/ Check-in [1de558bc]
Login
SQLite training in Houston TX on 2019-11-05 (details)
Part of the 2019 Tcl Conference

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge micro-optimizations into trunk after fixing the build on MSVC. Performance now shows 7.58% faster than the 3.8.6 release on x64 with gcc 4.8.1 and -Os.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 1de558bcb13edc4e9a42a0b05e4b0ed6b14286a4
User & Date: drh 2014-09-18 01:29:11
Context
2014-09-18
01:50
Make sure of the strchrnul() library function on platforms where it is available. check-in: ef1aa10b user: drh tags: trunk
01:29
Merge micro-optimizations into trunk after fixing the build on MSVC. Performance now shows 7.58% faster than the 3.8.6 release on x64 with gcc 4.8.1 and -Os. check-in: 1de558bc user: drh tags: trunk
01:21
Fix compiler warnings and change the nullMem structure initializer into a format that MSVC can understand. Closed-Leaf check-in: 163bfae8 user: drh tags: micro-optimizations
2014-09-16
13:30
Changes to sqlite3VdbeRecordUnpack() to make it slightly smaller and faster. check-in: 8fb90da7 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/btree.c.

4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
....
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
................................................................................
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){







|






|







 







|







4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
....
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
................................................................................
          }
          pCur->aiIdx[pCur->iPage] = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){

Changes to src/func.c.

1488
1489
1490
1491
1492
1493
1494

1495
1496
1497
1498
1499
1500
1501
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(pBest, pArg);
    }else{
      sqlite3SkipAccumulatorLoad(context);
    }
  }else{

    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){







>







1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
    if( (max && cmp<0) || (!max && cmp>0) ){
      sqlite3VdbeMemCopy(pBest, pArg);
    }else{
      sqlite3SkipAccumulatorLoad(context);
    }
  }else{
    pBest->db = sqlite3_context_db_handle(context);
    sqlite3VdbeMemCopy(pBest, pArg);
  }
}
static void minMaxFinalize(sqlite3_context *context){
  sqlite3_value *pRes;
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
  if( pRes ){

Changes to src/malloc.c.

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
...
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
...
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    ** signed integer value might cause an integer overflow inside of the
    ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
    ** 255 bytes of overhead.  SQLite itself will never use anything near
    ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm(n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
  return p;
}
................................................................................
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm(nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
................................................................................
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc(p, n);
      if( !pNew ){
        sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }







|







 







|









|







 







|







301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
...
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
...
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    ** signed integer value might cause an integer overflow inside of the
    ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
    ** 255 bytes of overhead.  SQLite itself will never use anything near
    ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
    p = 0;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    mallocWithAlarm((int)n, &p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    p = sqlite3GlobalConfig.m.xMalloc((int)n);
  }
  assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
  return p;
}
................................................................................
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
    assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
................................................................................
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
    }

Changes to src/table.c.

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; i<nCol; i++){
      z = sqlite3_mprintf("%s", colv[i]);
      if( z==0 ) goto malloc_failed;
      p->azResult[p->nData++] = z;
    }
  }else if( p->nColumn!=nCol ){
    sqlite3_free(p->zErrMsg);
    p->zErrMsg = sqlite3_mprintf(
       "sqlite3_get_table() called with two or more incompatible queries"
    );
    p->rc = SQLITE_ERROR;
    return 1;
  }







|







69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
  if( p->nRow==0 ){
    p->nColumn = nCol;
    for(i=0; i<nCol; i++){
      z = sqlite3_mprintf("%s", colv[i]);
      if( z==0 ) goto malloc_failed;
      p->azResult[p->nData++] = z;
    }
  }else if( (int)p->nColumn!=nCol ){
    sqlite3_free(p->zErrMsg);
    p->zErrMsg = sqlite3_mprintf(
       "sqlite3_get_table() called with two or more incompatible queries"
    );
    p->rc = SQLITE_ERROR;
    return 1;
  }

Changes to src/utf.c.

310
311
312
313
314
315
316

317
318

319
320
321
322
323
324
325
326
327
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );


  sqlite3VdbeMemRelease(pMem);
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);

  pMem->enc = desiredEnc;
  pMem->flags |= (MEM_Term);
  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];







>

<
>

<







310
311
312
313
314
315
316
317
318

319
320

321
322
323
324
325
326
327
      }
    }
    pMem->n = (int)(z - zOut);
  }
  *z = 0;
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );

  c = pMem->flags;
  sqlite3VdbeMemRelease(pMem);

  pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask);
  pMem->enc = desiredEnc;

  pMem->z = (char*)zOut;
  pMem->zMalloc = pMem->z;

translate_out:
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
  {
    char zBuf[100];

Changes to src/vdbe.c.

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
....
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
....
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
....
1908
1909
1910
1911
1912
1913
1914

1915



1916


1917
1918
1919
1920
1921
1922
1923
....
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
....
2103
2104
2105
2106
2107
2108
2109
2110
2111

2112
2113
2114
2115
2116
2117
2118
2119
2120
....
2121
2122
2123
2124
2125
2126
2127
2128
2129

2130
2131
2132
2133
2134
2135
2136
2137
2138
....
2433
2434
2435
2436
2437
2438
2439

2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
....
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
....
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
....
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      VdbeMemReleaseExtern(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
................................................................................
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    VdbeMemReleaseExtern(pOut);
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *
................................................................................
    memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif
    pIn1->flags = MEM_Undefined;
    pIn1->xDel = 0;
    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}
................................................................................
    if( affinity ){
      applyAffinity(pIn1, affinity, encoding);
      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }

    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );

    ExpandBlob(pIn1);



    ExpandBlob(pIn3);


    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
................................................................................
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */
  pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
  pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
................................................................................
** Interpret the value in register P1 as a boolean value.  Store the
** boolean complement in register P2.  If the value in register P1 is 
** NULL, then a NULL is stored in P2.
*/
case OP_Not: {                /* same as TK_NOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);

  }else{
    sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P1]= ~r[P1]
**
................................................................................
** Interpret the content of register P1 as an integer.  Store the
** ones-complement of the P1 value into register P2.  If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];
  if( pIn1->flags & MEM_Null ){
    sqlite3VdbeMemSetNull(pOut);

  }else{
    sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
  }
  break;
}

/* Opcode: Once P1 P2 * * *
**
** Check the "once" flag number P1. If it is set, jump to instruction P2. 
................................................................................
  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );

  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    VdbeMemReleaseExtern(pDest);
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    t = aType[p2];
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for the typeof() function and for
      ** the length(X) function if X is a blob.  So we might as well use
      ** bogus content rather than reading content from disk.  NULL works
      ** for text and blob and whatever is in the payloadSize64 variable
      ** will work for everything else.  Content is also irrelevant if
      ** the content length is 0. */
      zData = t<=13 ? (u8*)&payloadSize64 : 0;
      sMem.zMalloc = 0;
    }else{
      memset(&sMem, 0, sizeof(sMem));
      sqlite3VdbeMemMove(&sMem, pDest);
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_error;
      }
      zData = (u8*)sMem.z;
    }
    sqlite3VdbeSerialGet(zData, t, pDest);
    /* If we dynamically allocated space to hold the data (in the
    ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
    ** dynamically allocated space over to the pDest structure.
    ** This prevents a memory copy. */
    if( sMem.zMalloc ){
      assert( sMem.z==sMem.zMalloc );
      assert( VdbeMemDynamic(pDest)==0 );
      assert( (pDest->flags & (MEM_Blob|MEM_Str))==0 || pDest->z==sMem.z );
      pDest->flags &= ~(MEM_Ephem|MEM_Static);
      pDest->flags |= MEM_Term;
      pDest->z = sMem.z;
      pDest->zMalloc = sMem.zMalloc;
    }
  }
  pDest->enc = encoding;

op_column_out:
  Deephemeralize(pDest);
op_column_error:
................................................................................
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;
  pOut->xDel = 0;
  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
................................................................................
    r.default_rc = 0;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
  assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
  if( (pOp->opcode&1)==(OP_IdxLT&1) ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
    res = -res;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
    res++;
................................................................................
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  t.flags = MEM_Null;
  t.z = 0;
  t.zMalloc = 0;
  t.xDel = 0;
  t.db = db;
  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );







|







 







|







 







<







 







>
|
>
>
>
|
>
>







 







|
|







 







<
|
>
|
|







 







<
|
>
|
|







 







>



<








|
|
|
|
|
|
|
|
|
|
|
|
<



<
<
|
<
<
<
<
<
<
<
<
|
<
<
<







 







<







 







|







 







|
<
<
<
<







636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
....
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
....
1170
1171
1172
1173
1174
1175
1176

1177
1178
1179
1180
1181
1182
1183
....
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
....
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
....
2108
2109
2110
2111
2112
2113
2114

2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
....
2126
2127
2128
2129
2130
2131
2132

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
....
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448

2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468

2469
2470
2471


2472








2473



2474
2475
2476
2477
2478
2479
2480
....
2646
2647
2648
2649
2650
2651
2652

2653
2654
2655
2656
2657
2658
2659
....
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
....
5609
5610
5611
5612
5613
5614
5615
5616




5617
5618
5619
5620
5621
5622
5623
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
................................................................................
  u16 nullFlag;
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    sqlite3VdbeMemSetNull(pOut);
    pOut->flags = nullFlag;
    cnt--;
  }
  break;
}

/* Opcode: SoftNull P1 * * * *
................................................................................
    memcpy(pOut, pIn1, sizeof(Mem));
#ifdef SQLITE_DEBUG
    if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
      pOut->pScopyFrom += p1 - pOp->p2;
    }
#endif
    pIn1->flags = MEM_Undefined;

    pIn1->zMalloc = zMalloc;
    REGISTER_TRACE(p2++, pOut);
    pIn1++;
    pOut++;
  }while( --n );
  break;
}
................................................................................
    if( affinity ){
      applyAffinity(pIn1, affinity, encoding);
      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }

    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( pIn3->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
................................................................................
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */
  pIn1->flags = flags1;
  pIn3->flags = flags3;
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
** of integers in P4.
................................................................................
** Interpret the value in register P1 as a boolean value.  Store the
** boolean complement in register P2.  If the value in register P1 is 
** NULL, then a NULL is stored in P2.
*/
case OP_Not: {                /* same as TK_NOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];

  sqlite3VdbeMemSetNull(pOut);
  if( (pIn1->flags & MEM_Null)==0 ){
    pOut->flags = MEM_Int;
    pOut->u.i = !sqlite3VdbeIntValue(pIn1);
  }
  break;
}

/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P1]= ~r[P1]
**
................................................................................
** Interpret the content of register P1 as an integer.  Store the
** ones-complement of the P1 value into register P2.  If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
  pIn1 = &aMem[pOp->p1];
  pOut = &aMem[pOp->p2];

  sqlite3VdbeMemSetNull(pOut);
  if( (pIn1->flags & MEM_Null)==0 ){
    pOut->flags = MEM_Int;
    pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
  }
  break;
}

/* Opcode: Once P1 P2 * * *
**
** Check the "once" flag number P1. If it is set, jump to instruction P2. 
................................................................................
  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */

    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], aType[p2], pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    t = aType[p2];
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
          && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
     || (len = sqlite3VdbeSerialTypeLen(t))==0
    ){
      /* Content is irrelevant for
      **    1. the typeof() function,
      **    2. the length(X) function if X is a blob, and
      **    3. if the content length is zero.
      ** So we might as well use bogus content rather than reading
      ** content from disk.  NULL will work for the value for strings
      ** and blobs and whatever is in the payloadSize64 variable
      ** will work for everything else. */
      sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
    }else{
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
                                   pDest);

      if( rc!=SQLITE_OK ){
        goto op_column_error;
      }


      sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);








      pDest->flags &= ~MEM_Ephem;



    }
  }
  pDest->enc = encoding;

op_column_out:
  Deephemeralize(pDest);
op_column_error:
................................................................................
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob;

  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);
................................................................................
    r.default_rc = 0;
  }
  r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
  { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
  res = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
  assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
  if( (pOp->opcode&1)==(OP_IdxLT&1) ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
    res = -res;
  }else{
    assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
    res++;
................................................................................
    apVal[i] = pRec;
    memAboutToChange(p, pRec);
  }
  ctx.pFunc = pOp->p4.pFunc;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  ctx.pMem = pMem = &aMem[pOp->p3];
  pMem->n++;
  sqlite3VdbeMemInit(&t, db, MEM_Null);




  ctx.pOut = &t;
  ctx.isError = 0;
  ctx.pColl = 0;
  ctx.skipFlag = 0;
  if( ctx.pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p4type==P4_COLLSEQ );

Changes to src/vdbe.h.

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*,int);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,UnpackedRecord*,int);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on







|


|







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
void sqlite3VdbeSetVarmask(Vdbe*, int);
#ifndef SQLITE_OMIT_TRACE
  char *sqlite3VdbeExpandSql(Vdbe*, const char*);
#endif
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);

void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*);
int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*);
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(KeyInfo *, char *, int, char **);

typedef int (*RecordCompare)(int,const void*,UnpackedRecord*);
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord*);

#ifndef SQLITE_OMIT_TRIGGER
void sqlite3VdbeLinkSubProgram(Vdbe *, SubProgram *);
#endif

/* Use SQLITE_ENABLE_COMMENTS to enable generation of extra comments on

Changes to src/vdbeInt.h.

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176







177
178
179
180
181
182
183
184
185
186
187
188
189
...
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
...
410
411
412
413
414
415
416

417
418
419
420
421
422
423
...
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {
  sqlite3 *db;        /* The associated database connection */
  char *z;            /* String or BLOB value */
  double r;           /* Real value */
  union {
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;
  int n;              /* Number of characters in string value, excluding '\0' */
  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */







#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
  void (*xDel)(void *);  /* If not null, call this function to delete Mem.z */
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
};

/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
................................................................................
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
................................................................................
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
#ifdef SQLITE_OMIT_FLOATING_POINT
# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
#else
  void sqlite3VdbeMemSetDouble(Mem*, double);
#endif

void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
void sqlite3VdbeMemSetRowSet(Mem*);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemStringify(Mem*, u8, u8);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
................................................................................
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemReleaseExternal(Mem *p);
#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)
#define VdbeMemReleaseExtern(X)  \
  if( VdbeMemDynamic(X) ) sqlite3VdbeMemReleaseExternal(X);
int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);







<
<
<







<


>
>
>
>
>
>
>




<
<







 







|
|







 







>







 







<


<
<







157
158
159
160
161
162
163



164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183


184
185
186
187
188
189
190
...
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
...
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
...
426
427
428
429
430
431
432

433
434


435
436
437
438
439
440
441

/*
** Internally, the vdbe manipulates nearly all SQL values as Mem
** structures. Each Mem struct may cache multiple representations (string,
** integer etc.) of the same value.
*/
struct Mem {



  union {
    i64 i;              /* Integer value used when MEM_Int is set in flags */
    int nZero;          /* Used when bit MEM_Zero is set in flags */
    FuncDef *pDef;      /* Used only when flags==MEM_Agg */
    RowSet *pRowSet;    /* Used only when flags==MEM_RowSet */
    VdbeFrame *pFrame;  /* Used when flags==MEM_Frame */
  } u;

  u16 flags;          /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
  u8  enc;            /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */
  int n;              /* Number of characters in string value, excluding '\0' */
  double r;           /* Real value */
  char *z;            /* String or BLOB value */
  char *zMalloc;      /* Dynamic buffer allocated by sqlite3_malloc() */
  /* ShallowCopy only needs to copy the information above */
  sqlite3 *db;        /* The associated database connection */
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif


};

/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
................................................................................
u32 sqlite3VdbeSerialTypeLen(u32);
u32 sqlite3VdbeSerialType(Mem*, int);
u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeHalt(Vdbe*);
int sqlite3VdbeChangeEncoding(Mem *, int);
int sqlite3VdbeMemTooBig(Mem*);
int sqlite3VdbeMemCopy(Mem*, const Mem*);
void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
................................................................................
int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*));
void sqlite3VdbeMemSetInt64(Mem*, i64);
#ifdef SQLITE_OMIT_FLOATING_POINT
# define sqlite3VdbeMemSetDouble sqlite3VdbeMemSetInt64
#else
  void sqlite3VdbeMemSetDouble(Mem*, double);
#endif
void sqlite3VdbeMemInit(Mem*,sqlite3*,u16);
void sqlite3VdbeMemSetNull(Mem*);
void sqlite3VdbeMemSetZeroBlob(Mem*,int);
void sqlite3VdbeMemSetRowSet(Mem*);
int sqlite3VdbeMemMakeWriteable(Mem*);
int sqlite3VdbeMemStringify(Mem*, u8, u8);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
................................................................................
double sqlite3VdbeRealValue(Mem*);
void sqlite3VdbeIntegerAffinity(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemNumerify(Mem*);
void sqlite3VdbeMemCast(Mem*,u8,u8);
int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);

#define VdbeMemDynamic(X)  \
  (((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))!=0)


int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite3OpcodeName(int);
int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite3VdbeCloseStatement(Vdbe *, int);
void sqlite3VdbeFrameDelete(VdbeFrame*);
int sqlite3VdbeFrameRestore(VdbeFrame *);
int sqlite3VdbeTransferError(Vdbe *p);

Changes to src/vdbeapi.c.

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
...
799
800
801
802
803
804
805
806









807
808

809
810
811
812
813
814
815
816
817
....
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
....
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemReleaseExternal(pMem);
    pMem->flags = MEM_Null;
    pMem->z = 0;
  }else{
    sqlite3VdbeMemGrow(pMem, nByte, 0);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
................................................................................
  ** these assert()s from failing, when building with SQLITE_DEBUG defined
  ** using gcc, we force nullMem to be 8-byte aligned using the magical
  ** __attribute__((aligned(8))) macro.  */
  static const Mem nullMem 
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
    __attribute__((aligned(8))) 
#endif
    = {0, "", (double)0, {0}, 0, MEM_Null, 0,









#ifdef SQLITE_DEBUG
       0, 0,  /* pScopyFrom, pFiller */

#endif
       0, 0 };
  return &nullMem;
}

/*
** Check to see if column iCol of the given statement is valid.  If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
................................................................................
  sqlite3_uint64 nData, 
  void (*xDel)(void*)
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    return bindText(pStmt, i, zData, nData, xDel, 0);
  }
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
................................................................................
  unsigned char enc
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
    return bindText(pStmt, i, zData, nData, xDel, enc);
  }
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 







|
<







 







|
>
>
>
>
>
>
>
>
>

|
>

|







 







|







 







|







658
659
660
661
662
663
664
665

666
667
668
669
670
671
672
...
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
....
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
....
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
  Mem *pMem = p->pMem;
  assert( (pMem->flags & MEM_Agg)==0 );
  if( nByte<=0 ){
    sqlite3VdbeMemSetNull(pMem);

    pMem->z = 0;
  }else{
    sqlite3VdbeMemGrow(pMem, nByte, 0);
    pMem->flags = MEM_Agg;
    pMem->u.pDef = p->pFunc;
    if( pMem->z ){
      memset(pMem->z, 0, nByte);
................................................................................
  ** these assert()s from failing, when building with SQLITE_DEBUG defined
  ** using gcc, we force nullMem to be 8-byte aligned using the magical
  ** __attribute__((aligned(8))) macro.  */
  static const Mem nullMem 
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
    __attribute__((aligned(8))) 
#endif
    = {
        /* .u          = */ {0},
        /* .flags      = */ MEM_Null,
        /* .enc        = */ 0,
        /* .n          = */ 0,
        /* .r          = */ (double)0,
        /* .z          = */ 0,
        /* .zMalloc    = */ 0,
        /* .db         = */ 0,
        /* .xDel       = */ 0,
#ifdef SQLITE_DEBUG
        /* .pScopyFrom = */ 0,
        /* .pFiller    = */ 0,
#endif
      };
  return &nullMem;
}

/*
** Check to see if column iCol of the given statement is valid.  If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
................................................................................
  sqlite3_uint64 nData, 
  void (*xDel)(void*)
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    return bindText(pStmt, i, zData, (int)nData, xDel, 0);
  }
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
................................................................................
  unsigned char enc
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
    return bindText(pStmt, i, zData, (int)nData, xDel, enc);
  }
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 

Changes to src/vdbeaux.c.

3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
....
3299
3300
3301
3302
3303
3304
3305
3306
3307

3308
3309
3310
3311
3312
3313
3314
....
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
....
3659
3660
3661
3662
3663
3664
3665







3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
....
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
....
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
....
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
....
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
....
3952
3953
3954
3955
3956
3957
3958

3959
3960
3961
3962
3963
3964
3965
....
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->xDel = 0;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
  return 0;
}
/*
................................................................................
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    memset(&c1, 0, sizeof(c1));
    memset(&c2, 0, sizeof(c2));

    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
................................................................................
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to 
** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2,         /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */
................................................................................
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );
  return pPKey2->default_rc;
}








/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip                     /* Ignored */
){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
................................................................................
    /* This case could be removed without changing the results of running
    ** this code. Including it causes gcc to generate a faster switch 
    ** statement (since the range of switch targets now starts at zero and
    ** is contiguous) but does not cause any duplicate code to be generated
    ** (as gcc is clever enough to combine the two like cases). Other 
    ** compilers might be similar.  */ 
    case 0: case 7:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);

    default:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 0);
  }

  if( v>lhs ){
    res = pPKey2->r1;
  }else if( v<lhs ){
    res = pPKey2->r2;
  }else if( pPKey2->nField>1 ){
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
................................................................................
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2,       /* Right key */
  int bSkip
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;
  UNUSED_PARAMETER(bSkip);

  assert( bSkip==0 );
  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
................................................................................
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
................................................................................
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  UNUSED_PARAMETER(db);

  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
................................................................................
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(

  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
................................................................................
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  memset(&m, 0, sizeof(m));
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked, 0);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 







<







 







|
|
>







 







|







 







>
>
>
>
>
>
>












|
<








<

<







 







|


|









|







 







|
<




<

<

<







 







|







 







<
<











|







 







>







 







|




|







3081
3082
3083
3084
3085
3086
3087

3088
3089
3090
3091
3092
3093
3094
....
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
....
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
....
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685

3686
3687
3688
3689
3690
3691
3692
3693

3694

3695
3696
3697
3698
3699
3700
3701
....
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
....
3769
3770
3771
3772
3773
3774
3775
3776

3777
3778
3779
3780

3781

3782

3783
3784
3785
3786
3787
3788
3789
....
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
....
3879
3880
3881
3882
3883
3884
3885


3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
....
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
....
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;

      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
  return 0;
}
/*
................................................................................
    return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
  }else{
    int rc;
    const void *v1, *v2;
    int n1, n2;
    Mem c1;
    Mem c2;
    c1.db = c2.db = pMem1->db;
    c1.flags = c2.flags = 0;
    c1.zMalloc = c2.zMalloc = 0;
    sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
    sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
    v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
    n1 = v1==0 ? 0 : c1.n;
    v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
    n2 = v2==0 ? 0 : c2.n;
    rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
................................................................................
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to 
** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
static int vdbeRecordCompareWithSkip(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2,         /* Right key */
  int bSkip                       /* If true, skip the first field */
){
  u32 d1;                         /* Offset into aKey[] of next data element */
  int i;                          /* Index of next field to compare */
  u32 szHdr1;                     /* Size of record header in bytes */
................................................................................
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );
  return pPKey2->default_rc;
}
int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2          /* Right key */
){
  return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
}


/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is an integer, and (b) the 
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */

){
  const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;



  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
................................................................................
    /* This case could be removed without changing the results of running
    ** this code. Including it causes gcc to generate a faster switch 
    ** statement (since the range of switch targets now starts at zero and
    ** is contiguous) but does not cause any duplicate code to be generated
    ** (as gcc is clever enough to combine the two like cases). Other 
    ** compilers might be similar.  */ 
    case 0: case 7:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);

    default:
      return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
  }

  if( v>lhs ){
    res = pPKey2->r1;
  }else if( v<lhs ){
    res = pPKey2->r2;
  }else if( pPKey2->nField>1 ){
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
................................................................................
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */

){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;



  getVarint32(&aKey1[1], serial_type);

  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
    int nStr;
................................................................................
    nCmp = MIN( pPKey2->aMem[0].n, nStr );
    res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);

    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
................................................................................
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;



  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
................................................................................
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
  sqlite3 *db,                     /* Database connection */
  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
................................................................................
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'. 

Changes to src/vdbemem.c.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
..
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
...
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
...
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
...
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

319
320

321

322
323
324
325

326
327
328
329
330
331
332
333
334


335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360





361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
...
574
575
576
577
578
579
580












581
582
583









584
585



586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
...
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
...
644
645
646
647
648
649
650
651
652
653
654

655
656
657
658
659
660
661
...
726
727
728
729
730
731
732
733

734
735
736
737
738
739
740
741
742
...
743
744
745
746
747
748
749

750
751

752
753
754
755
756
757
758
759
760
761
762
...
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
...
821
822
823
824
825
826
827
828

829
830
831
832
833
834
835
...
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
...
879
880
881
882
883
884
885
886
887



888
889
890
891
892
893
894
...
897
898
899
900
901
902
903

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919


920
921
922
923
924
925
926
927
928
929
930
931
932

933
934
935
936
937
938
939
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* The MEM_Dyn bit is set if and only if Mem.xDel is a non-NULL destructor
  ** function for Mem.z 
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
  assert( (p->flags & MEM_Dyn)!=0 || p->xDel==0 );

  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
................................................................................
    assert( 
      ((p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }

  return 1;
}
#endif


/*
** If pMem is an object with a valid string representation, this routine
................................................................................
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      VdbeMemReleaseExtern(pMem);
      pMem->z = 0;
      pMem->flags = MEM_Null;  
      return SQLITE_NOMEM;
    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
................................................................................
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
  pMem->xDel = 0;
  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.  In other words, make it so
** that any TEXT or BLOB content is stored in memory obtained from
** malloc().  In this way, we know that the memory is safe to be
................................................................................
    memset(&t, 0, sizeof(t));
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
    sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
** If the memory cell contains a string value that must be freed by
** invoking an external callback, free it now. Calling this function
** does not free any Mem.zMalloc buffer.
**
** The VdbeMemReleaseExtern() macro invokes this routine if only if there
** is work for this routine to do.

*/
void sqlite3VdbeMemReleaseExternal(Mem *p){

  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );

  if( p->flags&MEM_Agg ){
    sqlite3VdbeMemFinalize(p, p->u.pDef);
    assert( (p->flags & MEM_Agg)==0 );
    sqlite3VdbeMemRelease(p);

  }else if( p->flags&MEM_Dyn ){
    assert( (p->flags&MEM_RowSet)==0 );
    assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
    p->xDel((void *)p->z);
    p->xDel = 0;
  }else if( p->flags&MEM_RowSet ){
    sqlite3RowSetClear(p->u.pRowSet);
  }else if( p->flags&MEM_Frame ){
    sqlite3VdbeMemSetNull(p);


  }

}

/*
** Release memory held by the Mem p, both external memory cleared
** by p->xDel and memory in p->zMalloc.
**
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
** the uncommon case when there really is memory in p that is
** need of freeing.
*/
static SQLITE_NOINLINE void vdbeMemRelease(Mem *p){
  if( VdbeMemDynamic(p) ){
    sqlite3VdbeMemReleaseExternal(p);
  }
  if( p->zMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->zMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.flags==MEM_Str).





*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->zMalloc ){
    vdbeMemRelease(p);
  }else{
    p->z = 0;
  }
  assert( p->xDel==0 );
}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/
................................................................................
      assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
      pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
      break;
    }
  }
}














/*
** Delete any previous value and set the value stored in *pMem to NULL.









*/
void sqlite3VdbeMemSetNull(Mem *pMem){



  if( pMem->flags & MEM_Frame ){
    VdbeFrame *pFrame = pMem->u.pFrame;
    pFrame->pParent = pFrame->v->pDelFrame;
    pFrame->v->pDelFrame = pFrame;
  }
  if( pMem->flags & MEM_RowSet ){
    sqlite3RowSetClear(pMem->u.pRowSet);
  }
  MemSetTypeFlag(pMem, MEM_Null);
}
void sqlite3ValueSetNull(sqlite3_value *p){
  sqlite3VdbeMemSetNull((Mem*)p); 
}

/*
** Delete any previous value and set the value to be a BLOB of length
................................................................................
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;

#ifdef SQLITE_OMIT_INCRBLOB
  sqlite3VdbeMemGrow(pMem, n, 0);
  if( pMem->z ){
    pMem->n = n;
    memset(pMem->z, 0, n);
  }
#endif
}

/*
** The pMem is known to contain content that needs to be destroyed prior
** to a value change.  So invoke the destructor, then set the value to
** a 64-bit integer.
*/
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
  sqlite3VdbeMemReleaseExternal(pMem);
  pMem->u.i = val;
  pMem->flags = MEM_Int;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
................................................................................

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  if( sqlite3IsNaN(val) ){
    sqlite3VdbeMemSetNull(pMem);
  }else{
    sqlite3VdbeMemRelease(pMem);

    pMem->r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
................................................................................
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  VdbeMemReleaseExtern(pTo);

  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->xDel = 0;
  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

................................................................................
/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;


  assert( (pFrom->flags & MEM_RowSet)==0 );
  VdbeMemReleaseExtern(pTo);

  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;
  pTo->xDel = 0;

  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);
    }
  }

................................................................................
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;
  pFrom->xDel = 0;
  pFrom->zMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
................................................................................
  }else{
    iLimit = SQLITE_MAX_LENGTH;
  }
  flags = (enc==0?MEM_Blob:MEM_Str);
  if( nByte<0 ){
    assert( enc!=0 );
    if( enc==SQLITE_UTF8 ){
      for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}

    }else{
      for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
    }
    flags |= MEM_Term;
  }

  /* The following block sets the new values of Mem.z and Mem.xDel. It
................................................................................
    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;
    pMem->xDel = 0;
  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

................................................................................
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.



**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
................................................................................
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );


  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  if( offset+amt<=available ){
    sqlite3VdbeMemRelease(pMem);
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;


  }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
    if( key ){
      rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
    }else{
      rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
    }
    if( rc==SQLITE_OK ){
      pMem->z[amt] = 0;
      pMem->z[amt+1] = 0;
      pMem->flags = MEM_Blob|MEM_Term;
      pMem->n = (int)amt;
    }else{
      sqlite3VdbeMemRelease(pMem);

    }
  }

  return rc;
}

/*







|
|


<







 







<







 







|

<







 







<







 







|








|
|
|

|
|
>

<
>

>



|
>
|



<



|
>
>

>







|
|

|

|









|
|
|
>
>
>
>
>




|
<
<

<







 







>
>
>
>
>
>
>
>
>
>
>
>



>
>
>
>
>
>
>
>
>


>
>
>
|
<
<
<

<
<
<
<







 







<
<
<
|
<
<
<
<








|







 







<
|
<
<
>







 







|
>

<







 







>

<
>


<
<







 







<







 







|
>







 







<







 







|
|
>
>
>







 







>












<



>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>







22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
..
43
44
45
46
47
48
49

50
51
52
53
54
55
56
...
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
...
131
132
133
134
135
136
137

138
139
140
141
142
143
144
...
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

317
318
319
320
321
322
323
324
325
326
327
328

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371


372

373
374
375
376
377
378
379
...
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613



614




615
616
617
618
619
620
621
...
624
625
626
627
628
629
630



631




632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
...
657
658
659
660
661
662
663

664


665
666
667
668
669
670
671
672
...
737
738
739
740
741
742
743
744
745
746

747
748
749
750
751
752
753
...
754
755
756
757
758
759
760
761
762

763
764
765


766
767
768
769
770
771
772
...
783
784
785
786
787
788
789

790
791
792
793
794
795
796
...
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
...
857
858
859
860
861
862
863

864
865
866
867
868
869
870
...
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
...
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this:    assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
  /* If MEM_Dyn is set then Mem.xDel!=0.  
  ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
  */
  assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );


  /* If p holds a string or blob, the Mem.z must point to exactly
  ** one of the following:
  **
  **   (1) Memory in Mem.zMalloc and managed by the Mem object
  **   (2) Memory to be freed using Mem.xDel
  **   (3) An ephemeral string or blob
................................................................................
    assert( 
      ((p->z==p->zMalloc)? 1 : 0) +
      ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
      ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
      ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
    );
  }

  return 1;
}
#endif


/*
** If pMem is an object with a valid string representation, this routine
................................................................................
      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
      bPreserve = 0;
    }else{
      sqlite3DbFree(pMem->db, pMem->zMalloc);
      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    }
    if( pMem->zMalloc==0 ){
      sqlite3VdbeMemSetNull(pMem);
      pMem->z = 0;

      return SQLITE_NOMEM;
    }
  }

  if( pMem->z && bPreserve && pMem->z!=pMem->zMalloc ){
    memcpy(pMem->zMalloc, pMem->z, pMem->n);
  }
................................................................................
  if( (pMem->flags&MEM_Dyn)!=0 ){
    assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
    pMem->xDel((void *)(pMem->z));
  }

  pMem->z = pMem->zMalloc;
  pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);

  return SQLITE_OK;
}

/*
** Make the given Mem object MEM_Dyn.  In other words, make it so
** that any TEXT or BLOB content is stored in memory obtained from
** malloc().  In this way, we know that the memory is safe to be
................................................................................
    memset(&t, 0, sizeof(t));
    t.flags = MEM_Null;
    t.db = pMem->db;
    ctx.pOut = &t;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
    assert( (pMem->flags & MEM_Dyn)==0 );
    sqlite3DbFree(pMem->db, pMem->zMalloc);
    memcpy(pMem, &t, sizeof(t));
    rc = ctx.isError;
  }
  return rc;
}

/*
** If the memory cell contains a value that must be freed by
** invoking the external callback in Mem.xDel, then this routine
** will free that value.  It also sets Mem.flags to MEM_Null.
**
** This is a helper routine for sqlite3VdbeMemSetNull() and
** for sqlite3VdbeMemRelease().  Use those other routines as the
** entry point for releasing Mem resources.
*/

static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
  assert( VdbeMemDynamic(p) );
  if( p->flags&MEM_Agg ){
    sqlite3VdbeMemFinalize(p, p->u.pDef);
    assert( (p->flags & MEM_Agg)==0 );
    testcase( p->flags & MEM_Dyn );
  }
  if( p->flags&MEM_Dyn ){
    assert( (p->flags&MEM_RowSet)==0 );
    assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
    p->xDel((void *)p->z);

  }else if( p->flags&MEM_RowSet ){
    sqlite3RowSetClear(p->u.pRowSet);
  }else if( p->flags&MEM_Frame ){
    VdbeFrame *pFrame = p->u.pFrame;
    pFrame->pParent = pFrame->v->pDelFrame;
    pFrame->v->pDelFrame = pFrame;
  }
  p->flags = MEM_Null;
}

/*
** Release memory held by the Mem p, both external memory cleared
** by p->xDel and memory in p->zMalloc.
**
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
  if( VdbeMemDynamic(p) ){
    vdbeMemClearExternAndSetNull(p);
  }
  if( p->zMalloc ){
    sqlite3DbFree(p->db, p->zMalloc);
    p->zMalloc = 0;
  }
  p->z = 0;
}

/*
** Release any memory resources held by the Mem.  Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
**
** Use this routine prior to clean up prior to abandoning a Mem, or to
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
  assert( sqlite3VdbeCheckMemInvariants(p) );
  if( VdbeMemDynamic(p) || p->zMalloc ){
    vdbeMemClear(p);


  }

}

/*
** Convert a 64-bit IEEE double into a 64-bit signed integer.
** If the double is out of range of a 64-bit signed integer then
** return the closest available 64-bit signed integer.
*/
................................................................................
      assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
      pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
      break;
    }
  }
}

/*
** Initialize bulk memory to be a consistent Mem object.
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
  assert( (flags & ~MEM_TypeMask)==0 );
  pMem->flags = flags;
  pMem->db = db;
  pMem->zMalloc = 0;
}


/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
** require the destructor.  But it preserves the Mem.zMalloc memory allocation.
** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
** routine to invoke the destructor and deallocates Mem.zMalloc.
**
** Use this routine to reset the Mem prior to insert a new value.
**
** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
  if( VdbeMemDynamic(pMem) ){
    vdbeMemClearExternAndSetNull(pMem);
  }else{
    pMem->flags = MEM_Null;



  }




}
void sqlite3ValueSetNull(sqlite3_value *p){
  sqlite3VdbeMemSetNull((Mem*)p); 
}

/*
** Delete any previous value and set the value to be a BLOB of length
................................................................................
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
  sqlite3VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;



  pMem->z = 0;




}

/*
** The pMem is known to contain content that needs to be destroyed prior
** to a value change.  So invoke the destructor, then set the value to
** a 64-bit integer.
*/
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
  sqlite3VdbeMemSetNull(pMem);
  pMem->u.i = val;
  pMem->flags = MEM_Int;
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
................................................................................

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){

  sqlite3VdbeMemSetNull(pMem);


  if( !sqlite3IsNaN(val) ){
    pMem->r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

/*
................................................................................
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
  assert( (pFrom->flags & MEM_RowSet)==0 );
  assert( pTo->db==pFrom->db );
  if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);

  if( (pFrom->flags&MEM_Static)==0 ){
    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
    assert( srcType==MEM_Ephem || srcType==MEM_Static );
    pTo->flags |= srcType;
  }
}

................................................................................
/*
** Make a full copy of pFrom into pTo.  Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
  int rc = SQLITE_OK;

  assert( pTo->db==pFrom->db );
  assert( (pFrom->flags & MEM_RowSet)==0 );

  if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
  memcpy(pTo, pFrom, MEMCELLSIZE);
  pTo->flags &= ~MEM_Dyn;


  if( pTo->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pFrom->flags&MEM_Static) ){
      pTo->flags |= MEM_Ephem;
      rc = sqlite3VdbeMemMakeWriteable(pTo);
    }
  }

................................................................................
  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );

  sqlite3VdbeMemRelease(pTo);
  memcpy(pTo, pFrom, sizeof(Mem));
  pFrom->flags = MEM_Null;

  pFrom->zMalloc = 0;
}

/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
................................................................................
  }else{
    iLimit = SQLITE_MAX_LENGTH;
  }
  flags = (enc==0?MEM_Blob:MEM_Str);
  if( nByte<0 ){
    assert( enc!=0 );
    if( enc==SQLITE_UTF8 ){
      nByte = sqlite3Strlen30(z);
      if( nByte>iLimit ) nByte = iLimit+1;
    }else{
      for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
    }
    flags |= MEM_Term;
  }

  /* The following block sets the new values of Mem.z and Mem.xDel. It
................................................................................
    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
      return SQLITE_NOMEM;
    }
    memcpy(pMem->z, z, nAlloc);
  }else if( xDel==SQLITE_DYNAMIC ){
    sqlite3VdbeMemRelease(pMem);
    pMem->zMalloc = pMem->z = (char *)z;

  }else{
    sqlite3VdbeMemRelease(pMem);
    pMem->z = (char *)z;
    pMem->xDel = xDel;
    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
  }

................................................................................
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem object must have been initialized.  This routine will use
** pMem->zMalloc to hold the content from the btree, if possible.  New
** pMem->zMalloc space will be allocated if necessary.  The calling routine
** is responsible for making sure that the pMem object is eventually
** destroyed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  u32 offset,       /* Offset from the start of data to return bytes from. */
................................................................................
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  u32 available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite3BtreeCursorIsValid(pCur) );
  assert( !VdbeMemDynamic(pMem) );

  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  if( key ){
    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  if( offset+amt<=available ){

    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
    pMem->n = (int)amt;
  }else{
    pMem->flags = MEM_Null;
    if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
      if( key ){
        rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
      }else{
        rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
      }
      if( rc==SQLITE_OK ){
        pMem->z[amt] = 0;
        pMem->z[amt+1] = 0;
        pMem->flags = MEM_Blob|MEM_Term;
        pMem->n = (int)amt;
      }else{
        sqlite3VdbeMemRelease(pMem);
      }
    }
  }

  return rc;
}

/*

Changes to src/vdbesort.c.

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
....
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
  const void *pKey1, int nKey1,   /* Left side of comparison */
  const void *pKey2, int nKey2    /* Right side of comparison */
){
  UnpackedRecord *r2 = pTask->pUnpacked;
  if( pKey2 ){
    sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
  }
  return sqlite3VdbeRecordCompare(nKey1, pKey1, r2, 0);
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
**
** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
** to determine the number of fields that should be compared from the
................................................................................
  for(i=0; i<nKeyCol; i++){
    if( r2->aMem[i].flags & MEM_Null ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2, 0);
  return SQLITE_OK;
}







|







 







|


757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
....
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
  const void *pKey1, int nKey1,   /* Left side of comparison */
  const void *pKey2, int nKey2    /* Right side of comparison */
){
  UnpackedRecord *r2 = pTask->pUnpacked;
  if( pKey2 ){
    sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
  }
  return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
**
** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
** to determine the number of fields that should be compared from the
................................................................................
  for(i=0; i<nKeyCol; i++){
    if( r2->aMem[i].flags & MEM_Null ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
  return SQLITE_OK;
}

Changes to src/where.c.

1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
....
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

................................................................................
#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.







|







 







|





|


|







1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
....
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
  do{
    iTest = (iMin+i)/2;
    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){
      iMin = iTest+1;
    }else{
      i = iTest;
    }
  }while( res && iMin<i );

................................................................................
#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );
    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );
  }else{
    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */
    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );
    assert( i==0
         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );
  }
#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.