1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
| /*
** 2002 February 23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C-language implementations for many of the SQL
** functions of SQLite. (Some function, and in particular the date and
** time functions, are implemented separately.)
*/
#include "sqliteInt.h"
#include <stdlib.h>
#include <assert.h>
#ifndef SQLITE_OMIT_FLOATING_POINT
#include <math.h>
#endif
#include "vdbeInt.h"
/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
VdbeOp *pOp;
assert( context->pVdbe!=0 );
pOp = &context->pVdbe->aOp[context->iOp-1];
assert( pOp->opcode==OP_CollSeq );
assert( pOp->p4type==P4_COLLSEQ );
return pOp->p4.pColl;
}
/*
** Indicate that the accumulator load should be skipped on this
** iteration of the aggregate loop.
*/
static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
assert( context->isError<=0 );
context->isError = -1;
context->skipFlag = 1;
}
/*
** Implementation of the non-aggregate min() and max() functions
*/
static void minmaxFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i;
int mask; /* 0 for min() or 0xffffffff for max() */
int iBest;
CollSeq *pColl;
assert( argc>1 );
mask = sqlite3_user_data(context)==0 ? 0 : -1;
pColl = sqlite3GetFuncCollSeq(context);
assert( pColl );
assert( mask==-1 || mask==0 );
iBest = 0;
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
for(i=1; i<argc; i++){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
testcase( mask==0 );
iBest = i;
}
}
sqlite3_result_value(context, argv[iBest]);
}
/*
** Return the type of the argument.
*/
static void typeofFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
static const char *azType[] = { "integer", "real", "text", "blob", "null" };
int i = sqlite3_value_type(argv[0]) - 1;
UNUSED_PARAMETER(NotUsed);
assert( i>=0 && i<ArraySize(azType) );
assert( SQLITE_INTEGER==1 );
assert( SQLITE_FLOAT==2 );
assert( SQLITE_TEXT==3 );
assert( SQLITE_BLOB==4 );
assert( SQLITE_NULL==5 );
/* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
** the datatype code for the initial datatype of the sqlite3_value object
** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
}
/* subtype(X)
**
** Return the subtype of X
*/
static void subtypeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
}
/*
** Implementation of the length() function
*/
static void lengthFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_BLOB:
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
break;
}
case SQLITE_TEXT: {
const unsigned char *z = sqlite3_value_text(argv[0]);
const unsigned char *z0;
unsigned char c;
if( z==0 ) return;
z0 = z;
while( (c = *z)!=0 ){
z++;
if( c>=0xc0 ){
while( (*z & 0xc0)==0x80 ){ z++; z0++; }
}
}
sqlite3_result_int(context, (int)(z-z0));
break;
}
default: {
sqlite3_result_null(context);
break;
}
}
}
/*
** Implementation of the octet_length() function
*/
static void bytelengthFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_BLOB: {
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
break;
}
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2;
sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m);
break;
}
case SQLITE_TEXT: {
if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){
sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
}else{
sqlite3_result_int(context, sqlite3_value_bytes16(argv[0]));
}
break;
}
default: {
sqlite3_result_null(context);
break;
}
}
}
/*
** Implementation of the abs() function.
**
** IMP: R-23979-26855 The abs(X) function returns the absolute value of
** the numeric argument X.
*/
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
assert( argc==1 );
UNUSED_PARAMETER(argc);
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_INTEGER: {
i64 iVal = sqlite3_value_int64(argv[0]);
if( iVal<0 ){
if( iVal==SMALLEST_INT64 ){
/* IMP: R-31676-45509 If X is the integer -9223372036854775808
** then abs(X) throws an integer overflow error since there is no
** equivalent positive 64-bit two complement value. */
sqlite3_result_error(context, "integer overflow", -1);
return;
}
iVal = -iVal;
}
sqlite3_result_int64(context, iVal);
break;
}
case SQLITE_NULL: {
/* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
sqlite3_result_null(context);
break;
}
default: {
/* Because sqlite3_value_double() returns 0.0 if the argument is not
** something that can be converted into a number, we have:
** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
** that cannot be converted to a numeric value.
*/
double rVal = sqlite3_value_double(argv[0]);
if( rVal<0 ) rVal = -rVal;
sqlite3_result_double(context, rVal);
break;
}
}
}
/*
** Implementation of the instr() function.
**
** instr(haystack,needle) finds the first occurrence of needle
** in haystack and returns the number of previous characters plus 1,
** or 0 if needle does not occur within haystack.
**
** If both haystack and needle are BLOBs, then the result is one more than
** the number of bytes in haystack prior to the first occurrence of needle,
** or 0 if needle never occurs in haystack.
*/
static void instrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zHaystack;
const unsigned char *zNeedle;
int nHaystack;
int nNeedle;
int typeHaystack, typeNeedle;
int N = 1;
int isText;
unsigned char firstChar;
sqlite3_value *pC1 = 0;
sqlite3_value *pC2 = 0;
UNUSED_PARAMETER(argc);
typeHaystack = sqlite3_value_type(argv[0]);
typeNeedle = sqlite3_value_type(argv[1]);
if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
nHaystack = sqlite3_value_bytes(argv[0]);
nNeedle = sqlite3_value_bytes(argv[1]);
if( nNeedle>0 ){
if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
zHaystack = sqlite3_value_blob(argv[0]);
zNeedle = sqlite3_value_blob(argv[1]);
isText = 0;
}else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
zHaystack = sqlite3_value_text(argv[0]);
zNeedle = sqlite3_value_text(argv[1]);
isText = 1;
}else{
pC1 = sqlite3_value_dup(argv[0]);
zHaystack = sqlite3_value_text(pC1);
if( zHaystack==0 ) goto endInstrOOM;
nHaystack = sqlite3_value_bytes(pC1);
pC2 = sqlite3_value_dup(argv[1]);
zNeedle = sqlite3_value_text(pC2);
if( zNeedle==0 ) goto endInstrOOM;
nNeedle = sqlite3_value_bytes(pC2);
isText = 1;
}
if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
firstChar = zNeedle[0];
while( nNeedle<=nHaystack
&& (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
){
N++;
do{
nHaystack--;
zHaystack++;
}while( isText && (zHaystack[0]&0xc0)==0x80 );
}
if( nNeedle>nHaystack ) N = 0;
}
sqlite3_result_int(context, N);
endInstr:
sqlite3_value_free(pC1);
sqlite3_value_free(pC2);
return;
endInstrOOM:
sqlite3_result_error_nomem(context);
goto endInstr;
}
/*
** Implementation of the printf() (a.k.a. format()) SQL function.
*/
static void printfFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
PrintfArguments x;
StrAccum str;
const char *zFormat;
int n;
sqlite3 *db = sqlite3_context_db_handle(context);
if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
x.nArg = argc-1;
x.nUsed = 0;
x.apArg = argv+1;
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
str.printfFlags = SQLITE_PRINTF_SQLFUNC;
sqlite3_str_appendf(&str, zFormat, &x);
n = str.nChar;
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
SQLITE_DYNAMIC);
}
}
/*
** Implementation of the substr() function.
**
** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
** p1 is 1-indexed. So substr(x,1,1) returns the first character
** of x. If x is text, then we actually count UTF-8 characters.
** If x is a blob, then we count bytes.
**
** If p1 is negative, then we begin abs(p1) from the end of x[].
**
** If p2 is negative, return the p2 characters preceding p1.
*/
static void substrFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *z;
const unsigned char *z2;
int len;
int p0type;
i64 p1, p2;
int negP2 = 0;
assert( argc==3 || argc==2 );
if( sqlite3_value_type(argv[1])==SQLITE_NULL
|| (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
){
return;
}
p0type = sqlite3_value_type(argv[0]);
p1 = sqlite3_value_int(argv[1]);
if( p0type==SQLITE_BLOB ){
len = sqlite3_value_bytes(argv[0]);
z = sqlite3_value_blob(argv[0]);
if( z==0 ) return;
assert( len==sqlite3_value_bytes(argv[0]) );
}else{
z = sqlite3_value_text(argv[0]);
if( z==0 ) return;
len = 0;
if( p1<0 ){
for(z2=z; *z2; len++){
SQLITE_SKIP_UTF8(z2);
}
}
}
#ifdef SQLITE_SUBSTR_COMPATIBILITY
/* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
** as substr(X,1,N) - it returns the first N characters of X. This
** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
** from 2009-02-02 for compatibility of applications that exploited the
** old buggy behavior. */
if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
#endif
if( argc==3 ){
p2 = sqlite3_value_int(argv[2]);
if( p2<0 ){
p2 = -p2;
negP2 = 1;
}
}else{
p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
}
if( p1<0 ){
p1 += len;
if( p1<0 ){
p2 += p1;
if( p2<0 ) p2 = 0;
p1 = 0;
}
}else if( p1>0 ){
p1--;
}else if( p2>0 ){
p2--;
}
if( negP2 ){
p1 -= p2;
if( p1<0 ){
p2 += p1;
p1 = 0;
}
}
assert( p1>=0 && p2>=0 );
if( p0type!=SQLITE_BLOB ){
while( *z && p1 ){
SQLITE_SKIP_UTF8(z);
p1--;
}
for(z2=z; *z2 && p2; p2--){
SQLITE_SKIP_UTF8(z2);
}
sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
SQLITE_UTF8);
}else{
if( p1+p2>len ){
p2 = len-p1;
if( p2<0 ) p2 = 0;
}
sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
}
}
/*
** Implementation of the round() function
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
int n = 0;
double r;
char *zBuf;
assert( argc==1 || argc==2 );
if( argc==2 ){
if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
n = sqlite3_value_int(argv[1]);
if( n>30 ) n = 30;
if( n<0 ) n = 0;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
r = sqlite3_value_double(argv[0]);
/* If Y==0 and X will fit in a 64-bit int,
** handle the rounding directly,
** otherwise use printf.
*/
if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
/* The value has no fractional part so there is nothing to round */
}else if( n==0 ){
r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
}else{
zBuf = sqlite3_mprintf("%!.*f",n,r);
if( zBuf==0 ){
sqlite3_result_error_nomem(context);
return;
}
sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
sqlite3_free(zBuf);
}
sqlite3_result_double(context, r);
}
#endif
/*
** Allocate nByte bytes of space using sqlite3Malloc(). If the
** allocation fails, call sqlite3_result_error_nomem() to notify
** the database handle that malloc() has failed and return NULL.
** If nByte is larger than the maximum string or blob length, then
** raise an SQLITE_TOOBIG exception and return NULL.
*/
static void *contextMalloc(sqlite3_context *context, i64 nByte){
char *z;
sqlite3 *db = sqlite3_context_db_handle(context);
assert( nByte>0 );
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
z = 0;
}else{
z = sqlite3Malloc(nByte);
if( !z ){
sqlite3_result_error_nomem(context);
}
}
return z;
}
/*
** Implementation of the upper() and lower() SQL functions.
*/
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
char *z1;
const char *z2;
int i, n;
UNUSED_PARAMETER(argc);
z2 = (char*)sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert( z2==(char*)sqlite3_value_text(argv[0]) );
if( z2 ){
z1 = contextMalloc(context, ((i64)n)+1);
if( z1 ){
for(i=0; i<n; i++){
z1[i] = (char)sqlite3Toupper(z2[i]);
}
sqlite3_result_text(context, z1, n, sqlite3_free);
}
}
}
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
char *z1;
const char *z2;
int i, n;
UNUSED_PARAMETER(argc);
z2 = (char*)sqlite3_value_text(argv[0]);
n = sqlite3_value_bytes(argv[0]);
/* Verify that the call to _bytes() does not invalidate the _text() pointer */
assert( z2==(char*)sqlite3_value_text(argv[0]) );
if( z2 ){
z1 = contextMalloc(context, ((i64)n)+1);
if( z1 ){
for(i=0; i<n; i++){
z1[i] = sqlite3Tolower(z2[i]);
}
sqlite3_result_text(context, z1, n, sqlite3_free);
}
}
}
/*
** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
** as VDBE code so that unused argument values do not have to be computed.
** However, we still need some kind of function implementation for this
** routines in the function table. The noopFunc macro provides this.
** noopFunc will never be called so it doesn't matter what the implementation
** is. We might as well use the "version()" function as a substitute.
*/
#define noopFunc versionFunc /* Substitute function - never called */
/*
** Implementation of random(). Return a random integer.
*/
static void randomFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite_int64 r;
UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_randomness(sizeof(r), &r);
if( r<0 ){
/* We need to prevent a random number of 0x8000000000000000
** (or -9223372036854775808) since when you do abs() of that
** number of you get the same value back again. To do this
** in a way that is testable, mask the sign bit off of negative
** values, resulting in a positive value. Then take the
** 2s complement of that positive value. The end result can
** therefore be no less than -9223372036854775807.
*/
r = -(r & LARGEST_INT64);
}
sqlite3_result_int64(context, r);
}
/*
** Implementation of randomblob(N). Return a random blob
** that is N bytes long.
*/
static void randomBlob(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3_int64 n;
unsigned char *p;
assert( argc==1 );
UNUSED_PARAMETER(argc);
n = sqlite3_value_int64(argv[0]);
if( n<1 ){
n = 1;
}
p = contextMalloc(context, n);
if( p ){
sqlite3_randomness(n, p);
sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
}
}
/*
** Implementation of the last_insert_rowid() SQL function. The return
** value is the same as the sqlite3_last_insert_rowid() API function.
*/
static void last_insert_rowid(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
** function. */
sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
}
/*
** Implementation of the changes() SQL function.
**
** IMP: R-32760-32347 The changes() SQL function is a wrapper
** around the sqlite3_changes64() C/C++ function and hence follows the
** same rules for counting changes.
*/
static void changes(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
sqlite3_result_int64(context, sqlite3_changes64(db));
}
/*
** Implementation of the total_changes() SQL function. The return value is
** the same as the sqlite3_total_changes64() API function.
*/
static void total_changes(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
sqlite3 *db = sqlite3_context_db_handle(context);
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-11217-42568 This function is a wrapper around the
** sqlite3_total_changes64() C/C++ interface. */
sqlite3_result_int64(context, sqlite3_total_changes64(db));
}
/*
** A structure defining how to do GLOB-style comparisons.
*/
struct compareInfo {
u8 matchAll; /* "*" or "%" */
u8 matchOne; /* "?" or "_" */
u8 matchSet; /* "[" or 0 */
u8 noCase; /* true to ignore case differences */
};
/*
** For LIKE and GLOB matching on EBCDIC machines, assume that every
** character is exactly one byte in size. Also, provide the Utf8Read()
** macro for fast reading of the next character in the common case where
** the next character is ASCII.
*/
#if defined(SQLITE_EBCDIC)
# define sqlite3Utf8Read(A) (*((*A)++))
# define Utf8Read(A) (*(A++))
#else
# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
#endif
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
/* The correct SQL-92 behavior is for the LIKE operator to ignore
** case. Thus 'a' LIKE 'A' would be true. */
static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
** is case sensitive causing 'a' LIKE 'A' to be false */
static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
/*
** Possible error returns from patternMatch()
*/
#define SQLITE_MATCH 0
#define SQLITE_NOMATCH 1
#define SQLITE_NOWILDCARDMATCH 2
/*
** Compare two UTF-8 strings for equality where the first string is
** a GLOB or LIKE expression. Return values:
**
** SQLITE_MATCH: Match
** SQLITE_NOMATCH: No match
** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
**
** Globbing rules:
**
** '*' Matches any sequence of zero or more characters.
**
** '?' Matches exactly one character.
**
** [...] Matches one character from the enclosed list of
** characters.
**
** [^...] Matches one character not in the enclosed list.
**
** With the [...] and [^...] matching, a ']' character can be included
** in the list by making it the first character after '[' or '^'. A
** range of characters can be specified using '-'. Example:
** "[a-z]" matches any single lower-case letter. To match a '-', make
** it the last character in the list.
**
** Like matching rules:
**
** '%' Matches any sequence of zero or more characters
**
*** '_' Matches any one character
**
** Ec Where E is the "esc" character and c is any other
** character, including '%', '_', and esc, match exactly c.
**
** The comments within this routine usually assume glob matching.
**
** This routine is usually quick, but can be N**2 in the worst case.
*/
static int patternCompare(
const u8 *zPattern, /* The glob pattern */
const u8 *zString, /* The string to compare against the glob */
const struct compareInfo *pInfo, /* Information about how to do the compare */
u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
){
u32 c, c2; /* Next pattern and input string chars */
u32 matchOne = pInfo->matchOne; /* "?" or "_" */
u32 matchAll = pInfo->matchAll; /* "*" or "%" */
u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
const u8 *zEscaped = 0; /* One past the last escaped input char */
while( (c = Utf8Read(zPattern))!=0 ){
if( c==matchAll ){ /* Match "*" */
/* Skip over multiple "*" characters in the pattern. If there
** are also "?" characters, skip those as well, but consume a
** single character of the input string for each "?" skipped */
while( (c=Utf8Read(zPattern)) == matchAll
|| (c == matchOne && matchOne!=0) ){
if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
return SQLITE_NOWILDCARDMATCH;
}
}
if( c==0 ){
return SQLITE_MATCH; /* "*" at the end of the pattern matches */
}else if( c==matchOther ){
if( pInfo->matchSet==0 ){
c = sqlite3Utf8Read(&zPattern);
if( c==0 ) return SQLITE_NOWILDCARDMATCH;
}else{
/* "[...]" immediately follows the "*". We have to do a slow
** recursive search in this case, but it is an unusual case. */
assert( matchOther<0x80 ); /* '[' is a single-byte character */
while( *zString ){
int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
SQLITE_SKIP_UTF8(zString);
}
return SQLITE_NOWILDCARDMATCH;
}
}
/* At this point variable c contains the first character of the
** pattern string past the "*". Search in the input string for the
** first matching character and recursively continue the match from
** that point.
**
** For a case-insensitive search, set variable cx to be the same as
** c but in the other case and search the input string for either
** c or cx.
*/
if( c<0x80 ){
char zStop[3];
int bMatch;
if( noCase ){
zStop[0] = sqlite3Toupper(c);
zStop[1] = sqlite3Tolower(c);
zStop[2] = 0;
}else{
zStop[0] = c;
zStop[1] = 0;
}
while(1){
zString += strcspn((const char*)zString, zStop);
if( zString[0]==0 ) break;
zString++;
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
}
}else{
int bMatch;
while( (c2 = Utf8Read(zString))!=0 ){
if( c2!=c ) continue;
bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
if( bMatch!=SQLITE_NOMATCH ) return bMatch;
}
}
return SQLITE_NOWILDCARDMATCH;
}
if( c==matchOther ){
if( pInfo->matchSet==0 ){
c = sqlite3Utf8Read(&zPattern);
if( c==0 ) return SQLITE_NOMATCH;
zEscaped = zPattern;
}else{
u32 prior_c = 0;
int seen = 0;
int invert = 0;
c = sqlite3Utf8Read(&zString);
if( c==0 ) return SQLITE_NOMATCH;
c2 = sqlite3Utf8Read(&zPattern);
if( c2=='^' ){
invert = 1;
c2 = sqlite3Utf8Read(&zPattern);
}
if( c2==']' ){
if( c==']' ) seen = 1;
c2 = sqlite3Utf8Read(&zPattern);
}
while( c2 && c2!=']' ){
if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
c2 = sqlite3Utf8Read(&zPattern);
if( c>=prior_c && c<=c2 ) seen = 1;
prior_c = 0;
}else{
if( c==c2 ){
seen = 1;
}
prior_c = c2;
}
c2 = sqlite3Utf8Read(&zPattern);
}
if( c2==0 || (seen ^ invert)==0 ){
return SQLITE_NOMATCH;
}
continue;
}
}
c2 = Utf8Read(zString);
if( c==c2 ) continue;
if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
continue;
}
if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
return SQLITE_NOMATCH;
}
return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
}
/*
** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
** non-zero if there is no match.
*/
int sqlite3_strglob(const char *zGlobPattern, const char *zString){
if( zString==0 ){
return zGlobPattern!=0;
}else if( zGlobPattern==0 ){
return 1;
}else {
return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
}
}
/*
** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
** a miss - like strcmp().
*/
int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
if( zStr==0 ){
return zPattern!=0;
}else if( zPattern==0 ){
return 1;
}else{
return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
}
}
/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called. This is used for testing
** only.
*/
#ifdef SQLITE_TEST
int sqlite3_like_count = 0;
#endif
/*
** Implementation of the like() SQL function. This function implements
** the built-in LIKE operator. The first argument to the function is the
** pattern and the second argument is the string. So, the SQL statements:
**
** A LIKE B
**
** is implemented as like(B,A).
**
** This same function (with a different compareInfo structure) computes
** the GLOB operator.
*/
static void likeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zA, *zB;
u32 escape;
int nPat;
sqlite3 *db = sqlite3_context_db_handle(context);
struct compareInfo *pInfo = sqlite3_user_data(context);
struct compareInfo backupInfo;
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( sqlite3_value_type(argv[0])==SQLITE_BLOB
|| sqlite3_value_type(argv[1])==SQLITE_BLOB
){
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
sqlite3_result_int(context, 0);
return;
}
#endif
/* Limit the length of the LIKE or GLOB pattern to avoid problems
** of deep recursion and N*N behavior in patternCompare().
*/
nPat = sqlite3_value_bytes(argv[0]);
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
return;
}
if( argc==3 ){
/* The escape character string must consist of a single UTF-8 character.
** Otherwise, return an error.
*/
const unsigned char *zEsc = sqlite3_value_text(argv[2]);
if( zEsc==0 ) return;
if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
sqlite3_result_error(context,
"ESCAPE expression must be a single character", -1);
return;
}
escape = sqlite3Utf8Read(&zEsc);
if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
memcpy(&backupInfo, pInfo, sizeof(backupInfo));
pInfo = &backupInfo;
if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
}
}else{
escape = pInfo->matchSet;
}
zB = sqlite3_value_text(argv[0]);
zA = sqlite3_value_text(argv[1]);
if( zA && zB ){
#ifdef SQLITE_TEST
sqlite3_like_count++;
#endif
sqlite3_result_int(context,
patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
}
}
/*
** Implementation of the NULLIF(x,y) function. The result is the first
** argument if the arguments are different. The result is NULL if the
** arguments are equal to each other.
*/
static void nullifFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
UNUSED_PARAMETER(NotUsed);
if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
sqlite3_result_value(context, argv[0]);
}
}
/*
** Implementation of the sqlite_version() function. The result is the version
** of the SQLite library that is running.
*/
static void versionFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-48699-48617 This function is an SQL wrapper around the
** sqlite3_libversion() C-interface. */
sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
}
/*
** Implementation of the sqlite_source_id() function. The result is a string
** that identifies the particular version of the source code used to build
** SQLite.
*/
static void sourceidFunc(
sqlite3_context *context,
int NotUsed,
sqlite3_value **NotUsed2
){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
/* IMP: R-24470-31136 This function is an SQL wrapper around the
** sqlite3_sourceid() C interface. */
sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
}
/*
** Implementation of the sqlite_log() function. This is a wrapper around
** sqlite3_log(). The return value is NULL. The function exists purely for
** its side-effects.
*/
static void errlogFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(context);
sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
}
/*
** Implementation of the sqlite_compileoption_used() function.
** The result is an integer that identifies if the compiler option
** was used to build SQLite.
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
static void compileoptionusedFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zOptName;
assert( argc==1 );
UNUSED_PARAMETER(argc);
/* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
** function is a wrapper around the sqlite3_compileoption_used() C/C++
** function.
*/
if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
}
}
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
/*
** Implementation of the sqlite_compileoption_get() function.
** The result is a string that identifies the compiler options
** used to build SQLite.
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
static void compileoptiongetFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int n;
assert( argc==1 );
UNUSED_PARAMETER(argc);
/* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
*/
n = sqlite3_value_int(argv[0]);
sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
}
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
/* Array for converting from half-bytes (nybbles) into ASCII hex
** digits. */
static const char hexdigits[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
/*
** Append to pStr text that is the SQL literal representation of the
** value contained in pValue.
*/
void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
/* As currently implemented, the string must be initially empty.
** we might relax this requirement in the future, but that will
** require enhancements to the implementation. */
assert( pStr!=0 && pStr->nChar==0 );
switch( sqlite3_value_type(pValue) ){
case SQLITE_FLOAT: {
double r1, r2;
const char *zVal;
r1 = sqlite3_value_double(pValue);
sqlite3_str_appendf(pStr, "%!.15g", r1);
zVal = sqlite3_str_value(pStr);
if( zVal ){
sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
if( r1!=r2 ){
sqlite3_str_reset(pStr);
sqlite3_str_appendf(pStr, "%!.20e", r1);
}
}
break;
}
case SQLITE_INTEGER: {
sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
break;
}
case SQLITE_BLOB: {
char const *zBlob = sqlite3_value_blob(pValue);
i64 nBlob = sqlite3_value_bytes(pValue);
assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
if( pStr->accError==0 ){
char *zText = pStr->zText;
int i;
for(i=0; i<nBlob; i++){
zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
}
zText[(nBlob*2)+2] = '\'';
zText[(nBlob*2)+3] = '\0';
zText[0] = 'X';
zText[1] = '\'';
pStr->nChar = nBlob*2 + 3;
}
break;
}
case SQLITE_TEXT: {
const unsigned char *zArg = sqlite3_value_text(pValue);
sqlite3_str_appendf(pStr, "%Q", zArg);
break;
}
default: {
assert( sqlite3_value_type(pValue)==SQLITE_NULL );
sqlite3_str_append(pStr, "NULL", 4);
break;
}
}
}
/*
** Implementation of the QUOTE() function.
**
** The quote(X) function returns the text of an SQL literal which is the
** value of its argument suitable for inclusion into an SQL statement.
** Strings are surrounded by single-quotes with escapes on interior quotes
** as needed. BLOBs are encoded as hexadecimal literals. Strings with
** embedded NUL characters cannot be represented as string literals in SQL
** and hence the returned string literal is truncated prior to the first NUL.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sqlite3_str str;
sqlite3 *db = sqlite3_context_db_handle(context);
assert( argc==1 );
UNUSED_PARAMETER(argc);
sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
sqlite3QuoteValue(&str,argv[0]);
sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
SQLITE_DYNAMIC);
if( str.accError!=SQLITE_OK ){
sqlite3_result_null(context);
sqlite3_result_error_code(context, str.accError);
}
}
/*
** The unicode() function. Return the integer unicode code-point value
** for the first character of the input string.
*/
static void unicodeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *z = sqlite3_value_text(argv[0]);
(void)argc;
if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
}
/*
** The char() function takes zero or more arguments, each of which is
** an integer. It constructs a string where each character of the string
** is the unicode character for the corresponding integer argument.
*/
static void charFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
unsigned char *z, *zOut;
int i;
zOut = z = sqlite3_malloc64( argc*4+1 );
if( z==0 ){
sqlite3_result_error_nomem(context);
return;
}
for(i=0; i<argc; i++){
sqlite3_int64 x;
unsigned c;
x = sqlite3_value_int64(argv[i]);
if( x<0 || x>0x10ffff ) x = 0xfffd;
c = (unsigned)(x & 0x1fffff);
if( c<0x00080 ){
*zOut++ = (u8)(c&0xFF);
}else if( c<0x00800 ){
*zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
}else if( c<0x10000 ){
*zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
}else{
*zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
*zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
*zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
*zOut++ = 0x80 + (u8)(c & 0x3F);
} \
}
sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
}
/*
** The hex() function. Interpret the argument as a blob. Return
** a hexadecimal rendering as text.
*/
static void hexFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int i, n;
const unsigned char *pBlob;
char *zHex, *z;
assert( argc==1 );
UNUSED_PARAMETER(argc);
pBlob = sqlite3_value_blob(argv[0]);
n = sqlite3_value_bytes(argv[0]);
assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
if( zHex ){
for(i=0; i<n; i++, pBlob++){
unsigned char c = *pBlob;
*(z++) = hexdigits[(c>>4)&0xf];
*(z++) = hexdigits[c&0xf];
}
*z = 0;
sqlite3_result_text(context, zHex, n*2, sqlite3_free);
}
}
/*
** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
** contains character ch, or 0 if it does not.
*/
static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
const u8 *zEnd = &zStr[nStr];
const u8 *z = zStr;
while( z<zEnd ){
u32 tst = Utf8Read(z);
if( tst==ch ) return 1;
}
return 0;
}
/*
** The unhex() function. This function may be invoked with either one or
** two arguments. In both cases the first argument is interpreted as text
** a text value containing a set of pairs of hexadecimal digits which are
** decoded and returned as a blob.
**
** If there is only a single argument, then it must consist only of an
** even number of hexadecimal digits. Otherwise, return NULL.
**
** Or, if there is a second argument, then any character that appears in
** the second argument is also allowed to appear between pairs of hexadecimal
** digits in the first argument. If any other character appears in the
** first argument, or if one of the allowed characters appears between
** two hexadecimal digits that make up a single byte, NULL is returned.
**
** The following expressions are all true:
**
** unhex('ABCD') IS x'ABCD'
** unhex('AB CD') IS NULL
** unhex('AB CD', ' ') IS x'ABCD'
** unhex('A BCD', ' ') IS NULL
*/
static void unhexFunc(
sqlite3_context *pCtx,
int argc,
sqlite3_value **argv
){
const u8 *zPass = (const u8*)"";
int nPass = 0;
const u8 *zHex = sqlite3_value_text(argv[0]);
int nHex = sqlite3_value_bytes(argv[0]);
#ifdef SQLITE_DEBUG
const u8 *zEnd = zHex ? &zHex[nHex] : 0;
#endif
u8 *pBlob = 0;
u8 *p = 0;
assert( argc==1 || argc==2 );
if( argc==2 ){
zPass = sqlite3_value_text(argv[1]);
nPass = sqlite3_value_bytes(argv[1]);
}
if( !zHex || !zPass ) return;
p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
if( pBlob ){
u8 c; /* Most significant digit of next byte */
u8 d; /* Least significant digit of next byte */
while( (c = *zHex)!=0x00 ){
while( !sqlite3Isxdigit(c) ){
u32 ch = Utf8Read(zHex);
assert( zHex<=zEnd );
if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
c = *zHex;
if( c==0x00 ) goto unhex_done;
}
zHex++;
assert( *zEnd==0x00 );
assert( zHex<=zEnd );
d = *(zHex++);
if( !sqlite3Isxdigit(d) ) goto unhex_null;
*(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
}
}
unhex_done:
sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
return;
unhex_null:
sqlite3_free(pBlob);
return;
}
/*
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
*/
static void zeroblobFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
i64 n;
int rc;
assert( argc==1 );
UNUSED_PARAMETER(argc);
n = sqlite3_value_int64(argv[0]);
if( n<0 ) n = 0;
rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
if( rc ){
sqlite3_result_error_code(context, rc);
}
}
/*
** The replace() function. Three arguments are all strings: call
** them A, B, and C. The result is also a string which is derived
** from A by replacing every occurrence of B with C. The match
** must be exact. Collating sequences are not used.
*/
static void replaceFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zStr; /* The input string A */
const unsigned char *zPattern; /* The pattern string B */
const unsigned char *zRep; /* The replacement string C */
unsigned char *zOut; /* The output */
int nStr; /* Size of zStr */
int nPattern; /* Size of zPattern */
int nRep; /* Size of zRep */
i64 nOut; /* Maximum size of zOut */
int loopLimit; /* Last zStr[] that might match zPattern[] */
int i, j; /* Loop counters */
unsigned cntExpand; /* Number zOut expansions */
sqlite3 *db = sqlite3_context_db_handle(context);
assert( argc==3 );
UNUSED_PARAMETER(argc);
zStr = sqlite3_value_text(argv[0]);
if( zStr==0 ) return;
nStr = sqlite3_value_bytes(argv[0]);
assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
zPattern = sqlite3_value_text(argv[1]);
if( zPattern==0 ){
assert( sqlite3_value_type(argv[1])==SQLITE_NULL
|| sqlite3_context_db_handle(context)->mallocFailed );
return;
}
if( zPattern[0]==0 ){
assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
sqlite3_result_value(context, argv[0]);
return;
}
nPattern = sqlite3_value_bytes(argv[1]);
assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
zRep = sqlite3_value_text(argv[2]);
if( zRep==0 ) return;
nRep = sqlite3_value_bytes(argv[2]);
assert( zRep==sqlite3_value_text(argv[2]) );
nOut = nStr + 1;
assert( nOut<SQLITE_MAX_LENGTH );
zOut = contextMalloc(context, (i64)nOut);
if( zOut==0 ){
return;
}
loopLimit = nStr - nPattern;
cntExpand = 0;
for(i=j=0; i<=loopLimit; i++){
if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
zOut[j++] = zStr[i];
}else{
if( nRep>nPattern ){
nOut += nRep - nPattern;
testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(context);
sqlite3_free(zOut);
return;
}
cntExpand++;
if( (cntExpand&(cntExpand-1))==0 ){
/* Grow the size of the output buffer only on substitutions
** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
u8 *zOld;
zOld = zOut;
zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
if( zOut==0 ){
sqlite3_result_error_nomem(context);
sqlite3_free(zOld);
return;
}
}
}
memcpy(&zOut[j], zRep, nRep);
j += nRep;
i += nPattern-1;
}
}
assert( j+nStr-i+1<=nOut );
memcpy(&zOut[j], &zStr[i], nStr-i);
j += nStr - i;
assert( j<=nOut );
zOut[j] = 0;
sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
}
/*
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
*/
static void trimFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zIn; /* Input string */
const unsigned char *zCharSet; /* Set of characters to trim */
unsigned int nIn; /* Number of bytes in input */
int flags; /* 1: trimleft 2: trimright 3: trim */
int i; /* Loop counter */
unsigned int *aLen = 0; /* Length of each character in zCharSet */
unsigned char **azChar = 0; /* Individual characters in zCharSet */
int nChar; /* Number of characters in zCharSet */
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
return;
}
zIn = sqlite3_value_text(argv[0]);
if( zIn==0 ) return;
nIn = (unsigned)sqlite3_value_bytes(argv[0]);
assert( zIn==sqlite3_value_text(argv[0]) );
if( argc==1 ){
static const unsigned lenOne[] = { 1 };
static unsigned char * const azOne[] = { (u8*)" " };
nChar = 1;
aLen = (unsigned*)lenOne;
azChar = (unsigned char **)azOne;
zCharSet = 0;
}else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
return;
}else{
const unsigned char *z;
for(z=zCharSet, nChar=0; *z; nChar++){
SQLITE_SKIP_UTF8(z);
}
if( nChar>0 ){
azChar = contextMalloc(context,
((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
if( azChar==0 ){
return;
}
aLen = (unsigned*)&azChar[nChar];
for(z=zCharSet, nChar=0; *z; nChar++){
azChar[nChar] = (unsigned char *)z;
SQLITE_SKIP_UTF8(z);
aLen[nChar] = (unsigned)(z - azChar[nChar]);
}
}
}
if( nChar>0 ){
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
if( flags & 1 ){
while( nIn>0 ){
unsigned int len = 0;
for(i=0; i<nChar; i++){
len = aLen[i];
if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
}
if( i>=nChar ) break;
zIn += len;
nIn -= len;
}
}
if( flags & 2 ){
while( nIn>0 ){
unsigned int len = 0;
for(i=0; i<nChar; i++){
len = aLen[i];
if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
}
if( i>=nChar ) break;
nIn -= len;
}
}
if( zCharSet ){
sqlite3_free(azChar);
}
}
sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
}
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
/*
** The "unknown" function is automatically substituted in place of
** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
** When the "sqlite3" command-line shell is built using this functionality,
** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
** involving application-defined functions to be examined in a generic
** sqlite3 shell.
*/
static void unknownFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
/* no-op */
(void)context;
(void)argc;
(void)argv;
}
#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
** is only available if the SQLITE_SOUNDEX compile-time option is used
** when SQLite is built.
*/
#ifdef SQLITE_SOUNDEX
/*
** Compute the soundex encoding of a word.
**
** IMP: R-59782-00072 The soundex(X) function returns a string that is the
** soundex encoding of the string X.
*/
static void soundexFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
char zResult[8];
const u8 *zIn;
int i, j;
static const unsigned char iCode[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
};
assert( argc==1 );
zIn = (u8*)sqlite3_value_text(argv[0]);
if( zIn==0 ) zIn = (u8*)"";
for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
if( zIn[i] ){
u8 prevcode = iCode[zIn[i]&0x7f];
zResult[0] = sqlite3Toupper(zIn[i]);
for(j=1; j<4 && zIn[i]; i++){
int code = iCode[zIn[i]&0x7f];
if( code>0 ){
if( code!=prevcode ){
prevcode = code;
zResult[j++] = code + '0';
}
}else{
prevcode = 0;
}
}
while( j<4 ){
zResult[j++] = '0';
}
zResult[j] = 0;
sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
}else{
/* IMP: R-64894-50321 The string "?000" is returned if the argument
** is NULL or contains no ASCII alphabetic characters. */
sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
}
}
#endif /* SQLITE_SOUNDEX */
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
const char *zFile = (const char *)sqlite3_value_text(argv[0]);
const char *zProc;
sqlite3 *db = sqlite3_context_db_handle(context);
char *zErrMsg = 0;
/* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
** flag is set. See the sqlite3_enable_load_extension() API.
*/
if( (db->flags & SQLITE_LoadExtFunc)==0 ){
sqlite3_result_error(context, "not authorized", -1);
return;
}
if( argc==2 ){
zProc = (const char *)sqlite3_value_text(argv[1]);
}else{
zProc = 0;
}
if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
sqlite3_result_error(context, zErrMsg, -1);
sqlite3_free(zErrMsg);
}
}
#endif
/*
** An instance of the following structure holds the context of a
** sum() or avg() aggregate computation.
*/
typedef struct SumCtx SumCtx;
struct SumCtx {
double rSum; /* Running sum as as a double */
double rErr; /* Error term for Kahan-Babushka-Neumaier summation */
i64 iSum; /* Running sum as a signed integer */
i64 cnt; /* Number of elements summed */
u8 approx; /* True if any non-integer value was input to the sum */
u8 ovrfl; /* Integer overflow seen */
};
/*
** Do one step of the Kahan-Babushka-Neumaier summation.
**
** https://en.wikipedia.org/wiki/Kahan_summation_algorithm
**
** Variables are marked "volatile" to defeat c89 x86 floating point
** optimizations can mess up this algorithm.
*/
static void kahanBabuskaNeumaierStep(
volatile SumCtx *pSum,
volatile double r
){
volatile double s = pSum->rSum;
volatile double t = s + r;
if( fabs(s) > fabs(r) ){
pSum->rErr += (s - t) + r;
}else{
pSum->rErr += (r - t) + s;
}
pSum->rSum = t;
}
/*
** Add a (possibly large) integer to the running sum.
*/
static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
i64 iBig, iSm;
iSm = iVal % 16384;
iBig = iVal - iSm;
kahanBabuskaNeumaierStep(pSum, iBig);
kahanBabuskaNeumaierStep(pSum, iSm);
}else{
kahanBabuskaNeumaierStep(pSum, (double)iVal);
}
}
/*
** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer
*/
static void kahanBabuskaNeumaierInit(
volatile SumCtx *p,
i64 iVal
){
if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
i64 iSm = iVal % 16384;
p->rSum = (double)(iVal - iSm);
p->rErr = (double)iSm;
}else{
p->rSum = (double)iVal;
p->rErr = 0.0;
}
}
/*
** Routines used to compute the sum, average, and total.
**
** The SUM() function follows the (broken) SQL standard which means
** that it returns NULL if it sums over no inputs. TOTAL returns
** 0.0 in that case. In addition, TOTAL always returns a float where
** SUM might return an integer if it never encounters a floating point
** value. TOTAL never fails, but SUM might through an exception if
** it overflows an integer.
*/
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
SumCtx *p;
int type;
assert( argc==1 );
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
if( p && type!=SQLITE_NULL ){
p->cnt++;
if( p->approx==0 ){
if( type!=SQLITE_INTEGER ){
kahanBabuskaNeumaierInit(p, p->iSum);
p->approx = 1;
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
}else{
i64 x = p->iSum;
if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){
p->iSum = x;
}else{
p->ovrfl = 1;
kahanBabuskaNeumaierInit(p, p->iSum);
p->approx = 1;
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
}
}
}else{
p->approx = 1;
if( type==SQLITE_INTEGER ){
kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
}else{
p->ovrfl = 0;
kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
}
}
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
SumCtx *p;
int type;
assert( argc==1 );
UNUSED_PARAMETER(argc);
p = sqlite3_aggregate_context(context, sizeof(*p));
type = sqlite3_value_numeric_type(argv[0]);
/* p is always non-NULL because sumStep() will have been called first
** to initialize it */
if( ALWAYS(p) && type!=SQLITE_NULL ){
assert( p->cnt>0 );
p->cnt--;
if( !p->approx ){
p->iSum -= sqlite3_value_int64(argv[0]);
}else if( type==SQLITE_INTEGER ){
i64 iVal = sqlite3_value_int64(argv[0]);
if( iVal!=SMALLEST_INT64 ){
kahanBabuskaNeumaierStepInt64(p, -iVal);
}else{
kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64);
kahanBabuskaNeumaierStepInt64(p, 1);
}
}else{
kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0]));
}
}
}
#else
# define sumInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void sumFinalize(sqlite3_context *context){
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if( p && p->cnt>0 ){
if( p->approx ){
if( p->ovrfl ){
sqlite3_result_error(context,"integer overflow",-1);
}else{
sqlite3_result_double(context, p->rSum+p->rErr);
}
}else{
sqlite3_result_int64(context, p->iSum);
}
}
}
static void avgFinalize(sqlite3_context *context){
SumCtx *p;
p = sqlite3_aggregate_context(context, 0);
if( p && p->cnt>0 ){
double r;
if( p->approx ){
r = p->rSum+p->rErr;
}else{
r = (double)(p->iSum);
}
sqlite3_result_double(context, r/(double)p->cnt);
}
}
static void totalFinalize(sqlite3_context *context){
SumCtx *p;
double r = 0.0;
p = sqlite3_aggregate_context(context, 0);
if( p ){
if( p->approx ){
r = p->rSum+p->rErr;
}else{
r = (double)(p->iSum);
}
}
sqlite3_result_double(context, r);
}
/*
** The following structure keeps track of state information for the
** count() aggregate function.
*/
typedef struct CountCtx CountCtx;
struct CountCtx {
i64 n;
#ifdef SQLITE_DEBUG
int bInverse; /* True if xInverse() ever called */
#endif
};
/*
** Routines to implement the count() aggregate function.
*/
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
CountCtx *p;
p = sqlite3_aggregate_context(context, sizeof(*p));
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
p->n++;
}
#ifndef SQLITE_OMIT_DEPRECATED
/* The sqlite3_aggregate_count() function is deprecated. But just to make
** sure it still operates correctly, verify that its count agrees with our
** internal count when using count(*) and when the total count can be
** expressed as a 32-bit integer. */
assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
|| p->n==sqlite3_aggregate_count(context) );
#endif
}
static void countFinalize(sqlite3_context *context){
CountCtx *p;
p = sqlite3_aggregate_context(context, 0);
sqlite3_result_int64(context, p ? p->n : 0);
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
CountCtx *p;
p = sqlite3_aggregate_context(ctx, sizeof(*p));
/* p is always non-NULL since countStep() will have been called first */
if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
p->n--;
#ifdef SQLITE_DEBUG
p->bInverse = 1;
#endif
}
}
#else
# define countInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** Routines to implement min() and max() aggregate functions.
*/
static void minmaxStep(
sqlite3_context *context,
int NotUsed,
sqlite3_value **argv
){
Mem *pArg = (Mem *)argv[0];
Mem *pBest;
UNUSED_PARAMETER(NotUsed);
pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
if( !pBest ) return;
if( sqlite3_value_type(pArg)==SQLITE_NULL ){
if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
}else if( pBest->flags ){
int max;
int cmp;
CollSeq *pColl = sqlite3GetFuncCollSeq(context);
/* This step function is used for both the min() and max() aggregates,
** the only difference between the two being that the sense of the
** comparison is inverted. For the max() aggregate, the
** sqlite3_user_data() function returns (void *)-1. For min() it
** returns (void *)db, where db is the sqlite3* database pointer.
** Therefore the next statement sets variable 'max' to 1 for the max()
** aggregate, or 0 for min().
*/
max = sqlite3_user_data(context)!=0;
cmp = sqlite3MemCompare(pBest, pArg, pColl);
if( (max && cmp<0) || (!max && cmp>0) ){
sqlite3VdbeMemCopy(pBest, pArg);
}else{
sqlite3SkipAccumulatorLoad(context);
}
}else{
pBest->db = sqlite3_context_db_handle(context);
sqlite3VdbeMemCopy(pBest, pArg);
}
}
static void minMaxValueFinalize(sqlite3_context *context, int bValue){
sqlite3_value *pRes;
pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
if( pRes ){
if( pRes->flags ){
sqlite3_result_value(context, pRes);
}
if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void minMaxValue(sqlite3_context *context){
minMaxValueFinalize(context, 1);
}
#else
# define minMaxValue 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void minMaxFinalize(sqlite3_context *context){
minMaxValueFinalize(context, 0);
}
/*
** group_concat(EXPR, ?SEPARATOR?)
**
** The SEPARATOR goes before the EXPR string. This is tragic. The
** groupConcatInverse() implementation would have been easier if the
** SEPARATOR were appended after EXPR. And the order is undocumented,
** so we could change it, in theory. But the old behavior has been
** around for so long that we dare not, for fear of breaking something.
*/
typedef struct {
StrAccum str; /* The accumulated concatenation */
#ifndef SQLITE_OMIT_WINDOWFUNC
int nAccum; /* Number of strings presently concatenated */
int nFirstSepLength; /* Used to detect separator length change */
/* If pnSepLengths!=0, refs an array of inter-string separator lengths,
** stored as actually incorporated into presently accumulated result.
** (Hence, its slots in use number nAccum-1 between method calls.)
** If pnSepLengths==0, nFirstSepLength is the length used throughout.
*/
int *pnSepLengths;
#endif
} GroupConcatCtx;
static void groupConcatStep(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zVal;
GroupConcatCtx *pGCC;
const char *zSep;
int nVal, nSep;
assert( argc==1 || argc==2 );
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
if( pGCC ){
sqlite3 *db = sqlite3_context_db_handle(context);
int firstTerm = pGCC->str.mxAlloc==0;
pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
if( argc==1 ){
if( !firstTerm ){
sqlite3_str_appendchar(&pGCC->str, 1, ',');
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
pGCC->nFirstSepLength = 1;
}
#endif
}else if( !firstTerm ){
zSep = (char*)sqlite3_value_text(argv[1]);
nSep = sqlite3_value_bytes(argv[1]);
if( zSep ){
sqlite3_str_append(&pGCC->str, zSep, nSep);
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
nSep = 0;
}
if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
int *pnsl = pGCC->pnSepLengths;
if( pnsl == 0 ){
/* First separator length variation seen, start tracking them. */
pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
if( pnsl!=0 ){
int i = 0, nA = pGCC->nAccum-1;
while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
}
}else{
pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
}
if( pnsl!=0 ){
if( ALWAYS(pGCC->nAccum>0) ){
pnsl[pGCC->nAccum-1] = nSep;
}
pGCC->pnSepLengths = pnsl;
}else{
sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
}
}
#endif
}
#ifndef SQLITE_OMIT_WINDOWFUNC
else{
pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
}
pGCC->nAccum += 1;
#endif
zVal = (char*)sqlite3_value_text(argv[0]);
nVal = sqlite3_value_bytes(argv[0]);
if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void groupConcatInverse(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
GroupConcatCtx *pGCC;
assert( argc==1 || argc==2 );
(void)argc; /* Suppress unused parameter warning */
if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
/* pGCC is always non-NULL since groupConcatStep() will have always
** run first to initialize it */
if( ALWAYS(pGCC) ){
int nVS;
/* Must call sqlite3_value_text() to convert the argument into text prior
** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
(void)sqlite3_value_text(argv[0]);
nVS = sqlite3_value_bytes(argv[0]);
pGCC->nAccum -= 1;
if( pGCC->pnSepLengths!=0 ){
assert(pGCC->nAccum >= 0);
if( pGCC->nAccum>0 ){
nVS += *pGCC->pnSepLengths;
memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
(pGCC->nAccum-1)*sizeof(int));
}
}else{
/* If removing single accumulated string, harmlessly over-do. */
nVS += pGCC->nFirstSepLength;
}
if( nVS>=(int)pGCC->str.nChar ){
pGCC->str.nChar = 0;
}else{
pGCC->str.nChar -= nVS;
memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
}
if( pGCC->str.nChar==0 ){
pGCC->str.mxAlloc = 0;
sqlite3_free(pGCC->pnSepLengths);
pGCC->pnSepLengths = 0;
}
}
}
#else
# define groupConcatInverse 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
static void groupConcatFinalize(sqlite3_context *context){
GroupConcatCtx *pGCC
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
if( pGCC ){
sqlite3ResultStrAccum(context, &pGCC->str);
#ifndef SQLITE_OMIT_WINDOWFUNC
sqlite3_free(pGCC->pnSepLengths);
#endif
}
}
#ifndef SQLITE_OMIT_WINDOWFUNC
static void groupConcatValue(sqlite3_context *context){
GroupConcatCtx *pGCC
= (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
if( pGCC ){
StrAccum *pAccum = &pGCC->str;
if( pAccum->accError==SQLITE_TOOBIG ){
sqlite3_result_error_toobig(context);
}else if( pAccum->accError==SQLITE_NOMEM ){
sqlite3_result_error_nomem(context);
}else{
const char *zText = sqlite3_str_value(pAccum);
sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
}
}
}
#else
# define groupConcatValue 0
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** This routine does per-connection function registration. Most
** of the built-in functions above are part of the global function set.
** This routine only deals with those that are not global.
*/
void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
int rc = sqlite3_overload_function(db, "MATCH", 2);
assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
if( rc==SQLITE_NOMEM ){
sqlite3OomFault(db);
}
}
/*
** Re-register the built-in LIKE functions. The caseSensitive
** parameter determines whether or not the LIKE operator is case
** sensitive.
*/
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
struct compareInfo *pInfo;
int flags;
if( caseSensitive ){
pInfo = (struct compareInfo*)&likeInfoAlt;
flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
}else{
pInfo = (struct compareInfo*)&likeInfoNorm;
flags = SQLITE_FUNC_LIKE;
}
sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
}
/*
** pExpr points to an expression which implements a function. If
** it is appropriate to apply the LIKE optimization to that function
** then set aWc[0] through aWc[2] to the wildcard characters and the
** escape character and then return TRUE. If the function is not a
** LIKE-style function then return FALSE.
**
** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
** operator if c is a string literal that is exactly one byte in length.
** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
** no ESCAPE clause.
**
** *pIsNocase is set to true if uppercase and lowercase are equivalent for
** the function (default for LIKE). If the function makes the distinction
** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
** false.
*/
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
FuncDef *pDef;
int nExpr;
assert( pExpr!=0 );
assert( pExpr->op==TK_FUNCTION );
assert( ExprUseXList(pExpr) );
if( !pExpr->x.pList ){
return 0;
}
nExpr = pExpr->x.pList->nExpr;
assert( !ExprHasProperty(pExpr, EP_IntValue) );
pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
if( pDef==0 ) return 0;
#endif
if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
return 0;
}
/* The memcpy() statement assumes that the wildcard characters are
** the first three statements in the compareInfo structure. The
** asserts() that follow verify that assumption
*/
memcpy(aWc, pDef->pUserData, 3);
assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
if( nExpr<3 ){
aWc[3] = 0;
}else{
Expr *pEscape = pExpr->x.pList->a[2].pExpr;
char *zEscape;
if( pEscape->op!=TK_STRING ) return 0;
assert( !ExprHasProperty(pEscape, EP_IntValue) );
zEscape = pEscape->u.zToken;
if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
if( zEscape[0]==aWc[0] ) return 0;
if( zEscape[0]==aWc[1] ) return 0;
aWc[3] = zEscape[0];
}
*pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
return 1;
}
/* Mathematical Constants */
#ifndef M_PI
# define M_PI 3.141592653589793238462643383279502884
#endif
#ifndef M_LN10
# define M_LN10 2.302585092994045684017991454684364208
#endif
#ifndef M_LN2
# define M_LN2 0.693147180559945309417232121458176568
#endif
/* Extra math functions that require linking with -lm
*/
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
/*
** Implementation SQL functions:
**
** ceil(X)
** ceiling(X)
** floor(X)
**
** The sqlite3_user_data() pointer is a pointer to the libm implementation
** of the underlying C function.
*/
static void ceilingFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==1 );
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER: {
sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
break;
}
case SQLITE_FLOAT: {
double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
break;
}
default: {
break;
}
}
}
/*
** On some systems, ceil() and floor() are intrinsic function. You are
** unable to take a pointer to these functions. Hence, we here wrap them
** in our own actual functions.
*/
static double xCeil(double x){ return ceil(x); }
static double xFloor(double x){ return floor(x); }
/*
** Some systems do not have log2() and log10() in their standard math
** libraries.
*/
#if defined(HAVE_LOG10) && HAVE_LOG10==0
# define log10(X) (0.4342944819032517867*log(X))
#endif
#if defined(HAVE_LOG2) && HAVE_LOG2==0
# define log2(X) (1.442695040888963456*log(X))
#endif
/*
** Implementation of SQL functions:
**
** ln(X) - natural logarithm
** log(X) - log X base 10
** log10(X) - log X base 10
** log(B,X) - log X base B
*/
static void logFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
double x, b, ans;
assert( argc==1 || argc==2 );
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
x = sqlite3_value_double(argv[0]);
if( x<=0.0 ) return;
break;
default:
return;
}
if( argc==2 ){
switch( sqlite3_value_numeric_type(argv[0]) ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
b = log(x);
if( b<=0.0 ) return;
x = sqlite3_value_double(argv[1]);
if( x<=0.0 ) return;
break;
default:
return;
}
ans = log(x)/b;
}else{
switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
case 1:
ans = log10(x);
break;
case 2:
ans = log2(x);
break;
default:
ans = log(x);
break;
}
}
sqlite3_result_double(context, ans);
}
/*
** Functions to converts degrees to radians and radians to degrees.
*/
static double degToRad(double x){ return x*(M_PI/180.0); }
static double radToDeg(double x){ return x*(180.0/M_PI); }
/*
** Implementation of 1-argument SQL math functions:
**
** exp(X) - Compute e to the X-th power
*/
static void math1Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0;
double v0, ans;
double (*x)(double);
assert( argc==1 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
v0 = sqlite3_value_double(argv[0]);
x = (double(*)(double))sqlite3_user_data(context);
ans = x(v0);
sqlite3_result_double(context, ans);
}
/*
** Implementation of 2-argument SQL math functions:
**
** power(X,Y) - Compute X to the Y-th power
*/
static void math2Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0, type1;
double v0, v1, ans;
double (*x)(double,double);
assert( argc==2 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
type1 = sqlite3_value_numeric_type(argv[1]);
if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
v0 = sqlite3_value_double(argv[0]);
v1 = sqlite3_value_double(argv[1]);
x = (double(*)(double,double))sqlite3_user_data(context);
ans = x(v0, v1);
sqlite3_result_double(context, ans);
}
/*
** Implementation of 0-argument pi() function.
*/
static void piFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
assert( argc==0 );
(void)argv;
sqlite3_result_double(context, M_PI);
}
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
/*
** Implementation of sign(X) function.
*/
static void signFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int type0;
double x;
UNUSED_PARAMETER(argc);
assert( argc==1 );
type0 = sqlite3_value_numeric_type(argv[0]);
if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
x = sqlite3_value_double(argv[0]);
sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
}
#ifdef SQLITE_DEBUG
/*
** Implementation of fpdecode(x,y,z) function.
**
** x is a real number that is to be decoded. y is the precision.
** z is the maximum real precision.
*/
static void fpdecodeFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
FpDecode s;
double x;
int y, z;
char zBuf[100];
UNUSED_PARAMETER(argc);
assert( argc==3 );
x = sqlite3_value_double(argv[0]);
y = sqlite3_value_int(argv[1]);
z = sqlite3_value_int(argv[2]);
sqlite3FpDecode(&s, x, y, z);
if( s.isSpecial==2 ){
sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
}else{
sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
}
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
#endif /* SQLITE_DEBUG */
/*
** All of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table. This occurs at start-time (as
** a consequence of calling sqlite3_initialize()).
**
** After this routine runs
*/
void sqlite3RegisterBuiltinFunctions(void){
/*
** The following array holds FuncDef structures for all of the functions
** defined in this file.
**
** The array cannot be constant since changes are made to the
** FuncDef.pHash elements at start-time. The elements of this array
** are read-only after initialization is complete.
**
** For peak efficiency, put the most frequently used function last.
*/
static FuncDef aBuiltinFunc[] = {
/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
#if !defined(SQLITE_UNTESTABLE)
TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
#endif /* !defined(SQLITE_UNTESTABLE) */
/***** Regular functions *****/
#ifdef SQLITE_SOUNDEX
FUNCTION(soundex, 1, 0, 0, soundexFunc ),
#endif
#ifndef SQLITE_OMIT_LOAD_EXTENSION
SFUNCTION(load_extension, 1, 0, 0, loadExt ),
SFUNCTION(load_extension, 2, 0, 0, loadExt ),
#endif
#if SQLITE_USER_AUTHENTICATION
FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
#endif
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
#endif
FUNCTION(ltrim, 1, 1, 0, trimFunc ),
FUNCTION(ltrim, 2, 1, 0, trimFunc ),
FUNCTION(rtrim, 1, 2, 0, trimFunc ),
FUNCTION(rtrim, 2, 2, 0, trimFunc ),
FUNCTION(trim, 1, 3, 0, trimFunc ),
FUNCTION(trim, 2, 3, 0, trimFunc ),
FUNCTION(min, -1, 0, 1, minmaxFunc ),
FUNCTION(min, 0, 0, 1, 0 ),
WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
FUNCTION(max, -1, 1, 1, minmaxFunc ),
FUNCTION(max, 0, 1, 1, 0 ),
WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN),
FUNCTION(instr, 2, 0, 0, instrFunc ),
FUNCTION(printf, -1, 0, 0, printfFunc ),
FUNCTION(format, -1, 0, 0, printfFunc ),
FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
FUNCTION(char, -1, 0, 0, charFunc ),
FUNCTION(abs, 1, 0, 0, absFunc ),
#ifdef SQLITE_DEBUG
FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ),
#endif
#ifndef SQLITE_OMIT_FLOATING_POINT
FUNCTION(round, 1, 0, 0, roundFunc ),
FUNCTION(round, 2, 0, 0, roundFunc ),
#endif
FUNCTION(upper, 1, 0, 0, upperFunc ),
FUNCTION(lower, 1, 0, 0, lowerFunc ),
FUNCTION(hex, 1, 0, 0, hexFunc ),
FUNCTION(unhex, 1, 0, 0, unhexFunc ),
FUNCTION(unhex, 2, 0, 0, unhexFunc ),
INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
VFUNCTION(random, 0, 0, 0, randomFunc ),
VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
FUNCTION(nullif, 2, 0, 1, nullifFunc ),
DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
FUNCTION(quote, 1, 0, 0, quoteFunc ),
VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
VFUNCTION(changes, 0, 0, 0, changes ),
VFUNCTION(total_changes, 0, 0, 0, total_changes ),
FUNCTION(replace, 3, 0, 0, replaceFunc ),
FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
FUNCTION(substr, 2, 0, 0, substrFunc ),
FUNCTION(substr, 3, 0, 0, substrFunc ),
FUNCTION(substring, 2, 0, 0, substrFunc ),
FUNCTION(substring, 3, 0, 0, substrFunc ),
WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
WAGGREGATE(count, 0,0,0, countStep,
countFinalize, countFinalize, countInverse,
SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
WAGGREGATE(count, 1,0,0, countStep,
countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
#ifdef SQLITE_CASE_SENSITIVE_LIKE
LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
#else
LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
#endif
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
FUNCTION(unknown, -1, 0, 0, unknownFunc ),
#endif
FUNCTION(coalesce, 1, 0, 0, 0 ),
FUNCTION(coalesce, 0, 0, 0, 0 ),
#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
MFUNCTION(floor, 1, xFloor, ceilingFunc ),
#if SQLITE_HAVE_C99_MATH_FUNCS
MFUNCTION(trunc, 1, trunc, ceilingFunc ),
#endif
FUNCTION(ln, 1, 0, 0, logFunc ),
FUNCTION(log, 1, 1, 0, logFunc ),
FUNCTION(log10, 1, 1, 0, logFunc ),
FUNCTION(log2, 1, 2, 0, logFunc ),
FUNCTION(log, 2, 0, 0, logFunc ),
MFUNCTION(exp, 1, exp, math1Func ),
MFUNCTION(pow, 2, pow, math2Func ),
MFUNCTION(power, 2, pow, math2Func ),
MFUNCTION(mod, 2, fmod, math2Func ),
MFUNCTION(acos, 1, acos, math1Func ),
MFUNCTION(asin, 1, asin, math1Func ),
MFUNCTION(atan, 1, atan, math1Func ),
MFUNCTION(atan2, 2, atan2, math2Func ),
MFUNCTION(cos, 1, cos, math1Func ),
MFUNCTION(sin, 1, sin, math1Func ),
MFUNCTION(tan, 1, tan, math1Func ),
MFUNCTION(cosh, 1, cosh, math1Func ),
MFUNCTION(sinh, 1, sinh, math1Func ),
MFUNCTION(tanh, 1, tanh, math1Func ),
#if SQLITE_HAVE_C99_MATH_FUNCS
MFUNCTION(acosh, 1, acosh, math1Func ),
MFUNCTION(asinh, 1, asinh, math1Func ),
MFUNCTION(atanh, 1, atanh, math1Func ),
#endif
MFUNCTION(sqrt, 1, sqrt, math1Func ),
MFUNCTION(radians, 1, degToRad, math1Func ),
MFUNCTION(degrees, 1, radToDeg, math1Func ),
FUNCTION(pi, 0, 0, 0, piFunc ),
#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
FUNCTION(sign, 1, 0, 0, signFunc ),
INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
};
#ifndef SQLITE_OMIT_ALTERTABLE
sqlite3AlterFunctions();
#endif
sqlite3WindowFunctions();
sqlite3RegisterDateTimeFunctions();
sqlite3RegisterJsonFunctions();
sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
#if 0 /* Enable to print out how the built-in functions are hashed */
{
int i;
FuncDef *p;
for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
printf("FUNC-HASH %02d:", i);
for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
int n = sqlite3Strlen30(p->zName);
int h = p->zName[0] + n;
assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
printf(" %s(%d)", p->zName, h);
}
printf("\n");
}
}
#endif
}
|