1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
| /*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
*/
#include "sqliteInt.h"
#include <stdarg.h>
#ifndef SQLITE_OMIT_FLOATING_POINT
#include <math.h>
#endif
/*
** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
** or to bypass normal error detection during testing in order to let
** execute proceed further downstream.
**
** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
** sqlite3FaultSim() function only returns non-zero during testing.
**
** During testing, if the test harness has set a fault-sim callback using
** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
** each call to sqlite3FaultSim() is relayed to that application-supplied
** callback and the integer return value form the application-supplied
** callback is returned by sqlite3FaultSim().
**
** The integer argument to sqlite3FaultSim() is a code to identify which
** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
** should have a unique code. To prevent legacy testing applications from
** breaking, the codes should not be changed or reused.
*/
#ifndef SQLITE_UNTESTABLE
int sqlite3FaultSim(int iTest){
int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
return xCallback ? xCallback(iTest) : SQLITE_OK;
}
#endif
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is Not a Number (NaN).
**
** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
** Otherwise, we have our own implementation that works on most systems.
*/
int sqlite3IsNaN(double x){
int rc; /* The value return */
#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
u64 y;
memcpy(&y,&x,sizeof(y));
rc = IsNaN(y);
#else
rc = isnan(x);
#endif /* HAVE_ISNAN */
testcase( rc );
return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is NaN or +Inf or -Inf.
*/
int sqlite3IsOverflow(double x){
int rc; /* The value return */
u64 y;
memcpy(&y,&x,sizeof(y));
rc = IsOvfl(y);
return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
**
** The value returned will never be negative. Nor will it ever be greater
** than the actual length of the string. For very long strings (greater
** than 1GiB) the value returned might be less than the true string length.
*/
int sqlite3Strlen30(const char *z){
if( z==0 ) return 0;
return 0x3fffffff & (int)strlen(z);
}
/*
** Return the declared type of a column. Or return zDflt if the column
** has no declared type.
**
** The column type is an extra string stored after the zero-terminator on
** the column name if and only if the COLFLAG_HASTYPE flag is set.
*/
char *sqlite3ColumnType(Column *pCol, char *zDflt){
if( pCol->colFlags & COLFLAG_HASTYPE ){
return pCol->zCnName + strlen(pCol->zCnName) + 1;
}else if( pCol->eCType ){
assert( pCol->eCType<=SQLITE_N_STDTYPE );
return (char*)sqlite3StdType[pCol->eCType-1];
}else{
return zDflt;
}
}
/*
** Helper function for sqlite3Error() - called rarely. Broken out into
** a separate routine to avoid unnecessary register saves on entry to
** sqlite3Error().
*/
static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
if( db->pErr ) sqlite3ValueSetNull(db->pErr);
sqlite3SystemError(db, err_code);
}
/*
** Set the current error code to err_code and clear any prior error message.
** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
** that would be appropriate.
*/
void sqlite3Error(sqlite3 *db, int err_code){
assert( db!=0 );
db->errCode = err_code;
if( err_code || db->pErr ){
sqlite3ErrorFinish(db, err_code);
}else{
db->errByteOffset = -1;
}
}
/*
** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
** and error message.
*/
void sqlite3ErrorClear(sqlite3 *db){
assert( db!=0 );
db->errCode = SQLITE_OK;
db->errByteOffset = -1;
if( db->pErr ) sqlite3ValueSetNull(db->pErr);
}
/*
** Load the sqlite3.iSysErrno field if that is an appropriate thing
** to do based on the SQLite error code in rc.
*/
void sqlite3SystemError(sqlite3 *db, int rc){
if( rc==SQLITE_IOERR_NOMEM ) return;
#if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
if( rc==SQLITE_IOERR_IN_PAGE ){
int ii;
int iErr;
sqlite3BtreeEnterAll(db);
for(ii=0; ii<db->nDb; ii++){
if( db->aDb[ii].pBt ){
iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
if( iErr ){
db->iSysErrno = iErr;
}
}
}
sqlite3BtreeLeaveAll(db);
return;
}
#endif
rc &= 0xff;
if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
}
}
/*
** Set the most recent error code and error string for the sqlite
** handle "db". The error code is set to "err_code".
**
** If it is not NULL, string zFormat specifies the format of the
** error string. zFormat and any string tokens that follow it are
** assumed to be encoded in UTF-8.
**
** To clear the most recent error for sqlite handle "db", sqlite3Error
** should be called with err_code set to SQLITE_OK and zFormat set
** to NULL.
*/
void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
assert( db!=0 );
db->errCode = err_code;
sqlite3SystemError(db, err_code);
if( zFormat==0 ){
sqlite3Error(db, err_code);
}else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
char *z;
va_list ap;
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
}
}
/*
** Check for interrupts and invoke progress callback.
*/
void sqlite3ProgressCheck(Parse *p){
sqlite3 *db = p->db;
if( AtomicLoad(&db->u1.isInterrupted) ){
p->nErr++;
p->rc = SQLITE_INTERRUPT;
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( db->xProgress ){
if( p->rc==SQLITE_INTERRUPT ){
p->nProgressSteps = 0;
}else if( (++p->nProgressSteps)>=db->nProgressOps ){
if( db->xProgress(db->pProgressArg) ){
p->nErr++;
p->rc = SQLITE_INTERRUPT;
}
p->nProgressSteps = 0;
}
}
#endif
}
/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
**
** This function should be used to report any error that occurs while
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
** last thing the sqlite3_prepare() function does is copy the error
** stored by this function into the database handle using sqlite3Error().
** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
** during statement execution (sqlite3_step() etc.).
*/
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
char *zMsg;
va_list ap;
sqlite3 *db = pParse->db;
assert( db!=0 );
assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
db->errByteOffset = -2;
va_start(ap, zFormat);
zMsg = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
if( db->errByteOffset<-1 ) db->errByteOffset = -1;
if( db->suppressErr ){
sqlite3DbFree(db, zMsg);
if( db->mallocFailed ){
pParse->nErr++;
pParse->rc = SQLITE_NOMEM;
}
}else{
pParse->nErr++;
sqlite3DbFree(db, pParse->zErrMsg);
pParse->zErrMsg = zMsg;
pParse->rc = SQLITE_ERROR;
pParse->pWith = 0;
}
}
/*
** If database connection db is currently parsing SQL, then transfer
** error code errCode to that parser if the parser has not already
** encountered some other kind of error.
*/
int sqlite3ErrorToParser(sqlite3 *db, int errCode){
Parse *pParse;
if( db==0 || (pParse = db->pParse)==0 ) return errCode;
pParse->rc = errCode;
pParse->nErr++;
return errCode;
}
/*
** Convert an SQL-style quoted string into a normal string by removing
** the quote characters. The conversion is done in-place. If the
** input does not begin with a quote character, then this routine
** is a no-op.
**
** The input string must be zero-terminated. A new zero-terminator
** is added to the dequoted string.
**
** The return value is -1 if no dequoting occurs or the length of the
** dequoted string, exclusive of the zero terminator, if dequoting does
** occur.
**
** 2002-02-14: This routine is extended to remove MS-Access style
** brackets from around identifiers. For example: "[a-b-c]" becomes
** "a-b-c".
*/
void sqlite3Dequote(char *z){
char quote;
int i, j;
if( z==0 ) return;
quote = z[0];
if( !sqlite3Isquote(quote) ) return;
if( quote=='[' ) quote = ']';
for(i=1, j=0;; i++){
assert( z[i] );
if( z[i]==quote ){
if( z[i+1]==quote ){
z[j++] = quote;
i++;
}else{
break;
}
}else{
z[j++] = z[i];
}
}
z[j] = 0;
}
void sqlite3DequoteExpr(Expr *p){
assert( !ExprHasProperty(p, EP_IntValue) );
assert( sqlite3Isquote(p->u.zToken[0]) );
p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
sqlite3Dequote(p->u.zToken);
}
/*
** Expression p is a QNUMBER (quoted number). Dequote the value in p->u.zToken
** and set the type to INTEGER or FLOAT. "Quoted" integers or floats are those
** that contain '_' characters that must be removed before further processing.
*/
void sqlite3DequoteNumber(Parse *pParse, Expr *p){
assert( p!=0 || pParse->db->mallocFailed );
if( p ){
const char *pIn = p->u.zToken;
char *pOut = p->u.zToken;
int bHex = (pIn[0]=='0' && (pIn[1]=='x' || pIn[1]=='X'));
int iValue;
assert( p->op==TK_QNUMBER );
p->op = TK_INTEGER;
do {
if( *pIn!=SQLITE_DIGIT_SEPARATOR ){
*pOut++ = *pIn;
if( *pIn=='e' || *pIn=='E' || *pIn=='.' ) p->op = TK_FLOAT;
}else{
if( (bHex==0 && (!sqlite3Isdigit(pIn[-1]) || !sqlite3Isdigit(pIn[1])))
|| (bHex==1 && (!sqlite3Isxdigit(pIn[-1]) || !sqlite3Isxdigit(pIn[1])))
){
sqlite3ErrorMsg(pParse, "unrecognized token: \"%s\"", p->u.zToken);
}
}
}while( *pIn++ );
if( bHex ) p->op = TK_INTEGER;
/* tag-20240227-a: If after dequoting, the number is an integer that
** fits in 32 bits, then it must be converted into EP_IntValue. Other
** parts of the code expect this. See also tag-20240227-b. */
if( p->op==TK_INTEGER && sqlite3GetInt32(p->u.zToken, &iValue) ){
p->u.iValue = iValue;
p->flags |= EP_IntValue;
}
}
}
/*
** If the input token p is quoted, try to adjust the token to remove
** the quotes. This is not always possible:
**
** "abc" -> abc
** "ab""cd" -> (not possible because of the interior "")
**
** Remove the quotes if possible. This is a optimization. The overall
** system should still return the correct answer even if this routine
** is always a no-op.
*/
void sqlite3DequoteToken(Token *p){
unsigned int i;
if( p->n<2 ) return;
if( !sqlite3Isquote(p->z[0]) ) return;
for(i=1; i<p->n-1; i++){
if( sqlite3Isquote(p->z[i]) ) return;
}
p->n -= 2;
p->z++;
}
/*
** Generate a Token object from a string
*/
void sqlite3TokenInit(Token *p, char *z){
p->z = z;
p->n = sqlite3Strlen30(z);
}
/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower
/*
** Some systems have stricmp(). Others have strcasecmp(). Because
** there is no consistency, we will define our own.
**
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
int sqlite3_stricmp(const char *zLeft, const char *zRight){
if( zLeft==0 ){
return zRight ? -1 : 0;
}else if( zRight==0 ){
return 1;
}
return sqlite3StrICmp(zLeft, zRight);
}
int sqlite3StrICmp(const char *zLeft, const char *zRight){
unsigned char *a, *b;
int c, x;
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
for(;;){
c = *a;
x = *b;
if( c==x ){
if( c==0 ) break;
}else{
c = (int)UpperToLower[c] - (int)UpperToLower[x];
if( c ) break;
}
a++;
b++;
}
return c;
}
int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
register unsigned char *a, *b;
if( zLeft==0 ){
return zRight ? -1 : 0;
}else if( zRight==0 ){
return 1;
}
a = (unsigned char *)zLeft;
b = (unsigned char *)zRight;
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}
/*
** Compute an 8-bit hash on a string that is insensitive to case differences
*/
u8 sqlite3StrIHash(const char *z){
u8 h = 0;
if( z==0 ) return 0;
while( z[0] ){
h += UpperToLower[(unsigned char)z[0]];
z++;
}
return h;
}
/* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
**
** Reference:
** T. J. Dekker, "A Floating-Point Technique for Extending the
** Available Precision". 1971-07-26.
*/
static void dekkerMul2(volatile double *x, double y, double yy){
/*
** The "volatile" keywords on parameter x[] and on local variables
** below are needed force intermediate results to be truncated to
** binary64 rather than be carried around in an extended-precision
** format. The truncation is necessary for the Dekker algorithm to
** work. Intel x86 floating point might omit the truncation without
** the use of volatile.
*/
volatile double tx, ty, p, q, c, cc;
double hx, hy;
u64 m;
memcpy(&m, (void*)&x[0], 8);
m &= 0xfffffffffc000000LL;
memcpy(&hx, &m, 8);
tx = x[0] - hx;
memcpy(&m, &y, 8);
m &= 0xfffffffffc000000LL;
memcpy(&hy, &m, 8);
ty = y - hy;
p = hx*hy;
q = hx*ty + tx*hy;
c = p+q;
cc = p - c + q + tx*ty;
cc = x[0]*yy + x[1]*y + cc;
x[0] = c + cc;
x[1] = c - x[0];
x[1] += cc;
}
/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc. The string is not necessarily zero-terminated.
**
** Return TRUE if the result is a valid real number (or integer) and FALSE
** if the string is empty or contains extraneous text. More specifically
** return
** 1 => The input string is a pure integer
** 2 or more => The input has a decimal point or eNNN clause
** 0 or less => The input string is not a valid number
** -1 => Not a valid number, but has a valid prefix which
** includes a decimal point and/or an eNNN clause
**
** Valid numbers are in one of these formats:
**
** [+-]digits[E[+-]digits]
** [+-]digits.[digits][E[+-]digits]
** [+-].digits[E[+-]digits]
**
** Leading and trailing whitespace is ignored for the purpose of determining
** validity.
**
** If some prefix of the input string is a valid number, this routine
** returns FALSE but it still converts the prefix and writes the result
** into *pResult.
*/
#if defined(_MSC_VER)
#pragma warning(disable : 4756)
#endif
int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
#ifndef SQLITE_OMIT_FLOATING_POINT
int incr;
const char *zEnd;
/* sign * significand * (10 ^ (esign * exponent)) */
int sign = 1; /* sign of significand */
u64 s = 0; /* significand */
int d = 0; /* adjust exponent for shifting decimal point */
int esign = 1; /* sign of exponent */
int e = 0; /* exponent */
int eValid = 1; /* True exponent is either not used or is well-formed */
int nDigit = 0; /* Number of digits processed */
int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
u64 s2; /* round-tripped significand */
double rr[2];
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
*pResult = 0.0; /* Default return value, in case of an error */
if( length==0 ) return 0;
if( enc==SQLITE_UTF8 ){
incr = 1;
zEnd = z + length;
}else{
int i;
incr = 2;
length &= ~1;
assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
testcase( enc==SQLITE_UTF16LE );
testcase( enc==SQLITE_UTF16BE );
for(i=3-enc; i<length && z[i]==0; i+=2){}
if( i<length ) eType = -100;
zEnd = &z[i^1];
z += (enc&1);
}
/* skip leading spaces */
while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
if( z>=zEnd ) return 0;
/* get sign of significand */
if( *z=='-' ){
sign = -1;
z+=incr;
}else if( *z=='+' ){
z+=incr;
}
/* copy max significant digits to significand */
while( z<zEnd && sqlite3Isdigit(*z) ){
s = s*10 + (*z - '0');
z+=incr; nDigit++;
if( s>=((LARGEST_UINT64-9)/10) ){
/* skip non-significant significand digits
** (increase exponent by d to shift decimal left) */
while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
}
}
if( z>=zEnd ) goto do_atof_calc;
/* if decimal point is present */
if( *z=='.' ){
z+=incr;
eType++;
/* copy digits from after decimal to significand
** (decrease exponent by d to shift decimal right) */
while( z<zEnd && sqlite3Isdigit(*z) ){
if( s<((LARGEST_UINT64-9)/10) ){
s = s*10 + (*z - '0');
d--;
nDigit++;
}
z+=incr;
}
}
if( z>=zEnd ) goto do_atof_calc;
/* if exponent is present */
if( *z=='e' || *z=='E' ){
z+=incr;
eValid = 0;
eType++;
/* This branch is needed to avoid a (harmless) buffer overread. The
** special comment alerts the mutation tester that the correct answer
** is obtained even if the branch is omitted */
if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
/* get sign of exponent */
if( *z=='-' ){
esign = -1;
z+=incr;
}else if( *z=='+' ){
z+=incr;
}
/* copy digits to exponent */
while( z<zEnd && sqlite3Isdigit(*z) ){
e = e<10000 ? (e*10 + (*z - '0')) : 10000;
z+=incr;
eValid = 1;
}
}
/* skip trailing spaces */
while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
do_atof_calc:
/* Zero is a special case */
if( s==0 ){
*pResult = sign<0 ? -0.0 : +0.0;
goto atof_return;
}
/* adjust exponent by d, and update sign */
e = (e*esign) + d;
/* Try to adjust the exponent to make it smaller */
while( e>0 && s<((LARGEST_UINT64-0x7ff)/10) ){
s *= 10;
e--;
}
while( e<0 && (s%10)==0 ){
s /= 10;
e++;
}
rr[0] = (double)s;
assert( sizeof(s2)==sizeof(rr[0]) );
#ifdef SQLITE_DEBUG
rr[1] = 18446744073709549568.0;
memcpy(&s2, &rr[1], sizeof(s2));
assert( s2==0x43efffffffffffffLL );
#endif
/* Largest double that can be safely converted to u64
** vvvvvvvvvvvvvvvvvvvvvv */
if( rr[0]<=18446744073709549568.0 ){
s2 = (u64)rr[0];
rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
}else{
rr[1] = 0.0;
}
assert( rr[1]<=1.0e-10*rr[0] ); /* Equal only when rr[0]==0.0 */
if( e>0 ){
while( e>=100 ){
e -= 100;
dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
}
while( e>=10 ){
e -= 10;
dekkerMul2(rr, 1.0e+10, 0.0);
}
while( e>=1 ){
e -= 1;
dekkerMul2(rr, 1.0e+01, 0.0);
}
}else{
while( e<=-100 ){
e += 100;
dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
}
while( e<=-10 ){
e += 10;
dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
}
while( e<=-1 ){
e += 1;
dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
}
}
*pResult = rr[0]+rr[1];
if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
if( sign<0 ) *pResult = -*pResult;
assert( !sqlite3IsNaN(*pResult) );
atof_return:
/* return true if number and no extra non-whitespace characters after */
if( z==zEnd && nDigit>0 && eValid && eType>0 ){
return eType;
}else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
return -1;
}else{
return 0;
}
#else
return !sqlite3Atoi64(z, pResult, length, enc);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}
#if defined(_MSC_VER)
#pragma warning(default : 4756)
#endif
/*
** Render an signed 64-bit integer as text. Store the result in zOut[] and
** return the length of the string that was stored, in bytes. The value
** returned does not include the zero terminator at the end of the output
** string.
**
** The caller must ensure that zOut[] is at least 21 bytes in size.
*/
int sqlite3Int64ToText(i64 v, char *zOut){
int i;
u64 x;
char zTemp[22];
if( v<0 ){
x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
}else{
x = v;
}
i = sizeof(zTemp)-2;
zTemp[sizeof(zTemp)-1] = 0;
while( 1 /*exit-by-break*/ ){
zTemp[i] = (x%10) + '0';
x = x/10;
if( x==0 ) break;
i--;
};
if( v<0 ) zTemp[--i] = '-';
memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
return sizeof(zTemp)-1-i;
}
/*
** Compare the 19-character string zNum against the text representation
** value 2^63: 9223372036854775808. Return negative, zero, or positive
** if zNum is less than, equal to, or greater than the string.
** Note that zNum must contain exactly 19 characters.
**
** Unlike memcmp() this routine is guaranteed to return the difference
** in the values of the last digit if the only difference is in the
** last digit. So, for example,
**
** compare2pow63("9223372036854775800", 1)
**
** will return -8.
*/
static int compare2pow63(const char *zNum, int incr){
int c = 0;
int i;
/* 012345678901234567 */
const char *pow63 = "922337203685477580";
for(i=0; c==0 && i<18; i++){
c = (zNum[i*incr]-pow63[i])*10;
}
if( c==0 ){
c = zNum[18*incr] - '8';
testcase( c==(-1) );
testcase( c==0 );
testcase( c==(+1) );
}
return c;
}
/*
** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
** routine does *not* accept hexadecimal notation.
**
** Returns:
**
** -1 Not even a prefix of the input text looks like an integer
** 0 Successful transformation. Fits in a 64-bit signed integer.
** 1 Excess non-space text after the integer value
** 2 Integer too large for a 64-bit signed integer or is malformed
** 3 Special case of 9223372036854775808
**
** length is the number of bytes in the string (bytes, not characters).
** The string is not necessarily zero-terminated. The encoding is
** given by enc.
*/
int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
int incr;
u64 u = 0;
int neg = 0; /* assume positive */
int i;
int c = 0;
int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
int rc; /* Baseline return code */
const char *zStart;
const char *zEnd = zNum + length;
assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
if( enc==SQLITE_UTF8 ){
incr = 1;
}else{
incr = 2;
length &= ~1;
assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
for(i=3-enc; i<length && zNum[i]==0; i+=2){}
nonNum = i<length;
zEnd = &zNum[i^1];
zNum += (enc&1);
}
while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
if( zNum<zEnd ){
if( *zNum=='-' ){
neg = 1;
zNum+=incr;
}else if( *zNum=='+' ){
zNum+=incr;
}
}
zStart = zNum;
while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
u = u*10 + c - '0';
}
testcase( i==18*incr );
testcase( i==19*incr );
testcase( i==20*incr );
if( u>LARGEST_INT64 ){
/* This test and assignment is needed only to suppress UB warnings
** from clang and -fsanitize=undefined. This test and assignment make
** the code a little larger and slower, and no harm comes from omitting
** them, but we must appease the undefined-behavior pharisees. */
*pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
}else if( neg ){
*pNum = -(i64)u;
}else{
*pNum = (i64)u;
}
rc = 0;
if( i==0 && zStart==zNum ){ /* No digits */
rc = -1;
}else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
rc = 1;
}else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
int jj = i;
do{
if( !sqlite3Isspace(zNum[jj]) ){
rc = 1; /* Extra non-space text after the integer */
break;
}
jj += incr;
}while( &zNum[jj]<zEnd );
}
if( i<19*incr ){
/* Less than 19 digits, so we know that it fits in 64 bits */
assert( u<=LARGEST_INT64 );
return rc;
}else{
/* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
c = i>19*incr ? 1 : compare2pow63(zNum, incr);
if( c<0 ){
/* zNum is less than 9223372036854775808 so it fits */
assert( u<=LARGEST_INT64 );
return rc;
}else{
*pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
if( c>0 ){
/* zNum is greater than 9223372036854775808 so it overflows */
return 2;
}else{
/* zNum is exactly 9223372036854775808. Fits if negative. The
** special case 2 overflow if positive */
assert( u-1==LARGEST_INT64 );
return neg ? rc : 3;
}
}
}
}
/*
** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
** into a 64-bit signed integer. This routine accepts hexadecimal literals,
** whereas sqlite3Atoi64() does not.
**
** Returns:
**
** 0 Successful transformation. Fits in a 64-bit signed integer.
** 1 Excess text after the integer value
** 2 Integer too large for a 64-bit signed integer or is malformed
** 3 Special case of 9223372036854775808
*/
int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
#ifndef SQLITE_OMIT_HEX_INTEGER
if( z[0]=='0'
&& (z[1]=='x' || z[1]=='X')
){
u64 u = 0;
int i, k;
for(i=2; z[i]=='0'; i++){}
for(k=i; sqlite3Isxdigit(z[k]); k++){
u = u*16 + sqlite3HexToInt(z[k]);
}
memcpy(pOut, &u, 8);
if( k-i>16 ) return 2;
if( z[k]!=0 ) return 1;
return 0;
}else
#endif /* SQLITE_OMIT_HEX_INTEGER */
{
int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
if( z[n] ) n++;
return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
}
}
/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true. Otherwise return false.
**
** This routine accepts both decimal and hexadecimal notation for integers.
**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
sqlite_int64 v = 0;
int i, c;
int neg = 0;
if( zNum[0]=='-' ){
neg = 1;
zNum++;
}else if( zNum[0]=='+' ){
zNum++;
}
#ifndef SQLITE_OMIT_HEX_INTEGER
else if( zNum[0]=='0'
&& (zNum[1]=='x' || zNum[1]=='X')
&& sqlite3Isxdigit(zNum[2])
){
u32 u = 0;
zNum += 2;
while( zNum[0]=='0' ) zNum++;
for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
u = u*16 + sqlite3HexToInt(zNum[i]);
}
if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
memcpy(pValue, &u, 4);
return 1;
}else{
return 0;
}
}
#endif
if( !sqlite3Isdigit(zNum[0]) ) return 0;
while( zNum[0]=='0' ) zNum++;
for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
v = v*10 + c;
}
/* The longest decimal representation of a 32 bit integer is 10 digits:
**
** 1234567890
** 2^31 -> 2147483648
*/
testcase( i==10 );
if( i>10 ){
return 0;
}
testcase( v-neg==2147483647 );
if( v-neg>2147483647 ){
return 0;
}
if( neg ){
v = -v;
}
*pValue = (int)v;
return 1;
}
/*
** Return a 32-bit integer value extracted from a string. If the
** string is not an integer, just return 0.
*/
int sqlite3Atoi(const char *z){
int x = 0;
sqlite3GetInt32(z, &x);
return x;
}
/*
** Decode a floating-point value into an approximate decimal
** representation.
**
** If iRound<=0 then round to -iRound significant digits to the
** the left of the decimal point, or to a maximum of mxRound total
** significant digits.
**
** If iRound>0 round to min(iRound,mxRound) significant digits total.
**
** mxRound must be positive.
**
** The significant digits of the decimal representation are
** stored in p->z[] which is a often (but not always) a pointer
** into the middle of p->zBuf[]. There are p->n significant digits.
** The p->z[] array is *not* zero-terminated.
*/
void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
int i;
u64 v;
int e, exp = 0;
double rr[2];
p->isSpecial = 0;
p->z = p->zBuf;
assert( mxRound>0 );
/* Convert negative numbers to positive. Deal with Infinity, 0.0, and
** NaN. */
if( r<0.0 ){
p->sign = '-';
r = -r;
}else if( r==0.0 ){
p->sign = '+';
p->n = 1;
p->iDP = 1;
p->z = "0";
return;
}else{
p->sign = '+';
}
memcpy(&v,&r,8);
e = v>>52;
if( (e&0x7ff)==0x7ff ){
p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
p->n = 0;
p->iDP = 0;
return;
}
/* Multiply r by powers of ten until it lands somewhere in between
** 1.0e+19 and 1.0e+17.
**
** Use Dekker-style double-double computation to increase the
** precision.
**
** The error terms on constants like 1.0e+100 computed using the
** decimal extension, for example as follows:
**
** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
*/
rr[0] = r;
rr[1] = 0.0;
if( rr[0]>9.223372036854774784e+18 ){
while( rr[0]>9.223372036854774784e+118 ){
exp += 100;
dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
}
while( rr[0]>9.223372036854774784e+28 ){
exp += 10;
dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
}
while( rr[0]>9.223372036854774784e+18 ){
exp += 1;
dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
}
}else{
while( rr[0]<9.223372036854774784e-83 ){
exp -= 100;
dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
}
while( rr[0]<9.223372036854774784e+07 ){
exp -= 10;
dekkerMul2(rr, 1.0e+10, 0.0);
}
while( rr[0]<9.22337203685477478e+17 ){
exp -= 1;
dekkerMul2(rr, 1.0e+01, 0.0);
}
}
v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
/* Extract significant digits. */
i = sizeof(p->zBuf)-1;
assert( v>0 );
while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; }
assert( i>=0 && i<sizeof(p->zBuf)-1 );
p->n = sizeof(p->zBuf) - 1 - i;
assert( p->n>0 );
assert( p->n<sizeof(p->zBuf) );
p->iDP = p->n + exp;
if( iRound<=0 ){
iRound = p->iDP - iRound;
if( iRound==0 && p->zBuf[i+1]>='5' ){
iRound = 1;
p->zBuf[i--] = '0';
p->n++;
p->iDP++;
}
}
if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
char *z = &p->zBuf[i+1];
if( iRound>mxRound ) iRound = mxRound;
p->n = iRound;
if( z[iRound]>='5' ){
int j = iRound-1;
while( 1 /*exit-by-break*/ ){
z[j]++;
if( z[j]<='9' ) break;
z[j] = '0';
if( j==0 ){
p->z[i--] = '1';
p->n++;
p->iDP++;
break;
}else{
j--;
}
}
}
}
p->z = &p->zBuf[i+1];
assert( i+p->n < sizeof(p->zBuf) );
while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
}
/*
** Try to convert z into an unsigned 32-bit integer. Return true on
** success and false if there is an error.
**
** Only decimal notation is accepted.
*/
int sqlite3GetUInt32(const char *z, u32 *pI){
u64 v = 0;
int i;
for(i=0; sqlite3Isdigit(z[i]); i++){
v = v*10 + z[i] - '0';
if( v>4294967296LL ){ *pI = 0; return 0; }
}
if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
*pI = (u32)v;
return 1;
}
/*
** The variable-length integer encoding is as follows:
**
** KEY:
** A = 0xxxxxxx 7 bits of data and one flag bit
** B = 1xxxxxxx 7 bits of data and one flag bit
** C = xxxxxxxx 8 bits of data
**
** 7 bits - A
** 14 bits - BA
** 21 bits - BBA
** 28 bits - BBBA
** 35 bits - BBBBA
** 42 bits - BBBBBA
** 49 bits - BBBBBBA
** 56 bits - BBBBBBBA
** 64 bits - BBBBBBBBC
*/
/*
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data write will be between 1 and 9 bytes. The number
** of bytes written is returned.
**
** A variable-length integer consists of the lower 7 bits of each byte
** for all bytes that have the 8th bit set and one byte with the 8th
** bit clear. Except, if we get to the 9th byte, it stores the full
** 8 bits and is the last byte.
*/
static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
int i, j, n;
u8 buf[10];
if( v & (((u64)0xff000000)<<32) ){
p[8] = (u8)v;
v >>= 8;
for(i=7; i>=0; i--){
p[i] = (u8)((v & 0x7f) | 0x80);
v >>= 7;
}
return 9;
}
n = 0;
do{
buf[n++] = (u8)((v & 0x7f) | 0x80);
v >>= 7;
}while( v!=0 );
buf[0] &= 0x7f;
assert( n<=9 );
for(i=0, j=n-1; j>=0; j--, i++){
p[i] = buf[j];
}
return n;
}
int sqlite3PutVarint(unsigned char *p, u64 v){
if( v<=0x7f ){
p[0] = v&0x7f;
return 1;
}
if( v<=0x3fff ){
p[0] = ((v>>7)&0x7f)|0x80;
p[1] = v&0x7f;
return 2;
}
return putVarint64(p,v);
}
/*
** Bitmasks used by sqlite3GetVarint(). These precomputed constants
** are defined here rather than simply putting the constant expressions
** inline in order to work around bugs in the RVT compiler.
**
** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
**
** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
*/
#define SLOT_2_0 0x001fc07f
#define SLOT_4_2_0 0xf01fc07f
/*
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
*/
u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
u32 a,b,s;
if( ((signed char*)p)[0]>=0 ){
*v = *p;
return 1;
}
if( ((signed char*)p)[1]>=0 ){
*v = ((u32)(p[0]&0x7f)<<7) | p[1];
return 2;
}
/* Verify that constants are precomputed correctly */
assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
a = ((u32)p[0])<<14;
b = p[1];
p += 2;
a |= *p;
/* a: p0<<14 | p2 (unmasked) */
if (!(a&0x80))
{
a &= SLOT_2_0;
b &= 0x7f;
b = b<<7;
a |= b;
*v = a;
return 3;
}
/* CSE1 from below */
a &= SLOT_2_0;
p++;
b = b<<14;
b |= *p;
/* b: p1<<14 | p3 (unmasked) */
if (!(b&0x80))
{
b &= SLOT_2_0;
/* moved CSE1 up */
/* a &= (0x7f<<14)|(0x7f); */
a = a<<7;
a |= b;
*v = a;
return 4;
}
/* a: p0<<14 | p2 (masked) */
/* b: p1<<14 | p3 (unmasked) */
/* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
/* moved CSE1 up */
/* a &= (0x7f<<14)|(0x7f); */
b &= SLOT_2_0;
s = a;
/* s: p0<<14 | p2 (masked) */
p++;
a = a<<14;
a |= *p;
/* a: p0<<28 | p2<<14 | p4 (unmasked) */
if (!(a&0x80))
{
/* we can skip these cause they were (effectively) done above
** while calculating s */
/* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
/* b &= (0x7f<<14)|(0x7f); */
b = b<<7;
a |= b;
s = s>>18;
*v = ((u64)s)<<32 | a;
return 5;
}
/* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
s = s<<7;
s |= b;
/* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
p++;
b = b<<14;
b |= *p;
/* b: p1<<28 | p3<<14 | p5 (unmasked) */
if (!(b&0x80))
{
/* we can skip this cause it was (effectively) done above in calc'ing s */
/* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
a &= SLOT_2_0;
a = a<<7;
a |= b;
s = s>>18;
*v = ((u64)s)<<32 | a;
return 6;
}
p++;
a = a<<14;
a |= *p;
/* a: p2<<28 | p4<<14 | p6 (unmasked) */
if (!(a&0x80))
{
a &= SLOT_4_2_0;
b &= SLOT_2_0;
b = b<<7;
a |= b;
s = s>>11;
*v = ((u64)s)<<32 | a;
return 7;
}
/* CSE2 from below */
a &= SLOT_2_0;
p++;
b = b<<14;
b |= *p;
/* b: p3<<28 | p5<<14 | p7 (unmasked) */
if (!(b&0x80))
{
b &= SLOT_4_2_0;
/* moved CSE2 up */
/* a &= (0x7f<<14)|(0x7f); */
a = a<<7;
a |= b;
s = s>>4;
*v = ((u64)s)<<32 | a;
return 8;
}
p++;
a = a<<15;
a |= *p;
/* a: p4<<29 | p6<<15 | p8 (unmasked) */
/* moved CSE2 up */
/* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
b &= SLOT_2_0;
b = b<<8;
a |= b;
s = s<<4;
b = p[-4];
b &= 0x7f;
b = b>>3;
s |= b;
*v = ((u64)s)<<32 | a;
return 9;
}
/*
** Read a 32-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read. The value is stored in *v.
**
** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
** integer, then set *v to 0xffffffff.
**
** A MACRO version, getVarint32, is provided which inlines the
** single-byte case. All code should use the MACRO version as
** this function assumes the single-byte case has already been handled.
*/
u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
u64 v64;
u8 n;
/* Assume that the single-byte case has already been handled by
** the getVarint32() macro */
assert( (p[0] & 0x80)!=0 );
if( (p[1] & 0x80)==0 ){
/* This is the two-byte case */
*v = ((p[0]&0x7f)<<7) | p[1];
return 2;
}
if( (p[2] & 0x80)==0 ){
/* This is the three-byte case */
*v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
return 3;
}
/* four or more bytes */
n = sqlite3GetVarint(p, &v64);
assert( n>3 && n<=9 );
if( (v64 & SQLITE_MAX_U32)!=v64 ){
*v = 0xffffffff;
}else{
*v = (u32)v64;
}
return n;
}
/*
** Return the number of bytes that will be needed to store the given
** 64-bit integer.
*/
int sqlite3VarintLen(u64 v){
int i;
for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
return i;
}
/*
** Read or write a four-byte big-endian integer value.
*/
u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
u32 x;
memcpy(&x,p,4);
return x;
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
u32 x;
memcpy(&x,p,4);
return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
u32 x;
memcpy(&x,p,4);
return _byteswap_ulong(x);
#else
testcase( p[0]&0x80 );
return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
u32 x = __builtin_bswap32(v);
memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
u32 x = _byteswap_ulong(v);
memcpy(p,&x,4);
#else
p[0] = (u8)(v>>24);
p[1] = (u8)(v>>16);
p[2] = (u8)(v>>8);
p[3] = (u8)v;
#endif
}
/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character: 0..9a..fA..F
*/
u8 sqlite3HexToInt(int h){
assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
h += 9*(1&(h>>6));
#endif
#ifdef SQLITE_EBCDIC
h += 9*(1&~(h>>4));
#endif
return (u8)(h & 0xf);
}
#if !defined(SQLITE_OMIT_BLOB_LITERAL)
/*
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
** value. Return a pointer to its binary value. Space to hold the
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
char *zBlob;
int i;
zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
n--;
if( zBlob ){
for(i=0; i<n; i+=2){
zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
}
zBlob[i/2] = 0;
}
return zBlob;
}
#endif /* !SQLITE_OMIT_BLOB_LITERAL */
/*
** Log an error that is an API call on a connection pointer that should
** not have been used. The "type" of connection pointer is given as the
** argument. The zType is a word like "NULL" or "closed" or "invalid".
*/
static void logBadConnection(const char *zType){
sqlite3_log(SQLITE_MISUSE,
"API call with %s database connection pointer",
zType
);
}
/*
** Check to make sure we have a valid db pointer. This test is not
** foolproof but it does provide some measure of protection against
** misuse of the interface such as passing in db pointers that are
** NULL or which have been previously closed. If this routine returns
** 1 it means that the db pointer is valid and 0 if it should not be
** dereferenced for any reason. The calling function should invoke
** SQLITE_MISUSE immediately.
**
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
** open properly and is not fit for general use but which can be
** used as an argument to sqlite3_errmsg() or sqlite3_close().
*/
int sqlite3SafetyCheckOk(sqlite3 *db){
u8 eOpenState;
if( db==0 ){
logBadConnection("NULL");
return 0;
}
eOpenState = db->eOpenState;
if( eOpenState!=SQLITE_STATE_OPEN ){
if( sqlite3SafetyCheckSickOrOk(db) ){
testcase( sqlite3GlobalConfig.xLog!=0 );
logBadConnection("unopened");
}
return 0;
}else{
return 1;
}
}
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
u8 eOpenState;
eOpenState = db->eOpenState;
if( eOpenState!=SQLITE_STATE_SICK &&
eOpenState!=SQLITE_STATE_OPEN &&
eOpenState!=SQLITE_STATE_BUSY ){
testcase( sqlite3GlobalConfig.xLog!=0 );
logBadConnection("invalid");
return 0;
}else{
return 1;
}
}
/*
** Attempt to add, subtract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success. Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
int sqlite3AddInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
return __builtin_add_overflow(*pA, iB, pA);
#else
i64 iA = *pA;
testcase( iA==0 ); testcase( iA==1 );
testcase( iB==-1 ); testcase( iB==0 );
if( iB>=0 ){
testcase( iA>0 && LARGEST_INT64 - iA == iB );
testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
}else{
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
}
*pA += iB;
return 0;
#endif
}
int sqlite3SubInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
return __builtin_sub_overflow(*pA, iB, pA);
#else
testcase( iB==SMALLEST_INT64+1 );
if( iB==SMALLEST_INT64 ){
testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
if( (*pA)>=0 ) return 1;
*pA -= iB;
return 0;
}else{
return sqlite3AddInt64(pA, -iB);
}
#endif
}
int sqlite3MulInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
return __builtin_mul_overflow(*pA, iB, pA);
#else
i64 iA = *pA;
if( iB>0 ){
if( iA>LARGEST_INT64/iB ) return 1;
if( iA<SMALLEST_INT64/iB ) return 1;
}else if( iB<0 ){
if( iA>0 ){
if( iB<SMALLEST_INT64/iA ) return 1;
}else if( iA<0 ){
if( iB==SMALLEST_INT64 ) return 1;
if( iA==SMALLEST_INT64 ) return 1;
if( -iA>LARGEST_INT64/-iB ) return 1;
}
}
*pA = iA*iB;
return 0;
#endif
}
/*
** Compute the absolute value of a 32-bit signed integer, of possible. Or
** if the integer has a value of -2147483648, return +2147483647
*/
int sqlite3AbsInt32(int x){
if( x>=0 ) return x;
if( x==(int)0x80000000 ) return 0x7fffffff;
return -x;
}
#ifdef SQLITE_ENABLE_8_3_NAMES
/*
** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
** three characters, then shorten the suffix on z[] to be the last three
** characters of the original suffix.
**
** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
** do the suffix shortening regardless of URI parameter.
**
** Examples:
**
** test.db-journal => test.nal
** test.db-wal => test.wal
** test.db-shm => test.shm
** test.db-mj7f3319fa => test.9fa
*/
void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
#if SQLITE_ENABLE_8_3_NAMES<2
if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
#endif
{
int i, sz;
sz = sqlite3Strlen30(z);
for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
}
}
#endif
/*
** Find (an approximate) sum of two LogEst values. This computation is
** not a simple "+" operator because LogEst is stored as a logarithmic
** value.
**
*/
LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
static const unsigned char x[] = {
10, 10, /* 0,1 */
9, 9, /* 2,3 */
8, 8, /* 4,5 */
7, 7, 7, /* 6,7,8 */
6, 6, 6, /* 9,10,11 */
5, 5, 5, /* 12-14 */
4, 4, 4, 4, /* 15-18 */
3, 3, 3, 3, 3, 3, /* 19-24 */
2, 2, 2, 2, 2, 2, 2, /* 25-31 */
};
if( a>=b ){
if( a>b+49 ) return a;
if( a>b+31 ) return a+1;
return a+x[a-b];
}else{
if( b>a+49 ) return b;
if( b>a+31 ) return b+1;
return b+x[b-a];
}
}
/*
** Convert an integer into a LogEst. In other words, compute an
** approximation for 10*log2(x).
*/
LogEst sqlite3LogEst(u64 x){
static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
LogEst y = 40;
if( x<8 ){
if( x<2 ) return 0;
while( x<8 ){ y -= 10; x <<= 1; }
}else{
#if GCC_VERSION>=5004000
int i = 60 - __builtin_clzll(x);
y += i*10;
x >>= i;
#else
while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
while( x>15 ){ y += 10; x >>= 1; }
#endif
}
return a[x&7] + y - 10;
}
/*
** Convert a double into a LogEst
** In other words, compute an approximation for 10*log2(x).
*/
LogEst sqlite3LogEstFromDouble(double x){
u64 a;
LogEst e;
assert( sizeof(x)==8 && sizeof(a)==8 );
if( x<=1 ) return 0;
if( x<=2000000000 ) return sqlite3LogEst((u64)x);
memcpy(&a, &x, 8);
e = (a>>52) - 1022;
return e*10;
}
/*
** Convert a LogEst into an integer.
*/
u64 sqlite3LogEstToInt(LogEst x){
u64 n;
n = x%10;
x /= 10;
if( n>=5 ) n -= 2;
else if( n>=1 ) n -= 1;
if( x>60 ) return (u64)LARGEST_INT64;
return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
}
/*
** Add a new name/number pair to a VList. This might require that the
** VList object be reallocated, so return the new VList. If an OOM
** error occurs, the original VList returned and the
** db->mallocFailed flag is set.
**
** A VList is really just an array of integers. To destroy a VList,
** simply pass it to sqlite3DbFree().
**
** The first integer is the number of integers allocated for the whole
** VList. The second integer is the number of integers actually used.
** Each name/number pair is encoded by subsequent groups of 3 or more
** integers.
**
** Each name/number pair starts with two integers which are the numeric
** value for the pair and the size of the name/number pair, respectively.
** The text name overlays one or more following integers. The text name
** is always zero-terminated.
**
** Conceptually:
**
** struct VList {
** int nAlloc; // Number of allocated slots
** int nUsed; // Number of used slots
** struct VListEntry {
** int iValue; // Value for this entry
** int nSlot; // Slots used by this entry
** // ... variable name goes here
** } a[0];
** }
**
** During code generation, pointers to the variable names within the
** VList are taken. When that happens, nAlloc is set to zero as an
** indication that the VList may never again be enlarged, since the
** accompanying realloc() would invalidate the pointers.
*/
VList *sqlite3VListAdd(
sqlite3 *db, /* The database connection used for malloc() */
VList *pIn, /* The input VList. Might be NULL */
const char *zName, /* Name of symbol to add */
int nName, /* Bytes of text in zName */
int iVal /* Value to associate with zName */
){
int nInt; /* number of sizeof(int) objects needed for zName */
char *z; /* Pointer to where zName will be stored */
int i; /* Index in pIn[] where zName is stored */
nInt = nName/4 + 3;
assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
if( pIn==0 || pIn[1]+nInt > pIn[0] ){
/* Enlarge the allocation */
sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
if( pOut==0 ) return pIn;
if( pIn==0 ) pOut[1] = 2;
pIn = pOut;
pIn[0] = nAlloc;
}
i = pIn[1];
pIn[i] = iVal;
pIn[i+1] = nInt;
z = (char*)&pIn[i+2];
pIn[1] = i+nInt;
assert( pIn[1]<=pIn[0] );
memcpy(z, zName, nName);
z[nName] = 0;
return pIn;
}
/*
** Return a pointer to the name of a variable in the given VList that
** has the value iVal. Or return a NULL if there is no such variable in
** the list
*/
const char *sqlite3VListNumToName(VList *pIn, int iVal){
int i, mx;
if( pIn==0 ) return 0;
mx = pIn[1];
i = 2;
do{
if( pIn[i]==iVal ) return (char*)&pIn[i+2];
i += pIn[i+1];
}while( i<mx );
return 0;
}
/*
** Return the number of the variable named zName, if it is in VList.
** or return 0 if there is no such variable.
*/
int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
int i, mx;
if( pIn==0 ) return 0;
mx = pIn[1];
i = 2;
do{
const char *z = (const char*)&pIn[i+2];
if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
i += pIn[i+1];
}while( i<mx );
return 0;
}
|