Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add part of the btree layer of the shared-cache feature. (CVS 2848) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
2afcad990190af97d1ad0010f211a5ca |
User & Date: | danielk1977 2005-12-30 16:28:02.000 |
Context
2005-12-30
| ||
16:31 | Repair typo in previous commit. (CVS 2849) (check-in: a4aa0911bc user: danielk1977 tags: trunk) | |
16:28 | Add part of the btree layer of the shared-cache feature. (CVS 2848) (check-in: 2afcad9901 user: danielk1977 tags: trunk) | |
2005-12-29
| ||
23:33 | Add support for CREATE TABLE IF NOT EXISTS. (CVS 2847) (check-in: 0bd9e35fd2 user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.277 2005/12/30 16:28:02 danielk1977 Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
226 227 228 229 230 231 232 233 234 235 236 237 238 239 | ** assumes a minimum cell size of 3 bytes. Such small cells will be ** exceedingly rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/3) /* Forward declarations */ typedef struct MemPage MemPage; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The | > | 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | ** assumes a minimum cell size of 3 bytes. Such small cells will be ** exceedingly rare, but they are possible. */ #define MX_CELL(pBt) ((pBt->pageSize-8)/3) /* Forward declarations */ typedef struct MemPage MemPage; typedef struct BtLock BtLock; /* ** This is a magic string that appears at the beginning of every ** SQLite database in order to identify the file as a real database. ** ** You can change this value at compile-time by specifying a ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The |
︙ | ︙ | |||
281 282 283 284 285 286 287 | u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ u16 idxParent; /* Index in parent of this node */ u16 nFree; /* Number of free bytes on the page */ u16 nCell; /* Number of cells on this page, local and ovfl */ struct _OvflCell { /* Cells that will not fit on aData[] */ | | | | | | | > > > > > > > > > > > > > > > > > > > | < > > > > > < < < < < < < < | 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ u16 cellOffset; /* Index in aData of first cell pointer */ u16 idxParent; /* Index in parent of this node */ u16 nFree; /* Number of free bytes on the page */ u16 nCell; /* Number of cells on this page, local and ovfl */ struct _OvflCell { /* Cells that will not fit on aData[] */ u8 *pCell; /* Pointers to the body of the overflow cell */ u16 idx; /* Insert this cell before idx-th non-overflow cell */ } aOvfl[5]; BtShared *pBt; /* Pointer back to BTree structure */ u8 *aData; /* Pointer back to the start of the page */ Pgno pgno; /* Page number for this page */ MemPage *pParent; /* The parent of this page. NULL for root */ }; /* ** The in-memory image of a disk page has the auxiliary information appended ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold ** that extra information. */ #define EXTRA_SIZE sizeof(MemPage) /* Btree handle */ struct Btree { sqlite3 *pSqlite; BtShared *pBt; u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ }; /* ** Btree.inTrans may take one of the following values. ** ** If the shared-data extension is enabled, there may be multiple users ** of the Btree structure. At most one of these may open a write transaction, ** but any number may have active read transactions. Variable Btree.pDb ** points to the handle that owns any current write-transaction. */ #define TRANS_NONE 0 #define TRANS_READ 1 #define TRANS_WRITE 2 /* ** Everything we need to know about an open database */ struct BtShared { Pager *pPager; /* The page cache */ BtCursor *pCursor; /* A list of all open cursors */ MemPage *pPage1; /* First page of the database */ u8 inStmt; /* True if we are in a statement subtransaction */ u8 readOnly; /* True if the underlying file is readonly */ u8 maxEmbedFrac; /* Maximum payload as % of total page size */ u8 minEmbedFrac; /* Minimum payload as % of total page size */ u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ u8 pageSizeFixed; /* True if the page size can no longer be changed */ #ifndef SQLITE_OMIT_AUTOVACUUM u8 autoVacuum; /* True if database supports auto-vacuum */ #endif u16 pageSize; /* Total number of bytes on a page */ u16 usableSize; /* Number of usable bytes on each page */ int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ int minLocal; /* Minimum local payload in non-LEAFDATA tables */ int maxLeaf; /* Maximum local payload in a LEAFDATA table */ int minLeaf; /* Minimum local payload in a LEAFDATA table */ BusyHandler *pBusyHandler; /* Callback for when there is lock contention */ u8 inTransaction; /* Transaction state */ BtShared *pNext; /* Next in SqliteTsd.pBtree linked list */ int nRef; /* Number of references to this structure */ int nTransaction; /* Number of open transactions (read + write) */ BtLock *pLock; /* List of locks held on this shared-btree struct */ }; /* ** An instance of the following structure is used to hold information ** about a cell. The parseCellPtr() function fills in this structure ** based on information extract from the raw disk page. */ typedef struct CellInfo CellInfo; |
︙ | ︙ | |||
353 354 355 356 357 358 359 | /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. */ struct BtCursor { | | | 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 | /* ** A cursor is a pointer to a particular entry in the BTree. ** The entry is identified by its MemPage and the index in ** MemPage.aCell[] of the entry. */ struct BtCursor { Btree *pBtree; /* The Btree to which this cursor belongs */ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ void *pArg; /* First arg to xCompare() */ Pgno pgnoRoot; /* The root page of this tree */ MemPage *pPage; /* Page that contains the entry */ int idx; /* Index of the entry in pPage->aCell[] */ CellInfo info; /* A parse of the cell we are pointing at */ |
︙ | ︙ | |||
381 382 383 384 385 386 387 | # define TRACE(X) #endif int sqlite3_btree_trace=0; /* True to enable tracing */ /* ** Forward declaration */ | | | 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | # define TRACE(X) #endif int sqlite3_btree_trace=0; /* True to enable tracing */ /* ** Forward declaration */ static int checkReadLocks(BtShared*,Pgno,BtCursor*); /* ** Read or write a two- and four-byte big-endian integer values. */ static u32 get2byte(unsigned char *p){ return (p[0]<<8) | p[1]; } |
︙ | ︙ | |||
418 419 420 421 422 423 424 425 426 427 428 429 430 431 | /* The database page the PENDING_BYTE occupies. This page is never used. ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They ** should possibly be consolidated (presumably in pager.h). */ #define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) #ifndef SQLITE_OMIT_AUTOVACUUM /* ** These macros define the location of the pointer-map entry for a ** database page. The first argument to each is the number of usable ** bytes on each page of the database (often 1024). The second is the ** page number to look up in the pointer map. ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | /* The database page the PENDING_BYTE occupies. This page is never used. ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They ** should possibly be consolidated (presumably in pager.h). */ #define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) /* ** A linked list of the following structures is stored at BtShared.pLock. ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor ** is opened on the table with root page BtShared.iTable. Locks are removed ** from this list when a transaction is committed or rolled back, or when ** a btree handle is closed. */ struct BtLock { Btree *pBtree; /* Btree handle holding this lock */ Pgno iTable; /* Root page of table */ u8 eLock; /* READ_LOCK or WRITE_LOCK */ BtLock *pNext; /* Next in BtShared.pLock list */ }; /* Candidate values for BtLock.eLock */ #define READ_LOCK 1 #define WRITE_LOCK 2 #ifdef SQLITE_OMIT_SHARED_CACHE /* ** The functions queryTableLock(), lockTable() and unlockAllTables() ** manipulate entries in the BtShared.pLock linked list used to store ** shared-cache table level locks. If the library is compiled with the ** shared-cache feature disabled, then there is only ever one user ** of each BtShared structure and so this locking is not required. ** So define the three interface functions as no-ops. */ #define queryTableLock(a,b,c) SQLITE_OK #define lockTable(a,b,c) SQLITE_OK #define unlockAllTables(a,b,c) #else /* ** Query to see if btree handle p may obtain a lock of type eLock ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or ** SQLITE_BUSY if not. */ static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pIter; for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->pBtree!=p && pIter->iTable==iTab && (pIter->eLock!=READ_LOCK || eLock!=READ_LOCK) ){ return SQLITE_BUSY; } } return SQLITE_OK; } /* ** Add a lock on the table with root-page iTable to the shared-btree used ** by Btree handle p. Parameter eLock must be either READ_LOCK or ** WRITE_LOCK. ** ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and ** SQLITE_NOMEM may also be returned. */ static int lockTable(Btree *p, Pgno iTable, u8 eLock){ BtShared *pBt = p->pBt; BtLock *pLock = 0; BtLock *pIter; assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); /* First search the list for an existing lock on this table. */ for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ if( pIter->iTable==iTable && pIter->pBtree==p ){ pLock = pIter; break; } } /* If the above search did not find a BtLock struct associating Btree p ** with table iTable, allocate one and link it into the list. */ if( !pLock ){ pLock = (BtLock *)sqliteMalloc(sizeof(BtLock)); if( !pLock ){ return SQLITE_NOMEM; } pLock->iTable = iTable; pLock->pBtree = p; pLock->pNext = pBt->pLock; pBt->pLock = pLock; } /* Set the BtLock.eLock variable to the maximum of the current lock ** and the requested lock. This means if a write-lock was already held ** and a read-lock requested, we don't incorrectly downgrade the lock. */ assert( WRITE_LOCK>READ_LOCK ); pLock->eLock = MAX(pLock->eLock, eLock); return SQLITE_OK; } /* ** Release all the table locks (locks obtained via calls to the lockTable() ** procedure) held by Btree handle p. */ static void unlockAllTables(Btree *p){ BtLock **ppIter = &p->pBt->pLock; while( *ppIter ){ BtLock *pLock = *ppIter; if( pLock->pBtree==p ){ *ppIter = pLock->pNext; sqliteFree(pLock); }else{ ppIter = &pLock->pNext; } } } #endif /* SQLITE_OMIT_SHARED_CACHE */ #ifndef SQLITE_OMIT_AUTOVACUUM /* ** These macros define the location of the pointer-map entry for a ** database page. The first argument to each is the number of usable ** bytes on each page of the database (often 1024). The second is the ** page number to look up in the pointer map. ** |
︙ | ︙ | |||
482 483 484 485 486 487 488 | /* ** Write an entry into the pointer map. ** ** This routine updates the pointer map entry for page number 'key' ** so that it maps to type 'eType' and parent page number 'pgno'. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ | | | 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 | /* ** Write an entry into the pointer map. ** ** This routine updates the pointer map entry for page number 'key' ** so that it maps to type 'eType' and parent page number 'pgno'. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ u8 *pPtrmap; /* The pointer map page */ Pgno iPtrmap; /* The pointer map page number */ int offset; /* Offset in pointer map page */ int rc; assert( pBt->autoVacuum ); if( key==0 ){ |
︙ | ︙ | |||
519 520 521 522 523 524 525 | /* ** Read an entry from the pointer map. ** ** This routine retrieves the pointer map entry for page 'key', writing ** the type and parent page number to *pEType and *pPgno respectively. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ | | | 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 | /* ** Read an entry from the pointer map. ** ** This routine retrieves the pointer map entry for page 'key', writing ** the type and parent page number to *pEType and *pPgno respectively. ** An error code is returned if something goes wrong, otherwise SQLITE_OK. */ static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ int iPtrmap; /* Pointer map page index */ u8 *pPtrmap; /* Pointer map page data */ int offset; /* Offset of entry in pointer map */ int rc; iPtrmap = PTRMAP_PAGENO(pBt->usableSize, key); rc = sqlite3pager_get(pBt->pPager, iPtrmap, (void **)&pPtrmap); |
︙ | ︙ | |||
542 543 544 545 546 547 548 549 550 551 552 553 554 555 | sqlite3pager_unref(pPtrmap); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; return SQLITE_OK; } #endif /* SQLITE_OMIT_AUTOVACUUM */ /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** This routine works only for pages that do not contain overflow cells. */ | > > > > > > > > > > > > > > > > > > > > > | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 | sqlite3pager_unref(pPtrmap); if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; return SQLITE_OK; } #endif /* SQLITE_OMIT_AUTOVACUUM */ /* ** Return a pointer to the Btree structure associated with btree pBt ** and connection handle pSqlite. */ #if 0 static Btree *btree_findref(BtShared *pBt, sqlite3 *pSqlite){ #ifndef SQLITE_OMIT_SHARED_DATA if( pBt->aRef ){ int i; for(i=0; i<pBt->nRef; i++){ if( pBt->aRef[i].pSqlite==pSqlite ){ return &pBt->aRef[i]; } } assert(0); } #endif return &pBt->ref; } #endif /* ** Given a btree page and a cell index (0 means the first cell on ** the page, 1 means the second cell, and so forth) return a pointer ** to the cell content. ** ** This routine works only for pages that do not contain overflow cells. */ |
︙ | ︙ | |||
786 787 788 789 790 791 792 793 794 795 796 797 798 799 | sqliteFree(used); } #define pageIntegrity(X) _pageIntegrity(X) #else # define pageIntegrity(X) #endif /* ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. */ static int defragmentPage(MemPage *pPage){ | > > > > > > > > > | 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 | sqliteFree(used); } #define pageIntegrity(X) _pageIntegrity(X) #else # define pageIntegrity(X) #endif /* A bunch of assert() statements to check the transaction state variables ** of handle p (type Btree*) are internally consistent. */ #define btreeIntegrity(p) \ assert( p->inTrans!=TRANS_NONE || p->pBt->nTransaction<p->pBt->nRef ); \ assert( p->pBt->nTransaction<=p->pBt->nRef ); \ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ assert( p->pBt->inTransaction>=p->inTrans ); /* ** Defragment the page given. All Cells are moved to the ** end of the page and all free space is collected into one ** big FreeBlk that occurs in between the header and cell ** pointer array and the cell content area. */ static int defragmentPage(MemPage *pPage){ |
︙ | ︙ | |||
974 975 976 977 978 979 980 | } /* ** Decode the flags byte (the first byte of the header) for a page ** and initialize fields of the MemPage structure accordingly. */ static void decodeFlags(MemPage *pPage, int flagByte){ | | | 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 | } /* ** Decode the flags byte (the first byte of the header) for a page ** and initialize fields of the MemPage structure accordingly. */ static void decodeFlags(MemPage *pPage, int flagByte){ BtShared *pBt; /* A copy of pPage->pBt */ assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; pPage->leaf = (flagByte & PTF_LEAF)!=0; pPage->childPtrSize = 4*(pPage->leaf==0); pBt = pPage->pBt; |
︙ | ︙ | |||
1014 1015 1016 1017 1018 1019 1020 | static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int pc; /* Address of a freeblock within pPage->aData[] */ int hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ | | | 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | static int initPage( MemPage *pPage, /* The page to be initialized */ MemPage *pParent /* The parent. Might be NULL */ ){ int pc; /* Address of a freeblock within pPage->aData[] */ int hdr; /* Offset to beginning of page header */ u8 *data; /* Equal to pPage->aData */ BtShared *pBt; /* The main btree structure */ int usableSize; /* Amount of usable space on each page */ int cellOffset; /* Offset from start of page to first cell pointer */ int nFree; /* Number of unused bytes on the page */ int top; /* First byte of the cell content area */ pBt = pPage->pBt; assert( pBt!=0 ); |
︙ | ︙ | |||
1087 1088 1089 1090 1091 1092 1093 | /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage, int flags){ unsigned char *data = pPage->aData; | | | 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 | /* ** Set up a raw page so that it looks like a database page holding ** no entries. */ static void zeroPage(MemPage *pPage, int flags){ unsigned char *data = pPage->aData; BtShared *pBt = pPage->pBt; int hdr = pPage->hdrOffset; int first; assert( sqlite3pager_pagenumber(data)==pPage->pgno ); assert( &data[pBt->pageSize] == (unsigned char*)pPage ); assert( sqlite3pager_iswriteable(data) ); memset(&data[hdr], 0, pBt->usableSize - hdr); |
︙ | ︙ | |||
1115 1116 1117 1118 1119 1120 1121 | pageIntegrity(pPage); } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ | | | | 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 | pageIntegrity(pPage); } /* ** Get a page from the pager. Initialize the MemPage.pBt and ** MemPage.aData elements if needed. */ static int getPage(BtShared *pBt, Pgno pgno, MemPage **ppPage){ int rc; unsigned char *aData; MemPage *pPage; rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); if( rc ) return rc; pPage = (MemPage*)&aData[pBt->pageSize]; pPage->aData = aData; pPage->pBt = pBt; pPage->pgno = pgno; pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; *ppPage = pPage; return SQLITE_OK; } /* ** Get a page from the pager and initialize it. This routine ** is just a convenience wrapper around separate calls to ** getPage() and initPage(). */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage, /* Write the page pointer here */ MemPage *pParent /* Parent of the page */ ){ int rc; if( pgno==0 ){ return SQLITE_CORRUPT_BKPT; |
︙ | ︙ | |||
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 | ** ** zFilename is the name of the database file. If zFilename is NULL ** a new database with a random name is created. This randomly named ** database file will be deleted when sqlite3BtreeClose() is called. */ int sqlite3BtreeOpen( const char *zFilename, /* Name of the file containing the BTree database */ Btree **ppBtree, /* Pointer to new Btree object written here */ int flags /* Options */ ){ | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < | < > > > > > > > > > | | > > > > > > > > > | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > | > | > | > > | | | | | > | | | | 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 | ** ** zFilename is the name of the database file. If zFilename is NULL ** a new database with a random name is created. This randomly named ** database file will be deleted when sqlite3BtreeClose() is called. */ int sqlite3BtreeOpen( const char *zFilename, /* Name of the file containing the BTree database */ sqlite3 *pSqlite, /* Associated database handle */ Btree **ppBtree, /* Pointer to new Btree object written here */ int flags /* Options */ ){ BtShared *pBt; /* Shared part of btree structure */ Btree *p; /* Handle to return */ int rc; int nReserve; unsigned char zDbHeader[100]; SqliteTsd *pTsd = sqlite3Tsd(); /* Set the variable isMemdb to true for an in-memory database, or ** false for a file-based database. This symbol is only required if ** either of the shared-data or autovacuum features are compiled ** into the library. */ #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) #ifdef SQLITE_OMIT_MEMORYDB const int isMemdb = !zFilename; #else const int isMemdb = !zFilename || (strcmp(zFilename, ":memory:")?0:1); #endif #endif p = sqliteMalloc(sizeof(Btree)); if( !p ){ return SQLITE_NOMEM; } p->inTrans = TRANS_NONE; p->pSqlite = pSqlite; /* Try to find an existing Btree structure opened on zFilename. */ #ifndef SQLITE_OMIT_SHARED_CACHE if( pTsd->useSharedData && zFilename && !isMemdb ){ char *zFullPathname = sqlite3Os.xFullPathname(zFilename); if( !zFullPathname ){ sqliteFree(p); return SQLITE_NOMEM; } for(pBt=pTsd->pBtree; pBt; pBt=pBt->pNext){ if( 0==strcmp(zFullPathname, sqlite3pager_filename(pBt->pPager)) ){ p->pBt = pBt; *ppBtree = p; pBt->nRef++; sqliteFree(zFullPathname); return SQLITE_OK; } } sqliteFree(zFullPathname); } #endif /* ** The following asserts make sure that structures used by the btree are ** the right size. This is to guard against size changes that result ** when compiling on a different architecture. */ assert( sizeof(i64)==8 ); assert( sizeof(u64)==8 ); assert( sizeof(u32)==4 ); assert( sizeof(u16)==2 ); assert( sizeof(Pgno)==4 ); pBt = sqliteMalloc( sizeof(*pBt) ); if( pBt==0 ){ *ppBtree = 0; sqliteFree(p); return SQLITE_NOMEM; } rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, flags); if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlite3pager_close(pBt->pPager); sqliteFree(pBt); sqliteFree(p); *ppBtree = 0; return rc; } p->pBt = pBt; sqlite3pager_set_destructor(pBt->pPager, pageDestructor); sqlite3pager_set_reiniter(pBt->pPager, pageReinit); pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader); pBt->pageSize = get2byte(&zDbHeader[16]); if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE; pBt->maxEmbedFrac = 64; /* 25% */ pBt->minEmbedFrac = 32; /* 12.5% */ pBt->minLeafFrac = 32; /* 12.5% */ #ifndef SQLITE_OMIT_AUTOVACUUM /* If the magic name ":memory:" will create an in-memory database, then ** do not set the auto-vacuum flag, even if SQLITE_DEFAULT_AUTOVACUUM ** is true. On the other hand, if SQLITE_OMIT_MEMORYDB has been defined, ** then ":memory:" is just a regular file-name. Respect the auto-vacuum ** default in this case. */ if( zFilename && !isMemdb ){ pBt->autoVacuum = SQLITE_DEFAULT_AUTOVACUUM; } #endif nReserve = 0; }else{ nReserve = zDbHeader[20]; pBt->maxEmbedFrac = zDbHeader[21]; pBt->minEmbedFrac = zDbHeader[22]; pBt->minLeafFrac = zDbHeader[23]; pBt->pageSizeFixed = 1; #ifndef SQLITE_OMIT_AUTOVACUUM pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); #endif } pBt->usableSize = pBt->pageSize - nReserve; assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize); #ifndef SQLITE_OMIT_SHARED_CACHE /* Add the new btree to the linked list starting at SqliteTsd.pBtree */ if( pTsd->useSharedData && zFilename && !isMemdb ){ pBt->pNext = pTsd->pBtree; pTsd->pBtree = pBt; } pBt->nRef = 1; #endif *ppBtree = p; return SQLITE_OK; } /* ** Close an open database and invalidate all cursors. */ int sqlite3BtreeClose(Btree *p){ SqliteTsd *pTsd = sqlite3Tsd(); BtShared *pBt = p->pBt; BtCursor *pCur; /* Drop any table-locks */ unlockAllTables(p); /* Close all cursors opened via this handle. */ pCur = pBt->pCursor; while( pCur ){ BtCursor *pTmp = pCur; pCur = pCur->pNext; if( pTmp->pBtree==p ){ sqlite3BtreeCloseCursor(pTmp); } } sqliteFree(p); #ifndef SQLITE_OMIT_SHARED_CACHE /* If there are still other outstanding references to the shared-btree ** structure, return now. The remainder of this procedure cleans ** up the shared-btree. */ assert( pBt->nRef>0 ); pBt->nRef--; if( pBt->nRef ){ return SQLITE_OK; } /* Remove the shared-btree from the thread wide list */ if( pTsd->pBtree==pBt ){ pTsd->pBtree = pBt->pNext; }else{ BtShared *pPrev; for(pPrev=pTsd->pBtree; pPrev && pPrev->pNext!=pBt; pPrev=pPrev->pNext); if( pPrev ){ pPrev->pNext = pBt->pNext; } } #endif /* Close the pager and free the shared-btree structure */ assert( !pBt->pCursor ); sqlite3pager_close(pBt->pPager); sqliteFree(pBt); return SQLITE_OK; } /* ** Change the busy handler callback function. */ int sqlite3BtreeSetBusyHandler(Btree *p, BusyHandler *pHandler){ BtShared *pBt = p->pBt; pBt->pBusyHandler = pHandler; sqlite3pager_set_busyhandler(pBt->pPager, pHandler); return SQLITE_OK; } /* ** Change the limit on the number of pages allowed in the cache. ** ** The maximum number of cache pages is set to the absolute ** value of mxPage. If mxPage is negative, the pager will ** operate asynchronously - it will not stop to do fsync()s ** to insure data is written to the disk surface before ** continuing. Transactions still work if synchronous is off, ** and the database cannot be corrupted if this program ** crashes. But if the operating system crashes or there is ** an abrupt power failure when synchronous is off, the database ** could be left in an inconsistent and unrecoverable state. ** Synchronous is on by default so database corruption is not ** normally a worry. */ int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ BtShared *pBt = p->pBt; sqlite3pager_set_cachesize(pBt->pPager, mxPage); return SQLITE_OK; } /* ** Change the way data is synced to disk in order to increase or decrease ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS int sqlite3BtreeSetSafetyLevel(Btree *p, int level){ BtShared *pBt = p->pBt; sqlite3pager_set_safety_level(pBt->pPager, level); return SQLITE_OK; } #endif /* ** Return TRUE if the given btree is set to safety level 1. In other ** words, return TRUE if no sync() occurs on the disk files. */ int sqlite3BtreeSyncDisabled(Btree *p){ BtShared *pBt = p->pBt; assert( pBt && pBt->pPager ); return sqlite3pager_nosync(pBt->pPager); } #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) /* ** Change the default pages size and the number of reserved bytes per page. ** ** The page size must be a power of 2 between 512 and 65536. If the page ** size supplied does not meet this constraint then the page size is not ** changed. ** ** Page sizes are constrained to be a power of two so that the region ** of the database file used for locking (beginning at PENDING_BYTE, ** the first byte past the 1GB boundary, 0x40000000) needs to occur ** at the beginning of a page. ** ** If parameter nReserve is less than zero, then the number of reserved ** bytes per page is left unchanged. */ int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ BtShared *pBt = p->pBt; if( pBt->pageSizeFixed ){ return SQLITE_READONLY; } if( nReserve<0 ){ nReserve = pBt->pageSize - pBt->usableSize; } if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && ((pageSize-1)&pageSize)==0 ){ assert( (pageSize & 7)==0 ); assert( !pBt->pPage1 && !pBt->pCursor ); pBt->pageSize = sqlite3pager_set_pagesize(pBt->pPager, pageSize); } pBt->usableSize = pBt->pageSize - nReserve; return SQLITE_OK; } /* ** Return the currently defined page size */ int sqlite3BtreeGetPageSize(Btree *p){ return p->pBt->pageSize; } int sqlite3BtreeGetReserve(Btree *p){ return p->pBt->pageSize - p->pBt->usableSize; } #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ /* ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it ** is disabled. The default value for the auto-vacuum property is ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. */ int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ BtShared *pBt = p->pBt;; #ifdef SQLITE_OMIT_AUTOVACUUM return SQLITE_READONLY; #else if( pBt->pageSizeFixed ){ return SQLITE_READONLY; } pBt->autoVacuum = (autoVacuum?1:0); return SQLITE_OK; #endif } /* ** Return the value of the 'auto-vacuum' property. If auto-vacuum is ** enabled 1 is returned. Otherwise 0. */ int sqlite3BtreeGetAutoVacuum(Btree *p){ #ifdef SQLITE_OMIT_AUTOVACUUM return 0; #else return p->pBt->autoVacuum; #endif } /* ** Get a reference to pPage1 of the database file. This will ** also acquire a readlock on that file. ** ** SQLITE_OK is returned on success. If the file is not a ** well-formed database file, then SQLITE_CORRUPT is returned. ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM ** is returned if we run out of memory. SQLITE_PROTOCOL is returned ** if there is a locking protocol violation. */ static int lockBtree(BtShared *pBt){ int rc, pageSize; MemPage *pPage1; if( pBt->pPage1 ) return SQLITE_OK; rc = getPage(pBt, 1, &pPage1); if( rc!=SQLITE_OK ) return rc; |
︙ | ︙ | |||
1507 1508 1509 1510 1511 1512 1513 | return rc; } /* ** This routine works like lockBtree() except that it also invokes the ** busy callback if there is lock contention. */ | | | > > | > | > > > > | | | | 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 | return rc; } /* ** This routine works like lockBtree() except that it also invokes the ** busy callback if there is lock contention. */ static int lockBtreeWithRetry(Btree *pRef){ int rc = SQLITE_OK; if( pRef->inTrans==TRANS_NONE ){ u8 inTransaction = pRef->pBt->inTransaction; btreeIntegrity(pRef); rc = sqlite3BtreeBeginTrans(pRef, 0); pRef->pBt->inTransaction = inTransaction; pRef->inTrans = TRANS_NONE; if( rc==SQLITE_OK ){ pRef->pBt->nTransaction--; } btreeIntegrity(pRef); } return rc; } /* ** If there are no outstanding cursors and we are not in the middle ** of a transaction but there is a read lock on the database, then ** this routine unrefs the first page of the database file which ** has the effect of releasing the read lock. ** ** If there are any outstanding cursors, this routine is a no-op. ** ** If there is a transaction in progress, this routine is a no-op. */ static void unlockBtreeIfUnused(BtShared *pBt){ if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ if( pBt->pPage1->aData==0 ){ MemPage *pPage = pBt->pPage1; pPage->aData = &((u8*)pPage)[-pBt->pageSize]; pPage->pBt = pBt; pPage->pgno = 1; } releasePage(pBt->pPage1); pBt->pPage1 = 0; pBt->inStmt = 0; } } /* ** Create a new database by initializing the first page of the ** file. */ static int newDatabase(BtShared *pBt){ MemPage *pP1; unsigned char *data; int rc; if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; pP1 = pBt->pPage1; assert( pP1!=0 ); data = pP1->aData; |
︙ | ︙ | |||
1610 1611 1612 1613 1614 1615 1616 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ | | > > > | > > > > > > > > < | > > > > > > > > > > > > | | 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 | ** a reserved lock. B tries to promote to exclusive but is blocked because ** of A's read lock. A tries to promote to reserved but is blocked by B. ** One or the other of the two processes must give way or there can be ** no progress. By returning SQLITE_BUSY and not invoking the busy callback ** when A already has a read lock, we encourage A to give up and let B ** proceed. */ int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ BtShared *pBt = p->pBt; int rc = SQLITE_OK; btreeIntegrity(p); /* If the btree is already in a write-transaction, or it ** is already in a read-transaction and a read-transaction ** is requested, this is a no-op. */ if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ return SQLITE_OK; } /* Write transactions are not possible on a read-only database */ if( pBt->readOnly && wrflag ){ return SQLITE_READONLY; } /* If another database handle has already opened a write transaction ** on this shared-btree structure and a second write transaction is ** requested, return SQLITE_BUSY. */ if( pBt->inTransaction==TRANS_WRITE && wrflag ){ return SQLITE_BUSY; } do { if( pBt->pPage1==0 ){ rc = lockBtree(pBt); } if( rc==SQLITE_OK && wrflag ){ rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1); if( rc==SQLITE_OK ){ rc = newDatabase(pBt); } } if( rc==SQLITE_OK ){ if( wrflag ) pBt->inStmt = 0; }else{ unlockBtreeIfUnused(pBt); } }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && sqlite3InvokeBusyHandler(pBt->pBusyHandler) ); if( rc==SQLITE_OK ){ if( p->inTrans==TRANS_NONE ){ pBt->nTransaction++; } p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); if( p->inTrans>pBt->inTransaction ){ pBt->inTransaction = p->inTrans; } } btreeIntegrity(p); return rc; } #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Set the pointer-map entries for all children of page pPage. Also, if ** pPage contains cells that point to overflow pages, set the pointer ** map entries for the overflow pages as well. */ static int setChildPtrmaps(MemPage *pPage){ int i; /* Counter variable */ int nCell; /* Number of cells in page pPage */ int rc = SQLITE_OK; /* Return code */ BtShared *pBt = pPage->pBt; int isInitOrig = pPage->isInit; Pgno pgno = pPage->pgno; initPage(pPage, 0); nCell = pPage->nCell; for(i=0; i<nCell; i++){ |
︙ | ︙ | |||
1760 1761 1762 1763 1764 1765 1766 | /* ** Move the open database page pDbPage to location iFreePage in the ** database. The pDbPage reference remains valid. */ static int relocatePage( | | | 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 | /* ** Move the open database page pDbPage to location iFreePage in the ** database. The pDbPage reference remains valid. */ static int relocatePage( BtShared *pBt, /* Btree */ MemPage *pDbPage, /* Open page to move */ u8 eType, /* Pointer map 'type' entry for pDbPage */ Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ Pgno iFreePage /* The location to move pDbPage to */ ){ MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ Pgno iDbPage = pDbPage->pgno; |
︙ | ︙ | |||
1830 1831 1832 1833 1834 1835 1836 | rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); } } return rc; } /* Forward declaration required by autoVacuumCommit(). */ | | | | 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 | rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); } } return rc; } /* Forward declaration required by autoVacuumCommit(). */ static int allocatePage(BtShared *, MemPage **, Pgno *, Pgno, u8); /* ** This routine is called prior to sqlite3pager_commit when a transaction ** is commited for an auto-vacuum database. */ static int autoVacuumCommit(BtShared *pBt, Pgno *nTrunc){ Pager *pPager = pBt->pPager; Pgno nFreeList; /* Number of pages remaining on the free-list. */ int nPtrMap; /* Number of pointer-map pages deallocated */ Pgno origSize; /* Pages in the database file */ Pgno finSize; /* Pages in the database file after truncation */ int rc; /* Return code */ u8 eType; |
︙ | ︙ | |||
1956 1957 1958 1959 1960 1961 1962 | /* ** Commit the transaction currently in progress. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ | | > > > > > > > > | > > > > > > > > > > > > > > > > > > > > | < > > | | | > | 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 | /* ** Commit the transaction currently in progress. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeCommit(Btree *p){ int rc = SQLITE_OK; BtShared *pBt = p->pBt; btreeIntegrity(p); unlockAllTables(p); /* If the handle has a write-transaction open, commit the shared-btrees ** transaction and set the shared state to TRANS_READ. */ if( p->inTrans==TRANS_WRITE ){ assert( pBt->inTransaction==TRANS_WRITE ); assert( pBt->nTransaction>0 ); rc = sqlite3pager_commit(pBt->pPager); pBt->inTransaction = TRANS_READ; pBt->inStmt = 0; } /* If the handle has any kind of transaction open, decrement the transaction ** count of the shared btree. If the transaction count reaches 0, set ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below ** will unlock the pager. */ if( p->inTrans!=TRANS_NONE ){ pBt->nTransaction--; if( 0==pBt->nTransaction ){ pBt->inTransaction = TRANS_NONE; } } /* Set the handles current transaction state to TRANS_NONE and unlock ** the pager if this call closed the only read or write transaction. */ p->inTrans = TRANS_NONE; unlockBtreeIfUnused(pBt); btreeIntegrity(p); return rc; } #ifndef NDEBUG /* ** Return the number of write-cursors open on this handle. This is for use ** in assert() expressions, so it is only compiled if NDEBUG is not ** defined. */ static int countWriteCursors(BtShared *pBt){ BtCursor *pCur; int r = 0; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->wrFlag ) r++; } return r; } #endif #ifdef SQLITE_TEST /* ** Print debugging information about all cursors to standard output. */ void sqlite3BtreeCursorList(Btree *p){ BtCursor *pCur; BtShared *pBt = p->pBt; for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ MemPage *pPage = pCur->pPage; char *zMode = pCur->wrFlag ? "rw" : "ro"; sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", pCur, pCur->pgnoRoot, zMode, pPage ? pPage->pgno : 0, pCur->idx, pCur->isValid ? "" : " eof" |
︙ | ︙ | |||
2010 2011 2012 2013 2014 2015 2016 | ** invalided by this operation. Any attempt to use a cursor ** that was open at the beginning of this operation will result ** in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ | | > > > > > | > > > > > > > > > > > > | > > | > | > | > | > | 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 | ** invalided by this operation. Any attempt to use a cursor ** that was open at the beginning of this operation will result ** in an error. ** ** This will release the write lock on the database file. If there ** are no active cursors, it also releases the read lock. */ int sqlite3BtreeRollback(Btree *p){ int rc = SQLITE_OK; BtShared *pBt = p->pBt; MemPage *pPage1; btreeIntegrity(p); unlockAllTables(p); if( p->inTrans==TRANS_WRITE ){ assert( TRANS_WRITE==pBt->inTransaction ); rc = sqlite3pager_rollback(pBt->pPager); /* The rollback may have destroyed the pPage1->aData value. So ** call getPage() on page 1 again to make sure pPage1->aData is ** set correctly. */ if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){ releasePage(pPage1); } assert( countWriteCursors(pBt)==0 ); pBt->inTransaction = TRANS_READ; } if( p->inTrans!=TRANS_NONE ){ assert( pBt->nTransaction>0 ); pBt->nTransaction--; if( 0==pBt->nTransaction ){ pBt->inTransaction = TRANS_NONE; } } p->inTrans = TRANS_NONE; pBt->inStmt = 0; unlockBtreeIfUnused(pBt); btreeIntegrity(p); return rc; } /* ** Start a statement subtransaction. The subtransaction can ** can be rolled back independently of the main transaction. ** You must start a transaction before starting a subtransaction. ** The subtransaction is ended automatically if the main transaction ** commits or rolls back. ** ** Only one subtransaction may be active at a time. It is an error to try ** to start a new subtransaction if another subtransaction is already active. ** ** Statement subtransactions are used around individual SQL statements ** that are contained within a BEGIN...COMMIT block. If a constraint ** error occurs within the statement, the effect of that one statement ** can be rolled back without having to rollback the entire transaction. */ int sqlite3BtreeBeginStmt(Btree *p){ int rc; BtShared *pBt = p->pBt; if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( pBt->inTransaction==TRANS_WRITE ); rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); pBt->inStmt = 1; return rc; } /* ** Commit the statment subtransaction currently in progress. If no ** subtransaction is active, this is a no-op. */ int sqlite3BtreeCommitStmt(Btree *p){ int rc; BtShared *pBt = p->pBt; if( pBt->inStmt && !pBt->readOnly ){ rc = sqlite3pager_stmt_commit(pBt->pPager); }else{ rc = SQLITE_OK; } pBt->inStmt = 0; return rc; } /* ** Rollback the active statement subtransaction. If no subtransaction ** is active this routine is a no-op. ** ** All cursors will be invalidated by this operation. Any attempt ** to use a cursor that was open at the beginning of this operation ** will result in an error. */ int sqlite3BtreeRollbackStmt(Btree *p){ int rc; BtShared *pBt = p->pBt; if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; rc = sqlite3pager_stmt_rollback(pBt->pPager); assert( countWriteCursors(pBt)==0 ); pBt->inStmt = 0; return rc; } |
︙ | ︙ | |||
2147 2148 2149 2150 2151 2152 2153 | ** The comparison function must be logically the same for every cursor ** on a particular table. Changing the comparison function will result ** in incorrect operations. If the comparison function is NULL, a ** default comparison function is used. The comparison function is ** always ignored for INTKEY tables. */ int sqlite3BtreeCursor( | | > > > > > > > > > | > > > > > > > > > > > > | < > | 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 | ** The comparison function must be logically the same for every cursor ** on a particular table. Changing the comparison function will result ** in incorrect operations. If the comparison function is NULL, a ** default comparison function is used. The comparison function is ** always ignored for INTKEY tables. */ int sqlite3BtreeCursor( Btree *p, /* The btree */ int iTable, /* Root page of table to open */ int wrFlag, /* 1 to write. 0 read-only */ int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ void *pArg, /* First arg to xCompare() */ BtCursor **ppCur /* Write new cursor here */ ){ int rc; BtCursor *pCur; BtShared *pBt = p->pBt; *ppCur = 0; if( wrFlag ){ if( pBt->readOnly ){ return SQLITE_READONLY; } if( checkReadLocks(pBt, iTable, 0) ){ return SQLITE_LOCKED; } } #ifndef SQLITE_OMIT_SHARED_CACHE rc = queryTableLock(p, iTable, wrFlag?WRITE_LOCK:READ_LOCK); if( rc!=SQLITE_OK ){ return rc; } #endif if( pBt->pPage1==0 ){ rc = lockBtreeWithRetry(p); if( rc!=SQLITE_OK ){ return rc; } } pCur = sqliteMallocRaw( sizeof(*pCur) ); if( pCur==0 ){ rc = SQLITE_NOMEM; goto create_cursor_exception; } pCur->pgnoRoot = (Pgno)iTable; pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */ if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ rc = SQLITE_EMPTY; goto create_cursor_exception; } rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); if( rc!=SQLITE_OK ){ goto create_cursor_exception; } /* Obtain the table-lock on the shared-btree. */ rc = lockTable(p, iTable, wrFlag?WRITE_LOCK:READ_LOCK); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); goto create_cursor_exception; } /* Now that no other errors can occur, finish filling in the BtCursor ** variables, link the cursor into the BtShared list and set *ppCur (the ** output argument to this function). */ pCur->xCompare = xCmp ? xCmp : dfltCompare; pCur->pArg = pArg; pCur->pBtree = p; pCur->wrFlag = wrFlag; pCur->idx = 0; memset(&pCur->info, 0, sizeof(pCur->info)); pCur->pNext = pBt->pCursor; if( pCur->pNext ){ pCur->pNext->pPrev = pCur; } pCur->pPrev = 0; pBt->pCursor = pCur; pCur->isValid = 0; *ppCur = pCur; return SQLITE_OK; create_cursor_exception: if( pCur ){ releasePage(pCur->pPage); sqliteFree(pCur); } unlockBtreeIfUnused(pBt); return rc; |
︙ | ︙ | |||
2231 2232 2233 2234 2235 2236 2237 | #endif /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ | | | 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 | #endif /* ** Close a cursor. The read lock on the database file is released ** when the last cursor is closed. */ int sqlite3BtreeCloseCursor(BtCursor *pCur){ BtShared *pBt = pCur->pBtree->pBt; if( pCur->pPrev ){ pCur->pPrev->pNext = pCur->pNext; }else{ pBt->pCursor = pCur->pNext; } if( pCur->pNext ){ pCur->pNext->pPrev = pCur->pPrev; |
︙ | ︙ | |||
2345 2346 2347 2348 2349 2350 2351 | unsigned char *pBuf, /* Write the bytes into this buffer */ int skipKey /* offset begins at data if this is true */ ){ unsigned char *aPayload; Pgno nextPage; int rc; MemPage *pPage; | | | | 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 | unsigned char *pBuf, /* Write the bytes into this buffer */ int skipKey /* offset begins at data if this is true */ ){ unsigned char *aPayload; Pgno nextPage; int rc; MemPage *pPage; BtShared *pBt; int ovflSize; u32 nKey; assert( pCur!=0 && pCur->pPage!=0 ); assert( pCur->isValid ); pBt = pCur->pBtree->pBt; pPage = pCur->pPage; pageIntegrity(pPage); assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); getCellInfo(pCur); aPayload = pCur->info.pCell; aPayload += pCur->info.nHeader; if( pPage->intKey ){ |
︙ | ︙ | |||
2535 2536 2537 2538 2539 2540 2541 | ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page to move to. */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; MemPage *pNewPage; MemPage *pOldPage; | | | 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 | ** Move the cursor down to a new child page. The newPgno argument is the ** page number of the child page to move to. */ static int moveToChild(BtCursor *pCur, u32 newPgno){ int rc; MemPage *pNewPage; MemPage *pOldPage; BtShared *pBt = pCur->pBtree->pBt; assert( pCur->isValid ); rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); if( rc ) return rc; pageIntegrity(pNewPage); pNewPage->idxParent = pCur->idx; pOldPage = pCur->pPage; |
︙ | ︙ | |||
2607 2608 2609 2610 2611 2612 2613 | /* ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; | | | 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 | /* ** Move the cursor to the root page */ static int moveToRoot(BtCursor *pCur){ MemPage *pRoot; int rc; BtShared *pBt = pCur->pBtree->pBt; rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); if( rc ){ pCur->isValid = 0; return rc; } releasePage(pCur->pPage); |
︙ | ︙ | |||
2960 2961 2962 2963 2964 2965 2966 | ** which in turn can make database access faster. ** ** If the "exact" parameter is not 0, and the page-number nearby exists ** anywhere on the free-list, then it is guarenteed to be returned. This ** is only used by auto-vacuum databases when allocating a new table. */ static int allocatePage( | | | 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 | ** which in turn can make database access faster. ** ** If the "exact" parameter is not 0, and the page-number nearby exists ** anywhere on the free-list, then it is guarenteed to be returned. This ** is only used by auto-vacuum databases when allocating a new table. */ static int allocatePage( BtShared *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby, u8 exact ){ MemPage *pPage1; int rc; |
︙ | ︙ | |||
3178 3179 3180 3181 3182 3183 3184 | /* ** Add a page of the database file to the freelist. ** ** sqlite3pager_unref() is NOT called for pPage. */ static int freePage(MemPage *pPage){ | | | 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 | /* ** Add a page of the database file to the freelist. ** ** sqlite3pager_unref() is NOT called for pPage. */ static int freePage(MemPage *pPage){ BtShared *pBt = pPage->pBt; MemPage *pPage1 = pBt->pPage1; int rc, n, k; /* Prepare the page for freeing */ assert( pPage->pgno>1 ); pPage->isInit = 0; releasePage(pPage->pParent); |
︙ | ︙ | |||
3246 3247 3248 3249 3250 3251 3252 | return rc; } /* ** Free any overflow pages associated with the given Cell. */ static int clearCell(MemPage *pPage, unsigned char *pCell){ | | | 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 | return rc; } /* ** Free any overflow pages associated with the given Cell. */ static int clearCell(MemPage *pPage, unsigned char *pCell){ BtShared *pBt = pPage->pBt; CellInfo info; Pgno ovflPgno; int rc; parseCellPtr(pPage, pCell, &info); if( info.iOverflow==0 ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
︙ | ︙ | |||
3298 3299 3300 3301 3302 3303 3304 | const u8 *pSrc; int nSrc, n, rc; int spaceLeft; MemPage *pOvfl = 0; MemPage *pToRelease = 0; unsigned char *pPrior; unsigned char *pPayload; | | | 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 | const u8 *pSrc; int nSrc, n, rc; int spaceLeft; MemPage *pOvfl = 0; MemPage *pToRelease = 0; unsigned char *pPrior; unsigned char *pPayload; BtShared *pBt = pPage->pBt; Pgno pgnoOvfl = 0; int nHeader; CellInfo info; /* Fill in the header. */ nHeader = 0; if( !pPage->leaf ){ |
︙ | ︙ | |||
3387 3388 3389 3390 3391 3392 3393 | } /* ** Change the MemPage.pParent pointer on the page whose number is ** given in the second argument so that MemPage.pParent holds the ** pointer in the third argument. */ | | | 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 | } /* ** Change the MemPage.pParent pointer on the page whose number is ** given in the second argument so that MemPage.pParent holds the ** pointer in the third argument. */ static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){ MemPage *pThis; unsigned char *aData; if( pgno==0 ) return SQLITE_OK; assert( pBt->pPager!=0 ); aData = sqlite3pager_lookup(pBt->pPager, pgno); if( aData ){ |
︙ | ︙ | |||
3430 3431 3432 3433 3434 3435 3436 | ** to make sure that each child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ static int reparentChildPages(MemPage *pPage){ int i; | | | 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 | ** to make sure that each child knows that pPage is its parent. ** ** This routine gets called after you memcpy() one page into ** another. */ static int reparentChildPages(MemPage *pPage){ int i; BtShared *pBt = pPage->pBt; int rc = SQLITE_OK; if( pPage->leaf ) return SQLITE_OK; for(i=0; i<pPage->nCell; i++){ u8 *pCell = findCell(pPage, i); if( !pPage->leaf ){ |
︙ | ︙ | |||
3663 3664 3665 3666 3667 3668 3669 | static int balance_quick(MemPage *pPage, MemPage *pParent){ int rc; MemPage *pNew; Pgno pgnoNew; u8 *pCell; int szCell; CellInfo info; | | | 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 | static int balance_quick(MemPage *pPage, MemPage *pParent){ int rc; MemPage *pNew; Pgno pgnoNew; u8 *pCell; int szCell; CellInfo info; BtShared *pBt = pPage->pBt; int parentIdx = pParent->nCell; /* pParent new divider cell index */ int parentSize; /* Size of new divider cell */ u8 parentCell[64]; /* Space for the new divider cell */ /* Allocate a new page. Insert the overflow cell from pPage ** into it. Then remove the overflow cell from pPage. */ |
︙ | ︙ | |||
3772 3773 3774 3775 3776 3777 3778 | ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance_nonroot(MemPage *pPage){ MemPage *pParent; /* The parent of pPage */ | | | 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 | ** ** If this routine fails for any reason, it might leave the database ** in a corrupted state. So if this routine fails, the database should ** be rolled back. */ static int balance_nonroot(MemPage *pPage){ MemPage *pParent; /* The parent of pPage */ BtShared *pBt; /* The whole database */ int nCell = 0; /* Number of cells in apCell[] */ int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ int nOld; /* Number of pages in apOld[] */ int nNew; /* Number of pages in apNew[] */ int nDiv; /* Number of cells in apDiv[] */ int i, j, k; /* Loop counters */ int idx; /* Index of pPage in pParent->aCell[] */ |
︙ | ︙ | |||
4321 4322 4323 4324 4325 4326 4327 | ** page contains no cells. This is an opportunity to make the tree ** shallower by one level. */ static int balance_shallower(MemPage *pPage){ MemPage *pChild; /* The only child page of pPage */ Pgno pgnoChild; /* Page number for pChild */ int rc = SQLITE_OK; /* Return code from subprocedures */ | | | 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 | ** page contains no cells. This is an opportunity to make the tree ** shallower by one level. */ static int balance_shallower(MemPage *pPage){ MemPage *pChild; /* The only child page of pPage */ Pgno pgnoChild; /* Page number for pChild */ int rc = SQLITE_OK; /* Return code from subprocedures */ BtShared *pBt; /* The main BTree structure */ int mxCellPerPage; /* Maximum number of cells per page */ u8 **apCell; /* All cells from pages being balanced */ int *szCell; /* Local size of all cells */ assert( pPage->pParent==0 ); assert( pPage->nCell==0 ); pBt = pPage->pBt; |
︙ | ︙ | |||
4423 4424 4425 4426 4427 4428 4429 | ** child. Finally, call balance_internal() on the new child ** to cause it to split. */ static int balance_deeper(MemPage *pPage){ int rc; /* Return value from subprocedures */ MemPage *pChild; /* Pointer to a new child page */ Pgno pgnoChild; /* Page number of the new child page */ | | | 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 | ** child. Finally, call balance_internal() on the new child ** to cause it to split. */ static int balance_deeper(MemPage *pPage){ int rc; /* Return value from subprocedures */ MemPage *pChild; /* Pointer to a new child page */ Pgno pgnoChild; /* Page number of the new child page */ BtShared *pBt; /* The BTree */ int usableSize; /* Total usable size of a page */ u8 *data; /* Content of the parent page */ u8 *cdata; /* Content of the child page */ int hdr; /* Offset to page header in parent */ int brk; /* Offset to content of first cell in parent */ assert( pPage->pParent==0 ); |
︙ | ︙ | |||
4512 4513 4514 4515 4516 4517 4518 | ** means a cursor opened with wrFlag==0) this routine also moves ** all cursors other than pExclude so that they are pointing to the ** first Cell on root page. This is necessary because an insert ** or delete might change the number of cells on a page or delete ** a page entirely and we do not want to leave any cursors ** pointing to non-existant pages or cells. */ | | | 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 | ** means a cursor opened with wrFlag==0) this routine also moves ** all cursors other than pExclude so that they are pointing to the ** first Cell on root page. This is necessary because an insert ** or delete might change the number of cells on a page or delete ** a page entirely and we do not want to leave any cursors ** pointing to non-existant pages or cells. */ static int checkReadLocks(BtShared *pBt, Pgno pgnoRoot, BtCursor *pExclude){ BtCursor *p; for(p=pBt->pCursor; p; p=p->pNext){ if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; if( p->wrFlag==0 ) return SQLITE_LOCKED; if( p->pPage->pgno!=p->pgnoRoot ){ moveToRoot(p); } |
︙ | ︙ | |||
4542 4543 4544 4545 4546 4547 4548 | const void *pKey, i64 nKey, /* The key of the new record */ const void *pData, int nData /* The data of the new record */ ){ int rc; int loc; int szNew; MemPage *pPage; | | | | 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 | const void *pKey, i64 nKey, /* The key of the new record */ const void *pData, int nData /* The data of the new record */ ){ int rc; int loc; int szNew; MemPage *pPage; BtShared *pBt = pCur->pBtree->pBt; unsigned char *oldCell; unsigned char *newCell = 0; if( pBt->inTransaction!=TRANS_WRITE ){ /* Must start a transaction before doing an insert */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); if( !pCur->wrFlag ){ return SQLITE_PERM; /* Cursor not open for writing */ } |
︙ | ︙ | |||
4614 4615 4616 4617 4618 4619 4620 | ** is left pointing at a random location. */ int sqlite3BtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; unsigned char *pCell; int rc; Pgno pgnoChild = 0; | | | | 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 | ** is left pointing at a random location. */ int sqlite3BtreeDelete(BtCursor *pCur){ MemPage *pPage = pCur->pPage; unsigned char *pCell; int rc; Pgno pgnoChild = 0; BtShared *pBt = pCur->pBtree->pBt; assert( pPage->isInit ); if( pBt->inTransaction!=TRANS_WRITE ){ /* Must start a transaction before doing a delete */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); if( pCur->idx >= pPage->nCell ){ return SQLITE_ERROR; /* The cursor is not pointing to anything */ } |
︙ | ︙ | |||
4717 4718 4719 4720 4721 4722 4723 | ** The type of type is determined by the flags parameter. Only the ** following values of flags are currently in use. Other values for ** flags might not work: ** ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys ** BTREE_ZERODATA Used for SQL indices */ | | > | | 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 | ** The type of type is determined by the flags parameter. Only the ** following values of flags are currently in use. Other values for ** flags might not work: ** ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys ** BTREE_ZERODATA Used for SQL indices */ int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ BtShared *pBt = p->pBt; MemPage *pRoot; Pgno pgnoRoot; int rc; if( pBt->inTransaction!=TRANS_WRITE ){ /* Must start a transaction first */ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( !pBt->readOnly ); /* It is illegal to create a table if any cursors are open on the ** database. This is because in auto-vacuum mode the backend may |
︙ | ︙ | |||
4748 4749 4750 4751 4752 4753 4754 | Pgno pgnoMove; /* Move a page here to make room for the root-page */ MemPage *pPageMove; /* The page to move to. */ /* Read the value of meta[3] from the database to determine where the ** root page of the new table should go. meta[3] is the largest root-page ** created so far, so the new root-page is (meta[3]+1). */ | | | 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 | Pgno pgnoMove; /* Move a page here to make room for the root-page */ MemPage *pPageMove; /* The page to move to. */ /* Read the value of meta[3] from the database to determine where the ** root page of the new table should go. meta[3] is the largest root-page ** created so far, so the new root-page is (meta[3]+1). */ rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); if( rc!=SQLITE_OK ) return rc; pgnoRoot++; /* The new root-page may not be allocated on a pointer-map page, or the ** PENDING_BYTE page. */ if( pgnoRoot==PTRMAP_PAGENO(pBt->usableSize, pgnoRoot) || |
︙ | ︙ | |||
4815 4816 4817 4818 4819 4820 4821 | /* Update the pointer-map and meta-data with the new root-page number. */ rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); if( rc ){ releasePage(pRoot); return rc; } | | | 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 | /* Update the pointer-map and meta-data with the new root-page number. */ rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); if( rc ){ releasePage(pRoot); return rc; } rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); if( rc ){ releasePage(pRoot); return rc; } }else{ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
︙ | ︙ | |||
4838 4839 4840 4841 4842 4843 4844 | } /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage( | | | 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 | } /* ** Erase the given database page and all its children. Return ** the page to the freelist. */ static int clearDatabasePage( BtShared *pBt, /* The BTree that contains the table */ Pgno pgno, /* Page number to clear */ MemPage *pParent, /* Parent page. NULL for the root */ int freePageFlag /* Deallocate page if true */ ){ MemPage *pPage = 0; int rc; unsigned char *pCell; |
︙ | ︙ | |||
4889 4890 4891 4892 4893 4894 4895 | ** the page number of the root of the table. After this routine returns, ** the root page is empty, but still exists. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** read cursors on the table. Open write cursors are moved to the ** root of the table. */ | | > | | 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 | ** the page number of the root of the table. After this routine returns, ** the root page is empty, but still exists. ** ** This routine will fail with SQLITE_LOCKED if there are any open ** read cursors on the table. Open write cursors are moved to the ** root of the table. */ int sqlite3BtreeClearTable(Btree *p, int iTable){ int rc; BtCursor *pCur; BtShared *pBt = p->pBt; if( p->inTrans!=TRANS_WRITE ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ if( pCur->pgnoRoot==(Pgno)iTable ){ if( pCur->wrFlag==0 ) return SQLITE_LOCKED; moveToRoot(pCur); } |
︙ | ︙ | |||
4930 4931 4932 4933 4934 4935 4936 | ** root pages are kept at the beginning of the database file, which ** is necessary for AUTOVACUUM to work right. *piMoved is set to the ** page number that used to be the last root page in the file before ** the move. If no page gets moved, *piMoved is set to 0. ** The last root page is recorded in meta[3] and the value of ** meta[3] is updated by this procedure. */ | | > | | | | 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 | ** root pages are kept at the beginning of the database file, which ** is necessary for AUTOVACUUM to work right. *piMoved is set to the ** page number that used to be the last root page in the file before ** the move. If no page gets moved, *piMoved is set to 0. ** The last root page is recorded in meta[3] and the value of ** meta[3] is updated by this procedure. */ int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ int rc; MemPage *pPage = 0; BtShared *pBt = p->pBt; if( p->inTrans!=TRANS_WRITE ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } /* It is illegal to drop a table if any cursors are open on the ** database. This is because in auto-vacuum mode the backend may ** need to move another root-page to fill a gap left by the deleted ** root page. If an open cursor was using this page a problem would ** occur. */ if( pBt->pCursor ){ return SQLITE_LOCKED; } rc = getPage(pBt, (Pgno)iTable, &pPage); if( rc ) return rc; rc = sqlite3BtreeClearTable(p, iTable); if( rc ){ releasePage(pPage); return rc; } *piMoved = 0; if( iTable>1 ){ #ifdef SQLITE_OMIT_AUTOVACUUM rc = freePage(pPage); releasePage(pPage); #else if( pBt->autoVacuum ){ Pgno maxRootPgno; rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); if( rc!=SQLITE_OK ){ releasePage(pPage); return rc; } if( iTable==maxRootPgno ){ /* If the table being dropped is the table with the largest root-page |
︙ | ︙ | |||
5022 5023 5024 5025 5026 5027 5028 | maxRootPgno--; } if( maxRootPgno==PTRMAP_PAGENO(pBt->usableSize, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); | | | 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 | maxRootPgno--; } if( maxRootPgno==PTRMAP_PAGENO(pBt->usableSize, maxRootPgno) ){ maxRootPgno--; } assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); }else{ rc = freePage(pPage); releasePage(pPage); } #endif }else{ /* If sqlite3BtreeDropTable was called on page 1. */ |
︙ | ︙ | |||
5047 5048 5049 5050 5051 5052 5053 | ** through meta[15] are available for use by higher layers. Meta[0] ** is read-only, the others are read/write. ** ** The schema layer numbers meta values differently. At the schema ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. */ | | > | 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 | ** through meta[15] are available for use by higher layers. Meta[0] ** is read-only, the others are read/write. ** ** The schema layer numbers meta values differently. At the schema ** layer (and the SetCookie and ReadCookie opcodes) the number of ** free pages is not visible. So Cookie[0] is the same as Meta[1]. */ int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ int rc; unsigned char *pP1; BtShared *pBt = p->pBt; assert( idx>=0 && idx<=15 ); rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); if( rc ) return rc; *pMeta = get4byte(&pP1[36 + idx*4]); sqlite3pager_unref(pP1); |
︙ | ︙ | |||
5071 5072 5073 5074 5075 5076 5077 | return SQLITE_OK; } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ | | > | | 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 | return SQLITE_OK; } /* ** Write meta-information back into the database. Meta[0] is ** read-only and may not be written. */ int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ BtShared *pBt = p->pBt; unsigned char *pP1; int rc; assert( idx>=1 && idx<=15 ); if( p->inTrans!=TRANS_WRITE ){ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; } assert( pBt->pPage1!=0 ); pP1 = pBt->pPage1->aData; rc = sqlite3pager_write(pP1); if( rc ) return rc; put4byte(&pP1[36 + idx*4], iMeta); |
︙ | ︙ | |||
5100 5101 5102 5103 5104 5105 5106 | } #ifdef SQLITE_DEBUG /* ** Print a disassembly of the given page on standard output. This routine ** is used for debugging and testing only. */ | | | 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 | } #ifdef SQLITE_DEBUG /* ** Print a disassembly of the given page on standard output. This routine ** is used for debugging and testing only. */ static int btreePageDump(BtShared *pBt, int pgno, int recursive, MemPage *pParent){ int rc; MemPage *pPage; int i, j, c; int nFree; u16 idx; int hdr; int nCell; |
︙ | ︙ | |||
5196 5197 5198 5199 5200 5201 5202 | btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage); } pPage->isInit = isInit; sqlite3pager_unref(data); fflush(stdout); return SQLITE_OK; } | | | | 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 | btreePageDump(pBt, get4byte(&data[hdr+8]), 1, pPage); } pPage->isInit = isInit; sqlite3pager_unref(data); fflush(stdout); return SQLITE_OK; } int sqlite3BtreePageDump(Btree *p, int pgno, int recursive){ return btreePageDump(p->pBt, pgno, recursive, 0); } #endif #ifdef SQLITE_TEST /* ** Fill aResult[] with information about the entry and page that the ** cursor is pointing to. |
︙ | ︙ | |||
5270 5271 5272 5273 5274 5275 5276 | } #endif /* ** Return the pager associated with a BTree. This routine is used for ** testing and debugging only. */ | | | | | 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 | } #endif /* ** Return the pager associated with a BTree. This routine is used for ** testing and debugging only. */ Pager *sqlite3BtreePager(Btree *p){ return p->pBt->pPager; } /* ** This structure is passed around through all the sanity checking routines ** in order to keep track of some global state information. */ typedef struct IntegrityCk IntegrityCk; struct IntegrityCk { BtShared *pBt; /* The tree being checked out */ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ int nPage; /* Number of pages in the database */ int *anRef; /* Number of times each page is referenced */ char *zErrMsg; /* An error message. NULL of no errors seen. */ }; #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
︙ | ︙ | |||
5471 5472 5473 5474 5475 5476 5477 | int nUpper /* Number of characters in zUpperBound */ ){ MemPage *pPage; int i, rc, depth, d2, pgno, cnt; int hdr, cellStart; int nCell; u8 *data; | | | 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 | int nUpper /* Number of characters in zUpperBound */ ){ MemPage *pPage; int i, rc, depth, d2, pgno, cnt; int hdr, cellStart; int nCell; u8 *data; BtShared *pBt; int usableSize; char zContext[100]; char *hit; sprintf(zContext, "Page %d: ", iPage); /* Check that the page exists |
︙ | ︙ | |||
5613 5614 5615 5616 5617 5618 5619 | ** a table. nRoot is the number of entries in aRoot. ** ** If everything checks out, this routine returns NULL. If something is ** amiss, an error message is written into memory obtained from malloc() ** and a pointer to that error message is returned. The calling function ** is responsible for freeing the error message when it is done. */ | | > | | 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 | ** a table. nRoot is the number of entries in aRoot. ** ** If everything checks out, this routine returns NULL. If something is ** amiss, an error message is written into memory obtained from malloc() ** and a pointer to that error message is returned. The calling function ** is responsible for freeing the error message when it is done. */ char *sqlite3BtreeIntegrityCheck(Btree *p, int *aRoot, int nRoot){ int i; int nRef; IntegrityCk sCheck; BtShared *pBt = p->pBt; nRef = *sqlite3pager_stats(pBt->pPager); if( lockBtreeWithRetry(p)!=SQLITE_OK ){ return sqliteStrDup("Unable to acquire a read lock on the database"); } sCheck.pBt = pBt; sCheck.pPager = pBt->pPager; sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); if( sCheck.nPage==0 ){ unlockBtreeIfUnused(pBt); |
︙ | ︙ | |||
5701 5702 5703 5704 5705 5706 5707 | return sCheck.zErrMsg; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** Return the full pathname of the underlying database file. */ | | | | | | | | | | | > > > | | 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 | return sCheck.zErrMsg; } #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ /* ** Return the full pathname of the underlying database file. */ const char *sqlite3BtreeGetFilename(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3pager_filename(p->pBt->pPager); } /* ** Return the pathname of the directory that contains the database file. */ const char *sqlite3BtreeGetDirname(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3pager_dirname(p->pBt->pPager); } /* ** Return the pathname of the journal file for this database. The return ** value of this routine is the same regardless of whether the journal file ** has been created or not. */ const char *sqlite3BtreeGetJournalname(Btree *p){ assert( p->pBt->pPager!=0 ); return sqlite3pager_journalname(p->pBt->pPager); } #ifndef SQLITE_OMIT_VACUUM /* ** Copy the complete content of pBtFrom into pBtTo. A transaction ** must be active for both files. ** ** The size of file pBtFrom may be reduced by this operation. ** If anything goes wrong, the transaction on pBtFrom is rolled back. */ int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ int rc = SQLITE_OK; Pgno i, nPage, nToPage, iSkip; BtShared *pBtTo = pTo->pBt; BtShared *pBtFrom = pFrom->pBt; if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ return SQLITE_ERROR; } if( pBtTo->pCursor ) return SQLITE_BUSY; nToPage = sqlite3pager_pagecount(pBtTo->pPager); nPage = sqlite3pager_pagecount(pBtFrom->pPager); iSkip = PENDING_BYTE_PAGE(pBtTo); for(i=1; rc==SQLITE_OK && i<=nPage; i++){ |
︙ | ︙ | |||
5765 5766 5767 5768 5769 5770 5771 | sqlite3pager_unref(pPage); sqlite3pager_dont_write(pBtTo->pPager, i); } if( !rc && nPage<nToPage ){ rc = sqlite3pager_truncate(pBtTo->pPager, nPage); } if( rc ){ | | | | | | | | > > > > > > > > > > > > > > > > | 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 | sqlite3pager_unref(pPage); sqlite3pager_dont_write(pBtTo->pPager, i); } if( !rc && nPage<nToPage ){ rc = sqlite3pager_truncate(pBtTo->pPager, nPage); } if( rc ){ sqlite3BtreeRollback(pTo); } return rc; } #endif /* SQLITE_OMIT_VACUUM */ /* ** Return non-zero if a transaction is active. */ int sqlite3BtreeIsInTrans(Btree *p){ return (p && (p->inTrans==TRANS_WRITE)); } /* ** Return non-zero if a statement transaction is active. */ int sqlite3BtreeIsInStmt(Btree *p){ return (p->pBt && p->pBt->inStmt); } /* ** This call is a no-op if no write-transaction is currently active on pBt. ** ** Otherwise, sync the database file for the btree pBt. zMaster points to ** the name of a master journal file that should be written into the ** individual journal file, or is NULL, indicating no master journal file ** (single database transaction). ** ** When this is called, the master journal should already have been ** created, populated with this journal pointer and synced to disk. ** ** Once this is routine has returned, the only thing required to commit ** the write-transaction for this database file is to delete the journal. */ int sqlite3BtreeSync(Btree *p, const char *zMaster){ if( p->inTrans==TRANS_WRITE ){ BtShared *pBt = p->pBt; #ifndef SQLITE_OMIT_AUTOVACUUM Pgno nTrunc = 0; if( pBt->autoVacuum ){ int rc = autoVacuumCommit(pBt, &nTrunc); if( rc!=SQLITE_OK ) return rc; } return sqlite3pager_sync(pBt->pPager, zMaster, nTrunc); #endif return sqlite3pager_sync(pBt->pPager, zMaster, 0); } return SQLITE_OK; } #ifndef SQLITE_OMIT_SHARED_CACHE /* ** Enable the shared pager and schema features. */ int sqlite3_enable_shared_cache(int enable){ SqliteTsd *pTsd = sqlite3Tsd(); if( pTsd->pPager ){ return SQLITE_MISUSE; } pTsd->useSharedData = enable; return SQLITE_OK; } #endif |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.66 2005/12/30 16:28:02 danielk1977 Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ |
︙ | ︙ | |||
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | #endif /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; int sqlite3BtreeOpen( const char *zFilename, /* Name of database file to open */ Btree **, /* Return open Btree* here */ int flags /* Flags */ ); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the ** following values. ** | > > | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | #endif /* ** Forward declarations of structure */ typedef struct Btree Btree; typedef struct BtCursor BtCursor; typedef struct BtShared BtShared; int sqlite3BtreeOpen( const char *zFilename, /* Name of database file to open */ sqlite3 *db, /* Associated database connection */ Btree **, /* Return open Btree* here */ int flags /* Flags */ ); /* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the ** following values. ** |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
10 11 12 13 14 15 16 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** | | < < < < < < < < < | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | ** ************************************************************************* ** Main file for the SQLite library. The routines in this file ** implement the programmer interface to the library. Routines in ** other files are for internal use by SQLite and should not be ** accessed by users of the library. ** ** $Id: main.c,v 1.313 2005/12/30 16:28:02 danielk1977 Exp $ */ #include "sqliteInt.h" #include "os.h" #include <ctype.h> /* ** The following constant value is used by the SQLITE_BIGENDIAN and ** SQLITE_LITTLEENDIAN macros. */ const int sqlite3one = 1; /* ** The version of the library */ const char rcsid3[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $"; const char sqlite3_version[] = SQLITE_VERSION; const char *sqlite3_libversion(void){ return sqlite3_version; } int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } |
︙ | ︙ | |||
644 645 646 647 648 649 650 | #endif #if TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } | | | 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 | #endif #if TEMP_STORE==3 zFilename = ":memory:"; #endif #endif /* SQLITE_OMIT_MEMORYDB */ } rc = sqlite3BtreeOpen(zFilename, db, ppBtree, btree_flags); if( rc==SQLITE_OK ){ sqlite3BtreeSetBusyHandler(*ppBtree, (void*)&db->busyHandler); sqlite3BtreeSetCacheSize(*ppBtree, nCache); } return rc; } |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** ** @(#) $Id: pager.c,v 1.229 2005/12/30 16:28:02 danielk1977 Exp $ */ #ifndef SQLITE_OMIT_DISKIO #include "sqliteInt.h" #include "os.h" #include "pager.h" #include <assert.h> #include <string.h> |
︙ | ︙ | |||
297 298 299 300 301 302 303 304 305 | # define TEST_INCR(x) x++ #else # define TEST_INCR(x) #endif /* ** These are bits that can be set in Pager.errMask. */ #define PAGER_ERR_FULL 0x01 /* a write() failed */ | > > > > > > > > > > > > > > > > > > > > > > > > > < | | | | 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 | # define TEST_INCR(x) x++ #else # define TEST_INCR(x) #endif /* ** These are bits that can be set in Pager.errMask. ** ** TODO: Maybe we just want a variable - Pager.errCode. Can we really ** have two simultaneous error conditions? ** ** Recovering from an SQLITE_FULL, SQLITE_LOCK, SQLITE_CORRUPT or ** SQLITE_IOERR error is not a simple matter, particularly if the pager ** cache is shared between multiple connections. ** ** SQLITE_FULL (PAGER_ERR_FULL): ** Cleared when the transaction is rolled back. ** ** SQLITE_CORRUPT (PAGER_ERR_CORRUPT): ** Cannot be cleared. The upper layer must close the current pager ** and open a new one on the same file to continue. ** ** SQLITE_PROTOCOL (PAGER_ERR_LOCK): ** This error only occurs if an internal error occurs or another process ** is not following the sqlite locking protocol (i.e. someone is ** manipulating the database file using something other than sqlite). ** This is handled in the same way as database corruption - the error ** cannot be cleared except by closing the current pager and opening ** a brand new one on the same file. ** ** SQLITE_IOERR (PAGER_ERR_DISK): ** Cleared when the transaction is rolled back. */ #define PAGER_ERR_FULL 0x01 /* a write() failed */ #define PAGER_ERR_LOCK 0x02 /* error in the locking protocol */ #define PAGER_ERR_CORRUPT 0x04 /* database or journal corruption */ #define PAGER_ERR_DISK 0x08 /* general disk I/O error - bad hard drive? */ /* ** Journal files begin with the following magic string. The data ** was obtained from /dev/random. It is used only as a sanity check. ** ** Since version 2.8.0, the journal format contains additional sanity ** checking information. If the power fails while the journal is begin |
︙ | ︙ | |||
461 462 463 464 465 466 467 | ** return code. */ static int pager_errcode(Pager *pPager){ int rc = SQLITE_OK; if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL; if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR; if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL; | < > > > > > > > > > > > > > > > > > > > > > > | 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 | ** return code. */ static int pager_errcode(Pager *pPager){ int rc = SQLITE_OK; if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL; if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR; if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL; if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT; return rc; } /* ** This function should be called when an error occurs within the pager ** code to set the appropriate bits in Pager.errMask. */ static int pager_error(Pager *pPager, int rc){ switch( rc ){ case SQLITE_PROTOCOL: pPager->errMask |= PAGER_ERR_LOCK; break; case SQLITE_IOERR: pPager->errMask |= PAGER_ERR_DISK; break; case SQLITE_FULL: pPager->errMask |= PAGER_ERR_FULL; break; case SQLITE_CORRUPT: pPager->errMask |= PAGER_ERR_CORRUPT; break; } return rc; } #ifdef SQLITE_CHECK_PAGES /* ** Return a 32-bit hash of the page data for pPage. */ static u32 pager_pagehash(PgHdr *pPage){ u32 hash = 0; |
︙ | ︙ | |||
735 736 737 738 739 740 741 742 743 744 745 746 747 748 | ** + N bytes: length of master journal name. ** + 4 bytes: N ** + 4 bytes: Master journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The master journal page checksum is the sum of the bytes in the master ** journal name. */ static int writeMasterJournal(Pager *pPager, const char *zMaster){ int rc; int len; int i; u32 cksum = 0; | > > > | 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | ** + N bytes: length of master journal name. ** + 4 bytes: N ** + 4 bytes: Master journal name checksum. ** + 8 bytes: aJournalMagic[]. ** ** The master journal page checksum is the sum of the bytes in the master ** journal name. ** ** If zMaster is a NULL pointer (occurs for a single database transaction), ** this call is a no-op. */ static int writeMasterJournal(Pager *pPager, const char *zMaster){ int rc; int len; int i; u32 cksum = 0; |
︙ | ︙ | |||
856 857 858 859 860 861 862 | } sqlite3OsUnlock(pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; pPager->dbSize = -1; pPager->nRef = 0; assert( pPager->journalOpen==0 ); } | < < < < < < < < < < < < < < < < < < < < < < < | 904 905 906 907 908 909 910 911 912 913 914 915 916 917 | } sqlite3OsUnlock(pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; pPager->dbSize = -1; pPager->nRef = 0; assert( pPager->journalOpen==0 ); } /* ** When this routine is called, the pager has the journal file open and ** a RESERVED or EXCLUSIVE lock on the database. This routine releases ** the database lock and acquires a SHARED lock in its place. The journal ** file is deleted and closed. ** |
︙ | ︙ | |||
1582 1583 1584 1585 1586 1587 1588 | */ int sqlite3pager_open( Pager **ppPager, /* Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int nExtra, /* Extra bytes append to each in-memory page */ int flags /* flags controlling this file */ ){ | | > > > > < > > > > > < < < < | < < > > > > | < < | | > | > > > > > > > | > > | 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 | */ int sqlite3pager_open( Pager **ppPager, /* Return the Pager structure here */ const char *zFilename, /* Name of the database file to open */ int nExtra, /* Extra bytes append to each in-memory page */ int flags /* flags controlling this file */ ){ Pager *pPager = 0; char *zFullPathname = 0; int nameLen; OsFile *fd; int rc = SQLITE_OK; int i; int tempFile = 0; int memDb = 0; int readOnly = 0; int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; int noReadlock = (flags & PAGER_NO_READLOCK)!=0; char zTemp[SQLITE_TEMPNAME_SIZE]; SqliteTsd *pTsd = sqlite3Tsd(); /* If malloc() has already failed return SQLITE_NOMEM. Before even ** testing for this, set *ppPager to NULL so the caller knows the pager ** structure was never allocated. */ *ppPager = 0; if( sqlite3Tsd()->mallocFailed ){ return SQLITE_NOMEM; } memset(&fd, 0, sizeof(fd)); /* Open the pager file and set zFullPathname to point at malloc()ed ** memory containing the complete filename (i.e. including the directory). */ if( zFilename && zFilename[0] ){ #ifndef SQLITE_OMIT_MEMORYDB if( strcmp(zFilename,":memory:")==0 ){ memDb = 1; zFullPathname = sqliteStrDup(""); }else #endif { zFullPathname = sqlite3Os.xFullPathname(zFilename); if( zFullPathname ){ rc = sqlite3Os.xOpenReadWrite(zFullPathname, &fd, &readOnly); } } }else{ rc = sqlite3pager_opentemp(zTemp, &fd); zFilename = zTemp; zFullPathname = sqlite3Os.xFullPathname(zFilename); if( rc==SQLITE_OK ){ tempFile = 1; } } /* Allocate the Pager structure. As part of the same allocation, allocate ** space for the full paths of the file, directory and journal ** (Pager.zFilename, Pager.zDirectory and Pager.zJournal). */ if( zFullPathname ){ nameLen = strlen(zFullPathname); pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 ); } /* If an error occured in either of the blocks above, free the memory ** pointed to by zFullPathname, free the Pager structure and close the ** file. Since the pager is not allocated there is no need to set ** any Pager.errMask variables. */ if( !pPager || !zFullPathname || rc!=SQLITE_OK ){ sqlite3OsClose(&fd); sqliteFree(zFullPathname); sqliteFree(pPager); return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); } TRACE3("OPEN %d %s\n", FILEHANDLEID(fd), zFullPathname); pPager->zFilename = (char*)&pPager[1]; pPager->zDirectory = &pPager->zFilename[nameLen+1]; pPager->zJournal = &pPager->zDirectory[nameLen+1]; strcpy(pPager->zFilename, zFullPathname); strcpy(pPager->zDirectory, zFullPathname); for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){} if( i>0 ) pPager->zDirectory[i-1] = 0; strcpy(pPager->zJournal, zFullPathname); sqliteFree(zFullPathname); strcpy(&pPager->zJournal[nameLen], "-journal"); pPager->fd = fd; pPager->journalOpen = 0; |
︙ | ︙ | |||
1758 1759 1760 1761 1762 1763 1764 | # define clear_simulated_io_error() # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif /* ** Read the first N bytes from the beginning of the file into memory | | > > > > > > | 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 | # define clear_simulated_io_error() # define disable_simulated_io_errors() # define enable_simulated_io_errors() #endif /* ** Read the first N bytes from the beginning of the file into memory ** that pDest points to. ** ** No error checking is done. The rational for this is that this function ** may be called even if the file does not exist or contain a header. In ** these cases sqlite3OsRead() will return an error, to which the correct ** response is to zero the memory at pDest and continue. A real IO error ** will presumably recur and be picked up later (Todo: Think about this). */ void sqlite3pager_read_fileheader(Pager *pPager, int N, unsigned char *pDest){ memset(pDest, 0, N); if( MEMDB==0 ){ sqlite3OsSeek(pPager->fd, 0); sqlite3OsRead(pPager->fd, pDest, N); clear_simulated_io_error(); |
︙ | ︙ | |||
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 | ** Shutdown the page cache. Free all memory and close all files. ** ** If a transaction was in progress when this routine is called, that ** transaction is rolled back. All outstanding pages are invalidated ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. */ int sqlite3pager_close(Pager *pPager){ PgHdr *pPg, *pNext; #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT SqliteTsd *pTsd = sqlite3Tsd(); #endif | > > > > > | 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | ** Shutdown the page cache. Free all memory and close all files. ** ** If a transaction was in progress when this routine is called, that ** transaction is rolled back. All outstanding pages are invalidated ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. ** ** This function always succeeds. If a transaction is active an attempt ** is made to roll it back. If an error occurs during the rollback ** a hot journal may be left in the filesystem but no error is returned ** to the caller. */ int sqlite3pager_close(Pager *pPager){ PgHdr *pPg, *pNext; #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT SqliteTsd *pTsd = sqlite3Tsd(); #endif |
︙ | ︙ | |||
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 | /* Temp files are automatically deleted by the OS ** if( pPager->tempFile ){ ** sqlite3Os.xDelete(pPager->zFilename); ** } */ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT if( pPager==pTsd->pPager ){ pTsd->pPager = pPager->pNext; }else{ Pager *pTmp; for(pTmp = pTsd->pPager; pTmp->pNext!=pPager; pTmp=pTmp->pNext); pTmp->pNext = pPager->pNext; } | > > > | 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 | /* Temp files are automatically deleted by the OS ** if( pPager->tempFile ){ ** sqlite3Os.xDelete(pPager->zFilename); ** } */ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT /* Remove the pager from the linked list of pagers starting at ** SqliteTsd.pPager. */ if( pPager==pTsd->pPager ){ pTsd->pPager = pPager->pNext; }else{ Pager *pTmp; for(pTmp = pTsd->pPager; pTmp->pNext!=pPager; pTmp=pTmp->pNext); pTmp->pNext = pPager->pNext; } |
︙ | ︙ | |||
2306 2307 2308 2309 2310 2311 2312 | return 0; }else{ return 1; } } /* | | > > > < | < | < | | 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 | return 0; }else{ return 1; } } /* ** Try to find a page in the cache that can be recycled. ** ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It ** does not set the pPager->errMask variable. */ static int pager_recycle(Pager *pPager, int syncOk, PgHdr **ppPg){ PgHdr *pPg; *ppPg = 0; /* Find a page to recycle. Try to locate a page that does not ** require us to do an fsync() on the journal. */ pPg = pPager->pFirstSynced; /* If we could not find a page that does not require an fsync() ** on the journal file then fsync the journal file. This is a ** very slow operation, so we work hard to avoid it. But sometimes ** it can't be helped. */ if( pPg==0 && pPager->pFirst && syncOk && !MEMDB){ int rc = syncJournal(pPager); if( rc!=0 ){ return rc; } if( pPager->fullSync ){ /* If in full-sync mode, write a new journal header into the ** journal file. This is done to avoid ever modifying a journal ** header that is involved in the rollback of pages that have ** already been written to the database (in case the header is ** trashed when the nRec field is updated). */ pPager->nRec = 0; assert( pPager->journalOff > 0 ); rc = writeJournalHdr(pPager); if( rc!=0 ){ return rc; } } pPg = pPager->pFirst; } if( pPg==0 ){ return SQLITE_OK; } assert( pPg->nRef==0 ); /* Write the page to the database file if it is dirty. */ if( pPg->dirty ){ int rc; assert( pPg->needSync==0 ); pPg->pDirty = 0; rc = pager_write_pagelist( pPg ); if( rc!=SQLITE_OK ){ return rc; } } assert( pPg->dirty==0 ); /* If the page we are recycling is marked as alwaysRollback, then ** set the global alwaysRollback flag, thus disabling the ** sqlite_dont_rollback() optimization for the rest of this transaction. |
︙ | ︙ | |||
2421 2422 2423 2424 2425 2426 2427 | int rc; /* For each pager, try to free as many pages as possible (without ** calling fsync() if this is the first iteration of the outermost ** loop). */ while( SQLITE_OK==(rc = pager_recycle(p, i, &pPg)) && pPg) { | | | > < | | > > > | | < < < | | | | 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 | int rc; /* For each pager, try to free as many pages as possible (without ** calling fsync() if this is the first iteration of the outermost ** loop). */ while( SQLITE_OK==(rc = pager_recycle(p, i, &pPg)) && pPg) { /* We've found a page to free. At this point the page has been ** removed from the page hash-table, free-list and synced-list ** (pFirstSynced). It is still in the all pages (pAll) list. ** Remove it from this list before freeing. ** ** Todo: Check the Pager.pStmt list to make sure this is Ok. It ** probably is though. */ PgHdr *pTmp; assert( pPg ); page_remove_from_stmt_list(pPg); if( pPg==p->pAll ){ p->pAll = pPg->pNextAll; }else{ for( pTmp=p->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ); pTmp->pNextAll = pPg->pNextAll; } nReleased += sqliteAllocSize(pPg); sqliteFree(pPg); } if( rc!=SQLITE_OK ){ /* An error occured whilst writing to the database file or ** journal in pager_recycle(). The error is not returned to the ** caller of this function. Instead, set the Pager.errMask variable. ** The error will be returned to the user (or users, in the case ** of a shared pager cache) of the pager for which the error occured. */ assert( rc==SQLITE_IOERR || rc==SQLITE_FULL ); assert( p->state>=PAGER_RESERVED ); pager_error(p, rc); } } } return nReleased; } #endif /* SQLITE_OMIT_MEMORY_MANAGEMENT */ /* ** Acquire a page. ** ** A read lock on the disk file is obtained when the first page is acquired. ** This read lock is dropped when the last page is released. ** |
︙ | ︙ | |||
2509 2510 2511 2512 2513 2514 2515 | /* If this is the first page accessed, then get a SHARED lock ** on the database file. */ if( pPager->nRef==0 && !MEMDB ){ if( !pPager->noReadlock ){ rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ | | | 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 | /* If this is the first page accessed, then get a SHARED lock ** on the database file. */ if( pPager->nRef==0 && !MEMDB ){ if( !pPager->noReadlock ){ rc = pager_wait_on_lock(pPager, SHARED_LOCK); if( rc!=SQLITE_OK ){ return pager_error(pPager, rc); } } /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( hasHotJournal(pPager) ){ |
︙ | ︙ | |||
2534 2535 2536 2537 2538 2539 2540 | ** second process will get to this point in the code and fail to ** obtain it's own EXCLUSIVE lock on the database file. */ rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ sqlite3OsUnlock(pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; | | | 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 | ** second process will get to this point in the code and fail to ** obtain it's own EXCLUSIVE lock on the database file. */ rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ sqlite3OsUnlock(pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; return pager_error(pPager, rc); } pPager->state = PAGER_EXCLUSIVE; /* Open the journal for reading only. Return SQLITE_BUSY if ** we are unable to open the journal file. ** ** The journal file does not need to be locked itself. The |
︙ | ︙ | |||
2563 2564 2565 2566 2567 2568 2569 | pPager->journalHdr = 0; /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. */ rc = pager_playback(pPager); if( rc!=SQLITE_OK ){ | | < | | 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 | pPager->journalHdr = 0; /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. */ rc = pager_playback(pPager); if( rc!=SQLITE_OK ){ return pager_error(pPager, rc); } } pPg = 0; }else{ /* Search for page in cache */ pPg = pager_lookup(pPager, pgno); if( MEMDB && pPager->state==PAGER_UNLOCK ){ pPager->state = PAGER_SHARED; } } if( pPg==0 ){ /* The requested page is not in the page cache. */ int h; TEST_INCR(pPager->nMiss); if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || MEMDB ){ /* Create a new page */ pPg = sqliteMallocRaw( sizeof(*pPg) + pPager->pageSize + sizeof(u32) + pPager->nExtra + MEMDB*sizeof(PgHistory) ); if( pPg==0 ){ return SQLITE_NOMEM; } memset(pPg, 0, sizeof(*pPg)); if( MEMDB ){ memset(PGHDR_TO_HIST(pPg, pPager), 0, sizeof(PgHistory)); } pPg->pPager = pPager; pPg->pNextAll = pPager->pAll; pPager->pAll = pPg; pPager->nPage++; if( pPager->nPage>pPager->nMaxPage ){ assert( pPager->nMaxPage==(pPager->nPage-1) ); pPager->nMaxPage++; } }else{ rc = pager_recycle(pPager, 1, &pPg); if( rc!=SQLITE_OK ){ return pager_error(pPager, rc); } assert(pPg) ; } pPg->pgno = pgno; if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ sqlite3CheckMemory(pPager->aInJournal, pgno/8); assert( pPager->journalOpen ); |
︙ | ︙ | |||
2658 2659 2660 2661 2662 2663 2664 | TRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno); CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); if( rc!=SQLITE_OK ){ i64 fileSize; if( sqlite3OsFileSize(pPager->fd,&fileSize)!=SQLITE_OK || fileSize>=pgno*pPager->pageSize ){ sqlite3pager_unref(PGHDR_TO_DATA(pPg)); | | | 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 | TRACE3("FETCH %d page %d\n", PAGERID(pPager), pPg->pgno); CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); if( rc!=SQLITE_OK ){ i64 fileSize; if( sqlite3OsFileSize(pPager->fd,&fileSize)!=SQLITE_OK || fileSize>=pgno*pPager->pageSize ){ sqlite3pager_unref(PGHDR_TO_DATA(pPg)); return pager_error(pPager, rc); }else{ clear_simulated_io_error(); memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); } }else{ TEST_INCR(pPager->nRead); } |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the SQLite library ** presents to client programs. ** ** @(#) $Id: sqlite.h.in,v 1.152 2005/12/30 16:28:02 danielk1977 Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 | ** callback is not invoked if a transaction is automatically rolled ** back because the database connection is closed. */ void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); int sqlite3_release_memory(int); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif | > > > > > > > > | 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 | ** callback is not invoked if a transaction is automatically rolled ** back because the database connection is closed. */ void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); int sqlite3_release_memory(int); /* ** This function is only available if the library is compiled without ** the SQLITE_OMIT_SHARED_CACHE macro defined. It is used to enable or ** disable (if the argument is true or false, respectively) the ** "shared pager" feature. */ int sqlite3_enable_shared_cache(int); /* ** Undo the hack that converts floating point types to integer for ** builds on processors without floating point support. */ #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif |
Changes to src/sqliteInt.h.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Internal interface definitions for SQLite. ** ** @(#) $Id: sqliteInt.h,v 1.446 2005/12/30 16:28:02 danielk1977 Exp $ */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ /* ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. ** Setting NDEBUG makes the code smaller and run faster. So the following |
︙ | ︙ | |||
284 285 286 287 288 289 290 291 292 293 294 295 296 297 | u8 mallocFailed; /* True after a malloc() has failed */ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT i64 nSoftHeapLimit; /* -ve for unlimited */ i64 nAlloc; /* Number of bytes currently allocated */ Pager *pPager; /* Linked list of all pagers in this thread */ #endif #ifdef SQLITE_MEMDEBUG i64 nMaxAlloc; /* High water mark of SqliteTsd.nAlloc */ int mallocAllowed; /* assert() in sqlite3Malloc() if not set */ int isFail; /* True if all malloc() calls should fail */ const char *zFile; /* Filename to associate debugging info with */ int iLine; /* Line number to associate debugging info with */ | > > > > > | 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | u8 mallocFailed; /* True after a malloc() has failed */ #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT i64 nSoftHeapLimit; /* -ve for unlimited */ i64 nAlloc; /* Number of bytes currently allocated */ Pager *pPager; /* Linked list of all pagers in this thread */ #endif #ifndef SQLITE_OMIT_SHARED_CACHE u8 useSharedData; /* True if shared pagers and schemas are enabled */ BtShared *pBtree; #endif #ifdef SQLITE_MEMDEBUG i64 nMaxAlloc; /* High water mark of SqliteTsd.nAlloc */ int mallocAllowed; /* assert() in sqlite3Malloc() if not set */ int isFail; /* True if all malloc() calls should fail */ const char *zFile; /* Filename to associate debugging info with */ int iLine; /* Line number to associate debugging info with */ |
︙ | ︙ |
Changes to src/tclsqlite.c.
1 2 3 4 5 6 7 8 9 10 11 12 13 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite ** | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** A TCL Interface to SQLite ** ** $Id: tclsqlite.c,v 1.142 2005/12/30 16:28:02 danielk1977 Exp $ */ #ifndef NO_TCL /* Omit this whole file if TCL is unavailable */ #include "sqliteInt.h" #include "hash.h" #include "tcl.h" #include <stdlib.h> |
︙ | ︙ | |||
1750 1751 1752 1753 1754 1755 1756 | break; } /* ** $db soft_heap_limit N ** ** Set the soft-heap-limit for this thread. Note that the limit is | | > > | | 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 | break; } /* ** $db soft_heap_limit N ** ** Set the soft-heap-limit for this thread. Note that the limit is ** per-thread, not per-database. The previous limit is returned. */ case DB_SOFT_HEAP_LIMIT: { #ifndef SQLITE_OMIT_MEMORY_MANAGEMENT int n; int ret; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 2, objv, "BYTES"); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[2], &n) ){ return TCL_ERROR; } ret = sqlite3Tsd()->nSoftHeapLimit; sqlite3_soft_heap_limit(n); Tcl_SetObjResult(interp, Tcl_NewIntObj(ret)); #endif break; } /* ** $db release_memory ?N? ** |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test1.c,v 1.178 2005/12/30 16:28:02 danielk1977 Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include "os.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
886 887 888 889 890 891 892 893 894 895 896 897 898 899 | return TCL_OK; } return sqlite3OutstandingMallocs(interp); } #endif /* ** Usage: sqlite_abort ** ** Shutdown the process immediately. This is not a clean shutdown. ** This command is used to test the recoverability of a database in ** the event of a program crash. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 | return TCL_OK; } return sqlite3OutstandingMallocs(interp); } #endif /* ** Usage: sqlite3_enable_shared_cache BOOLEAN ** */ #ifndef SQLITE_OMIT_SHARED_CACHE static int test_enable_shared_cache( ClientData clientData, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int objc, /* Number of arguments */ Tcl_Obj *CONST objv[] /* Command arguments */ ){ int rc; int enable; SqliteTsd *pTsd = sqlite3Tsd(); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(pTsd->useSharedData)); if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "BOOLEAN"); return TCL_ERROR; } if( Tcl_GetBooleanFromObj(interp, objv[1], &enable) ){ return TCL_ERROR; } rc = sqlite3_enable_shared_cache(enable); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)sqlite3ErrStr(rc), TCL_STATIC); return TCL_ERROR; } return TCL_OK; } #endif /* ** Usage: sqlite_abort ** ** Shutdown the process immediately. This is not a clean shutdown. ** This command is used to test the recoverability of a database in ** the event of a program crash. */ |
︙ | ︙ | |||
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 | #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SUBQUERY Tcl_SetVar2(interp, "sqlite_options", "subquery", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "subquery", "1", TCL_GLOBAL_ONLY); #endif | > > > > > > | 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 | #endif #ifdef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS Tcl_SetVar2(interp, "sqlite_options", "schema_version", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "schema_version", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SHARED_CACHE Tcl_SetVar2(interp, "sqlite_options", "shared_cache", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "shared_cache", "1", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_OMIT_SUBQUERY Tcl_SetVar2(interp, "sqlite_options", "subquery", "0", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "subquery", "1", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ | |||
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 | { "add_test_function", test_function, 0 }, #endif #ifdef SQLITE_MEMDEBUG { "sqlite_malloc_outstanding", sqlite_malloc_outstanding, 0}, #endif { "sqlite3_test_errstr", test_errstr, 0 }, { "tcl_variable_type", tcl_variable_type, 0 }, }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_os_trace; extern int sqlite3_where_trace; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; | > > > | 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 | { "add_test_function", test_function, 0 }, #endif #ifdef SQLITE_MEMDEBUG { "sqlite_malloc_outstanding", sqlite_malloc_outstanding, 0}, #endif { "sqlite3_test_errstr", test_errstr, 0 }, { "tcl_variable_type", tcl_variable_type, 0 }, #ifndef SQLITE_OMIT_SHARED_CACHE { "sqlite3_enable_shared_cache", test_enable_shared_cache, 0}, #endif }; static int bitmask_size = sizeof(Bitmask)*8; int i; extern int sqlite3_os_trace; extern int sqlite3_where_trace; extern int sqlite3_sync_count, sqlite3_fullsync_count; extern int sqlite3_opentemp_count; |
︙ | ︙ |
Changes to src/test3.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.64 2005/12/30 16:28:02 danielk1977 Exp $ */ #include "sqliteInt.h" #include "pager.h" #include "btree.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
65 66 67 68 69 70 71 | if( argc!=4 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME NCACHE FLAGS\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[2], &nCache) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[3], &flags) ) return TCL_ERROR; | | | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | if( argc!=4 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " FILENAME NCACHE FLAGS\"", 0); return TCL_ERROR; } if( Tcl_GetInt(interp, argv[2], &nCache) ) return TCL_ERROR; if( Tcl_GetInt(interp, argv[3], &flags) ) return TCL_ERROR; rc = sqlite3BtreeOpen(argv[1], 0, &pBt, flags); if( rc!=SQLITE_OK ){ Tcl_AppendResult(interp, errorName(rc), 0); return TCL_ERROR; } sqlite3BtreeSetCacheSize(pBt, nCache); sqlite3_snprintf(sizeof(zBuf), zBuf,"%p", pBt); Tcl_AppendResult(interp, zBuf, 0); |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
922 923 924 925 926 927 928 | needXcommit = 1; if( i!=1 ) nTrans++; } } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ | < | 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | needXcommit = 1; if( i!=1 ) nTrans++; } } /* If there are any write-transactions at all, invoke the commit hook */ if( needXcommit && db->xCommitCallback ){ sqlite3SafetyOff(db); rc = db->xCommitCallback(db->pCommitArg); sqlite3SafetyOn(db); if( rc ){ return SQLITE_CONSTRAINT; } } |
︙ | ︙ |
Changes to test/alter3.test.
︙ | ︙ | |||
9 10 11 12 13 14 15 | # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing that SQLite can handle a subtle # file format change that may be used in the future to implement # "ALTER TABLE ... ADD COLUMN". # | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # #************************************************************************* # This file implements regression tests for SQLite library. The # focus of this script is testing that SQLite can handle a subtle # file format change that may be used in the future to implement # "ALTER TABLE ... ADD COLUMN". # # $Id: alter3.test,v 1.7 2005/12/30 16:28:02 danielk1977 Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl # If SQLITE_OMIT_ALTERTABLE is defined, omit this file. |
︙ | ︙ | |||
356 357 358 359 360 361 362 363 364 365 366 367 368 369 | # Ticket #1183 - Make sure adding columns to large tables does not cause # memory corruption (as was the case before this bug was fixed). do_test alter3-8.1 { execsql { CREATE TABLE t4(c1); } } {} do_test alter3-8.2 { set cols c1 for {set i 2} {$i < 100} {incr i} { execsql " ALTER TABLE t4 ADD c$i " lappend cols c$i | > | 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | # Ticket #1183 - Make sure adding columns to large tables does not cause # memory corruption (as was the case before this bug was fixed). do_test alter3-8.1 { execsql { CREATE TABLE t4(c1); } } {} set ::sql "" do_test alter3-8.2 { set cols c1 for {set i 2} {$i < 100} {incr i} { execsql " ALTER TABLE t4 ADD c$i " lappend cols c$i |
︙ | ︙ |
Changes to test/attach2.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is testing the ATTACH and DETACH commands # and related functionality. # | | < | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is testing the ATTACH and DETACH commands # and related functionality. # # $Id: attach2.test,v 1.34 2005/12/30 16:28:02 danielk1977 Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl # Ticket #354 # # Databases test.db and test2.db contain identical schemas. Make # sure we can attach test2.db from test.db. # do_test attach2-1.1 { |
︙ | ︙ | |||
153 154 155 156 157 158 159 | # A procedure to verify the status of locks on a database. # proc lock_status {testnum db expected_result} { # If the database was compiled with OMIT_TEMPDB set, then # the lock_status list will not contain an entry for the temp # db. But the test code doesn't know this, so it's easiest | | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | # A procedure to verify the status of locks on a database. # proc lock_status {testnum db expected_result} { # If the database was compiled with OMIT_TEMPDB set, then # the lock_status list will not contain an entry for the temp # db. But the test code doesn't know this, so it's easiest # to filter it out of the $expected_result list here. ifcapable !tempdb { set expected_result [concat \ [lrange $expected_result 0 1] \ [lrange $expected_result 4 end] \ ] } do_test attach2-$testnum [subst { |
︙ | ︙ |
Changes to test/malloc5.test.
1 2 3 4 5 6 7 8 9 10 11 | # 2005 November 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # | > > > | > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | # 2005 November 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # This file contains test cases focused on the two memory-management APIs, # sqlite3_soft_heap_limit() and sqlite3_release_memory(). # # $Id: malloc5.test,v 1.3 2005/12/30 16:28:02 danielk1977 Exp $ #--------------------------------------------------------------------------- # NOTES ON EXPECTED BEHAVIOUR # #--------------------------------------------------------------------------- set testdir [file dirname $argv0] source $testdir/tester.tcl # Only run these tests if memory debugging is turned on. if {[info command sqlite_malloc_stat]==""} { puts "Skipping malloc tests: not compiled with -DSQLITE_MEMDEBUG..." finish_test return } do_test malloc5-1.1 { # Simplest possible test. Call [db release_memory] when there is exactly # one unused page in a single pager cache. This test case set's the # value of the ::pgalloc variable, which is used in subsequent tests. # # Note: Even though executing this statement on an empty database |
︙ | ︙ | |||
155 156 157 158 159 160 161 162 163 164 165 166 167 168 | # to ensure that more than 1MB of dynamic memory is used to perform # the transaction. # # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) # and tests to see that this limit is not exceeded at any point during # transaction execution. # do_test malloc5-4.1 { execsql {BEGIN;} execsql {DELETE FROM abc;} for {set i 0} {$i < 10000} {incr i} { execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" } execsql {COMMIT;} | > > > > > | 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | # to ensure that more than 1MB of dynamic memory is used to perform # the transaction. # # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) # and tests to see that this limit is not exceeded at any point during # transaction execution. # # Before executing malloc5-4.* we save the value of the current soft heap # limit in variable ::soft_limit. The original value is restored after # running the tests. # set ::soft_limit [db soft_heap_limit -1] do_test malloc5-4.1 { execsql {BEGIN;} execsql {DELETE FROM abc;} for {set i 0} {$i < 10000} {incr i} { execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" } execsql {COMMIT;} |
︙ | ︙ | |||
184 185 186 187 188 189 190 | do_test malloc5-4.3 { # Check that the content of table abc is at least roughly as expected. execsql { SELECT count(*), sum(a), sum(b) FROM abc; } } [list 20000 [expr int(20000.0 * 4999.5)] [expr int(20000.0 * 4999.5)]] | | | | 199 200 201 202 203 204 205 206 207 208 209 210 211 | do_test malloc5-4.3 { # Check that the content of table abc is at least roughly as expected. execsql { SELECT count(*), sum(a), sum(b) FROM abc; } } [list 20000 [expr int(20000.0 * 4999.5)] [expr int(20000.0 * 4999.5)]] # Restore the soft heap limit. db soft_heap_limit $::soft_limit finish_test |
Changes to test/quick.test.
1 2 3 4 5 6 7 8 | # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # | | > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file runs all tests. # # $Id: quick.test,v 1.39 2005/12/30 16:28:02 danielk1977 Exp $ proc lshift {lvar} { upvar $lvar l set ret [lindex $l 0] set l [lrange $l 1 end] return $ret } while {[set arg [lshift argv]] != ""} { switch -- $arg { -sharedpagercache { sqlite3_enable_shared_cache 1 } default { set argv [linsert $argv 0 $arg] break } } } set testdir [file dirname $argv0] source $testdir/tester.tcl rename finish_test really_finish_test proc finish_test {} {} set ISQUICK 1 |
︙ | ︙ |
Added test/shared.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | # 2005 December 30 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the SELECT statement. # # $Id: shared.test,v 1.1 2005/12/30 16:28:02 danielk1977 Exp $ set ::enable_shared_cache [sqlite3_enable_shared_cache 1] set testdir [file dirname $argv0] source $testdir/tester.tcl db close ifcapable !shared_cache { finish_test return } # Test organization: # # shared-1.*: Simple test to verify basic sanity of table level locking when # two connections share a pager cache. # shared-2.*: Test that a read transaction can co-exist with a # write-transaction, including a simple test to ensure the # external locking protocol is still working. # do_test shared-1.1 { # Open a second database on the file test.db. It should use the same pager # cache and schema as the original connection. Verify that only 1 file is # opened. sqlite3 db2 test.db sqlite3 db test.db set ::sqlite_open_file_count } {1} do_test shared-1.2 { # Add a table and a single row of data via the first connection. # Ensure that the second connection can see them. execsql { CREATE TABLE abc(a, b, c); INSERT INTO abc VALUES(1, 2, 3); } db execsql { SELECT * FROM abc; } db2 } {1 2 3} do_test shared-1.3 { # Have the first connection begin a transaction and obtain a read-lock # on table abc. This should not prevent the second connection from # querying abc. execsql { BEGIN; SELECT * FROM abc; } execsql { SELECT * FROM abc; } db2 } {1 2 3} do_test shared-1.4 { # Try to insert a row into abc via connection 2. This should fail because # of the read-lock connection 1 is holding on table abc (obtained in the # previous test case). catchsql { INSERT INTO abc VALUES(4, 5, 6); } db2 } {1 {database is locked}} do_test shared-1.5 { # Using connection 2 (the one without the open transaction), create a # new table and add a row to it. This is permitted as the transaction # started by connection 1 is currently a read transaction. execsql { CREATE TABLE def(d, e, f); INSERT INTO def VALUES('I', 'II', 'III'); } db2 } {} do_test shared-1.6 { # Upgrade connection 1's transaction to a write transaction. Insert # a row into table def - the table just created by connection 2. # # Connection 1 is able to see table def, even though it was created # "after" the connection 1 transaction was started. This is because no # lock was established on the sqlite_master table. # Todo: Remove this. Because the implementation does not include # shared-schemas yet, we need to run some query (that will fail at # OP_VerifyCookie) so that connection 1 picks up the schema change # made via connection 2. Otherwise the sqlite3_prepare("INSERT INTO def...") # below will fail. execsql { SELECT * FROM sqlite_master; } execsql { INSERT INTO def VALUES('IV', 'V', 'VI'); } } {} do_test shared-1.7 { # Read from the sqlite_master table with connection 1 (inside the # transaction). Then test that we can no longer create a table # with connection 2. This is because of the read-lock on sqlite_master. execsql { SELECT * FROM sqlite_master; } catchsql { CREATE TABLE ghi(g, h, i); } db2 } {1 {database is locked}} do_test shared-1.8 { # Check that connection 2 can read the sqlite_master table. Then # create a table using connection 1 (this should write-lock the # sqlite_master table). Then try to read sqlite_master again using # connection 2 and verify that the write-lock prevents this. execsql { SELECT * FROM sqlite_master; } db2 execsql { CREATE TABLE ghi(g, h, i); } catchsql { SELECT * FROM sqlite_master; } db2 } {1 {database is locked}} do_test shared-1.9 { # Commit the connection 1 transaction. execsql { COMMIT; } } {} do_test shared-2.1 { # Open connection db3 to the database. Use a different path to the same # file so that db3 does *not* share the same pager cache as db and db2 # (there should be two open file handles). sqlite3 db3 ./test.db set ::sqlite_open_file_count } {2} do_test shared-2.2 { # Start read transactions on db and db2 (the shared pager cache). Ensure # db3 cannot write to the database. execsql { BEGIN; SELECT * FROM abc; } execsql { BEGIN; SELECT * FROM abc; } db2 catchsql { INSERT INTO abc VALUES(1, 2, 3); } db2 } {1 {database is locked}} do_test shared-2.3 { # Turn db's transaction into a write-transaction. db3 should still be # able to read from table def (but will not see the new row). Connection # db2 should not be able to read def (because of the write-lock). # Todo: The failed "INSERT INTO abc ..." statement in the above test # has started a write-transaction on db2 (should this be so?). This # would prevent connection db from starting a write-transaction. So roll the # db2 transaction back and replace it with a new read transaction. execsql { ROLLBACK; BEGIN; SELECT * FROM abc; } db2 execsql { INSERT INTO def VALUES('VII', 'VIII', 'IX'); } concat [ catchsql { SELECT * FROM def; } db3 ] [ catchsql { SELECT * FROM def; } db2 ] } {0 {I II III IV V VI} 1 {database is locked}} do_test shared-2.4 { # Commit the open transaction on db. db2 still holds a read-transaction. # This should prevent db3 from writing to the database, but not from # reading. execsql { COMMIT; } concat [ catchsql { SELECT * FROM def; } db3 ] [ catchsql { INSERT INTO def VALUES('X', 'XI', 'XII'); } db3 ] } {0 {I II III IV V VI VII VIII IX} 1 {database is locked}} catch {db close} catch {db2 close} catch {db3 close} finish_test sqlite3_enable_shared_cache $::enable_shared_cache |
Changes to test/tester.tcl.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements some common TCL routines used for regression # testing the SQLite library # # $Id: tester.tcl,v 1.55 2005/12/30 16:28:02 danielk1977 Exp $ # Make sure tclsqlite3 was compiled correctly. Abort now with an # error message if not. # if {[sqlite3 -tcl-uses-utf]} { if {"\u1234"=="u1234"} { puts stderr "***** BUILD PROBLEM *****" |
︙ | ︙ | |||
436 437 438 439 440 441 442 443 444 445 446 447 448 449 | # the current thread. A list is returned with one entry for each outstanding # malloc. Each list entry is itself a list of 5 items, as follows: # # { <number-bytes> <file-name> <line-number> <test-case> <stack-dump> } # proc check_for_leaks {} { set ret [list] foreach alloc [sqlite_malloc_outstanding] { foreach {nBytes file iLine userstring backtrace} $alloc {} set stack [list] set skip 0 # The first command in this block will probably fail on windows. This # means there will be no stack dump available. | > > | | | | | | | | | > > | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | # the current thread. A list is returned with one entry for each outstanding # malloc. Each list entry is itself a list of 5 items, as follows: # # { <number-bytes> <file-name> <line-number> <test-case> <stack-dump> } # proc check_for_leaks {} { set ret [list] set cnt 0 foreach alloc [sqlite_malloc_outstanding] { foreach {nBytes file iLine userstring backtrace} $alloc {} set stack [list] set skip 0 # The first command in this block will probably fail on windows. This # means there will be no stack dump available. if {$cnt < 25} { catch { set stuff [eval "exec addr2line -e ./testfixture -f $backtrace"] foreach {func line} $stuff { if {$func != "??" || $line != "??:0"} { regexp {.*/(.*)} $line dummy line lappend stack "${func}() $line" } else { if {[lindex $stack end] != "..."} { lappend stack "..." } } } } incr cnt } if {!$skip} { lappend ret [list $nBytes $file $iLine $userstring $stack] } } return $ret |
︙ | ︙ |
Changes to test/trans.test.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is database locks. # | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # 2001 September 15 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is database locks. # # $Id: trans.test,v 1.27 2005/12/30 16:28:02 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Create several tables to work with. |
︙ | ︙ | |||
93 94 95 96 97 98 99 100 101 102 103 104 105 106 | } } {1 2 3} do_test trans-3.2 { catchsql { SELECT a FROM two ORDER BY a; } altdb } {0 {1 5 10}} do_test trans-3.3 { catchsql { SELECT a FROM one ORDER BY a; } altdb } {0 {1 2 3}} do_test trans-3.4 { catchsql { | > | 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | } } {1 2 3} do_test trans-3.2 { catchsql { SELECT a FROM two ORDER BY a; } altdb } {0 {1 5 10}} do_test trans-3.3 { catchsql { SELECT a FROM one ORDER BY a; } altdb } {0 {1 2 3}} do_test trans-3.4 { catchsql { |
︙ | ︙ | |||
131 132 133 134 135 136 137 138 139 140 141 142 143 144 | catchsql { SELECT a FROM one ORDER BY a; } altdb } {0 {1 2 3}} do_test trans-3.10 { execsql {END TRANSACTION} } {} do_test trans-3.11 { set v [catch {execsql { SELECT a FROM two ORDER BY a; } altdb} msg] lappend v $msg } {0 {1 4 5 10}} do_test trans-3.12 { | > | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | catchsql { SELECT a FROM one ORDER BY a; } altdb } {0 {1 2 3}} do_test trans-3.10 { execsql {END TRANSACTION} } {} do_test trans-3.11 { set v [catch {execsql { SELECT a FROM two ORDER BY a; } altdb} msg] lappend v $msg } {0 {1 4 5 10}} do_test trans-3.12 { |
︙ | ︙ |