignore empty segments */

  assert( iLevel==FTS3_SEGCURSOR_ALL
       || iLevel==FTS3_SEGCURSOR_PENDING
Changes to ext/rtree/rtree.c.
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = strlen(argv[1]);
  nName = strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;







|
|







3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = (int)strlen(argv[1]);
  nName = (int)strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
  }
  memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
  pRtree->nBusy = 1;
  pRtree->base.pModule = &rtreeModule;
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
    char zCell[512];
    int nCell = 0;
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
      sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
      nCell = strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;
    }else{







|


|







3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
    char zCell[512];
    int nCell = 0;
    RtreeCell cell;
    int jj;

    nodeGetCell(&tree, &node, ii, &cell);
    sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
    nCell = (int)strlen(zCell);
    for(jj=0; jj<tree.nDim*2; jj++){
      sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
      nCell = (int)strlen(zCell);
    }

    if( zText ){
      char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
      sqlite3_free(zText);
      zText = zTextNew;
    }else{
Changes to src/analyze.c.
928
929
930
931
932
933
934

935
936
937
938
939
940
941
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */


  if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE_OK;
  }

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);







>







928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bEnabled==0 );
  if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE_OK;
  }

  zSql = sqlite3MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );
    pIdx->nSample = nSample;
    pIdx->aSample = sqlite3MallocZero( nSample*sizeof(IndexSample) );
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
  }







|







955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = sqlite3FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );
    pIdx->nSample = nSample;
    pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM;
    }
  }
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
              sqlite3_column_text(pStmt, 4)
           );
        int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
        pSample->nByte = n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite3Malloc(n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;
            sqlite3_finalize(pStmt);
            return SQLITE_NOMEM;
          }
          memcpy(pSample->u.z, z, n);
        }







|







1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
              sqlite3_column_text(pStmt, 4)
           );
        int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
        pSample->nByte = n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite3DbMallocRaw(db, n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;
            sqlite3_finalize(pStmt);
            return SQLITE_NOMEM;
          }
          memcpy(pSample->u.z, z, n);
        }
1103
1104
1105
1106
1107
1108
1109


1110

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat3 table. */
#ifdef SQLITE_ENABLE_STAT3
  if( rc==SQLITE_OK ){


    rc = loadStat3(db, sInfo.zDatabase);

  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */







>
>

>











1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat3 table. */
#ifdef SQLITE_ENABLE_STAT3
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat3(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */
Changes to src/main.c.
2721
2722
2723
2724
2725
2726
2727

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
}

/*
** Invoke the xFileControl method on a particular database.
*/
int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;

  int iDb;
  sqlite3_mutex_enter(db->mutex);
  if( zDbName==0 ){
    iDb = 0;
  }else{
    for(iDb=0; iDb<db->nDb; iDb++){
      if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
    }
  }
  if( iDb<db->nDb ){
    Btree *pBtree = db->aDb[iDb].pBt;
    if( pBtree ){
      Pager *pPager;
      sqlite3_file *fd;
      sqlite3BtreeEnter(pBtree);
      pPager = sqlite3BtreePager(pBtree);
      assert( pPager!=0 );
      fd = sqlite3PagerFile(pPager);
      assert( fd!=0 );
      if( op==SQLITE_FCNTL_FILE_POINTER ){
        *(sqlite3_file**)pArg = fd;
        rc = SQLITE_OK;
      }else if( fd->pMethods ){
        rc = sqlite3OsFileControl(fd, op, pArg);
      }else{
        rc = SQLITE_NOTFOUND;
      }
      sqlite3BtreeLeave(pBtree);
    }
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;   
}

/*
** Interface to the testing logic.







>
|

|
<
<
<
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731








2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748

2749
2750
2751
2752
2753
2754
2755
}

/*
** Invoke the xFileControl method on a particular database.
*/
int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  Btree *pBtree;

  sqlite3_mutex_enter(db->mutex);
  pBtree = sqlite3DbNameToBtree(db, zDbName);








  if( pBtree ){
    Pager *pPager;
    sqlite3_file *fd;
    sqlite3BtreeEnter(pBtree);
    pPager = sqlite3BtreePager(pBtree);
    assert( pPager!=0 );
    fd = sqlite3PagerFile(pPager);
    assert( fd!=0 );
    if( op==SQLITE_FCNTL_FILE_POINTER ){
      *(sqlite3_file**)pArg = fd;
      rc = SQLITE_OK;
    }else if( fd->pMethods ){
      rc = sqlite3OsFileControl(fd, op, pArg);
    }else{
      rc = SQLITE_NOTFOUND;
    }
    sqlite3BtreeLeave(pBtree);

  }
  sqlite3_mutex_leave(db->mutex);
  return rc;   
}

/*
** Interface to the testing logic.
3043
3044
3045
3046
3047
3048
3049















3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061






3062
3063
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}
















/*
** Return the filename of the database associated with a database
** connection.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
  int i;
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt && sqlite3StrICmp(zDbName, db->aDb[i].zName)==0 ){
      return sqlite3BtreeGetFilename(db->aDb[i].pBt);
    }
  }






  return 0;
}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
<
|
|
|
|
>
>
>
>
>
>
|

3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062


3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3Atoi64(z, &v, sqlite3Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the Btree pointer identified by zDbName.  Return NULL if not found.
*/
Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){
  int i;
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt
     && (zDbName==0 || sqlite3StrICmp(zDbName, db->aDb[i].zName)==0)
    ){
      return db->aDb[i].pBt;
    }
  }
  return 0;
}

/*
** Return the filename of the database associated with a database
** connection.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){


  Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}

/*
** Return 1 if database is read-only or 0 if read/write.  Return -1 if
** no such database exists.
*/
int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
  Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3PagerIsreadonly(sqlite3BtreePager(pBt)) : -1;
}
Changes to src/sqlite.h.in.
4526
4527
4528
4529
4530
4531
4532









4533
4534
4535
4536
4537
4538
4539
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);










/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement







>
>
>
>
>
>
>
>
>







4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Determine if a database is read-only
**
** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
** of connection D is read-only, 0 if it is read/write, or -1 if N is not
** the name of a database on connection D.
*/
int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
Changes to src/sqliteInt.h.
2697
2698
2699
2700
2701
2702
2703

2704
2705
2706
2707
2708
2709
2710
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddColumnType(Parse*,Token*);
void sqlite3AddDefaultValue(Parse*,ExprSpan*);
void sqlite3AddCollateType(Parse*, Token*);
void sqlite3EndTable(Parse*,Token*,Token*,Select*);
int sqlite3ParseUri(const char*,const char*,unsigned int*,
                    sqlite3_vfs**,char**,char **);

int sqlite3CodeOnce(Parse *);

Bitvec *sqlite3BitvecCreate(u32);
int sqlite3BitvecTest(Bitvec*, u32);
int sqlite3BitvecSet(Bitvec*, u32);
void sqlite3BitvecClear(Bitvec*, u32, void*);
void sqlite3BitvecDestroy(Bitvec*);







>







2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
void sqlite3AddCheckConstraint(Parse*, Expr*);
void sqlite3AddColumnType(Parse*,Token*);
void sqlite3AddDefaultValue(Parse*,ExprSpan*);
void sqlite3AddCollateType(Parse*, Token*);
void sqlite3EndTable(Parse*,Token*,Token*,Select*);
int sqlite3ParseUri(const char*,const char*,unsigned int*,
                    sqlite3_vfs**,char**,char **);
Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
int sqlite3CodeOnce(Parse *);

Bitvec *sqlite3BitvecCreate(u32);
int sqlite3BitvecTest(Bitvec*, u32);
int sqlite3BitvecSet(Bitvec*, u32);
void sqlite3BitvecClear(Bitvec*, u32, void*);
void sqlite3BitvecDestroy(Bitvec*);
Changes to src/test1.c.
4660
4661
4662
4663
4664
4665
4666
























4667
4668
4669
4670
4671
4672
4673
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zDbName = Tcl_GetString(objv[2]);
  Tcl_AppendResult(interp, sqlite3_db_filename(db, zDbName), (void*)0);
  return TCL_OK;
}

























/*
** Usage:  sqlite3_soft_heap_limit ?N?
**
** Query or set the soft heap limit for the current thread.  The
** limit is only changed if the N is present.  The previous limit
** is returned.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zDbName = Tcl_GetString(objv[2]);
  Tcl_AppendResult(interp, sqlite3_db_filename(db, zDbName), (void*)0);
  return TCL_OK;
}

/*
** Usage:  sqlite3_db_readonly DB DBNAME
**
** Return 1 or 0 if DBNAME is readonly or not.  Return -1 if DBNAME does
** not exist.
*/
static int test_db_readonly(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3 *db;
  const char *zDbName;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zDbName = Tcl_GetString(objv[2]);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite3_db_readonly(db, zDbName)));
  return TCL_OK;
}

/*
** Usage:  sqlite3_soft_heap_limit ?N?
**
** Query or set the soft heap limit for the current thread.  The
** limit is only changed if the N is present.  The previous limit
** is returned.
6051
6052
6053
6054
6055
6056
6057

6058
6059
6060
6061
6062
6063
6064
     { "sqlite3_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite3_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite3_release_memory",        test_release_memory,     0},
     { "sqlite3_db_release_memory",     test_db_release_memory,  0},
     { "sqlite3_db_filename",           test_db_filename,        0},

     { "sqlite3_soft_heap_limit",       test_soft_heap_limit,    0},
     { "sqlite3_thread_cleanup",        test_thread_cleanup,     0},
     { "sqlite3_pager_refcounts",       test_pager_refcounts,    0},

     { "sqlite3_load_extension",        test_load_extension,     0},
     { "sqlite3_enable_load_extension", test_enable_load,        0},
     { "sqlite3_extended_result_codes", test_extended_result_codes, 0},







>







6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
     { "sqlite3_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite3_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite3_release_memory",        test_release_memory,     0},
     { "sqlite3_db_release_memory",     test_db_release_memory,  0},
     { "sqlite3_db_filename",           test_db_filename,        0},
     { "sqlite3_db_readonly",           test_db_readonly,        0},
     { "sqlite3_soft_heap_limit",       test_soft_heap_limit,    0},
     { "sqlite3_thread_cleanup",        test_thread_cleanup,     0},
     { "sqlite3_pager_refcounts",       test_pager_refcounts,    0},

     { "sqlite3_load_extension",        test_load_extension,     0},
     { "sqlite3_enable_load_extension", test_enable_load,        0},
     { "sqlite3_extended_result_codes", test_extended_result_codes, 0},
Changes to src/util.c.
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower

/*
** Some systems have stricmp().  Others have strcasecmp().  Because
** there is no consistency, we will define our own.
**
** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows

** applications and extensions to compare the contents of two buffers
** containing UTF-8 strings in a case-independent fashion, using the same
** definition of case independence that SQLite uses internally when
** comparing identifiers.
*/
int sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];







|
>
|
|
|
<







212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228
229
230
/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower

/*
** Some systems have stricmp().  Others have strcasecmp().  Because
** there is no consistency, we will define our own.
**
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.

*/
int sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
Changes to src/where.c.
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */
  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
  Bitmask notReady,    /* Which tables are currently available */
  Expr *pWhere         /* Complete WHERE clause */
){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */







|
<







3798
3799
3800
3801
3802
3803
3804
3805

3806
3807
3808
3809
3810
3811
3812
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */
  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
  Bitmask notReady     /* Which tables are currently available */

){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */
4338
4339
4340
4341
4342
4343
4344





4345
4346







4347

4348


4349
4350
4351
4352
4353
4354
4355
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
    ** Then for every term xN, evaluate as the subexpression: xN AND z
    ** That way, terms in y that are factored into the disjunction will
    ** be picked up by the recursive calls to sqlite3WhereBegin() below.





    */
    if( pWC->nTerm>1 ){







      pAndExpr = sqlite3ExprAlloc(pParse->db, TK_AND, 0, 0);

      pAndExpr->pRight = pWhere;


    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;







>
>
>
>
>


>
>
>
>
>
>
>
|
>
|
>
>







4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
    ** Then for every term xN, evaluate as the subexpression: xN AND z
    ** That way, terms in y that are factored into the disjunction will
    ** be picked up by the recursive calls to sqlite3WhereBegin() below.
    **
    ** Actually, each subexpression is converted to "xN AND w" where w is
    ** the "interesting" terms of z - terms that did not originate in the
    ** ON or USING clause of a LEFT JOIN, and terms that are usable as 
    ** indices.
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        if( pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_ORINFO) ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(pParse->db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr;
4383
4384
4385
4386
4387
4388
4389


4390

4391
4392
4393
4394
4395
4396
4397
          if( pSubWInfo->untestedTerms ) untestedTerms = 1;

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }


    sqlite3DbFree(pParse->db, pAndExpr);

    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else







>
>
|
>







4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
          if( pSubWInfo->untestedTerms ) untestedTerms = 1;

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(pParse->db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(i=0; i<nTabList; i++){
    pLevel = &pWInfo->a[i];
    explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady, pWhere);
    pWInfo->iContinue = pLevel->addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used







|







5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(i=0; i<nTabList; i++){
    pLevel = &pWInfo->a[i];
    explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
Changes to test/e_insert.test.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  CREATE TABLE a4(c UNIQUE, d);
} {}

proc do_insert_tests {args} {
  uplevel do_select_tests $args
}

# EVIDENCE-OF: R-55375-41353 -- syntax diagram insert-stmt
#
do_insert_tests e_insert-0 {
     1  "INSERT             INTO a1 DEFAULT VALUES"                   {}
     2  "INSERT             INTO main.a1 DEFAULT VALUES"              {}
     3  "INSERT OR ROLLBACK INTO main.a1 DEFAULT VALUES"              {}
     4  "INSERT OR ROLLBACK INTO a1 DEFAULT VALUES"                   {}
     5  "INSERT OR ABORT    INTO main.a1 DEFAULT VALUES"              {}







|







46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  CREATE TABLE a4(c UNIQUE, d);
} {}

proc do_insert_tests {args} {
  uplevel do_select_tests $args
}

# EVIDENCE-OF: R-21350-31508 -- syntax diagram insert-stmt
#
do_insert_tests e_insert-0 {
     1  "INSERT             INTO a1 DEFAULT VALUES"                   {}
     2  "INSERT             INTO main.a1 DEFAULT VALUES"              {}
     3  "INSERT OR ROLLBACK INTO main.a1 DEFAULT VALUES"              {}
     4  "INSERT OR ROLLBACK INTO a1 DEFAULT VALUES"                   {}
     5  "INSERT OR ABORT    INTO main.a1 DEFAULT VALUES"              {}
119
120
121
122
123
124
125














126
127
128
129
130
131
132
    64  "INSERT OR REPLACE  INTO a1      (b, a) SELECT c, b FROM a2"  {}
    65  "INSERT OR FAIL     INTO main.a1 (b, a) SELECT c, b FROM a2"  {}
    66  "INSERT OR FAIL     INTO a1      (b, a) SELECT c, b FROM a2"  {}
    67  "INSERT OR FAIL     INTO main.a1 (b, a) SELECT c, b FROM a2"  {}
    68  "INSERT OR IGNORE   INTO a1      (b, a) SELECT c, b FROM a2"  {}
    69  "REPLACE            INTO a1      (b, a) SELECT c, b FROM a2"  {}
    70  "REPLACE            INTO main.a1 (b, a) SELECT c, b FROM a2"  {}














}

delete_all_data

# EVIDENCE-OF: R-20288-20462 The first form (with the "VALUES" keyword)
# creates a single new row in an existing table.
#







>
>
>
>
>
>
>
>
>
>
>
>
>
>







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    64  "INSERT OR REPLACE  INTO a1      (b, a) SELECT c, b FROM a2"  {}
    65  "INSERT OR FAIL     INTO main.a1 (b, a) SELECT c, b FROM a2"  {}
    66  "INSERT OR FAIL     INTO a1      (b, a) SELECT c, b FROM a2"  {}
    67  "INSERT OR FAIL     INTO main.a1 (b, a) SELECT c, b FROM a2"  {}
    68  "INSERT OR IGNORE   INTO a1      (b, a) SELECT c, b FROM a2"  {}
    69  "REPLACE            INTO a1      (b, a) SELECT c, b FROM a2"  {}
    70  "REPLACE            INTO main.a1 (b, a) SELECT c, b FROM a2"  {}
    71  "INSERT             INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    72  "INSERT             INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    73  "INSERT OR ROLLBACK INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    74  "INSERT OR ROLLBACK INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    75  "INSERT OR ABORT    INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    76  "INSERT OR ABORT    INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    77  "INSERT OR REPLACE  INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    78  "INSERT OR REPLACE  INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    79  "INSERT OR FAIL     INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    80  "INSERT OR FAIL     INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    81  "INSERT OR FAIL     INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
    82  "INSERT OR IGNORE   INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    83  "REPLACE            INTO a1      (b, a) VALUES(1, 2),(3,4)"   {}
    84  "REPLACE            INTO main.a1 (b, a) VALUES(1, 2),(3,4)"   {}
}

delete_all_data

# EVIDENCE-OF: R-20288-20462 The first form (with the "VALUES" keyword)
# creates a single new row in an existing table.
#
Changes to test/fts4langid.test.
377
378
379
380
381
382
383





































































































384
385
  do_execsql_test 4.1.4.$i {
    SELECT count(*) FROM t4 WHERE t4 MATCH 'fox' AND lid=$i;
  } [expr 0==($i%2)]
}
do_catchsql_test 4.1.5 {
  INSERT INTO t4(content, lid) VALUES('hello world', 101)
} {1 {SQL logic error or missing database}}






































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  do_execsql_test 4.1.4.$i {
    SELECT count(*) FROM t4 WHERE t4 MATCH 'fox' AND lid=$i;
  } [expr 0==($i%2)]
}
do_catchsql_test 4.1.5 {
  INSERT INTO t4(content, lid) VALUES('hello world', 101)
} {1 {SQL logic error or missing database}}

#-------------------------------------------------------------------------
# Test cases 5.*
#
# The following test cases are designed to detect a 32-bit overflow bug
# that existed at one point.
#
proc build_multilingual_db_3 {db} {
  $db eval {
    CREATE VIRTUAL TABLE t5 USING fts4(languageid=lid);
  }
  set languages [list 0 1 2 [expr 1<<30]]

  foreach lid $languages {
    execsql {
      INSERT INTO t5(docid, content, lid) VALUES(
          $lid, 'My language is ' || $lid, $lid
      ) 
    }
  }
}

do_test 5.1.0 {
  reset_db
  build_multilingual_db_3 db
} {}

do_execsql_test 5.1.1 {
  SELECT level FROM t5_segdir;
} [list 0 1024 2048 [expr 1<<40]]

do_execsql_test 5.1.2 {SELECT docid FROM t5 WHERE t5 MATCH 'language'} 0
foreach langid [list 0 1 2 [expr 1<<30]] {
  do_execsql_test 5.2.$langid { 
    SELECT docid FROM t5 WHERE t5 MATCH 'language' AND lid = $langid
  } $langid
}

set lid [expr 1<<30]
do_execsql_test 5.3.1 {
  CREATE VIRTUAL TABLE t6 USING fts4(languageid=lid);
  INSERT INTO t6 VALUES('I belong to language 0!');
}
do_test 5.3.2 {
  for {set i 0} {$i < 20} {incr i} {
    execsql {
      INSERT INTO t6(content, lid) VALUES(
        'I (row '||$i||') belong to langauge N!', $lid
      );
    }
  }
  execsql { SELECT docid FROM t6 WHERE t6 MATCH 'belong' }
} {1}

do_test 5.3.3 {
  execsql { SELECT docid FROM t6 WHERE t6 MATCH 'belong' AND lid=$lid}
} {2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21}

do_execsql_test 5.3.4 { INSERT INTO t6(t6) VALUES('optimize') } {}
do_execsql_test 5.3.5 { SELECT docid FROM t6 WHERE t6 MATCH 'belong' } {1}
do_execsql_test 5.3.6 { 
  SELECT docid FROM t6 WHERE t6 MATCH 'belong' AND lid=$lid
} {2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21}


set lid [expr 1<<30]
foreach lid [list 4 [expr 1<<30]] {
  do_execsql_test 5.4.$lid.1 {
    DELETE FROM t6;
    SELECT count(*) FROM t6_segdir;
    SELECT count(*) FROM t6_segments;
  } {0 0}
  do_execsql_test 5.4.$lid.2 {
    INSERT INTO t6(content, lid) VALUES('zero zero zero', $lid);
    INSERT INTO t6(content, lid) VALUES('zero zero one', $lid);
    INSERT INTO t6(content, lid) VALUES('zero one zero', $lid);
    INSERT INTO t6(content, lid) VALUES('zero one one', $lid);
    INSERT INTO t6(content, lid) VALUES('one zero zero', $lid);
    INSERT INTO t6(content, lid) VALUES('one zero one', $lid);
    INSERT INTO t6(content, lid) VALUES('one one zero', $lid);
    INSERT INTO t6(content, lid) VALUES('one one one', $lid);

    SELECT docid FROM t6 WHERE t6 MATCH '"zero zero"' AND lid=$lid;
  } {1 2 5}

  do_execsql_test 5.4.$lid.3 {
    SELECT count(*) FROM t6_segdir;
    SELECT count(*) FROM t6_segments;
  } {8 0}

  do_execsql_test 5.4.$lid.4 {
    INSERT INTO t6(t6) VALUES('optimize');
    SELECT docid FROM t6 WHERE t6 MATCH '"zero zero"' AND lid=$lid;
  } {1 2 5}

  do_execsql_test 5.4.$lid.5 {
    SELECT count(*) FROM t6_segdir;
    SELECT count(*) FROM t6_segments;
  } {1 0}
}


finish_test
Changes to test/ioerr2.test.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        set ::sqlite_io_error_pending $::N
        set sql {UPDATE t2 SET b = randstr(400,400)}
        foreach {::go res} [catchsql $sql] {}
      }
    }
  } msg]
  list $rc $msg
} {1 {callback requested query abort}}

if {$::tcl_platform(platform) == "unix"} {
  # Cause the call to xAccess used by [pragma temp_store_directory] to
  # determine if the specified directory is writable to fail. This causes
  # SQLite to report "not a writable directory", which is probably the
  # right answer.
  #







|







126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        set ::sqlite_io_error_pending $::N
        set sql {UPDATE t2 SET b = randstr(400,400)}
        foreach {::go res} [catchsql $sql] {}
      }
    }
  } msg]
  list $rc $msg
} {1 {abort due to ROLLBACK}}

if {$::tcl_platform(platform) == "unix"} {
  # Cause the call to xAccess used by [pragma temp_store_directory] to
  # determine if the specified directory is writable to fail. This causes
  # SQLite to report "not a writable directory", which is probably the
  # right answer.
  #
Changes to test/pager1.test.
892
893
894
895
896
897
898


















899
900
901
902
903
904
905
do_test pager1.4.7.3 {
  db close
  catch {file attributes test.db-journal -permissions rw-rw-rw-}
  catch {file attributes test.db-journal -readonly 0}
  delete_file test.db-journal
  file exists test.db-journal
} {0}



















#-------------------------------------------------------------------------
# The following tests deal with multi-file commits.
#
# pager1-5.1.*: The case where a multi-file cannot be committed because
#               another connection is holding a SHARED lock on one of the
#               files. After the SHARED lock is removed, the COMMIT succeeds.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
do_test pager1.4.7.3 {
  db close
  catch {file attributes test.db-journal -permissions rw-rw-rw-}
  catch {file attributes test.db-journal -readonly 0}
  delete_file test.db-journal
  file exists test.db-journal
} {0}
do_test pager1.4.8.1 {
  catch {file attributes test.db -permissions r--------}
  catch {file attributes test.db -readonly 1}
  sqlite3 db test.db
  db eval { SELECT * FROM t1 }
  sqlite3_db_readonly db main
} {1}
do_test pager1.4.8.2 {
  sqlite3_db_readonly db xyz
} {-1}
do_test pager1.4.8.3 {
  db close
  catch {file attributes test.db -readonly 0}
  catch {file attributes test.db -permissions rw-rw-rw-} msg
  sqlite3 db test.db
  db eval { SELECT * FROM t1 }
  sqlite3_db_readonly db main
} {0}

#-------------------------------------------------------------------------
# The following tests deal with multi-file commits.
#
# pager1-5.1.*: The case where a multi-file cannot be committed because
#               another connection is holding a SHARED lock on one of the
#               files. After the SHARED lock is removed, the COMMIT succeeds.
Changes to test/where7.test.
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
    FROM t302 JOIN t301 ON t302.c8 = t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?) (~5 rows)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?) (~2 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test







|






23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
    FROM t302 JOIN t301 ON t302.c8 = t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?) (~10 rows)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?) (~2 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test
Changes to test/where9.test.
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~5 rows)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~5 rows)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {







|









|







360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?) (~2 rows)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?) (~2 rows)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {







|
|







449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?) (~3 rows)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?) (~3 rows)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
852
853
854
855
856
857
858


859


















860
} {79 81 scan 0 sort 1}
do_test where9-7.3.2 {
  execsql {
    SELECT a FROM t6 WHERE (x='y' OR y='y') AND c=27027 ORDER BY a;
  }
} {79 81}






















finish_test







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
} {79 81 scan 0 sort 1}
do_test where9-7.3.2 {
  execsql {
    SELECT a FROM t6 WHERE (x='y' OR y='y') AND c=27027 ORDER BY a;
  }
} {79 81}

# Fix for ticket [b7c8682cc17f32903f03a610bd0d35ffd3c1e6e4]
# "Incorrect result from LEFT JOIN with OR in the WHERE clause"
#
do_test where9-8.1 {
  db eval {
    CREATE TABLE t81(a INTEGER PRIMARY KEY, b, c, d);
    CREATE TABLE t82(x INTEGER PRIMARY KEY, y);
    CREATE TABLE t83(p INTEGER PRIMARY KEY, q);
    
    INSERT INTO t81 VALUES(2,3,4,5);
    INSERT INTO t81 VALUES(3,4,5,6);
    INSERT INTO t82 VALUES(2,4);
    INSERT INTO t83 VALUES(5,55);
    
    SELECT *
      FROM t81 LEFT JOIN t82 ON y=b JOIN t83
     WHERE c==p OR d==p
     ORDER BY +a;
  }
} {2 3 4 5 {} {} 5 55 3 4 5 6 2 4 5 55}

finish_test