/ Check-in [1913a758]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge all changes up through the 3.17.0 release.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | apple-osx
Files: files | file ages | folders
SHA1: 1913a7581024719ea31b7343b2a42a4b60c1c8eb
User & Date: drh 2017-02-13 16:17:04
Context
2017-03-06
20:00
Merge all pending 3.18 enhancements from trunk. check-in: 1650c3f4 user: drh tags: apple-osx
2017-02-13
16:17
Merge all changes up through the 3.17.0 release. check-in: 1913a758 user: drh tags: apple-osx
16:02
Version 3.17.0 check-in: ada05cfa user: drh tags: release, version-3.17.0, branch-3.17
2017-02-08
16:55
Merge the 3.17.0beta changes from trunk. check-in: 92dbd875 user: drh tags: apple-osx
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to ext/fts3/fts3.c.

488
489
490
491
492
493
494

495
496
497
498
499
500
501
....
1675
1676
1677
1678
1679
1680
1681




















1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
....
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715




1716
1717
1718
1719
1720
1721


1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
....
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
....
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
  Fts3Table *p = (Fts3Table *)pVtab;
  int i;

  assert( p->nPendingData==0 );
  assert( p->pSegments==0 );

  /* Free any prepared statements held */

  for(i=0; i<SizeofArray(p->aStmt); i++){
    sqlite3_finalize(p->aStmt[i]);
  }
  sqlite3_free(p->zSegmentsTbl);
  sqlite3_free(p->zReadExprlist);
  sqlite3_free(p->zWriteExprlist);
  sqlite3_free(p->zContentTbl);
................................................................................
  *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
  if( !pCsr ){
    return SQLITE_NOMEM;
  }
  memset(pCsr, 0, sizeof(Fts3Cursor));
  return SQLITE_OK;
}





















/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_finalize(pCsr->pStmt);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_free(pCsr);
  return SQLITE_OK;
................................................................................
** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
** compose and prepare an SQL statement of the form:
**
**    "SELECT <columns> FROM %_content WHERE rowid = ?"
**
** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
** it. If an error occurs, return an SQLite error code.
**
** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK.
*/
static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){
  int rc = SQLITE_OK;
  if( pCsr->pStmt==0 ){
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    char *zSql;




    zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
    if( !zSql ) return SQLITE_NOMEM;
    rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
    sqlite3_free(zSql);
  }
  *ppStmt = pCsr->pStmt;


  return rc;
}

/*
** Position the pCsr->pStmt statement so that it is on the row
** of the %_content table that contains the last match.  Return
** SQLITE_OK on success.  
*/
static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  int rc = SQLITE_OK;
  if( pCsr->isRequireSeek ){
    sqlite3_stmt *pStmt = 0;

    rc = fts3CursorSeekStmt(pCsr, &pStmt);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
      pCsr->isRequireSeek = 0;
      if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
        return SQLITE_OK;
      }else{
        rc = sqlite3_reset(pCsr->pStmt);
................................................................................
  if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  sqlite3_finalize(pCsr->pStmt);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
................................................................................
    if( zSql ){
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }else if( eSearch==FTS3_DOCID_SEARCH ){
    rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt);
    if( rc==SQLITE_OK ){
      rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
    }
  }
  if( rc!=SQLITE_OK ) return rc;

  return fts3NextMethod(pCursor);







>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








|







 







<
<

|




>
>
>
>
|
|
|
|
|
<
>
>











<
<
|







 







|







 







|







488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
....
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
....
1722
1723
1724
1725
1726
1727
1728


1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756


1757
1758
1759
1760
1761
1762
1763
1764
....
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
....
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
  Fts3Table *p = (Fts3Table *)pVtab;
  int i;

  assert( p->nPendingData==0 );
  assert( p->pSegments==0 );

  /* Free any prepared statements held */
  sqlite3_finalize(p->pSeekStmt);
  for(i=0; i<SizeofArray(p->aStmt); i++){
    sqlite3_finalize(p->aStmt[i]);
  }
  sqlite3_free(p->zSegmentsTbl);
  sqlite3_free(p->zReadExprlist);
  sqlite3_free(p->zWriteExprlist);
  sqlite3_free(p->zContentTbl);
................................................................................
  *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
  if( !pCsr ){
    return SQLITE_NOMEM;
  }
  memset(pCsr, 0, sizeof(Fts3Cursor));
  return SQLITE_OK;
}

/*
** Finalize the statement handle at pCsr->pStmt.
**
** Or, if that statement handle is one created by fts3CursorSeekStmt(),
** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
** pointer there instead of finalizing it.
*/
static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
  if( pCsr->bSeekStmt ){
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    if( p->pSeekStmt==0 ){
      p->pSeekStmt = pCsr->pStmt;
      sqlite3_reset(pCsr->pStmt);
      pCsr->pStmt = 0;
    }
    pCsr->bSeekStmt = 0;
  }
  sqlite3_finalize(pCsr->pStmt);
}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
  Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  fts3CursorFinalizeStmt(pCsr);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  sqlite3Fts3FreeDeferredTokens(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  sqlite3_free(pCsr);
  return SQLITE_OK;
................................................................................
** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
** compose and prepare an SQL statement of the form:
**
**    "SELECT <columns> FROM %_content WHERE rowid = ?"
**
** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
** it. If an error occurs, return an SQLite error code.


*/
static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
  int rc = SQLITE_OK;
  if( pCsr->pStmt==0 ){
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    char *zSql;
    if( p->pSeekStmt ){
      pCsr->pStmt = p->pSeekStmt;
      p->pSeekStmt = 0;
    }else{
      zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
      if( !zSql ) return SQLITE_NOMEM;
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }

    if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
  }
  return rc;
}

/*
** Position the pCsr->pStmt statement so that it is on the row
** of the %_content table that contains the last match.  Return
** SQLITE_OK on success.  
*/
static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
  int rc = SQLITE_OK;
  if( pCsr->isRequireSeek ){


    rc = fts3CursorSeekStmt(pCsr);
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
      pCsr->isRequireSeek = 0;
      if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
        return SQLITE_OK;
      }else{
        rc = sqlite3_reset(pCsr->pStmt);
................................................................................
  if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
  if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
  assert( iIdx==nVal );

  /* In case the cursor has been used before, clear it now. */
  fts3CursorFinalizeStmt(pCsr);
  sqlite3_free(pCsr->aDoclist);
  sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
  sqlite3Fts3ExprFree(pCsr->pExpr);
  memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));

  /* Set the lower and upper bounds on docids to return */
  pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
................................................................................
    if( zSql ){
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }else if( eSearch==FTS3_DOCID_SEARCH ){
    rc = fts3CursorSeekStmt(pCsr);
    if( rc==SQLITE_OK ){
      rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
    }
  }
  if( rc!=SQLITE_OK ) return rc;

  return fts3NextMethod(pCursor);

Changes to ext/fts3/fts3Int.h.

226
227
228
229
230
231
232

233
234
235
236
237
238
239
...
295
296
297
298
299
300
301

302
303
304
305
306
307
308
  int nAutoincrmerge;             /* Value configured by 'automerge' */
  u32 nLeafAdd;                   /* Number of leaf blocks added this trans */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[40];


  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bFts4;                       /* True for FTS4, false for FTS3 */
  u8 bHasStat;                    /* True if %_stat table exists (2==unknown) */
................................................................................
** the xOpen method. Cursors are destroyed using the xClose method.
*/
struct Fts3Cursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  i16 eSearch;                    /* Search strategy (see below) */
  u8 isEof;                       /* True if at End Of Results */
  u8 isRequireSeek;               /* True if must seek pStmt to %_content row */

  sqlite3_stmt *pStmt;            /* Prepared statement in use by the cursor */
  Fts3Expr *pExpr;                /* Parsed MATCH query string */
  int iLangid;                    /* Language being queried for */
  int nPhrase;                    /* Number of matchable phrases in query */
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */







>







 







>







226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
...
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
  int nAutoincrmerge;             /* Value configured by 'automerge' */
  u32 nLeafAdd;                   /* Number of leaf blocks added this trans */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[40];
  sqlite3_stmt *pSeekStmt;        /* Cache for fts3CursorSeekStmt() */

  char *zReadExprlist;
  char *zWriteExprlist;

  int nNodeSize;                  /* Soft limit for node size */
  u8 bFts4;                       /* True for FTS4, false for FTS3 */
  u8 bHasStat;                    /* True if %_stat table exists (2==unknown) */
................................................................................
** the xOpen method. Cursors are destroyed using the xClose method.
*/
struct Fts3Cursor {
  sqlite3_vtab_cursor base;       /* Base class used by SQLite core */
  i16 eSearch;                    /* Search strategy (see below) */
  u8 isEof;                       /* True if at End Of Results */
  u8 isRequireSeek;               /* True if must seek pStmt to %_content row */
  u8 bSeekStmt;                   /* True if pStmt is a seek */
  sqlite3_stmt *pStmt;            /* Prepared statement in use by the cursor */
  Fts3Expr *pExpr;                /* Parsed MATCH query string */
  int iLangid;                    /* Language being queried for */
  int nPhrase;                    /* Number of matchable phrases in query */
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */

Changes to ext/rtree/rtree.c.

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
...
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
...
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
...
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#endif
#ifndef MIN
# define MIN(x,y) ((x) > (y) ? (y) : (x))
#endif

/* What version of GCC is being used.  0 means GCC is not being used */
#ifndef GCC_VERSION
#ifdef __GNUC__
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif
#endif

/* What version of CLANG is being used.  0 means CLANG is not being used */
#ifndef CLANG_VERSION
#if defined(__clang__) && !defined(_WIN32)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0
#endif
#endif

................................................................................
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/
#ifndef SQLITE_BYTEORDER
#if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    1234
#elif (defined(sparc)    || defined(__ppc__))  \
    && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    4321
#else
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
#endif
#endif


/* What version of MSVC is being used.  0 means MSVC is not being used */
#ifndef MSVC_VERSION
#if defined(_MSC_VER)
# define MSVC_VERSION _MSC_VER
#else
# define MSVC_VERSION 0
#endif
#endif

/*
................................................................................
}
static void readCoord(u8 *p, RtreeCoord *pCoord){
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  pCoord->u = _byteswap_ulong(*(u32*)p);
#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  pCoord->u = __builtin_bswap32(*(u32*)p);
#elif SQLITE_BYTEORDER==1234
  pCoord->u = ((pCoord->u>>24)&0xff)|((pCoord->u>>8)&0xff00)|
              ((pCoord->u&0xff)<<24)|((pCoord->u&0xff00)<<8);
#elif SQLITE_BYTEORDER==4321
  pCoord->u = *(u32*)p;
#else
  pCoord->u = (
    (((u32)p[0]) << 24) + 
    (((u32)p[1]) << 16) + 
    (((u32)p[2]) <<  8) + 
................................................................................
}

/*
** Functions to serialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The value returned is the number of bytes written
** to the argument buffer (always 2, 4 and 8 respectively).
*/
static int writeInt16(u8 *p, int i){
  p[0] = (i>> 8)&0xFF;
  p[1] = (i>> 0)&0xFF;
  return 2;
}
static int writeCoord(u8 *p, RtreeCoord *pCoord){
  u32 i;
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
  assert( sizeof(RtreeCoord)==4 );
  assert( sizeof(u32)==4 );
#if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)







|








|







 







|
|
|
|

|
<









|







 







<
<
<







 







|


<







367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
...
401
402
403
404
405
406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
436
437
438
439
440
441
442



443
444
445
446
447
448
449
...
479
480
481
482
483
484
485
486
487
488

489
490
491
492
493
494
495
#endif
#ifndef MIN
# define MIN(x,y) ((x) > (y) ? (y) : (x))
#endif

/* What version of GCC is being used.  0 means GCC is not being used */
#ifndef GCC_VERSION
#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif
#endif

/* What version of CLANG is being used.  0 means CLANG is not being used */
#ifndef CLANG_VERSION
#if defined(__clang__) && !defined(_WIN32) && !defined(SQLITE_DISABLE_INTRINSIC)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0
#endif
#endif

................................................................................
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/
#ifndef SQLITE_BYTEORDER
#if defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
    defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
    defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
    defined(__arm__)
# define SQLITE_BYTEORDER    1234
#elif defined(sparc)    || defined(__ppc__)

# define SQLITE_BYTEORDER    4321
#else
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
#endif
#endif


/* What version of MSVC is being used.  0 means MSVC is not being used */
#ifndef MSVC_VERSION
#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
# define MSVC_VERSION _MSC_VER
#else
# define MSVC_VERSION 0
#endif
#endif

/*
................................................................................
}
static void readCoord(u8 *p, RtreeCoord *pCoord){
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
#if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  pCoord->u = _byteswap_ulong(*(u32*)p);
#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  pCoord->u = __builtin_bswap32(*(u32*)p);



#elif SQLITE_BYTEORDER==4321
  pCoord->u = *(u32*)p;
#else
  pCoord->u = (
    (((u32)p[0]) << 24) + 
    (((u32)p[1]) << 16) + 
    (((u32)p[2]) <<  8) + 
................................................................................
}

/*
** Functions to serialize a 16 bit integer, 32 bit real number and
** 64 bit integer. The value returned is the number of bytes written
** to the argument buffer (always 2, 4 and 8 respectively).
*/
static void writeInt16(u8 *p, int i){
  p[0] = (i>> 8)&0xFF;
  p[1] = (i>> 0)&0xFF;

}
static int writeCoord(u8 *p, RtreeCoord *pCoord){
  u32 i;
  assert( ((((char*)p) - (char*)0)&3)==0 );  /* p is always 4-byte aligned */
  assert( sizeof(RtreeCoord)==4 );
  assert( sizeof(u32)==4 );
#if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)

Changes to src/btreeInt.h.

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
/*
** get2byteAligned(), unlike get2byte(), requires that its argument point to a
** two-byte aligned address.  get2bytea() is only used for accessing the
** cell addresses in a btree header.
*/
#if SQLITE_BYTEORDER==4321
# define get2byteAligned(x)  (*(u16*)(x))
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && GCC_VERSION>=4008000
# define get2byteAligned(x)  __builtin_bswap16(*(u16*)(x))
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
# define get2byteAligned(x)  _byteswap_ushort(*(u16*)(x))
#else
# define get2byteAligned(x)  ((x)[0]<<8 | (x)[1])
#endif







<
|

|
<




688
689
690
691
692
693
694

695
696
697

698
699
700
701
/*
** get2byteAligned(), unlike get2byte(), requires that its argument point to a
** two-byte aligned address.  get2bytea() is only used for accessing the
** cell addresses in a btree header.
*/
#if SQLITE_BYTEORDER==4321
# define get2byteAligned(x)  (*(u16*)(x))

#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
# define get2byteAligned(x)  __builtin_bswap16(*(u16*)(x))
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300

# define get2byteAligned(x)  _byteswap_ushort(*(u16*)(x))
#else
# define get2byteAligned(x)  ((x)[0]<<8 | (x)[1])
#endif

Changes to src/expr.c.

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
  assert( pExpr->pLeft );
  aff = sqlite3ExprAffinity(pExpr->pLeft);
  if( pExpr->pRight ){
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
  }else if( NEVER(aff==0) ){
    aff = SQLITE_AFF_BLOB;
  }
  return aff;
}

/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.







|







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
          pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
  assert( pExpr->pLeft );
  aff = sqlite3ExprAffinity(pExpr->pLeft);
  if( pExpr->pRight ){
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
  }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
    aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
  }else if( aff==0 ){
    aff = SQLITE_AFF_BLOB;
  }
  return aff;
}

/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.

Changes to src/malloc.c.

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
*/
static void mallocWithAlarm(int n, void **pp){
  void *p;
  int nFull;
  assert( sqlite3_mutex_held(mem0.mutex) );
  assert( n>0 );

  /* In Firefox (circa 2017-02-08), xRoundup is remapped to an internal
  ** implementation of malloc_good_size(), which must be called in debug
  ** mode and specifically when the DMD "Dark Matter Detector" is enabled
  ** or else a crash results.  Hence, do not attempt to optimization out
  ** the following xRoundup() call. */
  nFull = sqlite3GlobalConfig.m.xRoundup(n);

  sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;







|


|
|







219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
*/
static void mallocWithAlarm(int n, void **pp){
  void *p;
  int nFull;
  assert( sqlite3_mutex_held(mem0.mutex) );
  assert( n>0 );

  /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
  ** implementation of malloc_good_size(), which must be called in debug
  ** mode and specifically when the DMD "Dark Matter Detector" is enabled
  ** or else a crash results.  Hence, do not attempt to optimize out the
  ** following xRoundup() call. */
  nFull = sqlite3GlobalConfig.m.xRoundup(n);

  sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;

Changes to src/mutex_w32.c.

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
** compiled without mutexes (SQLITE_THREADSAFE=0).
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__)
  __sync_synchronize();
#elif !defined(SQLITE_DISABLE_INTRINSIC) && \
      defined(_MSC_VER) && _MSC_VER>=1300
  _ReadWriteBarrier();
#elif defined(MemoryBarrier)
  MemoryBarrier();
#endif
}

/*







|
<







83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
** compiled without mutexes (SQLITE_THREADSAFE=0).
*/
void sqlite3MemoryBarrier(void){
#if defined(SQLITE_MEMORY_BARRIER)
  SQLITE_MEMORY_BARRIER;
#elif defined(__GNUC__)
  __sync_synchronize();
#elif MSVC_VERSION>=1300

  _ReadWriteBarrier();
#elif defined(MemoryBarrier)
  MemoryBarrier();
#endif
}

/*

Changes to src/sqliteInt.h.

99
100
101
102
103
104
105
106
107





108
109
110
111
112
113
114
115
116
117
118





119
120
121
122
123
124
125
...
243
244
245
246
247
248
249

250
251
252
253
254
255
256
...
783
784
785
786
787
788
789
790
791
792

793
794
795
796
797

798

799
800

801
802
803
804
805
806
807
808
809




810
811
812
813
814
815
816
817
818
819
820
821
822
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/* What version of GCC is being used.  0 means GCC is not being used */
#ifdef __GNUC__





# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif

/* What version of CLANG is being used.  0 means CLANG is not being used */
#if defined(__clang__) && !defined(_WIN32)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0





#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

................................................................................
*/
#if !defined(SQLITE_DISABLE_INTRINSIC)
#  if defined(_MSC_VER) && _MSC_VER>=1400
#    if !defined(_WIN32_WCE)
#      include <intrin.h>
#      pragma intrinsic(_byteswap_ushort)
#      pragma intrinsic(_byteswap_ulong)

#      pragma intrinsic(_ReadWriteBarrier)
#    else
#      include <cmnintrin.h>
#    endif
#  endif
#endif

................................................................................

/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/

#if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    1234

# define SQLITE_BIGENDIAN    0

# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE

#endif
#if (defined(sparc)    || defined(__ppc__))  \
    && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    4321
# define SQLITE_BIGENDIAN    1
# define SQLITE_LITTLEENDIAN 0
# define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
#endif
#if !defined(SQLITE_BYTEORDER)




# ifdef SQLITE_AMALGAMATION
  const int sqlite3one = 1;
# else
  extern const int sqlite3one;
# endif
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif

/*
** Constants for the largest and smallest possible 64-bit signed integers.







|
|
>
>
>
>
>




<
<
|




>
>
>
>
>







 







>







 







|


>
|


|
|
>
|
>
|
<
>

<
<
|



<
|
>
>
>
>





<







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116


117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
...
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
...
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812
813


814
815
816
817

818
819
820
821
822
823
824
825
826
827

828
829
830
831
832
833
834
# define _LARGE_FILE       1
# ifndef _FILE_OFFSET_BITS
#   define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif

/* The GCC_VERSION, CLANG_VERSION, and MSVC_VERSION macros are used to
** conditionally include optimizations for each of these compilers.  A
** value of 0 means that compiler is not being used.  The
** SQLITE_DISABLE_INTRINSIC macro means do not use any compiler-specific
** optimizations, and hence set all compiler macros to 0
*/
#if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
# define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
#else
# define GCC_VERSION 0
#endif


#if defined(__clang__) && !defined(_WIN32) && !defined(SQLITE_DISABLE_INTRINSIC)
# define CLANG_VERSION \
            (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__)
#else
# define CLANG_VERSION 0
#endif
#if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
# define MSVC_VERSION _MSC_VER
#else
# define MSVC_VERSION 0
#endif

/* Needed for various definitions... */
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
# define _GNU_SOURCE
#endif

................................................................................
*/
#if !defined(SQLITE_DISABLE_INTRINSIC)
#  if defined(_MSC_VER) && _MSC_VER>=1400
#    if !defined(_WIN32_WCE)
#      include <intrin.h>
#      pragma intrinsic(_byteswap_ushort)
#      pragma intrinsic(_byteswap_ulong)
#      pragma intrinsic(_byteswap_uint64)
#      pragma intrinsic(_ReadWriteBarrier)
#    else
#      include <cmnintrin.h>
#    endif
#  endif
#endif

................................................................................

/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_BYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef SQLITE_BYTEORDER
# if defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)
#   define SQLITE_BYTEORDER    1234
# elif defined(sparc)    || defined(__ppc__)
#   define SQLITE_BYTEORDER    4321
# else
#   define SQLITE_BYTEORDER 0

# endif
#endif


#if SQLITE_BYTEORDER==4321
# define SQLITE_BIGENDIAN    1
# define SQLITE_LITTLEENDIAN 0
# define SQLITE_UTF16NATIVE  SQLITE_UTF16BE

#elif SQLITE_BYTEORDER==1234
# define SQLITE_BIGENDIAN    0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
#else
# ifdef SQLITE_AMALGAMATION
  const int sqlite3one = 1;
# else
  extern const int sqlite3one;
# endif

# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif

/*
** Constants for the largest and smallest possible 64-bit signed integers.

Changes to src/util.c.

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
....
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
....
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
....
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
** Read or write a four-byte big-endian integer value.
*/
u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x;
  memcpy(&x,p,4);
  return _byteswap_ulong(x);
#else
  testcase( p[0]&0x80 );
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && !defined(SQLITE_DISABLE_INTRINSIC) \
    && defined(_MSC_VER) && _MSC_VER>=1300
  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
................................................................................
/*
** Attempt to add, substract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success.  Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
int sqlite3AddInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_add_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  testcase( iA==0 ); testcase( iA==1 );
  testcase( iB==-1 ); testcase( iB==0 );
  if( iB>=0 ){
    testcase( iA>0 && LARGEST_INT64 - iA == iB );
................................................................................
    if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
  }
  *pA += iB;
  return 0; 
#endif
}
int sqlite3SubInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_sub_overflow(*pA, iB, pA);
#else
  testcase( iB==SMALLEST_INT64+1 );
  if( iB==SMALLEST_INT64 ){
    testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
    if( (*pA)>=0 ) return 1;
    *pA -= iB;
................................................................................
    return 0;
  }else{
    return sqlite3AddInt64(pA, -iB);
  }
#endif
}
int sqlite3MulInt64(i64 *pA, i64 iB){
#if !defined(SQLITE_DISABLE_INTRINSIC) \
    && (GCC_VERSION>=5004000 || CLANG_VERSION>=4000000)
  return __builtin_mul_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  if( iB>0 ){
    if( iA>LARGEST_INT64/iB ) return 1;
    if( iA<SMALLEST_INT64/iB ) return 1;
  }else if( iB<0 ){







<
|



|
<











<
|


|
<







 







<
|







 







<
|







 







<
|







1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146
1147

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

1159
1160
1161
1162

1163
1164
1165
1166
1167
1168
1169
....
1271
1272
1273
1274
1275
1276
1277

1278
1279
1280
1281
1282
1283
1284
1285
....
1291
1292
1293
1294
1295
1296
1297

1298
1299
1300
1301
1302
1303
1304
1305
....
1306
1307
1308
1309
1310
1311
1312

1313
1314
1315
1316
1317
1318
1319
1320
** Read or write a four-byte big-endian integer value.
*/
u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;

#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300

  u32 x;
  memcpy(&x,p,4);
  return _byteswap_ulong(x);
#else
  testcase( p[0]&0x80 );
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);

#elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000)
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300

  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
................................................................................
/*
** Attempt to add, substract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success.  Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
int sqlite3AddInt64(i64 *pA, i64 iB){

#if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000
  return __builtin_add_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  testcase( iA==0 ); testcase( iA==1 );
  testcase( iB==-1 ); testcase( iB==0 );
  if( iB>=0 ){
    testcase( iA>0 && LARGEST_INT64 - iA == iB );
................................................................................
    if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
  }
  *pA += iB;
  return 0; 
#endif
}
int sqlite3SubInt64(i64 *pA, i64 iB){

#if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000
  return __builtin_sub_overflow(*pA, iB, pA);
#else
  testcase( iB==SMALLEST_INT64+1 );
  if( iB==SMALLEST_INT64 ){
    testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
    if( (*pA)>=0 ) return 1;
    *pA -= iB;
................................................................................
    return 0;
  }else{
    return sqlite3AddInt64(pA, -iB);
  }
#endif
}
int sqlite3MulInt64(i64 *pA, i64 iB){

#if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000
  return __builtin_mul_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  if( iB>0 ){
    if( iA>LARGEST_INT64/iB ) return 1;
    if( iA<SMALLEST_INT64/iB ) return 1;
  }else if( iB<0 ){

Changes to src/where.c.

304
305
306
307
308
309
310

311
312
313
314
315
316
317
  pScan->idxaff = 0;
  pScan->zCollName = 0;
  if( pIdx ){
    int j = iColumn;
    iColumn = pIdx->aiColumn[j];
    if( iColumn==XN_EXPR ){
      pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;

    }else if( iColumn==pIdx->pTable->iPKey ){
      iColumn = XN_ROWID;
    }else if( iColumn>=0 ){
      pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
      pScan->zCollName = pIdx->azColl[j];
    }
  }else if( iColumn==XN_EXPR ){







>







304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
  pScan->idxaff = 0;
  pScan->zCollName = 0;
  if( pIdx ){
    int j = iColumn;
    iColumn = pIdx->aiColumn[j];
    if( iColumn==XN_EXPR ){
      pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
      pScan->zCollName = pIdx->azColl[j];
    }else if( iColumn==pIdx->pTable->iPKey ){
      iColumn = XN_ROWID;
    }else if( iColumn>=0 ){
      pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
      pScan->zCollName = pIdx->azColl[j];
    }
  }else if( iColumn==XN_EXPR ){

Changes to test/indexexpr1.test.

365
366
367
368
369
370
371
372










373
  CREATE INDEX t10_abcd ON t10(a+b,c+d);
}
do_execsql_test indexexpr1-1200.4 {
  SELECT a+b, c+d FROM t10 ORDER BY a+b, c+d;
} {
  0 0 0 2 0 4 2 0 2 2 4 0
}











finish_test








>
>
>
>
>
>
>
>
>
>

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  CREATE INDEX t10_abcd ON t10(a+b,c+d);
}
do_execsql_test indexexpr1-1200.4 {
  SELECT a+b, c+d FROM t10 ORDER BY a+b, c+d;
} {
  0 0 0 2 0 4 2 0 2 2 4 0
}

# Ticket https://www.sqlite.org/src/tktview/eb703ba7b50c1a
# Incorrect result using an index on an expression with a collating function
#
do_execsql_test indexexpr1-1300.1 {
  CREATE TABLE t1300(a INTEGER PRIMARY KEY, b);
  INSERT INTO t1300 VALUES(1,'coffee'),(2,'COFFEE'),(3,'stress'),(4,'STRESS');
  CREATE INDEX t1300bexpr ON t1300( substr(b,4) );
  SELECT a FROM t1300 WHERE substr(b,4)='ess' COLLATE nocase ORDER BY +a;
} {3 4}

finish_test