SQLite

Check-in [1fd1034935]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes, including the SQLITE_ENABLE_MULTITHREADED_CHECKS feature, into this branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA3-256: 1fd1034935b932e9e0a29b26931f7ccf9fb0bda916c4fa8b741bf6f48f124dda
User & Date: dan 2017-11-28 08:08:40.954
Context
2017-11-28
13:48
Merge the snapshots-always-lock-the-wal-file change into this branch. (check-in: 3ec976e015 user: dan tags: apple-osx)
08:08
Merge latest trunk changes, including the SQLITE_ENABLE_MULTITHREADED_CHECKS feature, into this branch. (check-in: 1fd1034935 user: dan tags: apple-osx)
07:52
Add experimental feature to detect threading bugs in apps that use SQLITE_CONFIG_MULTITHREADED. Enabled at compile time using SQLITE_ENABLE_MULTITHREADED_CHECKS. (check-in: 40b598c839 user: dan tags: trunk)
2017-11-17
20:22
Add missing entry for SQLITE_IOERR_VNODE to the switch statement in sqlite3ErrName(). (check-in: e2b3e33537 user: dan tags: apple-osx)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
84
85
86
87
88
89
90



91
92
93
94
95
96
97
OPT_FEATURE_FLAGS = @OPT_FEATURE_FLAGS@

TCC += $(OPT_FEATURE_FLAGS)

# Add in any optional parameters specified on the make commane line
# ie.  make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1".
TCC += $(OPTS)




# Version numbers and release number for the SQLite being compiled.
#
VERSION = @VERSION@
VERSION_NUMBER = @VERSION_NUMBER@
RELEASE = @RELEASE@








>
>
>







84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
OPT_FEATURE_FLAGS = @OPT_FEATURE_FLAGS@

TCC += $(OPT_FEATURE_FLAGS)

# Add in any optional parameters specified on the make commane line
# ie.  make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1".
TCC += $(OPTS)

# Add in compile-time options for some libraries used by extensions
TCC += @HAVE_ZLIB@

# Version numbers and release number for the SQLite being compiled.
#
VERSION = @VERSION@
VERSION_NUMBER = @VERSION_NUMBER@
RELEASE = @RELEASE@

Changes to Makefile.msc.
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
LTRCOMPILE = $(RCC) -r
LTLIB = lib.exe
LTLINK = $(TCC) -Fe$@

# If requested, link to the RPCRT4 library.
#
!IF $(USE_RPCRT4_LIB)!=0
LTLINK = $(LTLINK) rpcrt4.lib
!ENDIF

# If a platform was set, force the linker to target that.
# Note that the vcvars*.bat family of batch files typically
# set this for you.  Otherwise, the linker will attempt
# to deduce the binary type based on the object files.
!IFDEF PLATFORM







|







970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
LTRCOMPILE = $(RCC) -r
LTLIB = lib.exe
LTLINK = $(TCC) -Fe$@

# If requested, link to the RPCRT4 library.
#
!IF $(USE_RPCRT4_LIB)!=0
LTLIBS = $(LTLIBS) rpcrt4.lib
!ENDIF

# If a platform was set, force the linker to target that.
# Note that the vcvars*.bat family of batch files typically
# set this for you.  Otherwise, the linker will attempt
# to deduce the binary type based on the object files.
!IFDEF PLATFORM
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
!ENDIF

# <<mark>>
# Start with the Tcl related linker options.
#
!IF $(NO_TCL)==0
LTLIBPATHS = /LIBPATH:$(TCLLIBDIR)
LTLIBS = $(LIBTCL)
!ENDIF

# If ICU support is enabled, add the linker options for it.
#
!IF $(USE_ICU)!=0
LTLIBPATHS = $(LTLIBPATHS) /LIBPATH:$(ICULIBDIR)
LTLIBS = $(LTLIBS) $(LIBICU)







|







1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
!ENDIF

# <<mark>>
# Start with the Tcl related linker options.
#
!IF $(NO_TCL)==0
LTLIBPATHS = /LIBPATH:$(TCLLIBDIR)
LTLIBS = $(LTLIBS) $(LIBTCL)
!ENDIF

# If ICU support is enabled, add the linker options for it.
#
!IF $(USE_ICU)!=0
LTLIBPATHS = $(LTLIBPATHS) /LIBPATH:$(ICULIBDIR)
LTLIBS = $(LTLIBS) $(LIBICU)
Changes to autoconf/Makefile.msc.
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
LTRCOMPILE = $(RCC) -r
LTLIB = lib.exe
LTLINK = $(TCC) -Fe$@

# If requested, link to the RPCRT4 library.
#
!IF $(USE_RPCRT4_LIB)!=0
LTLINK = $(LTLINK) rpcrt4.lib
!ENDIF

# If a platform was set, force the linker to target that.
# Note that the vcvars*.bat family of batch files typically
# set this for you.  Otherwise, the linker will attempt
# to deduce the binary type based on the object files.
!IFDEF PLATFORM







|







804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
LTRCOMPILE = $(RCC) -r
LTLIB = lib.exe
LTLINK = $(TCC) -Fe$@

# If requested, link to the RPCRT4 library.
#
!IF $(USE_RPCRT4_LIB)!=0
LTLIBS = $(LTLIBS) rpcrt4.lib
!ENDIF

# If a platform was set, force the linker to target that.
# Note that the vcvars*.bat family of batch files typically
# set this for you.  Otherwise, the linker will attempt
# to deduce the binary type based on the object files.
!IFDEF PLATFORM
Changes to configure.
768
769
770
771
772
773
774

775
776
777
778
779
780
781
#endif"

ac_subst_vars='LTLIBOBJS
LIBOBJS
BUILD_CFLAGS
USE_GCOV
OPT_FEATURE_FLAGS

USE_AMALGAMATION
TARGET_DEBUG
TARGET_HAVE_EDITLINE
TARGET_HAVE_READLINE
TARGET_READLINE_INC
TARGET_READLINE_LIBS
HAVE_TCL







>







768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#endif"

ac_subst_vars='LTLIBOBJS
LIBOBJS
BUILD_CFLAGS
USE_GCOV
OPT_FEATURE_FLAGS
HAVE_ZLIB
USE_AMALGAMATION
TARGET_DEBUG
TARGET_HAVE_EDITLINE
TARGET_HAVE_READLINE
TARGET_READLINE_INC
TARGET_READLINE_LIBS
HAVE_TCL
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if ${lt_cv_nm_interface+:} false; then :
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3934: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3937: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3940: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5







|


|


|







3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
{ $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5
$as_echo_n "checking the name lister ($NM) interface... " >&6; }
if ${lt_cv_nm_interface+:} false; then :
  $as_echo_n "(cached) " >&6
else
  lt_cv_nm_interface="BSD nm"
  echo "int some_variable = 0;" > conftest.$ac_ext
  (eval echo "\"\$as_me:3935: $ac_compile\"" >&5)
  (eval "$ac_compile" 2>conftest.err)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3938: $NM \\\"conftest.$ac_objext\\\"\"" >&5)
  (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out)
  cat conftest.err >&5
  (eval echo "\"\$as_me:3941: output\"" >&5)
  cat conftest.out >&5
  if $GREP 'External.*some_variable' conftest.out > /dev/null; then
    lt_cv_nm_interface="MS dumpbin"
  fi
  rm -f conftest*
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 5146 "configure"' > conftest.$ac_ext
  if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
  test $ac_status = 0; }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in







|







5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
	;;
    esac
  fi
  rm -rf conftest*
  ;;
*-*-irix6*)
  # Find out which ABI we are using.
  echo '#line 5147 "configure"' > conftest.$ac_ext
  if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5
  (eval $ac_compile) 2>&5
  ac_status=$?
  $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5
  test $ac_status = 0; }; then
    if test "$lt_cv_prog_gnu_ld" = yes; then
      case `/usr/bin/file conftest.$ac_objext` in
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6671: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6675: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes







|



|







6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:6672: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:6676: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_rtti_exceptions=yes
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7010: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7014: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes







|



|







7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   # The option is referenced via a variable to avoid confusing sed.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7011: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>conftest.err)
   ac_status=$?
   cat conftest.err >&5
   echo "$as_me:7015: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s "$ac_outfile"; then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings other than the usual output.
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp
     $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2
     if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then
       lt_cv_prog_compiler_pic_works=yes
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7115: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7119: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7116: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7120: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7170: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7174: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then







|



|







7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
   # (2) before a word containing "conftest.", or (3) at the end.
   # Note that $ac_compile itself does not contain backslashes and begins
   # with a dollar sign (not a hyphen), so the echo should work correctly.
   lt_compile=`echo "$ac_compile" | $SED \
   -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \
   -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \
   -e 's:$: $lt_compiler_flag:'`
   (eval echo "\"\$as_me:7171: $lt_compile\"" >&5)
   (eval "$lt_compile" 2>out/conftest.err)
   ac_status=$?
   cat out/conftest.err >&5
   echo "$as_me:7175: \$? = $ac_status" >&5
   if (exit $ac_status) && test -s out/conftest2.$ac_objext
   then
     # The compiler can only warn and ignore the option if not recognized
     # So say no if there are warnings
     $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp
     $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2
     if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 9550 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 9551 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 9646 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>







|







9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
else
  	  if test "$cross_compiling" = yes; then :
  lt_cv_dlopen_self_static=cross
else
  lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2
  lt_status=$lt_dlunknown
  cat > conftest.$ac_ext <<_LT_EOF
#line 9647 "configure"
#include "confdefs.h"

#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif

#include <stdio.h>
11268
11269
11270
11271
11272
11273
11274










































































11275
11276
11277
11278
11279
11280
11281
else
  use_amalgamation=yes
fi

if test "${use_amalgamation}" != "yes" ; then
  USE_AMALGAMATION=0
fi












































































#########
# See whether we should allow loadable extensions
# Check whether --enable-load-extension was given.
if test "${enable_load_extension+set}" = set; then :
  enableval=$enable_load_extension; use_loadextension=$enableval







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
else
  use_amalgamation=yes
fi

if test "${use_amalgamation}" != "yes" ; then
  USE_AMALGAMATION=0
fi


#########
# Look for zlib.  Only needed by extensions and by the sqlite3.exe shell
for ac_header in zlib.h
do :
  ac_fn_c_check_header_mongrel "$LINENO" "zlib.h" "ac_cv_header_zlib_h" "$ac_includes_default"
if test "x$ac_cv_header_zlib_h" = xyes; then :
  cat >>confdefs.h <<_ACEOF
#define HAVE_ZLIB_H 1
_ACEOF

fi

done

{ $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing deflate" >&5
$as_echo_n "checking for library containing deflate... " >&6; }
if ${ac_cv_search_deflate+:} false; then :
  $as_echo_n "(cached) " >&6
else
  ac_func_search_save_LIBS=$LIBS
cat confdefs.h - <<_ACEOF >conftest.$ac_ext
/* end confdefs.h.  */

/* Override any GCC internal prototype to avoid an error.
   Use char because int might match the return type of a GCC
   builtin and then its argument prototype would still apply.  */
#ifdef __cplusplus
extern "C"
#endif
char deflate ();
int
main ()
{
return deflate ();
  ;
  return 0;
}
_ACEOF
for ac_lib in '' z; do
  if test -z "$ac_lib"; then
    ac_res="none required"
  else
    ac_res=-l$ac_lib
    LIBS="-l$ac_lib  $ac_func_search_save_LIBS"
  fi
  if ac_fn_c_try_link "$LINENO"; then :
  ac_cv_search_deflate=$ac_res
fi
rm -f core conftest.err conftest.$ac_objext \
    conftest$ac_exeext
  if ${ac_cv_search_deflate+:} false; then :
  break
fi
done
if ${ac_cv_search_deflate+:} false; then :

else
  ac_cv_search_deflate=no
fi
rm conftest.$ac_ext
LIBS=$ac_func_search_save_LIBS
fi
{ $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_deflate" >&5
$as_echo "$ac_cv_search_deflate" >&6; }
ac_res=$ac_cv_search_deflate
if test "$ac_res" != no; then :
  test "$ac_res" = "none required" || LIBS="$ac_res $LIBS"
  HAVE_ZLIB="-DSQLITE_HAVE_ZLIB=1"
else
  HAVE_ZLIB=""
fi



#########
# See whether we should allow loadable extensions
# Check whether --enable-load-extension was given.
if test "${enable_load_extension+set}" = set; then :
  enableval=$enable_load_extension; use_loadextension=$enableval
Changes to configure.ac.
572
573
574
575
576
577
578






579
580
581
582
583
584
585
      [Disable the amalgamation and instead build all files separately]),
      [use_amalgamation=$enableval],[use_amalgamation=yes])
if test "${use_amalgamation}" != "yes" ; then
  USE_AMALGAMATION=0
fi
AC_SUBST(USE_AMALGAMATION)







#########
# See whether we should allow loadable extensions
AC_ARG_ENABLE(load-extension, AC_HELP_STRING([--disable-load-extension],
      [Disable loading of external extensions]),
      [use_loadextension=$enableval],[use_loadextension=yes])
if test "${use_loadextension}" = "yes" ; then
  OPT_FEATURE_FLAGS=""







>
>
>
>
>
>







572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
      [Disable the amalgamation and instead build all files separately]),
      [use_amalgamation=$enableval],[use_amalgamation=yes])
if test "${use_amalgamation}" != "yes" ; then
  USE_AMALGAMATION=0
fi
AC_SUBST(USE_AMALGAMATION)

#########
# Look for zlib.  Only needed by extensions and by the sqlite3.exe shell
AC_CHECK_HEADERS(zlib.h)
AC_SEARCH_LIBS(deflate, z, [HAVE_ZLIB="-DSQLITE_HAVE_ZLIB=1"], [HAVE_ZLIB=""])
AC_SUBST(HAVE_ZLIB)

#########
# See whether we should allow loadable extensions
AC_ARG_ENABLE(load-extension, AC_HELP_STRING([--disable-load-extension],
      [Disable loading of external extensions]),
      [use_loadextension=$enableval],[use_loadextension=yes])
if test "${use_loadextension}" = "yes" ; then
  OPT_FEATURE_FLAGS=""
Changes to ext/fts5/fts5Int.h.
717
718
719
720
721
722
723


724
725
726
727
728
729
730

Fts5ExprPhrase *sqlite3Fts5ParseTerm(
  Fts5Parse *pParse, 
  Fts5ExprPhrase *pPhrase, 
  Fts5Token *pToken,
  int bPrefix
);



Fts5ExprNearset *sqlite3Fts5ParseNearset(
  Fts5Parse*, 
  Fts5ExprNearset*,
  Fts5ExprPhrase* 
);








>
>







717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

Fts5ExprPhrase *sqlite3Fts5ParseTerm(
  Fts5Parse *pParse, 
  Fts5ExprPhrase *pPhrase, 
  Fts5Token *pToken,
  int bPrefix
);

void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase*);

Fts5ExprNearset *sqlite3Fts5ParseNearset(
  Fts5Parse*, 
  Fts5ExprNearset*,
  Fts5ExprPhrase* 
);

Changes to ext/fts5/fts5_expr.c.
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))

/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  int bPrefix;                    /* True for a prefix term */

  char *zTerm;                    /* nul-terminated term */
  Fts5IndexIter *pIter;           /* Iterator for this term */
  Fts5ExprTerm *pSynonym;         /* Pointer to first in list of synonyms */
};

/*
** A phrase. One or more terms that must appear in a contiguous sequence







|
>







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))

/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
  u8 bPrefix;                     /* True for a prefix term */
  u8 bFirst;                      /* True if token must be first in column */
  char *zTerm;                    /* nul-terminated term */
  Fts5IndexIter *pIter;           /* Iterator for this term */
  Fts5ExprTerm *pSynonym;         /* Pointer to first in list of synonyms */
};

/*
** A phrase. One or more terms that must appear in a contiguous sequence
164
165
166
167
168
169
170

171
172
173
174
175
176
177
    case '{':  tok = FTS5_LCP;   break;
    case '}':  tok = FTS5_RCP;   break;
    case ':':  tok = FTS5_COLON; break;
    case ',':  tok = FTS5_COMMA; break;
    case '+':  tok = FTS5_PLUS;  break;
    case '*':  tok = FTS5_STAR;  break;
    case '-':  tok = FTS5_MINUS; break;

    case '\0': tok = FTS5_EOF;   break;

    case '"': {
      const char *z2;
      tok = FTS5_STRING;

      for(z2=&z[1]; 1; z2++){







>







165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    case '{':  tok = FTS5_LCP;   break;
    case '}':  tok = FTS5_RCP;   break;
    case ':':  tok = FTS5_COLON; break;
    case ',':  tok = FTS5_COMMA; break;
    case '+':  tok = FTS5_PLUS;  break;
    case '*':  tok = FTS5_STAR;  break;
    case '-':  tok = FTS5_MINUS; break;
    case '^':  tok = FTS5_CARET; break;
    case '\0': tok = FTS5_EOF;   break;

    case '"': {
      const char *z2;
      tok = FTS5_STRING;

      for(z2=&z[1]; 1; z2++){
423
424
425
426
427
428
429

430
431
432
433
434
435
436
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;

  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;







>







425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  int bFirst = pPhrase->aTerm[0].bFirst;
  
  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
477
478
479
480
481
482
483

484
485

486
487
488
489
490
491
492
          }
          if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
        }
      }
    }while( bMatch==0 );

    /* Append position iPos to the output */

    rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
    if( rc!=SQLITE_OK ) goto ismatch_out;


    for(i=0; i<pPhrase->nTerm; i++){
      if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
    }
  }

 ismatch_out:







>
|
|
>







480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
          }
          if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
        }
      }
    }while( bMatch==0 );

    /* Append position iPos to the output */
    if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){
      rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
      if( rc!=SQLITE_OK ) goto ismatch_out;
    }

    for(i=0; i<pPhrase->nTerm; i++){
      if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
    }
  }

 ismatch_out:
732
733
734
735
736
737
738
739


740
741
742
743
744
745
746
    int i;

    /* Check that each phrase in the nearset matches the current row.
    ** Populate the pPhrase->poslist buffers at the same time. If any
    ** phrase is not a match, break out of the loop early.  */
    for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset ){


        int bMatch = 0;
        rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
        if( bMatch==0 ) break;
      }else{
        Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
        fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
      }







|
>
>







737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    int i;

    /* Check that each phrase in the nearset matches the current row.
    ** Populate the pPhrase->poslist buffers at the same time. If any
    ** phrase is not a match, break out of the loop early.  */
    for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
      Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
      if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym 
       || pNear->pColset || pPhrase->aTerm[0].bFirst
      ){
        int bMatch = 0;
        rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
        if( bMatch==0 ) break;
      }else{
        Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
        fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
      }
913
914
915
916
917
918
919

920
921
922
923
924
925
926
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym

  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){







>







920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
  int bMatch;                     /* True if all terms are at the same rowid */
  const int bDesc = pExpr->bDesc;

  /* Check that this node should not be FTS5_TERM */
  assert( pNear->nPhrase>1 
       || pNear->apPhrase[0]->nTerm>1 
       || pNear->apPhrase[0]->aTerm[0].pSynonym
       || pNear->apPhrase[0]->aTerm[0].bFirst
  );

  /* Initialize iLast, the "lastest" rowid any iterator points to. If the
  ** iterator skips through rowids in the default ascending order, this means
  ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
  ** means the minimum rowid.  */
  if( pLeft->aTerm[0].pSynonym ){
1436
1437
1438
1439
1440
1441
1442










1443
1444
1445
1446
1447
1448
1449
        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}











/*
** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
** appended to it and the results returned.
**
** If an OOM error occurs, both the pNear and pPhrase objects are freed and







>
>
>
>
>
>
>
>
>
>







1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
        sqlite3_free(pSyn);
      }
    }
    if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
    sqlite3_free(pPhrase);
  }
}

/*
** Set the "bFirst" flag on the first token of the phrase passed as the
** only argument.
*/
void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){
  if( pPhrase && pPhrase->nTerm ){
    pPhrase->aTerm[0].bFirst = 1;
  }
}

/*
** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
** appended to it and the results returned.
**
** If an OOM error occurs, both the pNear and pPhrase objects are freed and
1715
1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740



1741
1742
1743
1744
1745
1746
1747
        const char *zTerm = p->zTerm;
        rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
            0, 0);
        tflags = FTS5_TOKEN_COLOCATED;
      }
      if( rc==SQLITE_OK ){
        sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;

      }
    }
  }else{
    /* This happens when parsing a token or quoted phrase that contains
    ** no token characters at all. (e.g ... MATCH '""'). */
    sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;
    pNew->pConfig = pExpr->pConfig;
    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 ){



      pNew->pRoot->eType = FTS5_TERM;
      pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
    }else{
      pNew->pRoot->eType = FTS5_STRING;
      pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
    }
  }else{







>


















|
>
>
>







1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
        const char *zTerm = p->zTerm;
        rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
            0, 0);
        tflags = FTS5_TOKEN_COLOCATED;
      }
      if( rc==SQLITE_OK ){
        sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
        sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst;
      }
    }
  }else{
    /* This happens when parsing a token or quoted phrase that contains
    ** no token characters at all. (e.g ... MATCH '""'). */
    sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
  }

  if( rc==SQLITE_OK ){
    /* All the allocations succeeded. Put the expression object together. */
    pNew->pIndex = pExpr->pIndex;
    pNew->pConfig = pExpr->pConfig;
    pNew->nPhrase = 1;
    pNew->apExprPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
    pNew->pRoot->pNear->nPhrase = 1;
    sCtx.pPhrase->pNode = pNew->pRoot;

    if( pOrig->nTerm==1 
     && pOrig->aTerm[0].pSynonym==0 
     && pOrig->aTerm[0].bFirst==0 
    ){
      pNew->pRoot->eType = FTS5_TERM;
      pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
    }else{
      pNew->pRoot->eType = FTS5_STRING;
      pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
    }
  }else{
2007
2008
2009
2010
2011
2012
2013

2014
2015
2016
2017
2018
2019
2020

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
       && pNear->apPhrase[0]->aTerm[0].pSynonym==0

      ){
        pNode->eType = FTS5_TERM;
        pNode->xNext = fts5ExprNodeNext_TERM;
      }else{
        pNode->xNext = fts5ExprNodeNext_STRING;
      }
      break;







>







2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043

static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
  switch( pNode->eType ){
    case FTS5_STRING: {
      Fts5ExprNearset *pNear = pNode->pNear;
      if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 
       && pNear->apPhrase[0]->aTerm[0].pSynonym==0
       && pNear->apPhrase[0]->aTerm[0].bFirst==0
      ){
        pNode->eType = FTS5_TERM;
        pNode->xNext = fts5ExprNodeNext_TERM;
      }else{
        pNode->xNext = fts5ExprNodeNext_STRING;
      }
      break;
2093
2094
2095
2096
2097
2098
2099
2100

2101


2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
          pNear->apPhrase[iPhrase]->pNode = pRet;
          if( pNear->apPhrase[iPhrase]->nTerm==0 ){
            pRet->xNext = 0;
            pRet->eType = FTS5_EOF;
          }
        }

        if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL 

         && (pNear->nPhrase!=1 || pNear->apPhrase[0]->nTerm>1)


        ){
          assert( pParse->rc==SQLITE_OK );
          pParse->rc = SQLITE_ERROR;
          assert( pParse->zErr==0 );
          pParse->zErr = sqlite3_mprintf(
              "fts5: %s queries are not supported (detail!=full)", 
              pNear->nPhrase==1 ? "phrase": "NEAR"
          );
          sqlite3_free(pRet);
          pRet = 0;
        }

      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }








|
>
|
>
>
|
|
|
|
|
|
|
|
|
|
|
|







2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
          pNear->apPhrase[iPhrase]->pNode = pRet;
          if( pNear->apPhrase[iPhrase]->nTerm==0 ){
            pRet->xNext = 0;
            pRet->eType = FTS5_EOF;
          }
        }

        if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){
          Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
          if( pNear->nPhrase!=1 
           || pPhrase->nTerm>1
           || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst)
          ){
            assert( pParse->rc==SQLITE_OK );
            pParse->rc = SQLITE_ERROR;
            assert( pParse->zErr==0 );
            pParse->zErr = sqlite3_mprintf(
                "fts5: %s queries are not supported (detail!=full)", 
                pNear->nPhrase==1 ? "phrase": "NEAR"
                );
            sqlite3_free(pRet);
            pRet = 0;
          }
        }
      }else{
        fts5ExprAddChildren(pRet, pLeft);
        fts5ExprAddChildren(pRet, pRight);
      }
    }
  }

Changes to ext/fts5/fts5parse.y.
144
145
146
147
148
149
150



151

152
153
154
155
156
157
158


%type nearset     {Fts5ExprNearset*}
%type nearphrases {Fts5ExprNearset*}
%destructor nearset { sqlite3Fts5ParseNearsetFree($$); }
%destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); }




nearset(A) ::= phrase(X). { A = sqlite3Fts5ParseNearset(pParse, 0, X); }

nearset(A) ::= STRING(X) LP nearphrases(Y) neardist_opt(Z) RP. {
  sqlite3Fts5ParseNear(pParse, &X);
  sqlite3Fts5ParseSetDistance(pParse, Y, &Z);
  A = Y;
}

nearphrases(A) ::= phrase(X). { 







>
>
>
|
>







144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162


%type nearset     {Fts5ExprNearset*}
%type nearphrases {Fts5ExprNearset*}
%destructor nearset { sqlite3Fts5ParseNearsetFree($$); }
%destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); }

nearset(A) ::= phrase(Y). { A = sqlite3Fts5ParseNearset(pParse, 0, Y); }
nearset(A) ::= CARET phrase(Y). { 
  sqlite3Fts5ParseSetCaret(Y);
  A = sqlite3Fts5ParseNearset(pParse, 0, Y); 
}
nearset(A) ::= STRING(X) LP nearphrases(Y) neardist_opt(Z) RP. {
  sqlite3Fts5ParseNear(pParse, &X);
  sqlite3Fts5ParseSetDistance(pParse, Y, &Z);
  A = Y;
}

nearphrases(A) ::= phrase(X). { 
185
186
187
188
189
190
191
192
193
194
  A = sqlite3Fts5ParseTerm(pParse, 0, &Y, Z);
}

/*
** Optional "*" character.
*/
%type star_opt {int}

star_opt(A) ::= STAR. { A = 1; }
star_opt(A) ::= . { A = 0; }







<


189
190
191
192
193
194
195

196
197
  A = sqlite3Fts5ParseTerm(pParse, 0, &Y, Z);
}

/*
** Optional "*" character.
*/
%type star_opt {int}

star_opt(A) ::= STAR. { A = 1; }
star_opt(A) ::= . { A = 0; }
Changes to ext/fts5/test/fts5faultB.test.
125
126
127
128
129
130
131

















132
133
134
}

do_faultsim_test 4.2 -faults oom* -body {
  execsql { SELECT rowid FROM t1('{a b c} : (a AND d)') }
} -test {
  faultsim_test_result {0 {2 3}}
}



















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
}

do_faultsim_test 4.2 -faults oom* -body {
  execsql { SELECT rowid FROM t1('{a b c} : (a AND d)') }
} -test {
  faultsim_test_result {0 {2 3}}
}

#-------------------------------------------------------------------------
# Test OOM injection while parsing a CARET expression
#
reset_db
do_execsql_test 5.0 {
  CREATE VIRTUAL TABLE t1 USING fts5(a);
  INSERT INTO t1 VALUES('a b c d');  -- 1
  INSERT INTO t1 VALUES('d a b c');  -- 2
  INSERT INTO t1 VALUES('c d a b');  -- 3
  INSERT INTO t1 VALUES('b c d a');  -- 4
}
do_faultsim_test 5.1 -faults oom* -body {
  execsql { SELECT rowid FROM t1('^a OR ^b') }
} -test {
  faultsim_test_result {0 {1 4}}
}


finish_test
Added ext/fts5/test/fts5first.test.
































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# 2017 November 25
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************

source [file join [file dirname [info script]] fts5_common.tcl]
set testprefix fts5first

ifcapable !fts5 {
  finish_test
  return
}


do_execsql_test 1.0 {
  CREATE VIRTUAL TABLE x1 USING fts5(a, b);
}

foreach {tn expr ok} {
  1 {^abc}           1
  2 {^abc + def}     1
  3 {^ "abc def"}    1
  4 {^"abc def"}     1
  5 {abc ^def}       1
  6 {abc + ^def}     0
  7 {abc ^+ def}     0
  8 {"^abc"}         1
  9 {NEAR(^abc def)} 0
} {
  set res(0) {/1 {fts5: syntax error near .*}/}
  set res(1) {0 {}}

  do_catchsql_test 1.$tn { SELECT * FROM x1($expr) } $res($ok)
}

#-------------------------------------------------------------------------
# 
do_execsql_test 2.0 {
  INSERT INTO x1 VALUES('a b c', 'b c a');
}

foreach {tn expr match} {
  1 {^a} 1
  2 {^b} 1
  3 {^c} 0
  4 {^a + b} 1
  5 {^b + c} 1
  6 {^c + a} 0
  7 {^"c a"} 0
  8 {a:^a} 1
  9 {a:^b} 0
  10 {a:^"a b"} 1
} {
  do_execsql_test 2.$tn { SELECT EXISTS (SELECT rowid FROM x1($expr)) } $match
}

#-------------------------------------------------------------------------
# 
do_execsql_test 3.0 {
  DELETE FROM x1;
  INSERT INTO x1 VALUES('b a', 'c a');
  INSERT INTO x1 VALUES('a a', 'c c');
  INSERT INTO x1 VALUES('a b', 'a a');
}
fts5_aux_test_functions db

foreach {tn expr expect} {
  1 {^a} {{2 1}}
  2 {^c AND ^b} {{0 2} {1 0}}
} {
  do_execsql_test 3.$tn {
    SELECT fts5_test_queryphrase(x1) FROM x1($expr) LIMIT 1
  } [list $expect]
}

#-------------------------------------------------------------------------
# 
do_execsql_test 3.1 {
  CREATE VIRTUAL TABLE x2 USING fts5(a, b, c, detail=column);
}

do_catchsql_test 3.2 {
  SELECT * FROM x2('a + b');
} {1 {fts5: phrase queries are not supported (detail!=full)}}

do_catchsql_test 3.3 {
  SELECT * FROM x2('^a');
} {1 {fts5: phrase queries are not supported (detail!=full)}}
finish_test

Changes to src/btree.c.
114
115
116
117
118
119
120

























121
122
123
124
125
126
127
  #define setSharedCacheTableLock(a,b,c) SQLITE_OK
  #define clearAllSharedCacheTableLocks(a)
  #define downgradeAllSharedCacheTableLocks(a)
  #define hasSharedCacheTableLock(a,b,c,d) 1
  #define hasReadConflicts(a, b) 0
#endif


























#ifndef SQLITE_OMIT_SHARED_CACHE

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  #define setSharedCacheTableLock(a,b,c) SQLITE_OK
  #define clearAllSharedCacheTableLocks(a)
  #define downgradeAllSharedCacheTableLocks(a)
  #define hasSharedCacheTableLock(a,b,c,d) 1
  #define hasReadConflicts(a, b) 0
#endif

/*
** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
** (MemPage*) as an argument. The (MemPage*) must not be NULL.
**
** If SQLITE_DEBUG is not defined, then this macro is equivalent to
** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
** with the page number and filename associated with the (MemPage*).
*/
#ifdef SQLITE_DEBUG
int corruptPageError(int lineno, MemPage *p){
  char *zMsg = sqlite3_mprintf("database corruption page %d of %s",
      (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
  );
  if( zMsg ){
    sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
  }
  sqlite3_free(zMsg);
  return SQLITE_CORRUPT_BKPT;
}
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
#else
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the 
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
      if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
        u8 *pEnd = &data[cellOffset + nCell*2];
        u8 *pAddr;
        int sz2 = 0;
        int sz = get2byte(&data[iFree+2]);
        int top = get2byte(&data[hdr+5]);
        if( top>=iFree ){
          return SQLITE_CORRUPT_PGNO(pPage->pgno);
        }
        if( iFree2 ){
          assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
          sz2 = get2byte(&data[iFree2+2]);
          assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
          memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
          sz += sz2;







|







1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
      if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
        u8 *pEnd = &data[cellOffset + nCell*2];
        u8 *pAddr;
        int sz2 = 0;
        int sz = get2byte(&data[iFree+2]);
        int top = get2byte(&data[hdr+5]);
        if( top>=iFree ){
          return SQLITE_CORRUPT_PAGE(pPage);
        }
        if( iFree2 ){
          assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
          sz2 = get2byte(&data[iFree2+2]);
          assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
          memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
          sz += sz2;
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
    pc = get2byte(pAddr);
    testcase( pc==iCellFirst );
    testcase( pc==iCellLast );
    /* These conditions have already been verified in btreeInitPage()
    ** if PRAGMA cell_size_check=ON.
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = pPage->xCellSize(pPage, &src[pc]);
    cbrk -= size;
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    put2byte(pAddr, cbrk);
    if( temp==0 ){
      int x;
      if( cbrk==pc ) continue;
      temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
      x = get2byte(&data[hdr+5]);
      memcpy(&temp[x], &data[x], (cbrk+size) - x);
      src = temp;
    }
    memcpy(&data[cbrk], &src[pc], size);
  }
  data[hdr+7] = 0;

 defragment_out:
  if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );







|





|



















|







1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
    pc = get2byte(pAddr);
    testcase( pc==iCellFirst );
    testcase( pc==iCellLast );
    /* These conditions have already been verified in btreeInitPage()
    ** if PRAGMA cell_size_check=ON.
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = pPage->xCellSize(pPage, &src[pc]);
    cbrk -= size;
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    put2byte(pAddr, cbrk);
    if( temp==0 ){
      int x;
      if( cbrk==pc ) continue;
      temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
      x = get2byte(&data[hdr+5]);
      memcpy(&temp[x], &data[x], (cbrk+size) - x);
      src = temp;
    }
    memcpy(&data[cbrk], &src[pc], size);
  }
  data[hdr+7] = 0;

 defragment_out:
  if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( (x = size - nByte)>=0 ){
      testcase( x==4 );
      testcase( x==3 );
      if( size+pc > usableSize ){
        *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
        return 0;
      }else if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>57 ) return 0;

        /* Remove the slot from the free-list. Update the number of







|







1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( (x = size - nByte)>=0 ){
      testcase( x==4 );
      testcase( x==3 );
      if( size+pc > usableSize ){
        *pRc = SQLITE_CORRUPT_PAGE(pPg);
        return 0;
      }else if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>57 ) return 0;

        /* Remove the slot from the free-list. Update the number of
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
      return &aData[pc + x];
    }
    iAddr = pc;
    pc = get2byte(&aData[pc]);
    if( pc<iAddr+size ) break;
  }
  if( pc ){
    *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
  }

  return 0;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed







|







1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
      return &aData[pc + x];
    }
    iAddr = pc;
    pc = get2byte(&aData[pc]);
    if( pc<iAddr+size ) break;
  }
  if( pc ){
    *pRc = SQLITE_CORRUPT_PAGE(pPg);
  }

  return 0;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
  ** integer, so a value of 0 is used in its place. */
  top = get2byte(&data[hdr+5]);
  assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
  if( gap>top ){
    if( top==0 && pPage->pBt->usableSize==65536 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */







|







1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
  ** integer, so a value of 0 is used in its place. */
  top = get2byte(&data[hdr+5]);
  assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
  if( gap>top ){
    if( top==0 && pPage->pBt->usableSize==65536 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_PAGE(pPage);
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
  iPtr = hdr + 1;
  if( data[iPtr+1]==0 && data[iPtr]==0 ){
    iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
  }else{
    while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
      if( iFreeBlk<iPtr+4 ){
        if( iFreeBlk==0 ) break;
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
      iPtr = iFreeBlk;
    }
    if( iFreeBlk>pPage->pBt->usableSize-4 ){
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
    assert( iFreeBlk>iPtr || iFreeBlk==0 );
  
    /* At this point:
    **    iFreeBlk:   First freeblock after iStart, or zero if none
    **    iPtr:       The address of a pointer to iFreeBlk
    **
    ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
    */
    if( iFreeBlk && iEnd+3>=iFreeBlk ){
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      if( iEnd > pPage->pBt->usableSize ){
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist
    ** pointer in the page header) then check to see if iStart should be
    ** coalesced onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
        iStart = iPtr;
      }
    }
    if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
    data[hdr+7] -= nFrag;
  }
  x = get2byte(&data[hdr+5]);
  if( iStart<=x ){
    /* The new freeblock is at the beginning of the cell content area,
    ** so just extend the cell content area rather than create another
    ** freelist entry */
    if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
    put2byte(&data[hdr+1], iFreeBlk);
    put2byte(&data[hdr+5], iEnd);
  }else{
    /* Insert the new freeblock into the freelist */
    put2byte(&data[iPtr], iStart);
  }
  if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){







|




|











|


|












|





|







|







1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
  iPtr = hdr + 1;
  if( data[iPtr+1]==0 && data[iPtr]==0 ){
    iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
  }else{
    while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
      if( iFreeBlk<iPtr+4 ){
        if( iFreeBlk==0 ) break;
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      iPtr = iFreeBlk;
    }
    if( iFreeBlk>pPage->pBt->usableSize-4 ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( iFreeBlk>iPtr || iFreeBlk==0 );
  
    /* At this point:
    **    iFreeBlk:   First freeblock after iStart, or zero if none
    **    iPtr:       The address of a pointer to iFreeBlk
    **
    ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
    */
    if( iFreeBlk && iEnd+3>=iFreeBlk ){
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      if( iEnd > pPage->pBt->usableSize ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist
    ** pointer in the page header) then check to see if iStart should be
    ** coalesced onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
        iStart = iPtr;
      }
    }
    if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
    data[hdr+7] -= nFrag;
  }
  x = get2byte(&data[hdr+5]);
  if( iStart<=x ){
    /* The new freeblock is at the beginning of the cell content area,
    ** so just extend the cell content area rather than create another
    ** freelist entry */
    if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
    put2byte(&data[hdr+1], iFreeBlk);
    put2byte(&data[hdr+5], iEnd);
  }else{
    /* Insert the new freeblock into the freelist */
    put2byte(&data[iPtr], iStart);
  }
  if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
    pPage->intKeyLeaf = 0;
    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
** Initialize the auxiliary information for a disk block.







|







1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
    pPage->intKeyLeaf = 0;
    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
** Initialize the auxiliary information for a disk block.
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

  pBt = pPage->pBt;
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
  ** the b-tree page type. */
  if( decodeFlags(pPage, data[hdr]) ){
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nOverflow = 0;
  usableSize = pBt->usableSize;
  pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
  pPage->aDataEnd = &data[usableSize];
  pPage->aCellIdx = &data[cellOffset];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
  ** the start of the cell content area. A zero value for this integer is
  ** interpreted as 65536. */
  top = get2byteNotZero(&data[hdr+5]);
  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  pPage->nCell = get2byte(&data[hdr+3]);
  if( pPage->nCell>MX_CELL(pBt) ){
    /* To many cells for a single page.  The page must be corrupt */
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  testcase( pPage->nCell==MX_CELL(pBt) );
  /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
  ** possible for a root page of a table that contains no rows) then the
  ** offset to the cell content area will equal the page size minus the
  ** bytes of reserved space. */
  assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );







|


















|







1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

  pBt = pPage->pBt;
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
  ** the b-tree page type. */
  if( decodeFlags(pPage, data[hdr]) ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nOverflow = 0;
  usableSize = pBt->usableSize;
  pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
  pPage->aDataEnd = &data[usableSize];
  pPage->aCellIdx = &data[cellOffset];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
  ** the start of the cell content area. A zero value for this integer is
  ** interpreted as 65536. */
  top = get2byteNotZero(&data[hdr+5]);
  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  pPage->nCell = get2byte(&data[hdr+3]);
  if( pPage->nCell>MX_CELL(pBt) ){
    /* To many cells for a single page.  The page must be corrupt */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  testcase( pPage->nCell==MX_CELL(pBt) );
  /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
  ** possible for a root page of a table that contains no rows) then the
  ** offset to the cell content area will equal the page size minus the
  ** bytes of reserved space. */
  assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

    if( !pPage->leaf ) iCellLast--;
    for(i=0; i<pPage->nCell; i++){
      pc = get2byteAligned(&data[cellOffset+i*2]);
      testcase( pc==iCellFirst );
      testcase( pc==iCellLast );
      if( pc<iCellFirst || pc>iCellLast ){
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
      sz = pPage->xCellSize(pPage, &data[pc]);
      testcase( pc+sz==usableSize );
      if( pc+sz>usableSize ){
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
    }
    if( !pPage->leaf ) iCellLast++;
  }  

  /* Compute the total free space on the page
  ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
  ** start of the first freeblock on the page, or is zero if there are no
  ** freeblocks. */
  pc = get2byte(&data[hdr+1]);
  nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
  if( pc>0 ){
    u32 next, size;
    if( pc<iCellFirst ){
      /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
      ** always be at least one cell before the first freeblock.
      */
      return SQLITE_CORRUPT_PGNO(pPage->pgno); 
    }
    while( 1 ){
      if( pc>iCellLast ){
        /* Freeblock off the end of the page */
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      nFree = nFree + size;
      if( next<=pc+size+3 ) break;
      pc = next;
    }
    if( next>0 ){
      /* Freeblock not in ascending order */
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
    if( pc+size>(unsigned int)usableSize ){
      /* Last freeblock extends past page end */
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
  }

  /* At this point, nFree contains the sum of the offset to the start
  ** of the cell-content area plus the number of free bytes within
  ** the cell-content area. If this is greater than the usable-size
  ** of the page, then the page must be corrupted. This check also
  ** serves to verify that the offset to the start of the cell-content
  ** area, according to the page header, lies within the page.
  */
  if( nFree>usableSize ){
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  pPage->nFree = (u16)(nFree - iCellFirst);
  pPage->isInit = 1;
  return SQLITE_OK;
}

/*







|




|

















|




|









|



|











|







1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

    if( !pPage->leaf ) iCellLast--;
    for(i=0; i<pPage->nCell; i++){
      pc = get2byteAligned(&data[cellOffset+i*2]);
      testcase( pc==iCellFirst );
      testcase( pc==iCellLast );
      if( pc<iCellFirst || pc>iCellLast ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      sz = pPage->xCellSize(pPage, &data[pc]);
      testcase( pc+sz==usableSize );
      if( pc+sz>usableSize ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
    }
    if( !pPage->leaf ) iCellLast++;
  }  

  /* Compute the total free space on the page
  ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
  ** start of the first freeblock on the page, or is zero if there are no
  ** freeblocks. */
  pc = get2byte(&data[hdr+1]);
  nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
  if( pc>0 ){
    u32 next, size;
    if( pc<iCellFirst ){
      /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
      ** always be at least one cell before the first freeblock.
      */
      return SQLITE_CORRUPT_PAGE(pPage); 
    }
    while( 1 ){
      if( pc>iCellLast ){
        /* Freeblock off the end of the page */
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      nFree = nFree + size;
      if( next<=pc+size+3 ) break;
      pc = next;
    }
    if( next>0 ){
      /* Freeblock not in ascending order */
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    if( pc+size>(unsigned int)usableSize ){
      /* Last freeblock extends past page end */
      return SQLITE_CORRUPT_PAGE(pPage);
    }
  }

  /* At this point, nFree contains the sum of the offset to the start
  ** of the cell-content area plus the number of free bytes within
  ** the cell-content area. If this is greater than the usable-size
  ** of the page, then the page must be corrupted. This check also
  ** serves to verify that the offset to the start of the cell-content
  ** area, according to the page header, lies within the page.
  */
  if( nFree>usableSize ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  pPage->nFree = (u16)(nFree - iCellFirst);
  pPage->isInit = 1;
  return SQLITE_OK;
}

/*
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_PGNO(pPage->pgno);
    }
    put4byte(pPage->aData, iTo);
  }else{
    int i;
    int nCell;
    int rc;

    rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
    if( rc ) return rc;
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload ){
          if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
            return SQLITE_CORRUPT_PGNO(pPage->pgno);
          }
          if( iFrom==get4byte(pCell+info.nSize-4) ){
            put4byte(pCell+info.nSize-4, iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_PGNO(pPage->pgno);
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }
  }
  return SQLITE_OK;
}








|


















|

















|







3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    put4byte(pPage->aData, iTo);
  }else{
    int i;
    int nCell;
    int rc;

    rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
    if( rc ) return rc;
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload ){
          if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
            return SQLITE_CORRUPT_PAGE(pPage);
          }
          if( iFrom==get4byte(pCell+info.nSize-4) ){
            put4byte(pCell+info.nSize-4, iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }
  }
  return SQLITE_OK;
}

4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
    ** but is recast into its current form to avoid integer overflow problems
    */
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;







|







4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
    ** but is recast into its current form to avoid integer overflow problems
    */
    return SQLITE_CORRUPT_PAGE(pPage);
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
      if( rc ) break;
      iIdx++;
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    /* Overflow chain ends prematurely */
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer







|







4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
      if( rc ) break;
      iIdx++;
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    /* Overflow chain ends prematurely */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
  ** Earlier versions of SQLite assumed that this test could not fail
  ** if the root page was already loaded when this function was called (i.e.
  ** if pCur->iPage>=0). But this is not so if the database is corrupted 
  ** in such a way that page pRoot is linked into a second b-tree table 
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_PGNO(pCur->pPage->pgno);
  }

skip_init:  
  pCur->ix = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);








|







5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
  ** Earlier versions of SQLite assumed that this test could not fail
  ** if the root page was already loaded when this function was called (i.e.
  ** if pCur->iPage>=0). But this is not so if the database is corrupted 
  ** in such a way that page pRoot is linked into a second b-tree table 
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_PAGE(pCur->pPage);
  }

skip_init:  
  pCur->ix = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);

5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ){
              return SQLITE_CORRUPT_PGNO(pPage->pgno);
            }
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }







|







5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ){
              return SQLITE_CORRUPT_PAGE(pPage);
            }
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
          pPage->xParseCell(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          testcase( nCell<0 );   /* True if key size is 2^32 or more */
          testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
          testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
          testcase( nCell==2 );  /* Minimum legal index key size */
          if( nCell<2 ){
            rc = SQLITE_CORRUPT_PGNO(pPage->pgno);
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }







|







5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
          pPage->xParseCell(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          testcase( nCell<0 );   /* True if key size is 2^32 or more */
          testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
          testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
          testcase( nCell==2 );  /* Minimum legal index key size */
          if( nCell<2 ){
            rc = SQLITE_CORRUPT_PAGE(pPage);
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, pInfo);
  if( pInfo->nLocal==pInfo->nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
    /* Cell extends past end of page */
    return SQLITE_CORRUPT_PGNO(pPage->pgno);
  }
  ovflPgno = get4byte(pCell + pInfo->nSize - 4);
  pBt = pPage->pBt;
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 







|







6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, pInfo);
  if( pInfo->nLocal==pInfo->nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
    /* Cell extends past end of page */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  ovflPgno = get4byte(pCell + pInfo->nSize - 4);
  pBt = pPage->pBt;
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 
Changes to src/main.c.
2915
2916
2917
2918
2919
2920
2921

2922
2923
2924
2925
2926
2927
2928
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
  }else{
    isThreadsafe = sqlite3GlobalConfig.bFullMutex;
  }

  if( flags & SQLITE_OPEN_PRIVATECACHE ){
    flags &= ~SQLITE_OPEN_SHAREDCACHE;
  }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
    flags |= SQLITE_OPEN_SHAREDCACHE;
  }

  /* Remove harmful bits from the flags parameter







>







2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
  }else if( flags & SQLITE_OPEN_NOMUTEX ){
    isThreadsafe = 0;
  }else if( flags & SQLITE_OPEN_FULLMUTEX ){
    isThreadsafe = 1;
  }else{
    isThreadsafe = sqlite3GlobalConfig.bFullMutex;
  }

  if( flags & SQLITE_OPEN_PRIVATECACHE ){
    flags &= ~SQLITE_OPEN_SHAREDCACHE;
  }else if( sqlite3GlobalConfig.sharedCacheEnabled ){
    flags |= SQLITE_OPEN_SHAREDCACHE;
  }

  /* Remove harmful bits from the flags parameter
2947
2948
2949
2950
2951
2952
2953
2954




2955
2956
2957
2958
2959
2960



2961
2962
2963
2964
2965
2966
2967
               SQLITE_OPEN_FULLMUTEX |
               SQLITE_OPEN_WAL
             );

  /* Allocate the sqlite data structure */
  db = sqlite3MallocZero( sizeof(sqlite3) );
  if( db==0 ) goto opendb_out;
  if( isThreadsafe ){




    db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
    if( db->mutex==0 ){
      sqlite3_free(db);
      db = 0;
      goto opendb_out;
    }



  }
  sqlite3_mutex_enter(db->mutex);
  db->errMask = 0xff;
  db->nDb = 2;
  db->magic = SQLITE_MAGIC_BUSY;
  db->aDb = db->aDbStatic;








|
>
>
>
>






>
>
>







2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
               SQLITE_OPEN_FULLMUTEX |
               SQLITE_OPEN_WAL
             );

  /* Allocate the sqlite data structure */
  db = sqlite3MallocZero( sizeof(sqlite3) );
  if( db==0 ) goto opendb_out;
  if( isThreadsafe 
#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
   || sqlite3GlobalConfig.bCoreMutex
#endif
  ){
    db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE);
    if( db->mutex==0 ){
      sqlite3_free(db);
      db = 0;
      goto opendb_out;
    }
    if( isThreadsafe==0 ){
      sqlite3MutexWarnOnContention(db->mutex);
    }
  }
  sqlite3_mutex_enter(db->mutex);
  db->errMask = 0xff;
  db->nDb = 2;
  db->magic = SQLITE_MAGIC_BUSY;
  db->aDb = db->aDbStatic;

3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
**
**   1.  Serve as a convenient place to set a breakpoint in a debugger
**       to detect when version error conditions occurs.
**
**   2.  Invoke sqlite3_log() to provide the source code location where
**       a low-level error is first detected.
*/
static int reportError(int iErr, int lineno, const char *zType){
  sqlite3_log(iErr, "%s at line %d of [%.10s]",
              zType, lineno, 20+sqlite3_sourceid());
  return iErr;
}
int sqlite3CorruptError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_CORRUPT, lineno, "database corruption");
}
int sqlite3MisuseError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_MISUSE, lineno, "misuse");
}
int sqlite3CantopenError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_CANTOPEN, lineno, "cannot open file");
}
#ifdef SQLITE_DEBUG
int sqlite3CorruptPgnoError(int lineno, Pgno pgno){
  char zMsg[100];
  sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno);
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_CORRUPT, lineno, zMsg);
}
int sqlite3NomemError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_NOMEM, lineno, "OOM");
}
int sqlite3IoerrnomemError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return reportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error");
}
#endif

#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.







|






|



|



|






|



|



|







3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
**
**   1.  Serve as a convenient place to set a breakpoint in a debugger
**       to detect when version error conditions occurs.
**
**   2.  Invoke sqlite3_log() to provide the source code location where
**       a low-level error is first detected.
*/
int sqlite3ReportError(int iErr, int lineno, const char *zType){
  sqlite3_log(iErr, "%s at line %d of [%.10s]",
              zType, lineno, 20+sqlite3_sourceid());
  return iErr;
}
int sqlite3CorruptError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption");
}
int sqlite3MisuseError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse");
}
int sqlite3CantopenError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file");
}
#ifdef SQLITE_DEBUG
int sqlite3CorruptPgnoError(int lineno, Pgno pgno){
  char zMsg[100];
  sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno);
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
}
int sqlite3NomemError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM");
}
int sqlite3IoerrnomemError(int lineno){
  testcase( sqlite3GlobalConfig.xLog!=0 );
  return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error");
}
#endif

#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
Changes to src/mutex.c.
22
23
24
25
26
27
28



























































































































































































29
30
31
32
33
34
35
36
37
38
39
40
41
42
43



44

45
46
47
48
49
50
51
** allocate a mutex while the system is uninitialized.
*/
static SQLITE_WSD int mutexIsInit = 0;
#endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */


#ifndef SQLITE_MUTEX_OMIT



























































































































































































/*
** Initialize the mutex system.
*/
int sqlite3MutexInit(void){ 
  int rc = SQLITE_OK;
  if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
    /* If the xMutexAlloc method has not been set, then the user did not
    ** install a mutex implementation via sqlite3_config() prior to 
    ** sqlite3_initialize() being called. This block copies pointers to
    ** the default implementation into the sqlite3GlobalConfig structure.
    */
    sqlite3_mutex_methods const *pFrom;
    sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;

    if( sqlite3GlobalConfig.bCoreMutex ){



      pFrom = sqlite3DefaultMutex();

    }else{
      pFrom = sqlite3NoopMutex();
    }
    pTo->xMutexInit = pFrom->xMutexInit;
    pTo->xMutexEnd = pFrom->xMutexEnd;
    pTo->xMutexFree = pFrom->xMutexFree;
    pTo->xMutexEnter = pFrom->xMutexEnter;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















>
>
>

>







22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
** allocate a mutex while the system is uninitialized.
*/
static SQLITE_WSD int mutexIsInit = 0;
#endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */


#ifndef SQLITE_MUTEX_OMIT

#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
/*
** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains
** the implementation of a wrapper around the system default mutex
** implementation (sqlite3DefaultMutex()). 
**
** Most calls are passed directly through to the underlying default
** mutex implementation. Except, if a mutex is configured by calling
** sqlite3MutexWarnOnContention() on it, then if contention is ever
** encountered within xMutexEnter() a warning is emitted via sqlite3_log().
**
** This type of mutex is used as the database handle mutex when testing
** apps that usually use SQLITE_CONFIG_MULTITHREAD mode.
*/

/* 
** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS
** is defined. Variable CheckMutex.mutex is a pointer to the real mutex
** allocated by the system mutex implementation. Variable iType is usually set
** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST
** or one of the static mutex identifiers. Or, if this is a recursive mutex
** that has been configured using sqlite3MutexWarnOnContention(), it is
** set to SQLITE_MUTEX_WARNONCONTENTION.
*/
typedef struct CheckMutex CheckMutex;
struct CheckMutex {
  int iType;
  sqlite3_mutex *mutex;
};

#define SQLITE_MUTEX_WARNONCONTENTION  (-1)

/* 
** Pointer to real mutex methods object used by the CheckMutex
** implementation. Set by checkMutexInit(). 
*/
static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods;

#ifdef SQLITE_DEBUG
static int checkMutexHeld(sqlite3_mutex *p){
  return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex);
}
static int checkMutexNotheld(sqlite3_mutex *p){
  return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex);
}
#endif

/*
** Initialize and deinitialize the mutex subsystem.
*/
static int checkMutexInit(void){ 
  pGlobalMutexMethods = sqlite3DefaultMutex();
  return SQLITE_OK; 
}
static int checkMutexEnd(void){ 
  pGlobalMutexMethods = 0;
  return SQLITE_OK; 
}

/*
** Allocate a mutex.
*/
static sqlite3_mutex *checkMutexAlloc(int iType){
  static CheckMutex staticMutexes[] = {
    {2, 0}, {3, 0}, {4, 0}, {5, 0},
    {6, 0}, {7, 0}, {8, 0}, {9, 0},
    {10, 0}, {11, 0}, {12, 0}, {13, 0}
  };
  CheckMutex *p = 0;

  assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 );
  if( iType<2 ){
    p = sqlite3MallocZero(sizeof(CheckMutex));
    if( p==0 ) return 0;
    p->iType = iType;
  }else{
#ifdef SQLITE_ENABLE_API_ARMOR
    if( iType-2>=ArraySize(staticMutexes) ){
      (void)SQLITE_MISUSE_BKPT;
      return 0;
    }
#endif
    p = &staticMutexes[iType-2];
  }

  if( p->mutex==0 ){
    p->mutex = pGlobalMutexMethods->xMutexAlloc(iType);
    if( p->mutex==0 ){
      if( iType<2 ){
        sqlite3_free(p);
      }
      p = 0;
    }
  }

  return (sqlite3_mutex*)p;
}

/*
** Free a mutex.
*/
static void checkMutexFree(sqlite3_mutex *p){
  assert( SQLITE_MUTEX_RECURSIVE<2 );
  assert( SQLITE_MUTEX_FAST<2 );
  assert( SQLITE_MUTEX_WARNONCONTENTION<2 );

#if SQLITE_ENABLE_API_ARMOR
  if( p->iType<2 ){
#endif
  {
    CheckMutex *pCheck = (CheckMutex*)p;
    pGlobalMutexMethods->xMutexFree(pCheck->mutex);
    sqlite3_free(pCheck);
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  else{
    (void)SQLITE_MISUSE_BKPT;
  }
#endif
}

/*
** Enter the mutex.
*/
static void checkMutexEnter(sqlite3_mutex *p){
  CheckMutex *pCheck = (CheckMutex*)p;
  if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){
    if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){
      return;
    }
    sqlite3_log(SQLITE_MISUSE, 
        "illegal multi-threaded access to database connection"
    );
  }
  pGlobalMutexMethods->xMutexEnter(pCheck->mutex);
}

/*
** Enter the mutex (do not block).
*/
static int checkMutexTry(sqlite3_mutex *p){
  CheckMutex *pCheck = (CheckMutex*)p;
  return pGlobalMutexMethods->xMutexTry(pCheck->mutex);
}

/*
** Leave the mutex.
*/
static void checkMutexLeave(sqlite3_mutex *p){
  CheckMutex *pCheck = (CheckMutex*)p;
  pGlobalMutexMethods->xMutexLeave(pCheck->mutex);
}

sqlite3_mutex_methods const *multiThreadedCheckMutex(void){
  static const sqlite3_mutex_methods sMutex = {
    checkMutexInit,
    checkMutexEnd,
    checkMutexAlloc,
    checkMutexFree,
    checkMutexEnter,
    checkMutexTry,
    checkMutexLeave,
#ifdef SQLITE_DEBUG
    checkMutexHeld,
    checkMutexNotheld
#else
    0,
    0
#endif
  };
  return &sMutex;
}

/*
** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as
** one on which there should be no contention.
*/
void sqlite3MutexWarnOnContention(sqlite3_mutex *p){
  if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){
    CheckMutex *pCheck = (CheckMutex*)p;
    assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE );
    pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION;
  }
}
#endif   /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */

/*
** Initialize the mutex system.
*/
int sqlite3MutexInit(void){ 
  int rc = SQLITE_OK;
  if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){
    /* If the xMutexAlloc method has not been set, then the user did not
    ** install a mutex implementation via sqlite3_config() prior to 
    ** sqlite3_initialize() being called. This block copies pointers to
    ** the default implementation into the sqlite3GlobalConfig structure.
    */
    sqlite3_mutex_methods const *pFrom;
    sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex;

    if( sqlite3GlobalConfig.bCoreMutex ){
#ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS
      pFrom = multiThreadedCheckMutex();
#else
      pFrom = sqlite3DefaultMutex();
#endif
    }else{
      pFrom = sqlite3NoopMutex();
    }
    pTo->xMutexInit = pFrom->xMutexInit;
    pTo->xMutexEnd = pFrom->xMutexEnd;
    pTo->xMutexFree = pFrom->xMutexFree;
    pTo->xMutexEnter = pFrom->xMutexEnter;
163
164
165
166
167
168
169

int sqlite3_mutex_notheld(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */








>
354
355
356
357
358
359
360
361
int sqlite3_mutex_notheld(sqlite3_mutex *p){
  assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld );
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */

Changes to src/shell.c.in.
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
         || (z[i]==p->colSeparator[0] &&
             (nSep==1 || memcmp(z, p->colSeparator, nSep)==0)) ){
        i = 0;
        break;
      }
    }
    if( i==0 ){
      putc('"', out);
      for(i=0; z[i]; i++){
        if( z[i]=='"' ) putc('"', out);
        putc(z[i], out);
      }
      putc('"', out);
    }else{
      utf8_printf(out, "%s", z);
    }
  }
  if( bSep ){
    utf8_printf(p->out, "%s", p->colSeparator);
  }







|
<
|
|
<
<







1186
1187
1188
1189
1190
1191
1192
1193

1194
1195


1196
1197
1198
1199
1200
1201
1202
         || (z[i]==p->colSeparator[0] &&
             (nSep==1 || memcmp(z, p->colSeparator, nSep)==0)) ){
        i = 0;
        break;
      }
    }
    if( i==0 ){
      char *zQuoted = sqlite3_mprintf("\"%w\"", z);

      utf8_printf(out, "%s", zQuoted);
      sqlite3_free(zQuoted);


    }else{
      utf8_printf(out, "%s", z);
    }
  }
  if( bSep ){
    utf8_printf(p->out, "%s", p->colSeparator);
  }
5948
5949
5950
5951
5952
5953
5954


5955
5956
5957
5958
5959
5960
5961
5962
5963
      { "reserve",            SQLITE_TESTCTRL_RESERVE,       "BYTES-OF-RESERVE"   },
    };
    int testctrl = -1;
    int iCtrl = -1;
    int rc2 = 0;    /* 0: usage.  1: %d  2: %x  3: no-output */
    int isOk = 0;
    int i, n2;


    open_db(p, 0);
    const char *zCmd = nArg>=2 ? azArg[1] : "help";

    /* The argument can optionally begin with "-" or "--" */
    if( zCmd[0]=='-' && zCmd[1] ){
      zCmd++;
      if( zCmd[0]=='-' && zCmd[1] ) zCmd++;
    }








>
>

|







5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
      { "reserve",            SQLITE_TESTCTRL_RESERVE,       "BYTES-OF-RESERVE"   },
    };
    int testctrl = -1;
    int iCtrl = -1;
    int rc2 = 0;    /* 0: usage.  1: %d  2: %x  3: no-output */
    int isOk = 0;
    int i, n2;
    const char *zCmd = 0;

    open_db(p, 0);
    zCmd = nArg>=2 ? azArg[1] : "help";

    /* The argument can optionally begin with "-" or "--" */
    if( zCmd[0]=='-' && zCmd[1] ){
      zCmd++;
      if( zCmd[0]=='-' && zCmd[1] ) zCmd++;
    }

Changes to src/sqliteInt.h.
3427
3428
3429
3430
3431
3432
3433

3434
3435
3436
3437
3438
3439
3440
/*
** The SQLITE_*_BKPT macros are substitutes for the error codes with
** the same name but without the _BKPT suffix.  These macros invoke
** routines that report the line-number on which the error originated
** using sqlite3_log().  The routines also provide a convenient place
** to set a debugger breakpoint.
*/

int sqlite3CorruptError(int);
int sqlite3MisuseError(int);
int sqlite3CantopenError(int);
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
#ifdef SQLITE_DEBUG







>







3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
/*
** The SQLITE_*_BKPT macros are substitutes for the error codes with
** the same name but without the _BKPT suffix.  These macros invoke
** routines that report the line-number on which the error originated
** using sqlite3_log().  The routines also provide a convenient place
** to set a debugger breakpoint.
*/
int sqlite3ReportError(int iErr, int lineno, const char *zType);
int sqlite3CorruptError(int);
int sqlite3MisuseError(int);
int sqlite3CantopenError(int);
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
#ifdef SQLITE_DEBUG
3584
3585
3586
3587
3588
3589
3590






3591
3592
3593
3594
3595
3596
3597
void sqlite3StatusDown(int, int);
void sqlite3StatusHighwater(int, int);
int sqlite3LookasideUsed(sqlite3*,int*);

/* Access to mutexes used by sqlite3_status() */
sqlite3_mutex *sqlite3Pcache1Mutex(void);
sqlite3_mutex *sqlite3MallocMutex(void);







#ifndef SQLITE_OMIT_FLOATING_POINT
  int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif








>
>
>
>
>
>







3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
void sqlite3StatusDown(int, int);
void sqlite3StatusHighwater(int, int);
int sqlite3LookasideUsed(sqlite3*,int*);

/* Access to mutexes used by sqlite3_status() */
sqlite3_mutex *sqlite3Pcache1Mutex(void);
sqlite3_mutex *sqlite3MallocMutex(void);

#if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT)
void sqlite3MutexWarnOnContention(sqlite3_mutex*);
#else
# define sqlite3MutexWarnOnContention(x)
#endif

#ifndef SQLITE_OMIT_FLOATING_POINT
  int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif

Changes to src/test_config.c.
705
706
707
708
709
710
711






712
713
714
715
716
717
718
#endif

#if defined(SQLITE_ENABLE_UNLOCK_NOTIFY)
  Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_SECURE_DELETE
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY);
#endif








>
>
>
>
>
>







705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
#endif

#if defined(SQLITE_ENABLE_UNLOCK_NOTIFY)
  Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_FAST_SECURE_DELETE
  Tcl_SetVar2(interp, "sqlite_options", "fast_secure_delete", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "fast_secure_delete", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_SECURE_DELETE
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY);
#endif

Changes to src/vdbemem.c.
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";
  int rc = SQLITE_OK;

  assert( pExpr!=0 );
  while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;

  /* Compressed expressions only appear when parsing the DEFAULT clause
  ** on a table column definition, and hence only when pCtx==0.  This
  ** check ensures that an EP_TokenOnly expression is never passed down
  ** into valueFromFunction(). */
  assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );








|







1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
  sqlite3_value *pVal = 0;
  int negInt = 1;
  const char *zNeg = "";
  int rc = SQLITE_OK;

  assert( pExpr!=0 );
  while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
  if( op==TK_REGISTER ) op = pExpr->op2;

  /* Compressed expressions only appear when parsing the DEFAULT clause
  ** on a table column definition, and hence only when pCtx==0.  This
  ** check ensures that an EP_TokenOnly expression is never passed down
  ** into valueFromFunction(). */
  assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );

Changes to src/where.c.
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
                          ** changes "x IN (?)" into "x=?". */
      }
    }else if( eOp & (WO_EQ|WO_IS) ){
      int iCol = pProbe->aiColumn[saved_nEq];
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      assert( saved_nEq==pNew->u.btree.nEq );
      if( iCol==XN_ROWID 
       || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
      ){
        if( iCol>=0 && pProbe->uniqNotNull==0 ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }







|







2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
                          ** changes "x IN (?)" into "x=?". */
      }
    }else if( eOp & (WO_EQ|WO_IS) ){
      int iCol = pProbe->aiColumn[saved_nEq];
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      assert( saved_nEq==pNew->u.btree.nEq );
      if( iCol==XN_ROWID 
       || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
      ){
        if( iCol>=0 && pProbe->uniqNotNull==0 ){
          pNew->wsFlags |= WHERE_UNQ_WANTED;
        }else{
          pNew->wsFlags |= WHERE_ONEROW;
        }
      }
4673
4674
4675
4676
4677
4678
4679

4680





























4681
4682
4683
4684

4685
4686
4687
4688
4689
4690

4691
4692

4693
4694
4695
4696
4697
4698
4699
4700
4701
4702

4703
4704
4705
4706

4707
4708










4709
4710
4711
4712
4713
4714
4715
    }
    sqlite3DebugPrintf("\n");
    for(ii=0; ii<pWInfo->nLevel; ii++){
      whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
    }
  }
#endif

  /* Attempt to omit tables from the join that do not effect the result */





























  if( pWInfo->nLevel>=2
   && pResultSet!=0
   && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
  ){

    Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
    if( sWLB.pOrderBy ){
      tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
    }
    while( pWInfo->nLevel>=2 ){
      WhereTerm *pTerm, *pEnd;

      pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
      if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;

      if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
       && (pLoop->wsFlags & WHERE_ONEROW)==0
      ){
        break;
      }
      if( (tabUsed & pLoop->maskSelf)!=0 ) break;
      pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
      for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
        if( (pTerm->prereqAll & pLoop->maskSelf)!=0
         && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)

        ){
          break;
        }
      }

      if( pTerm<pEnd ) break;
      WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));










      pWInfo->nLevel--;
      nTabList--;
    }
  }
  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;








>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|


>




|

>
|
|
>



|

|


|
|
>
|
|
|
|
>
|

>
>
>
>
>
>
>
>
>
>







4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
    }
    sqlite3DebugPrintf("\n");
    for(ii=0; ii<pWInfo->nLevel; ii++){
      whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
    }
  }
#endif

  /* Attempt to omit tables from the join that do not affect the result.
  ** For a table to not affect the result, the following must be true:
  **
  **   1) The query must not be an aggregate.
  **   2) The table must be the RHS of a LEFT JOIN.
  **   3) Either the query must be DISTINCT, or else the ON or USING clause
  **      must contain a constraint that limits the scan of the table to 
  **      at most a single row.
  **   4) The table must not be referenced by any part of the query apart
  **      from its own USING or ON clause.
  **
  ** For example, given:
  **
  **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
  **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
  **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
  **
  ** then table t2 can be omitted from the following:
  **
  **     SELECT v1, v3 FROM t1 
  **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
  **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
  **
  ** or from:
  **
  **     SELECT DISTINCT v1, v3 FROM t1 
  **       LEFT JOIN t2
  **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
  */
  notReady = ~(Bitmask)0;
  if( pWInfo->nLevel>=2
   && pResultSet!=0               /* guarantees condition (1) above */
   && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
  ){
    int i;
    Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
    if( sWLB.pOrderBy ){
      tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
    }
    for(i=pWInfo->nLevel-1; i>=1; i--){
      WhereTerm *pTerm, *pEnd;
      struct SrcList_item *pItem;
      pLoop = pWInfo->a[i].pWLoop;
      pItem = &pWInfo->pTabList->a[pLoop->iTab];
      if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
      if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
       && (pLoop->wsFlags & WHERE_ONEROW)==0
      ){
        continue;
      }
      if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
      pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
      for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
        if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
          if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
           || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
          ){
            break;
          }
        }
      }
      if( pTerm<pEnd ) continue;
      WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
      notReady &= ~pLoop->maskSelf;
      for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
        if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
          pTerm->wtFlags |= TERM_CODED;
        }
      }
      if( i!=pWInfo->nLevel-1 ){
        int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
        memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
      }
      pWInfo->nLevel--;
      nTabList--;
    }
  }
  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;

4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    int addrExplain;
    int wsFlags;
    pLevel = &pWInfo->a[ii];
    wsFlags = pLevel->pWLoop->wsFlags;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){







<







4901
4902
4903
4904
4905
4906
4907

4908
4909
4910
4911
4912
4913
4914
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */

  for(ii=0; ii<nTabList; ii++){
    int addrExplain;
    int wsFlags;
    pLevel = &pWInfo->a[ii];
    wsFlags = pLevel->pWLoop->wsFlags;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4920
4921
4922
4923
4924
4925
4926

4927
4928
4929
4930
4931
4932
4933
    pLoop = pLevel->pWLoop;
    if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      int addrSeek = 0;
      Index *pIdx;
      int n;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED

       && (pLoop->wsFlags & WHERE_INDEXED)!=0
       && (pIdx = pLoop->u.btree.pIndex)->hasStat1
       && (n = pLoop->u.btree.nIdxCol)>0
       && pIdx->aiRowLogEst[n]>=36
      ){
        int r1 = pParse->nMem+1;
        int j, op;







>







4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
    pLoop = pLevel->pWLoop;
    if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      int addrSeek = 0;
      Index *pIdx;
      int n;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
       && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
       && (pLoop->wsFlags & WHERE_INDEXED)!=0
       && (pIdx = pLoop->u.btree.pIndex)->hasStat1
       && (n = pLoop->u.btree.nIdxCol)>0
       && pIdx->aiRowLogEst[n]>=36
      ){
        int r1 = pParse->nMem+1;
        int j, op;
4986
4987
4988
4989
4990
4991
4992

4993
4994
4995
4996
4997
4998
4999
5000
    }
#endif
    if( pLevel->iLeftJoin ){
      int ws = pLoop->wsFlags;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
      if( (ws & WHERE_IDX_ONLY)==0 ){

        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
      if( (ws & WHERE_INDEXED) 
       || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 
      ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){







>
|







5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
    }
#endif
    if( pLevel->iLeftJoin ){
      int ws = pLoop->wsFlags;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
      if( (ws & WHERE_IDX_ONLY)==0 ){
        assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
      }
      if( (ws & WHERE_INDEXED) 
       || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 
      ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){
Changes to src/wherecode.c.
373
374
375
376
377
378
379
380



381
382
383
384


385



















386












387


388















389



390
391
392

393














394






395
396
397
398
399
400
401
402
403
404
405
     || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
    ){
      zAff[i] = SQLITE_AFF_BLOB;
    }
  }
}

#ifdef SQLITE_DEBUG



/* Return true if the pSub ExprList is a subset of pMain.  The terms
** of pSub can be in a different order from pMain.  The only requirement
** is that every term in pSub must exist somewhere in pMain.
**


** Return false if pSub contains any term that is not found in pMain.



















*/












static int exprListSubset(ExprList *pSub, ExprList *pMain){


  int i, j;















  for(i=0; i<pSub->nExpr; i++){



    Expr *p = pSub->a[i].pExpr;
    for(j=0; j<pMain->nExpr; j++){
      if( sqlite3ExprCompare(0, p, pMain->a[j].pExpr, 0)==0 ) break;

    }














    if( j>=pMain->nExpr ) return 0;






  }
  return 1;
}
#endif /* SQLITE_DEBUG */


/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
**







|
>
>
>
|
|
<

>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
|
|
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>

|

<







373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

474
475
476
477
478
479
480
     || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
    ){
      zAff[i] = SQLITE_AFF_BLOB;
    }
  }
}


/*
** pX is an expression of the form:  (vector) IN (SELECT ...)
** In other words, it is a vector IN operator with a SELECT clause on the
** LHS.  But not all terms in the vector are indexable and the terms might
** not be in the correct order for indexing.

**
** This routine makes a copy of the input pX expression and then adjusts
** the vector on the LHS with corresponding changes to the SELECT so that
** the vector contains only index terms and those terms are in the correct
** order.  The modified IN expression is returned.  The caller is responsible
** for deleting the returned expression.
**
** Example:
**
**    CREATE TABLE t1(a,b,c,d,e,f);
**    CREATE INDEX t1x1 ON t1(e,c);
**    SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
**                           \_______________________________________/
**                                     The pX expression
**
** Since only columns e and c can be used with the index, in that order,
** the modified IN expression that is returned will be:
**
**        (e,c) IN (SELECT z,x FROM t2)
**
** The reduced pX is different from the original (obviously) and thus is
** only used for indexing, to improve performance.  The original unaltered
** IN expression must also be run on each output row for correctness.
*/
static Expr *removeUnindexableInClauseTerms(
  Parse *pParse,        /* The parsing context */
  int iEq,              /* Look at loop terms starting here */
  WhereLoop *pLoop,     /* The current loop */
  Expr *pX              /* The IN expression to be reduced */
){
  sqlite3 *db = pParse->db;
  Expr *pNew = sqlite3ExprDup(db, pX, 0);
  if( db->mallocFailed==0 ){
    ExprList *pOrigRhs = pNew->x.pSelect->pEList;  /* Original unmodified RHS */
    ExprList *pOrigLhs = pNew->pLeft->x.pList;     /* Original unmodified LHS */
    ExprList *pRhs = 0;         /* New RHS after modifications */
    ExprList *pLhs = 0;         /* New LHS after mods */
    int i;                      /* Loop counter */
    Select *pSelect;            /* Pointer to the SELECT on the RHS */

    for(i=iEq; i<pLoop->nLTerm; i++){
      if( pLoop->aLTerm[i]->pExpr==pX ){
        int iField = pLoop->aLTerm[i]->iField - 1;
        assert( pOrigRhs->a[iField].pExpr!=0 );
        pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
        pOrigRhs->a[iField].pExpr = 0;
        assert( pOrigLhs->a[iField].pExpr!=0 );
        pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
        pOrigLhs->a[iField].pExpr = 0;
      }
    }
    sqlite3ExprListDelete(db, pOrigRhs);
    sqlite3ExprListDelete(db, pOrigLhs);
    pNew->pLeft->x.pList = pLhs;
    pNew->x.pSelect->pEList = pRhs;
    if( pLhs && pLhs->nExpr==1 ){
      /* Take care here not to generate a TK_VECTOR containing only a
      ** single value. Since the parser never creates such a vector, some
      ** of the subroutines do not handle this case.  */
      Expr *p = pLhs->a[0].pExpr;
      pLhs->a[0].pExpr = 0;
      sqlite3ExprDelete(db, pNew->pLeft);
      pNew->pLeft = p;
    }
    pSelect = pNew->x.pSelect;
    if( pSelect->pOrderBy ){
      /* If the SELECT statement has an ORDER BY clause, zero the 
      ** iOrderByCol variables. These are set to non-zero when an 
      ** ORDER BY term exactly matches one of the terms of the 
      ** result-set. Since the result-set of the SELECT statement may
      ** have been modified or reordered, these variables are no longer 
      ** set correctly.  Since setting them is just an optimization, 
      ** it's easiest just to zero them here.  */
      ExprList *pOrderBy = pSelect->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
    }

#if 0
    printf("For indexing, change the IN expr:\n");
    sqlite3TreeViewExpr(0, pX, 0);
    printf("Into:\n");
    sqlite3TreeViewExpr(0, pNew, 0);
#endif
  }
  return pNew;
}



/*
** Generate code for a single equality term of the WHERE clause.  An equality
** term can be either X=expr or X IN (...).   pTerm is the term to be 
** coded.
**
456
457
458
459
460
461
462

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    for(i=0; i<iEq; i++){
      if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
        disableTerm(pLevel, pTerm);
        return iTarget;
      }
    }
    for(i=iEq;i<pLoop->nLTerm; i++){

      if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
    }

    if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
      eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
    }else{
      Select *pSelect = pX->x.pSelect;
      sqlite3 *db = pParse->db;
      u16 savedDbOptFlags = db->dbOptFlags;
      ExprList *pOrigRhs = pSelect->pEList;
      ExprList *pOrigLhs = pX->pLeft->x.pList;
      ExprList *pRhs = 0;         /* New Select.pEList for RHS */
      ExprList *pLhs = 0;         /* New pX->pLeft vector */

      for(i=iEq;i<pLoop->nLTerm; i++){
        if( pLoop->aLTerm[i]->pExpr==pX ){
          int iField = pLoop->aLTerm[i]->iField - 1;
          Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
          Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);

          pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
          pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
        }
      }
 
      /* pRhs should be a subset of pOrigRhs (though possibly in a different
      ** order).  And pLhs should be a subset of pOrigLhs.  To put it 
      ** another way:  Every term of pRhs should exist in pOrigRhs and
      ** every term of pLhs should exist in pOrigLhs. */
      assert( db->mallocFailed || exprListSubset(pRhs, pOrigRhs) );
      assert( db->mallocFailed || exprListSubset(pLhs, pOrigLhs) );

      if( !db->mallocFailed ){
        Expr *pLeft = pX->pLeft;

        if( pSelect->pOrderBy ){
          /* If the SELECT statement has an ORDER BY clause, zero the 
          ** iOrderByCol variables. These are set to non-zero when an 
          ** ORDER BY term exactly matches one of the terms of the 
          ** result-set. Since the result-set of the SELECT statement may
          ** have been modified or reordered, these variables are no longer 
          ** set correctly.  Since setting them is just an optimization, 
          ** it's easiest just to zero them here.  */
          ExprList *pOrderBy = pSelect->pOrderBy;
          for(i=0; i<pOrderBy->nExpr; i++){
            pOrderBy->a[i].u.x.iOrderByCol = 0;
          }
        }

        /* Take care here not to generate a TK_VECTOR containing only a
        ** single value. Since the parser never creates such a vector, some
        ** of the subroutines do not handle this case.  */
        if( pLhs->nExpr==1 ){
          pX->pLeft = pLhs->a[0].pExpr;
        }else{
          pLeft->x.pList = pLhs;
          aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
          testcase( aiMap==0 );
        }
        pSelect->pEList = pRhs;
        db->dbOptFlags |= SQLITE_QueryFlattener;
        eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
        db->dbOptFlags = savedDbOptFlags;
        testcase( aiMap!=0 && aiMap[0]!=0 );
        pSelect->pEList = pOrigRhs;
        pLeft->x.pList = pOrigLhs;
        pX->pLeft = pLeft;
      }
      sqlite3ExprListDelete(pParse->db, pLhs);
      sqlite3ExprListDelete(pParse->db, pRhs);
    }

    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;







>
|





<

<
<
<
<
<
|
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<

<
<
<
<
|

|
|







531
532
533
534
535
536
537
538
539
540
541
542
543
544

545





546





547












548























549




550




551
552
553
554
555
556
557
558
559
560
561
    for(i=0; i<iEq; i++){
      if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
        disableTerm(pLevel, pTerm);
        return iTarget;
      }
    }
    for(i=iEq;i<pLoop->nLTerm; i++){
      assert( pLoop->aLTerm[i]!=0 );
      if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
    }

    if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
      eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
    }else{

      sqlite3 *db = pParse->db;





      pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);


















      if( !db->mallocFailed ){























        aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);




        eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);




        pTerm->pExpr->iTable = pX->iTable;
      }
      sqlite3ExprDelete(db, pX);
      pX = pTerm->pExpr;
    }

    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
Changes to test/distinct2.test.
174
175
176
177
178
179
180


















































181
182
183
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}




















































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}

# Ticket https://sqlite.org/src/info/ef9318757b152e3a on 2017-11-21
# Incorrect result due to a skip-ahead-distinct optimization on a
# join where no rows of the inner loop appear in the result set.
#
db close
sqlite3 db :memory:
do_execsql_test 1000 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER);
  CREATE INDEX t1b ON t1(b);
  CREATE TABLE t2(x INTEGER PRIMARY KEY, y INTEGER);
  CREATE INDEX t2y ON t2(y);
  WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49)
    INSERT INTO t1(b) SELECT x/10 - 1 FROM c;
  WITH RECURSIVE c(x) AS (VALUES(-1) UNION ALL SELECT x+1 FROM c WHERE x<19)
    INSERT INTO t2(x,y) SELECT x, 1 FROM c;
  SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>-1;
  ANALYZE;
  SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>-1;
} {1 1}
db close
sqlite3 db :memory:
do_execsql_test 1010 {
  CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER);
  CREATE INDEX t1b ON t1(b);
  CREATE TABLE t2(x INTEGER PRIMARY KEY, y INTEGER);
  CREATE INDEX t2y ON t2(y);
  WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49)
    INSERT INTO t1(b) SELECT -(x/10 - 1) FROM c;
  WITH RECURSIVE c(x) AS (VALUES(-1) UNION ALL SELECT x+1 FROM c WHERE x<19)
    INSERT INTO t2(x,y) SELECT -x, 1 FROM c;
  SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>1 ORDER BY y DESC;
  ANALYZE;
  SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>1 ORDER BY y DESC;
} {1 1}
db close
sqlite3 db :memory:
do_execsql_test 1020 {
  CREATE TABLE t1(a, b);
  CREATE INDEX t1a ON t1(a, b);
  -- Lots of rows of (1, 'no'), followed by a single (1, 'yes').
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<100)
    INSERT INTO t1(a, b) SELECT 1, 'no' FROM c;
  INSERT INTO t1(a, b) VALUES(1, 'yes');
  CREATE TABLE t2(x PRIMARY KEY);
  INSERT INTO t2 VALUES('yes');
  SELECT DISTINCT a FROM t1, t2 WHERE x=b;
  ANALYZE;
  SELECT DISTINCT a FROM t1, t2 WHERE x=b;
} {1 1}


finish_test
Changes to test/fkey7.test.
63
64
65
66
67
68
69














70
71
  do_test 2.2 {
    set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1]
    sqlite3_bind_zeroblob $stmt 1 45
    sqlite3_step $stmt
    sqlite3_finalize $stmt
  } {SQLITE_CONSTRAINT}
}















finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>


63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
  do_test 2.2 {
    set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1]
    sqlite3_bind_zeroblob $stmt 1 45
    sqlite3_step $stmt
    sqlite3_finalize $stmt
  } {SQLITE_CONSTRAINT}
}

ifcapable stat4 {
  do_execsql_test 3.0 {
    CREATE TABLE p4 (id INTEGER NOT NULL PRIMARY KEY);
    INSERT INTO p4 VALUES(1), (2), (3);

    CREATE TABLE c4(x INTEGER REFERENCES p4(id) DEFERRABLE INITIALLY DEFERRED);
    CREATE INDEX c4_x ON c4(x);
    INSERT INTO c4 VALUES(1), (2), (3);

    ANALYZE;
    INSERT INTO p4(id) VALUES(4);
  }
}

finish_test
Changes to test/join2.test.
87
88
89
90
91
92
93




































































































94
95

do_catchsql_test 2.1 {
  SELECT * FROM aa LEFT JOIN cc ON (a=b) JOIN bb ON (b=c);
} {1 {ON clause references tables to its right}}
do_catchsql_test 2.2 {
  SELECT * FROM aa JOIN cc ON (a=b) JOIN bb ON (b=c);
} {0 {one one one}}





































































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

do_catchsql_test 2.1 {
  SELECT * FROM aa LEFT JOIN cc ON (a=b) JOIN bb ON (b=c);
} {1 {ON clause references tables to its right}}
do_catchsql_test 2.2 {
  SELECT * FROM aa JOIN cc ON (a=b) JOIN bb ON (b=c);
} {0 {one one one}}

#-------------------------------------------------------------------------
# Test that a problem causing where.c to overlook opportunities to
# omit unnecessary tables from a LEFT JOIN when UNIQUE, NOT NULL column 
# that makes this possible happens to be the leftmost in its table.
#
reset_db
do_execsql_test 3.0 {
  CREATE TABLE t1(k1 INTEGER PRIMARY KEY, k2, k3);
  CREATE TABLE t2(k2 INTEGER PRIMARY KEY, v2);

  -- Prior to this problem being fixed, table t3_2 would be omitted from
  -- the join queries below, but if t3_1 were used in its place it would
  -- not.
  CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID;
  CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID;
}

do_eqp_test 3.1 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3);
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test 3.2 {
  SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3);
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

#-------------------------------------------------------------------------
# Test that tables other than the rightmost can be omitted from a
# LEFT JOIN query.
#
do_execsql_test 4.0 {
  CREATE TABLE c1(k INTEGER PRIMARY KEY, v1);
  CREATE TABLE c2(k INTEGER PRIMARY KEY, v2);
  CREATE TABLE c3(k INTEGER PRIMARY KEY, v3);

  INSERT INTO c1 VALUES(1, 2);
  INSERT INTO c2 VALUES(2, 3);
  INSERT INTO c3 VALUES(3, 'v3');

  INSERT INTO c1 VALUES(111, 1112);
  INSERT INTO c2 VALUES(112, 1113);
  INSERT INTO c3 VALUES(113, 'v1113');
}
do_execsql_test 4.1.1 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {2 v3 1112 {}}
do_execsql_test 4.1.2 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 1112 {}}

do_execsql_test 4.1.3 {
  SELECT DISTINCT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 1112 {}}

do_execsql_test 4.1.4 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1);
} {2 v3 2 v3 1112 {} 1112 {}}

do_eqp_test 4.2.1 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2);
} {
  0 0 0 {SCAN TABLE c1} 
  0 1 1 {SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)}
  0 2 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test 4.2.2 {
  SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1);
} {
  0 0 0 {SCAN TABLE c1} 
  0 1 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)}
}

# 2017-11-23 (Thanksgiving day)
# OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code.
#
do_execsql_test 4.3.0 {
  DROP TABLE IF EXISTS t1;
  DROP TABLE IF EXISTS t2;
  CREATE TABLE t1(x PRIMARY KEY) WITHOUT ROWID;
  CREATE TABLE t2(x);
  SELECT a.x
    FROM t1 AS a
    LEFT JOIN t1 AS b ON (a.x=b.x)
    LEFT JOIN t2 AS c ON (a.x=c.x);
} {}
do_execsql_test 4.3.1 {
  WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<10)
    INSERT INTO t1(x) SELECT x FROM c;
  INSERT INTO t2(x) SELECT x+9 FROM t1;
  SELECT a.x, c.x
    FROM t1 AS a
    LEFT JOIN t1 AS b ON (a.x=b.x)
    LEFT JOIN t2 AS c ON (a.x=c.x);
} {1 {} 2 {} 3 {} 4 {} 5 {} 6 {} 7 {} 8 {} 9 {} 10 10}

finish_test
Changes to test/securedel.test.
13
14
15
16
17
18
19



20
21

22
23
24
25
26
27
28
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

unset -nocomplain DEFAULT_SECDEL
set DEFAULT_SECDEL 0



ifcapable secure_delete {
  set DEFAULT_SECDEL 1

}


do_test securedel-1.0 {
  db eval {PRAGMA secure_delete;}
} $DEFAULT_SECDEL








>
>
>
|
|
>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

unset -nocomplain DEFAULT_SECDEL
set DEFAULT_SECDEL 0
ifcapable fast_secure_delete {
  set DEFAULT_SECDEL 2
} else {
  ifcapable secure_delete {
    set DEFAULT_SECDEL 1
  }
}


do_test securedel-1.0 {
  db eval {PRAGMA secure_delete;}
} $DEFAULT_SECDEL