Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Improvements to the API documentation found in comments in the sqlite.h.in source file. (CVS 4755) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
0b8b5c2e833c90aec1c14d16c12334e0 |
User & Date: | drh 2008-01-30 16:16:14.000 |
Context
2008-01-31
| ||
12:26 | Additional API documentation updates in sqlite.h.in. (CVS 4756) (check-in: 9b6ab9faad user: drh tags: trunk) | |
2008-01-30
| ||
16:16 | Improvements to the API documentation found in comments in the sqlite.h.in source file. (CVS 4755) (check-in: 0b8b5c2e83 user: drh tags: trunk) | |
16:14 | Disable the likely() and unlikely() macros as they do not work some older versions of GCC. (CVS 4754) (check-in: e01f9ed945 user: drh tags: trunk) | |
Changes
Changes to src/sqlite.h.in.
︙ | ︙ | |||
26 27 28 29 30 31 32 | ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** | | | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | ** on how SQLite interfaces are suppose to operate. ** ** The name of this file under configuration management is "sqlite.h.in". ** The makefile makes some minor changes to this file (such as inserting ** the version number) and changes its name to "sqlite3.h" as ** part of the build process. ** ** @(#) $Id: sqlite.h.in,v 1.279 2008/01/30 16:16:14 drh Exp $ */ #ifndef _SQLITE3_H_ #define _SQLITE3_H_ #include <stdarg.h> /* Needed for the definition of va_list */ /* ** Make sure we can call this stuff from C++. |
︙ | ︙ | |||
61 62 63 64 65 66 67 | #ifdef SQLITE_VERSION_NUMBER # undef SQLITE_VERSION_NUMBER #endif /* ** CAPI3REF: Compile-Time Library Version Numbers {F10010} ** | < | | < < < > > > > | | | > | > > > > > > > > > | | < < < < < > < | | < | < | | < < > > > > > > > > > > > > < | > | | | | > > > > > | | < < < < < | > | > > > > > | < < < > > > > > > > > | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | #ifdef SQLITE_VERSION_NUMBER # undef SQLITE_VERSION_NUMBER #endif /* ** CAPI3REF: Compile-Time Library Version Numbers {F10010} ** ** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in ** the sqlite3.h file specify the version of SQLite with which ** that header file is associated. ** ** The "version" of SQLite is a strong of the form "X.Y.Z". ** The phrase "alpha" or "beta" might be appended after the Z. ** The X value is major version number always 3 in SQLite3. ** The X value only changes when backwards compatibility is ** broken and we intend to never break ** backwards compatibility. The Y value is the minor version ** number and only changes when ** there are major feature enhancements that are forwards compatible ** but not backwards compatible. The Z value is release number ** and is incremented with ** each release but resets back to 0 when Y is incremented. ** ** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. ** ** INVARIANTS: ** ** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file ** evaluates to a string literal that is the SQLite version ** with which the header file is associated. ** ** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and ** Z are the major version, minor version, and release number. */ #define SQLITE_VERSION "--VERS--" #define SQLITE_VERSION_NUMBER --VERSION-NUMBER-- /* ** CAPI3REF: Run-Time Library Version Numbers {F10020} ** KEYWORDS: sqlite3_version ** ** These features provide the same information as the [SQLITE_VERSION] ** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated ** with the library instead of the header file. Cautious programmers might ** include a check in their application to verify that ** sqlite3_libversion_number() always returns the value ** [SQLITE_VERSION_NUMBER]. ** ** The sqlite3_libversion() function returns the same information as is ** in the sqlite3_version[] string constant. The function is provided ** for use in DLLs since DLL users usually do not have direct access to string ** constants within the DLL. ** ** INVARIANTS: ** ** {F10021} The [sqlite3_libversion_number()] interface returns an integer ** equal to [SQLITE_VERSION_NUMBER]. ** ** {F10022} The [sqlite3_version] string constant contains the text of the ** [SQLITE_VERSION] string. ** ** {F10023} The [sqlite3_libversion()] function returns ** a pointer to the [sqlite3_version] string constant. */ SQLITE_EXTERN const char sqlite3_version[]; const char *sqlite3_libversion(void); int sqlite3_libversion_number(void); /* ** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} ** ** SQLite can be compiled with or without mutexes. When ** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes ** are enabled and SQLite is threadsafe. When that macro os false, ** the mutexes are omitted. Without the mutexes, it is not safe ** to use SQLite from more than one thread. ** ** There is a measurable performance penalty for enabling mutexes. ** So if speed is of utmost importance, it makes sense to disable ** the mutexes. But for maximum safety, mutexes should be enabled. ** The default behavior is for mutexes to be enabled. ** ** This interface can be used by a program to make sure that the ** version of SQLite that it is linking against was compiled with ** the desired setting of the SQLITE_THREADSAFE macro. ** ** INVARIANTS: ** ** {F10101} The [sqlite3_threadsafe()] function returns nonzero if ** SQLite was compiled with its mutexes enabled or zero ** if SQLite was compiled with mutexes disabled. */ int sqlite3_threadsafe(void); /* ** CAPI3REF: Database Connection Handle {F12000} ** KEYWORDS: {database connection} ** ** Each open SQLite database is represented by pointer to an instance of the ** opaque structure named "sqlite3". It is useful to think of an sqlite3 ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces are its constructors ** and [sqlite3_close()] is its destructor. There are many other interfaces ** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and ** [sqlite3_busy_timeout()] to name but three) that are methods on this ** object. */ typedef struct sqlite3 sqlite3; /* ** CAPI3REF: 64-Bit Integer Types {F10200} ** KEYWORDS: sqlite_int64 sqlite_uint64 ** ** Because there is no cross-platform way to specify 64-bit integer types ** SQLite includes typedefs for 64-bit signed and unsigned integers. ** ** The sqlite3_int64 and sqlite3_uint64 are the preferred type ** definitions. The sqlite_int64 and sqlite_uint64 types are ** supported for backwards compatibility only. ** ** INVARIANTS: ** ** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a ** 64-bit signed integer. ** ** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify ** a 64-bit unsigned integer. */ #ifdef SQLITE_INT64_TYPE typedef SQLITE_INT64_TYPE sqlite_int64; typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; #elif defined(_MSC_VER) || defined(__BORLANDC__) typedef __int64 sqlite_int64; typedef unsigned __int64 sqlite_uint64; |
︙ | ︙ | |||
184 185 186 187 188 189 190 | #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection {F12010} ** | > > > > > > > > > > > > > | | | > > | | | | > | > > | > > > | < < < > | | | | | > > | > > > | > | > > > > > > > > > | | | > > | | | | > | > | > | | | | < < | | > | | > | > > > | | < > > | > > > | > | > | > > | > | > > > > > > > > | > | | < | < < < | < < > | | < < < < < < | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | #ifdef SQLITE_OMIT_FLOATING_POINT # define double sqlite3_int64 #endif /* ** CAPI3REF: Closing A Database Connection {F12010} ** ** This routine is the destructor for the [sqlite3] object. ** ** Applications should [sqlite3_finalize | finalize] all ** [prepared statements] and ** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs] ** associated with the [sqlite3] object prior ** to attempting to close the [sqlite3] object. ** ** <todo>What happens to pending transactions? Are they ** rolled back, or abandoned?</todo> ** ** INVARIANTS: ** ** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object ** allocated by a prior call to [sqlite3_open()], ** [sqlite3_open16()], or [sqlite3_open_v2()]. ** ** {F12012} The [sqlite3_close()] function releases all memory used by the ** connection and closes all open files. ** ** {F12013} If the database connection contains ** [prepared statements] that have not been ** finalized by [sqlite3_finalize()], then [sqlite3_close()] ** returns [SQLITE_BUSY] and leaves the connection open. ** ** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op. ** ** LIMITATIONS: ** ** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object ** pointer previously obtained from [sqlite3_open()] or the ** equivalent, or NULL. ** ** {U12016} The parameter to [sqlite3_close()] must not have been previously ** closed. */ int sqlite3_close(sqlite3 *); /* ** The type for a callback function. ** This is legacy and deprecated. It is included for historical ** compatibility and is not documented. */ typedef int (*sqlite3_callback)(void*,int,char**, char**); /* ** CAPI3REF: One-Step Query Execution Interface {F12100} ** ** The sqlite3_exec() interface is a convenient way of running ** one or more SQL statements without a lot of C code. The ** SQL statements are passed in as the second parameter to ** sqlite3_exec(). The statements are evaluated one by one ** until either an error or an interrupt is encountered or ** until they are all done. The 3rd parameter is an optional ** callback that is invoked once for each row of any query results ** produced by the SQL statements. The 5th parameter tells where ** to write any error messages. ** ** The sqlite3_exec() interface is implemented in terms of ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. ** The sqlite3_exec() routine does nothing that cannot be done ** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. ** The sqlite3_exec() is just a convenient wrapper. ** ** INVARIANTS: ** ** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8 ** encoded, semicolon-separated, SQL statements in the ** zero-terminated string of its 2nd parameter within the ** context of the [sqlite3] object given in the 1st parameter. ** ** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all ** SQL statements run successfully. ** ** {F12105} The return value of [sqlite3_exec()] is an appropriate ** non-zero error code if any SQL statement fails. ** ** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()] ** return results and the 3rd parameter is not NULL, then ** the callback function specified by the 3rd parameter is ** invoked once for each row of result. ** ** {F12110} If the callback returns a non-zero value then [sqlite3_exec()] ** will aborted the SQL statement it is currently evaluating, ** skip all subsequent SQL statements, and return [SQLITE_ABORT]. ** <todo>What happens to *errmsg here? Does the result code for ** sqlite3_errcode() get set?</todo> ** ** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through ** as the 1st parameter of the callback. ** ** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its ** callback to be the number of columns in the current row of ** result. ** ** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its ** callback to be an array of pointers to strings holding the ** values for each column in the current result set row as ** obtained from [sqlite3_column_text()]. ** ** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its ** callback to be an array of pointers to strings holding the ** names of result columns as obtained from [sqlite3_column_name()]. ** ** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then ** [sqlite3_exec()] never invokes a callback. All query ** results are silently discarded. ** ** {F12128} If an error occurs while parsing or evaluating any of the SQL ** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will ** return an [error code] other than [SQLITE_OK]. ** ** {F12131} If an error occurs while parsing or evaluating any of the SQL ** handed to [sqlite3_exec()] and if the 5th parameter (errmsg) ** to [sqlite3_exec()] is not NULL, then an error message is ** allocated using the equivalent of [sqlite3_mprintf()] and ** *errmsg is made to point to that message. ** ** {F12134} The [sqlite3_exec()] routine does not change the value of ** *errmsg if errmsg is NULL or if there are no errors. ** ** {F12137} The [sqlite3_exec()] function sets the error code and message ** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. ** ** LIMITATIONS: ** ** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open ** [database connection]. ** ** {U12142} The database connection must not be closed while ** [sqlite3_exec()] is running. ** ** {U12143} The calling function is should use [sqlite3_free()] to free ** the memory that *errmsg is left pointing at once the error ** message is no longer needed. ** ** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()] ** must remain unchanged while [sqlite3_exec()] is running. */ int sqlite3_exec( sqlite3*, /* An open database */ const char *sql, /* SQL to be evaluted */ int (*callback)(void*,int,char**,char**), /* Callback function */ void *, /* 1st argument to callback */ char **errmsg /* Error msg written here */ ); /* ** CAPI3REF: Result Codes {F10210} ** KEYWORDS: SQLITE_OK {error code} {error codes} ** ** Many SQLite functions return an integer result code from the set shown ** here in order to indicates success or failure. ** ** See also: [SQLITE_IOERR_READ | extended result codes] */ #define SQLITE_OK 0 /* Successful result */ /* beginning-of-error-codes */ #define SQLITE_ERROR 1 /* SQL error or missing database */ #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ #define SQLITE_PERM 3 /* Access permission denied */ #define SQLITE_ABORT 4 /* Callback routine requested an abort */ |
︙ | ︙ | |||
325 326 327 328 329 330 331 332 333 334 335 336 337 338 | #define SQLITE_NOTADB 26 /* File opened that is not a database file */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* ** CAPI3REF: Extended Result Codes {F10220} ** ** In its default configuration, SQLite API routines return one of 26 integer ** [SQLITE_OK | result codes]. However, experience has shown that ** many of these result codes are too course-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information | > > | | | | | | | > > > > > | > | > | < < | > | | | | | | | | | | | | | | | | | 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 | #define SQLITE_NOTADB 26 /* File opened that is not a database file */ #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ /* end-of-error-codes */ /* ** CAPI3REF: Extended Result Codes {F10220} ** KEYWORDS: {extended error code} {extended error codes} ** KEYWORDS: {extended result codes} ** ** In its default configuration, SQLite API routines return one of 26 integer ** [SQLITE_OK | result codes]. However, experience has shown that ** many of these result codes are too course-grained. They do not provide as ** much information about problems as programmers might like. In an effort to ** address this, newer versions of SQLite (version 3.3.8 and later) include ** support for additional result codes that provide more detailed information ** about errors. The extended result codes are enabled or disabled ** for each database connection using the [sqlite3_extended_result_codes()] ** API. ** ** Some of the available extended result codes are listed here. ** One may expect the number of extended result codes will be expand ** over time. Software that uses extended result codes should expect ** to see new result codes in future releases of SQLite. ** ** The SQLITE_OK result code will never be extended. It will always ** be exactly zero. ** ** INVARIANTS: ** ** {F10223} The symbolic name for an extended result code always contains ** a related primary result code as a prefix. ** ** {F10224} Primary result code names contain a single "_" character. ** ** {F10225} Extended result code names contain two or more "_" characters. ** ** {F10226} The numeric value of an extended result code contains the ** numeric value of its corresponding primary result code it ** its least significant 8 bits. */ #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) #define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) #define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) #define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) #define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) #define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) #define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) #define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) #define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) #define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) #define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) /* ** CAPI3REF: Flags For File Open Operations {F10230} ** ** These bit values are intended for use in then ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the xOpen method of the ** [sqlite3_vfs] object. */ #define SQLITE_OPEN_READONLY 0x00000001 #define SQLITE_OPEN_READWRITE 0x00000002 #define SQLITE_OPEN_CREATE 0x00000004 #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 #define SQLITE_OPEN_EXCLUSIVE 0x00000010 #define SQLITE_OPEN_MAIN_DB 0x00000100 #define SQLITE_OPEN_TEMP_DB 0x00000200 #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 #define SQLITE_OPEN_SUBJOURNAL 0x00002000 #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* ** CAPI3REF: Device Characteristics {F10240} ** ** The xDeviceCapabilities method of the [sqlite3_io_methods] ** object returns an integer which is a vector of the these ** bit values expressing I/O characteristics of the mass storage ** device that holds the file that the [sqlite3_io_methods] ** refers to. ** ** The SQLITE_IOCAP_ATOMIC property means that all writes of ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values ** mean that writes of blocks that are nnn bytes in size and ** are aligned to an address which is an integer multiple of ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means ** that when data is appended to a file, the data is appended ** first then the size of the file is extended, never the other ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that ** information is written to disk in the same order as calls ** to xWrite(). */ #define SQLITE_IOCAP_ATOMIC 0x00000001 #define SQLITE_IOCAP_ATOMIC512 0x00000002 #define SQLITE_IOCAP_ATOMIC1K 0x00000004 #define SQLITE_IOCAP_ATOMIC2K 0x00000008 #define SQLITE_IOCAP_ATOMIC4K 0x00000010 #define SQLITE_IOCAP_ATOMIC8K 0x00000020 #define SQLITE_IOCAP_ATOMIC16K 0x00000040 #define SQLITE_IOCAP_ATOMIC32K 0x00000080 #define SQLITE_IOCAP_ATOMIC64K 0x00000100 #define SQLITE_IOCAP_SAFE_APPEND 0x00000200 #define SQLITE_IOCAP_SEQUENTIAL 0x00000400 /* ** CAPI3REF: File Locking Levels {F10250} ** ** SQLite uses one of these integer values as the second ** argument to calls it makes to the xLock() and xUnlock() methods ** of an [sqlite3_io_methods] object. */ #define SQLITE_LOCK_NONE 0 #define SQLITE_LOCK_SHARED 1 #define SQLITE_LOCK_RESERVED 2 #define SQLITE_LOCK_PENDING 3 #define SQLITE_LOCK_EXCLUSIVE 4 /* ** CAPI3REF: Synchronization Type Flags {F10260} ** ** When SQLite invokes the xSync() method of an ** [sqlite3_io_methods] object it uses a combination of the ** these integer values as the second argument. ** ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the ** sync operation only needs to flush data to mass storage. Inode ** information need not be flushed. The SQLITE_SYNC_NORMAL means ** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means ** to use Mac OS-X style fullsync instead of fsync(). */ #define SQLITE_SYNC_NORMAL 0x00002 #define SQLITE_SYNC_FULL 0x00003 #define SQLITE_SYNC_DATAONLY 0x00010 |
︙ | ︙ | |||
564 565 566 567 568 569 570 | /* ** CAPI3REF: Standard File Control Opcodes {F11310} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] ** interface. ** | | | | | | 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 | /* ** CAPI3REF: Standard File Control Opcodes {F11310} ** ** These integer constants are opcodes for the xFileControl method ** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] ** interface. ** ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This ** opcode cases the xFileControl method to write the current state of ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) ** into an integer that the pArg argument points to. This capability ** is used during testing and only needs to be supported when SQLITE_TEST ** is defined. */ #define SQLITE_FCNTL_LOCKSTATE 1 /* ** CAPI3REF: Mutex Handle {F17110} ** ** The mutex module within SQLite defines [sqlite3_mutex] to be an ** abstract type for a mutex object. The SQLite core never looks ** at the internal representation of an [sqlite3_mutex]. It only ** deals with pointers to the [sqlite3_mutex] object. ** ** Mutexes are created using [sqlite3_mutex_alloc()]. */ typedef struct sqlite3_mutex sqlite3_mutex; /* |
︙ | ︙ | |||
652 653 654 655 656 657 658 | ** that does not care about crash recovery or rollback, might make ** the open of a journal file a no-op. Writes to this journal are ** also a no-op. Any attempt to read the journal return SQLITE_IOERR. ** Or the implementation might recognize the a database file will ** be doing page-aligned sector reads and writes in a random order ** and set up its I/O subsystem accordingly. ** | | | 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 | ** that does not care about crash recovery or rollback, might make ** the open of a journal file a no-op. Writes to this journal are ** also a no-op. Any attempt to read the journal return SQLITE_IOERR. ** Or the implementation might recognize the a database file will ** be doing page-aligned sector reads and writes in a random order ** and set up its I/O subsystem accordingly. ** ** SQLite might also add one of the following flags to the xOpen ** method: ** ** <ul> ** <li> [SQLITE_OPEN_DELETEONCLOSE] ** <li> [SQLITE_OPEN_EXCLUSIVE] ** </ul> ** |
︙ | ︙ | |||
743 744 745 746 747 748 749 | #define SQLITE_ACCESS_EXISTS 0 #define SQLITE_ACCESS_READWRITE 1 #define SQLITE_ACCESS_READ 2 /* ** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} ** | | | > | > > > | < | | < < | | < > > | | | | | | | | | | > > > > > > > > > > > > > > > > > | > | | > > | | | > > > > > > > > > > > > > > > > > > > > > > > | > > < < < < < < < < | | | | | > > > > > > > > > > | | | | | | > > > | | < < | > > > > > > > > > > > > | | | | | | | | | | > > > > > > > > > > > > > > > | > > > > > | < < | < > | | < < | | > | > > > > > > > | | | | | | | | | | | | | | | < < < < < < < | | > > | > | > > > > | | > > > > > > | < > > > > > > > > | | | | > > > > > > > > > > > > > > > > > | < > > > | > > > > > > > > > > | | > > > | > > | | | | | | | | | | | > | > > > > | > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 | #define SQLITE_ACCESS_EXISTS 0 #define SQLITE_ACCESS_READWRITE 1 #define SQLITE_ACCESS_READ 2 /* ** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} ** ** The sqlite3_extended_result_codes() routine enables or disables the ** [SQLITE_IOERR_READ | extended result codes] feature of SQLite. ** The extended result codes are disabled by default for historical ** compatibility. ** ** INVARIANTS: ** ** {F12201} Each new [database connection] has the ** [extended result codes] feature ** disabled by default. ** ** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable ** [extended result codes] for the ** [database connection] D if the F parameter ** is true, or disable them if F is false. */ int sqlite3_extended_result_codes(sqlite3*, int onoff); /* ** CAPI3REF: Last Insert Rowid {F12220} ** ** Each entry in an SQLite table has a unique 64-bit signed ** integer key called the "rowid". The rowid is always available ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those ** names are not also used by explicitly declared columns. If ** the table has a column of type INTEGER PRIMARY KEY then that column ** is another an alias for the rowid. ** ** This routine returns the rowid of the most recent ** successful INSERT into the database from the database connection ** shown in the first argument. If no successful inserts ** have ever occurred on this database connection, zero is returned. ** ** If an INSERT occurs within a trigger, then the rowid of the ** inserted row is returned by this routine as long as the trigger ** is running. But once the trigger terminates, the value returned ** by this routine reverts to the last value inserted before the ** trigger fired. ** ** An INSERT that fails due to a constraint violation is not a ** successful insert and does not change the value returned by this ** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, ** and INSERT OR ABORT make no changes to the return value of this ** routine when their insertion fails. When INSERT OR REPLACE ** encounters a constraint violation, it does not fail. The ** INSERT continues to completion after deleting rows that caused ** the constraint problem so INSERT OR REPLACE will always change ** the return value of this interface. ** ** For the purposes of this routine, an insert is considered to ** be successful even if it is subsequently rolled back. ** ** INVARIANTS: ** ** {F12221} The [sqlite3_last_insert_rowid()] function returns the ** rowid of the most recent successful insert done ** on the same database connection and within the same ** trigger context, or zero if there have ** been no qualifying inserts on that connection. ** ** {F12223} The [sqlite3_last_insert_rowid()] function returns ** same value when called from the same trigger context ** immediately before and after a ROLLBACK. ** ** LIMITATIONS: ** ** {U12232} If separate thread does a new insert on the same ** database connection while the [sqlite3_last_insert_rowid()] ** function is running and thus changes the last insert rowid, ** then the value returned by [sqlite3_last_insert_rowid()] is ** unpredictable and might not equal either the old or the new ** last insert rowid. */ sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); /* ** CAPI3REF: Count The Number Of Rows Modified {F12240} ** ** This function returns the number of database rows that were changed ** or inserted or deleted by the most recently completed SQL statement ** on the connection specified by the first parameter. Only ** changes that are directly specified by the INSERT, UPDATE, or ** DELETE statement are counted. Auxiliary changes caused by ** triggers are not counted. Use the [sqlite3_total_changes()] function ** to find the total number of changes including changes caused by triggers. ** ** A "row changes" is a change to a single row of a single table ** caused by an INSERT, DELETE, or UPDATE statement. Rows that ** are changed as side effects of REPLACE constraint resolution, ** rollback, ABORT processing, DROP TABLE, or by any other ** mechanisms do not count as direct row changes. ** ** A "trigger context" is a scope of execution that begins and ** ends with the script of a trigger. Most SQL statements are ** evaluated outside of any trigger. This is the "top level" ** trigger context. If a trigger fires from the top level, a ** new trigger context is entered for the duration of that one ** trigger. Subtriggers create subcontexts for their duration. ** ** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does ** not create a new trigger context. ** ** This function returns the number of direct row changes in the ** most recent INSERT, UPDATE, or DELETE statement within the same ** trigger context. ** ** So when called from the top level, this function returns the ** number of changes in the most recent INSERT, UPDATE, or DELETE ** that also occurred at the top level. ** Within the body of a trigger, the sqlite3_changes() interface ** can be called to find the number of ** changes in the most recently completed INSERT, UPDATE, or DELETE ** statement within the body of the same trigger. ** However, the number returned does not include in changes ** caused by subtriggers since they have their own context. ** ** SQLite implements the command "DELETE FROM table" without ** a WHERE clause by dropping and recreating the table. (This is much ** faster than going through and deleting individual elements from the ** table.) Because of this optimization, the deletions in ** "DELETE FROM table" are not row changes and will not be counted ** by the sqlite3_changes() or [sqlite3_total_changes()] functions. ** To get an accurate count of the number of rows deleted, use ** "DELETE FROM table WHERE 1" instead. ** ** INVARIANTS: ** ** {F12241} The [sqlite3_changes()] function returns the number of ** row changes caused by the most recent INSERT, UPDATE, ** or DELETE statement on the same database connection and ** within the same trigger context, or zero if there have ** not been any qualifying row changes. ** ** LIMITATIONS: ** ** {U12252} If a separate thread makes changes on the same database connection ** while [sqlite3_changes()] is running then the value returned ** is unpredictable and unmeaningful. */ int sqlite3_changes(sqlite3*); /* ** CAPI3REF: Total Number Of Rows Modified {F12260} *** ** This function returns the number of row changes caused ** by INSERT, UPDATE or DELETE statements since the database handle ** was opened. The count includes all changes from all trigger ** contexts. But the count does not include changes used to ** implement REPLACE constraints, do rollbacks or ABORT processing, ** or DROP table processing. ** The changes ** are counted as soon as the statement that makes them is completed ** (when the statement handle is passed to [sqlite3_reset()] or ** [sqlite3_finalize()]). ** ** SQLite implements the command "DELETE FROM table" without ** a WHERE clause by dropping and recreating the table. (This is much ** faster than going ** through and deleting individual elements form the table.) Because of ** this optimization, the change count for "DELETE FROM table" will be ** zero regardless of the number of elements that were originally in the ** table. To get an accurate count of the number of rows deleted, use ** "DELETE FROM table WHERE 1" instead. ** ** See also the [sqlite3_changes()] interface. ** ** INVARIANTS: ** ** {F12261} The [sqlite3_total_changes()] returns the total number ** of row changes caused by INSERT, UPDATE, and/or DELETE ** statements on the same [database connection], in any ** trigger context, since the database connection was ** created. ** ** LIMITATIONS: ** ** {U12264} If a separate thread makes changes on the same database connection ** while [sqlite3_total_changes()] is running then the value ** returned is unpredictable and unmeaningful. */ int sqlite3_total_changes(sqlite3*); /* ** CAPI3REF: Interrupt A Long-Running Query {F12270} ** ** This function causes any pending database operation to abort and ** return at its earliest opportunity. This routine is typically ** called in response to a user action such as pressing "Cancel" ** or Ctrl-C where the user wants a long query operation to halt ** immediately. ** ** It is safe to call this routine from a thread different from the ** thread that is currently running the database operation. But it ** is not safe to call this routine with a database connection that ** is closed or might close before sqlite3_interrupt() returns. ** ** If an SQL is very nearly finished at the time when sqlite3_interrupt() ** is called, then it might not have an opportunity to be interrupted. ** It might continue to completion. ** An SQL operation that is interrupted will return ** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an ** INSERT, UPDATE, or DELETE that is inside an explicit transaction, ** then the entire transaction will be rolled back automatically. ** A call to sqlite3_interrupt() has no effect on SQL statements ** that are started after sqlite3_interrupt() returns. ** ** INVARIANTS: ** ** {F12271} The [sqlite3_interrupt()] interface will force all running ** SQL statements associated with the same database connection ** to halt after processing at most one additional row of ** data. ** ** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()] ** will return [SQLITE_INTERRUPT]. ** ** LIMITATIONS: ** ** {U12279} If the database connection closes while [sqlite3_interrupt()] ** is running then bad things will likely happen. */ void sqlite3_interrupt(sqlite3*); /* ** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} ** ** These routines are useful for command-line input to determine if the ** currently entered text seems to form complete a SQL statement or ** if additional input is needed before sending the text into ** SQLite for parsing. These routines return true if the input string ** appears to be a complete SQL statement. A statement is judged to be ** complete if it ends with a semicolon token and is not a fragment of a ** CREATE TRIGGER statement. Semicolons that are embedded within ** string literals or quoted identifier names or comments are not ** independent tokens (they are part of the token in which they are ** embedded) and thus do not count as a statement terminator. ** ** These routines do not parse the SQL and ** so will not detect syntactically incorrect SQL. ** ** INVARIANTS: ** ** {F10511} The sqlite3_complete() and sqlite3_complete16() functions ** return true (non-zero) if and only if the last ** non-whitespace token in their input is a semicolon that ** is not in between the BEGIN and END of a CREATE TRIGGER ** statement. ** ** LIMITATIONS: ** ** {U10512} The input to sqlite3_complete() must be a zero-terminated ** UTF-8 string. ** ** {U10513} The input to sqlite3_complete16() must be a zero-terminated ** UTF-16 string in native byte order. */ int sqlite3_complete(const char *sql); int sqlite3_complete16(const void *sql); /* ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} ** ** This routine identifies a callback function that might be ** invoked whenever an attempt is made to open a database table ** that another thread or process has locked. ** If the busy callback is NULL, then [SQLITE_BUSY] ** or [SQLITE_IOERR_BLOCKED] ** is returned immediately upon encountering the lock. ** If the busy callback is not NULL, then the ** callback will be invoked with two arguments. The ** first argument to the handler is a copy of the void* pointer which ** is the third argument to this routine. The second argument to ** the handler is the number of times that the busy handler has ** been invoked for this locking event. If the ** busy callback returns 0, then no additional attempts are made to ** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. ** If the callback returns non-zero, then another attempt ** is made to open the database for reading and the cycle repeats. ** ** The presence of a busy handler does not guarantee that ** it will be invoked when there is lock contention. ** If SQLite determines that invoking the busy handler could result in ** a deadlock, it will go ahead and return [SQLITE_BUSY] or ** [SQLITE_IOERR_BLOCKED] instead of invoking the ** busy handler. ** Consider a scenario where one process is holding a read lock that ** it is trying to promote to a reserved lock and ** a second process is holding a reserved lock that it is trying ** to promote to an exclusive lock. The first process cannot proceed ** because it is blocked by the second and the second process cannot ** proceed because it is blocked by the first. If both processes ** invoke the busy handlers, neither will make any progress. Therefore, ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this ** will induce the first process to release its read lock and allow ** the second process to proceed. ** ** The default busy callback is NULL. ** ** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] ** when SQLite is in the middle of a large transaction where all the ** changes will not fit into the in-memory cache. SQLite will ** already hold a RESERVED lock on the database file, but it needs ** to promote this lock to EXCLUSIVE so that it can spill cache ** pages into the database file without harm to concurrent ** readers. If it is unable to promote the lock, then the in-memory ** cache will be left in an inconsistent state and so the error ** code is promoted from the relatively benign [SQLITE_BUSY] to ** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion ** forces an automatic rollback of the changes. See the ** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError"> ** CorruptionFollowingBusyError</a> wiki page for a discussion of why ** this is important. ** ** There can only be a single busy handler defined for each database ** connection. Setting a new busy handler clears any previous one. ** Note that calling [sqlite3_busy_timeout()] will also set or clear ** the busy handler. ** ** INVARIANTS: ** ** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler ** callback in the database connection identified by the 1st ** parameter with a new busy handler identified by the 2nd and 3rd ** parameters. ** ** {F12312} The default busy handler for new database connections is NULL. ** ** {F12314} When two or more database connection share a common cache, ** the busy handler for the database connection currently using ** the cache is invoked when the cache encounters a lock. ** ** {F12316} If a busy handler callback returns zero, then the SQLite ** interface that provoked the locking event will return ** [SQLITE_BUSY]. ** ** {F12318} SQLite will invokes the busy handler with two argument which ** are a copy of the pointer supplied by the 3rd parameter to ** [sqlite3_busy_handler()] and a count of the number of prior ** invocations of the busy handler for the same locking event. ** ** LIMITATIONS: ** ** {U12319} A busy handler should not call close the database connection ** or prepared statement that invoked the busy handler. */ int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); /* ** CAPI3REF: Set A Busy Timeout {F12340} ** ** This routine sets a [sqlite3_busy_handler | busy handler] ** that sleeps for a while when a ** table is locked. The handler will sleep multiple times until ** at least "ms" milliseconds of sleeping have been done. {F12343} After ** "ms" milliseconds of sleeping, the handler returns 0 which ** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. ** ** Calling this routine with an argument less than or equal to zero ** turns off all busy handlers. ** ** There can only be a single busy handler for a particular database ** connection. If another busy handler was defined ** (using [sqlite3_busy_handler()]) prior to calling ** this routine, that other busy handler is cleared. ** ** INVARIANTS: ** ** {F12341} The [sqlite3_busy_timeout()] function overrides any prior ** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting ** on the same database connection. ** ** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than ** or equal to zero, then the busy handler is cleared so that ** all subsequent locking events immediately return [SQLITE_BUSY]. ** ** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive ** number N, then a busy handler is set that repeatedly calls ** the xSleep() method in the VFS interface until either the ** lock clears or until the cumulative sleep time reported back ** by xSleep() exceeds N milliseconds. */ int sqlite3_busy_timeout(sqlite3*, int ms); /* ** CAPI3REF: Convenience Routines For Running Queries {F12370} ** ** Definition: A <b>result table</b> is memory data structure created by the ** [sqlite3_get_table()] interface. A result table records the ** complete query results from one or more queries. ** ** The table conceptually has a number of rows and columns. But ** these numbers are not part of the result table itself. These ** numbers are obtained separately. Let N be the number of rows ** and M be the number of columns. ** ** A result table is an array of pointers to zero-terminated ** UTF-8 strings. There are (N+1)*M elements in the array. ** The first M pointers point to zero-terminated strings that ** contain the names of the columns. ** The remaining entries all point to query results. NULL ** values are give a NULL pointer. All other values are in ** their UTF-8 zero-terminated string representation as returned by ** [sqlite3_column_text()]. ** ** A result table might consists of one or more memory allocations. ** It is not safe to pass a result table directly to [sqlite3_free()]. ** A result table should be deallocated using [sqlite3_free_table()]. ** ** As an example of the result table format, suppose a query result ** is as follows: ** ** <blockquote><pre> ** Name | Age ** ----------------------- ** Alice | 43 ** Bob | 28 ** Cindy | 21 ** </pre></blockquote> ** ** There are two column (M==2) and three rows (N==3). Thus the ** result table has 8 entries. Suppose the result table is stored ** in an array names azResult. Then azResult holds this content: ** ** <blockquote><pre> ** azResult[0] = "Name"; ** azResult[1] = "Age"; ** azResult[2] = "Alice"; ** azResult[3] = "43"; ** azResult[4] = "Bob"; ** azResult[5] = "28"; ** azResult[6] = "Cindy"; ** azResult[7] = "21"; ** </pre></blockquote> ** ** The sqlite3_get_table() function evaluates one or more ** semicolon-separated SQL statements in the zero-terminated UTF-8 ** string of its 2nd parameter. It returns a result table to the ** pointer given in its 3rd parameter. ** ** After the calling function has finished using the result, it should ** pass the pointer to the result table to sqlite3_free_table() in order to ** release the memory that was malloc-ed. Because of the way the ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling ** function must not try to call [sqlite3_free()] directly. Only ** [sqlite3_free_table()] is able to release the memory properly and safely. ** ** The sqlite3_get_table() interface is implemented as a wrapper around ** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access ** to any internal data structures of SQLite. It uses only the public ** interface defined here. As a consequence, errors that occur in the ** wrapper layer outside of the internal [sqlite3_exec()] call are not ** reflected in subsequent calls to [sqlite3_errcode()] or ** [sqlite3_errmsg()]. ** ** INVARIANTS: ** ** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then ** it frees the result table under construction, aborts the ** query in process, skips any subsequent queries, sets the ** *resultp output pointer to NULL and returns [SQLITE_NOMEM]. ** ** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL ** then [sqlite3_get_table()] write the number of columns in the ** result set of the query into *ncolumn if the query is ** successful (if the function returns SQLITE_OK). ** ** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL ** then [sqlite3_get_table()] write the number of rows in the ** result set of the query into *nrow if the query is ** successful (if the function returns SQLITE_OK). ** ** {F12373} The [sqlite3_get_table()] function sets its *ncolumn value ** to the number of columns in the result set of the query in the ** sql parameter, or to zero if the query in sql has an empty ** result set. */ int sqlite3_get_table( sqlite3*, /* An open database */ const char *sql, /* SQL to be evaluated */ char ***pResult, /* Results of the query */ int *nrow, /* Number of result rows written here */ int *ncolumn, /* Number of result columns written here */ char **errmsg /* Error msg written here */ ); void sqlite3_free_table(char **result); /* ** CAPI3REF: Formatted String Printing Functions {F17400} ** ** These routines are workalikes of the "printf()" family of functions ** from the standard C library. ** ** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their ** results into memory obtained from [sqlite3_malloc()]. ** The strings returned by these two routines should be ** released by [sqlite3_free()]. Both routines return a ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough ** memory to hold the resulting string. ** ** In sqlite3_snprintf() routine is similar to "snprintf()" from ** the standard C library. The result is written into the ** buffer supplied as the second parameter whose size is given by ** the first parameter. Note that the order of the ** first two parameters is reversed from snprintf(). This is an ** historical accident that cannot be fixed without breaking ** backwards compatibility. Note also that sqlite3_snprintf() ** returns a pointer to its buffer instead of the number of ** characters actually written into the buffer. We admit that ** the number of characters written would be a more useful return ** value but we cannot change the implementation of sqlite3_snprintf() ** now without breaking compatibility. ** ** As long as the buffer size is greater than zero, sqlite3_snprintf() ** guarantees that the buffer is always zero-terminated. The first ** parameter "n" is the total size of the buffer, including space for ** the zero terminator. So the longest string that can be completely ** written will be n-1 characters. ** ** These routines all implement some additional formatting ** options that are useful for constructing SQL statements. ** All of the usual printf formatting options apply. In addition, there ** is are "%q", "%Q", and "%z" options. ** ** The %q option works like %s in that it substitutes a null-terminated ** string from the argument list. But %q also doubles every '\'' character. ** %q is designed for use inside a string literal. By doubling each '\'' ** character it escapes that character and allows it to be inserted into ** the string. ** ** For example, so some string variable contains text as follows: ** ** <blockquote><pre> ** char *zText = "It's a happy day!"; |
︙ | ︙ | |||
1144 1145 1146 1147 1148 1149 1150 | ** INSERT INTO table1 VALUES('It's a happy day!'); ** </pre></blockquote> ** ** This second example is an SQL syntax error. As a general rule you ** should always use %q instead of %s when inserting text into a string ** literal. ** | | | > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 | ** INSERT INTO table1 VALUES('It's a happy day!'); ** </pre></blockquote> ** ** This second example is an SQL syntax error. As a general rule you ** should always use %q instead of %s when inserting text into a string ** literal. ** ** The %Q option works like %q except it also adds single quotes around ** the outside of the total string. Or if the parameter in the argument ** list is a NULL pointer, %Q substitutes the text "NULL" (without single ** quotes) in place of the %Q option. {END} So, for example, one could say: ** ** <blockquote><pre> ** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText); ** sqlite3_exec(db, zSQL, 0, 0, 0); ** sqlite3_free(zSQL); ** </pre></blockquote> ** ** The code above will render a correct SQL statement in the zSQL ** variable even if the zText variable is a NULL pointer. ** ** The "%z" formatting option works exactly like "%s" with the ** addition that after the string has been read and copied into ** the result, [sqlite3_free()] is called on the input string. {END} ** ** INVARIANTS: ** ** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces ** return either pointers to zero-terminated UTF-8 strings held in ** memory obtained from [sqlite3_malloc()] or NULL pointers if ** a call to [sqlite3_malloc()] fails. ** ** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated ** UTF-8 string into the buffer pointed to by the second parameter ** provided that the first parameter is greater than zero. ** ** {F17407} The [sqlite3_snprintf()] interface does not writes slots of ** its output buffer (the second parameter) outside the range ** of 0 through N-1 (where N is the first parameter) ** regardless of the length of the string ** requested by the format specification. ** */ char *sqlite3_mprintf(const char*,...); char *sqlite3_vmprintf(const char*, va_list); char *sqlite3_snprintf(int,char*,const char*, ...); /* ** CAPI3REF: Memory Allocation Subsystem {F17300} ** ** The SQLite core uses these three routines for all of its own ** internal memory allocation needs. "Core" in the previous sentence ** does not include operating-system specific VFS implementation. The ** windows VFS uses native malloc and free for some operations. ** ** The sqlite3_malloc() routine returns a pointer to a block ** of memory at least N bytes in length, where N is the parameter. ** If sqlite3_malloc() is unable to obtain sufficient free ** memory, it returns a NULL pointer. If the parameter N to ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns ** a NULL pointer. ** ** Calling sqlite3_free() with a pointer previously returned ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so ** that it might be reused. The sqlite3_free() routine is ** a no-op if is called with a NULL pointer. Passing a NULL pointer ** to sqlite3_free() is harmless. After being freed, memory ** should neither be read nor written. Even reading previously freed ** memory might result in a segmentation fault or other severe error. ** Memory corruption, a segmentation fault, or other severe error ** might result if sqlite3_free() is called with a non-NULL pointer that ** was not obtained from sqlite3_malloc() or sqlite3_free(). ** ** The sqlite3_realloc() interface attempts to resize a ** prior memory allocation to be at least N bytes, where N is the ** second parameter. The memory allocation to be resized is the first ** parameter. If the first parameter to sqlite3_realloc() ** is a NULL pointer then its behavior is identical to calling ** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). ** If the second parameter to sqlite3_realloc() is zero or ** negative then the behavior is exactly the same as calling ** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). ** Sqlite3_realloc() returns a pointer to a memory allocation ** of at least N bytes in size or NULL if sufficient memory is unavailable. ** If M is the size of the prior allocation, then min(N,M) bytes ** of the prior allocation are copied into the beginning of buffer returned ** by sqlite3_realloc() and the prior allocation is freed. ** If sqlite3_realloc() returns NULL, then the prior allocation ** is not freed. ** ** The memory returned by sqlite3_malloc() and sqlite3_realloc() ** is always aligned to at least an 8 byte boundary. {END} ** ** The default implementation ** of the memory allocation subsystem uses the malloc(), realloc() ** and free() provided by the standard C library. {F17382} However, if ** SQLite is compiled with the following C preprocessor macro ** ** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote> ** ** where <i>NNN</i> is an integer, then SQLite create a static |
︙ | ︙ | |||
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 | ** The windows OS interface layer calls ** the system malloc() and free() directly when converting ** filenames between the UTF-8 encoding used by SQLite ** and whatever filename encoding is used by the particular windows ** installation. Memory allocation errors are detected, but ** they are reported back as [SQLITE_CANTOPEN] or ** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. */ void *sqlite3_malloc(int); void *sqlite3_realloc(void*, int); void sqlite3_free(void*); /* ** CAPI3REF: Memory Allocator Statistics {F17370} ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > | | | < | | | | | > | | | | | > | | < | > | | | | | | < | | < | < < | | | | > > | | | < | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 | ** The windows OS interface layer calls ** the system malloc() and free() directly when converting ** filenames between the UTF-8 encoding used by SQLite ** and whatever filename encoding is used by the particular windows ** installation. Memory allocation errors are detected, but ** they are reported back as [SQLITE_CANTOPEN] or ** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. ** ** INVARIANTS: ** ** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to ** newly checked-out block of at least N bytes of memory ** that is 8-byte aligned, ** or it returns NULL if it is unable to fulfill the request. ** ** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if ** N is less than or equal to zero. ** ** {F17305} The [sqlite3_free(P)] interface releases memory previously ** returned from [sqlite3_malloc()] or [sqlite3_realloc()], ** making it available for reuse. ** ** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op. ** ** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call ** to [sqlite3_malloc(N)]. ** ** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call ** to [sqlite3_free(P)]. ** ** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()], ** and [sqlite3_free()] for all of its memory allocation and ** deallocation needs. ** ** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer ** to a block of checked-out memory of at least N bytes in size ** that is 8-byte aligned, or a NULL pointer. ** ** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first ** copies the first K bytes of content from P into the newly allocated ** where K is the lessor of N and the size of the buffer P. ** ** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first ** releases the buffer P. ** ** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is ** not modified or released. ** ** LIMITATIONS: ** ** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] ** must be either NULL or else a pointer obtained from a prior ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has ** not been released. ** ** {U17351} The application must not read or write any part of ** a block of memory after it has been released using ** [sqlite3_free()] or [sqlite3_realloc()]. ** */ void *sqlite3_malloc(int); void *sqlite3_realloc(void*, int); void sqlite3_free(void*); /* ** CAPI3REF: Memory Allocator Statistics {F17370} ** ** SQLite provides these two interfaces for reporting on the status ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] ** the memory allocation subsystem included within the SQLite. ** ** INVARIANTS: ** ** {F17371} The [sqlite3_memory_used()] routine returns the ** number of bytes of memory currently outstanding ** (malloced but not freed). ** ** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum ** value of [sqlite3_memory_used()] ** since the highwater mark was last reset. ** ** {F17374} The values returned by [sqlite3_memory_used()] and ** [sqlite3_memory_highwater()] include any overhead ** added by SQLite in its implementation of [sqlite3_malloc()], ** but not overhead added by the any underlying system library ** routines that [sqlite3_malloc()] may call. ** ** {F17375} The memory highwater mark is reset to the current value of ** [sqlite3_memory_used()] if and only if the parameter to ** [sqlite3_memory_highwater()] is true. The value returned ** by [sqlite3_memory_highwater(1)] is the highwater mark ** prior to the reset. */ sqlite3_int64 sqlite3_memory_used(void); sqlite3_int64 sqlite3_memory_highwater(int resetFlag); /* ** CAPI3REF: Compile-Time Authorization Callbacks {F12500} ** ** This routine registers a authorizer callback with a particular ** database connection, supplied in the first argument. ** The authorizer callback is invoked as SQL statements are being compiled ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various ** points during the compilation process, as logic is being created ** to perform various actions, the authorizer callback is invoked to ** see if those actions are allowed. The authorizer callback should ** return SQLITE_OK to allow the action, [SQLITE_IGNORE] to disallow the ** specific action but allow the SQL statement to continue to be ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be ** rejected with an error. If the authorizer callback returns ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] ** then [sqlite3_prepare_v2()] or equivalent call that triggered ** the authorizer will fail with an error message. ** ** When the callback returns [SQLITE_OK], that means the operation ** requested is ok. When the callback returns [SQLITE_DENY], the ** [sqlite3_prepare_v2()] or equivalent call that triggered the ** authorizer will fail with an error message explaining that ** access is denied. If the authorizer code is [SQLITE_READ] ** and the callback returns [SQLITE_IGNORE] then the prepared ** statement is constructed to insert a NULL value in place of ** the table column that would have ** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] ** return can be used to deny an untrusted user access to individual ** columns of a table. ** ** The first parameter to the authorizer callback is a copy of ** the third parameter to the sqlite3_set_authorizer() interface. ** The second parameter to the callback is an integer ** [SQLITE_COPY | action code] that specifies the particular action ** to be authorized. The third through sixth ** parameters to the callback are zero-terminated strings that contain ** additional details about the action to be authorized. ** ** An authorizer is used when preparing SQL statements from an untrusted ** source, to ensure that the SQL statements do not try to access data ** that they are not allowed to see, or that they do not try to ** execute malicious statements that damage the database. For ** example, an application may allow a user to enter arbitrary ** SQL queries for evaluation by a database. But the application does ** not want the user to be able to make arbitrary changes to the ** database. An authorizer could then be put in place while the ** user-entered SQL is being prepared that disallows everything ** except SELECT statements. ** ** Only a single authorizer can be in place on a database connection ** at a time. Each call to sqlite3_set_authorizer overrides the ** previous call. Disable the authorizer by installing a NULL callback. ** The authorizer is disabled by default. ** ** Note that the authorizer callback is invoked only during ** [sqlite3_prepare()] or its variants. Authorization is not ** performed during statement evaluation in [sqlite3_step()]. ** ** INVARIANTS: ** ** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a ** authorizer callback with database connection D. ** ** {F12502} The authorizer callback is invoked as SQL statements are ** being compiled ** ** {F12503} If the authorizer callback returns any value other than ** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then ** the [sqlite3_prepare_v2()] or equivalent call that caused ** the authorizer callback to run shall fail with an ** [SQLITE_ERROR] error code and an appropriate error message. ** ** {F12504} When the authorizer callback returns [SQLITE_OK], the operation ** described is coded normally. ** ** {F12505} When the authorizer callback returns [SQLITE_DENY], the ** [sqlite3_prepare_v2()] or equivalent call that caused the ** authorizer callback to run shall fail ** with an [SQLITE_ERROR] error code and an error message ** explaining that access is denied. ** ** {F12506} If the authorizer code (the 2nd parameter to the authorizer ** callback) is [SQLITE_READ] and the authorizer callback returns ** [SQLITE_IGNORE] then the prepared statement is constructed to ** insert a NULL value in place of the table column that would have ** been read if [SQLITE_OK] had been returned. ** ** {F12507} If the authorizer code (the 2nd parameter to the authorizer ** callback) is anything other than [SQLITE_READ], then ** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. ** ** {F12510} The first parameter to the authorizer callback is a copy of ** the third parameter to the [sqlite3_set_authorizer()] interface. ** ** {F12511} The second parameter to the callback is an integer ** [SQLITE_COPY | action code] that specifies the particular action ** to be authorized. ** ** {F12512} The third through sixth parameters to the callback are ** zero-terminated strings that contain ** additional details about the action to be authorized. ** ** {F12520} Each call to [sqlite3_set_authorizer()] overrides the ** any previously installed authorizer. ** ** {F12521} A NULL authorizer means that no authorization ** callback is invoked. ** ** {F12522} The default authorizer is NULL. */ int sqlite3_set_authorizer( sqlite3*, int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), void *pUserData ); |
︙ | ︙ | |||
1356 1357 1358 1359 1360 1361 1362 | #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes {F12550} ** ** The [sqlite3_set_authorizer()] interface registers a callback function | | | | | | > > > > > > > > > > > > > > > > > > > > > > | 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 | #define SQLITE_DENY 1 /* Abort the SQL statement with an error */ #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ /* ** CAPI3REF: Authorizer Action Codes {F12550} ** ** The [sqlite3_set_authorizer()] interface registers a callback function ** that is invoked to authorizer certain SQL statement actions. The ** second parameter to the callback is an integer code that specifies ** what action is being authorized. These are the integer action codes that ** the authorizer callback may be passed. ** ** These action code values signify what kind of operation is to be ** authorized. The 3rd and 4th parameters to the authorization ** callback function will be parameters or NULL depending on which of these ** codes is used as the second parameter. The 5th parameter to the ** authorizer callback is the name of the database ("main", "temp", ** etc.) if applicable. The 6th parameter to the authorizer callback ** is the name of the inner-most trigger or view that is responsible for ** the access attempt or NULL if this access attempt is directly from ** top-level SQL code. ** ** INVARIANTS: ** ** {F12551} The second parameter to an ** [sqlite3_set_authorizer | authorizer callback is always an integer ** [SQLITE_COPY | authorizer code] that specifies what action ** is being authorized. ** ** {F12552} The 3rd and 4th parameters to the ** [sqlite3_set_authorizer | authorization callback function] ** will be parameters or NULL depending on which ** [SQLITE_COPY | authorizer code] is used as the second parameter. ** ** {F12553} The 5th parameter to the ** [sqlite3_set_authorizer | authorizer callback] is the name ** of the database (example: "main", "temp", etc.) if applicable. ** ** {F12554} The 6th parameter to the ** [sqlite3_set_authorizer | authorizer callback] is the name ** of the inner-most trigger or view that is responsible for ** the access attempt or NULL if this access attempt is directly from ** top-level SQL code. */ /******************************************* 3rd ************ 4th ***********/ #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ #define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ #define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ #define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ |
︙ | ︙ | |||
1411 1412 1413 1414 1415 1416 1417 | /* ** CAPI3REF: Tracing And Profiling Functions {F12280} ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** | | | | | | < < | < < < | | | < < < | < < | < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > | > > > > > | | | | | | < | | > | < > < < | < < < | | | | | | | | | | | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | > > | > > > > > > > | > | > > > > > > > | | > > | | | < | < | > > | | > | 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 | /* ** CAPI3REF: Tracing And Profiling Functions {F12280} ** ** These routines register callback functions that can be used for ** tracing and profiling the execution of SQL statements. ** ** The callback function registered by sqlite3_trace() is invoked at ** various times when an SQL statement is being run by [sqlite3_step()]. ** The callback returns a UTF-8 rendering of the SQL statement text ** as the statement first begins executing. Additional callbacks occur ** as each triggersubprogram is entered. The callbacks for triggers ** contain a UTF-8 SQL comment that identifies the trigger. ** ** The callback function registered by sqlite3_profile() is invoked ** as each SQL statement finishes. The profile callback contains ** the original statement text and an estimate of wall-clock time ** of how long that statement took to run. ** ** The sqlite3_profile() API is currently considered experimental and ** is subject to change or removal in a future release. ** ** The trigger reporting feature of the trace callback is considered ** experimental and is subject to change or removal in future releases. ** Future versions of SQLite might also add new trace callback ** invocations. ** ** INVARIANTS: ** ** {F12281} The callback function registered by [sqlite3_trace()] is ** whenever an SQL statement first begins to execute and ** whenever a trigger subprogram first begins to run. ** ** {F12282} Each call to [sqlite3_trace()] overrides the previously ** registered trace callback. ** ** {F12283} A NULL trace callback disables tracing. ** ** {F12284} The first argument to the trace callback is a copy of ** the pointer which was the 3rd argument to [sqlite3_trace()]. ** ** {F12285} The second argument to the trace callback is a ** zero-terminated UTF8 string containing the original text ** of the SQL statement as it was passed into [sqlite3_prepare_v2()] ** or the equivalent, or an SQL comment indicating the beginning ** of a trigger subprogram. ** ** {F12287} The callback function registered by [sqlite3_profile()] is invoked ** as each SQL statement finishes. ** ** {F12288} The first parameter to the profile callback is a copy of ** the 3rd parameter to [sqlite3_profile()]. ** ** {F12289} The second parameter to the profile callback is a ** zero-terminated UTF-8 string that contains the complete text of ** the SQL statement as it was processed by [sqlite3_prepare_v2()] ** or the equivalent. ** ** {F12290} The third parameter to the profile callback is an estimate ** of the number of nanoseconds of wall-clock time required to ** run the SQL statement from start to finish. */ void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); void *sqlite3_profile(sqlite3*, void(*xProfile)(void*,const char*,sqlite3_uint64), void*); /* ** CAPI3REF: Query Progress Callbacks {F12910} ** ** This routine configures a callback function - the ** progress callback - that is invoked periodically during long ** running calls to [sqlite3_exec()], [sqlite3_step()] and ** [sqlite3_get_table()]. An example use for this ** interface is to keep a GUI updated during a large query. ** ** If the progress callback returns non-zero, the opertion is ** interrupted. This feature can be used to implement a ** "Cancel" button on a GUI dialog box. ** ** INVARIANTS: ** ** {F12911} The callback function registered by [sqlite3_progress_handler()] ** is invoked periodically during long running calls to ** [sqlite3_step()]. ** ** {F12912} The progress callback is invoked once for every N virtual ** machine opcodes, where N is the second argument to ** the [sqlite3_progress_handler()] call that registered ** the callback. <todo>What if N is less than 1?</todo> ** ** {F12913} The progress callback itself is identified by the third ** argument to [sqlite3_progress_handler()]. ** ** {F12914} The fourth argument [sqlite3_progress_handler()] is a *** void pointer passed to the progress callback ** function each time it is invoked. ** ** {F12915} If a call to [sqlite3_step()] results in fewer than ** N opcodes being executed, ** then the progress callback is never invoked. {END} ** ** {F12916} Every call to [sqlite3_progress_handler()] ** overwrites any previously registere progress handler. ** ** {F12917} If the progress handler callback is NULL then no progress ** handler is invoked. ** ** {F12918} If the progress callback returns a result other than 0, then ** the behavior is a if [sqlite3_interrupt()] had been called. */ void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); /* ** CAPI3REF: Opening A New Database Connection {F12700} ** ** These routines open an SQLite database file whose name ** is given by the filename argument. ** The filename argument is interpreted as UTF-8 ** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 ** in the native byte order for [sqlite3_open16()]. ** An [sqlite3*] handle is usually returned in *ppDb, even ** if an error occurs. The only exception is if SQLite is unable ** to allocate memory to hold the [sqlite3] object, a NULL will ** be written into *ppDb instead of a pointer to the [sqlite3] object. ** If the database is opened (and/or created) ** successfully, then [SQLITE_OK] is returned. Otherwise an ** error code is returned. The ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain ** an English language description of the error. ** ** The default encoding for the database will be UTF-8 if ** [sqlite3_open()] or [sqlite3_open_v2()] is called and ** UTF-16 in the native byte order if [sqlite3_open16()] is used. ** ** Whether or not an error occurs when it is opened, resources ** associated with the [sqlite3*] handle should be released by passing it ** to [sqlite3_close()] when it is no longer required. ** ** The [sqlite3_open_v2()] interface works like [sqlite3_open()] ** except that it acccepts two additional parameters for additional control ** over the new database connection. The flags parameter can be ** one of: ** ** <ol> ** <li> [SQLITE_OPEN_READONLY] ** <li> [SQLITE_OPEN_READWRITE] ** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] ** </ol> ** ** The first value opens the database read-only. ** If the database does not previously exist, an error is returned. ** The second option opens ** the database for reading and writing if possible, or reading only if ** if the file is write protected. In either case the database ** must already exist or an error is returned. The third option ** opens the database for reading and writing and creates it if it does ** not already exist. ** The third options is behavior that is always used for [sqlite3_open()] ** and [sqlite3_open16()]. ** ** If the filename is ":memory:", then an private ** in-memory database is created for the connection. This in-memory ** database will vanish when the database connection is closed. Future ** version of SQLite might make use of additional special filenames ** that begin with the ":" character. It is recommended that ** when a database filename really does begin with ** ":" that you prefix the filename with a pathname like "./" to ** avoid ambiguity. ** ** If the filename is an empty string, then a private temporary ** on-disk database will be created. This private database will be ** automatically deleted as soon as the database connection is closed. ** ** The fourth parameter to sqlite3_open_v2() is the name of the ** [sqlite3_vfs] object that defines the operating system ** interface that the new database connection should use. If the ** fourth parameter is a NULL pointer then the default [sqlite3_vfs] ** object is used. ** ** <b>Note to windows users:</b> The encoding used for the filename argument ** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever ** codepage is currently defined. Filenames containing international ** characters must be converted to UTF-8 prior to passing them into ** [sqlite3_open()] or [sqlite3_open_v2()]. ** ** INVARIANTS: ** ** {F12701} The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces create a new ** [database connection] associated with ** the database file given in their first parameter. ** ** {F12702} The filename argument is interpreted as UTF-8 ** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 ** in the native byte order for [sqlite3_open16()]. ** ** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] writes a pointer to a new ** [database connection] into *ppDb. ** ** {F12704} The [sqlite3_open()], [sqlite3_open16()], and ** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success, ** or an appropriate [error code] on failure. ** ** {F12706} The default text encoding for a new database created using ** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8. ** ** {F12707} The default text encoding for a new database created using ** [sqlite3_open16()] will be UTF-16. ** ** {F12709} The [sqlite3_open(F,D)] interface is equivalent to ** [sqlite3_open_v2(F,D,G,0)] where the G parameter is ** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE]. ** ** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the ** bit value [SQLITE_OPEN_READONLY] then the database is opened ** for reading only. ** ** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the ** bit value [SQLITE_OPEN_READWRITE] then the database is opened ** reading and writing if possible, or for reading only if the ** file is write protected by the operating system. ** ** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the ** bit value [SQLITE_OPEN_CREATE] and the database does not ** previously exist, an error is returned. ** ** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the ** bit value [SQLITE_OPEN_CREATE] and the database does not ** previously exist, then an attempt is made to create and ** initialize the database. ** ** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] is ":memory:", then an private, ** ephemeral, in-memory database is created for the connection. ** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required ** in sqlite3_open_v2()?</todo> ** ** {F12719} If the filename is an empty string, then a private, ephermeral ** on-disk database will be created. ** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required ** in sqlite3_open_v2()?</todo> ** ** {F12721} The [database connection] created by ** [sqlite3_open_v2(F,D,G,V)] will use the ** [sqlite3_vfs] object identified by the V parameter, or ** the default [sqlite3_vfs] object is V is a NULL pointer. */ int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); int sqlite3_open16( const void *filename, /* Database filename (UTF-16) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); int sqlite3_open_v2( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb, /* OUT: SQLite db handle */ int flags, /* Flags */ const char *zVfs /* Name of VFS module to use */ ); /* ** CAPI3REF: Error Codes And Messages {F12800} ** ** The sqlite3_errcode() interface returns the numeric ** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] ** for the most recent failed sqlite3_* API call associated ** with [sqlite3] handle 'db'. If a prior API call failed but the ** most recent API call succeeded, the return value from sqlite3_errcode() ** is undefined. ** ** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language ** text that describes the error, as either UTF8 or UTF16 respectively. ** Memory to hold the error message string is managed internally. ** The application does not need to worry with freeing the result. ** However, the error string might be overwritten or deallocated b ** subsequent calls to other SQLite interface functions. ** ** INVARIANTS: ** ** {F12801} The [sqlite3_errcode(D)] interface returns the numeric ** [SQLITE_OK | result code] or ** [SQLITE_IOERR_READ | extended result code] ** for the most recent failed interface call associated ** with [sqlite3] handle D. ** ** {U12802} If a prior API call failed but the most recent API call ** succeeded, the return value from [sqlite3_errcode()], ** [sqlite3_errmsg()], and [sqlite3_errmsg16()] are undefined. ** ** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)] ** interfaces return English-language text that describes ** the error in the mostly recently failed interface call, ** encoded as either UTF8 or UTF16 respectively. ** ** {U12804} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()] ** are only valid until the next SQLite interface call. ** ** {F12807} Calls to [sqlite3_errcode()], [sqlite3_errmsg()], and ** [sqlite3_errmsg16()] themselves do not affect the ** results of future invocations of these routines. ** ** {F12808} Calls to API routines that do not return an error code ** (example: [sqlite3_data_count()]) do not ** change the error code or message returned by ** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. ** ** {F12809} Interfaces that are not associated with a specific ** [database connection] (examples: ** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] ** do not change the values returned by ** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. */ int sqlite3_errcode(sqlite3 *db); const char *sqlite3_errmsg(sqlite3*); const void *sqlite3_errmsg16(sqlite3*); /* ** CAPI3REF: SQL Statement Object {F13000} ** KEYWORDS: {prepared statement} {prepared statements} ** ** An instance of this object represent single SQL statements. This ** object is variously known as a "prepared statement" or a ** "compiled SQL statement" or simply as a "statement". ** ** The life of a statement object goes something like this: ** |
︙ | ︙ | |||
1633 1634 1635 1636 1637 1638 1639 | /* ** CAPI3REF: Compiling An SQL Statement {F13010} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. ** | | | | | | | | < | | | | | | | | | | | < < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 | /* ** CAPI3REF: Compiling An SQL Statement {F13010} ** ** To execute an SQL query, it must first be compiled into a byte-code ** program using one of these routines. ** ** The first argument "db" is an [database connection] ** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] ** or [sqlite3_open16()]. ** The second argument "zSql" is the statement to be compiled, encoded ** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() ** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() ** use UTF-16. {END} ** ** If the nByte argument is less ** than zero, then zSql is read up to the first zero terminator. ** If nByte is non-negative, then it is the maximum number of ** bytes read from zSql. When nByte is non-negative, the ** zSql string ends at either the first '\000' or '\u0000' character or ** until the nByte-th byte, whichever comes first. {END} ** ** *pzTail is made to point to the first byte past the end of the ** first SQL statement in zSql. These routines only compiles the first ** statement in zSql, so *pzTail is left pointing to what remains ** uncompiled. ** ** *ppStmt is left pointing to a compiled [prepared statement] that can be ** executed using [sqlite3_step()]. Or if there is an error, *ppStmt may be ** set to NULL. If the input text contains no SQL (if the input ** is and empty string or a comment) then *ppStmt is set to NULL. ** {U13018} The calling procedure is responsible for deleting the ** compiled SQL statement ** using [sqlite3_finalize()] after it has finished with it. ** ** On success, [SQLITE_OK] is returned. Otherwise an ** [error code] is returned. ** ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are ** recommended for all new programs. The two older interfaces are retained ** for backwards compatibility, but their use is discouraged. ** In the "v2" interfaces, the prepared statement ** that is returned (the [sqlite3_stmt] object) contains a copy of the ** original SQL text. {END} This causes the [sqlite3_step()] interface to ** behave a differently in two ways: ** ** <ol> ** <li> ** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it ** always used to do, [sqlite3_step()] will automatically recompile the SQL ** statement and try to run it again. If the schema has changed in ** a way that makes the statement no longer valid, [sqlite3_step()] will still ** return [SQLITE_SCHEMA]. But unlike the legacy behavior, ** [SQLITE_SCHEMA] is now a fatal error. Calling ** [sqlite3_prepare_v2()] again will not make the ** error go away. Note: use [sqlite3_errmsg()] to find the text ** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} ** </li> ** ** <li> ** When an error occurs, ** [sqlite3_step()] will return one of the detailed ** [error codes] or [extended error codes]. ** The legacy behavior was that [sqlite3_step()] would only return a generic ** [SQLITE_ERROR] result code and you would have to make a second call to ** [sqlite3_reset()] in order to find the underlying cause of the problem. ** With the "v2" prepare interfaces, the underlying reason for the error is ** returned immediately. ** </li> ** </ol> ** ** INVARIANTS: ** ** {F13011} The [sqlite3_prepare(db,zSql,...)] and ** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the ** text in their zSql parameter as UTF-8. ** ** {F13012} The [sqlite3_prepare16(db,zSql,...)] and ** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the ** text in their zSql parameter as UTF-16 in the native byte order. ** ** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] ** and its variants is less than zero, then SQL text is ** read from zSql is read up to the first zero terminator. ** ** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] ** and its variants is non-negative, then nBytes bytes ** SQL text is read from zSql. ** ** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants ** if the zSql input text contains more than one SQL statement ** and pzTail is not NULL, then *pzTail is made to point to the ** first byte past the end of the first SQL statement in zSql. ** <todo>What does *pzTail point to if there is one statement?</todo> ** ** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)] ** or one of its variants writes into *ppStmt a pointer to a new ** [prepared statement] or a pointer to NULL ** if zSql contains nothing other than whitespace or comments. ** ** {F13019} The [sqlite3_prepare_v2()] interface and its variants return ** [SQLITE_OK] or an appropriate [error code] upon failure. */ int sqlite3_prepare( sqlite3 *db, /* Database handle */ const char *zSql, /* SQL statement, UTF-8 encoded */ int nByte, /* Maximum length of zSql in bytes. */ sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const char **pzTail /* OUT: Pointer to unused portion of zSql */ |
︙ | ︙ | |||
1732 1733 1734 1735 1736 1737 1738 | sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPIREF: Retrieving Statement SQL {F13100} ** | > > > > > | > | > | > | < < < < < > > | | | > > > | | | | | | | | < | > | | | | | | | | | | | | < | < | | | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | < | > > > | > > > > | < < > | | | | | | | > > > > > > > > > > > > > | > > > | > > > | | > > > > > > > | | > > > > > > | | > > > > > > > | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | < | | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > > > > > > > > > > > > > > > > > > > > > > | | | 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 | sqlite3_stmt **ppStmt, /* OUT: Statement handle */ const void **pzTail /* OUT: Pointer to unused portion of zSql */ ); /* ** CAPIREF: Retrieving Statement SQL {F13100} ** ** This intereface can be used to retrieve a saved copy of the original ** SQL text used to create a [prepared statement]. ** ** INVARIANTS: ** ** {F13101} If the [prepared statement] passed as ** the an argument to [sqlite3_sql()] was compiled ** compiled using either [sqlite3_prepare_v2()] or ** [sqlite3_prepare16_v2()], ** then [sqlite3_sql()] function returns a pointer to a ** zero-terminated string containing a UTF-8 rendering ** of the original SQL statement. ** ** {F13102} If the [prepared statement] passed as ** the an argument to [sqlite3_sql()] was compiled ** compiled using either [sqlite3_prepare()] or ** [sqlite3_prepare16()], ** then [sqlite3_sql()] function returns a NULL pointer. ** ** {F13103} The string returned by [sqlite3_sql(S)] is valid until the ** [prepared statement] S is deleted using [sqlite3_finalize(S)]. */ const char *sqlite3_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Dynamically Typed Value Object {F15000} ** ** SQLite uses the sqlite3_value object to represent all values ** that are or can be stored in a database table. ** SQLite uses dynamic typing for the values it stores. ** Values stored in sqlite3_value objects can be ** be integers, floating point values, strings, BLOBs, or NULL. */ typedef struct Mem sqlite3_value; /* ** CAPI3REF: SQL Function Context Object {F16001} ** ** The context in which an SQL function executes is stored in an ** sqlite3_context object. A pointer to an sqlite3_context ** object is always first parameter to application-defined SQL functions. */ typedef struct sqlite3_context sqlite3_context; /* ** CAPI3REF: Binding Values To Prepared Statements {F13500} ** ** In the SQL strings input to [sqlite3_prepare_v2()] and its ** variants, literals may be replace by a parameter in one ** of these forms: ** ** <ul> ** <li> ? ** <li> ?NNN ** <li> :VVV ** <li> @VVV ** <li> $VVV ** </ul> ** ** In the parameter forms shown above NNN is an integer literal, ** VVV alpha-numeric parameter name. ** The values of these parameters (also called "host parameter names" ** or "SQL parameters") ** can be set using the sqlite3_bind_*() routines defined here. ** ** The first argument to the sqlite3_bind_*() routines always ** is a pointer to the [sqlite3_stmt] object returned from ** [sqlite3_prepare_v2()] or its variants. The second ** argument is the index of the parameter to be set. The ** first parameter has an index of 1. When the same named ** parameter is used more than once, second and subsequent ** occurrences have the same index as the first occurrence. ** The index for named parameters can be looked up using the ** [sqlite3_bind_parameter_name()] API if desired. The index ** for "?NNN" parameters is the value of NNN. ** The NNN value must be between 1 and the compile-time ** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). ** See <a href="limits.html">limits.html</a> for additional information. ** ** The third argument is the value to bind to the parameter. ** ** In those ** routines that have a fourth argument, its value is the number of bytes ** in the parameter. To be clear: the value is the number of <u>bytes</u> ** in the value, not the number of characters. The number ** of bytes does not include the zero-terminator at the end of strings. ** If the fourth parameter is negative, the length of the string is ** number of bytes up to the first zero terminator. ** ** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and ** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or ** string after SQLite has finished with it. If the fifth argument is ** the special value [SQLITE_STATIC], then SQLite assumes that the ** information is in static, unmanaged space and does not need to be freed. ** If the fifth argument has the value [SQLITE_TRANSIENT], then ** SQLite makes its own private copy of the data immediately, before ** the sqlite3_bind_*() routine returns. ** ** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that ** is filled with zeros. A zeroblob uses a fixed amount of memory ** (just an integer to hold it size) while it is being processed. ** Zeroblobs are intended to serve as place-holders for BLOBs whose ** content is later written using ** [sqlite3_blob_open | increment BLOB I/O] routines. A negative ** value for the zeroblob results in a zero-length BLOB. ** ** The sqlite3_bind_*() routines must be called after ** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and ** before [sqlite3_step()]. ** Bindings are not cleared by the [sqlite3_reset()] routine. ** Unbound parameters are interpreted as NULL. ** ** These routines return [SQLITE_OK] on success or an error code if ** anything goes wrong. [SQLITE_RANGE] is returned if the parameter ** index is out of range. [SQLITE_NOMEM] is returned if malloc fails. ** [SQLITE_MISUSE] might be returned if these routines are called on a ** virtual machine that is the wrong state or which has already been finalized. ** Detection of misuse is unreliable. Applications should not depend ** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a ** a logic error in the application. Future versions of SQLite might ** panic rather than return SQLITE_MISUSE. ** ** See also: [sqlite3_bind_parameter_count()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. ** ** INVARIANTS: ** ** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes ** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV" ** as SQL parameters, where NNN is any sequence of one or more ** digits and where VVV is any sequence of one or more ** alphanumeric characters or "::" optionally followed by ** a string containing no spaces and contained within parentheses. ** ** {F13509} The initial value of an SQL parameter is NULL. ** ** {F13512} The index of an "?" SQL parameter is one larger than the ** largest index of SQL parameter to the left, or 1 if ** the "?" is the leftmost SQL parameter. ** ** {F13515} The index of an "?NNN" SQL parameter is the integer NNN. ** ** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is ** the same as the index of leftmost occurances of the same ** parameter, or one more than the largest index over all ** parameters to the left if this is the first occurrance ** of this parameter, or 1 if this is the leftmost parameter. ** ** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with ** an [SQLITE_RANGE] error if the index of an SQL parameter ** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER. ** ** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)] ** associate the value V with all SQL parameters having an ** index of N in the [prepared statement] S. ** ** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)] ** override prior calls with the same values of S and N. ** ** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)] ** persist across calls to [sqlite3_reset(S)]. ** ** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)], ** [sqlite3_bind_text(S,N,V,L,D)], or ** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L ** bytes of the blob or string pointed to by V, when L ** is non-negative. ** ** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or ** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters ** from V through the first zero character when L is negative. ** ** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)], ** [sqlite3_bind_text(S,N,V,L,D)], or ** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special ** constant [SQLITE_STATIC], SQLite assumes that the value V ** is held in static unmanaged space that will not change ** during the lifetime of the binding. ** ** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)], ** [sqlite3_bind_text(S,N,V,L,D)], or ** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special ** constant [SQLITE_TRANSIENT], the routine makes a ** private copy of V value before it returns. ** ** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)], ** [sqlite3_bind_text(S,N,V,L,D)], or ** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to ** a function, SQLite invokes that function to destroy the ** V value after it has finished using the V value. ** ** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound ** is a blob of L bytes, or a zero-length blob if L is negative. */ int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); int sqlite3_bind_double(sqlite3_stmt*, int, double); int sqlite3_bind_int(sqlite3_stmt*, int, int); int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); int sqlite3_bind_null(sqlite3_stmt*, int); int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); /* ** CAPI3REF: Number Of SQL Parameters {F13600} ** ** This routine can be used to find the number of SQL parameters ** in a prepared statement. SQL parameters are tokens of the ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as ** place-holders for values that are [sqlite3_bind_blob | bound] ** to the parameters at a later time. ** ** This routine actually returns the index of the largest parameter. ** For all forms except ?NNN, this will correspond to the number of ** unique parameters. If parameters of the ?NNN are used, there may ** be gaps in the list. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_name()], and ** [sqlite3_bind_parameter_index()]. ** ** INVARIANTS: ** ** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns ** the largest index of all SQL parameters in the ** [prepared statement] S, or 0 if S ** contains no SQL parameters. */ int sqlite3_bind_parameter_count(sqlite3_stmt*); /* ** CAPI3REF: Name Of A Host Parameter {F13620} ** ** This routine returns a pointer to the name of the n-th ** SQL parameter in a [prepared statement]. ** SQL parameters of the form ":AAA" or "@AAA" or "$AAA" have a name ** which is the string ":AAA" or "@AAA" or "$VVV". ** In other words, the initial ":" or "$" or "@" ** is included as part of the name. ** Parameters of the form "?" or "?NNN" have no name. ** ** The first host parameter has an index of 1, not 0. ** ** If the value n is out of range or if the n-th parameter is ** nameless, then NULL is returned. The returned string is ** always in the UTF-8 encoding even if the named parameter was ** originally specified as UTF-16 in [sqlite3_prepare16()] or ** [sqlite3_prepare16_v2()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. ** ** INVARIANTS: ** ** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns ** a UTF-8 rendering of the name of the SQL parameter in ** [prepared statement] S having index N, or ** NULL if there is no SQL parameter with index N or if the ** parameter with index N is an anonymous parameter "?" or ** a numbered parameter "?NNN". */ const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); /* ** CAPI3REF: Index Of A Parameter With A Given Name {F13640} ** ** Return the index of an SQL parameter given its name. The ** index value returned is suitable for use as the second ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero ** is returned if no matching parameter is found. The parameter ** name must be given in UTF-8 even if the original statement ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. ** ** See also: [sqlite3_bind_blob|sqlite3_bind()], ** [sqlite3_bind_parameter_count()], and ** [sqlite3_bind_parameter_index()]. ** ** INVARIANTS: ** ** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns ** the index of SQL parameter in [prepared statement] ** S whose name matches the UTF-8 string N, or 0 if there is ** no match. */ int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); /* ** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} ** ** Contrary to the intuition of many, [sqlite3_reset()] does not ** reset the [sqlite3_bind_blob | bindings] on a ** [prepared statement]. Use this routine to ** reset all host parameters to NULL. ** ** INVARIANTS: ** ** {F13661} The [sqlite3_clear_bindings(S)] interface resets all ** SQL parameter bindings in [prepared statement] S ** back to NULL. */ int sqlite3_clear_bindings(sqlite3_stmt*); /* ** CAPI3REF: Number Of Columns In A Result Set {F13710} ** ** Return the number of columns in the result set returned by the ** [prepared statement]. This routine returns 0 ** if pStmt is an SQL statement that does not return data (for ** example an UPDATE). ** ** INVARIANTS: ** ** {F13711} The [sqlite3_column_count(S)] interface returns the number of ** columns in the result set generated by the ** [prepared statement] S, or 0 if S does not generate ** a result set. */ int sqlite3_column_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Column Names In A Result Set {F13720} ** ** These routines return the name assigned to a particular column ** in the result set of a SELECT statement. The sqlite3_column_name() ** interface returns a pointer to a zero-terminated UTF8 string ** and sqlite3_column_name16() returns a pointer to a zero-terminated ** UTF16 string. The first parameter is the ** [prepared statement] that implements the SELECT statement. ** The second parameter is the column number. The left-most column is ** number 0. ** ** The returned string pointer is valid until either the ** [prepared statement] is destroyed by [sqlite3_finalize()] ** or until the next call sqlite3_column_name() or sqlite3_column_name16() ** on the same column. ** ** If sqlite3_malloc() fails during the processing of either routine ** (for example during a conversion from UTF-8 to UTF-16) then a ** NULL pointer is returned. ** ** The name of a result column is the value of the "AS" clause for ** that column, if there is an AS clause. If there is no AS clause ** then the name of the column is unspecified and may change from ** one release of SQLite to the next. ** ** INVARIANTS: ** ** {F13721} A successful invocation of the [sqlite3_column_name(S,N)] ** interface returns the name ** of the Nth column (where 0 is the left-most column) for the ** result set of [prepared statement] S as a ** zero-terminated UTF-8 string. ** ** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)] ** interface returns the name ** of the Nth column (where 0 is the left-most column) for the ** result set of [prepared statement] S as a ** zero-terminated UTF-16 string in the native byte order. ** ** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()] ** interfaces return a NULL pointer if they are unable to ** allocate memory memory to hold there normal return strings. ** ** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or ** [sqlite3_column_name16(S,N)] is out of range, then the ** interfaces returns a NULL pointer. ** ** {F13726} The strings returned by [sqlite3_column_name(S,N)] and ** [sqlite3_column_name16(S,N)] are valid until the next ** call to either routine with the same S and N parameters ** or until [sqlite3_finalize(S)] is called. ** ** {F13727} When a result column of a [SELECT] statement contains ** an AS clause, the name of that column is the indentifier ** to the right of the AS keyword. */ const char *sqlite3_column_name(sqlite3_stmt*, int N); const void *sqlite3_column_name16(sqlite3_stmt*, int N); /* ** CAPI3REF: Source Of Data In A Query Result {F13740} ** ** These routines provide a means to determine what column of what ** table in which database a result of a SELECT statement comes from. ** The name of the database or table or column can be returned as ** either a UTF8 or UTF16 string. The _database_ routines return ** the database name, the _table_ routines return the table name, and ** the origin_ routines return the column name. ** The returned string is valid until ** the [prepared statement] is destroyed using ** [sqlite3_finalize()] or until the same information is requested ** again in a different encoding. ** ** The names returned are the original un-aliased names of the ** database, table, and column. ** ** The first argument to the following calls is a [prepared statement]. ** These functions return information about the Nth column returned by ** the statement, where N is the second function argument. ** ** If the Nth column returned by the statement is an expression ** or subquery and is not a column value, then all of these functions ** return NULL. These routine might also return NULL if a memory ** allocation error occurs. Otherwise, they return the ** name of the attached database, table and column that query result ** column was extracted from. ** ** As with all other SQLite APIs, those postfixed with "16" return ** UTF-16 encoded strings, the other functions return UTF-8. {END} ** ** These APIs are only available if the library was compiled with the ** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. ** ** {U13751} ** If two or more threads call one or more of these routines against the same ** prepared statement and column at the same time then the results are ** undefined. ** ** INVARIANTS: ** ** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either ** the UTF-8 zero-terminated name of the database from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either ** the UTF-16 native byte order ** zero-terminated name of the database from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either ** the UTF-8 zero-terminated name of the table from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either ** the UTF-16 native byte order ** zero-terminated name of the table from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either ** the UTF-8 zero-terminated name of the table column from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either ** the UTF-16 native byte order ** zero-terminated name of the table column from which the ** Nth result column of [prepared statement] S ** is extracted, or NULL if the the Nth column of S is a ** general expression or if unable to allocate memory ** to store the name. ** ** {F13748} The return values from ** [sqlite3_column_database_name|column metadata interfaces] ** are valid ** for the lifetime of the [prepared statement] ** or until the encoding is changed by another metadata ** interface call for the same prepared statement and column. ** ** LIMITATIONS: ** ** {U13751} If two or more threads call one or more ** [sqlite3_column_database_name|column metadata interfaces] ** the same [prepared statement] and result column ** at the same time then the results are undefined. */ const char *sqlite3_column_database_name(sqlite3_stmt*,int); const void *sqlite3_column_database_name16(sqlite3_stmt*,int); const char *sqlite3_column_table_name(sqlite3_stmt*,int); const void *sqlite3_column_table_name16(sqlite3_stmt*,int); const char *sqlite3_column_origin_name(sqlite3_stmt*,int); const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); /* ** CAPI3REF: Declared Datatype Of A Query Result {F13760} ** ** The first parameter is a [prepared statement]. ** If this statement is a SELECT statement and the Nth column of the ** returned result set of that SELECT is a table column (not an ** expression or subquery) then the declared type of the table ** column is returned. If the Nth column of the result set is an ** expression or subquery, then a NULL pointer is returned. ** The returned string is always UTF-8 encoded. {END} ** For example, in the database schema: ** ** CREATE TABLE t1(c1 VARIANT); ** ** And the following statement compiled: ** ** SELECT c1 + 1, c1 FROM t1; ** ** Then this routine would return the string "VARIANT" for the second ** result column (i==1), and a NULL pointer for the first result column ** (i==0). ** ** SQLite uses dynamic run-time typing. So just because a column ** is declared to contain a particular type does not mean that the ** data stored in that column is of the declared type. SQLite is ** strongly typed, but the typing is dynamic not static. Type ** is associated with individual values, not with the containers ** used to hold those values. ** ** INVARIANTS: ** ** {F13761} A successful call to [sqlite3_column_decltype(S,N)] ** returns a zero-terminated UTF-8 string containing the ** the declared datatype of the table column that appears ** as the Nth column (numbered from 0) of the result set to the ** [prepared statement] S. ** ** {F13762} A successful call to [sqlite3_column_decltype16(S,N)] ** returns a zero-terminated UTF-16 native byte order string ** containing the declared datatype of the table column that appears ** as the Nth column (numbered from 0) of the result set to the ** [prepared statement] S. ** ** {F13763} If N is less than 0 or N is greater than or equal to ** the number of columns in [prepared statement] S ** or if the Nth column of S is an expression or subquery rather ** than a table column or if a memory allocation failure ** occurs during encoding conversions, then ** calls to [sqlite3_column_decltype(S,N)] or ** [sqlite3_column_decltype16(S,N)] return NULL. */ const char *sqlite3_column_decltype(sqlite3_stmt*,int); const void *sqlite3_column_decltype16(sqlite3_stmt*,int); /* ** CAPI3REF: Evaluate An SQL Statement {F13200} ** ** After an [prepared statement] has been prepared with a call ** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of ** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], ** then this function must be called one or more times to evaluate the ** statement. ** ** The details of the behavior of this sqlite3_step() interface depend ** on whether the statement was prepared using the newer "v2" interface |
︙ | ︙ | |||
2075 2076 2077 2078 2079 2080 2081 | ** ** [SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. ** With the legacy interface, a more specific error code (example: ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > | | | | > > | > | 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 | ** ** [SQLITE_ERROR] means that a run-time error (such as a constraint ** violation) has occurred. sqlite3_step() should not be called again on ** the VM. More information may be found by calling [sqlite3_errmsg()]. ** With the legacy interface, a more specific error code (example: ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) ** can be obtained by calling [sqlite3_reset()] on the ** [prepared statement]. In the "v2" interface, ** the more specific error code is returned directly by sqlite3_step(). ** ** [SQLITE_MISUSE] means that the this routine was called inappropriately. ** Perhaps it was called on a [prepared statement] that has ** already been [sqlite3_finalize | finalized] or on one that had ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could ** be the case that the same database connection is being used by two or ** more threads at the same moment in time. ** ** <b>Goofy Interface Alert:</b> ** In the legacy interface, ** the sqlite3_step() API always returns a generic error code, ** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] ** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or ** [sqlite3_finalize()] in order to find one of the specific ** [error codes] that better describes the error. ** We admit that this is a goofy design. The problem has been fixed ** with the "v2" interface. If you prepare all of your SQL statements ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the ** more specific [error codes] are returned directly ** by sqlite3_step(). The use of the "v2" interface is recommended. ** ** INVARIANTS: ** ** {F13202} If [prepared statement] S is ready to be ** run, then [sqlite3_step(S)] advances that prepared statement ** until to completion or until it is ready to return another ** row of the result set or an interrupt or run-time error occurs. ** ** {F15304} When a call to [sqlite3_step(S)] causes the ** [prepared statement] S to run to completion, ** the function returns [SQLITE_DONE]. ** ** {F15306} When a call to [sqlite3_step(S)] stops because it is ready ** to return another row of the result set, it returns ** [SQLITE_ROW]. ** ** {F15308} If a call to [sqlite3_step(S)] encounters an ** [sqlite3_interrupt|interrupt] or a run-time error, ** it returns an appropraite error code that is not one of ** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE]. ** ** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error ** occurs during a call to [sqlite3_step(S)] ** for a [prepared statement] S created using ** legacy interfaces [sqlite3_prepare()] or ** [sqlite3_prepare16()] then the function returns either ** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE]. */ int sqlite3_step(sqlite3_stmt*); /* ** CAPI3REF: Number of columns in a result set {F13770} ** ** Return the number of values in the current row of the result set. ** ** INVARIANTS: ** ** {F13771} After a call to [sqlite3_step(S)] that returns ** [SQLITE_ROW], the [sqlite3_data_count(S)] routine ** will return the same value as the ** [sqlite3_column_count(S)] function. ** ** {F13772} After [sqlite3_step(S)] has returned any value other than ** [SQLITE_ROW] or before [sqlite3_step(S)] has been ** called on the [prepared statement] for ** the first time since it was [sqlite3_prepare|prepared] ** or [sqlite3_reset|reset], the [sqlite3_data_count(S)] ** routine returns zero. */ int sqlite3_data_count(sqlite3_stmt *pStmt); /* ** CAPI3REF: Fundamental Datatypes {F10265} ** KEYWORDS: SQLITE_TEXT ** ** {F10266}Every value in SQLite has one of five fundamental datatypes: ** ** <ul> ** <li> 64-bit signed integer ** <li> 64-bit IEEE floating point number ** <li> string |
︙ | ︙ | |||
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 | # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Results Values From A Query {F13800} ** ** These routines return information about ** a single column of the current result row of a query. In every ** case the first argument is a pointer to the | > > | | 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 | # define SQLITE_TEXT 3 #endif #define SQLITE3_TEXT 3 /* ** CAPI3REF: Results Values From A Query {F13800} ** ** These routines form the "result set query" interface. ** ** These routines return information about ** a single column of the current result row of a query. In every ** case the first argument is a pointer to the ** [prepared statement] that is being ** evaluated (the [sqlite3_stmt*] that was returned from ** [sqlite3_prepare_v2()] or one of its variants) and ** the second argument is the index of the column for which information ** should be returned. The left-most column of the result set ** has an index of 0. ** ** If the SQL statement is not currently point to a valid row, or if the |
︙ | ︙ | |||
2195 2196 2197 2198 2199 2200 2201 | ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns ** the number of bytes in that string. ** The value returned does not include the zero terminator at the end ** of the string. For clarity: the value returned is the number of ** bytes in the string, not the number of characters. ** ** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), | | | | 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 | ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns ** the number of bytes in that string. ** The value returned does not include the zero terminator at the end ** of the string. For clarity: the value returned is the number of ** bytes in the string, not the number of characters. ** ** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), ** even empty strings, are always zero terminated. The return ** value from sqlite3_column_blob() for a zero-length blob is an arbitrary ** pointer, possibly even a NULL pointer. ** ** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() ** but leaves the result in UTF-16 in native byte order instead of UTF-8. ** The zero terminator is not included in this count. ** ** These routines attempt to convert the value where appropriate. For ** example, if the internal representation is FLOAT and a text result ** is requested, [sqlite3_snprintf()] is used internally to do the conversion ** automatically. The following table details the conversions that ** are applied: |
︙ | ︙ | |||
2308 2309 2310 2311 2312 2313 2314 | int sqlite3_column_type(sqlite3_stmt*, int iCol); sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object {F13300} ** ** The sqlite3_finalize() function is called to delete a | | | | | > > > > > > > > > > | > > > > > > > > > > > > > > > | | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 | int sqlite3_column_type(sqlite3_stmt*, int iCol); sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); /* ** CAPI3REF: Destroy A Prepared Statement Object {F13300} ** ** The sqlite3_finalize() function is called to delete a ** [prepared statement]. If the statement was ** executed successfully, or not executed at all, then SQLITE_OK is returned. ** If execution of the statement failed then an ** [error code] or [extended error code] ** is returned. ** ** This routine can be called at any point during the execution of the ** [prepared statement]. If the virtual machine has not ** completed execution when this routine is called, that is like ** encountering an error or an interrupt. (See [sqlite3_interrupt()].) ** Incomplete updates may be rolled back and transactions cancelled, ** depending on the circumstances, and the ** [error code] returned will be [SQLITE_ABORT]. ** ** INVARIANTS: ** ** {F11302} The [sqlite3_finalize(S)] interface destroys the ** [prepared statement] S and releases all ** memory and file resources held by that object. ** ** {F11304} If the most recent call to [sqlite3_step(S)] for the ** [prepared statement] S returned an error, ** then [sqlite3_finalize(S)] returns that same error. */ int sqlite3_finalize(sqlite3_stmt *pStmt); /* ** CAPI3REF: Reset A Prepared Statement Object {F13330} ** ** The sqlite3_reset() function is called to reset a ** [prepared statement] object. ** back to its initial state, ready to be re-executed. ** Any SQL statement variables that had values bound to them using ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. ** Use [sqlite3_clear_bindings()] to reset the bindings. ** ** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S ** back to the beginning of its program. ** ** {F11334} If the most recent call to [sqlite3_step(S)] for ** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], ** or if [sqlite3_step(S)] has never before been called on S, ** then [sqlite3_reset(S)] returns [SQLITE_OK]. ** ** {F11336} If the most recent call to [sqlite3_step(S)] for ** [prepared statement] S indicated an error, then ** [sqlite3_reset(S)] returns an appropriate [error code]. ** ** {F11338} The [sqlite3_reset(S)] interface does not change the values ** of any [sqlite3_bind_blob|bindings] on [prepared statement] S. */ int sqlite3_reset(sqlite3_stmt *pStmt); /* ** CAPI3REF: Create Or Redefine SQL Functions {F16100} ** ** The following two functions are used to add SQL functions or aggregates ** or to redefine the behavior of existing SQL functions or aggregates. The ** difference only between the two is that the second parameter, the ** name of the (scalar) function or aggregate, is encoded in UTF-8 for ** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). ** ** The first argument is the [database connection] that holds the ** SQL function or aggregate is to be added or redefined. If a single ** program uses more than one database handle internally, then SQL ** functions or aggregates must be added individually to each database ** handle with which they will be used. ** ** The second parameter is the name of the SQL function to be created ** or redefined. |
︙ | ︙ | |||
2395 2396 2397 2398 2399 2400 2401 | ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing perferred text encodings. SQLite will use ** the implementation most closely matches the way in which the ** SQL function is used. */ int sqlite3_create_function( | | | | | | 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 | ** It is permitted to register multiple implementations of the same ** functions with the same name but with either differing numbers of ** arguments or differing perferred text encodings. SQLite will use ** the implementation most closely matches the way in which the ** SQL function is used. */ int sqlite3_create_function( sqlite3 *db, const char *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); int sqlite3_create_function16( sqlite3 *db, const void *zFunctionName, int nArg, int eTextRep, void *pApp, void (*xFunc)(sqlite3_context*,int,sqlite3_value**), void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*) ); /* ** CAPI3REF: Text Encodings {F10267} |
︙ | ︙ | |||
2754 2755 2756 2757 2758 2759 2760 | ** {F16611} Each time the application ** supplied function is invoked, it is passed a copy of the void* passed as ** the fourth argument to sqlite3_create_collation() or ** sqlite3_create_collation16() as its first parameter. ** ** {F16612} ** The remaining arguments to the application-supplied routine are two strings, | | | 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 | ** {F16611} Each time the application ** supplied function is invoked, it is passed a copy of the void* passed as ** the fourth argument to sqlite3_create_collation() or ** sqlite3_create_collation16() as its first parameter. ** ** {F16612} ** The remaining arguments to the application-supplied routine are two strings, ** each represented by a (length, data) pair and encoded in the encoding ** that was passed as the third argument when the collation sequence was ** registered. {END} The application defined collation routine should ** return negative, zero or positive if ** the first string is less than, equal to, or greater than the second ** string. i.e. (STRING1 - STRING2). ** ** {F16615} |
︙ | ︙ | |||
2895 2896 2897 2898 2899 2900 2901 | ** routines have been call and remain unchanged thereafter. */ SQLITE_EXTERN char *sqlite3_temp_directory; /* ** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} ** | | | | | | | > > > > > > > > > > > > > > > > | | | | 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 | ** routines have been call and remain unchanged thereafter. */ SQLITE_EXTERN char *sqlite3_temp_directory; /* ** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} ** ** The sqlite3_get_autocommit() interfaces returns non-zero or ** zero if the given database connection is or is not in autocommit mode, ** respectively. Autocommit mode is on ** by default. Autocommit mode is disabled by a [BEGIN] statement. ** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK]. ** ** If certain kinds of errors occur on a statement within a multi-statement ** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the ** transaction might be rolled back automatically. The only way to ** find out if SQLite automatically rolled back the transaction after ** an error is to use this function. ** ** INVARIANTS: ** ** {F12931} The [sqlite3_get_autocommit()] interface returns non-zero or ** zero if the given database connection is or is not in autocommit ** mode, respectively. ** ** {F12932} Autocommit mode is on by default. ** ** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement. ** ** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK] ** statement. ** ** ** LIMITATIONS: *** ** {U12936} If another thread changes the autocommit status of the database ** connection while this routine is running, then the return value ** is undefined. */ int sqlite3_get_autocommit(sqlite3*); /* ** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} ** ** {F13121} The sqlite3_db_handle interface ** returns the [sqlite3*] database handle to which a ** [prepared statement] belongs. ** {F13122} the database handle returned by sqlite3_db_handle ** is the same database handle that was ** the first argument to the [sqlite3_prepare_v2()] or its variants ** that was used to create the statement in the first place. */ sqlite3 *sqlite3_db_handle(sqlite3_stmt*); |
︙ | ︙ | |||
3024 3025 3026 3027 3028 3029 3030 | ** that was in effect at the time they were opened. {END} ** ** Virtual tables cannot be used with a shared cache. {F10336} When shared ** cache is enabled, the [sqlite3_create_module()] API used to register ** virtual tables will always return an error. {END} ** ** {F10337} This routine returns [SQLITE_OK] if shared cache was | | | 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 | ** that was in effect at the time they were opened. {END} ** ** Virtual tables cannot be used with a shared cache. {F10336} When shared ** cache is enabled, the [sqlite3_create_module()] API used to register ** virtual tables will always return an error. {END} ** ** {F10337} This routine returns [SQLITE_OK] if shared cache was ** enabled or disabled successfully. {F10338} An [error code] ** is returned otherwise. {END} ** ** {F10339} Shared cache is disabled by default. {END} But this might change in ** future releases of SQLite. Applications that care about shared ** cache setting should set it explicitly. */ int sqlite3_enable_shared_cache(int); |
︙ | ︙ | |||
3571 3572 3573 3574 3575 3576 3577 | ** z from the open blob, starting at offset iOffset. ** ** {F17852} If offset iOffset is less than n bytes from the end of the blob, ** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is ** less than zero [SQLITE_ERROR] is returned and no data is read. ** ** {F17854} On success, SQLITE_OK is returned. Otherwise, an | < | | 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 | ** z from the open blob, starting at offset iOffset. ** ** {F17852} If offset iOffset is less than n bytes from the end of the blob, ** [SQLITE_ERROR] is returned and no data is read. {F17853} If n is ** less than zero [SQLITE_ERROR] is returned and no data is read. ** ** {F17854} On success, SQLITE_OK is returned. Otherwise, an ** [error code] or an [extended error code] is returned. */ int sqlite3_blob_read(sqlite3_blob *, void *z, int n, int iOffset); /* ** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} ** ** This function is used to write data into an open |
︙ | ︙ | |||
3595 3596 3597 3598 3599 3600 3601 | ** {F17873} This function may only modify the contents of the blob; it is ** not possible to increase the size of a blob using this API. ** {F17874} If offset iOffset is less than n bytes from the end of the blob, ** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is ** less than zero [SQLITE_ERROR] is returned and no data is written. ** ** {F17876} On success, SQLITE_OK is returned. Otherwise, an | < | | 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 | ** {F17873} This function may only modify the contents of the blob; it is ** not possible to increase the size of a blob using this API. ** {F17874} If offset iOffset is less than n bytes from the end of the blob, ** [SQLITE_ERROR] is returned and no data is written. {F17875} If n is ** less than zero [SQLITE_ERROR] is returned and no data is written. ** ** {F17876} On success, SQLITE_OK is returned. Otherwise, an ** [error code] or an [extended error code] is returned. */ int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); /* ** CAPI3REF: Virtual File System Objects {F11200} ** ** A virtual filesystem (VFS) is an [sqlite3_vfs] object |
︙ | ︙ |