SQLite

util.c at trunk
Login

File src/util.c artifact e5f6a5ee on branch trunk


     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
   286
   287
   288
   289
   290
   291
   292
   293
   294
   295
   296
   297
   298
   299
   300
   301
   302
   303
   304
   305
   306
   307
   308
   309
   310
   311
   312
   313
   314
   315
   316
   317
   318
   319
   320
   321
   322
   323
   324
   325
   326
   327
   328
   329
   330
   331
   332
   333
   334
   335
   336
   337
   338
   339
   340
   341
   342
   343
   344
   345
   346
   347
   348
   349
   350
   351
   352
   353
   354
   355
   356
   357
   358
   359
   360
   361
   362
   363
   364
   365
   366
   367
   368
   369
   370
   371
   372
   373
   374
   375
   376
   377
   378
   379
   380
   381
   382
   383
   384
   385
   386
   387
   388
   389
   390
   391
   392
   393
   394
   395
   396
   397
   398
   399
   400
   401
   402
   403
   404
   405
   406
   407
   408
   409
   410
   411
   412
   413
   414
   415
   416
   417
   418
   419
   420
   421
   422
   423
   424
   425
   426
   427
   428
   429
   430
   431
   432
   433
   434
   435
   436
   437
   438
   439
   440
   441
   442
   443
   444
   445
   446
   447
   448
   449
   450
   451
   452
   453
   454
   455
   456
   457
   458
   459
   460
   461
   462
   463
   464
   465
   466
   467
   468
   469
   470
   471
   472
   473
   474
   475
   476
   477
   478
   479
   480
   481
   482
   483
   484
   485
   486
   487
   488
   489
   490
   491
   492
   493
   494
   495
   496
   497
   498
   499
   500
   501
   502
   503
   504
   505
   506
   507
   508
   509
   510
   511
   512
   513
   514
   515
   516
   517
   518
   519
   520
   521
   522
   523
   524
   525
   526
   527
   528
   529
   530
   531
   532
   533
   534
   535
   536
   537
   538
   539
   540
   541
   542
   543
   544
   545
   546
   547
   548
   549
   550
   551
   552
   553
   554
   555
   556
   557
   558
   559
   560
   561
   562
   563
   564
   565
   566
   567
   568
   569
   570
   571
   572
   573
   574
   575
   576
   577
   578
   579
   580
   581
   582
   583
   584
   585
   586
   587
   588
   589
   590
   591
   592
   593
   594
   595
   596
   597
   598
   599
   600
   601
   602
   603
   604
   605
   606
   607
   608
   609
   610
   611
   612
   613
   614
   615
   616
   617
   618
   619
   620
   621
   622
   623
   624
   625
   626
   627
   628
   629
   630
   631
   632
   633
   634
   635
   636
   637
   638
   639
   640
   641
   642
   643
   644
   645
   646
   647
   648
   649
   650
   651
   652
   653
   654
   655
   656
   657
   658
   659
   660
   661
   662
   663
   664
   665
   666
   667
   668
   669
   670
   671
   672
   673
   674
   675
   676
   677
   678
   679
   680
   681
   682
   683
   684
   685
   686
   687
   688
   689
   690
   691
   692
   693
   694
   695
   696
   697
   698
   699
   700
   701
   702
   703
   704
   705
   706
   707
   708
   709
   710
   711
   712
   713
   714
   715
   716
   717
   718
   719
   720
   721
   722
   723
   724
   725
   726
   727
   728
   729
   730
   731
   732
   733
   734
   735
   736
   737
   738
   739
   740
   741
   742
   743
   744
   745
   746
   747
   748
   749
   750
   751
   752
   753
   754
   755
   756
   757
   758
   759
   760
   761
   762
   763
   764
   765
   766
   767
   768
   769
   770
   771
   772
   773
   774
   775
   776
   777
   778
   779
   780
   781
   782
   783
   784
   785
   786
   787
   788
   789
   790
   791
   792
   793
   794
   795
   796
   797
   798
   799
   800
   801
   802
   803
   804
   805
   806
   807
   808
   809
   810
   811
   812
   813
   814
   815
   816
   817
   818
   819
   820
   821
   822
   823
   824
   825
   826
   827
   828
   829
   830
   831
   832
   833
   834
   835
   836
   837
   838
   839
   840
   841
   842
   843
   844
   845
   846
   847
   848
   849
   850
   851
   852
   853
   854
   855
   856
   857
   858
   859
   860
   861
   862
   863
   864
   865
   866
   867
   868
   869
   870
   871
   872
   873
   874
   875
   876
   877
   878
   879
   880
   881
   882
   883
   884
   885
   886
   887
   888
   889
   890
   891
   892
   893
   894
   895
   896
   897
   898
   899
   900
   901
   902
   903
   904
   905
   906
   907
   908
   909
   910
   911
   912
   913
   914
   915
   916
   917
   918
   919
   920
   921
   922
   923
   924
   925
   926
   927
   928
   929
   930
   931
   932
   933
   934
   935
   936
   937
   938
   939
   940
   941
   942
   943
   944
   945
   946
   947
   948
   949
   950
   951
   952
   953
   954
   955
   956
   957
   958
   959
   960
   961
   962
   963
   964
   965
   966
   967
   968
   969
   970
   971
   972
   973
   974
   975
   976
   977
   978
   979
   980
   981
   982
   983
   984
   985
   986
   987
   988
   989
   990
   991
   992
   993
   994
   995
   996
   997
   998
   999
  1000
  1001
  1002
  1003
  1004
  1005
  1006
  1007
  1008
  1009
  1010
  1011
  1012
  1013
  1014
  1015
  1016
  1017
  1018
  1019
  1020
  1021
  1022
  1023
  1024
  1025
  1026
  1027
  1028
  1029
  1030
  1031
  1032
  1033
  1034
  1035
  1036
  1037
  1038
  1039
  1040
  1041
  1042
  1043
  1044
  1045
  1046
  1047
  1048
  1049
  1050
  1051
  1052
  1053
  1054
  1055
  1056
  1057
  1058
  1059
  1060
  1061
  1062
  1063
  1064
  1065
  1066
  1067
  1068
  1069
  1070
  1071
  1072
  1073
  1074
  1075
  1076
  1077
  1078
  1079
  1080
  1081
  1082
  1083
  1084
  1085
  1086
  1087
  1088
  1089
  1090
  1091
  1092
  1093
  1094
  1095
  1096
  1097
  1098
  1099
  1100
  1101
  1102
  1103
  1104
  1105
  1106
  1107
  1108
  1109
  1110
  1111
  1112
  1113
  1114
  1115
  1116
  1117
  1118
  1119
  1120
  1121
  1122
  1123
  1124
  1125
  1126
  1127
  1128
  1129
  1130
  1131
  1132
  1133
  1134
  1135
  1136
  1137
  1138
  1139
  1140
  1141
  1142
  1143
  1144
  1145
  1146
  1147
  1148
  1149
  1150
  1151
  1152
  1153
  1154
  1155
  1156
  1157
  1158
  1159
  1160
  1161
  1162
  1163
  1164
  1165
  1166
  1167
  1168
  1169
  1170
  1171
  1172
  1173
  1174
  1175
  1176
  1177
  1178
  1179
  1180
  1181
  1182
  1183
  1184
  1185
  1186
  1187
  1188
  1189
  1190
  1191
  1192
  1193
  1194
  1195
  1196
  1197
  1198
  1199
  1200
  1201
  1202
  1203
  1204
  1205
  1206
  1207
  1208
  1209
  1210
  1211
  1212
  1213
  1214
  1215
  1216
  1217
  1218
  1219
  1220
  1221
  1222
  1223
  1224
  1225
  1226
  1227
  1228
  1229
  1230
  1231
  1232
  1233
  1234
  1235
  1236
  1237
  1238
  1239
  1240
  1241
  1242
  1243
  1244
  1245
  1246
  1247
  1248
  1249
  1250
  1251
  1252
  1253
  1254
  1255
  1256
  1257
  1258
  1259
  1260
  1261
  1262
  1263
  1264
  1265
  1266
  1267
  1268
  1269
  1270
  1271
  1272
  1273
  1274
  1275
  1276
  1277
  1278
  1279
  1280
  1281
  1282
  1283
  1284
  1285
  1286
  1287
  1288
  1289
  1290
  1291
  1292
  1293
  1294
  1295
  1296
  1297
  1298
  1299
  1300
  1301
  1302
  1303
  1304
  1305
  1306
  1307
  1308
  1309
  1310
  1311
  1312
  1313
  1314
  1315
  1316
  1317
  1318
  1319
  1320
  1321
  1322
  1323
  1324
  1325
  1326
  1327
  1328
  1329
  1330
  1331
  1332
  1333
  1334
  1335
  1336
  1337
  1338
  1339
  1340
  1341
  1342
  1343
  1344
  1345
  1346
  1347
  1348
  1349
  1350
  1351
  1352
  1353
  1354
  1355
  1356
  1357
  1358
  1359
  1360
  1361
  1362
  1363
  1364
  1365
  1366
  1367
  1368
  1369
  1370
  1371
  1372
  1373
  1374
  1375
  1376
  1377
  1378
  1379
  1380
  1381
  1382
  1383
  1384
  1385
  1386
  1387
  1388
  1389
  1390
  1391
  1392
  1393
  1394
  1395
  1396
  1397
  1398
  1399
  1400
  1401
  1402
  1403
  1404
  1405
  1406
  1407
  1408
  1409
  1410
  1411
  1412
  1413
  1414
  1415
  1416
  1417
  1418
  1419
  1420
  1421
  1422
  1423
  1424
  1425
  1426
  1427
  1428
  1429
  1430
  1431
  1432
  1433
  1434
  1435
  1436
  1437
  1438
  1439
  1440
  1441
  1442
  1443
  1444
  1445
  1446
  1447
  1448
  1449
  1450
  1451
  1452
  1453
  1454
  1455
  1456
  1457
  1458
  1459
  1460
  1461
  1462
  1463
  1464
  1465
  1466
  1467
  1468
  1469
  1470
  1471
  1472
  1473
  1474
  1475
  1476
  1477
  1478
  1479
  1480
  1481
  1482
  1483
  1484
  1485
  1486
  1487
  1488
  1489
  1490
  1491
  1492
  1493
  1494
  1495
  1496
  1497
  1498
  1499
  1500
  1501
  1502
  1503
  1504
  1505
  1506
  1507
  1508
  1509
  1510
  1511
  1512
  1513
  1514
  1515
  1516
  1517
  1518
  1519
  1520
  1521
  1522
  1523
  1524
  1525
  1526
  1527
  1528
  1529
  1530
  1531
  1532
  1533
  1534
  1535
  1536
  1537
  1538
  1539
  1540
  1541
  1542
  1543
  1544
  1545
  1546
  1547
  1548
  1549
  1550
  1551
  1552
  1553
  1554
  1555
  1556
  1557
  1558
  1559
  1560
  1561
  1562
  1563
  1564
  1565
  1566
  1567
  1568
  1569
  1570
  1571
  1572
  1573
  1574
  1575
  1576
  1577
  1578
  1579
  1580
  1581
  1582
  1583
  1584
  1585
  1586
  1587
  1588
  1589
  1590
  1591
  1592
  1593
  1594
  1595
  1596
  1597
  1598
  1599
  1600
  1601
  1602
  1603
  1604
  1605
  1606
  1607
  1608
  1609
  1610
  1611
  1612
  1613
  1614
  1615
  1616
  1617
  1618
  1619
  1620
  1621
  1622
  1623
  1624
  1625
  1626
  1627
  1628
  1629
  1630
  1631
  1632
  1633
  1634
  1635
  1636
  1637
  1638
  1639
  1640
  1641
  1642
  1643
  1644
  1645
  1646
  1647
  1648
  1649
  1650
  1651
  1652
  1653
  1654
  1655
  1656
  1657
  1658
  1659
  1660
  1661
  1662
  1663
  1664
  1665
  1666
  1667
  1668
  1669
  1670
  1671
  1672
  1673
  1674
  1675
  1676
  1677
  1678
  1679
  1680
  1681
  1682
  1683
  1684
  1685
  1686
  1687
  1688
  1689
  1690
  1691
  1692
  1693
  1694
  1695
  1696
  1697
  1698
  1699
  1700
  1701
  1702
  1703
  1704
  1705
  1706
  1707
  1708
  1709
  1710
  1711
  1712
  1713
  1714
  1715
  1716
  1717
  1718
  1719
  1720
  1721
  1722
  1723
  1724
  1725
  1726
  1727
  1728
  1729
  1730
  1731
  1732
  1733
  1734
  1735
  1736
  1737
  1738
  1739
  1740
  1741
  1742
  1743
  1744
  1745
  1746
  1747
  1748
  1749
  1750
  1751
  1752
  1753
  1754
  1755
  1756
  1757
  1758
  1759
  1760
  1761
  1762
  1763
  1764
  1765
  1766
  1767
  1768
  1769
  1770
  1771
  1772
  1773
  1774
  1775
  1776
  1777
  1778
  1779
  1780
  1781
  1782
  1783
  1784
  1785
  1786
  1787
  1788
  1789
  1790
  1791
  1792
  1793
  1794
  1795
  1796
  1797
  1798
  1799
  1800
  1801
  1802
  1803
  1804
  1805
  1806
  1807
  1808
  1809
  1810
  1811
  1812
  1813
  1814
  1815
  1816
  1817
  1818
  1819
  1820
  1821
  1822
  1823
  1824
  1825
  1826
  1827
  1828
  1829
  1830
  1831
  1832
  1833
  1834
  1835
  1836
  1837
  1838
  1839
  1840
  1841
  1842
  1843
  1844
  1845
  1846
  1847
  1848
  1849
  1850
  1851
  1852
  1853
  1854
  1855
  1856
  1857
  1858
  1859
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Utility functions used throughout sqlite.
**
** This file contains functions for allocating memory, comparing
** strings, and stuff like that.
**
*/
#include "sqliteInt.h"
#include <stdarg.h>
#ifndef SQLITE_OMIT_FLOATING_POINT
#include <math.h>
#endif

/*
** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
** or to bypass normal error detection during testing in order to let
** execute proceed further downstream.
**
** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0).  The
** sqlite3FaultSim() function only returns non-zero during testing.
**
** During testing, if the test harness has set a fault-sim callback using
** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
** each call to sqlite3FaultSim() is relayed to that application-supplied
** callback and the integer return value form the application-supplied
** callback is returned by sqlite3FaultSim().
**
** The integer argument to sqlite3FaultSim() is a code to identify which
** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
** should have a unique code.  To prevent legacy testing applications from
** breaking, the codes should not be changed or reused.
*/
#ifndef SQLITE_UNTESTABLE
int sqlite3FaultSim(int iTest){
  int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
  return xCallback ? xCallback(iTest) : SQLITE_OK;
}
#endif

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is Not a Number (NaN).
**
** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
** Otherwise, we have our own implementation that works on most systems.
*/
int sqlite3IsNaN(double x){
  int rc;   /* The value return */
#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
  u64 y;
  memcpy(&y,&x,sizeof(y));
  rc = IsNaN(y);
#else
  rc = isnan(x);
#endif /* HAVE_ISNAN */
  testcase( rc );
  return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is NaN or +Inf or -Inf.
*/
int sqlite3IsOverflow(double x){
  int rc;   /* The value return */
  u64 y;
  memcpy(&y,&x,sizeof(y));
  rc = IsOvfl(y);
  return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
**
** The value returned will never be negative.  Nor will it ever be greater
** than the actual length of the string.  For very long strings (greater
** than 1GiB) the value returned might be less than the true string length.
*/
int sqlite3Strlen30(const char *z){
  if( z==0 ) return 0;
  return 0x3fffffff & (int)strlen(z);
}

/*
** Return the declared type of a column.  Or return zDflt if the column
** has no declared type.
**
** The column type is an extra string stored after the zero-terminator on
** the column name if and only if the COLFLAG_HASTYPE flag is set.
*/
char *sqlite3ColumnType(Column *pCol, char *zDflt){
  if( pCol->colFlags & COLFLAG_HASTYPE ){
    return pCol->zCnName + strlen(pCol->zCnName) + 1;
  }else if( pCol->eCType ){
    assert( pCol->eCType<=SQLITE_N_STDTYPE );
    return (char*)sqlite3StdType[pCol->eCType-1];
  }else{
    return zDflt;
  }
}

/*
** Helper function for sqlite3Error() - called rarely.  Broken out into
** a separate routine to avoid unnecessary register saves on entry to
** sqlite3Error().
*/
static SQLITE_NOINLINE void  sqlite3ErrorFinish(sqlite3 *db, int err_code){
  if( db->pErr ) sqlite3ValueSetNull(db->pErr);
  sqlite3SystemError(db, err_code);
}

/*
** Set the current error code to err_code and clear any prior error message.
** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
** that would be appropriate.
*/
void sqlite3Error(sqlite3 *db, int err_code){
  assert( db!=0 );
  db->errCode = err_code;
  if( err_code || db->pErr ){
    sqlite3ErrorFinish(db, err_code);
  }else{
    db->errByteOffset = -1;
  }
}

/*
** The equivalent of sqlite3Error(db, SQLITE_OK).  Clear the error state
** and error message.
*/
void sqlite3ErrorClear(sqlite3 *db){
  assert( db!=0 );
  db->errCode = SQLITE_OK;
  db->errByteOffset = -1;
  if( db->pErr ) sqlite3ValueSetNull(db->pErr);
}

/*
** Load the sqlite3.iSysErrno field if that is an appropriate thing
** to do based on the SQLite error code in rc.
*/
void sqlite3SystemError(sqlite3 *db, int rc){
  if( rc==SQLITE_IOERR_NOMEM ) return;
#if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
  if( rc==SQLITE_IOERR_IN_PAGE ){
    int ii;
    int iErr;
    sqlite3BtreeEnterAll(db);
    for(ii=0; ii<db->nDb; ii++){
      if( db->aDb[ii].pBt ){
        iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
        if( iErr ){
          db->iSysErrno = iErr;
        }
      }
    }
    sqlite3BtreeLeaveAll(db);
    return;
  }
#endif
  rc &= 0xff;
  if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
    db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
  }
}

/*
** Set the most recent error code and error string for the sqlite
** handle "db". The error code is set to "err_code".
**
** If it is not NULL, string zFormat specifies the format of the
** error string.  zFormat and any string tokens that follow it are
** assumed to be encoded in UTF-8.
**
** To clear the most recent error for sqlite handle "db", sqlite3Error
** should be called with err_code set to SQLITE_OK and zFormat set
** to NULL.
*/
void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
  assert( db!=0 );
  db->errCode = err_code;
  sqlite3SystemError(db, err_code);
  if( zFormat==0 ){
    sqlite3Error(db, err_code);
  }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
    char *z;
    va_list ap;
    va_start(ap, zFormat);
    z = sqlite3VMPrintf(db, zFormat, ap);
    va_end(ap);
    sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
  }
}

/*
** Check for interrupts and invoke progress callback.
*/
void sqlite3ProgressCheck(Parse *p){
  sqlite3 *db = p->db;
  if( AtomicLoad(&db->u1.isInterrupted) ){
    p->nErr++;
    p->rc = SQLITE_INTERRUPT;
  }
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
  if( db->xProgress ){
    if( p->rc==SQLITE_INTERRUPT ){
      p->nProgressSteps = 0;
    }else if( (++p->nProgressSteps)>=db->nProgressOps ){
      if( db->xProgress(db->pProgressArg) ){
        p->nErr++;
        p->rc = SQLITE_INTERRUPT;
      }
      p->nProgressSteps = 0;
    }
  }
#endif
}

/*
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
**
** This function should be used to report any error that occurs while
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
** last thing the sqlite3_prepare() function does is copy the error
** stored by this function into the database handle using sqlite3Error().
** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
** during statement execution (sqlite3_step() etc.).
*/
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
  char *zMsg;
  va_list ap;
  sqlite3 *db = pParse->db;
  assert( db!=0 );
  assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
  db->errByteOffset = -2;
  va_start(ap, zFormat);
  zMsg = sqlite3VMPrintf(db, zFormat, ap);
  va_end(ap);
  if( db->errByteOffset<-1 ) db->errByteOffset = -1;
  if( db->suppressErr ){
    sqlite3DbFree(db, zMsg);
    if( db->mallocFailed ){
      pParse->nErr++;
      pParse->rc = SQLITE_NOMEM;
    }
  }else{
    pParse->nErr++;
    sqlite3DbFree(db, pParse->zErrMsg);
    pParse->zErrMsg = zMsg;
    pParse->rc = SQLITE_ERROR;
    pParse->pWith = 0;
  }
}

/*
** If database connection db is currently parsing SQL, then transfer
** error code errCode to that parser if the parser has not already
** encountered some other kind of error.
*/
int sqlite3ErrorToParser(sqlite3 *db, int errCode){
  Parse *pParse;
  if( db==0 || (pParse = db->pParse)==0 ) return errCode;
  pParse->rc = errCode;
  pParse->nErr++;
  return errCode;
}

/*
** Convert an SQL-style quoted string into a normal string by removing
** the quote characters.  The conversion is done in-place.  If the
** input does not begin with a quote character, then this routine
** is a no-op.
**
** The input string must be zero-terminated.  A new zero-terminator
** is added to the dequoted string.
**
** The return value is -1 if no dequoting occurs or the length of the
** dequoted string, exclusive of the zero terminator, if dequoting does
** occur.
**
** 2002-02-14: This routine is extended to remove MS-Access style
** brackets from around identifiers.  For example:  "[a-b-c]" becomes
** "a-b-c".
*/
void sqlite3Dequote(char *z){
  char quote;
  int i, j;
  if( z==0 ) return;
  quote = z[0];
  if( !sqlite3Isquote(quote) ) return;
  if( quote=='[' ) quote = ']';
  for(i=1, j=0;; i++){
    assert( z[i] );
    if( z[i]==quote ){
      if( z[i+1]==quote ){
        z[j++] = quote;
        i++;
      }else{
        break;
      }
    }else{
      z[j++] = z[i];
    }
  }
  z[j] = 0;
}
void sqlite3DequoteExpr(Expr *p){
  assert( !ExprHasProperty(p, EP_IntValue) );
  assert( sqlite3Isquote(p->u.zToken[0]) );
  p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
  sqlite3Dequote(p->u.zToken);
}

/*
** Expression p is a QNUMBER (quoted number). Dequote the value in p->u.zToken
** and set the type to INTEGER or FLOAT. "Quoted" integers or floats are those
** that contain '_' characters that must be removed before further processing.
*/
void sqlite3DequoteNumber(Parse *pParse, Expr *p){
  assert( p!=0 || pParse->db->mallocFailed );
  if( p ){
    const char *pIn = p->u.zToken;
    char *pOut = p->u.zToken;
    int bHex = (pIn[0]=='0' && (pIn[1]=='x' || pIn[1]=='X'));
    int iValue;
    assert( p->op==TK_QNUMBER );
    p->op = TK_INTEGER;
    do {
      if( *pIn!=SQLITE_DIGIT_SEPARATOR ){
        *pOut++ = *pIn;
        if( *pIn=='e' || *pIn=='E' || *pIn=='.' ) p->op = TK_FLOAT;
      }else{
        if( (bHex==0 && (!sqlite3Isdigit(pIn[-1]) || !sqlite3Isdigit(pIn[1])))
         || (bHex==1 && (!sqlite3Isxdigit(pIn[-1]) || !sqlite3Isxdigit(pIn[1])))
        ){
          sqlite3ErrorMsg(pParse, "unrecognized token: \"%s\"", p->u.zToken);
        }
      }
    }while( *pIn++ );
    if( bHex ) p->op = TK_INTEGER;

    /* tag-20240227-a: If after dequoting, the number is an integer that
    ** fits in 32 bits, then it must be converted into EP_IntValue.  Other
    ** parts of the code expect this.  See also tag-20240227-b. */
    if( p->op==TK_INTEGER && sqlite3GetInt32(p->u.zToken, &iValue) ){
      p->u.iValue = iValue;
      p->flags |= EP_IntValue;
    }
  }
}

/*
** If the input token p is quoted, try to adjust the token to remove
** the quotes.  This is not always possible:
**
**     "abc"     ->   abc
**     "ab""cd"  ->   (not possible because of the interior "")
**
** Remove the quotes if possible.  This is a optimization.  The overall
** system should still return the correct answer even if this routine
** is always a no-op.
*/
void sqlite3DequoteToken(Token *p){
  unsigned int i;
  if( p->n<2 ) return;
  if( !sqlite3Isquote(p->z[0]) ) return;
  for(i=1; i<p->n-1; i++){
    if( sqlite3Isquote(p->z[i]) ) return;
  }
  p->n -= 2;
  p->z++;
}

/*
** Generate a Token object from a string
*/
void sqlite3TokenInit(Token *p, char *z){
  p->z = z;
  p->n = sqlite3Strlen30(z);
}

/* Convenient short-hand */
#define UpperToLower sqlite3UpperToLower

/*
** Some systems have stricmp().  Others have strcasecmp().  Because
** there is no consistency, we will define our own.
**
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
int sqlite3_stricmp(const char *zLeft, const char *zRight){
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  return sqlite3StrICmp(zLeft, zRight);
}
int sqlite3StrICmp(const char *zLeft, const char *zRight){
  unsigned char *a, *b;
  int c, x;
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  for(;;){
    c = *a;
    x = *b;
    if( c==x ){
      if( c==0 ) break;
    }else{
      c = (int)UpperToLower[c] - (int)UpperToLower[x];
      if( c ) break;
    }
    a++;
    b++;
  }
  return c;
}
int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

/*
** Compute an 8-bit hash on a string that is insensitive to case differences
*/
u8 sqlite3StrIHash(const char *z){
  u8 h = 0;
  if( z==0 ) return 0;
  while( z[0] ){
    h += UpperToLower[(unsigned char)z[0]];
    z++;
  }
  return h;
}

/* Double-Double multiplication.  (x[0],x[1]) *= (y,yy)
**
** Reference:
**   T. J. Dekker, "A Floating-Point Technique for Extending the
**   Available Precision".  1971-07-26.
*/
static void dekkerMul2(volatile double *x, double y, double yy){
  /*
  ** The "volatile" keywords on parameter x[] and on local variables
  ** below are needed force intermediate results to be truncated to
  ** binary64 rather than be carried around in an extended-precision
  ** format.  The truncation is necessary for the Dekker algorithm to
  ** work.  Intel x86 floating point might omit the truncation without
  ** the use of volatile. 
  */
  volatile double tx, ty, p, q, c, cc;
  double hx, hy;
  u64 m;
  memcpy(&m, (void*)&x[0], 8);
  m &= 0xfffffffffc000000LL;
  memcpy(&hx, &m, 8);
  tx = x[0] - hx;
  memcpy(&m, &y, 8);
  m &= 0xfffffffffc000000LL;
  memcpy(&hy, &m, 8);
  ty = y - hy;
  p = hx*hy;
  q = hx*ty + tx*hy;
  c = p+q;
  cc = p - c + q + tx*ty;
  cc = x[0]*yy + x[1]*y + cc;
  x[0] = c + cc;
  x[1] = c - x[0];
  x[1] += cc;
}

/*
** The string z[] is an text representation of a real number.
** Convert this string to a double and write it into *pResult.
**
** The string z[] is length bytes in length (bytes, not characters) and
** uses the encoding enc.  The string is not necessarily zero-terminated.
**
** Return TRUE if the result is a valid real number (or integer) and FALSE
** if the string is empty or contains extraneous text.  More specifically
** return
**      1          =>  The input string is a pure integer
**      2 or more  =>  The input has a decimal point or eNNN clause
**      0 or less  =>  The input string is not a valid number
**     -1          =>  Not a valid number, but has a valid prefix which
**                     includes a decimal point and/or an eNNN clause
**
** Valid numbers are in one of these formats:
**
**    [+-]digits[E[+-]digits]
**    [+-]digits.[digits][E[+-]digits]
**    [+-].digits[E[+-]digits]
**
** Leading and trailing whitespace is ignored for the purpose of determining
** validity.
**
** If some prefix of the input string is a valid number, this routine
** returns FALSE but it still converts the prefix and writes the result
** into *pResult.
*/
#if defined(_MSC_VER)
#pragma warning(disable : 4756)
#endif
int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
#ifndef SQLITE_OMIT_FLOATING_POINT
  int incr;
  const char *zEnd;
  /* sign * significand * (10 ^ (esign * exponent)) */
  int sign = 1;    /* sign of significand */
  u64 s = 0;       /* significand */
  int d = 0;       /* adjust exponent for shifting decimal point */
  int esign = 1;   /* sign of exponent */
  int e = 0;       /* exponent */
  int eValid = 1;  /* True exponent is either not used or is well-formed */
  int nDigit = 0;  /* Number of digits processed */
  int eType = 1;   /* 1: pure integer,  2+: fractional  -1 or less: bad UTF16 */
  u64 s2;          /* round-tripped significand */
  double rr[2];

  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  *pResult = 0.0;   /* Default return value, in case of an error */
  if( length==0 ) return 0;

  if( enc==SQLITE_UTF8 ){
    incr = 1;
    zEnd = z + length;
  }else{
    int i;
    incr = 2;
    length &= ~1;
    assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
    testcase( enc==SQLITE_UTF16LE );
    testcase( enc==SQLITE_UTF16BE );
    for(i=3-enc; i<length && z[i]==0; i+=2){}
    if( i<length ) eType = -100;
    zEnd = &z[i^1];
    z += (enc&1);
  }

  /* skip leading spaces */
  while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
  if( z>=zEnd ) return 0;

  /* get sign of significand */
  if( *z=='-' ){
    sign = -1;
    z+=incr;
  }else if( *z=='+' ){
    z+=incr;
  }

  /* copy max significant digits to significand */
  while( z<zEnd && sqlite3Isdigit(*z) ){
    s = s*10 + (*z - '0');
    z+=incr; nDigit++;
    if( s>=((LARGEST_UINT64-9)/10) ){
      /* skip non-significant significand digits
      ** (increase exponent by d to shift decimal left) */
      while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
    }
  }
  if( z>=zEnd ) goto do_atof_calc;

  /* if decimal point is present */
  if( *z=='.' ){
    z+=incr;
    eType++;
    /* copy digits from after decimal to significand
    ** (decrease exponent by d to shift decimal right) */
    while( z<zEnd && sqlite3Isdigit(*z) ){
      if( s<((LARGEST_UINT64-9)/10) ){
        s = s*10 + (*z - '0');
        d--;
        nDigit++;
      }
      z+=incr;
    }
  }
  if( z>=zEnd ) goto do_atof_calc;

  /* if exponent is present */
  if( *z=='e' || *z=='E' ){
    z+=incr;
    eValid = 0;
    eType++;

    /* This branch is needed to avoid a (harmless) buffer overread.  The
    ** special comment alerts the mutation tester that the correct answer
    ** is obtained even if the branch is omitted */
    if( z>=zEnd ) goto do_atof_calc;              /*PREVENTS-HARMLESS-OVERREAD*/

    /* get sign of exponent */
    if( *z=='-' ){
      esign = -1;
      z+=incr;
    }else if( *z=='+' ){
      z+=incr;
    }
    /* copy digits to exponent */
    while( z<zEnd && sqlite3Isdigit(*z) ){
      e = e<10000 ? (e*10 + (*z - '0')) : 10000;
      z+=incr;
      eValid = 1;
    }
  }

  /* skip trailing spaces */
  while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;

do_atof_calc:
  /* Zero is a special case */
  if( s==0 ){
    *pResult = sign<0 ? -0.0 : +0.0;
    goto atof_return;
  }

  /* adjust exponent by d, and update sign */
  e = (e*esign) + d;

  /* Try to adjust the exponent to make it smaller */
  while( e>0 && s<((LARGEST_UINT64-0x7ff)/10) ){
    s *= 10;
    e--;
  }
  while( e<0 && (s%10)==0 ){
    s /= 10;
    e++;
  }

  rr[0] = (double)s;
  assert( sizeof(s2)==sizeof(rr[0]) );
#ifdef SQLITE_DEBUG
  rr[1] = 18446744073709549568.0;
  memcpy(&s2, &rr[1], sizeof(s2));
  assert( s2==0x43efffffffffffffLL );
#endif
  /* Largest double that can be safely converted to u64
  **         vvvvvvvvvvvvvvvvvvvvvv   */
  if( rr[0]<=18446744073709549568.0 ){
    s2 = (u64)rr[0];
    rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
  }else{
    rr[1] = 0.0;
  }
  assert( rr[1]<=1.0e-10*rr[0] );  /* Equal only when rr[0]==0.0 */
  
  if( e>0 ){
    while( e>=100  ){
      e -= 100;
      dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
    }
    while( e>=10   ){
      e -= 10;
      dekkerMul2(rr, 1.0e+10, 0.0);
    }
    while( e>=1    ){
      e -= 1;
      dekkerMul2(rr, 1.0e+01, 0.0);
    }
  }else{
    while( e<=-100 ){
      e += 100;
      dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
    }
    while( e<=-10  ){
      e += 10;
      dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
    }
    while( e<=-1   ){
      e += 1;
      dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
    }
  }
  *pResult = rr[0]+rr[1];
  if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
  if( sign<0 ) *pResult = -*pResult;
  assert( !sqlite3IsNaN(*pResult) );

atof_return:
  /* return true if number and no extra non-whitespace characters after */
  if( z==zEnd && nDigit>0 && eValid && eType>0 ){
    return eType;
  }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
    return -1;
  }else{
    return 0;
  }
#else
  return !sqlite3Atoi64(z, pResult, length, enc);
#endif /* SQLITE_OMIT_FLOATING_POINT */
}
#if defined(_MSC_VER)
#pragma warning(default : 4756)
#endif

/*
** Render an signed 64-bit integer as text.  Store the result in zOut[] and
** return the length of the string that was stored, in bytes.  The value
** returned does not include the zero terminator at the end of the output
** string.
**
** The caller must ensure that zOut[] is at least 21 bytes in size.
*/
int sqlite3Int64ToText(i64 v, char *zOut){
  int i;
  u64 x;
  char zTemp[22];
  if( v<0 ){
    x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
  }else{
    x = v;
  }
  i = sizeof(zTemp)-2;
  zTemp[sizeof(zTemp)-1] = 0;
  while( 1 /*exit-by-break*/ ){
    zTemp[i] = (x%10) + '0';
    x = x/10;
    if( x==0 ) break;
    i--;
  };
  if( v<0 ) zTemp[--i] = '-';
  memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
  return sizeof(zTemp)-1-i;
}

/*
** Compare the 19-character string zNum against the text representation
** value 2^63:  9223372036854775808.  Return negative, zero, or positive
** if zNum is less than, equal to, or greater than the string.
** Note that zNum must contain exactly 19 characters.
**
** Unlike memcmp() this routine is guaranteed to return the difference
** in the values of the last digit if the only difference is in the
** last digit.  So, for example,
**
**      compare2pow63("9223372036854775800", 1)
**
** will return -8.
*/
static int compare2pow63(const char *zNum, int incr){
  int c = 0;
  int i;
                    /* 012345678901234567 */
  const char *pow63 = "922337203685477580";
  for(i=0; c==0 && i<18; i++){
    c = (zNum[i*incr]-pow63[i])*10;
  }
  if( c==0 ){
    c = zNum[18*incr] - '8';
    testcase( c==(-1) );
    testcase( c==0 );
    testcase( c==(+1) );
  }
  return c;
}

/*
** Convert zNum to a 64-bit signed integer.  zNum must be decimal. This
** routine does *not* accept hexadecimal notation.
**
** Returns:
**
**    -1    Not even a prefix of the input text looks like an integer
**     0    Successful transformation.  Fits in a 64-bit signed integer.
**     1    Excess non-space text after the integer value
**     2    Integer too large for a 64-bit signed integer or is malformed
**     3    Special case of 9223372036854775808
**
** length is the number of bytes in the string (bytes, not characters).
** The string is not necessarily zero-terminated.  The encoding is
** given by enc.
*/
int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
  int incr;
  u64 u = 0;
  int neg = 0; /* assume positive */
  int i;
  int c = 0;
  int nonNum = 0;  /* True if input contains UTF16 with high byte non-zero */
  int rc;          /* Baseline return code */
  const char *zStart;
  const char *zEnd = zNum + length;
  assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
  if( enc==SQLITE_UTF8 ){
    incr = 1;
  }else{
    incr = 2;
    length &= ~1;
    assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
    for(i=3-enc; i<length && zNum[i]==0; i+=2){}
    nonNum = i<length;
    zEnd = &zNum[i^1];
    zNum += (enc&1);
  }
  while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
  if( zNum<zEnd ){
    if( *zNum=='-' ){
      neg = 1;
      zNum+=incr;
    }else if( *zNum=='+' ){
      zNum+=incr;
    }
  }
  zStart = zNum;
  while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
  for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
    u = u*10 + c - '0';
  }
  testcase( i==18*incr );
  testcase( i==19*incr );
  testcase( i==20*incr );
  if( u>LARGEST_INT64 ){
    /* This test and assignment is needed only to suppress UB warnings
    ** from clang and -fsanitize=undefined.  This test and assignment make
    ** the code a little larger and slower, and no harm comes from omitting
    ** them, but we must appease the undefined-behavior pharisees. */
    *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
  }else if( neg ){
    *pNum = -(i64)u;
  }else{
    *pNum = (i64)u;
  }
  rc = 0;
  if( i==0 && zStart==zNum ){    /* No digits */
    rc = -1;
  }else if( nonNum ){            /* UTF16 with high-order bytes non-zero */
    rc = 1;
  }else if( &zNum[i]<zEnd ){     /* Extra bytes at the end */
    int jj = i;
    do{
      if( !sqlite3Isspace(zNum[jj]) ){
        rc = 1;          /* Extra non-space text after the integer */
        break;
      }
      jj += incr;
    }while( &zNum[jj]<zEnd );
  }
  if( i<19*incr ){
    /* Less than 19 digits, so we know that it fits in 64 bits */
    assert( u<=LARGEST_INT64 );
    return rc;
  }else{
    /* zNum is a 19-digit numbers.  Compare it against 9223372036854775808. */
    c = i>19*incr ? 1 : compare2pow63(zNum, incr);
    if( c<0 ){
      /* zNum is less than 9223372036854775808 so it fits */
      assert( u<=LARGEST_INT64 );
      return rc;
    }else{
      *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
      if( c>0 ){
        /* zNum is greater than 9223372036854775808 so it overflows */
        return 2;
      }else{
        /* zNum is exactly 9223372036854775808.  Fits if negative.  The
        ** special case 2 overflow if positive */
        assert( u-1==LARGEST_INT64 );
        return neg ? rc : 3;
      }
    }
  }
}

/*
** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
** into a 64-bit signed integer.  This routine accepts hexadecimal literals,
** whereas sqlite3Atoi64() does not.
**
** Returns:
**
**     0    Successful transformation.  Fits in a 64-bit signed integer.
**     1    Excess text after the integer value
**     2    Integer too large for a 64-bit signed integer or is malformed
**     3    Special case of 9223372036854775808
*/
int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
#ifndef SQLITE_OMIT_HEX_INTEGER
  if( z[0]=='0'
   && (z[1]=='x' || z[1]=='X')
  ){
    u64 u = 0;
    int i, k;
    for(i=2; z[i]=='0'; i++){}
    for(k=i; sqlite3Isxdigit(z[k]); k++){
      u = u*16 + sqlite3HexToInt(z[k]);
    }
    memcpy(pOut, &u, 8);
    if( k-i>16 ) return 2;
    if( z[k]!=0 ) return 1;
    return 0;
  }else
#endif /* SQLITE_OMIT_HEX_INTEGER */
  {
    int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
    if( z[n] ) n++;
    return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
  }
}

/*
** If zNum represents an integer that will fit in 32-bits, then set
** *pValue to that integer and return true.  Otherwise return false.
**
** This routine accepts both decimal and hexadecimal notation for integers.
**
** Any non-numeric characters that following zNum are ignored.
** This is different from sqlite3Atoi64() which requires the
** input number to be zero-terminated.
*/
int sqlite3GetInt32(const char *zNum, int *pValue){
  sqlite_int64 v = 0;
  int i, c;
  int neg = 0;
  if( zNum[0]=='-' ){
    neg = 1;
    zNum++;
  }else if( zNum[0]=='+' ){
    zNum++;
  }
#ifndef SQLITE_OMIT_HEX_INTEGER
  else if( zNum[0]=='0'
        && (zNum[1]=='x' || zNum[1]=='X')
        && sqlite3Isxdigit(zNum[2])
  ){
    u32 u = 0;
    zNum += 2;
    while( zNum[0]=='0' ) zNum++;
    for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
      u = u*16 + sqlite3HexToInt(zNum[i]);
    }
    if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
      memcpy(pValue, &u, 4);
      return 1;
    }else{
      return 0;
    }
  }
#endif
  if( !sqlite3Isdigit(zNum[0]) ) return 0;
  while( zNum[0]=='0' ) zNum++;
  for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
    v = v*10 + c;
  }

  /* The longest decimal representation of a 32 bit integer is 10 digits:
  **
  **             1234567890
  **     2^31 -> 2147483648
  */
  testcase( i==10 );
  if( i>10 ){
    return 0;
  }
  testcase( v-neg==2147483647 );
  if( v-neg>2147483647 ){
    return 0;
  }
  if( neg ){
    v = -v;
  }
  *pValue = (int)v;
  return 1;
}

/*
** Return a 32-bit integer value extracted from a string.  If the
** string is not an integer, just return 0.
*/
int sqlite3Atoi(const char *z){
  int x = 0;
  sqlite3GetInt32(z, &x);
  return x;
}

/*
** Decode a floating-point value into an approximate decimal
** representation.
**
** If iRound<=0 then round to -iRound significant digits to the
** the left of the decimal point, or to a maximum of mxRound total
** significant digits.
**
** If iRound>0 round to min(iRound,mxRound) significant digits total.
**
** mxRound must be positive.
**
** The significant digits of the decimal representation are
** stored in p->z[] which is a often (but not always) a pointer
** into the middle of p->zBuf[].  There are p->n significant digits.
** The p->z[] array is *not* zero-terminated.
*/
void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
  int i;
  u64 v;
  int e, exp = 0;
  double rr[2];

  p->isSpecial = 0;
  p->z = p->zBuf;
  assert( mxRound>0 );

  /* Convert negative numbers to positive.  Deal with Infinity, 0.0, and
  ** NaN. */
  if( r<0.0 ){
    p->sign = '-';
    r = -r;
  }else if( r==0.0 ){
    p->sign = '+';
    p->n = 1;
    p->iDP = 1;
    p->z = "0";
    return;
  }else{
    p->sign = '+';
  }
  memcpy(&v,&r,8);
  e = v>>52;
  if( (e&0x7ff)==0x7ff ){
    p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
    p->n = 0;
    p->iDP = 0;
    return;
  }

  /* Multiply r by powers of ten until it lands somewhere in between
  ** 1.0e+19 and 1.0e+17.
  **
  ** Use Dekker-style double-double computation to increase the
  ** precision.
  **
  ** The error terms on constants like 1.0e+100 computed using the
  ** decimal extension, for example as follows:
  **
  **   SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
  */
  rr[0] = r;
  rr[1] = 0.0;
  if( rr[0]>9.223372036854774784e+18 ){
    while( rr[0]>9.223372036854774784e+118 ){
      exp += 100;
      dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
    }
    while( rr[0]>9.223372036854774784e+28 ){
      exp += 10;
      dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
    }
    while( rr[0]>9.223372036854774784e+18 ){
      exp += 1;
      dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
    }
  }else{
    while( rr[0]<9.223372036854774784e-83  ){
      exp -= 100;
      dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
    }
    while( rr[0]<9.223372036854774784e+07  ){
      exp -= 10;
      dekkerMul2(rr, 1.0e+10, 0.0);
    }
    while( rr[0]<9.22337203685477478e+17  ){
      exp -= 1;
      dekkerMul2(rr, 1.0e+01, 0.0);
    }
  }
  v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];

  /* Extract significant digits. */
  i = sizeof(p->zBuf)-1;
  assert( v>0 );
  while( v ){  p->zBuf[i--] = (v%10) + '0'; v /= 10; }
  assert( i>=0 && i<sizeof(p->zBuf)-1 );
  p->n = sizeof(p->zBuf) - 1 - i;
  assert( p->n>0 );
  assert( p->n<sizeof(p->zBuf) );
  p->iDP = p->n + exp;
  if( iRound<=0 ){
    iRound = p->iDP - iRound;
    if( iRound==0 && p->zBuf[i+1]>='5' ){
      iRound = 1;
      p->zBuf[i--] = '0';
      p->n++;
      p->iDP++;
    }
  }
  if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
    char *z = &p->zBuf[i+1];
    if( iRound>mxRound ) iRound = mxRound;
    p->n = iRound;
    if( z[iRound]>='5' ){
      int j = iRound-1;
      while( 1 /*exit-by-break*/ ){
        z[j]++;
        if( z[j]<='9' ) break;
        z[j] = '0';
        if( j==0 ){
          p->z[i--] = '1';
          p->n++;
          p->iDP++;
          break;
        }else{
          j--;
        }
      }
    }
  }
  p->z = &p->zBuf[i+1];
  assert( i+p->n < sizeof(p->zBuf) );
  while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
}

/*
** Try to convert z into an unsigned 32-bit integer.  Return true on
** success and false if there is an error.
**
** Only decimal notation is accepted.
*/
int sqlite3GetUInt32(const char *z, u32 *pI){
  u64 v = 0;
  int i;
  for(i=0; sqlite3Isdigit(z[i]); i++){
    v = v*10 + z[i] - '0';
    if( v>4294967296LL ){ *pI = 0; return 0; }
  }
  if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
  *pI = (u32)v;
  return 1;
}

/*
** The variable-length integer encoding is as follows:
**
** KEY:
**         A = 0xxxxxxx    7 bits of data and one flag bit
**         B = 1xxxxxxx    7 bits of data and one flag bit
**         C = xxxxxxxx    8 bits of data
**
**  7 bits - A
** 14 bits - BA
** 21 bits - BBA
** 28 bits - BBBA
** 35 bits - BBBBA
** 42 bits - BBBBBA
** 49 bits - BBBBBBA
** 56 bits - BBBBBBBA
** 64 bits - BBBBBBBBC
*/

/*
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data write will be between 1 and 9 bytes.  The number
** of bytes written is returned.
**
** A variable-length integer consists of the lower 7 bits of each byte
** for all bytes that have the 8th bit set and one byte with the 8th
** bit clear.  Except, if we get to the 9th byte, it stores the full
** 8 bits and is the last byte.
*/
static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
  int i, j, n;
  u8 buf[10];
  if( v & (((u64)0xff000000)<<32) ){
    p[8] = (u8)v;
    v >>= 8;
    for(i=7; i>=0; i--){
      p[i] = (u8)((v & 0x7f) | 0x80);
      v >>= 7;
    }
    return 9;
  }   
  n = 0;
  do{
    buf[n++] = (u8)((v & 0x7f) | 0x80);
    v >>= 7;
  }while( v!=0 );
  buf[0] &= 0x7f;
  assert( n<=9 );
  for(i=0, j=n-1; j>=0; j--, i++){
    p[i] = buf[j];
  }
  return n;
}
int sqlite3PutVarint(unsigned char *p, u64 v){
  if( v<=0x7f ){
    p[0] = v&0x7f;
    return 1;
  }
  if( v<=0x3fff ){
    p[0] = ((v>>7)&0x7f)|0x80;
    p[1] = v&0x7f;
    return 2;
  }
  return putVarint64(p,v);
}

/*
** Bitmasks used by sqlite3GetVarint().  These precomputed constants
** are defined here rather than simply putting the constant expressions
** inline in order to work around bugs in the RVT compiler.
**
** SLOT_2_0     A mask for  (0x7f<<14) | 0x7f
**
** SLOT_4_2_0   A mask for  (0x7f<<28) | SLOT_2_0
*/
#define SLOT_2_0     0x001fc07f
#define SLOT_4_2_0   0xf01fc07f


/*
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read.  The value is stored in *v.
*/
u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
  u32 a,b,s;

  if( ((signed char*)p)[0]>=0 ){
    *v = *p;
    return 1;
  }
  if( ((signed char*)p)[1]>=0 ){
    *v = ((u32)(p[0]&0x7f)<<7) | p[1];
    return 2;
  }

  /* Verify that constants are precomputed correctly */
  assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
  assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );

  a = ((u32)p[0])<<14;
  b = p[1];
  p += 2;
  a |= *p;
  /* a: p0<<14 | p2 (unmasked) */
  if (!(a&0x80))
  {
    a &= SLOT_2_0;
    b &= 0x7f;
    b = b<<7;
    a |= b;
    *v = a;
    return 3;
  }

  /* CSE1 from below */
  a &= SLOT_2_0;
  p++;
  b = b<<14;
  b |= *p;
  /* b: p1<<14 | p3 (unmasked) */
  if (!(b&0x80))
  {
    b &= SLOT_2_0;
    /* moved CSE1 up */
    /* a &= (0x7f<<14)|(0x7f); */
    a = a<<7;
    a |= b;
    *v = a;
    return 4;
  }

  /* a: p0<<14 | p2 (masked) */
  /* b: p1<<14 | p3 (unmasked) */
  /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
  /* moved CSE1 up */
  /* a &= (0x7f<<14)|(0x7f); */
  b &= SLOT_2_0;
  s = a;
  /* s: p0<<14 | p2 (masked) */

  p++;
  a = a<<14;
  a |= *p;
  /* a: p0<<28 | p2<<14 | p4 (unmasked) */
  if (!(a&0x80))
  {
    /* we can skip these cause they were (effectively) done above
    ** while calculating s */
    /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
    /* b &= (0x7f<<14)|(0x7f); */
    b = b<<7;
    a |= b;
    s = s>>18;
    *v = ((u64)s)<<32 | a;
    return 5;
  }

  /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
  s = s<<7;
  s |= b;
  /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */

  p++;
  b = b<<14;
  b |= *p;
  /* b: p1<<28 | p3<<14 | p5 (unmasked) */
  if (!(b&0x80))
  {
    /* we can skip this cause it was (effectively) done above in calc'ing s */
    /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
    a &= SLOT_2_0;
    a = a<<7;
    a |= b;
    s = s>>18;
    *v = ((u64)s)<<32 | a;
    return 6;
  }

  p++;
  a = a<<14;
  a |= *p;
  /* a: p2<<28 | p4<<14 | p6 (unmasked) */
  if (!(a&0x80))
  {
    a &= SLOT_4_2_0;
    b &= SLOT_2_0;
    b = b<<7;
    a |= b;
    s = s>>11;
    *v = ((u64)s)<<32 | a;
    return 7;
  }

  /* CSE2 from below */
  a &= SLOT_2_0;
  p++;
  b = b<<14;
  b |= *p;
  /* b: p3<<28 | p5<<14 | p7 (unmasked) */
  if (!(b&0x80))
  {
    b &= SLOT_4_2_0;
    /* moved CSE2 up */
    /* a &= (0x7f<<14)|(0x7f); */
    a = a<<7;
    a |= b;
    s = s>>4;
    *v = ((u64)s)<<32 | a;
    return 8;
  }

  p++;
  a = a<<15;
  a |= *p;
  /* a: p4<<29 | p6<<15 | p8 (unmasked) */

  /* moved CSE2 up */
  /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
  b &= SLOT_2_0;
  b = b<<8;
  a |= b;

  s = s<<4;
  b = p[-4];
  b &= 0x7f;
  b = b>>3;
  s |= b;

  *v = ((u64)s)<<32 | a;

  return 9;
}

/*
** Read a 32-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read.  The value is stored in *v.
**
** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
** integer, then set *v to 0xffffffff.
**
** A MACRO version, getVarint32, is provided which inlines the
** single-byte case.  All code should use the MACRO version as
** this function assumes the single-byte case has already been handled.
*/
u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
  u64 v64;
  u8 n;

  /* Assume that the single-byte case has already been handled by
  ** the getVarint32() macro */
  assert( (p[0] & 0x80)!=0 );

  if( (p[1] & 0x80)==0 ){
    /* This is the two-byte case */
    *v = ((p[0]&0x7f)<<7) | p[1];
    return 2;
  }
  if( (p[2] & 0x80)==0 ){
    /* This is the three-byte case */
    *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
    return 3;
  }
  /* four or more bytes */
  n = sqlite3GetVarint(p, &v64);
  assert( n>3 && n<=9 );
  if( (v64 & SQLITE_MAX_U32)!=v64 ){
    *v = 0xffffffff;
  }else{
    *v = (u32)v64;
  }
  return n;
}

/*
** Return the number of bytes that will be needed to store the given
** 64-bit integer.
*/
int sqlite3VarintLen(u64 v){
  int i;
  for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
  return i;
}


/*
** Read or write a four-byte big-endian integer value.
*/
u32 sqlite3Get4byte(const u8 *p){
#if SQLITE_BYTEORDER==4321
  u32 x;
  memcpy(&x,p,4);
  return x;
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
  u32 x;
  memcpy(&x,p,4);
  return __builtin_bswap32(x);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  u32 x;
  memcpy(&x,p,4);
  return _byteswap_ulong(x);
#else
  testcase( p[0]&0x80 );
  return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
#endif
}
void sqlite3Put4byte(unsigned char *p, u32 v){
#if SQLITE_BYTEORDER==4321
  memcpy(p,&v,4);
#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
  u32 x = __builtin_bswap32(v);
  memcpy(p,&x,4);
#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
  u32 x = _byteswap_ulong(v);
  memcpy(p,&x,4);
#else
  p[0] = (u8)(v>>24);
  p[1] = (u8)(v>>16);
  p[2] = (u8)(v>>8);
  p[3] = (u8)v;
#endif
}



/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character:  0..9a..fA..F
*/
u8 sqlite3HexToInt(int h){
  assert( (h>='0' && h<='9') ||  (h>='a' && h<='f') ||  (h>='A' && h<='F') );
#ifdef SQLITE_ASCII
  h += 9*(1&(h>>6));
#endif
#ifdef SQLITE_EBCDIC
  h += 9*(1&~(h>>4));
#endif
  return (u8)(h & 0xf);
}

#if !defined(SQLITE_OMIT_BLOB_LITERAL)
/*
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
** value.  Return a pointer to its binary value.  Space to hold the
** binary value has been obtained from malloc and must be freed by
** the calling routine.
*/
void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
  char *zBlob;
  int i;

  zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
  n--;
  if( zBlob ){
    for(i=0; i<n; i+=2){
      zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
    }
    zBlob[i/2] = 0;
  }
  return zBlob;
}
#endif /* !SQLITE_OMIT_BLOB_LITERAL */

/*
** Log an error that is an API call on a connection pointer that should
** not have been used.  The "type" of connection pointer is given as the
** argument.  The zType is a word like "NULL" or "closed" or "invalid".
*/
static void logBadConnection(const char *zType){
  sqlite3_log(SQLITE_MISUSE,
     "API call with %s database connection pointer",
     zType
  );
}

/*
** Check to make sure we have a valid db pointer.  This test is not
** foolproof but it does provide some measure of protection against
** misuse of the interface such as passing in db pointers that are
** NULL or which have been previously closed.  If this routine returns
** 1 it means that the db pointer is valid and 0 if it should not be
** dereferenced for any reason.  The calling function should invoke
** SQLITE_MISUSE immediately.
**
** sqlite3SafetyCheckOk() requires that the db pointer be valid for
** use.  sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
** open properly and is not fit for general use but which can be
** used as an argument to sqlite3_errmsg() or sqlite3_close().
*/
int sqlite3SafetyCheckOk(sqlite3 *db){
  u8 eOpenState;
  if( db==0 ){
    logBadConnection("NULL");
    return 0;
  }
  eOpenState = db->eOpenState;
  if( eOpenState!=SQLITE_STATE_OPEN ){
    if( sqlite3SafetyCheckSickOrOk(db) ){
      testcase( sqlite3GlobalConfig.xLog!=0 );
      logBadConnection("unopened");
    }
    return 0;
  }else{
    return 1;
  }
}
int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
  u8 eOpenState;
  eOpenState = db->eOpenState;
  if( eOpenState!=SQLITE_STATE_SICK &&
      eOpenState!=SQLITE_STATE_OPEN &&
      eOpenState!=SQLITE_STATE_BUSY ){
    testcase( sqlite3GlobalConfig.xLog!=0 );
    logBadConnection("invalid");
    return 0;
  }else{
    return 1;
  }
}

/*
** Attempt to add, subtract, or multiply the 64-bit signed value iB against
** the other 64-bit signed integer at *pA and store the result in *pA.
** Return 0 on success.  Or if the operation would have resulted in an
** overflow, leave *pA unchanged and return 1.
*/
int sqlite3AddInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
  return __builtin_add_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  testcase( iA==0 ); testcase( iA==1 );
  testcase( iB==-1 ); testcase( iB==0 );
  if( iB>=0 ){
    testcase( iA>0 && LARGEST_INT64 - iA == iB );
    testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
    if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
  }else{
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
    testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
    if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
  }
  *pA += iB;
  return 0;
#endif
}
int sqlite3SubInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
  return __builtin_sub_overflow(*pA, iB, pA);
#else
  testcase( iB==SMALLEST_INT64+1 );
  if( iB==SMALLEST_INT64 ){
    testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
    if( (*pA)>=0 ) return 1;
    *pA -= iB;
    return 0;
  }else{
    return sqlite3AddInt64(pA, -iB);
  }
#endif
}
int sqlite3MulInt64(i64 *pA, i64 iB){
#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
  return __builtin_mul_overflow(*pA, iB, pA);
#else
  i64 iA = *pA;
  if( iB>0 ){
    if( iA>LARGEST_INT64/iB ) return 1;
    if( iA<SMALLEST_INT64/iB ) return 1;
  }else if( iB<0 ){
    if( iA>0 ){
      if( iB<SMALLEST_INT64/iA ) return 1;
    }else if( iA<0 ){
      if( iB==SMALLEST_INT64 ) return 1;
      if( iA==SMALLEST_INT64 ) return 1;
      if( -iA>LARGEST_INT64/-iB ) return 1;
    }
  }
  *pA = iA*iB;
  return 0;
#endif
}

/*
** Compute the absolute value of a 32-bit signed integer, of possible.  Or
** if the integer has a value of -2147483648, return +2147483647
*/
int sqlite3AbsInt32(int x){
  if( x>=0 ) return x;
  if( x==(int)0x80000000 ) return 0x7fffffff;
  return -x;
}

#ifdef SQLITE_ENABLE_8_3_NAMES
/*
** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
** three characters, then shorten the suffix on z[] to be the last three
** characters of the original suffix.
**
** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
** do the suffix shortening regardless of URI parameter.
**
** Examples:
**
**     test.db-journal    =>   test.nal
**     test.db-wal        =>   test.wal
**     test.db-shm        =>   test.shm
**     test.db-mj7f3319fa =>   test.9fa
*/
void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
#if SQLITE_ENABLE_8_3_NAMES<2
  if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
#endif
  {
    int i, sz;
    sz = sqlite3Strlen30(z);
    for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
    if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
  }
}
#endif

/*
** Find (an approximate) sum of two LogEst values.  This computation is
** not a simple "+" operator because LogEst is stored as a logarithmic
** value.
**
*/
LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
      9, 9,                          /* 2,3 */
      8, 8,                          /* 4,5 */
      7, 7, 7,                       /* 6,7,8 */
      6, 6, 6,                       /* 9,10,11 */
      5, 5, 5,                       /* 12-14 */
      4, 4, 4, 4,                    /* 15-18 */
      3, 3, 3, 3, 3, 3,              /* 19-24 */
      2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
  };
  if( a>=b ){
    if( a>b+49 ) return a;
    if( a>b+31 ) return a+1;
    return a+x[a-b];
  }else{
    if( b>a+49 ) return b;
    if( b>a+31 ) return b+1;
    return b+x[b-a];
  }
}

/*
** Convert an integer into a LogEst.  In other words, compute an
** approximation for 10*log2(x).
*/
LogEst sqlite3LogEst(u64 x){
  static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
  LogEst y = 40;
  if( x<8 ){
    if( x<2 ) return 0;
    while( x<8 ){  y -= 10; x <<= 1; }
  }else{
#if GCC_VERSION>=5004000
    int i = 60 - __builtin_clzll(x);
    y += i*10;
    x >>= i;
#else
    while( x>255 ){ y += 40; x >>= 4; }  /*OPTIMIZATION-IF-TRUE*/
    while( x>15 ){  y += 10; x >>= 1; }
#endif
  }
  return a[x&7] + y - 10;
}

/*
** Convert a double into a LogEst
** In other words, compute an approximation for 10*log2(x).
*/
LogEst sqlite3LogEstFromDouble(double x){
  u64 a;
  LogEst e;
  assert( sizeof(x)==8 && sizeof(a)==8 );
  if( x<=1 ) return 0;
  if( x<=2000000000 ) return sqlite3LogEst((u64)x);
  memcpy(&a, &x, 8);
  e = (a>>52) - 1022;
  return e*10;
}

/*
** Convert a LogEst into an integer.
*/
u64 sqlite3LogEstToInt(LogEst x){
  u64 n;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
  if( x>60 ) return (u64)LARGEST_INT64;
  return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
}

/*
** Add a new name/number pair to a VList.  This might require that the
** VList object be reallocated, so return the new VList.  If an OOM
** error occurs, the original VList returned and the
** db->mallocFailed flag is set.
**
** A VList is really just an array of integers.  To destroy a VList,
** simply pass it to sqlite3DbFree().
**
** The first integer is the number of integers allocated for the whole
** VList.  The second integer is the number of integers actually used.
** Each name/number pair is encoded by subsequent groups of 3 or more
** integers.
**
** Each name/number pair starts with two integers which are the numeric
** value for the pair and the size of the name/number pair, respectively.
** The text name overlays one or more following integers.  The text name
** is always zero-terminated.
**
** Conceptually:
**
**    struct VList {
**      int nAlloc;   // Number of allocated slots
**      int nUsed;    // Number of used slots
**      struct VListEntry {
**        int iValue;    // Value for this entry
**        int nSlot;     // Slots used by this entry
**        // ... variable name goes here
**      } a[0];
**    }
**
** During code generation, pointers to the variable names within the
** VList are taken.  When that happens, nAlloc is set to zero as an
** indication that the VList may never again be enlarged, since the
** accompanying realloc() would invalidate the pointers.
*/
VList *sqlite3VListAdd(
  sqlite3 *db,           /* The database connection used for malloc() */
  VList *pIn,            /* The input VList.  Might be NULL */
  const char *zName,     /* Name of symbol to add */
  int nName,             /* Bytes of text in zName */
  int iVal               /* Value to associate with zName */
){
  int nInt;              /* number of sizeof(int) objects needed for zName */
  char *z;               /* Pointer to where zName will be stored */
  int i;                 /* Index in pIn[] where zName is stored */

  nInt = nName/4 + 3;
  assert( pIn==0 || pIn[0]>=3 );  /* Verify ok to add new elements */
  if( pIn==0 || pIn[1]+nInt > pIn[0] ){
    /* Enlarge the allocation */
    sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
    VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
    if( pOut==0 ) return pIn;
    if( pIn==0 ) pOut[1] = 2;
    pIn = pOut;
    pIn[0] = nAlloc;
  }
  i = pIn[1];
  pIn[i] = iVal;
  pIn[i+1] = nInt;
  z = (char*)&pIn[i+2];
  pIn[1] = i+nInt;
  assert( pIn[1]<=pIn[0] );
  memcpy(z, zName, nName);
  z[nName] = 0;
  return pIn;
}

/*
** Return a pointer to the name of a variable in the given VList that
** has the value iVal.  Or return a NULL if there is no such variable in
** the list
*/
const char *sqlite3VListNumToName(VList *pIn, int iVal){
  int i, mx;
  if( pIn==0 ) return 0;
  mx = pIn[1];
  i = 2;
  do{
    if( pIn[i]==iVal ) return (char*)&pIn[i+2];
    i += pIn[i+1];
  }while( i<mx );
  return 0;
}

/*
** Return the number of the variable named zName, if it is in VList.
** or return 0 if there is no such variable.
*/
int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
  int i, mx;
  if( pIn==0 ) return 0;
  mx = pIn[1];
  i = 2;
  do{
    const char *z = (const char*)&pIn[i+2];
    if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
    i += pIn[i+1];
  }while( i<mx );
  return 0;
}