SQLite

Check-in [1e3d0d0947]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:fix a memory leak in btree_rb.c. (CVS 918)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 1e3d0d094776c2a429fa2a3eebc036a0b6374862
User & Date: drh 2003-04-18 22:52:39.000
Context
2003-04-19
16:34
Bug in WHERE clause processing fixed. Ticket #298. (CVS 919) (check-in: 9b619c98b5 user: drh tags: trunk)
2003-04-18
22:52
fix a memory leak in btree_rb.c. (CVS 918) (check-in: 1e3d0d0947 user: drh tags: trunk)
17:45
Fix for ticket #297 - bug in sqliteSortCompare(). (CVS 917) (check-in: 4ded1965eb user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree_rb.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2003 Feb 4
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree_rb.c,v 1.3 2003/04/16 01:28:16 drh Exp $
**
** This file implements an in-core database using Red-Black balanced
** binary trees.
**
** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
*/
#include "btree.h"











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2003 Feb 4
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree_rb.c,v 1.4 2003/04/18 22:52:39 drh Exp $
**
** This file implements an in-core database using Red-Black balanced
** binary trees.
**
** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
*/
#include "btree.h"
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
*/
#define ROLLBACK_INSERT 1 /* Insert a record */
#define ROLLBACK_DELETE 2 /* Delete a record */
#define ROLLBACK_CREATE 3 /* Create a table */
#define ROLLBACK_DROP   4 /* Drop a table */

struct Btree {
  BtOps *pOps;	  /* Function table */
  int aMetaData[SQLITE_N_BTREE_META];

  int next_idx;   /* next available table index */
  Hash tblHash;   /* All created tables, by index */
  u8 isAnonymous; /* True if this Btree is to be deleted when closed */
  u8 eTransState; /* State of this Btree wrt transactions */

  BtRollbackOp *pTransRollback; 
  BtRollbackOp *pCheckRollback;
  BtRollbackOp *pCheckRollbackTail;
};

/*
** Legal values for Btree.eTransState.
*/
#define TRANS_NONE           0  /* No transaction is in progress */
#define TRANS_INTRANSACTION  1  /* A transaction is in progress */
#define TRANS_INCHECKPOINT   2  /* A checkpoint is in progress  */
#define TRANS_ROLLBACK       3  /* We are currently rolling back a checkpoint or
				 * transaction. */

struct BtCursor {
  BtCursorOps *pOps;	    /* Function table */
  Btree    *pBtree;
  BtRbTree *pTree;
  int       iTree;          /* Index of pTree in pBtree */
  BtRbNode *pNode;
  u8 eSkip;                 /* Determines if next step operation is a no-op */
};








|



















|


|







65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
*/
#define ROLLBACK_INSERT 1 /* Insert a record */
#define ROLLBACK_DELETE 2 /* Delete a record */
#define ROLLBACK_CREATE 3 /* Create a table */
#define ROLLBACK_DROP   4 /* Drop a table */

struct Btree {
  BtOps *pOps;    /* Function table */
  int aMetaData[SQLITE_N_BTREE_META];

  int next_idx;   /* next available table index */
  Hash tblHash;   /* All created tables, by index */
  u8 isAnonymous; /* True if this Btree is to be deleted when closed */
  u8 eTransState; /* State of this Btree wrt transactions */

  BtRollbackOp *pTransRollback; 
  BtRollbackOp *pCheckRollback;
  BtRollbackOp *pCheckRollbackTail;
};

/*
** Legal values for Btree.eTransState.
*/
#define TRANS_NONE           0  /* No transaction is in progress */
#define TRANS_INTRANSACTION  1  /* A transaction is in progress */
#define TRANS_INCHECKPOINT   2  /* A checkpoint is in progress  */
#define TRANS_ROLLBACK       3  /* We are currently rolling back a checkpoint or
                                 * transaction. */

struct BtCursor {
  BtCursorOps *pOps;        /* Function table */
  Btree    *pBtree;
  BtRbTree *pTree;
  int       iTree;          /* Index of pTree in pBtree */
  BtRbNode *pNode;
  u8 eSkip;                 /* Determines if next step operation is a no-op */
};

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
   * 2 -> came from right */
  int prev_step = 0;

  pNode = tree->pHead;
  while( pNode ){
    switch( prev_step ){
      case 0:
	if( pNode->pLeft ){
	  pNode = pNode->pLeft;
	}else{ 
	  prev_step = 1;
	}
	break;
      case 1:
	if( pNode->pRight ){
	  pNode = pNode->pRight;
	  prev_step = 0;
	}else{
	  prev_step = 2;
	}
	break;
      case 2:
	/* Check red-black property (1) */
	if( !pNode->isBlack &&
	    ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
	      (pNode->pRight && !pNode->pRight->isBlack) )
	  ){
	  char buf[128];
	  sprintf(buf, "Red node with red child at %p\n", pNode);
	  *msg = append_val(*msg, buf);
	  *msg = append_node(*msg, tree->pHead, 0);
	  *msg = append_val(*msg, "\n");
	}

	/* Check red-black property (2) */
	{ 
	  int leftHeight = 0;
	  int rightHeight = 0;
	  if( pNode->pLeft ){
	    leftHeight += pNode->pLeft->nBlackHeight;
	    leftHeight += (pNode->pLeft->isBlack?1:0);
	  }
	  if( pNode->pRight ){
	    rightHeight += pNode->pRight->nBlackHeight;
	    rightHeight += (pNode->pRight->isBlack?1:0);
	  }
	  if( leftHeight != rightHeight ){
	    char buf[128];
	    sprintf(buf, "Different black-heights at %p\n", pNode);
	    *msg = append_val(*msg, buf);
	    *msg = append_node(*msg, tree->pHead, 0);
	  *msg = append_val(*msg, "\n");
	  }
	  pNode->nBlackHeight = leftHeight;
	}

	if( pNode->pParent ){
	  if( pNode == pNode->pParent->pLeft ) prev_step = 1;
	  else prev_step = 2;
	}
	pNode = pNode->pParent;
	break;
      default: assert(0);
    }
  }
} 

/*
 * Node pX has just been inserted into pTree (by code in sqliteBtreeInsert()).







|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|







294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
   * 2 -> came from right */
  int prev_step = 0;

  pNode = tree->pHead;
  while( pNode ){
    switch( prev_step ){
      case 0:
        if( pNode->pLeft ){
          pNode = pNode->pLeft;
        }else{ 
          prev_step = 1;
        }
        break;
      case 1:
        if( pNode->pRight ){
          pNode = pNode->pRight;
          prev_step = 0;
        }else{
          prev_step = 2;
        }
        break;
      case 2:
        /* Check red-black property (1) */
        if( !pNode->isBlack &&
            ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
              (pNode->pRight && !pNode->pRight->isBlack) )
          ){
          char buf[128];
          sprintf(buf, "Red node with red child at %p\n", pNode);
          *msg = append_val(*msg, buf);
          *msg = append_node(*msg, tree->pHead, 0);
          *msg = append_val(*msg, "\n");
        }

        /* Check red-black property (2) */
        { 
          int leftHeight = 0;
          int rightHeight = 0;
          if( pNode->pLeft ){
            leftHeight += pNode->pLeft->nBlackHeight;
            leftHeight += (pNode->pLeft->isBlack?1:0);
          }
          if( pNode->pRight ){
            rightHeight += pNode->pRight->nBlackHeight;
            rightHeight += (pNode->pRight->isBlack?1:0);
          }
          if( leftHeight != rightHeight ){
            char buf[128];
            sprintf(buf, "Different black-heights at %p\n", pNode);
            *msg = append_val(*msg, buf);
            *msg = append_node(*msg, tree->pHead, 0);
            *msg = append_val(*msg, "\n");
          }
          pNode->nBlackHeight = leftHeight;
        }

        if( pNode->pParent ){
          if( pNode == pNode->pParent->pLeft ) prev_step = 1;
          else prev_step = 2;
        }
        pNode = pNode->pParent;
        break;
      default: assert(0);
    }
  }
} 

/*
 * Node pX has just been inserted into pTree (by code in sqliteBtreeInsert()).
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
      pGrandparent->isBlack = 0;
      pUncle->isBlack = 1;
      pX->pParent->isBlack = 1;
      pX = pGrandparent;
    }else{

      if( pX->pParent == pGrandparent->pLeft ){
	if( pX == pX->pParent->pRight ){
	  /* If pX is a right-child, do the following transform, essentially
	   * to change pX into a left-child: 
	   *       |                  | 
	   *      G(b)               G(b)
	   *      /  \               /  \        
	   *   P(r)   U(b)        X(r)  U(b)
	   *      \                /
	   *     X(r)            P(r) <-- new X
	   *
	   *     BEFORE             AFTER
	   */
	  pX = pX->pParent;
	  leftRotate(pTree, pX);
	}

	/* Do the following transform, which balances the tree :) 
	 *       |                  | 
	 *      G(b)               P(b)
	 *      /  \               /  \        
	 *   P(r)   U(b)        X(r)  G(r)
	 *    /                         \
	 *  X(r)                        U(b)
	 *
	 *     BEFORE             AFTER
	 */
	assert( pGrandparent == pX->pParent->pParent );
	pGrandparent->isBlack = 0;
	pX->pParent->isBlack = 1;
	rightRotate( pTree, pGrandparent );

      }else{
	/* This code is symetric to the illustrated case above. */
	if( pX == pX->pParent->pLeft ){
	  pX = pX->pParent;
	  rightRotate(pTree, pX);
	}
	assert( pGrandparent == pX->pParent->pParent );
	pGrandparent->isBlack = 0;
	pX->pParent->isBlack = 1;
	leftRotate( pTree, pGrandparent );
      }
    }
  }
  pTree->pHead->isBlack = 1;
}

/*







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|


|
|
|
|
|
|
|
|
|







404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
      pGrandparent->isBlack = 0;
      pUncle->isBlack = 1;
      pX->pParent->isBlack = 1;
      pX = pGrandparent;
    }else{

      if( pX->pParent == pGrandparent->pLeft ){
        if( pX == pX->pParent->pRight ){
          /* If pX is a right-child, do the following transform, essentially
           * to change pX into a left-child: 
           *       |                  | 
           *      G(b)               G(b)
           *      /  \               /  \        
           *   P(r)   U(b)        X(r)  U(b)
           *      \                /
           *     X(r)            P(r) <-- new X
           *
           *     BEFORE             AFTER
           */
          pX = pX->pParent;
          leftRotate(pTree, pX);
        }

        /* Do the following transform, which balances the tree :) 
         *       |                  | 
         *      G(b)               P(b)
         *      /  \               /  \        
         *   P(r)   U(b)        X(r)  G(r)
         *    /                         \
         *  X(r)                        U(b)
         *
         *     BEFORE             AFTER
         */
        assert( pGrandparent == pX->pParent->pParent );
        pGrandparent->isBlack = 0;
        pX->pParent->isBlack = 1;
        rightRotate( pTree, pGrandparent );

      }else{
        /* This code is symetric to the illustrated case above. */
        if( pX == pX->pParent->pLeft ){
          pX = pX->pParent;
          rightRotate(pTree, pX);
        }
        assert( pGrandparent == pX->pParent->pParent );
        pGrandparent->isBlack = 0;
        pX->pParent->isBlack = 1;
        leftRotate( pTree, pGrandparent );
      }
    }
  }
  pTree->pHead->isBlack = 1;
}

/*
466
467
468
469
470
471
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
 *             / \
 *            X  nil
 *
 * This function is only called if Z was black. In this case the red-black tree
 * properties have been violated, and pX has an "extra black". This function 
 * performs rotations and color-changes to re-balance the tree.
 */

static void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
{
  BtRbNode *pSib; 

  /* TODO: Comment this code! */
  while( pX != pTree->pHead && (!pX || pX->isBlack) ){
    if( pX == pParent->pLeft ){
      pSib = pParent->pRight;
      if( pSib && !(pSib->isBlack) ){
	pSib->isBlack = 1;
	pParent->isBlack = 0;
	leftRotate(pTree, pParent);
	pSib = pParent->pRight;
      }
      if( !pSib ){
	pX = pParent;
      }else if( 
	  (!pSib->pLeft  || pSib->pLeft->isBlack) &&
	  (!pSib->pRight || pSib->pRight->isBlack) ) {
	pSib->isBlack = 0;
	pX = pParent;
      }else{
	if( (!pSib->pRight || pSib->pRight->isBlack) ){
	  if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
	  pSib->isBlack = 0;
	  rightRotate( pTree, pSib );
	  pSib = pParent->pRight;
	}
	pSib->isBlack = pParent->isBlack;
	pParent->isBlack = 1;
	if( pSib->pRight ) pSib->pRight->isBlack = 1;
	leftRotate(pTree, pParent);
	pX = pTree->pHead;
      }
    }else{
      pSib = pParent->pLeft;
      if( pSib && !(pSib->isBlack) ){
	pSib->isBlack = 1;
	pParent->isBlack = 0;
	rightRotate(pTree, pParent);
	pSib = pParent->pLeft;
      }
      if( !pSib ){
	pX = pParent;
      }else if( 
          (!pSib->pLeft  || pSib->pLeft->isBlack) &&
	  (!pSib->pRight || pSib->pRight->isBlack) ){
	pSib->isBlack = 0;
	pX = pParent;
      }else{
	if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
	  if( pSib->pRight ) pSib->pRight->isBlack = 1;
	  pSib->isBlack = 0;
	  leftRotate( pTree, pSib );
	  pSib = pParent->pLeft;
	}
	pSib->isBlack = pParent->isBlack;
	pParent->isBlack = 1;
	if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
	rightRotate(pTree, pParent);
	pX = pTree->pHead;
      }
    }
    pParent = pX->pParent;
  }
  if( pX ) pX->isBlack = 1;
}








>
|








|
|
|
|


|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|




|
|
|
|


|


|
|
|

|
|
|
|
|
|
|
|
|
|
|







466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
 *             / \
 *            X  nil
 *
 * This function is only called if Z was black. In this case the red-black tree
 * properties have been violated, and pX has an "extra black". This function 
 * performs rotations and color-changes to re-balance the tree.
 */
static 
void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
{
  BtRbNode *pSib; 

  /* TODO: Comment this code! */
  while( pX != pTree->pHead && (!pX || pX->isBlack) ){
    if( pX == pParent->pLeft ){
      pSib = pParent->pRight;
      if( pSib && !(pSib->isBlack) ){
        pSib->isBlack = 1;
        pParent->isBlack = 0;
        leftRotate(pTree, pParent);
        pSib = pParent->pRight;
      }
      if( !pSib ){
        pX = pParent;
      }else if( 
          (!pSib->pLeft  || pSib->pLeft->isBlack) &&
          (!pSib->pRight || pSib->pRight->isBlack) ) {
        pSib->isBlack = 0;
        pX = pParent;
      }else{
        if( (!pSib->pRight || pSib->pRight->isBlack) ){
          if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
          pSib->isBlack = 0;
          rightRotate( pTree, pSib );
          pSib = pParent->pRight;
        }
        pSib->isBlack = pParent->isBlack;
        pParent->isBlack = 1;
        if( pSib->pRight ) pSib->pRight->isBlack = 1;
        leftRotate(pTree, pParent);
        pX = pTree->pHead;
      }
    }else{
      pSib = pParent->pLeft;
      if( pSib && !(pSib->isBlack) ){
        pSib->isBlack = 1;
        pParent->isBlack = 0;
        rightRotate(pTree, pParent);
        pSib = pParent->pLeft;
      }
      if( !pSib ){
        pX = pParent;
      }else if( 
          (!pSib->pLeft  || pSib->pLeft->isBlack) &&
          (!pSib->pRight || pSib->pRight->isBlack) ){
        pSib->isBlack = 0;
        pX = pParent;
      }else{
        if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
          if( pSib->pRight ) pSib->pRight->isBlack = 1;
          pSib->isBlack = 0;
          leftRotate( pTree, pSib );
          pSib = pParent->pLeft;
        }
        pSib->isBlack = pParent->isBlack;
        pParent->isBlack = 1;
        if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
        rightRotate(pTree, pParent);
        pX = pTree->pHead;
      }
    }
    pParent = pX->pParent;
  }
  if( pX ) pX->isBlack = 1;
}

569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
}

int sqliteRBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree)
{
  *ppBtree = (Btree *)sqliteMalloc(sizeof(Btree));
  sqliteHashInit(&(*ppBtree)->tblHash, SQLITE_HASH_INT, 0);

  /* Create binary trees for tables 0, 1 and 2. SQLite assumes these
   * tables always exist. At least I think so? */
  btreeCreateTable(*ppBtree, 0);
  btreeCreateTable(*ppBtree, 1);
  btreeCreateTable(*ppBtree, 2);
  (*ppBtree)->next_idx = 3;
  (*ppBtree)->pOps = &sqliteBtreeOps;
  /* Set file type to 4; this is so that "attach ':memory:' as ...."  does not
  ** think that the database in uninitialised and refuse to attach
  */
  (*ppBtree)->aMetaData[2] = 4;







|
<
<
<







570
571
572
573
574
575
576
577



578
579
580
581
582
583
584
}

int sqliteRBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree)
{
  *ppBtree = (Btree *)sqliteMalloc(sizeof(Btree));
  sqliteHashInit(&(*ppBtree)->tblHash, SQLITE_HASH_INT, 0);

  /* Create a binary tree for the SQLITE_MASTER table at location 2 */



  btreeCreateTable(*ppBtree, 2);
  (*ppBtree)->next_idx = 3;
  (*ppBtree)->pOps = &sqliteBtreeOps;
  /* Set file type to 4; this is so that "attach ':memory:' as ...."  does not
  ** think that the database in uninitialised and refuse to attach
  */
  (*ppBtree)->aMetaData[2] = 4;
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
 */
static int memBtreeDropTable(Btree* tree, int n)
{
  BtRbTree *pTree;
  assert( tree->eTransState != TRANS_NONE );

  memBtreeClearTable(tree, n);
  pTree = sqliteHashFind(&tree->tblHash, 0, n);
  assert(pTree);
  sqliteFree(pTree);
  sqliteHashInsert(&tree->tblHash, 0, n, 0);

  if( tree->eTransState != TRANS_ROLLBACK ){
    BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
    pRollbackOp->eOp = ROLLBACK_CREATE;
    pRollbackOp->iTab = n;
    btreeLogRollbackOp(tree, pRollbackOp);
  }

  return SQLITE_OK;
}

static int memBtreeKeyCompare(BtCursor* pCur, const void *pKey, int nKey,
				 int nIgnore, int *pRes)
{
  assert(pCur);

  if( !pCur->pNode ) {
    *pRes = -1;
  } else {
    if( (pCur->pNode->nKey - nIgnore) < 0 ){
      *pRes = -1;
    }else{
      *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, 
	  pKey, nKey);
    }
  }
  return SQLITE_OK;
}

/*
 * Get a new cursor for table iTable of the supplied Btree. The wrFlag







|


<












|










|







614
615
616
617
618
619
620
621
622
623

624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
 */
static int memBtreeDropTable(Btree* tree, int n)
{
  BtRbTree *pTree;
  assert( tree->eTransState != TRANS_NONE );

  memBtreeClearTable(tree, n);
  pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
  assert(pTree);
  sqliteFree(pTree);


  if( tree->eTransState != TRANS_ROLLBACK ){
    BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
    pRollbackOp->eOp = ROLLBACK_CREATE;
    pRollbackOp->iTab = n;
    btreeLogRollbackOp(tree, pRollbackOp);
  }

  return SQLITE_OK;
}

static int memBtreeKeyCompare(BtCursor* pCur, const void *pKey, int nKey,
                                 int nIgnore, int *pRes)
{
  assert(pCur);

  if( !pCur->pNode ) {
    *pRes = -1;
  } else {
    if( (pCur->pNode->nKey - nIgnore) < 0 ){
      *pRes = -1;
    }else{
      *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore, 
          pKey, nKey);
    }
  }
  return SQLITE_OK;
}

/*
 * Get a new cursor for table iTable of the supplied Btree. The wrFlag
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
 * and the data is given by (pData,nData).  The cursor is used only to
 * define what database the record should be inserted into.  The cursor
 * is left pointing at the new record.
 *
 * If the key exists already in the tree, just replace the data. 
 */
static int memBtreeInsert(BtCursor* pCur, const void *pKey, int nKey,
			     const void *pDataInput, int nData)
{
  void * pData;
  int match;

  /* It is illegal to call sqliteBtreeInsert() if we are not in a transaction */
  assert( pCur->pBtree->eTransState != TRANS_NONE );








|







674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
 * and the data is given by (pData,nData).  The cursor is used only to
 * define what database the record should be inserted into.  The cursor
 * is left pointing at the new record.
 *
 * If the key exists already in the tree, just replace the data. 
 */
static int memBtreeInsert(BtCursor* pCur, const void *pKey, int nKey,
                             const void *pDataInput, int nData)
{
  void * pData;
  int match;

  /* It is illegal to call sqliteBtreeInsert() if we are not in a transaction */
  assert( pCur->pBtree->eTransState != TRANS_NONE );

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    pNode->nKey = nKey;
    pNode->pKey = sqliteMalloc(nKey);
    memcpy(pNode->pKey, pKey, nKey);
    pNode->nData = nData;
    pNode->pData = pData; 
    if( pCur->pNode ){
      switch( match ){
	case -1:
	  assert( !pCur->pNode->pRight );
	  pNode->pParent = pCur->pNode;
	  pCur->pNode->pRight = pNode;
	  break;
	case 1:
	  assert( !pCur->pNode->pLeft );
	  pNode->pParent = pCur->pNode;
	  pCur->pNode->pLeft = pNode;
	  break;
	default:
	  assert(0);
      }
    }else{
      pCur->pTree->pHead = pNode;
    }

    /* Point the cursor at the node just inserted, as per SQLite requirements */
    pCur->pNode = pNode;







|
|
|
|
|
|
|
|
|
|
|
|







708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
    pNode->nKey = nKey;
    pNode->pKey = sqliteMalloc(nKey);
    memcpy(pNode->pKey, pKey, nKey);
    pNode->nData = nData;
    pNode->pData = pData; 
    if( pCur->pNode ){
      switch( match ){
        case -1:
          assert( !pCur->pNode->pRight );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pRight = pNode;
          break;
        case 1:
          assert( !pCur->pNode->pLeft );
          pNode->pParent = pCur->pNode;
          pCur->pNode->pLeft = pNode;
          break;
        default:
          assert(0);
      }
    }else{
      pCur->pTree->pHead = pNode;
    }

    /* Point the cursor at the node just inserted, as per SQLite requirements */
    pCur->pNode = pNode;
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
  pCur->pNode = pCur->pTree->pHead;
  *pRes = -1;
  while( pCur->pNode && *pRes ) {
    *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
    pTmp = pCur->pNode;
    switch( *pRes ){
      case 1:    /* cursor > key */
	pCur->pNode = pCur->pNode->pLeft;
	break;
      case -1:   /* cursor < key */
	pCur->pNode = pCur->pNode->pRight;
	break;
    }
  } 

  /* If (pCur->pNode == NULL), then we have failed to find a match. Set
   * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
   * last node traversed in the search. In either case the relation ship
   * between pTmp and the searched for key is already stored in *pRes. pTmp is







|
|

|
|







793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
  pCur->pNode = pCur->pTree->pHead;
  *pRes = -1;
  while( pCur->pNode && *pRes ) {
    *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
    pTmp = pCur->pNode;
    switch( *pRes ){
      case 1:    /* cursor > key */
        pCur->pNode = pCur->pNode->pLeft;
        break;
      case -1:   /* cursor < key */
        pCur->pNode = pCur->pNode->pRight;
        break;
    }
  } 

  /* If (pCur->pNode == NULL), then we have failed to find a match. Set
   * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
   * last node traversed in the search. In either case the relation ship
   * between pTmp and the searched for key is already stored in *pRes. pTmp is
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    pCur->eSkip = SKIP_NEXT;
    if( res ){
      memBtreeLast(pCur, &res);
      memBtreePrevious(pCur, &res);
      pCur->eSkip = SKIP_PREV;
    }
    if( pCur->pBtree->eTransState == TRANS_ROLLBACK ){
	sqliteFree(pZ->pKey);
	sqliteFree(pZ->pData);
    }
  }

  /* pZ now points at the node to be spliced out. This block does the 
   * splicing. */
  {
    BtRbNode **ppParentSlot = 0;
    assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
    pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
    if( pZ->pParent ){
      assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
      ppParentSlot = ((pZ == pZ->pParent->pLeft)
	  ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
      *ppParentSlot = pChild;
    }else{
      pCur->pTree->pHead = pChild;
    }
    if( pChild ) pChild->pParent = pZ->pParent;
  }








|
|












|







887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    pCur->eSkip = SKIP_NEXT;
    if( res ){
      memBtreeLast(pCur, &res);
      memBtreePrevious(pCur, &res);
      pCur->eSkip = SKIP_PREV;
    }
    if( pCur->pBtree->eTransState == TRANS_ROLLBACK ){
        sqliteFree(pZ->pKey);
        sqliteFree(pZ->pData);
    }
  }

  /* pZ now points at the node to be spliced out. This block does the 
   * splicing. */
  {
    BtRbNode **ppParentSlot = 0;
    assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
    pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
    if( pZ->pParent ){
      assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
      ppParentSlot = ((pZ == pZ->pParent->pLeft)
          ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
      *ppParentSlot = pChild;
    }else{
      pCur->pTree->pHead = pChild;
    }
    if( pChild ) pChild->pParent = pZ->pParent;
  }

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
    }
    else if( pNode->pRight ){
      pNode = pNode->pRight;
    }
    else {
      BtRbNode *pTmp = pNode->pParent;
      if( tree->eTransState == TRANS_ROLLBACK ){
	sqliteFree( pNode->pKey );
	sqliteFree( pNode->pData );
      }else{
	BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
	pRollbackOp->eOp = ROLLBACK_INSERT;
	pRollbackOp->iTab = n;
	pRollbackOp->nKey = pNode->nKey;
	pRollbackOp->pKey = pNode->pKey;
	pRollbackOp->nData = pNode->nData;
	pRollbackOp->pData = pNode->pData;
	btreeLogRollbackOp(tree, pRollbackOp);
      }
      sqliteFree( pNode );
      if( pTmp ){
	if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
	else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
      }
      pNode = pTmp;
    }
  }

  pTree->pHead = 0;
  return SQLITE_OK;







|
|

|
|
|
|
|
|
|
|



|
|







944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
    }
    else if( pNode->pRight ){
      pNode = pNode->pRight;
    }
    else {
      BtRbNode *pTmp = pNode->pParent;
      if( tree->eTransState == TRANS_ROLLBACK ){
        sqliteFree( pNode->pKey );
        sqliteFree( pNode->pData );
      }else{
        BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
        pRollbackOp->eOp = ROLLBACK_INSERT;
        pRollbackOp->iTab = n;
        pRollbackOp->nKey = pNode->nKey;
        pRollbackOp->pKey = pNode->pKey;
        pRollbackOp->nData = pNode->nData;
        pRollbackOp->pData = pNode->pData;
        btreeLogRollbackOp(tree, pRollbackOp);
      }
      sqliteFree( pNode );
      if( pTmp ){
        if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
        else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
      }
      pNode = pTmp;
    }
  }

  pTree->pHead = 0;
  return SQLITE_OK;
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059

static int memBtreeNext(BtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
    if( pCur->pNode->pRight ){
      pCur->pNode = pCur->pNode->pRight;
      while( pCur->pNode->pLeft )
	pCur->pNode = pCur->pNode->pLeft;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pRight == pX) ){
	pX = pCur->pNode;
	pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;
  }else{
    *pRes = 0;
  }

  return SQLITE_OK;
}

static int memBtreePrevious(BtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
    if( pCur->pNode->pLeft ){
      pCur->pNode = pCur->pNode->pLeft;
      while( pCur->pNode->pRight )
	pCur->pNode = pCur->pNode->pRight;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
	pX = pCur->pNode;
	pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;







|




|
|




















|




|
|







1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

static int memBtreeNext(BtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
    if( pCur->pNode->pRight ){
      pCur->pNode = pCur->pNode->pRight;
      while( pCur->pNode->pLeft )
        pCur->pNode = pCur->pNode->pLeft;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pRight == pX) ){
        pX = pCur->pNode;
        pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;
  }else{
    *pRes = 0;
  }

  return SQLITE_OK;
}

static int memBtreePrevious(BtCursor* pCur, int *pRes)
{
  if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
    if( pCur->pNode->pLeft ){
      pCur->pNode = pCur->pNode->pLeft;
      while( pCur->pNode->pRight )
        pCur->pNode = pCur->pNode->pRight;
    }else{
      BtRbNode * pX = pCur->pNode;
      pCur->pNode = pX->pParent;
      while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
        pX = pCur->pNode;
        pCur->pNode = pX->pParent;
      }
    }
  }
  pCur->eSkip = SKIP_NONE;

  if( !pCur->pNode ){
    *pRes = 1;
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160
1161
1162
1163
1164
1165
1166

/*
 * Close the supplied Btree. Delete everything associated with it.
 */
static int memBtreeClose(Btree* tree)
{
  HashElem *p;
  for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
    tree->eTransState = TRANS_ROLLBACK;
    memBtreeClearTable(tree, sqliteHashKeysize(p));
    sqliteFree(sqliteHashData(p));
  }

  sqliteFree(tree);
  return SQLITE_OK;
}

static int memBtreeSetCacheSize(Btree* tree, int sz)
{
  return SQLITE_OK;







|

|
<

>







1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

1155
1156
1157
1158
1159
1160
1161
1162
1163

/*
 * Close the supplied Btree. Delete everything associated with it.
 */
static int memBtreeClose(Btree* tree)
{
  HashElem *p;
  while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
    tree->eTransState = TRANS_ROLLBACK;
    memBtreeDropTable(tree, sqliteHashKeysize(p));

  }
  sqliteHashClear(&tree->tblHash);
  sqliteFree(tree);
  return SQLITE_OK;
}

static int memBtreeSetCacheSize(Btree* tree, int sz)
{
  return SQLITE_OK;
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
  BtCursor cur;
  int res;

  cur.pBtree = pBtree;
  while( pList ){
    switch( pList->eOp ){
      case ROLLBACK_INSERT:
	cur.pTree  = sqliteHashFind( &pBtree->tblHash, 0, pList->iTab );
	assert(cur.pTree);
	cur.iTree  = pList->iTab;
	cur.eSkip  = SKIP_NONE;
	memBtreeInsert( &cur, pList->pKey,
	    pList->nKey, pList->pData, pList->nData );
	break;
      case ROLLBACK_DELETE:
	cur.pTree  = sqliteHashFind( &pBtree->tblHash, 0, pList->iTab );
	assert(cur.pTree);
	cur.iTree  = pList->iTab;
	cur.eSkip  = SKIP_NONE;
	memBtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
	assert(res == 0);
	memBtreeDelete( &cur );
	break;
      case ROLLBACK_CREATE:
	btreeCreateTable(pBtree, pList->iTab);
	break;
      case ROLLBACK_DROP:
	memBtreeDropTable(pBtree, pList->iTab);
	break;
      default:
	assert(0);
    }
    sqliteFree(pList->pKey);
    sqliteFree(pList->pData);
    pTmp = pList->pNext;
    sqliteFree(pList);
    pList = pTmp;
  }







|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|







1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
  BtCursor cur;
  int res;

  cur.pBtree = pBtree;
  while( pList ){
    switch( pList->eOp ){
      case ROLLBACK_INSERT:
        cur.pTree  = sqliteHashFind( &pBtree->tblHash, 0, pList->iTab );
        assert(cur.pTree);
        cur.iTree  = pList->iTab;
        cur.eSkip  = SKIP_NONE;
        memBtreeInsert( &cur, pList->pKey,
            pList->nKey, pList->pData, pList->nData );
        break;
      case ROLLBACK_DELETE:
        cur.pTree  = sqliteHashFind( &pBtree->tblHash, 0, pList->iTab );
        assert(cur.pTree);
        cur.iTree  = pList->iTab;
        cur.eSkip  = SKIP_NONE;
        memBtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
        assert(res == 0);
        memBtreeDelete( &cur );
        break;
      case ROLLBACK_CREATE:
        btreeCreateTable(pBtree, pList->iTab);
        break;
      case ROLLBACK_DROP:
        memBtreeDropTable(pBtree, pList->iTab);
        break;
      default:
        assert(0);
    }
    sqliteFree(pList->pKey);
    sqliteFree(pList->pData);
    pTmp = pList->pNext;
    sqliteFree(pList);
    pList = pTmp;
  }