Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge latest trunk changes, including the SQLITE_ENABLE_MULTITHREADED_CHECKS feature, into this branch. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | apple-osx |
Files: | files | file ages | folders |
SHA3-256: |
1fd1034935b932e9e0a29b26931f7ccf |
User & Date: | dan 2017-11-28 08:08:40.954 |
Context
2017-11-28
| ||
13:48 | Merge the snapshots-always-lock-the-wal-file change into this branch. (check-in: 3ec976e015 user: dan tags: apple-osx) | |
08:08 | Merge latest trunk changes, including the SQLITE_ENABLE_MULTITHREADED_CHECKS feature, into this branch. (check-in: 1fd1034935 user: dan tags: apple-osx) | |
07:52 | Add experimental feature to detect threading bugs in apps that use SQLITE_CONFIG_MULTITHREADED. Enabled at compile time using SQLITE_ENABLE_MULTITHREADED_CHECKS. (check-in: 40b598c839 user: dan tags: trunk) | |
2017-11-17
| ||
20:22 | Add missing entry for SQLITE_IOERR_VNODE to the switch statement in sqlite3ErrName(). (check-in: e2b3e33537 user: dan tags: apple-osx) | |
Changes
Changes to Makefile.in.
︙ | ︙ | |||
84 85 86 87 88 89 90 91 92 93 94 95 96 97 | OPT_FEATURE_FLAGS = @OPT_FEATURE_FLAGS@ TCC += $(OPT_FEATURE_FLAGS) # Add in any optional parameters specified on the make commane line # ie. make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1". TCC += $(OPTS) # Version numbers and release number for the SQLite being compiled. # VERSION = @VERSION@ VERSION_NUMBER = @VERSION_NUMBER@ RELEASE = @RELEASE@ | > > > | 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | OPT_FEATURE_FLAGS = @OPT_FEATURE_FLAGS@ TCC += $(OPT_FEATURE_FLAGS) # Add in any optional parameters specified on the make commane line # ie. make "OPTS=-DSQLITE_ENABLE_FOO=1 -DSQLITE_OMIT_FOO=1". TCC += $(OPTS) # Add in compile-time options for some libraries used by extensions TCC += @HAVE_ZLIB@ # Version numbers and release number for the SQLite being compiled. # VERSION = @VERSION@ VERSION_NUMBER = @VERSION_NUMBER@ RELEASE = @RELEASE@ |
︙ | ︙ |
Changes to Makefile.msc.
︙ | ︙ | |||
970 971 972 973 974 975 976 | LTRCOMPILE = $(RCC) -r LTLIB = lib.exe LTLINK = $(TCC) -Fe$@ # If requested, link to the RPCRT4 library. # !IF $(USE_RPCRT4_LIB)!=0 | | | 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 | LTRCOMPILE = $(RCC) -r LTLIB = lib.exe LTLINK = $(TCC) -Fe$@ # If requested, link to the RPCRT4 library. # !IF $(USE_RPCRT4_LIB)!=0 LTLIBS = $(LTLIBS) rpcrt4.lib !ENDIF # If a platform was set, force the linker to target that. # Note that the vcvars*.bat family of batch files typically # set this for you. Otherwise, the linker will attempt # to deduce the binary type based on the object files. !IFDEF PLATFORM |
︙ | ︙ | |||
1068 1069 1070 1071 1072 1073 1074 | !ENDIF # <<mark>> # Start with the Tcl related linker options. # !IF $(NO_TCL)==0 LTLIBPATHS = /LIBPATH:$(TCLLIBDIR) | | | 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 | !ENDIF # <<mark>> # Start with the Tcl related linker options. # !IF $(NO_TCL)==0 LTLIBPATHS = /LIBPATH:$(TCLLIBDIR) LTLIBS = $(LTLIBS) $(LIBTCL) !ENDIF # If ICU support is enabled, add the linker options for it. # !IF $(USE_ICU)!=0 LTLIBPATHS = $(LTLIBPATHS) /LIBPATH:$(ICULIBDIR) LTLIBS = $(LTLIBS) $(LIBICU) |
︙ | ︙ |
Changes to autoconf/Makefile.msc.
︙ | ︙ | |||
804 805 806 807 808 809 810 | LTRCOMPILE = $(RCC) -r LTLIB = lib.exe LTLINK = $(TCC) -Fe$@ # If requested, link to the RPCRT4 library. # !IF $(USE_RPCRT4_LIB)!=0 | | | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | LTRCOMPILE = $(RCC) -r LTLIB = lib.exe LTLINK = $(TCC) -Fe$@ # If requested, link to the RPCRT4 library. # !IF $(USE_RPCRT4_LIB)!=0 LTLIBS = $(LTLIBS) rpcrt4.lib !ENDIF # If a platform was set, force the linker to target that. # Note that the vcvars*.bat family of batch files typically # set this for you. Otherwise, the linker will attempt # to deduce the binary type based on the object files. !IFDEF PLATFORM |
︙ | ︙ |
Changes to configure.
︙ | ︙ | |||
768 769 770 771 772 773 774 775 776 777 778 779 780 781 | #endif" ac_subst_vars='LTLIBOBJS LIBOBJS BUILD_CFLAGS USE_GCOV OPT_FEATURE_FLAGS USE_AMALGAMATION TARGET_DEBUG TARGET_HAVE_EDITLINE TARGET_HAVE_READLINE TARGET_READLINE_INC TARGET_READLINE_LIBS HAVE_TCL | > | 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 | #endif" ac_subst_vars='LTLIBOBJS LIBOBJS BUILD_CFLAGS USE_GCOV OPT_FEATURE_FLAGS HAVE_ZLIB USE_AMALGAMATION TARGET_DEBUG TARGET_HAVE_EDITLINE TARGET_HAVE_READLINE TARGET_READLINE_INC TARGET_READLINE_LIBS HAVE_TCL |
︙ | ︙ | |||
3927 3928 3929 3930 3931 3932 3933 | { $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if ${lt_cv_nm_interface+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext | | | | | 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 | { $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if ${lt_cv_nm_interface+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:3935: $ac_compile\"" >&5) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&5 (eval echo "\"\$as_me:3938: $NM \\\"conftest.$ac_objext\\\"\"" >&5) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&5 (eval echo "\"\$as_me:3941: output\"" >&5) cat conftest.out >&5 if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5 |
︙ | ︙ | |||
5139 5140 5141 5142 5143 5144 5145 | ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. | | | 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 | ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out which ABI we are using. echo '#line 5147 "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then if test "$lt_cv_prog_gnu_ld" = yes; then case `/usr/bin/file conftest.$ac_objext` in |
︙ | ︙ | |||
6664 6665 6666 6667 6668 6669 6670 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:6672: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:6676: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_rtti_exceptions=yes |
︙ | ︙ | |||
7003 7004 7005 7006 7007 7008 7009 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 | # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7011: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:7015: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works=yes |
︙ | ︙ | |||
7108 7109 7110 7111 7112 7113 7114 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7116: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:7120: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then |
︙ | ︙ | |||
7163 7164 7165 7166 7167 7168 7169 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` | | | | 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 | # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:7171: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:7175: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "X$_lt_compiler_boilerplate" | $Xsed -e '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then |
︙ | ︙ | |||
9543 9544 9545 9546 9547 9548 9549 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF | | | 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line 9551 "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include <dlfcn.h> #endif #include <stdio.h> |
︙ | ︙ | |||
9639 9640 9641 9642 9643 9644 9645 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF | | | 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 | else if test "$cross_compiling" = yes; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line 9647 "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include <dlfcn.h> #endif #include <stdio.h> |
︙ | ︙ | |||
11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 | else use_amalgamation=yes fi if test "${use_amalgamation}" != "yes" ; then USE_AMALGAMATION=0 fi ######### # See whether we should allow loadable extensions # Check whether --enable-load-extension was given. if test "${enable_load_extension+set}" = set; then : enableval=$enable_load_extension; use_loadextension=$enableval | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 | else use_amalgamation=yes fi if test "${use_amalgamation}" != "yes" ; then USE_AMALGAMATION=0 fi ######### # Look for zlib. Only needed by extensions and by the sqlite3.exe shell for ac_header in zlib.h do : ac_fn_c_check_header_mongrel "$LINENO" "zlib.h" "ac_cv_header_zlib_h" "$ac_includes_default" if test "x$ac_cv_header_zlib_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_ZLIB_H 1 _ACEOF fi done { $as_echo "$as_me:${as_lineno-$LINENO}: checking for library containing deflate" >&5 $as_echo_n "checking for library containing deflate... " >&6; } if ${ac_cv_search_deflate+:} false; then : $as_echo_n "(cached) " >&6 else ac_func_search_save_LIBS=$LIBS cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char deflate (); int main () { return deflate (); ; return 0; } _ACEOF for ac_lib in '' z; do if test -z "$ac_lib"; then ac_res="none required" else ac_res=-l$ac_lib LIBS="-l$ac_lib $ac_func_search_save_LIBS" fi if ac_fn_c_try_link "$LINENO"; then : ac_cv_search_deflate=$ac_res fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext if ${ac_cv_search_deflate+:} false; then : break fi done if ${ac_cv_search_deflate+:} false; then : else ac_cv_search_deflate=no fi rm conftest.$ac_ext LIBS=$ac_func_search_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_search_deflate" >&5 $as_echo "$ac_cv_search_deflate" >&6; } ac_res=$ac_cv_search_deflate if test "$ac_res" != no; then : test "$ac_res" = "none required" || LIBS="$ac_res $LIBS" HAVE_ZLIB="-DSQLITE_HAVE_ZLIB=1" else HAVE_ZLIB="" fi ######### # See whether we should allow loadable extensions # Check whether --enable-load-extension was given. if test "${enable_load_extension+set}" = set; then : enableval=$enable_load_extension; use_loadextension=$enableval |
︙ | ︙ |
Changes to configure.ac.
︙ | ︙ | |||
572 573 574 575 576 577 578 579 580 581 582 583 584 585 | [Disable the amalgamation and instead build all files separately]), [use_amalgamation=$enableval],[use_amalgamation=yes]) if test "${use_amalgamation}" != "yes" ; then USE_AMALGAMATION=0 fi AC_SUBST(USE_AMALGAMATION) ######### # See whether we should allow loadable extensions AC_ARG_ENABLE(load-extension, AC_HELP_STRING([--disable-load-extension], [Disable loading of external extensions]), [use_loadextension=$enableval],[use_loadextension=yes]) if test "${use_loadextension}" = "yes" ; then OPT_FEATURE_FLAGS="" | > > > > > > | 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | [Disable the amalgamation and instead build all files separately]), [use_amalgamation=$enableval],[use_amalgamation=yes]) if test "${use_amalgamation}" != "yes" ; then USE_AMALGAMATION=0 fi AC_SUBST(USE_AMALGAMATION) ######### # Look for zlib. Only needed by extensions and by the sqlite3.exe shell AC_CHECK_HEADERS(zlib.h) AC_SEARCH_LIBS(deflate, z, [HAVE_ZLIB="-DSQLITE_HAVE_ZLIB=1"], [HAVE_ZLIB=""]) AC_SUBST(HAVE_ZLIB) ######### # See whether we should allow loadable extensions AC_ARG_ENABLE(load-extension, AC_HELP_STRING([--disable-load-extension], [Disable loading of external extensions]), [use_loadextension=$enableval],[use_loadextension=yes]) if test "${use_loadextension}" = "yes" ; then OPT_FEATURE_FLAGS="" |
︙ | ︙ |
Changes to ext/fts5/fts5Int.h.
︙ | ︙ | |||
717 718 719 720 721 722 723 724 725 726 727 728 729 730 | Fts5ExprPhrase *sqlite3Fts5ParseTerm( Fts5Parse *pParse, Fts5ExprPhrase *pPhrase, Fts5Token *pToken, int bPrefix ); Fts5ExprNearset *sqlite3Fts5ParseNearset( Fts5Parse*, Fts5ExprNearset*, Fts5ExprPhrase* ); | > > | 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 | Fts5ExprPhrase *sqlite3Fts5ParseTerm( Fts5Parse *pParse, Fts5ExprPhrase *pPhrase, Fts5Token *pToken, int bPrefix ); void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase*); Fts5ExprNearset *sqlite3Fts5ParseNearset( Fts5Parse*, Fts5ExprNearset*, Fts5ExprPhrase* ); |
︙ | ︙ |
Changes to ext/fts5/fts5_expr.c.
︙ | ︙ | |||
83 84 85 86 87 88 89 | #define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d)) /* ** An instance of the following structure represents a single search term ** or term prefix. */ struct Fts5ExprTerm { | | > | 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | #define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d)) /* ** An instance of the following structure represents a single search term ** or term prefix. */ struct Fts5ExprTerm { u8 bPrefix; /* True for a prefix term */ u8 bFirst; /* True if token must be first in column */ char *zTerm; /* nul-terminated term */ Fts5IndexIter *pIter; /* Iterator for this term */ Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */ }; /* ** A phrase. One or more terms that must appear in a contiguous sequence |
︙ | ︙ | |||
164 165 166 167 168 169 170 171 172 173 174 175 176 177 | case '{': tok = FTS5_LCP; break; case '}': tok = FTS5_RCP; break; case ':': tok = FTS5_COLON; break; case ',': tok = FTS5_COMMA; break; case '+': tok = FTS5_PLUS; break; case '*': tok = FTS5_STAR; break; case '-': tok = FTS5_MINUS; break; case '\0': tok = FTS5_EOF; break; case '"': { const char *z2; tok = FTS5_STRING; for(z2=&z[1]; 1; z2++){ | > | 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | case '{': tok = FTS5_LCP; break; case '}': tok = FTS5_RCP; break; case ':': tok = FTS5_COLON; break; case ',': tok = FTS5_COMMA; break; case '+': tok = FTS5_PLUS; break; case '*': tok = FTS5_STAR; break; case '-': tok = FTS5_MINUS; break; case '^': tok = FTS5_CARET; break; case '\0': tok = FTS5_EOF; break; case '"': { const char *z2; tok = FTS5_STRING; for(z2=&z[1]; 1; z2++){ |
︙ | ︙ | |||
423 424 425 426 427 428 429 430 431 432 433 434 435 436 | int *pbMatch /* OUT: Set to true if really a match */ ){ Fts5PoslistWriter writer = {0}; Fts5PoslistReader aStatic[4]; Fts5PoslistReader *aIter = aStatic; int i; int rc = SQLITE_OK; fts5BufferZero(&pPhrase->poslist); /* If the aStatic[] array is not large enough, allocate a large array ** using sqlite3_malloc(). This approach could be improved upon. */ if( pPhrase->nTerm>ArraySize(aStatic) ){ int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm; | > | 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | int *pbMatch /* OUT: Set to true if really a match */ ){ Fts5PoslistWriter writer = {0}; Fts5PoslistReader aStatic[4]; Fts5PoslistReader *aIter = aStatic; int i; int rc = SQLITE_OK; int bFirst = pPhrase->aTerm[0].bFirst; fts5BufferZero(&pPhrase->poslist); /* If the aStatic[] array is not large enough, allocate a large array ** using sqlite3_malloc(). This approach could be improved upon. */ if( pPhrase->nTerm>ArraySize(aStatic) ){ int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm; |
︙ | ︙ | |||
477 478 479 480 481 482 483 | } if( pPos->iPos>iAdj ) iPos = pPos->iPos-i; } } }while( bMatch==0 ); /* Append position iPos to the output */ | > | | > | 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 | } if( pPos->iPos>iAdj ) iPos = pPos->iPos-i; } } }while( bMatch==0 ); /* Append position iPos to the output */ if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){ rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos); if( rc!=SQLITE_OK ) goto ismatch_out; } for(i=0; i<pPhrase->nTerm; i++){ if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out; } } ismatch_out: |
︙ | ︙ | |||
732 733 734 735 736 737 738 | int i; /* Check that each phrase in the nearset matches the current row. ** Populate the pPhrase->poslist buffers at the same time. If any ** phrase is not a match, break out of the loop early. */ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; | | > > | 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 | int i; /* Check that each phrase in the nearset matches the current row. ** Populate the pPhrase->poslist buffers at the same time. If any ** phrase is not a match, break out of the loop early. */ for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){ Fts5ExprPhrase *pPhrase = pNear->apPhrase[i]; if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym || pNear->pColset || pPhrase->aTerm[0].bFirst ){ int bMatch = 0; rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch); if( bMatch==0 ) break; }else{ Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter; fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData); } |
︙ | ︙ | |||
913 914 915 916 917 918 919 920 921 922 923 924 925 926 | int bMatch; /* True if all terms are at the same rowid */ const int bDesc = pExpr->bDesc; /* Check that this node should not be FTS5_TERM */ assert( pNear->nPhrase>1 || pNear->apPhrase[0]->nTerm>1 || pNear->apPhrase[0]->aTerm[0].pSynonym ); /* Initialize iLast, the "lastest" rowid any iterator points to. If the ** iterator skips through rowids in the default ascending order, this means ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it ** means the minimum rowid. */ if( pLeft->aTerm[0].pSynonym ){ | > | 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 | int bMatch; /* True if all terms are at the same rowid */ const int bDesc = pExpr->bDesc; /* Check that this node should not be FTS5_TERM */ assert( pNear->nPhrase>1 || pNear->apPhrase[0]->nTerm>1 || pNear->apPhrase[0]->aTerm[0].pSynonym || pNear->apPhrase[0]->aTerm[0].bFirst ); /* Initialize iLast, the "lastest" rowid any iterator points to. If the ** iterator skips through rowids in the default ascending order, this means ** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it ** means the minimum rowid. */ if( pLeft->aTerm[0].pSynonym ){ |
︙ | ︙ | |||
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 | sqlite3_free(pSyn); } } if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist); sqlite3_free(pPhrase); } } /* ** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated ** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is ** appended to it and the results returned. ** ** If an OOM error occurs, both the pNear and pPhrase objects are freed and | > > > > > > > > > > | 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 | sqlite3_free(pSyn); } } if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist); sqlite3_free(pPhrase); } } /* ** Set the "bFirst" flag on the first token of the phrase passed as the ** only argument. */ void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){ if( pPhrase && pPhrase->nTerm ){ pPhrase->aTerm[0].bFirst = 1; } } /* ** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated ** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is ** appended to it and the results returned. ** ** If an OOM error occurs, both the pNear and pPhrase objects are freed and |
︙ | ︙ | |||
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 | const char *zTerm = p->zTerm; rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm), 0, 0); tflags = FTS5_TOKEN_COLOCATED; } if( rc==SQLITE_OK ){ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix; } } }else{ /* This happens when parsing a token or quoted phrase that contains ** no token characters at all. (e.g ... MATCH '""'). */ sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase)); } if( rc==SQLITE_OK ){ /* All the allocations succeeded. Put the expression object together. */ pNew->pIndex = pExpr->pIndex; pNew->pConfig = pExpr->pConfig; pNew->nPhrase = 1; pNew->apExprPhrase[0] = sCtx.pPhrase; pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase; pNew->pRoot->pNear->nPhrase = 1; sCtx.pPhrase->pNode = pNew->pRoot; | > | > > > | 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 | const char *zTerm = p->zTerm; rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm), 0, 0); tflags = FTS5_TOKEN_COLOCATED; } if( rc==SQLITE_OK ){ sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix; sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst; } } }else{ /* This happens when parsing a token or quoted phrase that contains ** no token characters at all. (e.g ... MATCH '""'). */ sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase)); } if( rc==SQLITE_OK ){ /* All the allocations succeeded. Put the expression object together. */ pNew->pIndex = pExpr->pIndex; pNew->pConfig = pExpr->pConfig; pNew->nPhrase = 1; pNew->apExprPhrase[0] = sCtx.pPhrase; pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase; pNew->pRoot->pNear->nPhrase = 1; sCtx.pPhrase->pNode = pNew->pRoot; if( pOrig->nTerm==1 && pOrig->aTerm[0].pSynonym==0 && pOrig->aTerm[0].bFirst==0 ){ pNew->pRoot->eType = FTS5_TERM; pNew->pRoot->xNext = fts5ExprNodeNext_TERM; }else{ pNew->pRoot->eType = FTS5_STRING; pNew->pRoot->xNext = fts5ExprNodeNext_STRING; } }else{ |
︙ | ︙ | |||
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | static void fts5ExprAssignXNext(Fts5ExprNode *pNode){ switch( pNode->eType ){ case FTS5_STRING: { Fts5ExprNearset *pNear = pNode->pNear; if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 && pNear->apPhrase[0]->aTerm[0].pSynonym==0 ){ pNode->eType = FTS5_TERM; pNode->xNext = fts5ExprNodeNext_TERM; }else{ pNode->xNext = fts5ExprNodeNext_STRING; } break; | > | 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 | static void fts5ExprAssignXNext(Fts5ExprNode *pNode){ switch( pNode->eType ){ case FTS5_STRING: { Fts5ExprNearset *pNear = pNode->pNear; if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1 && pNear->apPhrase[0]->aTerm[0].pSynonym==0 && pNear->apPhrase[0]->aTerm[0].bFirst==0 ){ pNode->eType = FTS5_TERM; pNode->xNext = fts5ExprNodeNext_TERM; }else{ pNode->xNext = fts5ExprNodeNext_STRING; } break; |
︙ | ︙ | |||
2093 2094 2095 2096 2097 2098 2099 | pNear->apPhrase[iPhrase]->pNode = pRet; if( pNear->apPhrase[iPhrase]->nTerm==0 ){ pRet->xNext = 0; pRet->eType = FTS5_EOF; } } | | > | > > | | | | | | | | | | | | | 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 | pNear->apPhrase[iPhrase]->pNode = pRet; if( pNear->apPhrase[iPhrase]->nTerm==0 ){ pRet->xNext = 0; pRet->eType = FTS5_EOF; } } if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){ Fts5ExprPhrase *pPhrase = pNear->apPhrase[0]; if( pNear->nPhrase!=1 || pPhrase->nTerm>1 || (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst) ){ assert( pParse->rc==SQLITE_OK ); pParse->rc = SQLITE_ERROR; assert( pParse->zErr==0 ); pParse->zErr = sqlite3_mprintf( "fts5: %s queries are not supported (detail!=full)", pNear->nPhrase==1 ? "phrase": "NEAR" ); sqlite3_free(pRet); pRet = 0; } } }else{ fts5ExprAddChildren(pRet, pLeft); fts5ExprAddChildren(pRet, pRight); } } } |
︙ | ︙ |
Changes to ext/fts5/fts5parse.y.
︙ | ︙ | |||
144 145 146 147 148 149 150 | %type nearset {Fts5ExprNearset*} %type nearphrases {Fts5ExprNearset*} %destructor nearset { sqlite3Fts5ParseNearsetFree($$); } %destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); } | > > > | > | 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | %type nearset {Fts5ExprNearset*} %type nearphrases {Fts5ExprNearset*} %destructor nearset { sqlite3Fts5ParseNearsetFree($$); } %destructor nearphrases { sqlite3Fts5ParseNearsetFree($$); } nearset(A) ::= phrase(Y). { A = sqlite3Fts5ParseNearset(pParse, 0, Y); } nearset(A) ::= CARET phrase(Y). { sqlite3Fts5ParseSetCaret(Y); A = sqlite3Fts5ParseNearset(pParse, 0, Y); } nearset(A) ::= STRING(X) LP nearphrases(Y) neardist_opt(Z) RP. { sqlite3Fts5ParseNear(pParse, &X); sqlite3Fts5ParseSetDistance(pParse, Y, &Z); A = Y; } nearphrases(A) ::= phrase(X). { |
︙ | ︙ | |||
185 186 187 188 189 190 191 | A = sqlite3Fts5ParseTerm(pParse, 0, &Y, Z); } /* ** Optional "*" character. */ %type star_opt {int} | < | 189 190 191 192 193 194 195 196 197 | A = sqlite3Fts5ParseTerm(pParse, 0, &Y, Z); } /* ** Optional "*" character. */ %type star_opt {int} star_opt(A) ::= STAR. { A = 1; } star_opt(A) ::= . { A = 0; } |
Changes to ext/fts5/test/fts5faultB.test.
︙ | ︙ | |||
125 126 127 128 129 130 131 132 133 134 | } do_faultsim_test 4.2 -faults oom* -body { execsql { SELECT rowid FROM t1('{a b c} : (a AND d)') } } -test { faultsim_test_result {0 {2 3}} } finish_test | > > > > > > > > > > > > > > > > > | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | } do_faultsim_test 4.2 -faults oom* -body { execsql { SELECT rowid FROM t1('{a b c} : (a AND d)') } } -test { faultsim_test_result {0 {2 3}} } #------------------------------------------------------------------------- # Test OOM injection while parsing a CARET expression # reset_db do_execsql_test 5.0 { CREATE VIRTUAL TABLE t1 USING fts5(a); INSERT INTO t1 VALUES('a b c d'); -- 1 INSERT INTO t1 VALUES('d a b c'); -- 2 INSERT INTO t1 VALUES('c d a b'); -- 3 INSERT INTO t1 VALUES('b c d a'); -- 4 } do_faultsim_test 5.1 -faults oom* -body { execsql { SELECT rowid FROM t1('^a OR ^b') } } -test { faultsim_test_result {0 {1 4}} } finish_test |
Added ext/fts5/test/fts5first.test.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | # 2017 November 25 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** source [file join [file dirname [info script]] fts5_common.tcl] set testprefix fts5first ifcapable !fts5 { finish_test return } do_execsql_test 1.0 { CREATE VIRTUAL TABLE x1 USING fts5(a, b); } foreach {tn expr ok} { 1 {^abc} 1 2 {^abc + def} 1 3 {^ "abc def"} 1 4 {^"abc def"} 1 5 {abc ^def} 1 6 {abc + ^def} 0 7 {abc ^+ def} 0 8 {"^abc"} 1 9 {NEAR(^abc def)} 0 } { set res(0) {/1 {fts5: syntax error near .*}/} set res(1) {0 {}} do_catchsql_test 1.$tn { SELECT * FROM x1($expr) } $res($ok) } #------------------------------------------------------------------------- # do_execsql_test 2.0 { INSERT INTO x1 VALUES('a b c', 'b c a'); } foreach {tn expr match} { 1 {^a} 1 2 {^b} 1 3 {^c} 0 4 {^a + b} 1 5 {^b + c} 1 6 {^c + a} 0 7 {^"c a"} 0 8 {a:^a} 1 9 {a:^b} 0 10 {a:^"a b"} 1 } { do_execsql_test 2.$tn { SELECT EXISTS (SELECT rowid FROM x1($expr)) } $match } #------------------------------------------------------------------------- # do_execsql_test 3.0 { DELETE FROM x1; INSERT INTO x1 VALUES('b a', 'c a'); INSERT INTO x1 VALUES('a a', 'c c'); INSERT INTO x1 VALUES('a b', 'a a'); } fts5_aux_test_functions db foreach {tn expr expect} { 1 {^a} {{2 1}} 2 {^c AND ^b} {{0 2} {1 0}} } { do_execsql_test 3.$tn { SELECT fts5_test_queryphrase(x1) FROM x1($expr) LIMIT 1 } [list $expect] } #------------------------------------------------------------------------- # do_execsql_test 3.1 { CREATE VIRTUAL TABLE x2 USING fts5(a, b, c, detail=column); } do_catchsql_test 3.2 { SELECT * FROM x2('a + b'); } {1 {fts5: phrase queries are not supported (detail!=full)}} do_catchsql_test 3.3 { SELECT * FROM x2('^a'); } {1 {fts5: phrase queries are not supported (detail!=full)}} finish_test |
Changes to src/btree.c.
︙ | ︙ | |||
114 115 116 117 118 119 120 121 122 123 124 125 126 127 | #define setSharedCacheTableLock(a,b,c) SQLITE_OK #define clearAllSharedCacheTableLocks(a) #define downgradeAllSharedCacheTableLocks(a) #define hasSharedCacheTableLock(a,b,c,d) 1 #define hasReadConflicts(a, b) 0 #endif #ifndef SQLITE_OMIT_SHARED_CACHE #ifdef SQLITE_DEBUG /* **** This function is only used as part of an assert() statement. *** ** ** Check to see if pBtree holds the required locks to read or write to the | > > > > > > > > > > > > > > > > > > > > > > > > > | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | #define setSharedCacheTableLock(a,b,c) SQLITE_OK #define clearAllSharedCacheTableLocks(a) #define downgradeAllSharedCacheTableLocks(a) #define hasSharedCacheTableLock(a,b,c,d) 1 #define hasReadConflicts(a, b) 0 #endif /* ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single ** (MemPage*) as an argument. The (MemPage*) must not be NULL. ** ** If SQLITE_DEBUG is not defined, then this macro is equivalent to ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented ** with the page number and filename associated with the (MemPage*). */ #ifdef SQLITE_DEBUG int corruptPageError(int lineno, MemPage *p){ char *zMsg = sqlite3_mprintf("database corruption page %d of %s", (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0) ); if( zMsg ){ sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } sqlite3_free(zMsg); return SQLITE_CORRUPT_BKPT; } # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage) #else # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno) #endif #ifndef SQLITE_OMIT_SHARED_CACHE #ifdef SQLITE_DEBUG /* **** This function is only used as part of an assert() statement. *** ** ** Check to see if pBtree holds the required locks to read or write to the |
︙ | ︙ | |||
1402 1403 1404 1405 1406 1407 1408 | if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ u8 *pEnd = &data[cellOffset + nCell*2]; u8 *pAddr; int sz2 = 0; int sz = get2byte(&data[iFree+2]); int top = get2byte(&data[hdr+5]); if( top>=iFree ){ | | | 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 | if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){ u8 *pEnd = &data[cellOffset + nCell*2]; u8 *pAddr; int sz2 = 0; int sz = get2byte(&data[iFree+2]); int top = get2byte(&data[hdr+5]); if( top>=iFree ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFree2 ){ assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */ sz2 = get2byte(&data[iFree2+2]); assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize ); memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz)); sz += sz2; |
︙ | ︙ | |||
1436 1437 1438 1439 1440 1441 1442 | pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); /* These conditions have already been verified in btreeInitPage() ** if PRAGMA cell_size_check=ON. */ if( pc<iCellFirst || pc>iCellLast ){ | | | | | 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 | pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); /* These conditions have already been verified in btreeInitPage() ** if PRAGMA cell_size_check=ON. */ if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pc>=iCellFirst && pc<=iCellLast ); size = pPage->xCellSize(pPage, &src[pc]); cbrk -= size; if( cbrk<iCellFirst || pc+size>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); testcase( cbrk+size==usableSize ); testcase( pc+size==usableSize ); put2byte(pAddr, cbrk); if( temp==0 ){ int x; if( cbrk==pc ) continue; temp = sqlite3PagerTempSpace(pPage->pBt->pPager); x = get2byte(&data[hdr+5]); memcpy(&temp[x], &data[x], (cbrk+size) - x); src = temp; } memcpy(&data[cbrk], &src[pc], size); } data[hdr+7] = 0; defragment_out: if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( cbrk>=iCellFirst ); put2byte(&data[hdr+5], cbrk); data[hdr+1] = 0; data[hdr+2] = 0; memset(&data[iCellFirst], 0, cbrk-iCellFirst); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
︙ | ︙ | |||
1506 1507 1508 1509 1510 1511 1512 | ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ size = get2byte(&aData[pc+2]); if( (x = size - nByte)>=0 ){ testcase( x==4 ); testcase( x==3 ); if( size+pc > usableSize ){ | | | 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 | ** freeblock form a big-endian integer which is the size of the freeblock ** in bytes, including the 4-byte header. */ size = get2byte(&aData[pc+2]); if( (x = size - nByte)>=0 ){ testcase( x==4 ); testcase( x==3 ); if( size+pc > usableSize ){ *pRc = SQLITE_CORRUPT_PAGE(pPg); return 0; }else if( x<4 ){ /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total ** number of bytes in fragments may not exceed 60. */ if( aData[hdr+7]>57 ) return 0; /* Remove the slot from the free-list. Update the number of |
︙ | ︙ | |||
1529 1530 1531 1532 1533 1534 1535 | return &aData[pc + x]; } iAddr = pc; pc = get2byte(&aData[pc]); if( pc<iAddr+size ) break; } if( pc ){ | | | 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 | return &aData[pc + x]; } iAddr = pc; pc = get2byte(&aData[pc]); if( pc<iAddr+size ) break; } if( pc ){ *pRc = SQLITE_CORRUPT_PAGE(pPg); } return 0; } /* ** Allocate nByte bytes of space from within the B-Tree page passed |
︙ | ︙ | |||
1577 1578 1579 1580 1581 1582 1583 | ** integer, so a value of 0 is used in its place. */ top = get2byte(&data[hdr+5]); assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ if( gap>top ){ if( top==0 && pPage->pBt->usableSize==65536 ){ top = 65536; }else{ | | | 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 | ** integer, so a value of 0 is used in its place. */ top = get2byte(&data[hdr+5]); assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ if( gap>top ){ if( top==0 && pPage->pBt->usableSize==65536 ){ top = 65536; }else{ return SQLITE_CORRUPT_PAGE(pPage); } } /* If there is enough space between gap and top for one more cell pointer ** array entry offset, and if the freelist is not empty, then search the ** freelist looking for a free slot big enough to satisfy the request. */ |
︙ | ︙ | |||
1667 1668 1669 1670 1671 1672 1673 | iPtr = hdr + 1; if( data[iPtr+1]==0 && data[iPtr]==0 ){ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ }else{ while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ if( iFreeBlk<iPtr+4 ){ if( iFreeBlk==0 ) break; | | | | | | | | | 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 | iPtr = hdr + 1; if( data[iPtr+1]==0 && data[iPtr]==0 ){ iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ }else{ while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ if( iFreeBlk<iPtr+4 ){ if( iFreeBlk==0 ) break; return SQLITE_CORRUPT_PAGE(pPage); } iPtr = iFreeBlk; } if( iFreeBlk>pPage->pBt->usableSize-4 ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( iFreeBlk>iPtr || iFreeBlk==0 ); /* At this point: ** iFreeBlk: First freeblock after iStart, or zero if none ** iPtr: The address of a pointer to iFreeBlk ** ** Check to see if iFreeBlk should be coalesced onto the end of iStart. */ if( iFreeBlk && iEnd+3>=iFreeBlk ){ nFrag = iFreeBlk - iEnd; if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage); iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); if( iEnd > pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } iSize = iEnd - iStart; iFreeBlk = get2byte(&data[iFreeBlk]); } /* If iPtr is another freeblock (that is, if iPtr is not the freelist ** pointer in the page header) then check to see if iStart should be ** coalesced onto the end of iPtr. */ if( iPtr>hdr+1 ){ int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); if( iPtrEnd+3>=iStart ){ if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage); nFrag += iStart - iPtrEnd; iSize = iEnd - iPtr; iStart = iPtr; } } if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage); data[hdr+7] -= nFrag; } x = get2byte(&data[hdr+5]); if( iStart<=x ){ /* The new freeblock is at the beginning of the cell content area, ** so just extend the cell content area rather than create another ** freelist entry */ if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage); put2byte(&data[hdr+1], iFreeBlk); put2byte(&data[hdr+5], iEnd); }else{ /* Insert the new freeblock into the freelist */ put2byte(&data[iPtr], iStart); } if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){ |
︙ | ︙ | |||
1787 1788 1789 1790 1791 1792 1793 | pPage->intKeyLeaf = 0; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is ** an error. */ | | | 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 | pPage->intKeyLeaf = 0; pPage->xParseCell = btreeParseCellPtrIndex; pPage->maxLocal = pBt->maxLocal; pPage->minLocal = pBt->minLocal; }else{ /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is ** an error. */ return SQLITE_CORRUPT_PAGE(pPage); } pPage->max1bytePayload = pBt->max1bytePayload; return SQLITE_OK; } /* ** Initialize the auxiliary information for a disk block. |
︙ | ︙ | |||
1828 1829 1830 1831 1832 1833 1834 | pBt = pPage->pBt; hdr = pPage->hdrOffset; data = pPage->aData; /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating ** the b-tree page type. */ if( decodeFlags(pPage, data[hdr]) ){ | | | | 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 | pBt = pPage->pBt; hdr = pPage->hdrOffset; data = pPage->aData; /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating ** the b-tree page type. */ if( decodeFlags(pPage, data[hdr]) ){ return SQLITE_CORRUPT_PAGE(pPage); } assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); pPage->maskPage = (u16)(pBt->pageSize - 1); pPage->nOverflow = 0; usableSize = pBt->usableSize; pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; pPage->aDataEnd = &data[usableSize]; pPage->aCellIdx = &data[cellOffset]; pPage->aDataOfst = &data[pPage->childPtrSize]; /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates ** the start of the cell content area. A zero value for this integer is ** interpreted as 65536. */ top = get2byteNotZero(&data[hdr+5]); /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the ** number of cells on the page. */ pPage->nCell = get2byte(&data[hdr+3]); if( pPage->nCell>MX_CELL(pBt) ){ /* To many cells for a single page. The page must be corrupt */ return SQLITE_CORRUPT_PAGE(pPage); } testcase( pPage->nCell==MX_CELL(pBt) ); /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only ** possible for a root page of a table that contains no rows) then the ** offset to the cell content area will equal the page size minus the ** bytes of reserved space. */ assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); |
︙ | ︙ | |||
1875 1876 1877 1878 1879 1880 1881 | if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pc<iCellFirst || pc>iCellLast ){ | | | | | | | | | 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 | if( !pPage->leaf ) iCellLast--; for(i=0; i<pPage->nCell; i++){ pc = get2byteAligned(&data[cellOffset+i*2]); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_PAGE(pPage); } sz = pPage->xCellSize(pPage, &data[pc]); testcase( pc+sz==usableSize ); if( pc+sz>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } } if( !pPage->leaf ) iCellLast++; } /* Compute the total free space on the page ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the ** start of the first freeblock on the page, or is zero if there are no ** freeblocks. */ pc = get2byte(&data[hdr+1]); nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ if( pc>0 ){ u32 next, size; if( pc<iCellFirst ){ /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will ** always be at least one cell before the first freeblock. */ return SQLITE_CORRUPT_PAGE(pPage); } while( 1 ){ if( pc>iCellLast ){ /* Freeblock off the end of the page */ return SQLITE_CORRUPT_PAGE(pPage); } next = get2byte(&data[pc]); size = get2byte(&data[pc+2]); nFree = nFree + size; if( next<=pc+size+3 ) break; pc = next; } if( next>0 ){ /* Freeblock not in ascending order */ return SQLITE_CORRUPT_PAGE(pPage); } if( pc+size>(unsigned int)usableSize ){ /* Last freeblock extends past page end */ return SQLITE_CORRUPT_PAGE(pPage); } } /* At this point, nFree contains the sum of the offset to the start ** of the cell-content area plus the number of free bytes within ** the cell-content area. If this is greater than the usable-size ** of the page, then the page must be corrupted. This check also ** serves to verify that the offset to the start of the cell-content ** area, according to the page header, lies within the page. */ if( nFree>usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } pPage->nFree = (u16)(nFree - iCellFirst); pPage->isInit = 1; return SQLITE_OK; } /* |
︙ | ︙ | |||
3460 3461 3462 3463 3464 3465 3466 | */ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); if( eType==PTRMAP_OVERFLOW2 ){ /* The pointer is always the first 4 bytes of the page in this case. */ if( get4byte(pPage->aData)!=iFrom ){ | | | | | 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | */ static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( sqlite3PagerIswriteable(pPage->pDbPage) ); if( eType==PTRMAP_OVERFLOW2 ){ /* The pointer is always the first 4 bytes of the page in this case. */ if( get4byte(pPage->aData)!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(pPage->aData, iTo); }else{ int i; int nCell; int rc; rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage); if( rc ) return rc; nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); if( eType==PTRMAP_OVERFLOW1 ){ CellInfo info; pPage->xParseCell(pPage, pCell, &info); if( info.nLocal<info.nPayload ){ if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ return SQLITE_CORRUPT_PAGE(pPage); } if( iFrom==get4byte(pCell+info.nSize-4) ){ put4byte(pCell+info.nSize-4, iTo); break; } } }else{ if( get4byte(pCell)==iFrom ){ put4byte(pCell, iTo); break; } } } if( i==nCell ){ if( eType!=PTRMAP_BTREE || get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ return SQLITE_CORRUPT_PAGE(pPage); } put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); } } return SQLITE_OK; } |
︙ | ︙ | |||
4595 4596 4597 4598 4599 4600 4601 | assert( aPayload > pPage->aData ); if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ /* Trying to read or write past the end of the data is an error. The ** conditional above is really: ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ** but is recast into its current form to avoid integer overflow problems */ | | | 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 | assert( aPayload > pPage->aData ); if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ /* Trying to read or write past the end of the data is an error. The ** conditional above is really: ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ** but is recast into its current form to avoid integer overflow problems */ return SQLITE_CORRUPT_PAGE(pPage); } /* Check if data must be read/written to/from the btree page itself. */ if( offset<pCur->info.nLocal ){ int a = amt; if( a+offset>pCur->info.nLocal ){ a = pCur->info.nLocal - offset; |
︙ | ︙ | |||
4743 4744 4745 4746 4747 4748 4749 | if( rc ) break; iIdx++; } } if( rc==SQLITE_OK && amt>0 ){ /* Overflow chain ends prematurely */ | | | 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 | if( rc ) break; iIdx++; } } if( rc==SQLITE_OK && amt>0 ){ /* Overflow chain ends prematurely */ return SQLITE_CORRUPT_PAGE(pPage); } return rc; } /* ** Read part of the payload for the row at which that cursor pCur is currently ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer |
︙ | ︙ | |||
5021 5022 5023 5024 5025 5026 5027 | ** Earlier versions of SQLite assumed that this test could not fail ** if the root page was already loaded when this function was called (i.e. ** if pCur->iPage>=0). But this is not so if the database is corrupted ** in such a way that page pRoot is linked into a second b-tree table ** (or the freelist). */ assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ | | | 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 | ** Earlier versions of SQLite assumed that this test could not fail ** if the root page was already loaded when this function was called (i.e. ** if pCur->iPage>=0). But this is not so if the database is corrupted ** in such a way that page pRoot is linked into a second b-tree table ** (or the freelist). */ assert( pRoot->intKey==1 || pRoot->intKey==0 ); if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ return SQLITE_CORRUPT_PAGE(pCur->pPage); } skip_init: pCur->ix = 0; pCur->info.nSize = 0; pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
︙ | ︙ | |||
5294 5295 5296 5297 5298 5299 5300 | if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ){ | | | 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 | if( xRecordCompare==0 ){ for(;;){ i64 nCellKey; pCell = findCellPastPtr(pPage, idx); if( pPage->intKeyLeaf ){ while( 0x80 <= *(pCell++) ){ if( pCell>=pPage->aDataEnd ){ return SQLITE_CORRUPT_PAGE(pPage); } } } getVarint(pCell, (u64*)&nCellKey); if( nCellKey<intKey ){ lwr = idx+1; if( lwr>upr ){ c = -1; break; } |
︙ | ︙ | |||
5368 5369 5370 5371 5372 5373 5374 | pPage->xParseCell(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; testcase( nCell<0 ); /* True if key size is 2^32 or more */ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ testcase( nCell==2 ); /* Minimum legal index key size */ if( nCell<2 ){ | | | 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 | pPage->xParseCell(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; testcase( nCell<0 ); /* True if key size is 2^32 or more */ testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ testcase( nCell==2 ); /* Minimum legal index key size */ if( nCell<2 ){ rc = SQLITE_CORRUPT_PAGE(pPage); goto moveto_finish; } pCellKey = sqlite3Malloc( nCell+18 ); if( pCellKey==0 ){ rc = SQLITE_NOMEM_BKPT; goto moveto_finish; } |
︙ | ︙ | |||
6171 6172 6173 6174 6175 6176 6177 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->xParseCell(pPage, pCell, pInfo); if( pInfo->nLocal==pInfo->nPayload ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){ /* Cell extends past end of page */ | | | 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 | assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->xParseCell(pPage, pCell, pInfo); if( pInfo->nLocal==pInfo->nPayload ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){ /* Cell extends past end of page */ return SQLITE_CORRUPT_PAGE(pPage); } ovflPgno = get4byte(pCell + pInfo->nSize - 4); pBt = pPage->pBt; assert( pBt->usableSize > 4 ); ovflPageSize = pBt->usableSize - 4; nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; assert( nOvfl>0 || |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 | }else if( flags & SQLITE_OPEN_NOMUTEX ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_FULLMUTEX ){ isThreadsafe = 1; }else{ isThreadsafe = sqlite3GlobalConfig.bFullMutex; } if( flags & SQLITE_OPEN_PRIVATECACHE ){ flags &= ~SQLITE_OPEN_SHAREDCACHE; }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ flags |= SQLITE_OPEN_SHAREDCACHE; } /* Remove harmful bits from the flags parameter | > | 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 | }else if( flags & SQLITE_OPEN_NOMUTEX ){ isThreadsafe = 0; }else if( flags & SQLITE_OPEN_FULLMUTEX ){ isThreadsafe = 1; }else{ isThreadsafe = sqlite3GlobalConfig.bFullMutex; } if( flags & SQLITE_OPEN_PRIVATECACHE ){ flags &= ~SQLITE_OPEN_SHAREDCACHE; }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ flags |= SQLITE_OPEN_SHAREDCACHE; } /* Remove harmful bits from the flags parameter |
︙ | ︙ | |||
2947 2948 2949 2950 2951 2952 2953 | SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_WAL ); /* Allocate the sqlite data structure */ db = sqlite3MallocZero( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; | | > > > > > > > | 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 | SQLITE_OPEN_FULLMUTEX | SQLITE_OPEN_WAL ); /* Allocate the sqlite data structure */ db = sqlite3MallocZero( sizeof(sqlite3) ); if( db==0 ) goto opendb_out; if( isThreadsafe #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS || sqlite3GlobalConfig.bCoreMutex #endif ){ db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); if( db->mutex==0 ){ sqlite3_free(db); db = 0; goto opendb_out; } if( isThreadsafe==0 ){ sqlite3MutexWarnOnContention(db->mutex); } } sqlite3_mutex_enter(db->mutex); db->errMask = 0xff; db->nDb = 2; db->magic = SQLITE_MAGIC_BUSY; db->aDb = db->aDbStatic; |
︙ | ︙ | |||
3460 3461 3462 3463 3464 3465 3466 | ** ** 1. Serve as a convenient place to set a breakpoint in a debugger ** to detect when version error conditions occurs. ** ** 2. Invoke sqlite3_log() to provide the source code location where ** a low-level error is first detected. */ | | | | | | | | | 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 | ** ** 1. Serve as a convenient place to set a breakpoint in a debugger ** to detect when version error conditions occurs. ** ** 2. Invoke sqlite3_log() to provide the source code location where ** a low-level error is first detected. */ int sqlite3ReportError(int iErr, int lineno, const char *zType){ sqlite3_log(iErr, "%s at line %d of [%.10s]", zType, lineno, 20+sqlite3_sourceid()); return iErr; } int sqlite3CorruptError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); } int sqlite3MisuseError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); } int sqlite3CantopenError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); } #ifdef SQLITE_DEBUG int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ char zMsg[100]; sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); } int sqlite3NomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); } int sqlite3IoerrnomemError(int lineno){ testcase( sqlite3GlobalConfig.xLog!=0 ); return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); } #endif #ifndef SQLITE_OMIT_DEPRECATED /* ** This is a convenience routine that makes sure that all thread-specific ** data for this thread has been deallocated. |
︙ | ︙ |
Changes to src/mutex.c.
︙ | ︙ | |||
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | ** allocate a mutex while the system is uninitialized. */ static SQLITE_WSD int mutexIsInit = 0; #endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */ #ifndef SQLITE_MUTEX_OMIT /* ** Initialize the mutex system. */ int sqlite3MutexInit(void){ int rc = SQLITE_OK; if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ /* If the xMutexAlloc method has not been set, then the user did not ** install a mutex implementation via sqlite3_config() prior to ** sqlite3_initialize() being called. This block copies pointers to ** the default implementation into the sqlite3GlobalConfig structure. */ sqlite3_mutex_methods const *pFrom; sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ pFrom = sqlite3DefaultMutex(); }else{ pFrom = sqlite3NoopMutex(); } pTo->xMutexInit = pFrom->xMutexInit; pTo->xMutexEnd = pFrom->xMutexEnd; pTo->xMutexFree = pFrom->xMutexFree; pTo->xMutexEnter = pFrom->xMutexEnter; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | ** allocate a mutex while the system is uninitialized. */ static SQLITE_WSD int mutexIsInit = 0; #endif /* SQLITE_DEBUG && !defined(SQLITE_MUTEX_OMIT) */ #ifndef SQLITE_MUTEX_OMIT #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS /* ** This block (enclosed by SQLITE_ENABLE_MULTITHREADED_CHECKS) contains ** the implementation of a wrapper around the system default mutex ** implementation (sqlite3DefaultMutex()). ** ** Most calls are passed directly through to the underlying default ** mutex implementation. Except, if a mutex is configured by calling ** sqlite3MutexWarnOnContention() on it, then if contention is ever ** encountered within xMutexEnter() a warning is emitted via sqlite3_log(). ** ** This type of mutex is used as the database handle mutex when testing ** apps that usually use SQLITE_CONFIG_MULTITHREAD mode. */ /* ** Type for all mutexes used when SQLITE_ENABLE_MULTITHREADED_CHECKS ** is defined. Variable CheckMutex.mutex is a pointer to the real mutex ** allocated by the system mutex implementation. Variable iType is usually set ** to the type of mutex requested - SQLITE_MUTEX_RECURSIVE, SQLITE_MUTEX_FAST ** or one of the static mutex identifiers. Or, if this is a recursive mutex ** that has been configured using sqlite3MutexWarnOnContention(), it is ** set to SQLITE_MUTEX_WARNONCONTENTION. */ typedef struct CheckMutex CheckMutex; struct CheckMutex { int iType; sqlite3_mutex *mutex; }; #define SQLITE_MUTEX_WARNONCONTENTION (-1) /* ** Pointer to real mutex methods object used by the CheckMutex ** implementation. Set by checkMutexInit(). */ static SQLITE_WSD const sqlite3_mutex_methods *pGlobalMutexMethods; #ifdef SQLITE_DEBUG static int checkMutexHeld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexHeld(((CheckMutex*)p)->mutex); } static int checkMutexNotheld(sqlite3_mutex *p){ return pGlobalMutexMethods->xMutexNotheld(((CheckMutex*)p)->mutex); } #endif /* ** Initialize and deinitialize the mutex subsystem. */ static int checkMutexInit(void){ pGlobalMutexMethods = sqlite3DefaultMutex(); return SQLITE_OK; } static int checkMutexEnd(void){ pGlobalMutexMethods = 0; return SQLITE_OK; } /* ** Allocate a mutex. */ static sqlite3_mutex *checkMutexAlloc(int iType){ static CheckMutex staticMutexes[] = { {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}, {13, 0} }; CheckMutex *p = 0; assert( SQLITE_MUTEX_RECURSIVE==1 && SQLITE_MUTEX_FAST==0 ); if( iType<2 ){ p = sqlite3MallocZero(sizeof(CheckMutex)); if( p==0 ) return 0; p->iType = iType; }else{ #ifdef SQLITE_ENABLE_API_ARMOR if( iType-2>=ArraySize(staticMutexes) ){ (void)SQLITE_MISUSE_BKPT; return 0; } #endif p = &staticMutexes[iType-2]; } if( p->mutex==0 ){ p->mutex = pGlobalMutexMethods->xMutexAlloc(iType); if( p->mutex==0 ){ if( iType<2 ){ sqlite3_free(p); } p = 0; } } return (sqlite3_mutex*)p; } /* ** Free a mutex. */ static void checkMutexFree(sqlite3_mutex *p){ assert( SQLITE_MUTEX_RECURSIVE<2 ); assert( SQLITE_MUTEX_FAST<2 ); assert( SQLITE_MUTEX_WARNONCONTENTION<2 ); #if SQLITE_ENABLE_API_ARMOR if( p->iType<2 ){ #endif { CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexFree(pCheck->mutex); sqlite3_free(pCheck); } #ifdef SQLITE_ENABLE_API_ARMOR else{ (void)SQLITE_MISUSE_BKPT; } #endif } /* ** Enter the mutex. */ static void checkMutexEnter(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; if( pCheck->iType==SQLITE_MUTEX_WARNONCONTENTION ){ if( SQLITE_OK==pGlobalMutexMethods->xMutexTry(pCheck->mutex) ){ return; } sqlite3_log(SQLITE_MISUSE, "illegal multi-threaded access to database connection" ); } pGlobalMutexMethods->xMutexEnter(pCheck->mutex); } /* ** Enter the mutex (do not block). */ static int checkMutexTry(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; return pGlobalMutexMethods->xMutexTry(pCheck->mutex); } /* ** Leave the mutex. */ static void checkMutexLeave(sqlite3_mutex *p){ CheckMutex *pCheck = (CheckMutex*)p; pGlobalMutexMethods->xMutexLeave(pCheck->mutex); } sqlite3_mutex_methods const *multiThreadedCheckMutex(void){ static const sqlite3_mutex_methods sMutex = { checkMutexInit, checkMutexEnd, checkMutexAlloc, checkMutexFree, checkMutexEnter, checkMutexTry, checkMutexLeave, #ifdef SQLITE_DEBUG checkMutexHeld, checkMutexNotheld #else 0, 0 #endif }; return &sMutex; } /* ** Mark the SQLITE_MUTEX_RECURSIVE mutex passed as the only argument as ** one on which there should be no contention. */ void sqlite3MutexWarnOnContention(sqlite3_mutex *p){ if( sqlite3GlobalConfig.mutex.xMutexAlloc==checkMutexAlloc ){ CheckMutex *pCheck = (CheckMutex*)p; assert( pCheck->iType==SQLITE_MUTEX_RECURSIVE ); pCheck->iType = SQLITE_MUTEX_WARNONCONTENTION; } } #endif /* ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS */ /* ** Initialize the mutex system. */ int sqlite3MutexInit(void){ int rc = SQLITE_OK; if( !sqlite3GlobalConfig.mutex.xMutexAlloc ){ /* If the xMutexAlloc method has not been set, then the user did not ** install a mutex implementation via sqlite3_config() prior to ** sqlite3_initialize() being called. This block copies pointers to ** the default implementation into the sqlite3GlobalConfig structure. */ sqlite3_mutex_methods const *pFrom; sqlite3_mutex_methods *pTo = &sqlite3GlobalConfig.mutex; if( sqlite3GlobalConfig.bCoreMutex ){ #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS pFrom = multiThreadedCheckMutex(); #else pFrom = sqlite3DefaultMutex(); #endif }else{ pFrom = sqlite3NoopMutex(); } pTo->xMutexInit = pFrom->xMutexInit; pTo->xMutexEnd = pFrom->xMutexEnd; pTo->xMutexFree = pFrom->xMutexFree; pTo->xMutexEnter = pFrom->xMutexEnter; |
︙ | ︙ | |||
163 164 165 166 167 168 169 | int sqlite3_mutex_notheld(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ | > | 354 355 356 357 358 359 360 361 | int sqlite3_mutex_notheld(sqlite3_mutex *p){ assert( p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld ); return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p); } #endif #endif /* !defined(SQLITE_MUTEX_OMIT) */ |
Changes to src/shell.c.in.
︙ | ︙ | |||
1186 1187 1188 1189 1190 1191 1192 | || (z[i]==p->colSeparator[0] && (nSep==1 || memcmp(z, p->colSeparator, nSep)==0)) ){ i = 0; break; } } if( i==0 ){ | | < | | < < | 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 | || (z[i]==p->colSeparator[0] && (nSep==1 || memcmp(z, p->colSeparator, nSep)==0)) ){ i = 0; break; } } if( i==0 ){ char *zQuoted = sqlite3_mprintf("\"%w\"", z); utf8_printf(out, "%s", zQuoted); sqlite3_free(zQuoted); }else{ utf8_printf(out, "%s", z); } } if( bSep ){ utf8_printf(p->out, "%s", p->colSeparator); } |
︙ | ︙ | |||
5948 5949 5950 5951 5952 5953 5954 5955 | { "reserve", SQLITE_TESTCTRL_RESERVE, "BYTES-OF-RESERVE" }, }; int testctrl = -1; int iCtrl = -1; int rc2 = 0; /* 0: usage. 1: %d 2: %x 3: no-output */ int isOk = 0; int i, n2; open_db(p, 0); | > > | | 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 | { "reserve", SQLITE_TESTCTRL_RESERVE, "BYTES-OF-RESERVE" }, }; int testctrl = -1; int iCtrl = -1; int rc2 = 0; /* 0: usage. 1: %d 2: %x 3: no-output */ int isOk = 0; int i, n2; const char *zCmd = 0; open_db(p, 0); zCmd = nArg>=2 ? azArg[1] : "help"; /* The argument can optionally begin with "-" or "--" */ if( zCmd[0]=='-' && zCmd[1] ){ zCmd++; if( zCmd[0]=='-' && zCmd[1] ) zCmd++; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 | /* ** The SQLITE_*_BKPT macros are substitutes for the error codes with ** the same name but without the _BKPT suffix. These macros invoke ** routines that report the line-number on which the error originated ** using sqlite3_log(). The routines also provide a convenient place ** to set a debugger breakpoint. */ int sqlite3CorruptError(int); int sqlite3MisuseError(int); int sqlite3CantopenError(int); #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) #ifdef SQLITE_DEBUG | > | 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 | /* ** The SQLITE_*_BKPT macros are substitutes for the error codes with ** the same name but without the _BKPT suffix. These macros invoke ** routines that report the line-number on which the error originated ** using sqlite3_log(). The routines also provide a convenient place ** to set a debugger breakpoint. */ int sqlite3ReportError(int iErr, int lineno, const char *zType); int sqlite3CorruptError(int); int sqlite3MisuseError(int); int sqlite3CantopenError(int); #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) #ifdef SQLITE_DEBUG |
︙ | ︙ | |||
3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 | void sqlite3StatusDown(int, int); void sqlite3StatusHighwater(int, int); int sqlite3LookasideUsed(sqlite3*,int*); /* Access to mutexes used by sqlite3_status() */ sqlite3_mutex *sqlite3Pcache1Mutex(void); sqlite3_mutex *sqlite3MallocMutex(void); #ifndef SQLITE_OMIT_FLOATING_POINT int sqlite3IsNaN(double); #else # define sqlite3IsNaN(X) 0 #endif | > > > > > > | 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 | void sqlite3StatusDown(int, int); void sqlite3StatusHighwater(int, int); int sqlite3LookasideUsed(sqlite3*,int*); /* Access to mutexes used by sqlite3_status() */ sqlite3_mutex *sqlite3Pcache1Mutex(void); sqlite3_mutex *sqlite3MallocMutex(void); #if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT) void sqlite3MutexWarnOnContention(sqlite3_mutex*); #else # define sqlite3MutexWarnOnContention(x) #endif #ifndef SQLITE_OMIT_FLOATING_POINT int sqlite3IsNaN(double); #else # define sqlite3IsNaN(X) 0 #endif |
︙ | ︙ |
Changes to src/test_config.c.
︙ | ︙ | |||
705 706 707 708 709 710 711 712 713 714 715 716 717 718 | #endif #if defined(SQLITE_ENABLE_UNLOCK_NOTIFY) Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_SECURE_DELETE Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY); #endif | > > > > > > | 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | #endif #if defined(SQLITE_ENABLE_UNLOCK_NOTIFY) Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "unlock_notify", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_FAST_SECURE_DELETE Tcl_SetVar2(interp, "sqlite_options", "fast_secure_delete", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "fast_secure_delete", "0", TCL_GLOBAL_ONLY); #endif #ifdef SQLITE_SECURE_DELETE Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "1", TCL_GLOBAL_ONLY); #else Tcl_SetVar2(interp, "sqlite_options", "secure_delete", "0", TCL_GLOBAL_ONLY); #endif |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
1317 1318 1319 1320 1321 1322 1323 | sqlite3_value *pVal = 0; int negInt = 1; const char *zNeg = ""; int rc = SQLITE_OK; assert( pExpr!=0 ); while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; | | | 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 | sqlite3_value *pVal = 0; int negInt = 1; const char *zNeg = ""; int rc = SQLITE_OK; assert( pExpr!=0 ); while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; if( op==TK_REGISTER ) op = pExpr->op2; /* Compressed expressions only appear when parsing the DEFAULT clause ** on a table column definition, and hence only when pCtx==0. This ** check ensures that an EP_TokenOnly expression is never passed down ** into valueFromFunction(). */ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2456 2457 2458 2459 2460 2461 2462 | ** changes "x IN (?)" into "x=?". */ } }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if( iCol==XN_ROWID | | | 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 | ** changes "x IN (?)" into "x=?". */ } }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if( iCol==XN_ROWID || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) ){ if( iCol>=0 && pProbe->uniqNotNull==0 ){ pNew->wsFlags |= WHERE_UNQ_WANTED; }else{ pNew->wsFlags |= WHERE_ONEROW; } } |
︙ | ︙ | |||
4673 4674 4675 4676 4677 4678 4679 | } sqlite3DebugPrintf("\n"); for(ii=0; ii<pWInfo->nLevel; ii++){ whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); } } #endif | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | > | | > | | | | > | | | | > | > > > > > > > > > > | 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 | } sqlite3DebugPrintf("\n"); for(ii=0; ii<pWInfo->nLevel; ii++){ whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); } } #endif /* Attempt to omit tables from the join that do not affect the result. ** For a table to not affect the result, the following must be true: ** ** 1) The query must not be an aggregate. ** 2) The table must be the RHS of a LEFT JOIN. ** 3) Either the query must be DISTINCT, or else the ON or USING clause ** must contain a constraint that limits the scan of the table to ** at most a single row. ** 4) The table must not be referenced by any part of the query apart ** from its own USING or ON clause. ** ** For example, given: ** ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); ** ** then table t2 can be omitted from the following: ** ** SELECT v1, v3 FROM t1 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) ** ** or from: ** ** SELECT DISTINCT v1, v3 FROM t1 ** LEFT JOIN t2 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) */ notReady = ~(Bitmask)0; if( pWInfo->nLevel>=2 && pResultSet!=0 /* guarantees condition (1) above */ && OptimizationEnabled(db, SQLITE_OmitNoopJoin) ){ int i; Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); if( sWLB.pOrderBy ){ tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); } for(i=pWInfo->nLevel-1; i>=1; i--){ WhereTerm *pTerm, *pEnd; struct SrcList_item *pItem; pLoop = pWInfo->a[i].pWLoop; pItem = &pWInfo->pTabList->a[pLoop->iTab]; if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 && (pLoop->wsFlags & WHERE_ONEROW)==0 ){ continue; } if( (tabUsed & pLoop->maskSelf)!=0 ) continue; pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) || pTerm->pExpr->iRightJoinTable!=pItem->iCursor ){ break; } } } if( pTerm<pEnd ) continue; WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); notReady &= ~pLoop->maskSelf; for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ pTerm->wtFlags |= TERM_CODED; } } if( i!=pWInfo->nLevel-1 ){ int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); } pWInfo->nLevel--; nTabList--; } } WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; |
︙ | ︙ | |||
4856 4857 4858 4859 4860 4861 4862 | pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ | < | 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 | pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ for(ii=0; ii<nTabList; ii++){ int addrExplain; int wsFlags; pLevel = &pWInfo->a[ii]; wsFlags = pLevel->pWLoop->wsFlags; #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
︙ | ︙ | |||
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 | pLoop = pLevel->pWLoop; if( pLevel->op!=OP_Noop ){ #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT int addrSeek = 0; Index *pIdx; int n; if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED && (pLoop->wsFlags & WHERE_INDEXED)!=0 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 && (n = pLoop->u.btree.nIdxCol)>0 && pIdx->aiRowLogEst[n]>=36 ){ int r1 = pParse->nMem+1; int j, op; | > | 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 | pLoop = pLevel->pWLoop; if( pLevel->op!=OP_Noop ){ #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT int addrSeek = 0; Index *pIdx; int n; if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ && (pLoop->wsFlags & WHERE_INDEXED)!=0 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 && (n = pLoop->u.btree.nIdxCol)>0 && pIdx->aiRowLogEst[n]>=36 ){ int r1 = pParse->nMem+1; int j, op; |
︙ | ︙ | |||
4986 4987 4988 4989 4990 4991 4992 | } #endif if( pLevel->iLeftJoin ){ int ws = pLoop->wsFlags; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); if( (ws & WHERE_IDX_ONLY)==0 ){ | > | | 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 | } #endif if( pLevel->iLeftJoin ){ int ws = pLoop->wsFlags; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); if( (ws & WHERE_IDX_ONLY)==0 ){ assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); } if( (ws & WHERE_INDEXED) || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) ){ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); } if( pLevel->op==OP_Return ){ |
︙ | ︙ |
Changes to src/wherecode.c.
︙ | ︙ | |||
373 374 375 376 377 378 379 | || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) ){ zAff[i] = SQLITE_AFF_BLOB; } } } | | > > > | | < > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > | > > > > > > > > > > > > > > > | > > > | | | > > > > > > > > > > > > > > > | > > > > > > | < | 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) ){ zAff[i] = SQLITE_AFF_BLOB; } } } /* ** pX is an expression of the form: (vector) IN (SELECT ...) ** In other words, it is a vector IN operator with a SELECT clause on the ** LHS. But not all terms in the vector are indexable and the terms might ** not be in the correct order for indexing. ** ** This routine makes a copy of the input pX expression and then adjusts ** the vector on the LHS with corresponding changes to the SELECT so that ** the vector contains only index terms and those terms are in the correct ** order. The modified IN expression is returned. The caller is responsible ** for deleting the returned expression. ** ** Example: ** ** CREATE TABLE t1(a,b,c,d,e,f); ** CREATE INDEX t1x1 ON t1(e,c); ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2) ** \_______________________________________/ ** The pX expression ** ** Since only columns e and c can be used with the index, in that order, ** the modified IN expression that is returned will be: ** ** (e,c) IN (SELECT z,x FROM t2) ** ** The reduced pX is different from the original (obviously) and thus is ** only used for indexing, to improve performance. The original unaltered ** IN expression must also be run on each output row for correctness. */ static Expr *removeUnindexableInClauseTerms( Parse *pParse, /* The parsing context */ int iEq, /* Look at loop terms starting here */ WhereLoop *pLoop, /* The current loop */ Expr *pX /* The IN expression to be reduced */ ){ sqlite3 *db = pParse->db; Expr *pNew = sqlite3ExprDup(db, pX, 0); if( db->mallocFailed==0 ){ ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */ ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */ ExprList *pRhs = 0; /* New RHS after modifications */ ExprList *pLhs = 0; /* New LHS after mods */ int i; /* Loop counter */ Select *pSelect; /* Pointer to the SELECT on the RHS */ for(i=iEq; i<pLoop->nLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iField = pLoop->aLTerm[i]->iField - 1; assert( pOrigRhs->a[iField].pExpr!=0 ); pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); pOrigRhs->a[iField].pExpr = 0; assert( pOrigLhs->a[iField].pExpr!=0 ); pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); pOrigLhs->a[iField].pExpr = 0; } } sqlite3ExprListDelete(db, pOrigRhs); sqlite3ExprListDelete(db, pOrigLhs); pNew->pLeft->x.pList = pLhs; pNew->x.pSelect->pEList = pRhs; if( pLhs && pLhs->nExpr==1 ){ /* Take care here not to generate a TK_VECTOR containing only a ** single value. Since the parser never creates such a vector, some ** of the subroutines do not handle this case. */ Expr *p = pLhs->a[0].pExpr; pLhs->a[0].pExpr = 0; sqlite3ExprDelete(db, pNew->pLeft); pNew->pLeft = p; } pSelect = pNew->x.pSelect; if( pSelect->pOrderBy ){ /* If the SELECT statement has an ORDER BY clause, zero the ** iOrderByCol variables. These are set to non-zero when an ** ORDER BY term exactly matches one of the terms of the ** result-set. Since the result-set of the SELECT statement may ** have been modified or reordered, these variables are no longer ** set correctly. Since setting them is just an optimization, ** it's easiest just to zero them here. */ ExprList *pOrderBy = pSelect->pOrderBy; for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].u.x.iOrderByCol = 0; } } #if 0 printf("For indexing, change the IN expr:\n"); sqlite3TreeViewExpr(0, pX, 0); printf("Into:\n"); sqlite3TreeViewExpr(0, pNew, 0); #endif } return pNew; } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** |
︙ | ︙ | |||
456 457 458 459 460 461 462 | for(i=0; i<iEq; i++){ if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ disableTerm(pLevel, pTerm); return iTarget; } } for(i=iEq;i<pLoop->nLTerm; i++){ | > | < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < | | | | 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | for(i=0; i<iEq; i++){ if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ disableTerm(pLevel, pTerm); return iTarget; } } for(i=iEq;i<pLoop->nLTerm; i++){ assert( pLoop->aLTerm[i]!=0 ); if( pLoop->aLTerm[i]->pExpr==pX ) nEq++; } if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); }else{ sqlite3 *db = pParse->db; pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX); if( !db->mallocFailed ){ aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq); eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); pTerm->pExpr->iTable = pX->iTable; } sqlite3ExprDelete(db, pX); pX = pTerm->pExpr; } if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; |
︙ | ︙ |
Changes to test/distinct2.test.
︙ | ︙ | |||
174 175 176 177 178 179 180 181 182 183 | WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD abCD abCd abCd abcD abcD abcd abcd wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD abCD abCd abCd abcD abcD abcd abcd wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz } # Ticket https://sqlite.org/src/info/ef9318757b152e3a on 2017-11-21 # Incorrect result due to a skip-ahead-distinct optimization on a # join where no rows of the inner loop appear in the result set. # db close sqlite3 db :memory: do_execsql_test 1000 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER); CREATE INDEX t1b ON t1(b); CREATE TABLE t2(x INTEGER PRIMARY KEY, y INTEGER); CREATE INDEX t2y ON t2(y); WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49) INSERT INTO t1(b) SELECT x/10 - 1 FROM c; WITH RECURSIVE c(x) AS (VALUES(-1) UNION ALL SELECT x+1 FROM c WHERE x<19) INSERT INTO t2(x,y) SELECT x, 1 FROM c; SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>-1; ANALYZE; SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>-1; } {1 1} db close sqlite3 db :memory: do_execsql_test 1010 { CREATE TABLE t1(a INTEGER PRIMARY KEY, b INTEGER); CREATE INDEX t1b ON t1(b); CREATE TABLE t2(x INTEGER PRIMARY KEY, y INTEGER); CREATE INDEX t2y ON t2(y); WITH RECURSIVE c(x) AS (VALUES(0) UNION ALL SELECT x+1 FROM c WHERE x<49) INSERT INTO t1(b) SELECT -(x/10 - 1) FROM c; WITH RECURSIVE c(x) AS (VALUES(-1) UNION ALL SELECT x+1 FROM c WHERE x<19) INSERT INTO t2(x,y) SELECT -x, 1 FROM c; SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>1 ORDER BY y DESC; ANALYZE; SELECT DISTINCT y FROM t1, t2 WHERE b=x AND b<>1 ORDER BY y DESC; } {1 1} db close sqlite3 db :memory: do_execsql_test 1020 { CREATE TABLE t1(a, b); CREATE INDEX t1a ON t1(a, b); -- Lots of rows of (1, 'no'), followed by a single (1, 'yes'). WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<100) INSERT INTO t1(a, b) SELECT 1, 'no' FROM c; INSERT INTO t1(a, b) VALUES(1, 'yes'); CREATE TABLE t2(x PRIMARY KEY); INSERT INTO t2 VALUES('yes'); SELECT DISTINCT a FROM t1, t2 WHERE x=b; ANALYZE; SELECT DISTINCT a FROM t1, t2 WHERE x=b; } {1 1} finish_test |
Changes to test/fkey7.test.
︙ | ︙ | |||
63 64 65 66 67 68 69 70 71 | do_test 2.2 { set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1] sqlite3_bind_zeroblob $stmt 1 45 sqlite3_step $stmt sqlite3_finalize $stmt } {SQLITE_CONSTRAINT} } finish_test | > > > > > > > > > > > > > > | 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | do_test 2.2 { set stmt [sqlite3_prepare_v2 db "INSERT INTO cX VALUES(11, ?)" -1] sqlite3_bind_zeroblob $stmt 1 45 sqlite3_step $stmt sqlite3_finalize $stmt } {SQLITE_CONSTRAINT} } ifcapable stat4 { do_execsql_test 3.0 { CREATE TABLE p4 (id INTEGER NOT NULL PRIMARY KEY); INSERT INTO p4 VALUES(1), (2), (3); CREATE TABLE c4(x INTEGER REFERENCES p4(id) DEFERRABLE INITIALLY DEFERRED); CREATE INDEX c4_x ON c4(x); INSERT INTO c4 VALUES(1), (2), (3); ANALYZE; INSERT INTO p4(id) VALUES(4); } } finish_test |
Changes to test/join2.test.
︙ | ︙ | |||
87 88 89 90 91 92 93 94 95 | do_catchsql_test 2.1 { SELECT * FROM aa LEFT JOIN cc ON (a=b) JOIN bb ON (b=c); } {1 {ON clause references tables to its right}} do_catchsql_test 2.2 { SELECT * FROM aa JOIN cc ON (a=b) JOIN bb ON (b=c); } {0 {one one one}} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | do_catchsql_test 2.1 { SELECT * FROM aa LEFT JOIN cc ON (a=b) JOIN bb ON (b=c); } {1 {ON clause references tables to its right}} do_catchsql_test 2.2 { SELECT * FROM aa JOIN cc ON (a=b) JOIN bb ON (b=c); } {0 {one one one}} #------------------------------------------------------------------------- # Test that a problem causing where.c to overlook opportunities to # omit unnecessary tables from a LEFT JOIN when UNIQUE, NOT NULL column # that makes this possible happens to be the leftmost in its table. # reset_db do_execsql_test 3.0 { CREATE TABLE t1(k1 INTEGER PRIMARY KEY, k2, k3); CREATE TABLE t2(k2 INTEGER PRIMARY KEY, v2); -- Prior to this problem being fixed, table t3_2 would be omitted from -- the join queries below, but if t3_1 were used in its place it would -- not. CREATE TABLE t3_1(k3 PRIMARY KEY, v3) WITHOUT ROWID; CREATE TABLE t3_2(v3, k3 PRIMARY KEY) WITHOUT ROWID; } do_eqp_test 3.1 { SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_1 USING (k3); } { 0 0 0 {SCAN TABLE t1} 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)} } do_eqp_test 3.2 { SELECT v2 FROM t1 LEFT JOIN t2 USING (k2) LEFT JOIN t3_2 USING (k3); } { 0 0 0 {SCAN TABLE t1} 0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)} } #------------------------------------------------------------------------- # Test that tables other than the rightmost can be omitted from a # LEFT JOIN query. # do_execsql_test 4.0 { CREATE TABLE c1(k INTEGER PRIMARY KEY, v1); CREATE TABLE c2(k INTEGER PRIMARY KEY, v2); CREATE TABLE c3(k INTEGER PRIMARY KEY, v3); INSERT INTO c1 VALUES(1, 2); INSERT INTO c2 VALUES(2, 3); INSERT INTO c3 VALUES(3, 'v3'); INSERT INTO c1 VALUES(111, 1112); INSERT INTO c2 VALUES(112, 1113); INSERT INTO c3 VALUES(113, 'v1113'); } do_execsql_test 4.1.1 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } {2 v3 1112 {}} do_execsql_test 4.1.2 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 1112 {}} do_execsql_test 4.1.3 { SELECT DISTINCT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 1112 {}} do_execsql_test 4.1.4 { SELECT v1, v3 FROM c1 LEFT JOIN c2 LEFT JOIN c3 ON (c3.k=v1+1); } {2 v3 2 v3 1112 {} 1112 {}} do_eqp_test 4.2.1 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v2); } { 0 0 0 {SCAN TABLE c1} 0 1 1 {SEARCH TABLE c2 USING INTEGER PRIMARY KEY (rowid=?)} 0 2 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)} } do_eqp_test 4.2.2 { SELECT v1, v3 FROM c1 LEFT JOIN c2 ON (c2.k=v1) LEFT JOIN c3 ON (c3.k=v1+1); } { 0 0 0 {SCAN TABLE c1} 0 1 2 {SEARCH TABLE c3 USING INTEGER PRIMARY KEY (rowid=?)} } # 2017-11-23 (Thanksgiving day) # OSSFuzz found an assertion fault in the new LEFT JOIN eliminator code. # do_execsql_test 4.3.0 { DROP TABLE IF EXISTS t1; DROP TABLE IF EXISTS t2; CREATE TABLE t1(x PRIMARY KEY) WITHOUT ROWID; CREATE TABLE t2(x); SELECT a.x FROM t1 AS a LEFT JOIN t1 AS b ON (a.x=b.x) LEFT JOIN t2 AS c ON (a.x=c.x); } {} do_execsql_test 4.3.1 { WITH RECURSIVE c(x) AS (VALUES(1) UNION ALL SELECT x+1 FROM c WHERE x<10) INSERT INTO t1(x) SELECT x FROM c; INSERT INTO t2(x) SELECT x+9 FROM t1; SELECT a.x, c.x FROM t1 AS a LEFT JOIN t1 AS b ON (a.x=b.x) LEFT JOIN t2 AS c ON (a.x=c.x); } {1 {} 2 {} 3 {} 4 {} 5 {} 6 {} 7 {} 8 {} 9 {} 10 10} finish_test |
Changes to test/securedel.test.
︙ | ︙ | |||
13 14 15 16 17 18 19 | # set testdir [file dirname $argv0] source $testdir/tester.tcl unset -nocomplain DEFAULT_SECDEL set DEFAULT_SECDEL 0 | > > > | | > | 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | # set testdir [file dirname $argv0] source $testdir/tester.tcl unset -nocomplain DEFAULT_SECDEL set DEFAULT_SECDEL 0 ifcapable fast_secure_delete { set DEFAULT_SECDEL 2 } else { ifcapable secure_delete { set DEFAULT_SECDEL 1 } } do_test securedel-1.0 { db eval {PRAGMA secure_delete;} } $DEFAULT_SECDEL |
︙ | ︙ |