Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Restore (btree_set_cache_size) to test3.c. This is used on unix for the tcl "crash tests". Make some functions no longer used outside of btree.c static. (CVS 6869) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
1d96ce8c76e007ca29e7971a6c72b638 |
User & Date: | danielk1977 2009-07-09 05:07:38.000 |
Context
2009-07-09
| ||
08:27 | In btree.c, have setSharedCacheLock() assume that the b-tree is sharable instead of checking to see if it is. The caller has already performed this check. (CVS 6870) (check-in: 3190eefd5f user: danielk1977 tags: trunk) | |
05:07 | Restore (btree_set_cache_size) to test3.c. This is used on unix for the tcl "crash tests". Make some functions no longer used outside of btree.c static. (CVS 6869) (check-in: 1d96ce8c76 user: danielk1977 tags: trunk) | |
03:20 | removed the test function sqlite3BtreeFlags() (test code only); (CVS 6868) (check-in: 579ba6c83f user: shane tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.669 2009/07/09 05:07:38 danielk1977 Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** See the header comment on "btreeInt.h" for additional information. ** Including a description of file format and an overview of operation. */ #include "btreeInt.h" |
︙ | ︙ | |||
642 643 644 645 646 647 648 | /* ** Restore the cursor to the position it was in (or as close to as possible) ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ | | | | 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 | /* ** Restore the cursor to the position it was in (or as close to as possible) ** when saveCursorPosition() was called. Note that this call deletes the ** saved position info stored by saveCursorPosition(), so there can be ** at most one effective restoreCursorPosition() call after each ** saveCursorPosition(). */ static int btreeRestoreCursorPosition(BtCursor *pCur){ int rc; assert( cursorHoldsMutex(pCur) ); assert( pCur->eState>=CURSOR_REQUIRESEEK ); if( pCur->eState==CURSOR_FAULT ){ return pCur->skip; } pCur->eState = CURSOR_INVALID; rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip); if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); } return rc; } #define restoreCursorPosition(p) \ (p->eState>=CURSOR_REQUIRESEEK ? \ btreeRestoreCursorPosition(p) : \ SQLITE_OK) /* ** Determine whether or not a cursor has moved from the position it ** was last placed at. Cursors can move when the row they are pointing ** at is deleted out from under them. ** |
︙ | ︙ | |||
828 829 830 831 832 833 834 | } } return findCell(pPage, iCell); } /* ** Parse a cell content block and fill in the CellInfo structure. There | | | | | | 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 | } } return findCell(pPage, iCell); } /* ** Parse a cell content block and fill in the CellInfo structure. There ** are two versions of this function. btreeParseCell() takes a ** cell index as the second argument and btreeParseCellPtr() ** takes a pointer to the body of the cell as its second argument. ** ** Within this file, the parseCell() macro can be called instead of ** btreeParseCellPtr(). Using some compilers, this will be faster. */ static void btreeParseCellPtr( MemPage *pPage, /* Page containing the cell */ u8 *pCell, /* Pointer to the cell text. */ CellInfo *pInfo /* Fill in this structure */ ){ u16 n; /* Number bytes in cell content header */ u32 nPayload; /* Number of bytes of cell payload */ |
︙ | ︙ | |||
907 908 909 910 911 912 913 | pInfo->nLocal = (u16)minLocal; } pInfo->iOverflow = (u16)(pInfo->nLocal + n); pInfo->nSize = pInfo->iOverflow + 4; } } #define parseCell(pPage, iCell, pInfo) \ | | | | 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 | pInfo->nLocal = (u16)minLocal; } pInfo->iOverflow = (u16)(pInfo->nLocal + n); pInfo->nSize = pInfo->iOverflow + 4; } } #define parseCell(pPage, iCell, pInfo) \ btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) static void btreeParseCell( MemPage *pPage, /* Page containing the cell */ int iCell, /* The cell index. First cell is 0 */ CellInfo *pInfo /* Fill in this structure */ ){ parseCell(pPage, iCell, pInfo); } |
︙ | ︙ | |||
932 933 934 935 936 937 938 | #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; | | | 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 | #ifdef SQLITE_DEBUG /* The value returned by this function should always be the same as ** the (CellInfo.nSize) value found by doing a full parse of the ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of ** this function verifies that this invariant is not violated. */ CellInfo debuginfo; btreeParseCellPtr(pPage, pCell, &debuginfo); #endif if( pPage->intKey ){ u8 *pEnd; if( pPage->hasData ){ pIter += getVarint32(pIter, nSize); }else{ |
︙ | ︙ | |||
989 990 991 992 993 994 995 | ** If the cell pCell, part of page pPage contains a pointer ** to an overflow page, insert an entry into the pointer-map ** for the overflow page. */ static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ CellInfo info; assert( pCell!=0 ); | | | 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 | ** If the cell pCell, part of page pPage contains a pointer ** to an overflow page, insert an entry into the pointer-map ** for the overflow page. */ static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ CellInfo info; assert( pCell!=0 ); btreeParseCellPtr(pPage, pCell, &info); assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); if( info.iOverflow ){ Pgno ovfl = get4byte(&pCell[info.iOverflow]); return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); } return SQLITE_OK; } |
︙ | ︙ | |||
1045 1046 1047 1048 1049 1050 1051 | for(i=0; i<nCell; i++){ u8 *pAddr; /* The i-th cell pointer */ pAddr = &data[cellOffset + i*2]; pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) | | | 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 | for(i=0; i<nCell; i++){ u8 *pAddr; /* The i-th cell pointer */ pAddr = &data[cellOffset + i*2]; pc = get2byte(pAddr); testcase( pc==iCellFirst ); testcase( pc==iCellLast ); #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) /* These conditions have already been verified in btreeInitPage() ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined */ if( pc<iCellFirst || pc>iCellLast ){ return SQLITE_CORRUPT_BKPT; } #endif assert( pc>=iCellFirst && pc<=iCellLast ); |
︙ | ︙ | |||
1201 1202 1203 1204 1205 1206 1207 | #ifdef SQLITE_SECURE_DELETE /* Overwrite deleted information with zeros when the SECURE_DELETE ** option is enabled at compile-time */ memset(&data[start], 0, size); #endif /* Add the space back into the linked list of freeblocks. Note that | | | | 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 | #ifdef SQLITE_SECURE_DELETE /* Overwrite deleted information with zeros when the SECURE_DELETE ** option is enabled at compile-time */ memset(&data[start], 0, size); #endif /* Add the space back into the linked list of freeblocks. Note that ** even though the freeblock list was checked by btreeInitPage(), ** btreeInitPage() did not detect overlapping cells or ** freeblocks that overlapped cells. Nor does it detect when the ** cell content area exceeds the value in the page header. If these ** situations arise, then subsequent insert operations might corrupt ** the freelist. So we do need to check for corruption while scanning ** the freelist. */ hdr = pPage->hdrOffset; |
︙ | ︙ | |||
1309 1310 1311 1312 1313 1314 1315 | ** ** Return SQLITE_OK on success. If we see that the page does ** not contain a well-formed database page, then return ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not ** guarantee that the page is well-formed. It only shows that ** we failed to detect any corruption. */ | | | 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 | ** ** Return SQLITE_OK on success. If we see that the page does ** not contain a well-formed database page, then return ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not ** guarantee that the page is well-formed. It only shows that ** we failed to detect any corruption. */ static int btreeInitPage(MemPage *pPage){ assert( pPage->pBt!=0 ); assert( sqlite3_mutex_held(pPage->pBt->mutex) ); assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
︙ | ︙ | |||
1472 1473 1474 1475 1476 1477 1478 | ** If the noContent flag is set, it means that we do not care about ** the content of the page at this time. So do not go to the disk ** to fetch the content. Just fill in the content with zeros for now. ** If in the future we call sqlite3PagerWrite() on this page, that ** means we have started to be concerned about content and the disk ** read should occur at that point. */ | | | 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 | ** If the noContent flag is set, it means that we do not care about ** the content of the page at this time. So do not go to the disk ** to fetch the content. Just fill in the content with zeros for now. ** If in the future we call sqlite3PagerWrite() on this page, that ** means we have started to be concerned about content and the disk ** read should occur at that point. */ static int btreeGetPage( BtShared *pBt, /* The btree */ Pgno pgno, /* Number of the page to fetch */ MemPage **ppPage, /* Return the page in this parameter */ int noContent /* Do not load page content if true */ ){ int rc; DbPage *pDbPage; |
︙ | ︙ | |||
1519 1520 1521 1522 1523 1524 1525 | assert( rc==SQLITE_OK || nPage==-1 ); return (Pgno)nPage; } /* ** Get a page from the pager and initialize it. This routine ** is just a convenience wrapper around separate calls to | | | 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 | assert( rc==SQLITE_OK || nPage==-1 ); return (Pgno)nPage; } /* ** Get a page from the pager and initialize it. This routine ** is just a convenience wrapper around separate calls to ** btreeGetPage() and btreeInitPage(). */ static int getAndInitPage( BtShared *pBt, /* The database file */ Pgno pgno, /* Number of the page to get */ MemPage **ppPage /* Write the page pointer here */ ){ int rc; |
︙ | ︙ | |||
1549 1550 1551 1552 1553 1554 1555 | rc = SQLITE_OK; }else{ /* Page not in cache. Acquire it. */ testcase( pgno==pagerPagecount(pBt) ); if( pgno>pagerPagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } | | | | | 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 | rc = SQLITE_OK; }else{ /* Page not in cache. Acquire it. */ testcase( pgno==pagerPagecount(pBt) ); if( pgno>pagerPagecount(pBt) ){ return SQLITE_CORRUPT_BKPT; } rc = btreeGetPage(pBt, pgno, ppPage, 0); if( rc ) return rc; pPage = *ppPage; } if( !pPage->isInit ){ rc = btreeInitPage(pPage); } if( rc!=SQLITE_OK ){ releasePage(pPage); *ppPage = 0; } return rc; } /* ** Release a MemPage. This should be called once for each prior ** call to btreeGetPage. */ static void releasePage(MemPage *pPage){ if( pPage ){ assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 ); assert( pPage->aData ); assert( pPage->pBt ); assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
︙ | ︙ | |||
1597 1598 1599 1600 1601 1602 1603 | assert( sqlite3PagerPageRefcount(pData)>0 ); if( pPage->isInit ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following | | | | | 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 | assert( sqlite3PagerPageRefcount(pData)>0 ); if( pPage->isInit ){ assert( sqlite3_mutex_held(pPage->pBt->mutex) ); pPage->isInit = 0; if( sqlite3PagerPageRefcount(pData)>1 ){ /* pPage might not be a btree page; it might be an overflow page ** or ptrmap page or a free page. In those cases, the following ** call to btreeInitPage() will likely return SQLITE_CORRUPT. ** But no harm is done by this. And it is very important that ** btreeInitPage() be called on every btree page so we make ** the call for every page that comes in for re-initing. */ btreeInitPage(pPage); } } } /* ** Invoke the busy handler for a btree. */ |
︙ | ︙ | |||
2184 2185 2186 2187 2188 2189 2190 | static int lockBtree(BtShared *pBt){ int rc; MemPage *pPage1; int nPage; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pBt->pPage1==0 ); | | | 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 | static int lockBtree(BtShared *pBt){ int rc; MemPage *pPage1; int nPage; assert( sqlite3_mutex_held(pBt->mutex) ); assert( pBt->pPage1==0 ); rc = btreeGetPage(pBt, 1, &pPage1, 0); if( rc!=SQLITE_OK ) return rc; /* Do some checking to help insure the file we opened really is ** a valid database file. */ rc = sqlite3PagerPagecount(pBt->pPager, &nPage); if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
2510 2511 2512 2513 2514 2515 2516 | int nCell; /* Number of cells in page pPage */ int rc; /* Return code */ BtShared *pBt = pPage->pBt; u8 isInitOrig = pPage->isInit; Pgno pgno = pPage->pgno; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | | | 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 | int nCell; /* Number of cells in page pPage */ int rc; /* Return code */ BtShared *pBt = pPage->pBt; u8 isInitOrig = pPage->isInit; Pgno pgno = pPage->pgno; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); rc = btreeInitPage(pPage); if( rc!=SQLITE_OK ){ goto set_child_ptrmaps_out; } nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); |
︙ | ︙ | |||
2569 2570 2571 2572 2573 2574 2575 | } put4byte(pPage->aData, iTo); }else{ u8 isInitOrig = pPage->isInit; int i; int nCell; | | | | 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 | } put4byte(pPage->aData, iTo); }else{ u8 isInitOrig = pPage->isInit; int i; int nCell; btreeInitPage(pPage); nCell = pPage->nCell; for(i=0; i<nCell; i++){ u8 *pCell = findCell(pPage, i); if( eType==PTRMAP_OVERFLOW1 ){ CellInfo info; btreeParseCellPtr(pPage, pCell, &info); if( info.iOverflow ){ if( iFrom==get4byte(&pCell[info.iOverflow]) ){ put4byte(&pCell[info.iOverflow], iTo); break; } } }else{ |
︙ | ︙ | |||
2664 2665 2666 2667 2668 2669 2670 | } /* Fix the database pointer on page iPtrPage that pointed at iDbPage so ** that it points at iFreePage. Also fix the pointer map entry for ** iPtrPage. */ if( eType!=PTRMAP_ROOTPAGE ){ | | | 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 | } /* Fix the database pointer on page iPtrPage that pointed at iDbPage so ** that it points at iFreePage. Also fix the pointer map entry for ** iPtrPage. */ if( eType!=PTRMAP_ROOTPAGE ){ rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pPtrPage->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pPtrPage); return rc; |
︙ | ︙ | |||
2744 2745 2746 2747 2748 2749 2750 | assert( iFreePg==iLastPg ); releasePage(pFreePg); } } else { Pgno iFreePg; /* Index of free page to move pLastPg to */ MemPage *pLastPg; | | | 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 | assert( iFreePg==iLastPg ); releasePage(pFreePg); } } else { Pgno iFreePg; /* Index of free page to move pLastPg to */ MemPage *pLastPg; rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); if( rc!=SQLITE_OK ){ return rc; } /* If nFin is zero, this loop runs exactly once and page pLastPg ** is swapped with the first free page pulled off the free list. ** |
︙ | ︙ | |||
2783 2784 2785 2786 2787 2788 2789 | } if( nFin==0 ){ iLastPg--; while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){ if( PTRMAP_ISPAGE(pBt, iLastPg) ){ MemPage *pPg; | | | 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 | } if( nFin==0 ){ iLastPg--; while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){ if( PTRMAP_ISPAGE(pBt, iLastPg) ){ MemPage *pPg; int rc = btreeGetPage(pBt, iLastPg, &pPg, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pPg->pDbPage); releasePage(pPg); if( rc!=SQLITE_OK ){ return rc; |
︙ | ︙ | |||
3128 3129 3130 3131 3132 3133 3134 | assert( TRANS_WRITE==pBt->inTransaction ); rc2 = sqlite3PagerRollback(pBt->pPager); if( rc2!=SQLITE_OK ){ rc = rc2; } /* The rollback may have destroyed the pPage1->aData value. So | | | | 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 | assert( TRANS_WRITE==pBt->inTransaction ); rc2 = sqlite3PagerRollback(pBt->pPager); if( rc2!=SQLITE_OK ){ rc = rc2; } /* The rollback may have destroyed the pPage1->aData value. So ** call btreeGetPage() on page 1 again to make ** sure pPage1->aData is set correctly. */ if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ releasePage(pPage1); } assert( countWriteCursors(pBt)==0 ); pBt->inTransaction = TRANS_READ; } btreeEndTransaction(p); |
︙ | ︙ | |||
3380 3381 3382 3383 3384 3385 3386 | } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call | | | | | | | 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 | } return SQLITE_OK; } /* ** Make sure the BtCursor* given in the argument has a valid ** BtCursor.info structure. If it is not already valid, call ** btreeParseCell() to fill it in. ** ** BtCursor.info is a cache of the information in the current cell. ** Using this cache reduces the number of calls to btreeParseCell(). ** ** 2007-06-25: There is a bug in some versions of MSVC that cause the ** compiler to crash when getCellInfo() is implemented as a macro. ** But there is a measureable speed advantage to using the macro on gcc ** (when less compiler optimizations like -Os or -O0 are used and the ** compiler is not doing agressive inlining.) So we use a real function ** for MSVC and a macro for everything else. Ticket #2457. */ #ifndef NDEBUG static void assertCellInfo(BtCursor *pCur){ CellInfo info; int iPage = pCur->iPage; memset(&info, 0, sizeof(info)); btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); } #else #define assertCellInfo(x) #endif #ifdef _MSC_VER /* Use a real function in MSVC to work around bugs in that compiler. */ static void getCellInfo(BtCursor *pCur){ if( pCur->info.nSize==0 ){ int iPage = pCur->iPage; btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); pCur->validNKey = 1; }else{ assertCellInfo(pCur); } } #else /* if not _MSC_VER */ /* Use a macro in all other compilers so that the function is inlined */ #define getCellInfo(pCur) \ if( pCur->info.nSize==0 ){ \ int iPage = pCur->iPage; \ btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ pCur->validNKey = 1; \ }else{ \ assertCellInfo(pCur); \ } #endif /* _MSC_VER */ /* |
︙ | ︙ | |||
3535 3536 3537 3538 3539 3540 3541 | rc = SQLITE_DONE; } } } #endif if( rc==SQLITE_OK ){ | | | 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 | rc = SQLITE_DONE; } } } #endif if( rc==SQLITE_OK ){ rc = btreeGetPage(pBt, ovfl, &pPage, 0); assert(rc==SQLITE_OK || pPage==0); if( next==0 && rc==SQLITE_OK ){ next = get4byte(pPage->aData); } } *pPgnoNext = next; |
︙ | ︙ | |||
3948 3949 3950 3951 3952 3953 3954 | ** Move the cursor up to the parent page. ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ | | | 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 | ** Move the cursor up to the parent page. ** ** pCur->idx is set to the cell index that contains the pointer ** to the page we are coming from. If we are coming from the ** right-most child page then pCur->idx is set to one more than ** the largest cell index. */ static void moveToParent(BtCursor *pCur){ assert( cursorHoldsMutex(pCur) ); assert( pCur->eState==CURSOR_VALID ); assert( pCur->iPage>0 ); assert( pCur->apPage[pCur->iPage] ); assertParentIndex( pCur->apPage[pCur->iPage-1], pCur->aiIdx[pCur->iPage-1], |
︙ | ︙ | |||
4280 4281 4282 4283 4284 4285 4286 | }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; | | | 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 | }else{ /* The record flows over onto one or more overflow pages. In ** this case the whole cell needs to be parsed, a buffer allocated ** and accessPayload() used to retrieve the record into the ** buffer before VdbeRecordCompare() can be called. */ void *pCellKey; u8 * const pCellBody = pCell - pPage->childPtrSize; btreeParseCellPtr(pPage, pCellBody, &pCur->info); nCell = (int)pCur->info.nKey; pCellKey = sqlite3Malloc( nCell ); if( pCellKey==0 ){ rc = SQLITE_NOMEM; goto moveto_finish; } rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0); |
︙ | ︙ | |||
4404 4405 4406 4407 4408 4409 4410 | } do{ if( pCur->iPage==0 ){ *pRes = 1; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } | | | 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 | } do{ if( pCur->iPage==0 ){ *pRes = 1; pCur->eState = CURSOR_INVALID; return SQLITE_OK; } moveToParent(pCur); pPage = pCur->apPage[pCur->iPage]; }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); *pRes = 0; if( pPage->intKey ){ rc = sqlite3BtreeNext(pCur, pRes); }else{ rc = SQLITE_OK; |
︙ | ︙ | |||
4467 4468 4469 4470 4471 4472 4473 | }else{ while( pCur->aiIdx[pCur->iPage]==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; *pRes = 1; return SQLITE_OK; } | | | 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 | }else{ while( pCur->aiIdx[pCur->iPage]==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; *pRes = 1; return SQLITE_OK; } moveToParent(pCur); } pCur->info.nSize = 0; pCur->validNKey = 0; pCur->aiIdx[pCur->iPage]--; pPage = pCur->apPage[pCur->iPage]; if( pPage->intKey && !pPage->leaf ){ |
︙ | ︙ | |||
4573 4574 4575 4576 4577 4578 4579 | }else{ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; }else{ | | | 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 | }else{ iTrunk = get4byte(&pPage1->aData[32]); } testcase( iTrunk==mxPage ); if( iTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; }else{ rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); } if( rc ){ pTrunk = 0; goto end_allocate_page; } k = get4byte(&pTrunk->aData[4]); |
︙ | ︙ | |||
4630 4631 4632 4633 4634 4635 4636 | MemPage *pNewTrunk; Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); if( iNewTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; goto end_allocate_page; } testcase( iNewTrunk==mxPage ); | | | 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 | MemPage *pNewTrunk; Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); if( iNewTrunk>mxPage ){ rc = SQLITE_CORRUPT_BKPT; goto end_allocate_page; } testcase( iNewTrunk==mxPage ); rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); if( rc!=SQLITE_OK ){ goto end_allocate_page; } rc = sqlite3PagerWrite(pNewTrunk->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pNewTrunk); goto end_allocate_page; |
︙ | ︙ | |||
4703 4704 4705 4706 4707 4708 4709 | *pPgno, closest+1, k, pTrunk->pgno, n-1)); if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); assert( sqlite3PagerIswriteable(pTrunk->pDbPage) ); noContent = !btreeGetHasContent(pBt, *pPgno); | | | 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 | *pPgno, closest+1, k, pTrunk->pgno, n-1)); if( closest<k-1 ){ memcpy(&aData[8+closest*4], &aData[4+k*4], 4); } put4byte(&aData[4], k-1); assert( sqlite3PagerIswriteable(pTrunk->pDbPage) ); noContent = !btreeGetHasContent(pBt, *pPgno); rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); } } searchList = 0; |
︙ | ︙ | |||
4735 4736 4737 4738 4739 4740 4741 | /* If *pPgno refers to a pointer-map page, allocate two new pages ** at the end of the file instead of one. The first allocated page ** becomes a new pointer-map page, the second is used by the caller. */ MemPage *pPg = 0; TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); | | | | 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 | /* If *pPgno refers to a pointer-map page, allocate two new pages ** at the end of the file instead of one. The first allocated page ** becomes a new pointer-map page, the second is used by the caller. */ MemPage *pPg = 0; TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetPage(pBt, *pPgno, &pPg, 0); if( rc==SQLITE_OK ){ rc = sqlite3PagerWrite(pPg->pDbPage); releasePage(pPg); } if( rc ) return rc; (*pPgno)++; if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; } } #endif assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); rc = btreeGetPage(pBt, *pPgno, ppPage, 0); if( rc ) return rc; rc = sqlite3PagerWrite((*ppPage)->pDbPage); if( rc!=SQLITE_OK ){ releasePage(*ppPage); } TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); } |
︙ | ︙ | |||
4814 4815 4816 4817 4818 4819 4820 | nFree = get4byte(&pPage1->aData[36]); put4byte(&pPage1->aData[36], nFree+1); #ifdef SQLITE_SECURE_DELETE /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then ** always fully overwrite deleted information with zeros. */ | | | 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 | nFree = get4byte(&pPage1->aData[36]); put4byte(&pPage1->aData[36], nFree+1); #ifdef SQLITE_SECURE_DELETE /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then ** always fully overwrite deleted information with zeros. */ if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0))) || (rc = sqlite3PagerWrite(pPage->pDbPage)) ){ goto freepage_out; } memset(pPage->aData, 0, pPage->pBt->pageSize); #endif |
︙ | ︙ | |||
4841 4842 4843 4844 4845 4846 4847 | ** first trunk page in the current free-list. This block tests if it ** is possible to add the page as a new free-list leaf. */ if( nFree!=0 ){ int nLeaf; /* Initial number of leaf cells on trunk page */ iTrunk = get4byte(&pPage1->aData[32]); | | | 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 | ** first trunk page in the current free-list. This block tests if it ** is possible to add the page as a new free-list leaf. */ if( nFree!=0 ){ int nLeaf; /* Initial number of leaf cells on trunk page */ iTrunk = get4byte(&pPage1->aData[32]); rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); if( rc!=SQLITE_OK ){ goto freepage_out; } nLeaf = get4byte(&pTrunk->aData[4]); if( nLeaf<0 ){ rc = SQLITE_CORRUPT_BKPT; |
︙ | ︙ | |||
4888 4889 4890 4891 4892 4893 4894 | /* If control flows to this point, then it was not possible to add the ** the page being freed as a leaf page of the first trunk in the free-list. ** Possibly because the free-list is empty, or possibly because the ** first trunk in the free-list is full. Either way, the page being freed ** will become the new first trunk page in the free-list. */ | | | 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 | /* If control flows to this point, then it was not possible to add the ** the page being freed as a leaf page of the first trunk in the free-list. ** Possibly because the free-list is empty, or possibly because the ** first trunk in the free-list is full. Either way, the page being freed ** will become the new first trunk page in the free-list. */ if( ((!pPage) && (0 != (rc = btreeGetPage(pBt, iPage, &pPage, 0)))) || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage))) ){ goto freepage_out; } put4byte(pPage->aData, iTrunk); put4byte(&pPage->aData[4], 0); put4byte(&pPage1->aData[32], iPage); |
︙ | ︙ | |||
4922 4923 4924 4925 4926 4927 4928 | CellInfo info; Pgno ovflPgno; int rc; int nOvfl; u16 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); | | | 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 | CellInfo info; Pgno ovflPgno; int rc; int nOvfl; u16 ovflPageSize; assert( sqlite3_mutex_held(pPage->pBt->mutex) ); btreeParseCellPtr(pPage, pCell, &info); if( info.iOverflow==0 ){ return SQLITE_OK; /* No overflow pages. Return without doing anything */ } ovflPgno = get4byte(&pCell[info.iOverflow]); assert( pBt->usableSize > 4 ); ovflPageSize = pBt->usableSize - 4; nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; |
︙ | ︙ | |||
5005 5006 5007 5008 5009 5010 5011 | } if( pPage->hasData ){ nHeader += putVarint(&pCell[nHeader], nData+nZero); }else{ nData = nZero = 0; } nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); | | | 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 | } if( pPage->hasData ){ nHeader += putVarint(&pCell[nHeader], nData+nZero); }else{ nData = nZero = 0; } nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); btreeParseCellPtr(pPage, pCell, &info); assert( info.nHeader==nHeader ); assert( info.nKey==nKey ); assert( info.nData==(u32)(nData+nZero) ); /* Fill in the payload */ nPayload = nData + nZero; if( pPage->intKey ){ |
︙ | ︙ | |||
5428 5429 5430 5431 5432 5433 5434 | assert( pPage->isInit ); for(j=0; j<pPage->nCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); | | | 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 | assert( pPage->isInit ); for(j=0; j<pPage->nCell; j++){ CellInfo info; u8 *z; z = findCell(pPage, j); btreeParseCellPtr(pPage, z, &info); if( info.iOverflow ){ Pgno ovfl = get4byte(&z[info.iOverflow]); ptrmapGet(pBt, ovfl, &e, &n); assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); } if( !pPage->leaf ){ Pgno child = get4byte(z); |
︙ | ︙ | |||
5461 5462 5463 5464 5465 5466 5467 | ** parent page stored in the pointer map is page pTo. If pFrom contained ** any cells with overflow page pointers, then the corresponding pointer ** map entries are also updated so that the parent page is page pTo. ** ** If pFrom is currently carrying any overflow cells (entries in the ** MemPage.aOvfl[] array), they are not copied to pTo. ** | | | 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 | ** parent page stored in the pointer map is page pTo. If pFrom contained ** any cells with overflow page pointers, then the corresponding pointer ** map entries are also updated so that the parent page is page pTo. ** ** If pFrom is currently carrying any overflow cells (entries in the ** MemPage.aOvfl[] array), they are not copied to pTo. ** ** Before returning, page pTo is reinitialized using btreeInitPage(). ** ** The performance of this function is not critical. It is only used by ** the balance_shallower() and balance_deeper() procedures, neither of ** which are called often under normal circumstances. */ static int copyNodeContent(MemPage *pFrom, MemPage *pTo){ BtShared * const pBt = pFrom->pBt; |
︙ | ︙ | |||
5489 5490 5491 5492 5493 5494 5495 | memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure ** match the new data. The initialization of pTo "cannot" fail, as the ** data copied from pFrom is known to be valid. */ pTo->isInit = 0; | | | 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 | memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); /* Reinitialize page pTo so that the contents of the MemPage structure ** match the new data. The initialization of pTo "cannot" fail, as the ** data copied from pFrom is known to be valid. */ pTo->isInit = 0; TESTONLY(rc = ) btreeInitPage(pTo); assert( rc==SQLITE_OK ); /* If this is an auto-vacuum database, update the pointer-map entries ** for any b-tree or overflow pages that pTo now contains the pointers to. */ if( ISAUTOVACUUM ){ rc = setChildPtrmaps(pTo); } |
︙ | ︙ | |||
5952 5953 5954 5955 5956 5957 5958 | /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; | | | | 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 | /* If the tree is a leaf-data tree, and the siblings are leaves, ** then there is no divider cell in apCell[]. Instead, the divider ** cell consists of the integer key for the right-most cell of ** the sibling-page assembled above only. */ CellInfo info; j--; btreeParseCellPtr(pNew, apCell[j], &info); pCell = pTemp; sz = 4 + putVarint(&pCell[4], info.nKey); pTemp = 0; }else{ pCell -= 4; /* Obscure case for non-leaf-data trees: If the cell at pCell was ** previously stored on a leaf node, and its reported size was 4 ** bytes, then it may actually be smaller than this ** (see btreeParseCellPtr(), 4 bytes is the minimum size of ** any cell). But it is important to pass the correct size to ** insertCell(), so reparse the cell now. ** ** Note that this can never happen in an SQLite data file, as all ** cells are at least 4 bytes. It only happens in b-trees used ** to evaluate "IN (SELECT ...)" and similar clauses. */ |
︙ | ︙ | |||
6672 6673 6674 6675 6676 6677 6678 | */ u8 eType; Pgno iPtrPage; releasePage(pPageMove); /* Move the page currently at pgnoRoot to pgnoMove. */ | | | | 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 | */ u8 eType; Pgno iPtrPage; releasePage(pPageMove); /* Move the page currently at pgnoRoot to pgnoMove. */ rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ rc = SQLITE_CORRUPT_BKPT; } if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; } assert( eType!=PTRMAP_ROOTPAGE ); assert( eType!=PTRMAP_FREEPAGE ); rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); releasePage(pRoot); /* Obtain the page at pgnoRoot */ if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3PagerWrite(pRoot->pDbPage); if( rc!=SQLITE_OK ){ releasePage(pRoot); return rc; |
︙ | ︙ | |||
6856 6857 6858 6859 6860 6861 6862 | ** occur. */ if( pBt->pCursor ){ sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); return SQLITE_LOCKED_SHAREDCACHE; } | | | 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 | ** occur. */ if( pBt->pCursor ){ sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); return SQLITE_LOCKED_SHAREDCACHE; } rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); if( rc ) return rc; rc = sqlite3BtreeClearTable(p, iTable, 0); if( rc ){ releasePage(pPage); return rc; } |
︙ | ︙ | |||
6891 6892 6893 6894 6895 6896 6897 | }else{ /* The table being dropped does not have the largest root-page ** number in the database. So move the page that does into the ** gap left by the deleted root-page. */ MemPage *pMove; releasePage(pPage); | | | | 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 | }else{ /* The table being dropped does not have the largest root-page ** number in the database. So move the page that does into the ** gap left by the deleted root-page. */ MemPage *pMove; releasePage(pPage); rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); if( rc!=SQLITE_OK ){ return rc; } rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; } rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); if( rc!=SQLITE_OK ){ return rc; } rc = freePage(pMove); releasePage(pMove); if( rc!=SQLITE_OK ){ return rc; |
︙ | ︙ | |||
7056 7057 7058 7059 7060 7061 7062 | if( pPage->leaf ){ do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return SQLITE_OK; } | | | 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 | if( pPage->leaf ){ do { if( pCur->iPage==0 ){ /* All pages of the b-tree have been visited. Return successfully. */ *pnEntry = nEntry; return SQLITE_OK; } moveToParent(pCur); }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); pCur->aiIdx[pCur->iPage]++; pPage = pCur->apPage[pCur->iPage]; } /* Descend to the child node of the cell that the cursor currently |
︙ | ︙ | |||
7283 7284 7285 7286 7287 7288 7289 | /* Check that the page exists */ pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage, zParentContext) ) return 0; | | | | | | 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 | /* Check that the page exists */ pBt = pCheck->pBt; usableSize = pBt->usableSize; if( iPage==0 ) return 0; if( checkRef(pCheck, iPage, zParentContext) ) return 0; if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; checkAppendMsg(pCheck, zContext, "unable to get the page. error code=%d", rc); return 0; } if( (rc = btreeInitPage(pPage))!=0 ){ assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ checkAppendMsg(pCheck, zContext, "btreeInitPage() returns error code %d", rc); releasePage(pPage); return 0; } /* Check out all the cells. */ depth = 0; for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ u8 *pCell; u32 sz; CellInfo info; /* Check payload overflow pages */ sqlite3_snprintf(sizeof(zContext), zContext, "On tree page %d cell %d: ", iPage, i); pCell = findCell(pPage,i); btreeParseCellPtr(pPage, pCell, &info); sz = info.nData; if( !pPage->intKey ) sz += (int)info.nKey; assert( sz==info.nPayload ); if( (sz>info.nLocal) && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) ){ int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
︙ | ︙ |
Changes to src/btree.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite B-Tree file ** subsystem. See comments in the source code for a detailed description ** of what each interface routine does. ** ** @(#) $Id: btree.h,v 1.119 2009/07/09 05:07:38 danielk1977 Exp $ */ #ifndef _BTREE_H_ #define _BTREE_H_ /* TODO: This definition is just included so other modules compile. It ** needs to be revisited. */ |
︙ | ︙ | |||
164 165 166 167 168 169 170 | int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, const void *pData, int nData, int nZero, int bias, int seekResult); int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); | < | 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, const void *pData, int nData, int nZero, int bias, int seekResult); int sqlite3BtreeFirst(BtCursor*, int *pRes); int sqlite3BtreeLast(BtCursor*, int *pRes); int sqlite3BtreeNext(BtCursor*, int *pRes); int sqlite3BtreeEof(BtCursor*); int sqlite3BtreePrevious(BtCursor*, int *pRes); int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); |
︙ | ︙ |
Changes to src/btreeInt.h.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btreeInt.h,v 1.51 2009/07/09 05:07:38 danielk1977 Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
635 636 637 638 639 640 641 | ** Read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte | < < < < < < < < < < < < < < | 635 636 637 638 639 640 641 | ** Read or write a two- and four-byte big-endian integer values. */ #define get2byte(x) ((x)[0]<<8 | (x)[1]) #define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v)) #define get4byte sqlite3Get4byte #define put4byte sqlite3Put4byte |
Changes to src/test3.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the btree.c module in SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test3.c,v 1.111 2009/07/09 05:07:38 danielk1977 Exp $ */ #include "sqliteInt.h" #include "btreeInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
404 405 406 407 408 409 410 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } pCur = sqlite3TestTextToPtr(argv[1]); sqlite3BtreeEnter(pCur->pBtree); | | > > > < | 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | if( argc!=2 ){ Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], " ID\"", 0); return TCL_ERROR; } pCur = sqlite3TestTextToPtr(argv[1]); sqlite3BtreeEnter(pCur->pBtree); /* The cursor may be in "require-seek" state. If this is the case, the ** call to BtreeDataSize() will fix it. */ sqlite3BtreeDataSize(pCur, (u32*)&n2); if( pCur->apPage[pCur->iPage]->intKey ){ n1 = 0; }else{ sqlite3BtreeKeySize(pCur, (i64*)&n1); } sqlite3BtreeLeave(pCur->pBtree); sqlite3_snprintf(sizeof(zBuf),zBuf, "%d", (int)(n1+n2)); Tcl_AppendResult(interp, zBuf, 0); return SQLITE_OK; } /* |
︙ | ︙ | |||
574 575 576 577 578 579 580 581 582 583 584 585 586 587 | res = sqlite3PagerIsMemdb(sqlite3BtreePager(pBt)); sqlite3BtreeLeave(pBt); sqlite3_mutex_leave(pBt->db->mutex); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(res)); return SQLITE_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest3_Init(Tcl_Interp *interp){ static struct { char *zName; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | res = sqlite3PagerIsMemdb(sqlite3BtreePager(pBt)); sqlite3BtreeLeave(pBt); sqlite3_mutex_leave(pBt->db->mutex); Tcl_SetObjResult(interp, Tcl_NewBooleanObj(res)); return SQLITE_OK; } /* ** usage: btree_set_cache_size ID NCACHE ** ** Set the size of the cache used by btree $ID. */ static int btree_set_cache_size( void *NotUsed, Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ int argc, /* Number of arguments */ const char **argv /* Text of each argument */ ){ int nCache; Btree *pBt; if( argc!=3 ){ Tcl_AppendResult( interp, "wrong # args: should be \"", argv[0], " BT NCACHE\"", 0); return TCL_ERROR; } pBt = sqlite3TestTextToPtr(argv[1]); if( Tcl_GetInt(interp, argv[2], &nCache) ) return TCL_ERROR; sqlite3_mutex_enter(pBt->db->mutex); sqlite3BtreeEnter(pBt); sqlite3BtreeSetCacheSize(pBt, nCache); sqlite3BtreeLeave(pBt); sqlite3_mutex_leave(pBt->db->mutex); return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest3_Init(Tcl_Interp *interp){ static struct { char *zName; |
︙ | ︙ | |||
595 596 597 598 599 600 601 | { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_eof", (Tcl_CmdProc*)btree_eof }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_varint_test", (Tcl_CmdProc*)btree_varint_test }, { "btree_from_db", (Tcl_CmdProc*)btree_from_db }, | | > | 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | { "btree_close_cursor", (Tcl_CmdProc*)btree_close_cursor }, { "btree_next", (Tcl_CmdProc*)btree_next }, { "btree_eof", (Tcl_CmdProc*)btree_eof }, { "btree_payload_size", (Tcl_CmdProc*)btree_payload_size }, { "btree_first", (Tcl_CmdProc*)btree_first }, { "btree_varint_test", (Tcl_CmdProc*)btree_varint_test }, { "btree_from_db", (Tcl_CmdProc*)btree_from_db }, { "btree_ismemdb", (Tcl_CmdProc*)btree_ismemdb }, { "btree_set_cache_size", (Tcl_CmdProc*)btree_set_cache_size } }; int i; for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){ Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0); } return TCL_OK; } |