/ Check-in [1ec0e9dd]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Get rid of the OP_Undef and OP_IsUndef opcodes in favor of higher-level OP_InitCoroutine and OP_EndCoroutine.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | coroutine-refactor
Files: files | file ages | folders
SHA1: 1ec0e9dd4b26d9f597adc8e062317d4866c5a6a6
User & Date: drh 2014-02-07 18:27:53
Context
2014-02-07
19:18
Change the OP_InitCoroutine instruction to jump over the co-routine implementation. Closed-Leaf check-in: a522f364 user: drh tags: coroutine-refactor
18:27
Get rid of the OP_Undef and OP_IsUndef opcodes in favor of higher-level OP_InitCoroutine and OP_EndCoroutine. check-in: 1ec0e9dd user: drh tags: coroutine-refactor
13:20
Add the OP_Undef and OP_IsUndef opcodes. With these, use the first register in the result register range as the flag to indicate EOF on an INSERT from a SELECT, rather than allocating a separate boolean register for that task. check-in: 6fb74485 user: drh tags: coroutine-refactor
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/insert.c.

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
...
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
...
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
...
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
...
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
...
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
**         goto B
**      A: setup for the SELECT
**         loop rows in the SELECT
**           load results into registers R..S
**           yield X
**         end loop
**         cleanup after the SELECT
**         R <- undefined (signals EOF)
**         yield X
**         halt-error
**      B:
**
** To use this subroutine, the caller generates code as follows:
**
**         [ Co-routine generated by this subroutine, shown above ]
**      S: yield X
**         if R==undefined goto E
**         if skip this row, goto C
**         if terminate loop, goto E
**         deal with this row
**      C: goto S
**      E:
*/
int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
................................................................................
  int j1;             /* Jump instruction */
  int rc;             /* Result code */
  Vdbe *v;            /* VDBE under construction */

  regYield = ++pParse->nMem;
  v = sqlite3GetVdbe(pParse);
  addrTop = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp2(v, OP_Integer, addrTop+1, regYield); /* X <- A */
  VdbeComment((v, "Co-routine entry point"));
  sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
  j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
  rc = sqlite3Select(pParse, pSelect, pDest);
  assert( pParse->nErr==0 || rc );
  if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
  if( rc ) return rc;
  sqlite3VdbeAddOp1(v, OP_Undef, pDest->iSdst);     /* Signal EOF */
  sqlite3VdbeAddOp1(v, OP_Yield, regYield);         /* yield X */
  sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
  VdbeComment((v, "End of coroutine"));
  sqlite3VdbeJumpHere(v, j1);                             /* label B: */
  return rc;
}



/* Forward declaration */
................................................................................
**         goto B
**      A: setup for the SELECT
**         loop over the rows in the SELECT
**           load values into registers R..R+n
**           yield X
**         end loop
**         cleanup after the SELECT
**         R <- undefined (signals EOF)
**         yield X
**         goto A
**      B: open write cursor to <table> and its indices
**      C: yield X
**         if R=undefined goto D
**         insert the select result into <table> from R..R+n
**         goto C
**      D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT.  In the third form,
................................................................................
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           load value into register R..R+n
**           yield X
**         end loop
**         cleanup after the SELECT
**         R <- undefined (signals EOF)
**         yield X
**         halt-error
**      B: open temp table
**      L: yield X
**         if R=undefined goto M
**         insert row from R..R+n into temp table
**         goto L
**      M: open write cursor to <table> and its indices
**         rewind temp table
**      C: loop over rows of intermediate table
**           transfer values form intermediate table into <table>
**         end loop
................................................................................

    if( useTempTable ){
      /* Invoke the coroutine to extract information from the SELECT
      ** and add it to a transient table srcTab.  The code generated
      ** here is from the 4th template:
      **
      **      B: open temp table
      **      L: yield X
      **         if R=undefined goto M
      **         insert row from R..R+n into temp table
      **         goto L
      **      M: ...
      */
      int regRec;          /* Register to hold packed record */
      int regTempRowid;    /* Register to hold temp table ROWID */
      int addrTop;         /* Label "L" */
      int addrIf;          /* Address of jump to M */

      srcTab = pParse->nTab++;
      regRec = sqlite3GetTempReg(pParse);
      regTempRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
      addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
      addrIf = sqlite3VdbeAddOp1(v, OP_IsUndef, regFromSelect);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
      sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
      sqlite3VdbeJumpHere(v, addrIf);
      sqlite3ReleaseTempReg(pParse, regRec);
      sqlite3ReleaseTempReg(pParse, regTempRowid);
    }
  }else{
    /* This is the case if the data for the INSERT is coming from a VALUES
    ** clause
    */
................................................................................
  }

  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 4):
    **
    **         rewind temp table
    **      C: loop over rows of intermediate table
    **           transfer values form intermediate table into <table>
    **         end loop
    **      D: ...
    */
    addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
    addrCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 3):
    **
    **      C: yield X
    **         if R=undefined goto D
    **         insert the select result into <table> from R..R+n
    **         goto C
    **      D: ...
    */
    addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
    addrInsTop = sqlite3VdbeAddOp1(v, OP_IsUndef, dest.iSdst);
  }

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRowid = regIns = pParse->nMem+1;
  pParse->nMem += pTab->nCol + 1;







<
|
<





|
<







 







|
<






<
|
<
<







 







<
<
|

|
<







 







<
|
<

|
<







 







|
<







<






<




|







 







|











|
<




|
<







369
370
371
372
373
374
375

376

377
378
379
380
381
382

383
384
385
386
387
388
389
...
392
393
394
395
396
397
398
399

400
401
402
403
404
405

406


407
408
409
410
411
412
413
...
476
477
478
479
480
481
482


483
484
485

486
487
488
489
490
491
492
...
497
498
499
500
501
502
503

504

505
506

507
508
509
510
511
512
513
...
684
685
686
687
688
689
690
691

692
693
694
695
696
697
698

699
700
701
702
703
704

705
706
707
708
709
710
711
712
713
714
715
716
...
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

834
835
836
837
838

839
840
841
842
843
844
845
**         goto B
**      A: setup for the SELECT
**         loop rows in the SELECT
**           load results into registers R..S
**           yield X
**         end loop
**         cleanup after the SELECT

**         end co-routine R

**      B:
**
** To use this subroutine, the caller generates code as follows:
**
**         [ Co-routine generated by this subroutine, shown above ]
**      S: yield X, at EOF goto E

**         if skip this row, goto C
**         if terminate loop, goto E
**         deal with this row
**      C: goto S
**      E:
*/
int sqlite3CodeCoroutine(Parse *pParse, Select *pSelect, SelectDest *pDest){
................................................................................
  int j1;             /* Jump instruction */
  int rc;             /* Result code */
  Vdbe *v;            /* VDBE under construction */

  regYield = ++pParse->nMem;
  v = sqlite3GetVdbe(pParse);
  addrTop = sqlite3VdbeCurrentAddr(v);
  sqlite3VdbeAddOp2(v, OP_InitCoroutine, regYield, addrTop+2);

  sqlite3SelectDestInit(pDest, SRT_Coroutine, regYield);
  j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
  rc = sqlite3Select(pParse, pSelect, pDest);
  assert( pParse->nErr==0 || rc );
  if( pParse->db->mallocFailed && rc==SQLITE_OK ) rc = SQLITE_NOMEM;
  if( rc ) return rc;

  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);


  sqlite3VdbeJumpHere(v, j1);                             /* label B: */
  return rc;
}



/* Forward declaration */
................................................................................
**         goto B
**      A: setup for the SELECT
**         loop over the rows in the SELECT
**           load values into registers R..R+n
**           yield X
**         end loop
**         cleanup after the SELECT


**         end-coroutine X
**      B: open write cursor to <table> and its indices
**      C: yield X, at EOF goto D

**         insert the select result into <table> from R..R+n
**         goto C
**      D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT.  In the third form,
................................................................................
**         goto B
**      A: setup for the SELECT
**         loop over the tables in the SELECT
**           load value into register R..R+n
**           yield X
**         end loop
**         cleanup after the SELECT

**         end co-routine R

**      B: open temp table
**      L: yield X, at EOF goto M

**         insert row from R..R+n into temp table
**         goto L
**      M: open write cursor to <table> and its indices
**         rewind temp table
**      C: loop over rows of intermediate table
**           transfer values form intermediate table into <table>
**         end loop
................................................................................

    if( useTempTable ){
      /* Invoke the coroutine to extract information from the SELECT
      ** and add it to a transient table srcTab.  The code generated
      ** here is from the 4th template:
      **
      **      B: open temp table
      **      L: yield X, goto M at EOF

      **         insert row from R..R+n into temp table
      **         goto L
      **      M: ...
      */
      int regRec;          /* Register to hold packed record */
      int regTempRowid;    /* Register to hold temp table ROWID */
      int addrTop;         /* Label "L" */


      srcTab = pParse->nTab++;
      regRec = sqlite3GetTempReg(pParse);
      regTempRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
      addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);

      sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
      sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
      sqlite3VdbeJumpHere(v, addrTop);
      sqlite3ReleaseTempReg(pParse, regRec);
      sqlite3ReleaseTempReg(pParse, regTempRowid);
    }
  }else{
    /* This is the case if the data for the INSERT is coming from a VALUES
    ** clause
    */
................................................................................
  }

  /* This is the top of the main insertion loop */
  if( useTempTable ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 4):
    **
    **         rewind temp table, if empty goto D
    **      C: loop over rows of intermediate table
    **           transfer values form intermediate table into <table>
    **         end loop
    **      D: ...
    */
    addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
    addrCont = sqlite3VdbeCurrentAddr(v);
  }else if( pSelect ){
    /* This block codes the top of loop only.  The complete loop is the
    ** following pseudocode (template 3):
    **
    **      C: yield X, at EOF goto D

    **         insert the select result into <table> from R..R+n
    **         goto C
    **      D: ...
    */
    addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);

  }

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRowid = regIns = pParse->nMem+1;
  pParse->nMem += pTab->nCol + 1;

Changes to src/select.c.

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
....
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584

2585
2586
2587
2588
2589
2590
2591
....
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
....
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
....
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine:
    case SRT_Output: {
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
................................................................................
){
  int i, j;             /* Loop counters */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest destA;     /* Destination for coroutine A */
  SelectDest destB;     /* Destination for coroutine B */
  int regAddrA;         /* Address register for select-A coroutine */
  int regEofA;          /* Flag to indicate when select-A is complete */
  int regAddrB;         /* Address register for select-B coroutine */
  int regEofB;          /* Flag to indicate when select-B is complete */
  int addrSelectA;      /* Address of the select-A coroutine */
  int addrSelectB;      /* Address of the select-B coroutine */
  int regOutA;          /* Address register for the output-A subroutine */
  int regOutB;          /* Address register for the output-B subroutine */
  int addrOutA;         /* Address of the output-A subroutine */
  int addrOutB = 0;     /* Address of the output-B subroutine */
  int addrEofA;         /* Address of the select-A-exhausted subroutine */

  int addrEofB;         /* Address of the select-B-exhausted subroutine */
  int addrAltB;         /* Address of the A<B subroutine */
  int addrAeqB;         /* Address of the A==B subroutine */
  int addrAgtB;         /* Address of the A>B subroutine */
  int regLimitA;        /* Limit register for select-A */
  int regLimitB;        /* Limit register for select-A */
  int regPrev;          /* A range of registers to hold previous output */
................................................................................
  }
  sqlite3ExprDelete(db, p->pLimit);
  p->pLimit = 0;
  sqlite3ExprDelete(db, p->pOffset);
  p->pOffset = 0;

  regAddrA = ++pParse->nMem;
  regEofA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regEofB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  /* Jump past the various subroutines and coroutines to the main
  ** merge loop
  */
  j1 = sqlite3VdbeAddOp0(v, OP_Goto);
  addrSelectA = sqlite3VdbeCurrentAddr(v);


  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  VdbeNoopComment((v, "Begin coroutine for left SELECT"));

  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  VdbeNoopComment((v, "End coroutine for left SELECT"));

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */

  addrSelectB = sqlite3VdbeCurrentAddr(v);
  VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  VdbeNoopComment((v, "End coroutine for right SELECT"));

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,
................................................................................
                 regPrev, pKeyDup, labelEnd);
  }
  sqlite3KeyInfoUnref(pKeyDup);

  /* Generate a subroutine to run when the results from select A
  ** are exhausted and only data in select B remains.
  */
  VdbeNoopComment((v, "eof-A subroutine"));
  if( op==TK_EXCEPT || op==TK_INTERSECT ){
    addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
  }else{  
    addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
    p->nSelectRow += pPrior->nSelectRow;
  }

  /* Generate a subroutine to run when the results from select B
  ** are exhausted and only data in select A remains.
  */
  if( op==TK_INTERSECT ){
    addrEofB = addrEofA;
    if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
  }else{  
    VdbeNoopComment((v, "eof-B subroutine"));
    addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
  }

  /* Generate code to handle the case of A<B
  */
  VdbeNoopComment((v, "A-lt-B subroutine"));
  addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* Generate code to handle the case of A==B
  */
  if( op==TK_ALL ){
    addrAeqB = addrAltB;
  }else if( op==TK_INTERSECT ){
    addrAeqB = addrAltB;
    addrAltB++;
  }else{
    VdbeNoopComment((v, "A-eq-B subroutine"));
    addrAeqB =
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
    sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  }

  /* Generate code to handle the case of A>B
  */
  VdbeNoopComment((v, "A-gt-B subroutine"));
  addrAgtB = sqlite3VdbeCurrentAddr(v);
  if( op==TK_ALL || op==TK_UNION ){
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  }
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* This code runs once to initialize everything.
  */
  sqlite3VdbeJumpHere(v, j1);
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO);
................................................................................
    }else if( pTabList->nSrc==1
           && OptimizationEnabled(db, SQLITE_SubqCoroutine)
    ){
      /* Implement a co-routine that will return a single row of the result
      ** set on each invocation.
      */
      int addrTop;
      int addrEof;
      pItem->regReturn = ++pParse->nMem;
      addrEof = ++pParse->nMem;
      /* Before coding the OP_Goto to jump to the start of the main routine,
      ** ensure that the jump to the verify-schema routine has already
      ** been coded. Otherwise, the verify-schema would likely be coded as 
      ** part of the co-routine. If the main routine then accessed the 
      ** database before invoking the co-routine for the first time (for 
      ** example to initialize a LIMIT register from a sub-select), it would 
      ** be doing so without having verified the schema version and obtained 
      ** the required db locks. See ticket d6b36be38.  */
      sqlite3CodeVerifySchema(pParse, -1);
      sqlite3VdbeAddOp0(v, OP_Goto);
      addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
      sqlite3VdbeChangeP5(v, 1);
      VdbeComment((v, "coroutine for %s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;
      sqlite3VdbeAddOp2(v, OP_Integer, 0, addrEof);
      sqlite3VdbeChangeP5(v, 1);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
      pItem->viaCoroutine = 1;
      sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
      sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, addrEof);
      sqlite3VdbeAddOp1(v, OP_Yield, pItem->regReturn);
      VdbeComment((v, "end %s", pItem->pTab->zName));
      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
    }else{
      /* Generate a subroutine that will fill an ephemeral table with
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address







<
<
<
<
|
|







 







<

<







>







 







<

<









<





|
>



<
|
<




>

<








<
|
<







 







|
|
|
|
|
|
<












<
|
|







<
|












<
|










<
|





|
|
<
<
|
|







 







<

<












|

<
<







<
|
<







761
762
763
764
765
766
767




768
769
770
771
772
773
774
775
776
....
2564
2565
2566
2567
2568
2569
2570

2571

2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
....
2709
2710
2711
2712
2713
2714
2715

2716

2717
2718
2719
2720
2721
2722
2723
2724
2725

2726
2727
2728
2729
2730
2731
2732
2733
2734
2735

2736

2737
2738
2739
2740
2741
2742

2743
2744
2745
2746
2747
2748
2749
2750

2751

2752
2753
2754
2755
2756
2757
2758
....
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780

2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792

2793
2794
2795
2796
2797
2798
2799
2800
2801

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814

2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825

2826
2827
2828
2829
2830
2831
2832
2833


2834
2835
2836
2837
2838
2839
2840
2841
2842
....
4537
4538
4539
4540
4541
4542
4543

4544

4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558


4559
4560
4561
4562
4563
4564
4565

4566

4567
4568
4569
4570
4571
4572
4573
        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */





    case SRT_Coroutine:       /* Send data to a co-routine */
    case SRT_Output: {        /* Return the results */
      testcase( eDest==SRT_Coroutine );
      testcase( eDest==SRT_Output );
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
................................................................................
){
  int i, j;             /* Loop counters */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest destA;     /* Destination for coroutine A */
  SelectDest destB;     /* Destination for coroutine B */
  int regAddrA;         /* Address register for select-A coroutine */

  int regAddrB;         /* Address register for select-B coroutine */

  int addrSelectA;      /* Address of the select-A coroutine */
  int addrSelectB;      /* Address of the select-B coroutine */
  int regOutA;          /* Address register for the output-A subroutine */
  int regOutB;          /* Address register for the output-B subroutine */
  int addrOutA;         /* Address of the output-A subroutine */
  int addrOutB = 0;     /* Address of the output-B subroutine */
  int addrEofA;         /* Address of the select-A-exhausted subroutine */
  int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
  int addrEofB;         /* Address of the select-B-exhausted subroutine */
  int addrAltB;         /* Address of the A<B subroutine */
  int addrAeqB;         /* Address of the A==B subroutine */
  int addrAgtB;         /* Address of the A>B subroutine */
  int regLimitA;        /* Limit register for select-A */
  int regLimitB;        /* Limit register for select-A */
  int regPrev;          /* A range of registers to hold previous output */
................................................................................
  }
  sqlite3ExprDelete(db, p->pLimit);
  p->pLimit = 0;
  sqlite3ExprDelete(db, p->pOffset);
  p->pOffset = 0;

  regAddrA = ++pParse->nMem;

  regAddrB = ++pParse->nMem;

  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  /* Jump past the various subroutines and coroutines to the main
  ** merge loop
  */
  j1 = sqlite3VdbeAddOp0(v, OP_Goto);



  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  VdbeNoopComment((v, "coroutine for left SELECT"));
  addrSelectA = sqlite3VdbeCurrentAddr(v);
  pPrior->iLimit = regLimitA;
  explainSetInteger(iSub1, pParse->iNextSelectId);
  sqlite3Select(pParse, pPrior, &destA);

  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);


  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  VdbeNoopComment((v, "coroutine for right SELECT"));
  addrSelectB = sqlite3VdbeCurrentAddr(v);

  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  explainSetInteger(iSub2, pParse->iNextSelectId);
  sqlite3Select(pParse, p, &destB);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;

  sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);


  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,
................................................................................
                 regPrev, pKeyDup, labelEnd);
  }
  sqlite3KeyInfoUnref(pKeyDup);

  /* Generate a subroutine to run when the results from select A
  ** are exhausted and only data in select B remains.
  */
  if( op==TK_EXCEPT || op==TK_INTERSECT ){
    addrEofA_noB = addrEofA = labelEnd;
  }else{  
    VdbeNoopComment((v, "eof-A subroutine"));
    addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
    addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);

    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
    p->nSelectRow += pPrior->nSelectRow;
  }

  /* Generate a subroutine to run when the results from select B
  ** are exhausted and only data in select A remains.
  */
  if( op==TK_INTERSECT ){
    addrEofB = addrEofA;
    if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
  }else{  
    VdbeNoopComment((v, "eof-B subroutine"));

    addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
    sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
  }

  /* Generate code to handle the case of A<B
  */
  VdbeNoopComment((v, "A-lt-B subroutine"));
  addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);

  sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* Generate code to handle the case of A==B
  */
  if( op==TK_ALL ){
    addrAeqB = addrAltB;
  }else if( op==TK_INTERSECT ){
    addrAeqB = addrAltB;
    addrAltB++;
  }else{
    VdbeNoopComment((v, "A-eq-B subroutine"));
    addrAeqB =

    sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  }

  /* Generate code to handle the case of A>B
  */
  VdbeNoopComment((v, "A-gt-B subroutine"));
  addrAgtB = sqlite3VdbeCurrentAddr(v);
  if( op==TK_ALL || op==TK_UNION ){
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  }

  sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* This code runs once to initialize everything.
  */
  sqlite3VdbeJumpHere(v, j1);
  sqlite3VdbeAddOp2(v, OP_InitCoroutine, regAddrA, addrSelectA);
  sqlite3VdbeAddOp2(v, OP_InitCoroutine, regAddrB, addrSelectB);


  sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB);
  sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO);
................................................................................
    }else if( pTabList->nSrc==1
           && OptimizationEnabled(db, SQLITE_SubqCoroutine)
    ){
      /* Implement a co-routine that will return a single row of the result
      ** set on each invocation.
      */
      int addrTop;

      pItem->regReturn = ++pParse->nMem;

      /* Before coding the OP_Goto to jump to the start of the main routine,
      ** ensure that the jump to the verify-schema routine has already
      ** been coded. Otherwise, the verify-schema would likely be coded as 
      ** part of the co-routine. If the main routine then accessed the 
      ** database before invoking the co-routine for the first time (for 
      ** example to initialize a LIMIT register from a sub-select), it would 
      ** be doing so without having verified the schema version and obtained 
      ** the required db locks. See ticket d6b36be38.  */
      sqlite3CodeVerifySchema(pParse, -1);
      sqlite3VdbeAddOp0(v, OP_Goto);
      addrTop = sqlite3VdbeAddOp1(v, OP_OpenPseudo, pItem->iCursor);
      sqlite3VdbeChangeP5(v, 1);
      VdbeComment((v, "coroutine %s", pItem->pTab->zName));
      pItem->addrFillSub = addrTop;


      sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
      explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
      sqlite3Select(pParse, pSub, &dest);
      pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
      pItem->viaCoroutine = 1;
      sqlite3VdbeChangeP2(v, addrTop, dest.iSdst);
      sqlite3VdbeChangeP3(v, addrTop, dest.nSdst);

      sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);

      sqlite3VdbeJumpHere(v, addrTop-1);
      sqlite3ClearTempRegCache(pParse);
    }else{
      /* Generate a subroutine that will fill an ephemeral table with
      ** the content of this subquery.  pItem->addrFillSub will point
      ** to the address of the generated subroutine.  pItem->regReturn
      ** is a register allocated to hold the subroutine return address

Changes to src/vdbe.c.

716
717
718
719
720
721
722
723

724
725
726
727
728

729
730
731




































732
733
734




735
736
737
738
739
740
741
742
743
...
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
....
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return P1 * * * *
**
** Jump to the next instruction after the address in register P1.

*/
case OP_Return: {           /* in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags & MEM_Int );
  pc = (int)pIn1->u.i;

  break;
}





































/* Opcode:  Yield P1 * * * *
**
** Swap the program counter with the value in register P1.




*/
case OP_Yield: {            /* in1 */
  int pcDest;
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  pIn1->flags = MEM_Int;
  pcDest = (int)pIn1->u.i;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
................................................................................
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Undef P1 * * * *
** Synopsis: r[P1]=undef
**
** Mark register P1 as undefined.
*/
case OP_Undef: {
  assert( pOp->p1>0 );
  assert( pOp->p1<=(p->nMem-p->nCursor) );
  pOut = &aMem[pOp->p1];
  memAboutToChange(p, pOut);
  VdbeMemRelease(pOut);
  pOut->flags = MEM_Undefined;
  break;
}

/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
................................................................................
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  if( c ){
    pc = pOp->p2-1;
  }
  break;
}

/* Opcode: IsUndef P1 P2 * * *
** Synopsis:  if r[P1]==undefined goto P2
**
** Jump to P2 if the value in register P1 is undefined
*/
case OP_IsUndef: {            /* jump */
  pIn1 = &aMem[pOp->p1];
  if( (pIn1->flags & MEM_Undefined)!=0 ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsNull P1 P2 * * *
** Synopsis:  if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.







|
>



|

>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|


>
>
>
>

|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







<
<
<
<
<
<
<
<
<
<
<
<
<







716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
....
1023
1024
1025
1026
1027
1028
1029















1030
1031
1032
1033
1034
1035
1036
....
2174
2175
2176
2177
2178
2179
2180













2181
2182
2183
2184
2185
2186
2187
  REGISTER_TRACE(pOp->p1, pIn1);
  pc = pOp->p2 - 1;
  break;
}

/* Opcode:  Return P1 * * * *
**
** Jump to the next instruction after the address in register P1.  After
** the jump, register P1 becomes undefined.
*/
case OP_Return: {           /* in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags==MEM_Int );
  pc = (int)pIn1->u.i;
  pIn1->flags = MEM_Undefined;
  break;
}

/* Opcode: InitCoroutine P1 P2 * * *
**
** Identify the co-routine at address P2 using the register P1
** as its return address.  Run this opcode prior to the first 
** OP_Yield to invoke the co-routine.
*/
case OP_InitCoroutine: {     /* jump */
  assert( pOp->p1>0 );
  assert( pOp->p1<=(p->nMem-p->nCursor) );
  pOut = &aMem[pOp->p1];
  memAboutToChange(p, pOut);
  VdbeMemRelease(pOut);
  pOut->u.i = pOp->p2 - 1;
  pOut->flags = MEM_Int;
  break;
}

/* Opcode:  EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is an OP_Yield.
** Jump to the P2 parameter of that OP_Yield.
** After the jump, register P1 becomes undefined.
*/
case OP_EndCoroutine: {           /* in1 */
  VdbeOp *pCaller;
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags==MEM_Int );
  assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
  pCaller = &aOp[pIn1->u.i];
  assert( pCaller->opcode==OP_Yield );
  assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
  pc = pCaller->p2 - 1;
  pIn1->flags = MEM_Undefined;
  break;
}

/* Opcode:  Yield P1 P2 * * *
**
** Swap the program counter with the value in register P1.
**
** If the co-routine ends with OP_Yield or OP_Return then continue
** to the next instruction.  But if the co-routine ends with
** OP_EndCoroutine, jump immediately to P2.
*/
case OP_Yield: {            /* in1, jump */
  int pcDest;
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Dyn)==0 );
  pIn1->flags = MEM_Int;
  pcDest = (int)pIn1->u.i;
  pIn1->u.i = pc;
  REGISTER_TRACE(pOp->p1, pIn1);
................................................................................
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}
















/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
................................................................................
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
#endif
    if( pOp->opcode==OP_IfNot ) c = !c;
  }
  if( c ){
    pc = pOp->p2-1;
  }













  break;
}

/* Opcode: IsNull P1 P2 * * *
** Synopsis:  if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.

Changes to src/where.c.

2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
    sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
    VdbeComment((v, "init LEFT JOIN no-match flag"));
  }

  /* Special case of a FROM clause subquery implemented as a co-routine */
  if( pTabItem->viaCoroutine ){
    int regYield = pTabItem->regReturn;
    sqlite3VdbeAddOp2(v, OP_Integer, pTabItem->addrFillSub-1, regYield);
    pLevel->p2 =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
    sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.







|
|

<







2781
2782
2783
2784
2785
2786
2787
2788
2789
2790

2791
2792
2793
2794
2795
2796
2797
    sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
    VdbeComment((v, "init LEFT JOIN no-match flag"));
  }

  /* Special case of a FROM clause subquery implemented as a co-routine */
  if( pTabItem->viaCoroutine ){
    int regYield = pTabItem->regReturn;
    sqlite3VdbeAddOp2(v, OP_InitCoroutine, regYield, pTabItem->addrFillSub);
    pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));

    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.