SQLite

Check-in [49ebc219fa]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Refactor the sqlite3BtreeKey() and sqlite3BtreeData() internal interfaces into sqlite3BtreePayload() and sqlite3BtreePayloadChecked(), respectively. This is a continuation of the optimization started by check-in [2d831074cf]. The result is a slightly smaller and faster binary.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 49ebc219faea30eaa61def4a3fba2817b9c58a86
User & Date: drh 2016-11-25 19:18:28.043
Context
2016-11-25
19:32
Remove the OP_RowKey opcode. Use OP_RowData in its place. (check-in: 6ac7b07a4a user: drh tags: trunk)
19:18
Refactor the sqlite3BtreeKey() and sqlite3BtreeData() internal interfaces into sqlite3BtreePayload() and sqlite3BtreePayloadChecked(), respectively. This is a continuation of the optimization started by check-in [2d831074cf]. The result is a slightly smaller and faster binary. (check-in: 49ebc219fa user: drh tags: trunk)
17:03
Small performance increase and size reduction in the OP_Column opcode. (check-in: a9498407e6 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    pCur->nKey = sqlite3BtreeIntegerKey(pCur);
  }else{
    /* For an index btree, save the complete key content */
    void *pKey;
    pCur->nKey = sqlite3BtreePayloadSize(pCur);
    pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM_BKPT;







|







628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    pCur->nKey = sqlite3BtreeIntegerKey(pCur);
  }else{
    /* For an index btree, save the complete key content */
    void *pKey;
    pCur->nKey = sqlite3BtreePayloadSize(pCur);
    pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM_BKPT;
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657




4658
4659

4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700

4701
4702
4703
4704
4705
4706
4707
  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transferred into pBuf[].  The transfer
** begins at "offset".
**




** The caller must ensure that pCur is pointing to a valid row
** in the table.

**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
  return rc;
}


/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt.  If *pAmt==0, then the value







|
|


>
>
>
>
|
|
>





|






|
<
<
<
<
<
<
<
<
<
|

<
<



<
<










>







4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677









4678
4679


4680
4681
4682


4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
** begins at "offset".
**
** pCur can be pointing to either a table or an index b-tree.
** If pointing to a table btree, then the content section is read.  If
** pCur is pointing to an index b-tree then the key section is read.
**
** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
** cursor might be invalid or might need to be restored before being read.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}
#ifndef SQLITE_OMIT_INCRBLOB









int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;


  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }


  assert( cursorOwnsBtShared(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
  return rc;
}
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt.  If *pAmt==0, then the value
Changes to src/btree.h.
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
                       int bias, int seekResult);
int sqlite3BtreeFirst(BtCursor*, int *pRes);
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int *pRes);
i64 sqlite3BtreeIntegerKey(BtCursor*);
int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);
int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*);

char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
struct Pager *sqlite3BtreePager(Btree*);

#ifndef SQLITE_OMIT_INCRBLOB

int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);
#endif
void sqlite3BtreeClearCursor(BtCursor *);
int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
int sqlite3BtreeIsReadonly(Btree *pBt);







|


<





>







285
286
287
288
289
290
291
292
293
294

295
296
297
298
299
300
301
302
303
304
305
306
307
                       int bias, int seekResult);
int sqlite3BtreeFirst(BtCursor*, int *pRes);
int sqlite3BtreeLast(BtCursor*, int *pRes);
int sqlite3BtreeNext(BtCursor*, int *pRes);
int sqlite3BtreeEof(BtCursor*);
int sqlite3BtreePrevious(BtCursor*, int *pRes);
i64 sqlite3BtreeIntegerKey(BtCursor*);
int sqlite3BtreePayload(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite3BtreePayloadFetch(BtCursor*, u32 *pAmt);
u32 sqlite3BtreePayloadSize(BtCursor*);


char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
struct Pager *sqlite3BtreePager(Btree*);

#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3BtreePayloadChecked(BtCursor*, u32 offset, u32 amt, void*);
int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite3BtreeIncrblobCursor(BtCursor *);
#endif
void sqlite3BtreeClearCursor(BtCursor *);
int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
int sqlite3BtreeIsReadonly(Btree *pBt);
Changes to src/vdbe.c.
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0],
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */







|
<







2545
2546
2547
2548
2549
2550
2551
2552

2553
2554
2555
2556
2557
2558
2559
    /* If there is more header available for parsing in the record, try
    ** to extract additional fields up through the p2+1-th field 
    */
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);

        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk. */
      static u8 aZero[8];  /* This is the bogus content */
      sqlite3VdbeSerialGet(aZero, t, pDest);
    }else{
      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len,
                                   !pC->isTable, pDest);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      pDest->flags &= ~MEM_Ephem;
    }
  }

op_column_out:







|
<







2658
2659
2660
2661
2662
2663
2664
2665

2666
2667
2668
2669
2670
2671
2672
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk. */
      static u8 aZero[8];  /* This is the bogus content */
      sqlite3VdbeSerialGet(aZero, t, pDest);
    }else{
      rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);

      if( rc!=SQLITE_OK ) goto abort_due_to_error;
      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
      pDest->flags &= ~MEM_Ephem;
    }
  }

op_column_out:
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
  }
  testcase( n==0 );
  if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isTable==0 ){
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
    rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
  }
  if( rc ) goto abort_due_to_error;
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}








<
|
<
<
<







4699
4700
4701
4702
4703
4704
4705

4706



4707
4708
4709
4710
4711
4712
4713
  }
  testcase( n==0 );
  if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);

  rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z);



  if( rc ) goto abort_due_to_error;
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  REGISTER_TRACE(pOp->p2, pOut);
  break;
}

Changes to src/vdbeInt.h.
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);







|







483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
Changes to src/vdbeapi.c.
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
  if( p->pUnpacked==0 ){
    u32 nRec;
    u8 *aRec;

    nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
    aRec = sqlite3DbMallocRaw(db, nRec);
    if( !aRec ) goto preupdate_old_out;
    rc = sqlite3BtreeData(p->pCsr->uc.pCursor, 0, nRec, aRec);
    if( rc==SQLITE_OK ){
      p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
      if( !p->pUnpacked ) rc = SQLITE_NOMEM;
    }
    if( rc!=SQLITE_OK ){
      sqlite3DbFree(db, aRec);
      goto preupdate_old_out;







|







1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
  if( p->pUnpacked==0 ){
    u32 nRec;
    u8 *aRec;

    nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
    aRec = sqlite3DbMallocRaw(db, nRec);
    if( !aRec ) goto preupdate_old_out;
    rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
    if( rc==SQLITE_OK ){
      p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
      if( !p->pUnpacked ) rc = SQLITE_NOMEM;
    }
    if( rc!=SQLITE_OK ){
      sqlite3DbFree(db, aRec);
      goto preupdate_old_out;
Changes to src/vdbeaux.c.
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  nCellKey = sqlite3BtreePayloadSize(pCur);
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
  testcase( szHdr==3 );







|







4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  nCellKey = sqlite3BtreePayloadSize(pCur);
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
  testcase( szHdr==3 );
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}







|







4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}
Changes to src/vdbeblob.c.
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  return rc;
}

/*
** Read data from a blob handle.
*/
int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
  return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
}

/*
** Write data to a blob handle.
*/
int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
  return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);







|







436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  return rc;
}

/*
** Read data from a blob handle.
*/
int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
  return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreePayloadChecked);
}

/*
** Write data to a blob handle.
*/
int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
  return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
Changes to src/vdbemem.c.
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
  }

  return SQLITE_OK;
}

/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem object must have been initialized.  This routine will use
** pMem->zMalloc to hold the content from the btree, if possible.  New
** pMem->zMalloc space will be allocated if necessary.  The calling routine
** is responsible for making sure that the pMem object is eventually
** destroyed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  int rc;
  pMem->flags = MEM_Null;
  if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
    }
    if( rc==SQLITE_OK ){
      pMem->z[amt] = 0;
      pMem->z[amt+1] = 0;
      pMem->flags = MEM_Blob|MEM_Term;
      pMem->n = (int)amt;
    }else{
      sqlite3VdbeMemRelease(pMem);
    }
  }
  return rc;
}
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );
  assert( !VdbeMemDynamic(pMem) );

  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
  assert( zData!=0 );

  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem);
  }

  return rc;
}

/*
** The pVal argument is known to be a value other than NULL.







|

<
|














<





<
|
<
<
<















<




















|







930
931
932
933
934
935
936
937
938

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

954
955
956
957
958

959



960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
  }

  return SQLITE_OK;
}

/*
** Move data out of a btree key or data field and into a Mem structure.
** The data is payload from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.

** The result is written into the pMem element.
**
** The pMem object must have been initialized.  This routine will use
** pMem->zMalloc to hold the content from the btree, if possible.  New
** pMem->zMalloc space will be allocated if necessary.  The calling routine
** is responsible for making sure that the pMem object is eventually
** destroyed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */

  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  int rc;
  pMem->flags = MEM_Null;
  if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){

    rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);



    if( rc==SQLITE_OK ){
      pMem->z[amt] = 0;
      pMem->z[amt+1] = 0;
      pMem->flags = MEM_Blob|MEM_Term;
      pMem->n = (int)amt;
    }else{
      sqlite3VdbeMemRelease(pMem);
    }
  }
  return rc;
}
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
  u32 amt,          /* Number of bytes to return. */

  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );
  assert( !VdbeMemDynamic(pMem) );

  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
  assert( zData!=0 );

  if( offset+amt<=available ){
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
  }

  return rc;
}

/*
** The pVal argument is known to be a value other than NULL.