SQLite

Check-in [112a34b8dc]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Progress toward decending indices. (CVS 2839)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 112a34b8dcceb39540cb0cd629e264a867400bfb
User & Date: drh 2005-12-21 03:16:43.000
Context
2005-12-21
14:43
Basic functionality for descending indices is in place. Lots more testing needed. (CVS 2840) (check-in: 7064433e5b user: drh tags: trunk)
03:16
Progress toward decending indices. (CVS 2839) (check-in: 112a34b8dc user: drh tags: trunk)
2005-12-20
14:38
Include sqlite3_release_memory() code when SQLITE_MEMDEBUG is not defined. (CVS 2838) (check-in: 77a37ceca7 user: danielk1977 tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.358 2005/12/16 01:06:17 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.359 2005/12/21 03:16:43 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
  int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
  int descSeen = 0;    /* Changes to true if a DESC is seen */
  sqlite3 *db = pParse->db;
  Db *pDb;             /* The specific table containing the indexed database */
  int iDb;             /* Index of the database that is being written */
  Token *pName = 0;    /* Unqualified name of the index to create */
  struct ExprList_item *pListItem; /* For looping over pList */
  CollSeq *pCollSeq;               /* Collating sequence for one index column */

  if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto exit_create_index;

  /*
  ** Find the table that is to be indexed.  Return early if not found.
  */
  if( pTblName!=0 ){







<







2109
2110
2111
2112
2113
2114
2115

2116
2117
2118
2119
2120
2121
2122
  int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
  int descSeen = 0;    /* Changes to true if a DESC is seen */
  sqlite3 *db = pParse->db;
  Db *pDb;             /* The specific table containing the indexed database */
  int iDb;             /* Index of the database that is being written */
  Token *pName = 0;    /* Unqualified name of the index to create */
  struct ExprList_item *pListItem; /* For looping over pList */


  if( pParse->nErr || sqlite3Tsd()->mallocFailed ) goto exit_create_index;

  /*
  ** Find the table that is to be indexed.  Return early if not found.
  */
  if( pTblName!=0 ){
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error
  ** if any column is not found.
  */
  for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
    const char *zColName = pListItem->zName;
    Column *pTabCol;
    int sortOrder;
    for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
      if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
    }
    if( j>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, zColName);
      goto exit_create_index;







|







2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
  /* Scan the names of the columns of the table to be indexed and
  ** load the column indices into the Index structure.  Report an error
  ** if any column is not found.
  */
  for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
    const char *zColName = pListItem->zName;
    Column *pTabCol;
    int requestedSortOrder;
    for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
      if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
    }
    if( j>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "table %s has no column named %s",
        pTab->zName, zColName);
      goto exit_create_index;
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
    }
    assert( pIndex->keyInfo.aColl[i] );
    if( !db->init.busy && 
        sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i]) 
    ){
      goto exit_create_index;
    }
    sortOrder = pListItem->sortOrder;
    pDb->descIndex |= sortOrder;
    sortOrder &= sortOrderMask;
    pIndex->keyInfo.aSortOrder[i] = sortOrder;
    descSeen |= sortOrder;
  }
  pIndex->keyInfo.nField = pList->nExpr;
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or







|
|
|
|
|







2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
    }
    assert( pIndex->keyInfo.aColl[i] );
    if( !db->init.busy && 
        sqlite3CheckCollSeq(pParse, pIndex->keyInfo.aColl[i]) 
    ){
      goto exit_create_index;
    }
    requestedSortOrder = pListItem->sortOrder;
    pDb->descIndex |= requestedSortOrder;
    requestedSortOrder &= sortOrderMask;
    pIndex->keyInfo.aSortOrder[i] = requestedSortOrder;
    descSeen |= requestedSortOrder;
  }
  pIndex->keyInfo.nField = pList->nExpr;
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
Changes to src/where.c.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.187 2005/12/07 06:27:44 danielk1977 Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)







|







12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
** This module contains C code that generates VDBE code used to process
** the WHERE clause of SQL statements.  This module is reponsible for
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
**
** $Id: where.c,v 1.188 2005/12/21 03:16:43 drh Exp $
*/
#include "sqliteInt.h"

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  (sizeof(Bitmask)*8)
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

803
804
805
806
807
808
809
  Table *pTab,            /* The table to be sorted */
  int base,               /* Cursor number for pTab */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int nEqCol,             /* Number of index columns with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;                       /* Loop counters */
  int sortOrder = SQLITE_SO_ASC;  /* Which direction we are sorting */
  int nTerm;                      /* Number of ORDER BY terms */
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );
  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  */
  for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
    Expr *pExpr;       /* The expression of the ORDER BY pTerm */
    CollSeq *pColl;    /* The collating sequence of pExpr */


    pExpr = pTerm->pExpr;
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      return 0;
    }







|














>







781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
  Table *pTab,            /* The table to be sorted */
  int base,               /* Cursor number for pTab */
  ExprList *pOrderBy,     /* The ORDER BY clause */
  int nEqCol,             /* Number of index columns with == constraints */
  int *pbRev              /* Set to 1 if ORDER BY is DESC */
){
  int i, j;                       /* Loop counters */
  int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
  int nTerm;                      /* Number of ORDER BY terms */
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );
  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  */
  for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
    Expr *pExpr;       /* The expression of the ORDER BY pTerm */
    CollSeq *pColl;    /* The collating sequence of pExpr */
    int termSortOrder; /* Sort order for this term */

    pExpr = pTerm->pExpr;
    if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
      /* Can not use an index sort on anything that is not a column in the
      ** left-most table of the FROM clause */
      return 0;
    }
819
820
821
822
823
824
825




826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
      }else{
        /* If an index column fails to match and is not constrained by ==
        ** then the index cannot satisfy the ORDER BY constraint.
        */
        return 0;
      }
    }




    if( i>nEqCol ){
      if( pTerm->sortOrder!=sortOrder ){
        /* Indices can only be used if all ORDER BY terms past the
        ** equality constraints are all either DESC or ASC. */
        return 0;
      }
    }else{
      sortOrder = pTerm->sortOrder;
    }
    j++;
    pTerm++;
  }

  /* The index can be used for sorting if all terms of the ORDER BY clause
  ** are covered.
  */
  if( j>=nTerm ){
    *pbRev = sortOrder==SQLITE_SO_DESC;
    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied







>
>
>
>

|





|









|







820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
      }else{
        /* If an index column fails to match and is not constrained by ==
        ** then the index cannot satisfy the ORDER BY constraint.
        */
        return 0;
      }
    }
    assert( pIdx->keyInfo.aSortOrder!=0 );
    assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
    assert( pIdx->keyInfo.aSortOrder[i]==0 || pIdx->keyInfo.aSortOrder[i]==1 );
    termSortOrder = pIdx->keyInfo.aSortOrder[i] ^ pTerm->sortOrder;
    if( i>nEqCol ){
      if( termSortOrder!=sortOrder ){
        /* Indices can only be used if all ORDER BY terms past the
        ** equality constraints are all either DESC or ASC. */
        return 0;
      }
    }else{
      sortOrder = termSortOrder;
    }
    j++;
    pTerm++;
  }

  /* The index can be used for sorting if all terms of the ORDER BY clause
  ** are covered.
  */
  if( j>=nTerm ){
    *pbRev = sortOrder!=0;
    return 1;
  }
  return 0;
}

/*
** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1706
1707
1708
1709
1710
1711
1712
1713


1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729














1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
      **
      **         This case is also used when there are no WHERE clause
      **         constraints but an index is selected anyway, in order
      **         to force the output order to conform to an ORDER BY.
      */
      int start;
      int nEq = pLevel->nEq;
      int leFlag=0, geFlag=0;


      int testOp;
      int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
      int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;

      /* Generate code to evaluate all constraint terms using == or IN
      ** and level the values of those terms on the stack.
      */
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEq; j++){
        sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
      }















      /* Generate the termination key.  This is the key value that
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( topLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, WO_LT|WO_LE, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        leFlag = pX->op==TK_LE;
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        leFlag = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEq + topLimit;
        pLevel->iMem = pParse->nMem++;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          int op = leFlag ? OP_MoveLe : OP_MoveLt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }else{
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( bRev ){
        sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( btmLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, WO_GT|WO_GE, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        geFlag = pX->op==TK_GE;
        disableTerm(pLevel, pTerm);
      }else{
        geFlag = 1;
      }
      if( nEq>0 || btmLimit ){
        int nCol = nEq + btmLimit;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          pLevel->iMem = pParse->nMem++;
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          int op = geFlag ? OP_MoveGe : OP_MoveGt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }
      }else if( bRev ){
        testOp = OP_Noop;
      }else{
        sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqlite3VdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
        if( (leFlag && !bRev) || (!geFlag && bRev) ){
          sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
        }
      }
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont);
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);







|
>
>
















>
>
>
>
>
>
>
>
>
>
>
>
>
>











|




|




|






|




















|




|


|









|
















|







1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
      **
      **         This case is also used when there are no WHERE clause
      **         constraints but an index is selected anyway, in order
      **         to force the output order to conform to an ORDER BY.
      */
      int start;
      int nEq = pLevel->nEq;
      int topEq=0;        /* True if top limit uses ==. False is strictly < */
      int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
      int topOp, btmOp;   /* Operators for the top and bottom search bounds */
      int testOp;
      int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
      int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;

      /* Generate code to evaluate all constraint terms using == or IN
      ** and level the values of those terms on the stack.
      */
      codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);

      /* Duplicate the equality term values because they will all be
      ** used twice: once to make the termination key and once to make the
      ** start key.
      */
      for(j=0; j<nEq; j++){
        sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
      }

      /* Figure out what comparison operators to use for top and bottom 
      ** search bounds. For an ascending index, the bottom bound is a > or >=
      ** operator and the top bound is a < or <= operator.  For a descending
      ** index the operators are reversed.
      */
      if( pIdx->keyInfo.aSortOrder[nEq]==SQLITE_SO_ASC ){
        topOp = WO_LT|WO_LE;
        btmOp = WO_GT|WO_GE;
      }else{
        topOp = WO_GT|WO_GE;
        btmOp = WO_LT|WO_LE;
        SWAP(int, topLimit, btmLimit);
      }

      /* Generate the termination key.  This is the key value that
      ** will end the search.  There is no termination key if there
      ** are no equality terms and no "X<..." term.
      **
      ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
      ** key computed here really ends up being the start key.
      */
      if( topLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        topEq = pTerm->operator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
        testOp = OP_IdxGE;
      }else{
        testOp = nEq>0 ? OP_IdxGE : OP_Noop;
        topEq = 1;
      }
      if( testOp!=OP_Noop ){
        int nCol = nEq + topLimit;
        pLevel->iMem = pParse->nMem++;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          int op = topEq ? OP_MoveLe : OP_MoveLt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }else{
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
        }
      }else if( bRev ){
        sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
      }

      /* Generate the start key.  This is the key that defines the lower
      ** bound on the search.  There is no start key if there are no
      ** equality terms and if there is no "X>..." term.  In
      ** that case, generate a "Rewind" instruction in place of the
      ** start key search.
      **
      ** 2002-Dec-04: In the case of a reverse-order search, the so-called
      ** "start" key really ends up being used as the termination key.
      */
      if( btmLimit ){
        Expr *pX;
        int k = pIdx->aiColumn[j];
        pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
        assert( pTerm!=0 );
        pX = pTerm->pExpr;
        assert( (pTerm->flags & TERM_CODED)==0 );
        sqlite3ExprCode(pParse, pX->pRight);
        btmEq = pTerm->operator & (WO_LE|WO_GE);
        disableTerm(pLevel, pTerm);
      }else{
        btmEq = 1;
      }
      if( nEq>0 || btmLimit ){
        int nCol = nEq + btmLimit;
        buildIndexProbe(v, nCol, brk, pIdx);
        if( bRev ){
          pLevel->iMem = pParse->nMem++;
          sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
          testOp = OP_IdxLT;
        }else{
          int op = btmEq ? OP_MoveGe : OP_MoveGt;
          sqlite3VdbeAddOp(v, op, iIdxCur, brk);
        }
      }else if( bRev ){
        testOp = OP_Noop;
      }else{
        sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
      }

      /* Generate the the top of the loop.  If there is a termination
      ** key we have to test for that key and abort at the top of the
      ** loop.
      */
      start = sqlite3VdbeCurrentAddr(v);
      if( testOp!=OP_Noop ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
        sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
        if( (topEq && !bRev) || (!btmEq && bRev) ){
          sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
        }
      }
      sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
      sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont);
      if( !omitTable ){
        sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);