/*
** 2015-08-12
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** SQLite JSON functions.
**
** This file began as an extension in ext/misc/json1.c in 2015. That
** extension proved so useful that it has now been moved into the core.
**
** The original design stored all JSON as pure text, canonical RFC-8259.
** Support for JSON-5 extensions was added with version 3.42.0 (2023-05-16).
** All generated JSON text still conforms strictly to RFC-8259, but text
** with JSON-5 extensions is accepted as input.
**
** Beginning with version 3.45.0 (circa 2024-01-01), these routines also
** accept BLOB values that have JSON encoded using a binary representation
** called "JSONB". The name JSONB comes from PostgreSQL, however the on-disk
** format SQLite JSONB is completely different and incompatible with
** PostgreSQL JSONB.
**
** Decoding and interpreting JSONB is still O(N) where N is the size of
** the input, the same as text JSON. However, the constant of proportionality
** for JSONB is much smaller due to faster parsing. The size of each
** element in JSONB is encoded in its header, so there is no need to search
** for delimiters using persnickety syntax rules. JSONB seems to be about
** 3x faster than text JSON as a result. JSONB is also tends to be slightly
** smaller than text JSON, by 5% or 10%, but there are corner cases where
** JSONB can be slightly larger. So you are not far mistaken to say that
** a JSONB blob is the same size as the equivalent RFC-8259 text.
**
**
** THE JSONB ENCODING:
**
** Every JSON element is encoded in JSONB as a header and a payload.
** The header is between 1 and 9 bytes in size. The payload is zero
** or more bytes.
**
** The lower 4 bits of the first byte of the header determines the
** element type:
**
** 0: NULL
** 1: TRUE
** 2: FALSE
** 3: INT -- RFC-8259 integer literal
** 4: INT5 -- JSON5 integer literal
** 5: FLOAT -- RFC-8259 floating point literal
** 6: FLOAT5 -- JSON5 floating point literal
** 7: TEXT -- Text literal acceptable to both SQL and JSON
** 8: TEXTJ -- Text containing RFC-8259 escapes
** 9: TEXT5 -- Text containing JSON5 and/or RFC-8259 escapes
** 10: TEXTRAW -- Text containing unescaped syntax characters
** 11: ARRAY
** 12: OBJECT
**
** The other three possible values (13-15) are reserved for future
** enhancements.
**
** The upper 4 bits of the first byte determine the size of the header
** and sometimes also the size of the payload. If X is the first byte
** of the element and if X>>4 is between 0 and 11, then the payload
** will be that many bytes in size and the header is exactly one byte
** in size. Other four values for X>>4 (12-15) indicate that the header
** is more than one byte in size and that the payload size is determined
** by the remainder of the header, interpreted as a unsigned big-endian
** integer.
**
** Value of X>>4 Size integer Total header size
** ------------- -------------------- -----------------
** 12 1 byte (0-255) 2
** 13 2 byte (0-65535) 3
** 14 4 byte (0-4294967295) 5
** 15 8 byte (0-1.8e19) 9
**
** The payload size need not be expressed in its minimal form. For example,
** if the payload size is 10, the size can be expressed in any of 5 different
** ways: (1) (X>>4)==10, (2) (X>>4)==12 following by on 0x0a byte,
** (3) (X>>4)==13 followed by 0x00 and 0x0a, (4) (X>>4)==14 followed by
** 0x00 0x00 0x00 0x0a, or (5) (X>>4)==15 followed by 7 bytes of 0x00 and
** a single byte of 0x0a. The shorter forms are preferred, of course, but
** sometimes when generating JSONB, the payload size is not known in advance
** and it is convenient to reserve sufficient header space to cover the
** largest possible payload size and then come back later and patch up
** the size when it becomes known, resulting in a non-minimal encoding.
**
** The value (X>>4)==15 is not actually used in the current implementation
** (as SQLite is currently unable handle BLOBs larger than about 2GB)
** but is included in the design to allow for future enhancements.
**
** The payload follows the header. NULL, TRUE, and FALSE have no payload and
** their payload size must always be zero. The payload for INT, INT5,
** FLOAT, FLOAT5, TEXT, TEXTJ, TEXT5, and TEXTROW is text. Note that the
** "..." or '...' delimiters are omitted from the various text encodings.
** The payload for ARRAY and OBJECT is a list of additional elements that
** are the content for the array or object. The payload for an OBJECT
** must be an even number of elements. The first element of each pair is
** the label and must be of type TEXT, TEXTJ, TEXT5, or TEXTRAW.
**
** A valid JSONB blob consists of a single element, as described above.
** Usually this will be an ARRAY or OBJECT element which has many more
** elements as its content. But the overall blob is just a single element.
**
** Input validation for JSONB blobs simply checks that the element type
** code is between 0 and 12 and that the total size of the element
** (header plus payload) is the same as the size of the BLOB. If those
** checks are true, the BLOB is assumed to be JSONB and processing continues.
** Errors are only raised if some other miscoding is discovered during
** processing.
**
** Additional information can be found in the doc/jsonb.md file of the
** canonical SQLite source tree.
*/
#ifndef SQLITE_OMIT_JSON
#include "sqliteInt.h"
/* JSONB element types
*/
#define JSONB_NULL 0 /* "null" */
#define JSONB_TRUE 1 /* "true" */
#define JSONB_FALSE 2 /* "false" */
#define JSONB_INT 3 /* integer acceptable to JSON and SQL */
#define JSONB_INT5 4 /* integer in 0x000 notation */
#define JSONB_FLOAT 5 /* float acceptable to JSON and SQL */
#define JSONB_FLOAT5 6 /* float with JSON5 extensions */
#define JSONB_TEXT 7 /* Text compatible with both JSON and SQL */
#define JSONB_TEXTJ 8 /* Text with JSON escapes */
#define JSONB_TEXT5 9 /* Text with JSON-5 escape */
#define JSONB_TEXTRAW 10 /* SQL text that needs escaping for JSON */
#define JSONB_ARRAY 11 /* An array */
#define JSONB_OBJECT 12 /* An object */
/* Human-readable names for the JSONB values. The index for each
** string must correspond to the JSONB_* integer above.
*/
static const char * const jsonbType[] = {
"null", "true", "false", "integer", "integer",
"real", "real", "text", "text", "text",
"text", "array", "object", "", "", "", ""
};
/*
** Growing our own isspace() routine this way is twice as fast as
** the library isspace() function, resulting in a 7% overall performance
** increase for the text-JSON parser. (Ubuntu14.10 gcc 4.8.4 x64 with -Os).
*/
static const char jsonIsSpace[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
#define jsonIsspace(x) (jsonIsSpace[(unsigned char)x])
/*
** The set of all space characters recognized by jsonIsspace().
** Useful as the second argument to strspn().
*/
static const char jsonSpaces[] = "\011\012\015\040";
/*
** Characters that are special to JSON. Control characters,
** '"' and '\\' and '\''. Actually, '\'' is not special to
** canonical JSON, but it is special in JSON-5, so we include
** it in the set of special characters.
*/
static const char jsonIsOk[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
/* Objects */
typedef struct JsonCache JsonCache;
typedef struct JsonString JsonString;
typedef struct JsonParse JsonParse;
/*
** Magic number used for the JSON parse cache in sqlite3_get_auxdata()
*/
#define JSON_CACHE_ID (-429938) /* Cache entry */
#define JSON_CACHE_SIZE 4 /* Max number of cache entries */
/*
** jsonUnescapeOneChar() returns this invalid code point if it encounters
** a syntax error.
*/
#define JSON_INVALID_CHAR 0x99999
/* A cache mapping JSON text into JSONB blobs.
**
** Each cache entry is a JsonParse object with the following restrictions:
**
** * The bReadOnly flag must be set
**
** * The aBlob[] array must be owned by the JsonParse object. In other
** words, nBlobAlloc must be non-zero.
**
** * eEdit and delta must be zero.
**
** * zJson must be an RCStr. In other words bJsonIsRCStr must be true.
*/
struct JsonCache {
sqlite3 *db; /* Database connection */
int nUsed; /* Number of active entries in the cache */
JsonParse *a[JSON_CACHE_SIZE]; /* One line for each cache entry */
};
/* An instance of this object represents a JSON string
** under construction. Really, this is a generic string accumulator
** that can be and is used to create strings other than JSON.
**
** If the generated string is longer than will fit into the zSpace[] buffer,
** then it will be an RCStr string. This aids with caching of large
** JSON strings.
*/
struct JsonString {
sqlite3_context *pCtx; /* Function context - put error messages here */
char *zBuf; /* Append JSON content here */
u64 nAlloc; /* Bytes of storage available in zBuf[] */
u64 nUsed; /* Bytes of zBuf[] currently used */
u8 bStatic; /* True if zBuf is static space */
u8 eErr; /* True if an error has been encountered */
char zSpace[100]; /* Initial static space */
};
/* Allowed values for JsonString.eErr */
#define JSTRING_OOM 0x01 /* Out of memory */
#define JSTRING_MALFORMED 0x02 /* Malformed JSONB */
#define JSTRING_ERR 0x04 /* Error already sent to sqlite3_result */
/* The "subtype" set for text JSON values passed through using
** sqlite3_result_subtype() and sqlite3_value_subtype().
*/
#define JSON_SUBTYPE 74 /* Ascii for "J" */
/*
** Bit values for the flags passed into various SQL function implementations
** via the sqlite3_user_data() value.
*/
#define JSON_JSON 0x01 /* Result is always JSON */
#define JSON_SQL 0x02 /* Result is always SQL */
#define JSON_ABPATH 0x03 /* Allow abbreviated JSON path specs */
#define JSON_ISSET 0x04 /* json_set(), not json_insert() */
#define JSON_BLOB 0x08 /* Use the BLOB output format */
/* A parsed JSON value. Lifecycle:
**
** 1. JSON comes in and is parsed into a JSONB value in aBlob. The
** original text is stored in zJson. This step is skipped if the
** input is JSONB instead of text JSON.
**
** 2. The aBlob[] array is searched using the JSON path notation, if needed.
**
** 3. Zero or more changes are made to aBlob[] (via json_remove() or
** json_replace() or json_patch() or similar).
**
** 4. New JSON text is generated from the aBlob[] for output. This step
** is skipped if the function is one of the jsonb_* functions that
** returns JSONB instead of text JSON.
*/
struct JsonParse {
u8 *aBlob; /* JSONB representation of JSON value */
u32 nBlob; /* Bytes of aBlob[] actually used */
u32 nBlobAlloc; /* Bytes allocated to aBlob[]. 0 if aBlob is external */
char *zJson; /* Json text used for parsing */
sqlite3 *db; /* The database connection to which this object belongs */
int nJson; /* Length of the zJson string in bytes */
u32 nJPRef; /* Number of references to this object */
u32 iErr; /* Error location in zJson[] */
u16 iDepth; /* Nesting depth */
u8 nErr; /* Number of errors seen */
u8 oom; /* Set to true if out of memory */
u8 bJsonIsRCStr; /* True if zJson is an RCStr */
u8 hasNonstd; /* True if input uses non-standard features like JSON5 */
u8 bReadOnly; /* Do not modify. */
/* Search and edit information. See jsonLookupStep() */
u8 eEdit; /* Edit operation to apply */
int delta; /* Size change due to the edit */
u32 nIns; /* Number of bytes to insert */
u32 iLabel; /* Location of label if search landed on an object value */
u8 *aIns; /* Content to be inserted */
};
/* Allowed values for JsonParse.eEdit */
#define JEDIT_DEL 1 /* Delete if exists */
#define JEDIT_REPL 2 /* Overwrite if exists */
#define JEDIT_INS 3 /* Insert if not exists */
#define JEDIT_SET 4 /* Insert or overwrite */
/*
** Maximum nesting depth of JSON for this implementation.
**
** This limit is needed to avoid a stack overflow in the recursive
** descent parser. A depth of 1000 is far deeper than any sane JSON
** should go. Historical note: This limit was 2000 prior to version 3.42.0
*/
#ifndef SQLITE_JSON_MAX_DEPTH
# define JSON_MAX_DEPTH 1000
#else
# define JSON_MAX_DEPTH SQLITE_JSON_MAX_DEPTH
#endif
/*
** Allowed values for the flgs argument to jsonParseFuncArg();
*/
#define JSON_EDITABLE 0x01 /* Generate a writable JsonParse object */
#define JSON_KEEPERROR 0x02 /* Return non-NULL even if there is an error */
/**************************************************************************
** Forward references
**************************************************************************/
static void jsonReturnStringAsBlob(JsonString*);
static int jsonFuncArgMightBeBinary(sqlite3_value *pJson);
static u32 jsonTranslateBlobToText(const JsonParse*,u32,JsonString*);
static void jsonReturnParse(sqlite3_context*,JsonParse*);
static JsonParse *jsonParseFuncArg(sqlite3_context*,sqlite3_value*,u32);
static void jsonParseFree(JsonParse*);
static u32 jsonbPayloadSize(const JsonParse*, u32, u32*);
static u32 jsonUnescapeOneChar(const char*, u32, u32*);
/**************************************************************************
** Utility routines for dealing with JsonCache objects
**************************************************************************/
/*
** Free a JsonCache object.
*/
static void jsonCacheDelete(JsonCache *p){
int i;
for(i=0; i<p->nUsed; i++){
jsonParseFree(p->a[i]);
}
sqlite3DbFree(p->db, p);
}
static void jsonCacheDeleteGeneric(void *p){
jsonCacheDelete((JsonCache*)p);
}
/*
** Insert a new entry into the cache. If the cache is full, expel
** the least recently used entry. Return SQLITE_OK on success or a
** result code otherwise.
**
** Cache entries are stored in age order, oldest first.
*/
static int jsonCacheInsert(
sqlite3_context *ctx, /* The SQL statement context holding the cache */
JsonParse *pParse /* The parse object to be added to the cache */
){
JsonCache *p;
assert( pParse->zJson!=0 );
assert( pParse->bJsonIsRCStr );
assert( pParse->delta==0 );
p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID);
if( p==0 ){
sqlite3 *db = sqlite3_context_db_handle(ctx);
p = sqlite3DbMallocZero(db, sizeof(*p));
if( p==0 ) return SQLITE_NOMEM;
p->db = db;
sqlite3_set_auxdata(ctx, JSON_CACHE_ID, p, jsonCacheDeleteGeneric);
p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID);
if( p==0 ) return SQLITE_NOMEM;
}
if( p->nUsed >= JSON_CACHE_SIZE ){
jsonParseFree(p->a[0]);
memmove(p->a, &p->a[1], (JSON_CACHE_SIZE-1)*sizeof(p->a[0]));
p->nUsed = JSON_CACHE_SIZE-1;
}
assert( pParse->nBlobAlloc>0 );
pParse->eEdit = 0;
pParse->nJPRef++;
pParse->bReadOnly = 1;
p->a[p->nUsed] = pParse;
p->nUsed++;
return SQLITE_OK;
}
/*
** Search for a cached translation the json text supplied by pArg. Return
** the JsonParse object if found. Return NULL if not found.
**
** When a match if found, the matching entry is moved to become the
** most-recently used entry if it isn't so already.
**
** The JsonParse object returned still belongs to the Cache and might
** be deleted at any moment. If the caller whants the JsonParse to
** linger, it needs to increment the nPJRef reference counter.
*/
static JsonParse *jsonCacheSearch(
sqlite3_context *ctx, /* The SQL statement context holding the cache */
sqlite3_value *pArg /* Function argument containing SQL text */
){
JsonCache *p;
int i;
const char *zJson;
int nJson;
if( sqlite3_value_type(pArg)!=SQLITE_TEXT ){
return 0;
}
zJson = (const char*)sqlite3_value_text(pArg);
if( zJson==0 ) return 0;
nJson = sqlite3_value_bytes(pArg);
p = sqlite3_get_auxdata(ctx, JSON_CACHE_ID);
if( p==0 ){
return 0;
}
for(i=0; i<p->nUsed; i++){
if( p->a[i]->zJson==zJson ) break;
}
if( i>=p->nUsed ){
for(i=0; i<p->nUsed; i++){
if( p->a[i]->nJson!=nJson ) continue;
if( memcmp(p->a[i]->zJson, zJson, nJson)==0 ) break;
}
}
if( i<p->nUsed ){
if( i<p->nUsed-1 ){
/* Make the matching entry the most recently used entry */
JsonParse *tmp = p->a[i];
memmove(&p->a[i], &p->a[i+1], (p->nUsed-i-1)*sizeof(tmp));
p->a[p->nUsed-1] = tmp;
i = p->nUsed - 1;
}
assert( p->a[i]->delta==0 );
return p->a[i];
}else{
return 0;
}
}
/**************************************************************************
** Utility routines for dealing with JsonString objects
**************************************************************************/
/* Turn uninitialized bulk memory into a valid JsonString object
** holding a zero-length string.
*/
static void jsonStringZero(JsonString *p){
p->zBuf = p->zSpace;
p->nAlloc = sizeof(p->zSpace);
p->nUsed = 0;
p->bStatic = 1;
}
/* Initialize the JsonString object
*/
static void jsonStringInit(JsonString *p, sqlite3_context *pCtx){
p->pCtx = pCtx;
p->eErr = 0;
jsonStringZero(p);
}
/* Free all allocated memory and reset the JsonString object back to its
** initial state.
*/
static void jsonStringReset(JsonString *p){
if( !p->bStatic ) sqlite3RCStrUnref(p->zBuf);
jsonStringZero(p);
}
/* Report an out-of-memory (OOM) condition
*/
static void jsonStringOom(JsonString *p){
p->eErr |= JSTRING_OOM;
if( p->pCtx ) sqlite3_result_error_nomem(p->pCtx);
jsonStringReset(p);
}
/* Enlarge pJson->zBuf so that it can hold at least N more bytes.
** Return zero on success. Return non-zero on an OOM error
*/
static int jsonStringGrow(JsonString *p, u32 N){
u64 nTotal = N<p->nAlloc ? p->nAlloc*2 : p->nAlloc+N+10;
char *zNew;
if( p->bStatic ){
if( p->eErr ) return 1;
zNew = sqlite3RCStrNew(nTotal);
if( zNew==0 ){
jsonStringOom(p);
return SQLITE_NOMEM;
}
memcpy(zNew, p->zBuf, (size_t)p->nUsed);
p->zBuf = zNew;
p->bStatic = 0;
}else{
p->zBuf = sqlite3RCStrResize(p->zBuf, nTotal);
if( p->zBuf==0 ){
p->eErr |= JSTRING_OOM;
jsonStringZero(p);
return SQLITE_NOMEM;
}
}
p->nAlloc = nTotal;
return SQLITE_OK;
}
/* Append N bytes from zIn onto the end of the JsonString string.
*/
static SQLITE_NOINLINE void jsonStringExpandAndAppend(
JsonString *p,
const char *zIn,
u32 N
){
assert( N>0 );
if( jsonStringGrow(p,N) ) return;
memcpy(p->zBuf+p->nUsed, zIn, N);
p->nUsed += N;
}
static void jsonAppendRaw(JsonString *p, const char *zIn, u32 N){
if( N==0 ) return;
if( N+p->nUsed >= p->nAlloc ){
jsonStringExpandAndAppend(p,zIn,N);
}else{
memcpy(p->zBuf+p->nUsed, zIn, N);
p->nUsed += N;
}
}
static void jsonAppendRawNZ(JsonString *p, const char *zIn, u32 N){
assert( N>0 );
if( N+p->nUsed >= p->nAlloc ){
jsonStringExpandAndAppend(p,zIn,N);
}else{
memcpy(p->zBuf+p->nUsed, zIn, N);
p->nUsed += N;
}
}
/* Append formatted text (not to exceed N bytes) to the JsonString.
*/
static void jsonPrintf(int N, JsonString *p, const char *zFormat, ...){
va_list ap;
if( (p->nUsed + N >= p->nAlloc) && jsonStringGrow(p, N) ) return;
va_start(ap, zFormat);
sqlite3_vsnprintf(N, p->zBuf+p->nUsed, zFormat, ap);
va_end(ap);
p->nUsed += (int)strlen(p->zBuf+p->nUsed);
}
/* Append a single character
*/
static SQLITE_NOINLINE void jsonAppendCharExpand(JsonString *p, char c){
if( jsonStringGrow(p,1) ) return;
p->zBuf[p->nUsed++] = c;
}
static void jsonAppendChar(JsonString *p, char c){
if( p->nUsed>=p->nAlloc ){
jsonAppendCharExpand(p,c);
}else{
p->zBuf[p->nUsed++] = c;
}
}
/* Remove a single character from the end of the string
*/
static void jsonStringTrimOneChar(JsonString *p){
if( p->eErr==0 ){
assert( p->nUsed>0 );
p->nUsed--;
}
}
/* Make sure there is a zero terminator on p->zBuf[]
**
** Return true on success. Return false if an OOM prevents this
** from happening.
*/
static int jsonStringTerminate(JsonString *p){
jsonAppendChar(p, 0);
jsonStringTrimOneChar(p);
return p->eErr==0;
}
/* Append a comma separator to the output buffer, if the previous
** character is not '[' or '{'.
*/
static void jsonAppendSeparator(JsonString *p){
char c;
if( p->nUsed==0 ) return;
c = p->zBuf[p->nUsed-1];
if( c=='[' || c=='{' ) return;
jsonAppendChar(p, ',');
}
/* c is a control character. Append the canonical JSON representation
** of that control character to p.
**
** This routine assumes that the output buffer has already been enlarged
** sufficiently to hold the worst-case encoding plus a nul terminator.
*/
static void jsonAppendControlChar(JsonString *p, u8 c){
static const char aSpecial[] = {
0, 0, 0, 0, 0, 0, 0, 0, 'b', 't', 'n', 0, 'f', 'r', 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
assert( sizeof(aSpecial)==32 );
assert( aSpecial['\b']=='b' );
assert( aSpecial['\f']=='f' );
assert( aSpecial['\n']=='n' );
assert( aSpecial['\r']=='r' );
assert( aSpecial['\t']=='t' );
assert( c>=0 && c<sizeof(aSpecial) );
assert( p->nUsed+7 <= p->nAlloc );
if( aSpecial[c] ){
p->zBuf[p->nUsed] = '\\';
p->zBuf[p->nUsed+1] = aSpecial[c];
p->nUsed += 2;
}else{
p->zBuf[p->nUsed] = '\\';
p->zBuf[p->nUsed+1] = 'u';
p->zBuf[p->nUsed+2] = '0';
p->zBuf[p->nUsed+3] = '0';
p->zBuf[p->nUsed+4] = "0123456789abcdef"[c>>4];
p->zBuf[p->nUsed+5] = "0123456789abcdef"[c&0xf];
p->nUsed += 6;
}
}
/* Append the N-byte string in zIn to the end of the JsonString string
** under construction. Enclose the string in double-quotes ("...") and
** escape any double-quotes or backslash characters contained within the
** string.
**
** This routine is a high-runner. There is a measurable performance
** increase associated with unwinding the jsonIsOk[] loop.
*/
static void jsonAppendString(JsonString *p, const char *zIn, u32 N){
u32 k;
u8 c;
const u8 *z = (const u8*)zIn;
if( z==0 ) return;
if( (N+p->nUsed+2 >= p->nAlloc) && jsonStringGrow(p,N+2)!=0 ) return;
p->zBuf[p->nUsed++] = '"';
while( 1 /*exit-by-break*/ ){
k = 0;
/* The following while() is the 4-way unwound equivalent of
**
** while( k<N && jsonIsOk[z[k]] ){ k++; }
*/
while( 1 /* Exit by break */ ){
if( k+3>=N ){
while( k<N && jsonIsOk[z[k]] ){ k++; }
break;
}
if( !jsonIsOk[z[k]] ){
break;
}
if( !jsonIsOk[z[k+1]] ){
k += 1;
break;
}
if( !jsonIsOk[z[k+2]] ){
k += 2;
break;
}
if( !jsonIsOk[z[k+3]] ){
k += 3;
break;
}else{
k += 4;
}
}
if( k>=N ){
if( k>0 ){
memcpy(&p->zBuf[p->nUsed], z, k);
p->nUsed += k;
}
break;
}
if( k>0 ){
memcpy(&p->zBuf[p->nUsed], z, k);
p->nUsed += k;
z += k;
N -= k;
}
c = z[0];
if( c=='"' || c=='\\' ){
if( (p->nUsed+N+3 > p->nAlloc) && jsonStringGrow(p,N+3)!=0 ) return;
p->zBuf[p->nUsed++] = '\\';
p->zBuf[p->nUsed++] = c;
}else if( c=='\'' ){
p->zBuf[p->nUsed++] = c;
}else{
if( (p->nUsed+N+7 > p->nAlloc) && jsonStringGrow(p,N+7)!=0 ) return;
jsonAppendControlChar(p, c);
}
z++;
N--;
}
p->zBuf[p->nUsed++] = '"';
assert( p->nUsed<p->nAlloc );
}
/*
** Append an sqlite3_value (such as a function parameter) to the JSON
** string under construction in p.
*/
static void jsonAppendSqlValue(
JsonString *p, /* Append to this JSON string */
sqlite3_value *pValue /* Value to append */
){
switch( sqlite3_value_type(pValue) ){
case SQLITE_NULL: {
jsonAppendRawNZ(p, "null", 4);
break;
}
case SQLITE_FLOAT: {
jsonPrintf(100, p, "%!0.15g", sqlite3_value_double(pValue));
break;
}
case SQLITE_INTEGER: {
const char *z = (const char*)sqlite3_value_text(pValue);
u32 n = (u32)sqlite3_value_bytes(pValue);
jsonAppendRaw(p, z, n);
break;
}
case SQLITE_TEXT: {
const char *z = (const char*)sqlite3_value_text(pValue);
u32 n = (u32)sqlite3_value_bytes(pValue);
if( sqlite3_value_subtype(pValue)==JSON_SUBTYPE ){
jsonAppendRaw(p, z, n);
}else{
jsonAppendString(p, z, n);
}
break;
}
default: {
if( jsonFuncArgMightBeBinary(pValue) ){
JsonParse px;
memset(&px, 0, sizeof(px));
px.aBlob = (u8*)sqlite3_value_blob(pValue);
px.nBlob = sqlite3_value_bytes(pValue);
jsonTranslateBlobToText(&px, 0, p);
}else if( p->eErr==0 ){
sqlite3_result_error(p->pCtx, "JSON cannot hold BLOB values", -1);
p->eErr = JSTRING_ERR;
jsonStringReset(p);
}
break;
}
}
}
/* Make the text in p (which is probably a generated JSON text string)
** the result of the SQL function.
**
** The JsonString is reset.
**
** If pParse and ctx are both non-NULL, then the SQL string in p is
** loaded into the zJson field of the pParse object as a RCStr and the
** pParse is added to the cache.
*/
static void jsonReturnString(
JsonString *p, /* String to return */
JsonParse *pParse, /* JSONB source or NULL */
sqlite3_context *ctx /* Where to cache */
){
assert( (pParse!=0)==(ctx!=0) );
assert( ctx==0 || ctx==p->pCtx );
if( p->eErr==0 ){
int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(p->pCtx));
if( flags & JSON_BLOB ){
jsonReturnStringAsBlob(p);
}else if( p->bStatic ){
sqlite3_result_text64(p->pCtx, p->zBuf, p->nUsed,
SQLITE_TRANSIENT, SQLITE_UTF8);
}else if( jsonStringTerminate(p) ){
if( pParse && pParse->bJsonIsRCStr==0 && pParse->nBlobAlloc>0 ){
int rc;
pParse->zJson = sqlite3RCStrRef(p->zBuf);
pParse->nJson = p->nUsed;
pParse->bJsonIsRCStr = 1;
rc = jsonCacheInsert(ctx, pParse);
if( rc==SQLITE_NOMEM ){
sqlite3_result_error_nomem(ctx);
jsonStringReset(p);
return;
}
}
sqlite3_result_text64(p->pCtx, sqlite3RCStrRef(p->zBuf), p->nUsed,
sqlite3RCStrUnref,
SQLITE_UTF8);
}else{
sqlite3_result_error_nomem(p->pCtx);
}
}else if( p->eErr & JSTRING_OOM ){
sqlite3_result_error_nomem(p->pCtx);
}else if( p->eErr & JSTRING_MALFORMED ){
sqlite3_result_error(p->pCtx, "malformed JSON", -1);
}
jsonStringReset(p);
}
/**************************************************************************
** Utility routines for dealing with JsonParse objects
**************************************************************************/
/*
** Reclaim all memory allocated by a JsonParse object. But do not
** delete the JsonParse object itself.
*/
static void jsonParseReset(JsonParse *pParse){
assert( pParse->nJPRef<=1 );
if( pParse->bJsonIsRCStr ){
sqlite3RCStrUnref(pParse->zJson);
pParse->zJson = 0;
pParse->nJson = 0;
pParse->bJsonIsRCStr = 0;
}
if( pParse->nBlobAlloc ){
sqlite3DbFree(pParse->db, pParse->aBlob);
pParse->aBlob = 0;
pParse->nBlob = 0;
pParse->nBlobAlloc = 0;
}
}
/*
** Decrement the reference count on the JsonParse object. When the
** count reaches zero, free the object.
*/
static void jsonParseFree(JsonParse *pParse){
if( pParse ){
if( pParse->nJPRef>1 ){
pParse->nJPRef--;
}else{
jsonParseReset(pParse);
sqlite3DbFree(pParse->db, pParse);
}
}
}
/**************************************************************************
** Utility routines for the JSON text parser
**************************************************************************/
/*
** Translate a single byte of Hex into an integer.
** This routine only gives a correct answer if h really is a valid hexadecimal
** character: 0..9a..fA..F. But unlike sqlite3HexToInt(), it does not
** assert() if the digit is not hex.
*/
static u8 jsonHexToInt(int h){
#ifdef SQLITE_ASCII
h += 9*(1&(h>>6));
#endif
#ifdef SQLITE_EBCDIC
h += 9*(1&~(h>>4));
#endif
return (u8)(h & 0xf);
}
/*
** Convert a 4-byte hex string into an integer
*/
static u32 jsonHexToInt4(const char *z){
u32 v;
v = (jsonHexToInt(z[0])<<12)
+ (jsonHexToInt(z[1])<<8)
+ (jsonHexToInt(z[2])<<4)
+ jsonHexToInt(z[3]);
return v;
}
/*
** Return true if z[] begins with 2 (or more) hexadecimal digits
*/
static int jsonIs2Hex(const char *z){
return sqlite3Isxdigit(z[0]) && sqlite3Isxdigit(z[1]);
}
/*
** Return true if z[] begins with 4 (or more) hexadecimal digits
*/
static int jsonIs4Hex(const char *z){
return jsonIs2Hex(z) && jsonIs2Hex(&z[2]);
}
/*
** Return the number of bytes of JSON5 whitespace at the beginning of
** the input string z[].
**
** JSON5 whitespace consists of any of the following characters:
**
** Unicode UTF-8 Name
** U+0009 09 horizontal tab
** U+000a 0a line feed
** U+000b 0b vertical tab
** U+000c 0c form feed
** U+000d 0d carriage return
** U+0020 20 space
** U+00a0 c2 a0 non-breaking space
** U+1680 e1 9a 80 ogham space mark
** U+2000 e2 80 80 en quad
** U+2001 e2 80 81 em quad
** U+2002 e2 80 82 en space
** U+2003 e2 80 83 em space
** U+2004 e2 80 84 three-per-em space
** U+2005 e2 80 85 four-per-em space
** U+2006 e2 80 86 six-per-em space
** U+2007 e2 80 87 figure space
** U+2008 e2 80 88 punctuation space
** U+2009 e2 80 89 thin space
** U+200a e2 80 8a hair space
** U+2028 e2 80 a8 line separator
** U+2029 e2 80 a9 paragraph separator
** U+202f e2 80 af narrow no-break space (NNBSP)
** U+205f e2 81 9f medium mathematical space (MMSP)
** U+3000 e3 80 80 ideographical space
** U+FEFF ef bb bf byte order mark
**
** In addition, comments between '/', '*' and '*', '/' and
** from '/', '/' to end-of-line are also considered to be whitespace.
*/
static int json5Whitespace(const char *zIn){
int n = 0;
const u8 *z = (u8*)zIn;
while( 1 /*exit by "goto whitespace_done"*/ ){
switch( z[n] ){
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x20: {
n++;
break;
}
case '/': {
if( z[n+1]=='*' && z[n+2]!=0 ){
int j;
for(j=n+3; z[j]!='/' || z[j-1]!='*'; j++){
if( z[j]==0 ) goto whitespace_done;
}
n = j+1;
break;
}else if( z[n+1]=='/' ){
int j;
char c;
for(j=n+2; (c = z[j])!=0; j++){
if( c=='\n' || c=='\r' ) break;
if( 0xe2==(u8)c && 0x80==(u8)z[j+1]
&& (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2])
){
j += 2;
break;
}
}
n = j;
if( z[n] ) n++;
break;
}
goto whitespace_done;
}
case 0xc2: {
if( z[n+1]==0xa0 ){
n += 2;
break;
}
goto whitespace_done;
}
case 0xe1: {
if( z[n+1]==0x9a && z[n+2]==0x80 ){
n += 3;
break;
}
goto whitespace_done;
}
case 0xe2: {
if( z[n+1]==0x80 ){
u8 c = z[n+2];
if( c<0x80 ) goto whitespace_done;
if( c<=0x8a || c==0xa8 || c==0xa9 || c==0xaf ){
n += 3;
break;
}
}else if( z[n+1]==0x81 && z[n+2]==0x9f ){
n += 3;
break;
}
goto whitespace_done;
}
case 0xe3: {
if( z[n+1]==0x80 && z[n+2]==0x80 ){
n += 3;
break;
}
goto whitespace_done;
}
case 0xef: {
if( z[n+1]==0xbb && z[n+2]==0xbf ){
n += 3;
break;
}
goto whitespace_done;
}
default: {
goto whitespace_done;
}
}
}
whitespace_done:
return n;
}
/*
** Extra floating-point literals to allow in JSON.
*/
static const struct NanInfName {
char c1;
char c2;
char n;
char eType;
char nRepl;
char *zMatch;
char *zRepl;
} aNanInfName[] = {
{ 'i', 'I', 3, JSONB_FLOAT, 7, "inf", "9.0e999" },
{ 'i', 'I', 8, JSONB_FLOAT, 7, "infinity", "9.0e999" },
{ 'n', 'N', 3, JSONB_NULL, 4, "NaN", "null" },
{ 'q', 'Q', 4, JSONB_NULL, 4, "QNaN", "null" },
{ 's', 'S', 4, JSONB_NULL, 4, "SNaN", "null" },
};
/*
** Report the wrong number of arguments for json_insert(), json_replace()
** or json_set().
*/
static void jsonWrongNumArgs(
sqlite3_context *pCtx,
const char *zFuncName
){
char *zMsg = sqlite3_mprintf("json_%s() needs an odd number of arguments",
zFuncName);
sqlite3_result_error(pCtx, zMsg, -1);
sqlite3_free(zMsg);
}
/****************************************************************************
** Utility routines for dealing with the binary BLOB representation of JSON
****************************************************************************/
/*
** Expand pParse->aBlob so that it holds at least N bytes.
**
** Return the number of errors.
*/
static int jsonBlobExpand(JsonParse *pParse, u32 N){
u8 *aNew;
u32 t;
assert( N>pParse->nBlobAlloc );
if( pParse->nBlobAlloc==0 ){
t = 100;
}else{
t = pParse->nBlobAlloc*2;
}
if( t<N ) t = N+100;
aNew = sqlite3DbRealloc(pParse->db, pParse->aBlob, t);
if( aNew==0 ){ pParse->oom = 1; return 1; }
pParse->aBlob = aNew;
pParse->nBlobAlloc = t;
return 0;
}
/*
** If pParse->aBlob is not previously editable (because it is taken
** from sqlite3_value_blob(), as indicated by the fact that
** pParse->nBlobAlloc==0 and pParse->nBlob>0) then make it editable
** by making a copy into space obtained from malloc.
**
** Return true on success. Return false on OOM.
*/
static int jsonBlobMakeEditable(JsonParse *pParse, u32 nExtra){
u8 *aOld;
u32 nSize;
assert( !pParse->bReadOnly );
if( pParse->oom ) return 0;
if( pParse->nBlobAlloc>0 ) return 1;
aOld = pParse->aBlob;
nSize = pParse->nBlob + nExtra;
pParse->aBlob = 0;
if( jsonBlobExpand(pParse, nSize) ){
return 0;
}
assert( pParse->nBlobAlloc >= pParse->nBlob + nExtra );
memcpy(pParse->aBlob, aOld, pParse->nBlob);
return 1;
}
/* Expand pParse->aBlob and append one bytes.
*/
static SQLITE_NOINLINE void jsonBlobExpandAndAppendOneByte(
JsonParse *pParse,
u8 c
){
jsonBlobExpand(pParse, pParse->nBlob+1);
if( pParse->oom==0 ){
assert( pParse->nBlob+1<=pParse->nBlobAlloc );
pParse->aBlob[pParse->nBlob++] = c;
}
}
/* Append a single character.
*/
static void jsonBlobAppendOneByte(JsonParse *pParse, u8 c){
if( pParse->nBlob >= pParse->nBlobAlloc ){
jsonBlobExpandAndAppendOneByte(pParse, c);
}else{
pParse->aBlob[pParse->nBlob++] = c;
}
}
/* Slow version of jsonBlobAppendNode() that first resizes the
** pParse->aBlob structure.
*/
static void jsonBlobAppendNode(JsonParse*,u8,u32,const void*);
static SQLITE_NOINLINE void jsonBlobExpandAndAppendNode(
JsonParse *pParse,
u8 eType,
u32 szPayload,
const void *aPayload
){
if( jsonBlobExpand(pParse, pParse->nBlob+szPayload+9) ) return;
jsonBlobAppendNode(pParse, eType, szPayload, aPayload);
}
/* Append an node type byte together with the payload size and
** possibly also the payload.
**
** If aPayload is not NULL, then it is a pointer to the payload which
** is also appended. If aPayload is NULL, the pParse->aBlob[] array
** is resized (if necessary) so that it is big enough to hold the
** payload, but the payload is not appended and pParse->nBlob is left
** pointing to where the first byte of payload will eventually be.
*/
static void jsonBlobAppendNode(
JsonParse *pParse, /* The JsonParse object under construction */
u8 eType, /* Node type. One of JSONB_* */
u32 szPayload, /* Number of bytes of payload */
const void *aPayload /* The payload. Might be NULL */
){
u8 *a;
if( pParse->nBlob+szPayload+9 > pParse->nBlobAlloc ){
jsonBlobExpandAndAppendNode(pParse,eType,szPayload,aPayload);
return;
}
assert( pParse->aBlob!=0 );
a = &pParse->aBlob[pParse->nBlob];
if( szPayload<=11 ){
a[0] = eType | (szPayload<<4);
pParse->nBlob += 1;
}else if( szPayload<=0xff ){
a[0] = eType | 0xc0;
a[1] = szPayload & 0xff;
pParse->nBlob += 2;
}else if( szPayload<=0xffff ){
a[0] = eType | 0xd0;
a[1] = (szPayload >> 8) & 0xff;
a[2] = szPayload & 0xff;
pParse->nBlob += 3;
}else{
a[0] = eType | 0xe0;
a[1] = (szPayload >> 24) & 0xff;
a[2] = (szPayload >> 16) & 0xff;
a[3] = (szPayload >> 8) & 0xff;
a[4] = szPayload & 0xff;
pParse->nBlob += 5;
}
if( aPayload ){
pParse->nBlob += szPayload;
memcpy(&pParse->aBlob[pParse->nBlob-szPayload], aPayload, szPayload);
}
}
/* Change the payload size for the node at index i to be szPayload.
*/
static int jsonBlobChangePayloadSize(
JsonParse *pParse,
u32 i,
u32 szPayload
){
u8 *a;
u8 szType;
u8 nExtra;
u8 nNeeded;
int delta;
if( pParse->oom ) return 0;
a = &pParse->aBlob[i];
szType = a[0]>>4;
if( szType<=11 ){
nExtra = 0;
}else if( szType==12 ){
nExtra = 1;
}else if( szType==13 ){
nExtra = 2;
}else{
nExtra = 4;
}
if( szPayload<=11 ){
nNeeded = 0;
}else if( szPayload<=0xff ){
nNeeded = 1;
}else if( szPayload<=0xffff ){
nNeeded = 2;
}else{
nNeeded = 4;
}
delta = nNeeded - nExtra;
if( delta ){
u32 newSize = pParse->nBlob + delta;
if( delta>0 ){
if( newSize>pParse->nBlobAlloc && jsonBlobExpand(pParse, newSize) ){
return 0; /* OOM error. Error state recorded in pParse->oom. */
}
a = &pParse->aBlob[i];
memmove(&a[1+delta], &a[1], pParse->nBlob - (i+1));
}else{
memmove(&a[1], &a[1-delta], pParse->nBlob - (i+1-delta));
}
pParse->nBlob = newSize;
}
if( nNeeded==0 ){
a[0] = (a[0] & 0x0f) | (szPayload<<4);
}else if( nNeeded==1 ){
a[0] = (a[0] & 0x0f) | 0xc0;
a[1] = szPayload & 0xff;
}else if( nNeeded==2 ){
a[0] = (a[0] & 0x0f) | 0xd0;
a[1] = (szPayload >> 8) & 0xff;
a[2] = szPayload & 0xff;
}else{
a[0] = (a[0] & 0x0f) | 0xe0;
a[1] = (szPayload >> 24) & 0xff;
a[2] = (szPayload >> 16) & 0xff;
a[3] = (szPayload >> 8) & 0xff;
a[4] = szPayload & 0xff;
}
return delta;
}
/*
** If z[0] is 'u' and is followed by exactly 4 hexadecimal character,
** then set *pOp to JSONB_TEXTJ and return true. If not, do not make
** any changes to *pOp and return false.
*/
static int jsonIs4HexB(const char *z, int *pOp){
if( z[0]!='u' ) return 0;
if( !jsonIs4Hex(&z[1]) ) return 0;
*pOp = JSONB_TEXTJ;
return 1;
}
/*
** Check a single element of the JSONB in pParse for validity.
**
** The element to be checked starts at offset i and must end at on the
** last byte before iEnd.
**
** Return 0 if everything is correct. Return the 1-based byte offset of the
** error if a problem is detected. (In other words, if the error is at offset
** 0, return 1).
*/
static u32 jsonbValidityCheck(
const JsonParse *pParse, /* Input JSONB. Only aBlob and nBlob are used */
u32 i, /* Start of element as pParse->aBlob[i] */
u32 iEnd, /* One more than the last byte of the element */
u32 iDepth /* Current nesting depth */
){
u32 n, sz, j, k;
const u8 *z;
u8 x;
if( iDepth>JSON_MAX_DEPTH ) return i+1;
sz = 0;
n = jsonbPayloadSize(pParse, i, &sz);
if( NEVER(n==0) ) return i+1; /* Checked by caller */
if( NEVER(i+n+sz!=iEnd) ) return i+1; /* Checked by caller */
z = pParse->aBlob;
x = z[i] & 0x0f;
switch( x ){
case JSONB_NULL:
case JSONB_TRUE:
case JSONB_FALSE: {
return n+sz==1 ? 0 : i+1;
}
case JSONB_INT: {
if( sz<1 ) return i+1;
j = i+n;
if( z[j]=='-' ){
j++;
if( sz<2 ) return i+1;
}
k = i+n+sz;
while( j<k ){
if( sqlite3Isdigit(z[j]) ){
j++;
}else{
return j+1;
}
}
return 0;
}
case JSONB_INT5: {
if( sz<3 ) return i+1;
j = i+n;
if( z[j]=='-' ){
if( sz<4 ) return i+1;
j++;
}
if( z[j]!='0' ) return i+1;
if( z[j+1]!='x' && z[j+1]!='X' ) return j+2;
j += 2;
k = i+n+sz;
while( j<k ){
if( sqlite3Isxdigit(z[j]) ){
j++;
}else{
return j+1;
}
}
return 0;
}
case JSONB_FLOAT:
case JSONB_FLOAT5: {
u8 seen = 0; /* 0: initial. 1: '.' seen 2: 'e' seen */
if( sz<2 ) return i+1;
j = i+n;
k = j+sz;
if( z[j]=='-' ){
j++;
if( sz<3 ) return i+1;
}
if( z[j]=='.' ){
if( x==JSONB_FLOAT ) return j+1;
if( !sqlite3Isdigit(z[j+1]) ) return j+1;
j += 2;
seen = 1;
}else if( z[j]=='0' && x==JSONB_FLOAT ){
if( j+3>k ) return j+1;
if( z[j+1]!='.' && z[j+1]!='e' && z[j+1]!='E' ) return j+1;
j++;
}
for(; j<k; j++){
if( sqlite3Isdigit(z[j]) ) continue;
if( z[j]=='.' ){
if( seen>0 ) return j+1;
if( x==JSONB_FLOAT && (j==k-1 || !sqlite3Isdigit(z[j+1])) ){
return j+1;
}
seen = 1;
continue;
}
if( z[j]=='e' || z[j]=='E' ){
if( seen==2 ) return j+1;
if( j==k-1 ) return j+1;
if( z[j+1]=='+' || z[j+1]=='-' ){
j++;
if( j==k-1 ) return j+1;
}
seen = 2;
continue;
}
return j+1;
}
if( seen==0 ) return i+1;
return 0;
}
case JSONB_TEXT: {
j = i+n;
k = j+sz;
while( j<k ){
if( !jsonIsOk[z[j]] && z[j]!='\'' ) return j+1;
j++;
}
return 0;
}
case JSONB_TEXTJ:
case JSONB_TEXT5: {
j = i+n;
k = j+sz;
while( j<k ){
if( !jsonIsOk[z[j]] && z[j]!='\'' ){
if( z[j]=='"' ){
if( x==JSONB_TEXTJ ) return j+1;
}else if( z[j]<=0x1f ){
/* Control characters in JSON5 string literals are ok */
if( x==JSONB_TEXTJ ) return j+1;
}else if( NEVER(z[j]!='\\') || j+1>=k ){
return j+1;
}else if( strchr("\"\\/bfnrt",z[j+1])!=0 ){
j++;
}else if( z[j+1]=='u' ){
if( j+5>=k ) return j+1;
if( !jsonIs4Hex((const char*)&z[j+2]) ) return j+1;
j++;
}else if( x!=JSONB_TEXT5 ){
return j+1;
}else{
u32 c = 0;
u32 szC = jsonUnescapeOneChar((const char*)&z[j], k-j, &c);
if( c==JSON_INVALID_CHAR ) return j+1;
j += szC - 1;
}
}
j++;
}
return 0;
}
case JSONB_TEXTRAW: {
return 0;
}
case JSONB_ARRAY: {
u32 sub;
j = i+n;
k = j+sz;
while( j<k ){
sz = 0;
n = jsonbPayloadSize(pParse, j, &sz);
if( n==0 ) return j+1;
if( j+n+sz>k ) return j+1;
sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1);
if( sub ) return sub;
j += n + sz;
}
assert( j==k );
return 0;
}
case JSONB_OBJECT: {
u32 cnt = 0;
u32 sub;
j = i+n;
k = j+sz;
while( j<k ){
sz = 0;
n = jsonbPayloadSize(pParse, j, &sz);
if( n==0 ) return j+1;
if( j+n+sz>k ) return j+1;
if( (cnt & 1)==0 ){
x = z[j] & 0x0f;
if( x<JSONB_TEXT || x>JSONB_TEXTRAW ) return j+1;
}
sub = jsonbValidityCheck(pParse, j, j+n+sz, iDepth+1);
if( sub ) return sub;
cnt++;
j += n + sz;
}
assert( j==k );
if( (cnt & 1)!=0 ) return j+1;
return 0;
}
default: {
return i+1;
}
}
}
/*
** Translate a single element of JSON text at pParse->zJson[i] into
** its equivalent binary JSONB representation. Append the translation into
** pParse->aBlob[] beginning at pParse->nBlob. The size of
** pParse->aBlob[] is increased as necessary.
**
** Return the index of the first character past the end of the element parsed,
** or one of the following special result codes:
**
** 0 End of input
** -1 Syntax error or OOM
** -2 '}' seen \
** -3 ']' seen \___ For these returns, pParse->iErr is set to
** -4 ',' seen / the index in zJson[] of the seen character
** -5 ':' seen /
*/
static int jsonTranslateTextToBlob(JsonParse *pParse, u32 i){
char c;
u32 j;
u32 iThis, iStart;
int x;
u8 t;
const char *z = pParse->zJson;
json_parse_restart:
switch( (u8)z[i] ){
case '{': {
/* Parse object */
iThis = pParse->nBlob;
jsonBlobAppendNode(pParse, JSONB_OBJECT, pParse->nJson-i, 0);
if( ++pParse->iDepth > JSON_MAX_DEPTH ){
pParse->iErr = i;
return -1;
}
iStart = pParse->nBlob;
for(j=i+1;;j++){
u32 iBlob = pParse->nBlob;
x = jsonTranslateTextToBlob(pParse, j);
if( x<=0 ){
int op;
if( x==(-2) ){
j = pParse->iErr;
if( pParse->nBlob!=(u32)iStart ) pParse->hasNonstd = 1;
break;
}
j += json5Whitespace(&z[j]);
op = JSONB_TEXT;
if( sqlite3JsonId1(z[j])
|| (z[j]=='\\' && jsonIs4HexB(&z[j+1], &op))
){
int k = j+1;
while( (sqlite3JsonId2(z[k]) && json5Whitespace(&z[k])==0)
|| (z[k]=='\\' && jsonIs4HexB(&z[k+1], &op))
){
k++;
}
assert( iBlob==pParse->nBlob );
jsonBlobAppendNode(pParse, op, k-j, &z[j]);
pParse->hasNonstd = 1;
x = k;
}else{
if( x!=-1 ) pParse->iErr = j;
return -1;
}
}
if( pParse->oom ) return -1;
t = pParse->aBlob[iBlob] & 0x0f;
if( t<JSONB_TEXT || t>JSONB_TEXTRAW ){
pParse->iErr = j;
return -1;
}
j = x;
if( z[j]==':' ){
j++;
}else{
if( jsonIsspace(z[j]) ){
/* strspn() is not helpful here */
do{ j++; }while( jsonIsspace(z[j]) );
if( z[j]==':' ){
j++;
goto parse_object_value;
}
}
x = jsonTranslateTextToBlob(pParse, j);
if( x!=(-5) ){
if( x!=(-1) ) pParse->iErr = j;
return -1;
}
j = pParse->iErr+1;
}
parse_object_value:
x = jsonTranslateTextToBlob(pParse, j);
if( x<=0 ){
if( x!=(-1) ) pParse->iErr = j;
return -1;
}
j = x;
if( z[j]==',' ){
continue;
}else if( z[j]=='}' ){
break;
}else{
if( jsonIsspace(z[j]) ){
j += 1 + (u32)strspn(&z[j+1], jsonSpaces);
if( z[j]==',' ){
continue;
}else if( z[j]=='}' ){
break;
}
}
x = jsonTranslateTextToBlob(pParse, j);
if( x==(-4) ){
j = pParse->iErr;
continue;
}
if( x==(-2) ){
j = pParse->iErr;
break;
}
}
pParse->iErr = j;
return -1;
}
jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart);
pParse->iDepth--;
return j+1;
}
case '[': {
/* Parse array */
iThis = pParse->nBlob;
assert( i<=(u32)pParse->nJson );
jsonBlobAppendNode(pParse, JSONB_ARRAY, pParse->nJson - i, 0);
iStart = pParse->nBlob;
if( pParse->oom ) return -1;
if( ++pParse->iDepth > JSON_MAX_DEPTH ){
pParse->iErr = i;
return -1;
}
for(j=i+1;;j++){
x = jsonTranslateTextToBlob(pParse, j);
if( x<=0 ){
if( x==(-3) ){
j = pParse->iErr;
if( pParse->nBlob!=iStart ) pParse->hasNonstd = 1;
break;
}
if( x!=(-1) ) pParse->iErr = j;
return -1;
}
j = x;
if( z[j]==',' ){
continue;
}else if( z[j]==']' ){
break;
}else{
if( jsonIsspace(z[j]) ){
j += 1 + (u32)strspn(&z[j+1], jsonSpaces);
if( z[j]==',' ){
continue;
}else if( z[j]==']' ){
break;
}
}
x = jsonTranslateTextToBlob(pParse, j);
if( x==(-4) ){
j = pParse->iErr;
continue;
}
if( x==(-3) ){
j = pParse->iErr;
break;
}
}
pParse->iErr = j;
return -1;
}
jsonBlobChangePayloadSize(pParse, iThis, pParse->nBlob - iStart);
pParse->iDepth--;
return j+1;
}
case '\'': {
u8 opcode;
char cDelim;
pParse->hasNonstd = 1;
opcode = JSONB_TEXT;
goto parse_string;
case '"':
/* Parse string */
opcode = JSONB_TEXT;
parse_string:
cDelim = z[i];
j = i+1;
while( 1 /*exit-by-break*/ ){
if( jsonIsOk[(u8)z[j]] ){
if( !jsonIsOk[(u8)z[j+1]] ){
j += 1;
}else if( !jsonIsOk[(u8)z[j+2]] ){
j += 2;
}else{
j += 3;
continue;
}
}
c = z[j];
if( c==cDelim ){
break;
}else if( c=='\\' ){
c = z[++j];
if( c=='"' || c=='\\' || c=='/' || c=='b' || c=='f'
|| c=='n' || c=='r' || c=='t'
|| (c=='u' && jsonIs4Hex(&z[j+1])) ){
if( opcode==JSONB_TEXT ) opcode = JSONB_TEXTJ;
}else if( c=='\'' || c=='0' || c=='v' || c=='\n'
|| (0xe2==(u8)c && 0x80==(u8)z[j+1]
&& (0xa8==(u8)z[j+2] || 0xa9==(u8)z[j+2]))
|| (c=='x' && jsonIs2Hex(&z[j+1])) ){
opcode = JSONB_TEXT5;
pParse->hasNonstd = 1;
}else if( c=='\r' ){
if( z[j+1]=='\n' ) j++;
opcode = JSONB_TEXT5;
pParse->hasNonstd = 1;
}else{
pParse->iErr = j;
return -1;
}
}else if( c<=0x1f ){
if( c==0 ){
pParse->iErr = j;
return -1;
}
/* Control characters are not allowed in canonical JSON string
** literals, but are allowed in JSON5 string literals. */
opcode = JSONB_TEXT5;
pParse->hasNonstd = 1;
}else if( c=='"' ){
opcode = JSONB_TEXT5;
}
j++;
}
jsonBlobAppendNode(pParse, opcode, j-1-i, &z[i+1]);
return j+1;
}
case 't': {
if( strncmp(z+i,"true",4)==0 && !sqlite3Isalnum(z[i+4]) ){
jsonBlobAppendOneByte(pParse, JSONB_TRUE);
return i+4;
}
pParse->iErr = i;
return -1;
}
case 'f': {
if( strncmp(z+i,"false",5)==0 && !sqlite3Isalnum(z[i+5]) ){
jsonBlobAppendOneByte(pParse, JSONB_FALSE);
return i+5;
}
pParse->iErr = i;
return -1;
}
case '+': {
u8 seenE;
pParse->hasNonstd = 1;
t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */
goto parse_number;
case '.':
if( sqlite3Isdigit(z[i+1]) ){
pParse->hasNonstd = 1;
t = 0x03; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */
seenE = 0;
goto parse_number_2;
}
pParse->iErr = i;
return -1;
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
/* Parse number */
t = 0x00; /* Bit 0x01: JSON5. Bit 0x02: FLOAT */
parse_number:
seenE = 0;
assert( '-' < '0' );
assert( '+' < '0' );
assert( '.' < '0' );
c = z[i];
if( c<='0' ){
if( c=='0' ){
if( (z[i+1]=='x' || z[i+1]=='X') && sqlite3Isxdigit(z[i+2]) ){
assert( t==0x00 );
pParse->hasNonstd = 1;
t = 0x01;
for(j=i+3; sqlite3Isxdigit(z[j]); j++){}
goto parse_number_finish;
}else if( sqlite3Isdigit(z[i+1]) ){
pParse->iErr = i+1;
return -1;
}
}else{
if( !sqlite3Isdigit(z[i+1]) ){
/* JSON5 allows for "+Infinity" and "-Infinity" using exactly
** that case. SQLite also allows these in any case and it allows
** "+inf" and "-inf". */
if( (z[i+1]=='I' || z[i+1]=='i')
&& sqlite3StrNICmp(&z[i+1], "inf",3)==0
){
pParse->hasNonstd = 1;
if( z[i]=='-' ){
jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999");
}else{
jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999");
}
return i + (sqlite3StrNICmp(&z[i+4],"inity",5)==0 ? 9 : 4);
}
if( z[i+1]=='.' ){
pParse->hasNonstd = 1;
t |= 0x01;
goto parse_number_2;
}
pParse->iErr = i;
return -1;
}
if( z[i+1]=='0' ){
if( sqlite3Isdigit(z[i+2]) ){
pParse->iErr = i+1;
return -1;
}else if( (z[i+2]=='x' || z[i+2]=='X') && sqlite3Isxdigit(z[i+3]) ){
pParse->hasNonstd = 1;
t |= 0x01;
for(j=i+4; sqlite3Isxdigit(z[j]); j++){}
goto parse_number_finish;
}
}
}
}
parse_number_2:
for(j=i+1;; j++){
c = z[j];
if( sqlite3Isdigit(c) ) continue;
if( c=='.' ){
if( (t & 0x02)!=0 ){
pParse->iErr = j;
return -1;
}
t |= 0x02;
continue;
}
if( c=='e' || c=='E' ){
if( z[j-1]<'0' ){
if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){
pParse->hasNonstd = 1;
t |= 0x01;
}else{
pParse->iErr = j;
return -1;
}
}
if( seenE ){
pParse->iErr = j;
return -1;
}
t |= 0x02;
seenE = 1;
c = z[j+1];
if( c=='+' || c=='-' ){
j++;
c = z[j+1];
}
if( c<'0' || c>'9' ){
pParse->iErr = j;
return -1;
}
continue;
}
break;
}
if( z[j-1]<'0' ){
if( ALWAYS(z[j-1]=='.') && ALWAYS(j-2>=i) && sqlite3Isdigit(z[j-2]) ){
pParse->hasNonstd = 1;
t |= 0x01;
}else{
pParse->iErr = j;
return -1;
}
}
parse_number_finish:
assert( JSONB_INT+0x01==JSONB_INT5 );
assert( JSONB_FLOAT+0x01==JSONB_FLOAT5 );
assert( JSONB_INT+0x02==JSONB_FLOAT );
if( z[i]=='+' ) i++;
jsonBlobAppendNode(pParse, JSONB_INT+t, j-i, &z[i]);
return j;
}
case '}': {
pParse->iErr = i;
return -2; /* End of {...} */
}
case ']': {
pParse->iErr = i;
return -3; /* End of [...] */
}
case ',': {
pParse->iErr = i;
return -4; /* List separator */
}
case ':': {
pParse->iErr = i;
return -5; /* Object label/value separator */
}
case 0: {
return 0; /* End of file */
}
case 0x09:
case 0x0a:
case 0x0d:
case 0x20: {
i += 1 + (u32)strspn(&z[i+1], jsonSpaces);
goto json_parse_restart;
}
case 0x0b:
case 0x0c:
case '/':
case 0xc2:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xef: {
j = json5Whitespace(&z[i]);
if( j>0 ){
i += j;
pParse->hasNonstd = 1;
goto json_parse_restart;
}
pParse->iErr = i;
return -1;
}
case 'n': {
if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){
jsonBlobAppendOneByte(pParse, JSONB_NULL);
return i+4;
}
/* fall-through into the default case that checks for NaN */
/* no break */ deliberate_fall_through
}
default: {
u32 k;
int nn;
c = z[i];
for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){
if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue;
nn = aNanInfName[k].n;
if( sqlite3StrNICmp(&z[i], aNanInfName[k].zMatch, nn)!=0 ){
continue;
}
if( sqlite3Isalnum(z[i+nn]) ) continue;
if( aNanInfName[k].eType==JSONB_FLOAT ){
jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999");
}else{
jsonBlobAppendOneByte(pParse, JSONB_NULL);
}
pParse->hasNonstd = 1;
return i + nn;
}
pParse->iErr = i;
return -1; /* Syntax error */
}
} /* End switch(z[i]) */
}
/*
** Parse a complete JSON string. Return 0 on success or non-zero if there
** are any errors. If an error occurs, free all memory held by pParse,
** but not pParse itself.
**
** pParse must be initialized to an empty parse object prior to calling
** this routine.
*/
static int jsonConvertTextToBlob(
JsonParse *pParse, /* Initialize and fill this JsonParse object */
sqlite3_context *pCtx /* Report errors here */
){
int i;
const char *zJson = pParse->zJson;
i = jsonTranslateTextToBlob(pParse, 0);
if( pParse->oom ) i = -1;
if( i>0 ){
#ifdef SQLITE_DEBUG
assert( pParse->iDepth==0 );
if( sqlite3Config.bJsonSelfcheck ){
assert( jsonbValidityCheck(pParse, 0, pParse->nBlob, 0)==0 );
}
#endif
while( jsonIsspace(zJson[i]) ) i++;
if( zJson[i] ){
i += json5Whitespace(&zJson[i]);
if( zJson[i] ){
if( pCtx ) sqlite3_result_error(pCtx, "malformed JSON", -1);
jsonParseReset(pParse);
return 1;
}
pParse->hasNonstd = 1;
}
}
if( i<=0 ){
if( pCtx!=0 ){
if( pParse->oom ){
sqlite3_result_error_nomem(pCtx);
}else{
sqlite3_result_error(pCtx, "malformed JSON", -1);
}
}
jsonParseReset(pParse);
return 1;
}
return 0;
}
/*
** The input string pStr is a well-formed JSON text string. Convert
** this into the JSONB format and make it the return value of the
** SQL function.
*/
static void jsonReturnStringAsBlob(JsonString *pStr){
JsonParse px;
memset(&px, 0, sizeof(px));
jsonStringTerminate(pStr);
if( pStr->eErr ){
sqlite3_result_error_nomem(pStr->pCtx);
return;
}
px.zJson = pStr->zBuf;
px.nJson = pStr->nUsed;
px.db = sqlite3_context_db_handle(pStr->pCtx);
(void)jsonTranslateTextToBlob(&px, 0);
if( px.oom ){
sqlite3DbFree(px.db, px.aBlob);
sqlite3_result_error_nomem(pStr->pCtx);
}else{
assert( px.nBlobAlloc>0 );
assert( !px.bReadOnly );
sqlite3_result_blob(pStr->pCtx, px.aBlob, px.nBlob, SQLITE_DYNAMIC);
}
}
/* The byte at index i is a node type-code. This routine
** determines the payload size for that node and writes that
** payload size in to *pSz. It returns the offset from i to the
** beginning of the payload. Return 0 on error.
*/
static u32 jsonbPayloadSize(const JsonParse *pParse, u32 i, u32 *pSz){
u8 x;
u32 sz;
u32 n;
if( NEVER(i>pParse->nBlob) ){
*pSz = 0;
return 0;
}
x = pParse->aBlob[i]>>4;
if( x<=11 ){
sz = x;
n = 1;
}else if( x==12 ){
if( i+1>=pParse->nBlob ){
*pSz = 0;
return 0;
}
sz = pParse->aBlob[i+1];
n = 2;
}else if( x==13 ){
if( i+2>=pParse->nBlob ){
*pSz = 0;
return 0;
}
sz = (pParse->aBlob[i+1]<<8) + pParse->aBlob[i+2];
n = 3;
}else if( x==14 ){
if( i+4>=pParse->nBlob ){
*pSz = 0;
return 0;
}
sz = ((u32)pParse->aBlob[i+1]<<24) + (pParse->aBlob[i+2]<<16) +
(pParse->aBlob[i+3]<<8) + pParse->aBlob[i+4];
n = 5;
}else{
if( i+8>=pParse->nBlob
|| pParse->aBlob[i+1]!=0
|| pParse->aBlob[i+2]!=0
|| pParse->aBlob[i+3]!=0
|| pParse->aBlob[i+4]!=0
){
*pSz = 0;
return 0;
}
sz = (pParse->aBlob[i+5]<<24) + (pParse->aBlob[i+6]<<16) +
(pParse->aBlob[i+7]<<8) + pParse->aBlob[i+8];
n = 9;
}
if( (i64)i+sz+n > pParse->nBlob
&& (i64)i+sz+n > pParse->nBlob-pParse->delta
){
sz = 0;
n = 0;
}
*pSz = sz;
return n;
}
/*
** Translate the binary JSONB representation of JSON beginning at
** pParse->aBlob[i] into a JSON text string. Append the JSON
** text onto the end of pOut. Return the index in pParse->aBlob[]
** of the first byte past the end of the element that is translated.
**
** If an error is detected in the BLOB input, the pOut->eErr flag
** might get set to JSTRING_MALFORMED. But not all BLOB input errors
** are detected. So a malformed JSONB input might either result
** in an error, or in incorrect JSON.
**
** The pOut->eErr JSTRING_OOM flag is set on a OOM.
*/
static u32 jsonTranslateBlobToText(
const JsonParse *pParse, /* the complete parse of the JSON */
u32 i, /* Start rendering at this index */
JsonString *pOut /* Write JSON here */
){
u32 sz, n, j, iEnd;
n = jsonbPayloadSize(pParse, i, &sz);
if( n==0 ){
pOut->eErr |= JSTRING_MALFORMED;
return pParse->nBlob+1;
}
switch( pParse->aBlob[i] & 0x0f ){
case JSONB_NULL: {
jsonAppendRawNZ(pOut, "null", 4);
return i+1;
}
case JSONB_TRUE: {
jsonAppendRawNZ(pOut, "true", 4);
return i+1;
}
case JSONB_FALSE: {
jsonAppendRawNZ(pOut, "false", 5);
return i+1;
}
case JSONB_INT:
case JSONB_FLOAT: {
if( sz==0 ) goto malformed_jsonb;
jsonAppendRaw(pOut, (const char*)&pParse->aBlob[i+n], sz);
break;
}
case JSONB_INT5: { /* Integer literal in hexadecimal notation */
u32 k = 2;
sqlite3_uint64 u = 0;
const char *zIn = (const char*)&pParse->aBlob[i+n];
int bOverflow = 0;
if( sz==0 ) goto malformed_jsonb;
if( zIn[0]=='-' ){
jsonAppendChar(pOut, '-');
k++;
}else if( zIn[0]=='+' ){
k++;
}
for(; k<sz; k++){
if( !sqlite3Isxdigit(zIn[k]) ){
pOut->eErr |= JSTRING_MALFORMED;
break;
}else if( (u>>60)!=0 ){
bOverflow = 1;
}else{
u = u*16 + sqlite3HexToInt(zIn[k]);
}
}
jsonPrintf(100,pOut,bOverflow?"9.0e999":"%llu", u);
break;
}
case JSONB_FLOAT5: { /* Float literal missing digits beside "." */
u32 k = 0;
const char *zIn = (const char*)&pParse->aBlob[i+n];
if( sz==0 ) goto malformed_jsonb;
if( zIn[0]=='-' ){
jsonAppendChar(pOut, '-');
k++;
}
if( zIn[k]=='.' ){
jsonAppendChar(pOut, '0');
}
for(; k<sz; k++){
jsonAppendChar(pOut, zIn[k]);
if( zIn[k]=='.' && (k+1==sz || !sqlite3Isdigit(zIn[k+1])) ){
jsonAppendChar(pOut, '0');
}
}
break;
}
case JSONB_TEXT:
case JSONB_TEXTJ: {
jsonAppendChar(pOut, '"');
jsonAppendRaw(pOut, (const char*)&pParse->aBlob[i+n], sz);
jsonAppendChar(pOut, '"');
break;
}
case JSONB_TEXT5: {
const char *zIn;
u32 k;
u32 sz2 = sz;
zIn = (const char*)&pParse->aBlob[i+n];
jsonAppendChar(pOut, '"');
while( sz2>0 ){
for(k=0; k<sz2 && (jsonIsOk[(u8)zIn[k]] || zIn[k]=='\''); k++){}
if( k>0 ){
jsonAppendRawNZ(pOut, zIn, k);
if( k>=sz2 ){
break;
}
zIn += k;
sz2 -= k;
}
if( zIn[0]=='"' ){
jsonAppendRawNZ(pOut, "\\\"", 2);
zIn++;
sz2--;
continue;
}
if( zIn[0]<=0x1f ){
if( pOut->nUsed+7>pOut->nAlloc && jsonStringGrow(pOut,7) ) break;
jsonAppendControlChar(pOut, zIn[0]);
zIn++;
sz2--;
continue;
}
assert( zIn[0]=='\\' );
assert( sz2>=1 );
if( sz2<2 ){
pOut->eErr |= JSTRING_MALFORMED;
break;
}
switch( (u8)zIn[1] ){
case '\'':
jsonAppendChar(pOut, '\'');
break;
case 'v':
jsonAppendRawNZ(pOut, "\\u0009", 6);
break;
case 'x':
if( sz2<4 ){
pOut->eErr |= JSTRING_MALFORMED;
sz2 = 2;
break;
}
jsonAppendRawNZ(pOut, "\\u00", 4);
jsonAppendRawNZ(pOut, &zIn[2], 2);
zIn += 2;
sz2 -= 2;
break;
case '0':
jsonAppendRawNZ(pOut, "\\u0000", 6);
break;
case '\r':
if( sz2>2 && zIn[2]=='\n' ){
zIn++;
sz2--;
}
break;
case '\n':
break;
case 0xe2:
/* '\' followed by either U+2028 or U+2029 is ignored as
** whitespace. Not that in UTF8, U+2028 is 0xe2 0x80 0x29.
** U+2029 is the same except for the last byte */
if( sz2<4
|| 0x80!=(u8)zIn[2]
|| (0xa8!=(u8)zIn[3] && 0xa9!=(u8)zIn[3])
){
pOut->eErr |= JSTRING_MALFORMED;
sz2 = 2;
break;
}
zIn += 2;
sz2 -= 2;
break;
default:
jsonAppendRawNZ(pOut, zIn, 2);
break;
}
assert( sz2>=2 );
zIn += 2;
sz2 -= 2;
}
jsonAppendChar(pOut, '"');
break;
}
case JSONB_TEXTRAW: {
jsonAppendString(pOut, (const char*)&pParse->aBlob[i+n], sz);
break;
}
case JSONB_ARRAY: {
jsonAppendChar(pOut, '[');
j = i+n;
iEnd = j+sz;
while( j<iEnd && pOut->eErr==0 ){
j = jsonTranslateBlobToText(pParse, j, pOut);
jsonAppendChar(pOut, ',');
}
if( j>iEnd ) pOut->eErr |= JSTRING_MALFORMED;
if( sz>0 ) jsonStringTrimOneChar(pOut);
jsonAppendChar(pOut, ']');
break;
}
case JSONB_OBJECT: {
int x = 0;
jsonAppendChar(pOut, '{');
j = i+n;
iEnd = j+sz;
while( j<iEnd && pOut->eErr==0 ){
j = jsonTranslateBlobToText(pParse, j, pOut);
jsonAppendChar(pOut, (x++ & 1) ? ',' : ':');
}
if( (x & 1)!=0 || j>iEnd ) pOut->eErr |= JSTRING_MALFORMED;
if( sz>0 ) jsonStringTrimOneChar(pOut);
jsonAppendChar(pOut, '}');
break;
}
default: {
malformed_jsonb:
pOut->eErr |= JSTRING_MALFORMED;
break;
}
}
return i+n+sz;
}
/* Context for recursion of json_pretty()
*/
typedef struct JsonPretty JsonPretty;
struct JsonPretty {
JsonParse *pParse; /* The BLOB being rendered */
JsonString *pOut; /* Generate pretty output into this string */
const char *zIndent; /* Use this text for indentation */
u32 szIndent; /* Bytes in zIndent[] */
u32 nIndent; /* Current level of indentation */
};
/* Append indentation to the pretty JSON under construction */
static void jsonPrettyIndent(JsonPretty *pPretty){
u32 jj;
for(jj=0; jj<pPretty->nIndent; jj++){
jsonAppendRaw(pPretty->pOut, pPretty->zIndent, pPretty->szIndent);
}
}
/*
** Translate the binary JSONB representation of JSON beginning at
** pParse->aBlob[i] into a JSON text string. Append the JSON
** text onto the end of pOut. Return the index in pParse->aBlob[]
** of the first byte past the end of the element that is translated.
**
** This is a variant of jsonTranslateBlobToText() that "pretty-prints"
** the output. Extra whitespace is inserted to make the JSON easier
** for humans to read.
**
** If an error is detected in the BLOB input, the pOut->eErr flag
** might get set to JSTRING_MALFORMED. But not all BLOB input errors
** are detected. So a malformed JSONB input might either result
** in an error, or in incorrect JSON.
**
** The pOut->eErr JSTRING_OOM flag is set on a OOM.
*/
static u32 jsonTranslateBlobToPrettyText(
JsonPretty *pPretty, /* Pretty-printing context */
u32 i /* Start rendering at this index */
){
u32 sz, n, j, iEnd;
const JsonParse *pParse = pPretty->pParse;
JsonString *pOut = pPretty->pOut;
n = jsonbPayloadSize(pParse, i, &sz);
if( n==0 ){
pOut->eErr |= JSTRING_MALFORMED;
return pParse->nBlob+1;
}
switch( pParse->aBlob[i] & 0x0f ){
case JSONB_ARRAY: {
j = i+n;
iEnd = j+sz;
jsonAppendChar(pOut, '[');
if( j<iEnd ){
jsonAppendChar(pOut, '\n');
pPretty->nIndent++;
while( pOut->eErr==0 ){
jsonPrettyIndent(pPretty);
j = jsonTranslateBlobToPrettyText(pPretty, j);
if( j>=iEnd ) break;
jsonAppendRawNZ(pOut, ",\n", 2);
}
jsonAppendChar(pOut, '\n');
pPretty->nIndent--;
jsonPrettyIndent(pPretty);
}
jsonAppendChar(pOut, ']');
i = iEnd;
break;
}
case JSONB_OBJECT: {
j = i+n;
iEnd = j+sz;
jsonAppendChar(pOut, '{');
if( j<iEnd ){
jsonAppendChar(pOut, '\n');
pPretty->nIndent++;
while( pOut->eErr==0 ){
jsonPrettyIndent(pPretty);
j = jsonTranslateBlobToText(pParse, j, pOut);
if( j>iEnd ){
pOut->eErr |= JSTRING_MALFORMED;
break;
}
jsonAppendRawNZ(pOut, ": ", 2);
j = jsonTranslateBlobToPrettyText(pPretty, j);
if( j>=iEnd ) break;
jsonAppendRawNZ(pOut, ",\n", 2);
}
jsonAppendChar(pOut, '\n');
pPretty->nIndent--;
jsonPrettyIndent(pPretty);
}
jsonAppendChar(pOut, '}');
i = iEnd;
break;
}
default: {
i = jsonTranslateBlobToText(pParse, i, pOut);
break;
}
}
return i;
}
/* Return true if the input pJson
**
** For performance reasons, this routine does not do a detailed check of the
** input BLOB to ensure that it is well-formed. Hence, false positives are
** possible. False negatives should never occur, however.
*/
static int jsonFuncArgMightBeBinary(sqlite3_value *pJson){
u32 sz, n;
const u8 *aBlob;
int nBlob;
JsonParse s;
if( sqlite3_value_type(pJson)!=SQLITE_BLOB ) return 0;
aBlob = sqlite3_value_blob(pJson);
nBlob = sqlite3_value_bytes(pJson);
if( nBlob<1 ) return 0;
if( NEVER(aBlob==0) || (aBlob[0] & 0x0f)>JSONB_OBJECT ) return 0;
memset(&s, 0, sizeof(s));
s.aBlob = (u8*)aBlob;
s.nBlob = nBlob;
n = jsonbPayloadSize(&s, 0, &sz);
if( n==0 ) return 0;
if( sz+n!=(u32)nBlob ) return 0;
if( (aBlob[0] & 0x0f)<=JSONB_FALSE && sz>0 ) return 0;
return sz+n==(u32)nBlob;
}
/*
** Given that a JSONB_ARRAY object starts at offset i, return
** the number of entries in that array.
*/
static u32 jsonbArrayCount(JsonParse *pParse, u32 iRoot){
u32 n, sz, i, iEnd;
u32 k = 0;
n = jsonbPayloadSize(pParse, iRoot, &sz);
iEnd = iRoot+n+sz;
for(i=iRoot+n; n>0 && i<iEnd; i+=sz+n, k++){
n = jsonbPayloadSize(pParse, i, &sz);
}
return k;
}
/*
** Edit the payload size of the element at iRoot by the amount in
** pParse->delta.
*/
static void jsonAfterEditSizeAdjust(JsonParse *pParse, u32 iRoot){
u32 sz = 0;
u32 nBlob;
assert( pParse->delta!=0 );
assert( pParse->nBlobAlloc >= pParse->nBlob );
nBlob = pParse->nBlob;
pParse->nBlob = pParse->nBlobAlloc;
(void)jsonbPayloadSize(pParse, iRoot, &sz);
pParse->nBlob = nBlob;
sz += pParse->delta;
pParse->delta += jsonBlobChangePayloadSize(pParse, iRoot, sz);
}
/*
** Modify the JSONB blob at pParse->aBlob by removing nDel bytes of
** content beginning at iDel, and replacing them with nIns bytes of
** content given by aIns.
**
** nDel may be zero, in which case no bytes are removed. But iDel is
** still important as new bytes will be insert beginning at iDel.
**
** aIns may be zero, in which case space is created to hold nIns bytes
** beginning at iDel, but that space is uninitialized.
**
** Set pParse->oom if an OOM occurs.
*/
static void jsonBlobEdit(
JsonParse *pParse, /* The JSONB to be modified is in pParse->aBlob */
u32 iDel, /* First byte to be removed */
u32 nDel, /* Number of bytes to remove */
const u8 *aIns, /* Content to insert */
u32 nIns /* Bytes of content to insert */
){
i64 d = (i64)nIns - (i64)nDel;
if( d!=0 ){
if( pParse->nBlob + d > pParse->nBlobAlloc ){
jsonBlobExpand(pParse, pParse->nBlob+d);
if( pParse->oom ) return;
}
memmove(&pParse->aBlob[iDel+nIns],
&pParse->aBlob[iDel+nDel],
pParse->nBlob - (iDel+nDel));
pParse->nBlob += d;
pParse->delta += d;
}
if( nIns && aIns ) memcpy(&pParse->aBlob[iDel], aIns, nIns);
}
/*
** Return the number of escaped newlines to be ignored.
** An escaped newline is a one of the following byte sequences:
**
** 0x5c 0x0a
** 0x5c 0x0d
** 0x5c 0x0d 0x0a
** 0x5c 0xe2 0x80 0xa8
** 0x5c 0xe2 0x80 0xa9
*/
static u32 jsonBytesToBypass(const char *z, u32 n){
u32 i = 0;
while( i+1<n ){
if( z[i]!='\\' ) return i;
if( z[i+1]=='\n' ){
i += 2;
continue;
}
if( z[i+1]=='\r' ){
if( i+2<n && z[i+2]=='\n' ){
i += 3;
}else{
i += 2;
}
continue;
}
if( 0xe2==(u8)z[i+1]
&& i+3<n
&& 0x80==(u8)z[i+2]
&& (0xa8==(u8)z[i+3] || 0xa9==(u8)z[i+3])
){
i += 4;
continue;
}
break;
}
return i;
}
/*
** Input z[0..n] defines JSON escape sequence including the leading '\\'.
** Decode that escape sequence into a single character. Write that
** character into *piOut. Return the number of bytes in the escape sequence.
**
** If there is a syntax error of some kind (for example too few characters
** after the '\\' to complete the encoding) then *piOut is set to
** JSON_INVALID_CHAR.
*/
static u32 jsonUnescapeOneChar(const char *z, u32 n, u32 *piOut){
assert( n>0 );
assert( z[0]=='\\' );
if( n<2 ){
*piOut = JSON_INVALID_CHAR;
return n;
}
switch( (u8)z[1] ){
case 'u': {
u32 v, vlo;
if( n<6 ){
*piOut = JSON_INVALID_CHAR;
return n;
}
v = jsonHexToInt4(&z[2]);
if( (v & 0xfc00)==0xd800
&& n>=12
&& z[6]=='\\'
&& z[7]=='u'
&& ((vlo = jsonHexToInt4(&z[8]))&0xfc00)==0xdc00
){
*piOut = ((v&0x3ff)<<10) + (vlo&0x3ff) + 0x10000;
return 12;
}else{
*piOut = v;
return 6;
}
}
case 'b': { *piOut = '\b'; return 2; }
case 'f': { *piOut = '\f'; return 2; }
case 'n': { *piOut = '\n'; return 2; }
case 'r': { *piOut = '\r'; return 2; }
case 't': { *piOut = '\t'; return 2; }
case 'v': { *piOut = '\v'; return 2; }
case '0': { *piOut = 0; return 2; }
case '\'':
case '"':
case '/':
case '\\':{ *piOut = z[1]; return 2; }
case 'x': {
if( n<4 ){
*piOut = JSON_INVALID_CHAR;
return n;
}
*piOut = (jsonHexToInt(z[2])<<4) | jsonHexToInt(z[3]);
return 4;
}
case 0xe2:
case '\r':
case '\n': {
u32 nSkip = jsonBytesToBypass(z, n);
if( nSkip==0 ){
*piOut = JSON_INVALID_CHAR;
return n;
}else if( nSkip==n ){
*piOut = 0;
return n;
}else if( z[nSkip]=='\\' ){
return nSkip + jsonUnescapeOneChar(&z[nSkip], n-nSkip, piOut);
}else{
int sz = sqlite3Utf8ReadLimited((u8*)&z[nSkip], n-nSkip, piOut);
return nSkip + sz;
}
}
default: {
*piOut = JSON_INVALID_CHAR;
return 2;
}
}
}
/*
** Compare two object labels. Return 1 if they are equal and
** 0 if they differ.
**
** In this version, we know that one or the other or both of the
** two comparands contains an escape sequence.
*/
static SQLITE_NOINLINE int jsonLabelCompareEscaped(
const char *zLeft, /* The left label */
u32 nLeft, /* Size of the left label in bytes */
int rawLeft, /* True if zLeft contains no escapes */
const char *zRight, /* The right label */
u32 nRight, /* Size of the right label in bytes */
int rawRight /* True if zRight is escape-free */
){
u32 cLeft, cRight;
assert( rawLeft==0 || rawRight==0 );
while( 1 /*exit-by-return*/ ){
if( nLeft==0 ){
cLeft = 0;
}else if( rawLeft || zLeft[0]!='\\' ){
cLeft = ((u8*)zLeft)[0];
if( cLeft>=0xc0 ){
int sz = sqlite3Utf8ReadLimited((u8*)zLeft, nLeft, &cLeft);
zLeft += sz;
nLeft -= sz;
}else{
zLeft++;
nLeft--;
}
}else{
u32 n = jsonUnescapeOneChar(zLeft, nLeft, &cLeft);
zLeft += n;
assert( n<=nLeft );
nLeft -= n;
}
if( nRight==0 ){
cRight = 0;
}else if( rawRight || zRight[0]!='\\' ){
cRight = ((u8*)zRight)[0];
if( cRight>=0xc0 ){
int sz = sqlite3Utf8ReadLimited((u8*)zRight, nRight, &cRight);
zRight += sz;
nRight -= sz;
}else{
zRight++;
nRight--;
}
}else{
u32 n = jsonUnescapeOneChar(zRight, nRight, &cRight);
zRight += n;
assert( n<=nRight );
nRight -= n;
}
if( cLeft!=cRight ) return 0;
if( cLeft==0 ) return 1;
}
}
/*
** Compare two object labels. Return 1 if they are equal and
** 0 if they differ. Return -1 if an OOM occurs.
*/
static int jsonLabelCompare(
const char *zLeft, /* The left label */
u32 nLeft, /* Size of the left label in bytes */
int rawLeft, /* True if zLeft contains no escapes */
const char *zRight, /* The right label */
u32 nRight, /* Size of the right label in bytes */
int rawRight /* True if zRight is escape-free */
){
if( rawLeft && rawRight ){
/* Simpliest case: Neither label contains escapes. A simple
** memcmp() is sufficient. */
if( nLeft!=nRight ) return 0;
return memcmp(zLeft, zRight, nLeft)==0;
}else{
return jsonLabelCompareEscaped(zLeft, nLeft, rawLeft,
zRight, nRight, rawRight);
}
}
/*
** Error returns from jsonLookupStep()
*/
#define JSON_LOOKUP_ERROR 0xffffffff
#define JSON_LOOKUP_NOTFOUND 0xfffffffe
#define JSON_LOOKUP_PATHERROR 0xfffffffd
#define JSON_LOOKUP_ISERROR(x) ((x)>=JSON_LOOKUP_PATHERROR)
/* Forward declaration */
static u32 jsonLookupStep(JsonParse*,u32,const char*,u32);
/* This helper routine for jsonLookupStep() populates pIns with
** binary data that is to be inserted into pParse.
**
** In the common case, pIns just points to pParse->aIns and pParse->nIns.
** But if the zPath of the original edit operation includes path elements
** that go deeper, additional substructure must be created.
**
** For example:
**
** json_insert('{}', '$.a.b.c', 123);
**
** The search stops at '$.a' But additional substructure must be
** created for the ".b.c" part of the patch so that the final result
** is: {"a":{"b":{"c"::123}}}. This routine populates pIns with
** the binary equivalent of {"b":{"c":123}} so that it can be inserted.
**
** The caller is responsible for resetting pIns when it has finished
** using the substructure.
*/
static u32 jsonCreateEditSubstructure(
JsonParse *pParse, /* The original JSONB that is being edited */
JsonParse *pIns, /* Populate this with the blob data to insert */
const char *zTail /* Tail of the path that determins substructure */
){
static const u8 emptyObject[] = { JSONB_ARRAY, JSONB_OBJECT };
int rc;
memset(pIns, 0, sizeof(*pIns));
pIns->db = pParse->db;
if( zTail[0]==0 ){
/* No substructure. Just insert what is given in pParse. */
pIns->aBlob = pParse->aIns;
pIns->nBlob = pParse->nIns;
rc = 0;
}else{
/* Construct the binary substructure */
pIns->nBlob = 1;
pIns->aBlob = (u8*)&emptyObject[zTail[0]=='.'];
pIns->eEdit = pParse->eEdit;
pIns->nIns = pParse->nIns;
pIns->aIns = pParse->aIns;
rc = jsonLookupStep(pIns, 0, zTail, 0);
pParse->oom |= pIns->oom;
}
return rc; /* Error code only */
}
/*
** Search along zPath to find the Json element specified. Return an
** index into pParse->aBlob[] for the start of that element's value.
**
** If the value found by this routine is the value half of label/value pair
** within an object, then set pPath->iLabel to the start of the corresponding
** label, before returning.
**
** Return one of the JSON_LOOKUP error codes if problems are seen.
**
** This routine will also modify the blob. If pParse->eEdit is one of
** JEDIT_DEL, JEDIT_REPL, JEDIT_INS, or JEDIT_SET, then changes might be
** made to the selected value. If an edit is performed, then the return
** value does not necessarily point to the select element. If an edit
** is performed, the return value is only useful for detecting error
** conditions.
*/
static u32 jsonLookupStep(
JsonParse *pParse, /* The JSON to search */
u32 iRoot, /* Begin the search at this element of aBlob[] */
const char *zPath, /* The path to search */
u32 iLabel /* Label if iRoot is a value of in an object */
){
u32 i, j, k, nKey, sz, n, iEnd, rc;
const char *zKey;
u8 x;
if( zPath[0]==0 ){
if( pParse->eEdit && jsonBlobMakeEditable(pParse, pParse->nIns) ){
n = jsonbPayloadSize(pParse, iRoot, &sz);
sz += n;
if( pParse->eEdit==JEDIT_DEL ){
if( iLabel>0 ){
sz += iRoot - iLabel;
iRoot = iLabel;
}
jsonBlobEdit(pParse, iRoot, sz, 0, 0);
}else if( pParse->eEdit==JEDIT_INS ){
/* Already exists, so json_insert() is a no-op */
}else{
/* json_set() or json_replace() */
jsonBlobEdit(pParse, iRoot, sz, pParse->aIns, pParse->nIns);
}
}
pParse->iLabel = iLabel;
return iRoot;
}
if( zPath[0]=='.' ){
int rawKey = 1;
x = pParse->aBlob[iRoot];
zPath++;
if( zPath[0]=='"' ){
zKey = zPath + 1;
for(i=1; zPath[i] && zPath[i]!='"'; i++){
if( zPath[i]=='\\' && zPath[i+1]!=0 ) i++;
}
nKey = i-1;
if( zPath[i] ){
i++;
}else{
return JSON_LOOKUP_PATHERROR;
}
testcase( nKey==0 );
rawKey = memchr(zKey, '\\', nKey)==0;
}else{
zKey = zPath;
for(i=0; zPath[i] && zPath[i]!='.' && zPath[i]!='['; i++){}
nKey = i;
if( nKey==0 ){
return JSON_LOOKUP_PATHERROR;
}
}
if( (x & 0x0f)!=JSONB_OBJECT ) return JSON_LOOKUP_NOTFOUND;
n = jsonbPayloadSize(pParse, iRoot, &sz);
j = iRoot + n; /* j is the index of a label */
iEnd = j+sz;
while( j<iEnd ){
int rawLabel;
const char *zLabel;
x = pParse->aBlob[j] & 0x0f;
if( x<JSONB_TEXT || x>JSONB_TEXTRAW ) return JSON_LOOKUP_ERROR;
n = jsonbPayloadSize(pParse, j, &sz);
if( n==0 ) return JSON_LOOKUP_ERROR;
k = j+n; /* k is the index of the label text */
if( k+sz>=iEnd ) return JSON_LOOKUP_ERROR;
zLabel = (const char*)&pParse->aBlob[k];
rawLabel = x==JSONB_TEXT || x==JSONB_TEXTRAW;
if( jsonLabelCompare(zKey, nKey, rawKey, zLabel, sz, rawLabel) ){
u32 v = k+sz; /* v is the index of the value */
if( ((pParse->aBlob[v])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR;
n = jsonbPayloadSize(pParse, v, &sz);
if( n==0 || v+n+sz>iEnd ) return JSON_LOOKUP_ERROR;
assert( j>0 );
rc = jsonLookupStep(pParse, v, &zPath[i], j);
if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot);
return rc;
}
j = k+sz;
if( ((pParse->aBlob[j])&0x0f)>JSONB_OBJECT ) return JSON_LOOKUP_ERROR;
n = jsonbPayloadSize(pParse, j, &sz);
if( n==0 ) return JSON_LOOKUP_ERROR;
j += n+sz;
}
if( j>iEnd ) return JSON_LOOKUP_ERROR;
if( pParse->eEdit>=JEDIT_INS ){
u32 nIns; /* Total bytes to insert (label+value) */
JsonParse v; /* BLOB encoding of the value to be inserted */
JsonParse ix; /* Header of the label to be inserted */
testcase( pParse->eEdit==JEDIT_INS );
testcase( pParse->eEdit==JEDIT_SET );
memset(&ix, 0, sizeof(ix));
ix.db = pParse->db;
jsonBlobAppendNode(&ix, rawKey?JSONB_TEXTRAW:JSONB_TEXT5, nKey, 0);
pParse->oom |= ix.oom;
rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i]);
if( !JSON_LOOKUP_ISERROR(rc)
&& jsonBlobMakeEditable(pParse, ix.nBlob+nKey+v.nBlob)
){
assert( !pParse->oom );
nIns = ix.nBlob + nKey + v.nBlob;
jsonBlobEdit(pParse, j, 0, 0, nIns);
if( !pParse->oom ){
assert( pParse->aBlob!=0 ); /* Because pParse->oom!=0 */
assert( ix.aBlob!=0 ); /* Because pPasre->oom!=0 */
memcpy(&pParse->aBlob[j], ix.aBlob, ix.nBlob);
k = j + ix.nBlob;
memcpy(&pParse->aBlob[k], zKey, nKey);
k += nKey;
memcpy(&pParse->aBlob[k], v.aBlob, v.nBlob);
if( ALWAYS(pParse->delta) ) jsonAfterEditSizeAdjust(pParse, iRoot);
}
}
jsonParseReset(&v);
jsonParseReset(&ix);
return rc;
}
}else if( zPath[0]=='[' ){
x = pParse->aBlob[iRoot] & 0x0f;
if( x!=JSONB_ARRAY ) return JSON_LOOKUP_NOTFOUND;
n = jsonbPayloadSize(pParse, iRoot, &sz);
k = 0;
i = 1;
while( sqlite3Isdigit(zPath[i]) ){
k = k*10 + zPath[i] - '0';
i++;
}
if( i<2 || zPath[i]!=']' ){
if( zPath[1]=='#' ){
k = jsonbArrayCount(pParse, iRoot);
i = 2;
if( zPath[2]=='-' && sqlite3Isdigit(zPath[3]) ){
unsigned int nn = 0;
i = 3;
do{
nn = nn*10 + zPath[i] - '0';
i++;
}while( sqlite3Isdigit(zPath[i]) );
if( nn>k ) return JSON_LOOKUP_NOTFOUND;
k -= nn;
}
if( zPath[i]!=']' ){
return JSON_LOOKUP_PATHERROR;
}
}else{
return JSON_LOOKUP_PATHERROR;
}
}
j = iRoot+n;
iEnd = j+sz;
while( j<iEnd ){
if( k==0 ){
rc = jsonLookupStep(pParse, j, &zPath[i+1], 0);
if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot);
return rc;
}
k--;
n = jsonbPayloadSize(pParse, j, &sz);
if( n==0 ) return JSON_LOOKUP_ERROR;
j += n+sz;
}
if( j>iEnd ) return JSON_LOOKUP_ERROR;
if( k>0 ) return JSON_LOOKUP_NOTFOUND;
if( pParse->eEdit>=JEDIT_INS ){
JsonParse v;
testcase( pParse->eEdit==JEDIT_INS );
testcase( pParse->eEdit==JEDIT_SET );
rc = jsonCreateEditSubstructure(pParse, &v, &zPath[i+1]);
if( !JSON_LOOKUP_ISERROR(rc)
&& jsonBlobMakeEditable(pParse, v.nBlob)
){
assert( !pParse->oom );
jsonBlobEdit(pParse, j, 0, v.aBlob, v.nBlob);
}
jsonParseReset(&v);
if( pParse->delta ) jsonAfterEditSizeAdjust(pParse, iRoot);
return rc;
}
}else{
return JSON_LOOKUP_PATHERROR;
}
return JSON_LOOKUP_NOTFOUND;
}
/*
** Convert a JSON BLOB into text and make that text the return value
** of an SQL function.
*/
static void jsonReturnTextJsonFromBlob(
sqlite3_context *ctx,
const u8 *aBlob,
u32 nBlob
){
JsonParse x;
JsonString s;
if( NEVER(aBlob==0) ) return;
memset(&x, 0, sizeof(x));
x.aBlob = (u8*)aBlob;
x.nBlob = nBlob;
jsonStringInit(&s, ctx);
jsonTranslateBlobToText(&x, 0, &s);
jsonReturnString(&s, 0, 0);
}
/*
** Return the value of the BLOB node at index i.
**
** If the value is a primitive, return it as an SQL value.
** If the value is an array or object, return it as either
** JSON text or the BLOB encoding, depending on the JSON_B flag
** on the userdata.
*/
static void jsonReturnFromBlob(
JsonParse *pParse, /* Complete JSON parse tree */
u32 i, /* Index of the node */
sqlite3_context *pCtx, /* Return value for this function */
int textOnly /* return text JSON. Disregard user-data */
){
u32 n, sz;
int rc;
sqlite3 *db = sqlite3_context_db_handle(pCtx);
n = jsonbPayloadSize(pParse, i, &sz);
if( n==0 ){
sqlite3_result_error(pCtx, "malformed JSON", -1);
return;
}
switch( pParse->aBlob[i] & 0x0f ){
case JSONB_NULL: {
if( sz ) goto returnfromblob_malformed;
sqlite3_result_null(pCtx);
break;
}
case JSONB_TRUE: {
if( sz ) goto returnfromblob_malformed;
sqlite3_result_int(pCtx, 1);
break;
}
case JSONB_FALSE: {
if( sz ) goto returnfromblob_malformed;
sqlite3_result_int(pCtx, 0);
break;
}
case JSONB_INT5:
case JSONB_INT: {
sqlite3_int64 iRes = 0;
char *z;
int bNeg = 0;
char x;
if( sz==0 ) goto returnfromblob_malformed;
x = (char)pParse->aBlob[i+n];
if( x=='-' ){
if( sz<2 ) goto returnfromblob_malformed;
n++;
sz--;
bNeg = 1;
}
z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz);
if( z==0 ) goto returnfromblob_oom;
rc = sqlite3DecOrHexToI64(z, &iRes);
sqlite3DbFree(db, z);
if( rc==0 ){
sqlite3_result_int64(pCtx, bNeg ? -iRes : iRes);
}else if( rc==3 && bNeg ){
sqlite3_result_int64(pCtx, SMALLEST_INT64);
}else if( rc==1 ){
goto returnfromblob_malformed;
}else{
if( bNeg ){ n--; sz++; }
goto to_double;
}
break;
}
case JSONB_FLOAT5:
case JSONB_FLOAT: {
double r;
char *z;
if( sz==0 ) goto returnfromblob_malformed;
to_double:
z = sqlite3DbStrNDup(db, (const char*)&pParse->aBlob[i+n], (int)sz);
if( z==0 ) goto returnfromblob_oom;
rc = sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8);
sqlite3DbFree(db, z);
if( rc<=0 ) goto returnfromblob_malformed;
sqlite3_result_double(pCtx, r);
break;
}
case JSONB_TEXTRAW:
case JSONB_TEXT: {
sqlite3_result_text(pCtx, (char*)&pParse->aBlob[i+n], sz,
SQLITE_TRANSIENT);
break;
}
case JSONB_TEXT5:
case JSONB_TEXTJ: {
/* Translate JSON formatted string into raw text */
u32 iIn, iOut;
const char *z;
char *zOut;
u32 nOut = sz;
z = (const char*)&pParse->aBlob[i+n];
zOut = sqlite3DbMallocRaw(db, nOut+1);
if( zOut==0 ) goto returnfromblob_oom;
for(iIn=iOut=0; iIn<sz; iIn++){
char c = z[iIn];
if( c=='\\' ){
u32 v;
u32 szEscape = jsonUnescapeOneChar(&z[iIn], sz-iIn, &v);
if( v<=0x7f ){
zOut[iOut++] = (char)v;
}else if( v<=0x7ff ){
assert( szEscape>=2 );
zOut[iOut++] = (char)(0xc0 | (v>>6));
zOut[iOut++] = 0x80 | (v&0x3f);
}else if( v<0x10000 ){
assert( szEscape>=3 );
zOut[iOut++] = 0xe0 | (v>>12);
zOut[iOut++] = 0x80 | ((v>>6)&0x3f);
zOut[iOut++] = 0x80 | (v&0x3f);
}else if( v==JSON_INVALID_CHAR ){
/* Silently ignore illegal unicode */
}else{
assert( szEscape>=4 );
zOut[iOut++] = 0xf0 | (v>>18);
zOut[iOut++] = 0x80 | ((v>>12)&0x3f);
zOut[iOut++] = 0x80 | ((v>>6)&0x3f);
zOut[iOut++] = 0x80 | (v&0x3f);
}
iIn += szEscape - 1;
}else{
zOut[iOut++] = c;
}
} /* end for() */
assert( iOut<=nOut );
zOut[iOut] = 0;
sqlite3_result_text(pCtx, zOut, iOut, SQLITE_DYNAMIC);
break;
}
case JSONB_ARRAY:
case JSONB_OBJECT: {
int flags = textOnly ? 0 : SQLITE_PTR_TO_INT(sqlite3_user_data(pCtx));
if( flags & JSON_BLOB ){
sqlite3_result_blob(pCtx, &pParse->aBlob[i], sz+n, SQLITE_TRANSIENT);
}else{
jsonReturnTextJsonFromBlob(pCtx, &pParse->aBlob[i], sz+n);
}
break;
}
default: {
goto returnfromblob_malformed;
}
}
return;
returnfromblob_oom:
sqlite3_result_error_nomem(pCtx);
return;
returnfromblob_malformed:
sqlite3_result_error(pCtx, "malformed JSON", -1);
return;
}
/*
** pArg is a function argument that might be an SQL value or a JSON
** value. Figure out what it is and encode it as a JSONB blob.
** Return the results in pParse.
**
** pParse is uninitialized upon entry. This routine will handle the
** initialization of pParse. The result will be contained in
** pParse->aBlob and pParse->nBlob. pParse->aBlob might be dynamically
** allocated (if pParse->nBlobAlloc is greater than zero) in which case
** the caller is responsible for freeing the space allocated to pParse->aBlob
** when it has finished with it. Or pParse->aBlob might be a static string
** or a value obtained from sqlite3_value_blob(pArg).
**
** If the argument is a BLOB that is clearly not a JSONB, then this
** function might set an error message in ctx and return non-zero.
** It might also set an error message and return non-zero on an OOM error.
*/
static int jsonFunctionArgToBlob(
sqlite3_context *ctx,
sqlite3_value *pArg,
JsonParse *pParse
){
int eType = sqlite3_value_type(pArg);
static u8 aNull[] = { 0x00 };
memset(pParse, 0, sizeof(pParse[0]));
pParse->db = sqlite3_context_db_handle(ctx);
switch( eType ){
default: {
pParse->aBlob = aNull;
pParse->nBlob = 1;
return 0;
}
case SQLITE_BLOB: {
if( jsonFuncArgMightBeBinary(pArg) ){
pParse->aBlob = (u8*)sqlite3_value_blob(pArg);
pParse->nBlob = sqlite3_value_bytes(pArg);
}else{
sqlite3_result_error(ctx, "JSON cannot hold BLOB values", -1);
return 1;
}
break;
}
case SQLITE_TEXT: {
const char *zJson = (const char*)sqlite3_value_text(pArg);
int nJson = sqlite3_value_bytes(pArg);
if( zJson==0 ) return 1;
if( sqlite3_value_subtype(pArg)==JSON_SUBTYPE ){
pParse->zJson = (char*)zJson;
pParse->nJson = nJson;
if( jsonConvertTextToBlob(pParse, ctx) ){
sqlite3_result_error(ctx, "malformed JSON", -1);
sqlite3DbFree(pParse->db, pParse->aBlob);
memset(pParse, 0, sizeof(pParse[0]));
return 1;
}
}else{
jsonBlobAppendNode(pParse, JSONB_TEXTRAW, nJson, zJson);
}
break;
}
case SQLITE_FLOAT: {
double r = sqlite3_value_double(pArg);
if( NEVER(sqlite3IsNaN(r)) ){
jsonBlobAppendNode(pParse, JSONB_NULL, 0, 0);
}else{
int n = sqlite3_value_bytes(pArg);
const char *z = (const char*)sqlite3_value_text(pArg);
if( z==0 ) return 1;
if( z[0]=='I' ){
jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999");
}else if( z[0]=='-' && z[1]=='I' ){
jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999");
}else{
jsonBlobAppendNode(pParse, JSONB_FLOAT, n, z);
}
}
break;
}
case SQLITE_INTEGER: {
int n = sqlite3_value_bytes(pArg);
const char *z = (const char*)sqlite3_value_text(pArg);
if( z==0 ) return 1;
jsonBlobAppendNode(pParse, JSONB_INT, n, z);
break;
}
}
if( pParse->oom ){
sqlite3_result_error_nomem(ctx);
return 1;
}else{
return 0;
}
}
/*
** Generate a bad path error.
**
** If ctx is not NULL then push the error message into ctx and return NULL.
** If ctx is NULL, then return the text of the error message.
*/
static char *jsonBadPathError(
sqlite3_context *ctx, /* The function call containing the error */
const char *zPath /* The path with the problem */
){
char *zMsg = sqlite3_mprintf("bad JSON path: %Q", zPath);
if( ctx==0 ) return zMsg;
if( zMsg ){
sqlite3_result_error(ctx, zMsg, -1);
sqlite3_free(zMsg);
}else{
sqlite3_result_error_nomem(ctx);
}
return 0;
}
/* argv[0] is a BLOB that seems likely to be a JSONB. Subsequent
** arguments come in parse where each pair contains a JSON path and
** content to insert or set at that patch. Do the updates
** and return the result.
**
** The specific operation is determined by eEdit, which can be one
** of JEDIT_INS, JEDIT_REPL, or JEDIT_SET.
*/
static void jsonInsertIntoBlob(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv,
int eEdit /* JEDIT_INS, JEDIT_REPL, or JEDIT_SET */
){
int i;
u32 rc = 0;
const char *zPath = 0;
int flgs;
JsonParse *p;
JsonParse ax;
assert( (argc&1)==1 );
flgs = argc==1 ? 0 : JSON_EDITABLE;
p = jsonParseFuncArg(ctx, argv[0], flgs);
if( p==0 ) return;
for(i=1; i<argc-1; i+=2){
if( sqlite3_value_type(argv[i])==SQLITE_NULL ) continue;
zPath = (const char*)sqlite3_value_text(argv[i]);
if( zPath==0 ){
sqlite3_result_error_nomem(ctx);
jsonParseFree(p);
return;
}
if( zPath[0]!='$' ) goto jsonInsertIntoBlob_patherror;
if( jsonFunctionArgToBlob(ctx, argv[i+1], &ax) ){
jsonParseReset(&ax);
jsonParseFree(p);
return;
}
if( zPath[1]==0 ){
if( eEdit==JEDIT_REPL || eEdit==JEDIT_SET ){
jsonBlobEdit(p, 0, p->nBlob, ax.aBlob, ax.nBlob);
}
rc = 0;
}else{
p->eEdit = eEdit;
p->nIns = ax.nBlob;
p->aIns = ax.aBlob;
p->delta = 0;
rc = jsonLookupStep(p, 0, zPath+1, 0);
}
jsonParseReset(&ax);
if( rc==JSON_LOOKUP_NOTFOUND ) continue;
if( JSON_LOOKUP_ISERROR(rc) ) goto jsonInsertIntoBlob_patherror;
}
jsonReturnParse(ctx, p);
jsonParseFree(p);
return;
jsonInsertIntoBlob_patherror:
jsonParseFree(p);
if( rc==JSON_LOOKUP_ERROR ){
sqlite3_result_error(ctx, "malformed JSON", -1);
}else{
jsonBadPathError(ctx, zPath);
}
return;
}
/*
** If pArg is a blob that seems like a JSONB blob, then initialize
** p to point to that JSONB and return TRUE. If pArg does not seem like
** a JSONB blob, then return FALSE;
**
** This routine is only called if it is already known that pArg is a
** blob. The only open question is whether or not the blob appears
** to be a JSONB blob.
*/
static int jsonArgIsJsonb(sqlite3_value *pArg, JsonParse *p){
u32 n, sz = 0;
p->aBlob = (u8*)sqlite3_value_blob(pArg);
p->nBlob = (u32)sqlite3_value_bytes(pArg);
if( p->nBlob==0 ){
p->aBlob = 0;
return 0;
}
if( NEVER(p->aBlob==0) ){
return 0;
}
if( (p->aBlob[0] & 0x0f)<=JSONB_OBJECT
&& (n = jsonbPayloadSize(p, 0, &sz))>0
&& sz+n==p->nBlob
&& ((p->aBlob[0] & 0x0f)>JSONB_FALSE || sz==0)
){
return 1;
}
p->aBlob = 0;
p->nBlob = 0;
return 0;
}
/*
** Generate a JsonParse object, containing valid JSONB in aBlob and nBlob,
** from the SQL function argument pArg. Return a pointer to the new
** JsonParse object.
**
** Ownership of the new JsonParse object is passed to the caller. The
** caller should invoke jsonParseFree() on the return value when it
** has finished using it.
**
** If any errors are detected, an appropriate error messages is set
** using sqlite3_result_error() or the equivalent and this routine
** returns NULL. This routine also returns NULL if the pArg argument
** is an SQL NULL value, but no error message is set in that case. This
** is so that SQL functions that are given NULL arguments will return
** a NULL value.
*/
static JsonParse *jsonParseFuncArg(
sqlite3_context *ctx,
sqlite3_value *pArg,
u32 flgs
){
int eType; /* Datatype of pArg */
JsonParse *p = 0; /* Value to be returned */
JsonParse *pFromCache = 0; /* Value taken from cache */
sqlite3 *db; /* The database connection */
assert( ctx!=0 );
eType = sqlite3_value_type(pArg);
if( eType==SQLITE_NULL ){
return 0;
}
pFromCache = jsonCacheSearch(ctx, pArg);
if( pFromCache ){
pFromCache->nJPRef++;
if( (flgs & JSON_EDITABLE)==0 ){
return pFromCache;
}
}
db = sqlite3_context_db_handle(ctx);
rebuild_from_cache:
p = sqlite3DbMallocZero(db, sizeof(*p));
if( p==0 ) goto json_pfa_oom;
memset(p, 0, sizeof(*p));
p->db = db;
p->nJPRef = 1;
if( pFromCache!=0 ){
u32 nBlob = pFromCache->nBlob;
p->aBlob = sqlite3DbMallocRaw(db, nBlob);
if( p->aBlob==0 ) goto json_pfa_oom;
memcpy(p->aBlob, pFromCache->aBlob, nBlob);
p->nBlobAlloc = p->nBlob = nBlob;
p->hasNonstd = pFromCache->hasNonstd;
jsonParseFree(pFromCache);
return p;
}
if( eType==SQLITE_BLOB ){
if( jsonArgIsJsonb(pArg,p) ){
if( (flgs & JSON_EDITABLE)!=0 && jsonBlobMakeEditable(p, 0)==0 ){
goto json_pfa_oom;
}
return p;
}
/* If the blob is not valid JSONB, fall through into trying to cast
** the blob into text which is then interpreted as JSON. (tag-20240123-a)
**
** This goes against all historical documentation about how the SQLite
** JSON functions were suppose to work. From the beginning, blob was
** reserved for expansion and a blob value should have raised an error.
** But it did not, due to a bug. And many applications came to depend
** upon this buggy behavior, espeically when using the CLI and reading
** JSON text using readfile(), which returns a blob. For this reason
** we will continue to support the bug moving forward.
** See for example https://sqlite.org/forum/forumpost/012136abd5292b8d
*/
}
p->zJson = (char*)sqlite3_value_text(pArg);
p->nJson = sqlite3_value_bytes(pArg);
if( db->mallocFailed ) goto json_pfa_oom;
if( p->nJson==0 ) goto json_pfa_malformed;
assert( p->zJson!=0 );
if( jsonConvertTextToBlob(p, (flgs & JSON_KEEPERROR) ? 0 : ctx) ){
if( flgs & JSON_KEEPERROR ){
p->nErr = 1;
return p;
}else{
jsonParseFree(p);
return 0;
}
}else{
int isRCStr = sqlite3ValueIsOfClass(pArg, sqlite3RCStrUnref);
int rc;
if( !isRCStr ){
char *zNew = sqlite3RCStrNew( p->nJson );
if( zNew==0 ) goto json_pfa_oom;
memcpy(zNew, p->zJson, p->nJson);
p->zJson = zNew;
p->zJson[p->nJson] = 0;
}else{
sqlite3RCStrRef(p->zJson);
}
p->bJsonIsRCStr = 1;
rc = jsonCacheInsert(ctx, p);
if( rc==SQLITE_NOMEM ) goto json_pfa_oom;
if( flgs & JSON_EDITABLE ){
pFromCache = p;
p = 0;
goto rebuild_from_cache;
}
}
return p;
json_pfa_malformed:
if( flgs & JSON_KEEPERROR ){
p->nErr = 1;
return p;
}else{
jsonParseFree(p);
sqlite3_result_error(ctx, "malformed JSON", -1);
return 0;
}
json_pfa_oom:
jsonParseFree(pFromCache);
jsonParseFree(p);
sqlite3_result_error_nomem(ctx);
return 0;
}
/*
** Make the return value of a JSON function either the raw JSONB blob
** or make it JSON text, depending on whether the JSON_BLOB flag is
** set on the function.
*/
static void jsonReturnParse(
sqlite3_context *ctx,
JsonParse *p
){
int flgs;
if( p->oom ){
sqlite3_result_error_nomem(ctx);
return;
}
flgs = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
if( flgs & JSON_BLOB ){
if( p->nBlobAlloc>0 && !p->bReadOnly ){
sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_DYNAMIC);
p->nBlobAlloc = 0;
}else{
sqlite3_result_blob(ctx, p->aBlob, p->nBlob, SQLITE_TRANSIENT);
}
}else{
JsonString s;
jsonStringInit(&s, ctx);
p->delta = 0;
jsonTranslateBlobToText(p, 0, &s);
jsonReturnString(&s, p, ctx);
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
}
/****************************************************************************
** SQL functions used for testing and debugging
****************************************************************************/
#if SQLITE_DEBUG
/*
** Decode JSONB bytes in aBlob[] starting at iStart through but not
** including iEnd. Indent the
** content by nIndent spaces.
*/
static void jsonDebugPrintBlob(
JsonParse *pParse, /* JSON content */
u32 iStart, /* Start rendering here */
u32 iEnd, /* Do not render this byte or any byte after this one */
int nIndent, /* Indent by this many spaces */
sqlite3_str *pOut /* Generate output into this sqlite3_str object */
){
while( iStart<iEnd ){
u32 i, n, nn, sz = 0;
int showContent = 1;
u8 x = pParse->aBlob[iStart] & 0x0f;
u32 savedNBlob = pParse->nBlob;
sqlite3_str_appendf(pOut, "%5d:%*s", iStart, nIndent, "");
if( pParse->nBlobAlloc>pParse->nBlob ){
pParse->nBlob = pParse->nBlobAlloc;
}
nn = n = jsonbPayloadSize(pParse, iStart, &sz);
if( nn==0 ) nn = 1;
if( sz>0 && x<JSONB_ARRAY ){
nn += sz;
}
for(i=0; i<nn; i++){
sqlite3_str_appendf(pOut, " %02x", pParse->aBlob[iStart+i]);
}
if( n==0 ){
sqlite3_str_appendf(pOut, " ERROR invalid node size\n");
iStart = n==0 ? iStart+1 : iEnd;
continue;
}
pParse->nBlob = savedNBlob;
if( iStart+n+sz>iEnd ){
iEnd = iStart+n+sz;
if( iEnd>pParse->nBlob ){
if( pParse->nBlobAlloc>0 && iEnd>pParse->nBlobAlloc ){
iEnd = pParse->nBlobAlloc;
}else{
iEnd = pParse->nBlob;
}
}
}
sqlite3_str_appendall(pOut," <-- ");
switch( x ){
case JSONB_NULL: sqlite3_str_appendall(pOut,"null"); break;
case JSONB_TRUE: sqlite3_str_appendall(pOut,"true"); break;
case JSONB_FALSE: sqlite3_str_appendall(pOut,"false"); break;
case JSONB_INT: sqlite3_str_appendall(pOut,"int"); break;
case JSONB_INT5: sqlite3_str_appendall(pOut,"int5"); break;
case JSONB_FLOAT: sqlite3_str_appendall(pOut,"float"); break;
case JSONB_FLOAT5: sqlite3_str_appendall(pOut,"float5"); break;
case JSONB_TEXT: sqlite3_str_appendall(pOut,"text"); break;
case JSONB_TEXTJ: sqlite3_str_appendall(pOut,"textj"); break;
case JSONB_TEXT5: sqlite3_str_appendall(pOut,"text5"); break;
case JSONB_TEXTRAW: sqlite3_str_appendall(pOut,"textraw"); break;
case JSONB_ARRAY: {
sqlite3_str_appendf(pOut,"array, %u bytes\n", sz);
jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut);
showContent = 0;
break;
}
case JSONB_OBJECT: {
sqlite3_str_appendf(pOut, "object, %u bytes\n", sz);
jsonDebugPrintBlob(pParse, iStart+n, iStart+n+sz, nIndent+2, pOut);
showContent = 0;
break;
}
default: {
sqlite3_str_appendall(pOut, "ERROR: unknown node type\n");
showContent = 0;
break;
}
}
if( showContent ){
if( sz==0 && x<=JSONB_FALSE ){
sqlite3_str_append(pOut, "\n", 1);
}else{
u32 j;
sqlite3_str_appendall(pOut, ": \"");
for(j=iStart+n; j<iStart+n+sz; j++){
u8 c = pParse->aBlob[j];
if( c<0x20 || c>=0x7f ) c = '.';
sqlite3_str_append(pOut, (char*)&c, 1);
}
sqlite3_str_append(pOut, "\"\n", 2);
}
}
iStart += n + sz;
}
}
static void jsonShowParse(JsonParse *pParse){
sqlite3_str out;
char zBuf[1000];
if( pParse==0 ){
printf("NULL pointer\n");
return;
}else{
printf("nBlobAlloc = %u\n", pParse->nBlobAlloc);
printf("nBlob = %u\n", pParse->nBlob);
printf("delta = %d\n", pParse->delta);
if( pParse->nBlob==0 ) return;
printf("content (bytes 0..%u):\n", pParse->nBlob-1);
}
sqlite3StrAccumInit(&out, 0, zBuf, sizeof(zBuf), 1000000);
jsonDebugPrintBlob(pParse, 0, pParse->nBlob, 0, &out);
printf("%s", sqlite3_str_value(&out));
sqlite3_str_reset(&out);
}
#endif /* SQLITE_DEBUG */
#ifdef SQLITE_DEBUG
/*
** SQL function: json_parse(JSON)
**
** Parse JSON using jsonParseFuncArg(). Return text that is a
** human-readable dump of the binary JSONB for the input parameter.
*/
static void jsonParseFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p; /* The parse */
sqlite3_str out;
assert( argc>=1 );
sqlite3StrAccumInit(&out, 0, 0, 0, 1000000);
p = jsonParseFuncArg(ctx, argv[0], 0);
if( p==0 ) return;
if( argc==1 ){
jsonDebugPrintBlob(p, 0, p->nBlob, 0, &out);
sqlite3_result_text64(ctx,out.zText,out.nChar,SQLITE_TRANSIENT,SQLITE_UTF8);
}else{
jsonShowParse(p);
}
jsonParseFree(p);
sqlite3_str_reset(&out);
}
#endif /* SQLITE_DEBUG */
/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/
/*
** Implementation of the json_quote(VALUE) function. Return a JSON value
** corresponding to the SQL value input. Mostly this means putting
** double-quotes around strings and returning the unquoted string "null"
** when given a NULL input.
*/
static void jsonQuoteFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonString jx;
UNUSED_PARAMETER(argc);
jsonStringInit(&jx, ctx);
jsonAppendSqlValue(&jx, argv[0]);
jsonReturnString(&jx, 0, 0);
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
/*
** Implementation of the json_array(VALUE,...) function. Return a JSON
** array that contains all values given in arguments. Or if any argument
** is a BLOB, throw an error.
*/
static void jsonArrayFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
int i;
JsonString jx;
jsonStringInit(&jx, ctx);
jsonAppendChar(&jx, '[');
for(i=0; i<argc; i++){
jsonAppendSeparator(&jx);
jsonAppendSqlValue(&jx, argv[i]);
}
jsonAppendChar(&jx, ']');
jsonReturnString(&jx, 0, 0);
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
/*
** json_array_length(JSON)
** json_array_length(JSON, PATH)
**
** Return the number of elements in the top-level JSON array.
** Return 0 if the input is not a well-formed JSON array.
*/
static void jsonArrayLengthFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p; /* The parse */
sqlite3_int64 cnt = 0;
u32 i;
u8 eErr = 0;
p = jsonParseFuncArg(ctx, argv[0], 0);
if( p==0 ) return;
if( argc==2 ){
const char *zPath = (const char*)sqlite3_value_text(argv[1]);
if( zPath==0 ){
jsonParseFree(p);
return;
}
i = jsonLookupStep(p, 0, zPath[0]=='$' ? zPath+1 : "@", 0);
if( JSON_LOOKUP_ISERROR(i) ){
if( i==JSON_LOOKUP_NOTFOUND ){
/* no-op */
}else if( i==JSON_LOOKUP_PATHERROR ){
jsonBadPathError(ctx, zPath);
}else{
sqlite3_result_error(ctx, "malformed JSON", -1);
}
eErr = 1;
i = 0;
}
}else{
i = 0;
}
if( (p->aBlob[i] & 0x0f)==JSONB_ARRAY ){
cnt = jsonbArrayCount(p, i);
}
if( !eErr ) sqlite3_result_int64(ctx, cnt);
jsonParseFree(p);
}
/* True if the string is all alphanumerics and underscores */
static int jsonAllAlphanum(const char *z, int n){
int i;
for(i=0; i<n && (sqlite3Isalnum(z[i]) || z[i]=='_'); i++){}
return i==n;
}
/*
** json_extract(JSON, PATH, ...)
** "->"(JSON,PATH)
** "->>"(JSON,PATH)
**
** Return the element described by PATH. Return NULL if that PATH element
** is not found.
**
** If JSON_JSON is set or if more that one PATH argument is supplied then
** always return a JSON representation of the result. If JSON_SQL is set,
** then always return an SQL representation of the result. If neither flag
** is present and argc==2, then return JSON for objects and arrays and SQL
** for all other values.
**
** When multiple PATH arguments are supplied, the result is a JSON array
** containing the result of each PATH.
**
** Abbreviated JSON path expressions are allows if JSON_ABPATH, for
** compatibility with PG.
*/
static void jsonExtractFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p = 0; /* The parse */
int flags; /* Flags associated with the function */
int i; /* Loop counter */
JsonString jx; /* String for array result */
if( argc<2 ) return;
p = jsonParseFuncArg(ctx, argv[0], 0);
if( p==0 ) return;
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
jsonStringInit(&jx, ctx);
if( argc>2 ){
jsonAppendChar(&jx, '[');
}
for(i=1; i<argc; i++){
/* With a single PATH argument */
const char *zPath = (const char*)sqlite3_value_text(argv[i]);
int nPath;
u32 j;
if( zPath==0 ) goto json_extract_error;
nPath = sqlite3Strlen30(zPath);
if( zPath[0]=='$' ){
j = jsonLookupStep(p, 0, zPath+1, 0);
}else if( (flags & JSON_ABPATH) ){
/* The -> and ->> operators accept abbreviated PATH arguments. This
** is mostly for compatibility with PostgreSQL, but also for
** convenience.
**
** NUMBER ==> $[NUMBER] // PG compatible
** LABEL ==> $.LABEL // PG compatible
** [NUMBER] ==> $[NUMBER] // Not PG. Purely for convenience
**
** Updated 2024-05-27: If the NUMBER is negative, then PG counts from
** the right of the array. Hence for negative NUMBER:
**
** NUMBER ==> $[#NUMBER] // PG compatible
*/
jsonStringInit(&jx, ctx);
if( sqlite3_value_type(argv[i])==SQLITE_INTEGER ){
jsonAppendRawNZ(&jx, "[", 1);
if( zPath[0]=='-' ) jsonAppendRawNZ(&jx,"#",1);
jsonAppendRaw(&jx, zPath, nPath);
jsonAppendRawNZ(&jx, "]", 2);
}else if( jsonAllAlphanum(zPath, nPath) ){
jsonAppendRawNZ(&jx, ".", 1);
jsonAppendRaw(&jx, zPath, nPath);
}else if( zPath[0]=='[' && nPath>=3 && zPath[nPath-1]==']' ){
jsonAppendRaw(&jx, zPath, nPath);
}else{
jsonAppendRawNZ(&jx, ".\"", 2);
jsonAppendRaw(&jx, zPath, nPath);
jsonAppendRawNZ(&jx, "\"", 1);
}
jsonStringTerminate(&jx);
j = jsonLookupStep(p, 0, jx.zBuf, 0);
jsonStringReset(&jx);
}else{
jsonBadPathError(ctx, zPath);
goto json_extract_error;
}
if( j<p->nBlob ){
if( argc==2 ){
if( flags & JSON_JSON ){
jsonStringInit(&jx, ctx);
jsonTranslateBlobToText(p, j, &jx);
jsonReturnString(&jx, 0, 0);
jsonStringReset(&jx);
assert( (flags & JSON_BLOB)==0 );
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}else{
jsonReturnFromBlob(p, j, ctx, 0);
if( (flags & (JSON_SQL|JSON_BLOB))==0
&& (p->aBlob[j]&0x0f)>=JSONB_ARRAY
){
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
}
}else{
jsonAppendSeparator(&jx);
jsonTranslateBlobToText(p, j, &jx);
}
}else if( j==JSON_LOOKUP_NOTFOUND ){
if( argc==2 ){
goto json_extract_error; /* Return NULL if not found */
}else{
jsonAppendSeparator(&jx);
jsonAppendRawNZ(&jx, "null", 4);
}
}else if( j==JSON_LOOKUP_ERROR ){
sqlite3_result_error(ctx, "malformed JSON", -1);
goto json_extract_error;
}else{
jsonBadPathError(ctx, zPath);
goto json_extract_error;
}
}
if( argc>2 ){
jsonAppendChar(&jx, ']');
jsonReturnString(&jx, 0, 0);
if( (flags & JSON_BLOB)==0 ){
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
}
json_extract_error:
jsonStringReset(&jx);
jsonParseFree(p);
return;
}
/*
** Return codes for jsonMergePatch()
*/
#define JSON_MERGE_OK 0 /* Success */
#define JSON_MERGE_BADTARGET 1 /* Malformed TARGET blob */
#define JSON_MERGE_BADPATCH 2 /* Malformed PATCH blob */
#define JSON_MERGE_OOM 3 /* Out-of-memory condition */
/*
** RFC-7396 MergePatch for two JSONB blobs.
**
** pTarget is the target. pPatch is the patch. The target is updated
** in place. The patch is read-only.
**
** The original RFC-7396 algorithm is this:
**
** define MergePatch(Target, Patch):
** if Patch is an Object:
** if Target is not an Object:
** Target = {} # Ignore the contents and set it to an empty Object
** for each Name/Value pair in Patch:
** if Value is null:
** if Name exists in Target:
** remove the Name/Value pair from Target
** else:
** Target[Name] = MergePatch(Target[Name], Value)
** return Target
** else:
** return Patch
**
** Here is an equivalent algorithm restructured to show the actual
** implementation:
**
** 01 define MergePatch(Target, Patch):
** 02 if Patch is not an Object:
** 03 return Patch
** 04 else: // if Patch is an Object
** 05 if Target is not an Object:
** 06 Target = {}
** 07 for each Name/Value pair in Patch:
** 08 if Name exists in Target:
** 09 if Value is null:
** 10 remove the Name/Value pair from Target
** 11 else
** 12 Target[name] = MergePatch(Target[Name], Value)
** 13 else if Value is not NULL:
** 14 if Value is not an Object:
** 15 Target[name] = Value
** 16 else:
** 17 Target[name] = MergePatch('{}',value)
** 18 return Target
** |
** ^---- Line numbers referenced in comments in the implementation
*/
static int jsonMergePatch(
JsonParse *pTarget, /* The JSON parser that contains the TARGET */
u32 iTarget, /* Index of TARGET in pTarget->aBlob[] */
const JsonParse *pPatch, /* The PATCH */
u32 iPatch /* Index of PATCH in pPatch->aBlob[] */
){
u8 x; /* Type of a single node */
u32 n, sz=0; /* Return values from jsonbPayloadSize() */
u32 iTCursor; /* Cursor position while scanning the target object */
u32 iTStart; /* First label in the target object */
u32 iTEndBE; /* Original first byte past end of target, before edit */
u32 iTEnd; /* Current first byte past end of target */
u8 eTLabel; /* Node type of the target label */
u32 iTLabel = 0; /* Index of the label */
u32 nTLabel = 0; /* Header size in bytes for the target label */
u32 szTLabel = 0; /* Size of the target label payload */
u32 iTValue = 0; /* Index of the target value */
u32 nTValue = 0; /* Header size of the target value */
u32 szTValue = 0; /* Payload size for the target value */
u32 iPCursor; /* Cursor position while scanning the patch */
u32 iPEnd; /* First byte past the end of the patch */
u8 ePLabel; /* Node type of the patch label */
u32 iPLabel; /* Start of patch label */
u32 nPLabel; /* Size of header on the patch label */
u32 szPLabel; /* Payload size of the patch label */
u32 iPValue; /* Start of patch value */
u32 nPValue; /* Header size for the patch value */
u32 szPValue; /* Payload size of the patch value */
assert( iTarget>=0 && iTarget<pTarget->nBlob );
assert( iPatch>=0 && iPatch<pPatch->nBlob );
x = pPatch->aBlob[iPatch] & 0x0f;
if( x!=JSONB_OBJECT ){ /* Algorithm line 02 */
u32 szPatch; /* Total size of the patch, header+payload */
u32 szTarget; /* Total size of the target, header+payload */
n = jsonbPayloadSize(pPatch, iPatch, &sz);
szPatch = n+sz;
sz = 0;
n = jsonbPayloadSize(pTarget, iTarget, &sz);
szTarget = n+sz;
jsonBlobEdit(pTarget, iTarget, szTarget, pPatch->aBlob+iPatch, szPatch);
return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK; /* Line 03 */
}
x = pTarget->aBlob[iTarget] & 0x0f;
if( x!=JSONB_OBJECT ){ /* Algorithm line 05 */
n = jsonbPayloadSize(pTarget, iTarget, &sz);
jsonBlobEdit(pTarget, iTarget+n, sz, 0, 0);
x = pTarget->aBlob[iTarget];
pTarget->aBlob[iTarget] = (x & 0xf0) | JSONB_OBJECT;
}
n = jsonbPayloadSize(pPatch, iPatch, &sz);
if( NEVER(n==0) ) return JSON_MERGE_BADPATCH;
iPCursor = iPatch+n;
iPEnd = iPCursor+sz;
n = jsonbPayloadSize(pTarget, iTarget, &sz);
if( NEVER(n==0) ) return JSON_MERGE_BADTARGET;
iTStart = iTarget+n;
iTEndBE = iTStart+sz;
while( iPCursor<iPEnd ){ /* Algorithm line 07 */
iPLabel = iPCursor;
ePLabel = pPatch->aBlob[iPCursor] & 0x0f;
if( ePLabel<JSONB_TEXT || ePLabel>JSONB_TEXTRAW ){
return JSON_MERGE_BADPATCH;
}
nPLabel = jsonbPayloadSize(pPatch, iPCursor, &szPLabel);
if( nPLabel==0 ) return JSON_MERGE_BADPATCH;
iPValue = iPCursor + nPLabel + szPLabel;
if( iPValue>=iPEnd ) return JSON_MERGE_BADPATCH;
nPValue = jsonbPayloadSize(pPatch, iPValue, &szPValue);
if( nPValue==0 ) return JSON_MERGE_BADPATCH;
iPCursor = iPValue + nPValue + szPValue;
if( iPCursor>iPEnd ) return JSON_MERGE_BADPATCH;
iTCursor = iTStart;
iTEnd = iTEndBE + pTarget->delta;
while( iTCursor<iTEnd ){
int isEqual; /* true if the patch and target labels match */
iTLabel = iTCursor;
eTLabel = pTarget->aBlob[iTCursor] & 0x0f;
if( eTLabel<JSONB_TEXT || eTLabel>JSONB_TEXTRAW ){
return JSON_MERGE_BADTARGET;
}
nTLabel = jsonbPayloadSize(pTarget, iTCursor, &szTLabel);
if( nTLabel==0 ) return JSON_MERGE_BADTARGET;
iTValue = iTLabel + nTLabel + szTLabel;
if( iTValue>=iTEnd ) return JSON_MERGE_BADTARGET;
nTValue = jsonbPayloadSize(pTarget, iTValue, &szTValue);
if( nTValue==0 ) return JSON_MERGE_BADTARGET;
if( iTValue + nTValue + szTValue > iTEnd ) return JSON_MERGE_BADTARGET;
isEqual = jsonLabelCompare(
(const char*)&pPatch->aBlob[iPLabel+nPLabel],
szPLabel,
(ePLabel==JSONB_TEXT || ePLabel==JSONB_TEXTRAW),
(const char*)&pTarget->aBlob[iTLabel+nTLabel],
szTLabel,
(eTLabel==JSONB_TEXT || eTLabel==JSONB_TEXTRAW));
if( isEqual ) break;
iTCursor = iTValue + nTValue + szTValue;
}
x = pPatch->aBlob[iPValue] & 0x0f;
if( iTCursor<iTEnd ){
/* A match was found. Algorithm line 08 */
if( x==0 ){
/* Patch value is NULL. Algorithm line 09 */
jsonBlobEdit(pTarget, iTLabel, nTLabel+szTLabel+nTValue+szTValue, 0,0);
/* vvvvvv----- No OOM on a delete-only edit */
if( NEVER(pTarget->oom) ) return JSON_MERGE_OOM;
}else{
/* Algorithm line 12 */
int rc, savedDelta = pTarget->delta;
pTarget->delta = 0;
rc = jsonMergePatch(pTarget, iTValue, pPatch, iPValue);
if( rc ) return rc;
pTarget->delta += savedDelta;
}
}else if( x>0 ){ /* Algorithm line 13 */
/* No match and patch value is not NULL */
u32 szNew = szPLabel+nPLabel;
if( (pPatch->aBlob[iPValue] & 0x0f)!=JSONB_OBJECT ){ /* Line 14 */
jsonBlobEdit(pTarget, iTEnd, 0, 0, szPValue+nPValue+szNew);
if( pTarget->oom ) return JSON_MERGE_OOM;
memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew);
memcpy(&pTarget->aBlob[iTEnd+szNew],
&pPatch->aBlob[iPValue], szPValue+nPValue);
}else{
int rc, savedDelta;
jsonBlobEdit(pTarget, iTEnd, 0, 0, szNew+1);
if( pTarget->oom ) return JSON_MERGE_OOM;
memcpy(&pTarget->aBlob[iTEnd], &pPatch->aBlob[iPLabel], szNew);
pTarget->aBlob[iTEnd+szNew] = 0x00;
savedDelta = pTarget->delta;
pTarget->delta = 0;
rc = jsonMergePatch(pTarget, iTEnd+szNew,pPatch,iPValue);
if( rc ) return rc;
pTarget->delta += savedDelta;
}
}
}
if( pTarget->delta ) jsonAfterEditSizeAdjust(pTarget, iTarget);
return pTarget->oom ? JSON_MERGE_OOM : JSON_MERGE_OK;
}
/*
** Implementation of the json_mergepatch(JSON1,JSON2) function. Return a JSON
** object that is the result of running the RFC 7396 MergePatch() algorithm
** on the two arguments.
*/
static void jsonPatchFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *pTarget; /* The TARGET */
JsonParse *pPatch; /* The PATCH */
int rc; /* Result code */
UNUSED_PARAMETER(argc);
assert( argc==2 );
pTarget = jsonParseFuncArg(ctx, argv[0], JSON_EDITABLE);
if( pTarget==0 ) return;
pPatch = jsonParseFuncArg(ctx, argv[1], 0);
if( pPatch ){
rc = jsonMergePatch(pTarget, 0, pPatch, 0);
if( rc==JSON_MERGE_OK ){
jsonReturnParse(ctx, pTarget);
}else if( rc==JSON_MERGE_OOM ){
sqlite3_result_error_nomem(ctx);
}else{
sqlite3_result_error(ctx, "malformed JSON", -1);
}
jsonParseFree(pPatch);
}
jsonParseFree(pTarget);
}
/*
** Implementation of the json_object(NAME,VALUE,...) function. Return a JSON
** object that contains all name/value given in arguments. Or if any name
** is not a string or if any value is a BLOB, throw an error.
*/
static void jsonObjectFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
int i;
JsonString jx;
const char *z;
u32 n;
if( argc&1 ){
sqlite3_result_error(ctx, "json_object() requires an even number "
"of arguments", -1);
return;
}
jsonStringInit(&jx, ctx);
jsonAppendChar(&jx, '{');
for(i=0; i<argc; i+=2){
if( sqlite3_value_type(argv[i])!=SQLITE_TEXT ){
sqlite3_result_error(ctx, "json_object() labels must be TEXT", -1);
jsonStringReset(&jx);
return;
}
jsonAppendSeparator(&jx);
z = (const char*)sqlite3_value_text(argv[i]);
n = sqlite3_value_bytes(argv[i]);
jsonAppendString(&jx, z, n);
jsonAppendChar(&jx, ':');
jsonAppendSqlValue(&jx, argv[i+1]);
}
jsonAppendChar(&jx, '}');
jsonReturnString(&jx, 0, 0);
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
/*
** json_remove(JSON, PATH, ...)
**
** Remove the named elements from JSON and return the result. malformed
** JSON or PATH arguments result in an error.
*/
static void jsonRemoveFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p; /* The parse */
const char *zPath = 0; /* Path of element to be removed */
int i; /* Loop counter */
u32 rc; /* Subroutine return code */
if( argc<1 ) return;
p = jsonParseFuncArg(ctx, argv[0], argc>1 ? JSON_EDITABLE : 0);
if( p==0 ) return;
for(i=1; i<argc; i++){
zPath = (const char*)sqlite3_value_text(argv[i]);
if( zPath==0 ){
goto json_remove_done;
}
if( zPath[0]!='$' ){
goto json_remove_patherror;
}
if( zPath[1]==0 ){
/* json_remove(j,'$') returns NULL */
goto json_remove_done;
}
p->eEdit = JEDIT_DEL;
p->delta = 0;
rc = jsonLookupStep(p, 0, zPath+1, 0);
if( JSON_LOOKUP_ISERROR(rc) ){
if( rc==JSON_LOOKUP_NOTFOUND ){
continue; /* No-op */
}else if( rc==JSON_LOOKUP_PATHERROR ){
jsonBadPathError(ctx, zPath);
}else{
sqlite3_result_error(ctx, "malformed JSON", -1);
}
goto json_remove_done;
}
}
jsonReturnParse(ctx, p);
jsonParseFree(p);
return;
json_remove_patherror:
jsonBadPathError(ctx, zPath);
json_remove_done:
jsonParseFree(p);
return;
}
/*
** json_replace(JSON, PATH, VALUE, ...)
**
** Replace the value at PATH with VALUE. If PATH does not already exist,
** this routine is a no-op. If JSON or PATH is malformed, throw an error.
*/
static void jsonReplaceFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
if( argc<1 ) return;
if( (argc&1)==0 ) {
jsonWrongNumArgs(ctx, "replace");
return;
}
jsonInsertIntoBlob(ctx, argc, argv, JEDIT_REPL);
}
/*
** json_set(JSON, PATH, VALUE, ...)
**
** Set the value at PATH to VALUE. Create the PATH if it does not already
** exist. Overwrite existing values that do exist.
** If JSON or PATH is malformed, throw an error.
**
** json_insert(JSON, PATH, VALUE, ...)
**
** Create PATH and initialize it to VALUE. If PATH already exists, this
** routine is a no-op. If JSON or PATH is malformed, throw an error.
*/
static void jsonSetFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
int flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
int bIsSet = (flags&JSON_ISSET)!=0;
if( argc<1 ) return;
if( (argc&1)==0 ) {
jsonWrongNumArgs(ctx, bIsSet ? "set" : "insert");
return;
}
jsonInsertIntoBlob(ctx, argc, argv, bIsSet ? JEDIT_SET : JEDIT_INS);
}
/*
** json_type(JSON)
** json_type(JSON, PATH)
**
** Return the top-level "type" of a JSON string. json_type() raises an
** error if either the JSON or PATH inputs are not well-formed.
*/
static void jsonTypeFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p; /* The parse */
const char *zPath = 0;
u32 i;
p = jsonParseFuncArg(ctx, argv[0], 0);
if( p==0 ) return;
if( argc==2 ){
zPath = (const char*)sqlite3_value_text(argv[1]);
if( zPath==0 ) goto json_type_done;
if( zPath[0]!='$' ){
jsonBadPathError(ctx, zPath);
goto json_type_done;
}
i = jsonLookupStep(p, 0, zPath+1, 0);
if( JSON_LOOKUP_ISERROR(i) ){
if( i==JSON_LOOKUP_NOTFOUND ){
/* no-op */
}else if( i==JSON_LOOKUP_PATHERROR ){
jsonBadPathError(ctx, zPath);
}else{
sqlite3_result_error(ctx, "malformed JSON", -1);
}
goto json_type_done;
}
}else{
i = 0;
}
sqlite3_result_text(ctx, jsonbType[p->aBlob[i]&0x0f], -1, SQLITE_STATIC);
json_type_done:
jsonParseFree(p);
}
/*
** json_pretty(JSON)
** json_pretty(JSON, INDENT)
**
** Return text that is a pretty-printed rendering of the input JSON.
** If the argument is not valid JSON, return NULL.
**
** The INDENT argument is text that is used for indentation. If omitted,
** it defaults to four spaces (the same as PostgreSQL).
*/
static void jsonPrettyFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonString s; /* The output string */
JsonPretty x; /* Pretty printing context */
memset(&x, 0, sizeof(x));
x.pParse = jsonParseFuncArg(ctx, argv[0], 0);
if( x.pParse==0 ) return;
x.pOut = &s;
jsonStringInit(&s, ctx);
if( argc==1 || (x.zIndent = (const char*)sqlite3_value_text(argv[1]))==0 ){
x.zIndent = " ";
x.szIndent = 4;
}else{
x.szIndent = (u32)strlen(x.zIndent);
}
jsonTranslateBlobToPrettyText(&x, 0);
jsonReturnString(&s, 0, 0);
jsonParseFree(x.pParse);
}
/*
** json_valid(JSON)
** json_valid(JSON, FLAGS)
**
** Check the JSON argument to see if it is well-formed. The FLAGS argument
** encodes the various constraints on what is meant by "well-formed":
**
** 0x01 Canonical RFC-8259 JSON text
** 0x02 JSON text with optional JSON-5 extensions
** 0x04 Superficially appears to be JSONB
** 0x08 Strictly well-formed JSONB
**
** If the FLAGS argument is omitted, it defaults to 1. Useful values for
** FLAGS include:
**
** 1 Strict canonical JSON text
** 2 JSON text perhaps with JSON-5 extensions
** 4 Superficially appears to be JSONB
** 5 Canonical JSON text or superficial JSONB
** 6 JSON-5 text or superficial JSONB
** 8 Strict JSONB
** 9 Canonical JSON text or strict JSONB
** 10 JSON-5 text or strict JSONB
**
** Other flag combinations are redundant. For example, every canonical
** JSON text is also well-formed JSON-5 text, so FLAG values 2 and 3
** are the same. Similarly, any input that passes a strict JSONB validation
** will also pass the superficial validation so 12 through 15 are the same
** as 8 through 11 respectively.
**
** This routine runs in linear time to validate text and when doing strict
** JSONB validation. Superficial JSONB validation is constant time,
** assuming the BLOB is already in memory. The performance advantage
** of superficial JSONB validation is why that option is provided.
** Application developers can choose to do fast superficial validation or
** slower strict validation, according to their specific needs.
**
** Only the lower four bits of the FLAGS argument are currently used.
** Higher bits are reserved for future expansion. To facilitate
** compatibility, the current implementation raises an error if any bit
** in FLAGS is set other than the lower four bits.
**
** The original circa 2015 implementation of the JSON routines in
** SQLite only supported canonical RFC-8259 JSON text and the json_valid()
** function only accepted one argument. That is why the default value
** for the FLAGS argument is 1, since FLAGS=1 causes this routine to only
** recognize canonical RFC-8259 JSON text as valid. The extra FLAGS
** argument was added when the JSON routines were extended to support
** JSON5-like extensions and binary JSONB stored in BLOBs.
**
** Return Values:
**
** * Raise an error if FLAGS is outside the range of 1 to 15.
** * Return NULL if the input is NULL
** * Return 1 if the input is well-formed.
** * Return 0 if the input is not well-formed.
*/
static void jsonValidFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonParse *p; /* The parse */
u8 flags = 1;
u8 res = 0;
if( argc==2 ){
i64 f = sqlite3_value_int64(argv[1]);
if( f<1 || f>15 ){
sqlite3_result_error(ctx, "FLAGS parameter to json_valid() must be"
" between 1 and 15", -1);
return;
}
flags = f & 0x0f;
}
switch( sqlite3_value_type(argv[0]) ){
case SQLITE_NULL: {
#ifdef SQLITE_LEGACY_JSON_VALID
/* Incorrect legacy behavior was to return FALSE for a NULL input */
sqlite3_result_int(ctx, 0);
#endif
return;
}
case SQLITE_BLOB: {
if( jsonFuncArgMightBeBinary(argv[0]) ){
if( flags & 0x04 ){
/* Superficial checking only - accomplished by the
** jsonFuncArgMightBeBinary() call above. */
res = 1;
}else if( flags & 0x08 ){
/* Strict checking. Check by translating BLOB->TEXT->BLOB. If
** no errors occur, call that a "strict check". */
JsonParse px;
u32 iErr;
memset(&px, 0, sizeof(px));
px.aBlob = (u8*)sqlite3_value_blob(argv[0]);
px.nBlob = sqlite3_value_bytes(argv[0]);
iErr = jsonbValidityCheck(&px, 0, px.nBlob, 1);
res = iErr==0;
}
break;
}
/* Fall through into interpreting the input as text. See note
** above at tag-20240123-a. */
/* no break */ deliberate_fall_through
}
default: {
JsonParse px;
if( (flags & 0x3)==0 ) break;
memset(&px, 0, sizeof(px));
p = jsonParseFuncArg(ctx, argv[0], JSON_KEEPERROR);
if( p ){
if( p->oom ){
sqlite3_result_error_nomem(ctx);
}else if( p->nErr ){
/* no-op */
}else if( (flags & 0x02)!=0 || p->hasNonstd==0 ){
res = 1;
}
jsonParseFree(p);
}else{
sqlite3_result_error_nomem(ctx);
}
break;
}
}
sqlite3_result_int(ctx, res);
}
/*
** json_error_position(JSON)
**
** If the argument is NULL, return NULL
**
** If the argument is BLOB, do a full validity check and return non-zero
** if the check fails. The return value is the approximate 1-based offset
** to the byte of the element that contains the first error.
**
** Otherwise interpret the argument is TEXT (even if it is numeric) and
** return the 1-based character position for where the parser first recognized
** that the input was not valid JSON, or return 0 if the input text looks
** ok. JSON-5 extensions are accepted.
*/
static void jsonErrorFunc(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
i64 iErrPos = 0; /* Error position to be returned */
JsonParse s;
assert( argc==1 );
UNUSED_PARAMETER(argc);
memset(&s, 0, sizeof(s));
s.db = sqlite3_context_db_handle(ctx);
if( jsonFuncArgMightBeBinary(argv[0]) ){
s.aBlob = (u8*)sqlite3_value_blob(argv[0]);
s.nBlob = sqlite3_value_bytes(argv[0]);
iErrPos = (i64)jsonbValidityCheck(&s, 0, s.nBlob, 1);
}else{
s.zJson = (char*)sqlite3_value_text(argv[0]);
if( s.zJson==0 ) return; /* NULL input or OOM */
s.nJson = sqlite3_value_bytes(argv[0]);
if( jsonConvertTextToBlob(&s,0) ){
if( s.oom ){
iErrPos = -1;
}else{
/* Convert byte-offset s.iErr into a character offset */
u32 k;
assert( s.zJson!=0 ); /* Because s.oom is false */
for(k=0; k<s.iErr && ALWAYS(s.zJson[k]); k++){
if( (s.zJson[k] & 0xc0)!=0x80 ) iErrPos++;
}
iErrPos++;
}
}
}
jsonParseReset(&s);
if( iErrPos<0 ){
sqlite3_result_error_nomem(ctx);
}else{
sqlite3_result_int64(ctx, iErrPos);
}
}
/****************************************************************************
** Aggregate SQL function implementations
****************************************************************************/
/*
** json_group_array(VALUE)
**
** Return a JSON array composed of all values in the aggregate.
*/
static void jsonArrayStep(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonString *pStr;
UNUSED_PARAMETER(argc);
pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
if( pStr ){
if( pStr->zBuf==0 ){
jsonStringInit(pStr, ctx);
jsonAppendChar(pStr, '[');
}else if( pStr->nUsed>1 ){
jsonAppendChar(pStr, ',');
}
pStr->pCtx = ctx;
jsonAppendSqlValue(pStr, argv[0]);
}
}
static void jsonArrayCompute(sqlite3_context *ctx, int isFinal){
JsonString *pStr;
pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
if( pStr ){
int flags;
pStr->pCtx = ctx;
jsonAppendChar(pStr, ']');
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
if( pStr->eErr ){
jsonReturnString(pStr, 0, 0);
return;
}else if( flags & JSON_BLOB ){
jsonReturnStringAsBlob(pStr);
if( isFinal ){
if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf);
}else{
jsonStringTrimOneChar(pStr);
}
return;
}else if( isFinal ){
sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
pStr->bStatic ? SQLITE_TRANSIENT :
sqlite3RCStrUnref);
pStr->bStatic = 1;
}else{
sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
jsonStringTrimOneChar(pStr);
}
}else{
sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);
}
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
static void jsonArrayValue(sqlite3_context *ctx){
jsonArrayCompute(ctx, 0);
}
static void jsonArrayFinal(sqlite3_context *ctx){
jsonArrayCompute(ctx, 1);
}
#ifndef SQLITE_OMIT_WINDOWFUNC
/*
** This method works for both json_group_array() and json_group_object().
** It works by removing the first element of the group by searching forward
** to the first comma (",") that is not within a string and deleting all
** text through that comma.
*/
static void jsonGroupInverse(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
unsigned int i;
int inStr = 0;
int nNest = 0;
char *z;
char c;
JsonString *pStr;
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(argv);
pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
#ifdef NEVER
/* pStr is always non-NULL since jsonArrayStep() or jsonObjectStep() will
** always have been called to initialize it */
if( NEVER(!pStr) ) return;
#endif
z = pStr->zBuf;
for(i=1; i<pStr->nUsed && ((c = z[i])!=',' || inStr || nNest); i++){
if( c=='"' ){
inStr = !inStr;
}else if( c=='\\' ){
i++;
}else if( !inStr ){
if( c=='{' || c=='[' ) nNest++;
if( c=='}' || c==']' ) nNest--;
}
}
if( i<pStr->nUsed ){
pStr->nUsed -= i;
memmove(&z[1], &z[i+1], (size_t)pStr->nUsed-1);
z[pStr->nUsed] = 0;
}else{
pStr->nUsed = 1;
}
}
#else
# define jsonGroupInverse 0
#endif
/*
** json_group_obj(NAME,VALUE)
**
** Return a JSON object composed of all names and values in the aggregate.
*/
static void jsonObjectStep(
sqlite3_context *ctx,
int argc,
sqlite3_value **argv
){
JsonString *pStr;
const char *z;
u32 n;
UNUSED_PARAMETER(argc);
pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
if( pStr ){
if( pStr->zBuf==0 ){
jsonStringInit(pStr, ctx);
jsonAppendChar(pStr, '{');
}else if( pStr->nUsed>1 ){
jsonAppendChar(pStr, ',');
}
pStr->pCtx = ctx;
z = (const char*)sqlite3_value_text(argv[0]);
n = sqlite3Strlen30(z);
jsonAppendString(pStr, z, n);
jsonAppendChar(pStr, ':');
jsonAppendSqlValue(pStr, argv[1]);
}
}
static void jsonObjectCompute(sqlite3_context *ctx, int isFinal){
JsonString *pStr;
pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
if( pStr ){
int flags;
jsonAppendChar(pStr, '}');
pStr->pCtx = ctx;
flags = SQLITE_PTR_TO_INT(sqlite3_user_data(ctx));
if( pStr->eErr ){
jsonReturnString(pStr, 0, 0);
return;
}else if( flags & JSON_BLOB ){
jsonReturnStringAsBlob(pStr);
if( isFinal ){
if( !pStr->bStatic ) sqlite3RCStrUnref(pStr->zBuf);
}else{
jsonStringTrimOneChar(pStr);
}
return;
}else if( isFinal ){
sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed,
pStr->bStatic ? SQLITE_TRANSIENT :
sqlite3RCStrUnref);
pStr->bStatic = 1;
}else{
sqlite3_result_text(ctx, pStr->zBuf, (int)pStr->nUsed, SQLITE_TRANSIENT);
jsonStringTrimOneChar(pStr);
}
}else{
sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);
}
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
static void jsonObjectValue(sqlite3_context *ctx){
jsonObjectCompute(ctx, 0);
}
static void jsonObjectFinal(sqlite3_context *ctx){
jsonObjectCompute(ctx, 1);
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonParent JsonParent;
struct JsonParent {
u32 iHead; /* Start of object or array */
u32 iValue; /* Start of the value */
u32 iEnd; /* First byte past the end */
u32 nPath; /* Length of path */
i64 iKey; /* Key for JSONB_ARRAY */
};
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
u32 iRowid; /* The rowid */
u32 i; /* Index in sParse.aBlob[] of current row */
u32 iEnd; /* EOF when i equals or exceeds this value */
u32 nRoot; /* Size of the root path in bytes */
u8 eType; /* Type of the container for element i */
u8 bRecursive; /* True for json_tree(). False for json_each() */
u32 nParent; /* Current nesting depth */
u32 nParentAlloc; /* Space allocated for aParent[] */
JsonParent *aParent; /* Parent elements of i */
sqlite3 *db; /* Database connection */
JsonString path; /* Current path */
JsonParse sParse; /* Parse of the input JSON */
};
typedef struct JsonEachConnection JsonEachConnection;
struct JsonEachConnection {
sqlite3_vtab base; /* Base class - must be first */
sqlite3 *db; /* Database connection */
};
/* Constructor for the json_each virtual table */
static int jsonEachConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
JsonEachConnection *pNew;
int rc;
/* Column numbers */
#define JEACH_KEY 0
#define JEACH_VALUE 1
#define JEACH_TYPE 2
#define JEACH_ATOM 3
#define JEACH_ID 4
#define JEACH_PARENT 5
#define JEACH_FULLKEY 6
#define JEACH_PATH 7
/* The xBestIndex method assumes that the JSON and ROOT columns are
** the last two columns in the table. Should this ever changes, be
** sure to update the xBestIndex method. */
#define JEACH_JSON 8
#define JEACH_ROOT 9
UNUSED_PARAMETER(pzErr);
UNUSED_PARAMETER(argv);
UNUSED_PARAMETER(argc);
UNUSED_PARAMETER(pAux);
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(key,value,type,atom,id,parent,fullkey,path,"
"json HIDDEN,root HIDDEN)");
if( rc==SQLITE_OK ){
pNew = (JsonEachConnection*)sqlite3DbMallocZero(db, sizeof(*pNew));
*ppVtab = (sqlite3_vtab*)pNew;
if( pNew==0 ) return SQLITE_NOMEM;
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
pNew->db = db;
}
return rc;
}
/* destructor for json_each virtual table */
static int jsonEachDisconnect(sqlite3_vtab *pVtab){
JsonEachConnection *p = (JsonEachConnection*)pVtab;
sqlite3DbFree(p->db, pVtab);
return SQLITE_OK;
}
/* constructor for a JsonEachCursor object for json_each(). */
static int jsonEachOpenEach(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
JsonEachConnection *pVtab = (JsonEachConnection*)p;
JsonEachCursor *pCur;
UNUSED_PARAMETER(p);
pCur = sqlite3DbMallocZero(pVtab->db, sizeof(*pCur));
if( pCur==0 ) return SQLITE_NOMEM;
pCur->db = pVtab->db;
jsonStringZero(&pCur->path);
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/* constructor for a JsonEachCursor object for json_tree(). */
static int jsonEachOpenTree(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
int rc = jsonEachOpenEach(p, ppCursor);
if( rc==SQLITE_OK ){
JsonEachCursor *pCur = (JsonEachCursor*)*ppCursor;
pCur->bRecursive = 1;
}
return rc;
}
/* Reset a JsonEachCursor back to its original state. Free any memory
** held. */
static void jsonEachCursorReset(JsonEachCursor *p){
jsonParseReset(&p->sParse);
jsonStringReset(&p->path);
sqlite3DbFree(p->db, p->aParent);
p->iRowid = 0;
p->i = 0;
p->aParent = 0;
p->nParent = 0;
p->nParentAlloc = 0;
p->iEnd = 0;
p->eType = 0;
}
/* Destructor for a jsonEachCursor object */
static int jsonEachClose(sqlite3_vtab_cursor *cur){
JsonEachCursor *p = (JsonEachCursor*)cur;
jsonEachCursorReset(p);
sqlite3DbFree(p->db, cur);
return SQLITE_OK;
}
/* Return TRUE if the jsonEachCursor object has been advanced off the end
** of the JSON object */
static int jsonEachEof(sqlite3_vtab_cursor *cur){
JsonEachCursor *p = (JsonEachCursor*)cur;
return p->i >= p->iEnd;
}
/*
** If the cursor is currently pointing at the label of a object entry,
** then return the index of the value. For all other cases, return the
** current pointer position, which is the value.
*/
static int jsonSkipLabel(JsonEachCursor *p){
if( p->eType==JSONB_OBJECT ){
u32 sz = 0;
u32 n = jsonbPayloadSize(&p->sParse, p->i, &sz);
return p->i + n + sz;
}else{
return p->i;
}
}
/*
** Append the path name for the current element.
*/
static void jsonAppendPathName(JsonEachCursor *p){
assert( p->nParent>0 );
assert( p->eType==JSONB_ARRAY || p->eType==JSONB_OBJECT );
if( p->eType==JSONB_ARRAY ){
jsonPrintf(30, &p->path, "[%lld]", p->aParent[p->nParent-1].iKey);
}else{
u32 n, sz = 0, k, i;
const char *z;
int needQuote = 0;
n = jsonbPayloadSize(&p->sParse, p->i, &sz);
k = p->i + n;
z = (const char*)&p->sParse.aBlob[k];
if( sz==0 || !sqlite3Isalpha(z[0]) ){
needQuote = 1;
}else{
for(i=0; i<sz; i++){
if( !sqlite3Isalnum(z[i]) ){
needQuote = 1;
break;
}
}
}
if( needQuote ){
jsonPrintf(sz+4,&p->path,".\"%.*s\"", sz, z);
}else{
jsonPrintf(sz+2,&p->path,".%.*s", sz, z);
}
}
}
/* Advance the cursor to the next element for json_tree() */
static int jsonEachNext(sqlite3_vtab_cursor *cur){
JsonEachCursor *p = (JsonEachCursor*)cur;
int rc = SQLITE_OK;
if( p->bRecursive ){
u8 x;
u8 levelChange = 0;
u32 n, sz = 0;
u32 i = jsonSkipLabel(p);
x = p->sParse.aBlob[i] & 0x0f;
n = jsonbPayloadSize(&p->sParse, i, &sz);
if( x==JSONB_OBJECT || x==JSONB_ARRAY ){
JsonParent *pParent;
if( p->nParent>=p->nParentAlloc ){
JsonParent *pNew;
u64 nNew;
nNew = p->nParentAlloc*2 + 3;
pNew = sqlite3DbRealloc(p->db, p->aParent, sizeof(JsonParent)*nNew);
if( pNew==0 ) return SQLITE_NOMEM;
p->nParentAlloc = (u32)nNew;
p->aParent = pNew;
}
levelChange = 1;
pParent = &p->aParent[p->nParent];
pParent->iHead = p->i;
pParent->iValue = i;
pParent->iEnd = i + n + sz;
pParent->iKey = -1;
pParent->nPath = (u32)p->path.nUsed;
if( p->eType && p->nParent ){
jsonAppendPathName(p);
if( p->path.eErr ) rc = SQLITE_NOMEM;
}
p->nParent++;
p->i = i + n;
}else{
p->i = i + n + sz;
}
while( p->nParent>0 && p->i >= p->aParent[p->nParent-1].iEnd ){
p->nParent--;
p->path.nUsed = p->aParent[p->nParent].nPath;
levelChange = 1;
}
if( levelChange ){
if( p->nParent>0 ){
JsonParent *pParent = &p->aParent[p->nParent-1];
u32 iVal = pParent->iValue;
p->eType = p->sParse.aBlob[iVal] & 0x0f;
}else{
p->eType = 0;
}
}
}else{
u32 n, sz = 0;
u32 i = jsonSkipLabel(p);
n = jsonbPayloadSize(&p->sParse, i, &sz);
p->i = i + n + sz;
}
if( p->eType==JSONB_ARRAY && p->nParent ){
p->aParent[p->nParent-1].iKey++;
}
p->iRowid++;
return rc;
}
/* Length of the path for rowid==0 in bRecursive mode.
*/
static int jsonEachPathLength(JsonEachCursor *p){
u32 n = p->path.nUsed;
char *z = p->path.zBuf;
if( p->iRowid==0 && p->bRecursive && n>=2 ){
while( n>1 ){
n--;
if( z[n]=='[' || z[n]=='.' ){
u32 x, sz = 0;
char cSaved = z[n];
z[n] = 0;
assert( p->sParse.eEdit==0 );
x = jsonLookupStep(&p->sParse, 0, z+1, 0);
z[n] = cSaved;
if( JSON_LOOKUP_ISERROR(x) ) continue;
if( x + jsonbPayloadSize(&p->sParse, x, &sz) == p->i ) break;
}
}
}
return n;
}
/* Return the value of a column */
static int jsonEachColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int iColumn /* Which column to return */
){
JsonEachCursor *p = (JsonEachCursor*)cur;
switch( iColumn ){
case JEACH_KEY: {
if( p->nParent==0 ){
u32 n, j;
if( p->nRoot==1 ) break;
j = jsonEachPathLength(p);
n = p->nRoot - j;
if( n==0 ){
break;
}else if( p->path.zBuf[j]=='[' ){
i64 x;
sqlite3Atoi64(&p->path.zBuf[j+1], &x, n-1, SQLITE_UTF8);
sqlite3_result_int64(ctx, x);
}else if( p->path.zBuf[j+1]=='"' ){
sqlite3_result_text(ctx, &p->path.zBuf[j+2], n-3, SQLITE_TRANSIENT);
}else{
sqlite3_result_text(ctx, &p->path.zBuf[j+1], n-1, SQLITE_TRANSIENT);
}
break;
}
if( p->eType==JSONB_OBJECT ){
jsonReturnFromBlob(&p->sParse, p->i, ctx, 1);
}else{
assert( p->eType==JSONB_ARRAY );
sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iKey);
}
break;
}
case JEACH_VALUE: {
u32 i = jsonSkipLabel(p);
jsonReturnFromBlob(&p->sParse, i, ctx, 1);
if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY ){
sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}
break;
}
case JEACH_TYPE: {
u32 i = jsonSkipLabel(p);
u8 eType = p->sParse.aBlob[i] & 0x0f;
sqlite3_result_text(ctx, jsonbType[eType], -1, SQLITE_STATIC);
break;
}
case JEACH_ATOM: {
u32 i = jsonSkipLabel(p);
if( (p->sParse.aBlob[i] & 0x0f)<JSONB_ARRAY ){
jsonReturnFromBlob(&p->sParse, i, ctx, 1);
}
break;
}
case JEACH_ID: {
sqlite3_result_int64(ctx, (sqlite3_int64)p->i);
break;
}
case JEACH_PARENT: {
if( p->nParent>0 && p->bRecursive ){
sqlite3_result_int64(ctx, p->aParent[p->nParent-1].iHead);
}
break;
}
case JEACH_FULLKEY: {
u64 nBase = p->path.nUsed;
if( p->nParent ) jsonAppendPathName(p);
sqlite3_result_text64(ctx, p->path.zBuf, p->path.nUsed,
SQLITE_TRANSIENT, SQLITE_UTF8);
p->path.nUsed = nBase;
break;
}
case JEACH_PATH: {
u32 n = jsonEachPathLength(p);
sqlite3_result_text64(ctx, p->path.zBuf, n,
SQLITE_TRANSIENT, SQLITE_UTF8);
break;
}
default: {
sqlite3_result_text(ctx, p->path.zBuf, p->nRoot, SQLITE_STATIC);
break;
}
case JEACH_JSON: {
if( p->sParse.zJson==0 ){
sqlite3_result_blob(ctx, p->sParse.aBlob, p->sParse.nBlob,
SQLITE_TRANSIENT);
}else{
sqlite3_result_text(ctx, p->sParse.zJson, -1, SQLITE_TRANSIENT);
}
break;
}
}
return SQLITE_OK;
}
/* Return the current rowid value */
static int jsonEachRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
JsonEachCursor *p = (JsonEachCursor*)cur;
*pRowid = p->iRowid;
return SQLITE_OK;
}
/* The query strategy is to look for an equality constraint on the json
** column. Without such a constraint, the table cannot operate. idxNum is
** 1 if the constraint is found, 3 if the constraint and zRoot are found,
** and 0 otherwise.
*/
static int jsonEachBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop counter or computed array index */
int aIdx[2]; /* Index of constraints for JSON and ROOT */
int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */
int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */
const struct sqlite3_index_constraint *pConstraint;
/* This implementation assumes that JSON and ROOT are the last two
** columns in the table */
assert( JEACH_ROOT == JEACH_JSON+1 );
UNUSED_PARAMETER(tab);
aIdx[0] = aIdx[1] = -1;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
int iCol;
int iMask;
if( pConstraint->iColumn < JEACH_JSON ) continue;
iCol = pConstraint->iColumn - JEACH_JSON;
assert( iCol==0 || iCol==1 );
testcase( iCol==0 );
iMask = 1 << iCol;
if( pConstraint->usable==0 ){
unusableMask |= iMask;
}else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
aIdx[iCol] = i;
idxMask |= iMask;
}
}
if( pIdxInfo->nOrderBy>0
&& pIdxInfo->aOrderBy[0].iColumn<0
&& pIdxInfo->aOrderBy[0].desc==0
){
pIdxInfo->orderByConsumed = 1;
}
if( (unusableMask & ~idxMask)!=0 ){
/* If there are any unusable constraints on JSON or ROOT, then reject
** this entire plan */
return SQLITE_CONSTRAINT;
}
if( aIdx[0]<0 ){
/* No JSON input. Leave estimatedCost at the huge value that it was
** initialized to to discourage the query planner from selecting this
** plan. */
pIdxInfo->idxNum = 0;
}else{
pIdxInfo->estimatedCost = 1.0;
i = aIdx[0];
pIdxInfo->aConstraintUsage[i].argvIndex = 1;
pIdxInfo->aConstraintUsage[i].omit = 1;
if( aIdx[1]<0 ){
pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */
}else{
i = aIdx[1];
pIdxInfo->aConstraintUsage[i].argvIndex = 2;
pIdxInfo->aConstraintUsage[i].omit = 1;
pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */
}
}
return SQLITE_OK;
}
/* Start a search on a new JSON string */
static int jsonEachFilter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
JsonEachCursor *p = (JsonEachCursor*)cur;
const char *zRoot = 0;
u32 i, n, sz;
UNUSED_PARAMETER(idxStr);
UNUSED_PARAMETER(argc);
jsonEachCursorReset(p);
if( idxNum==0 ) return SQLITE_OK;
memset(&p->sParse, 0, sizeof(p->sParse));
p->sParse.nJPRef = 1;
p->sParse.db = p->db;
if( jsonFuncArgMightBeBinary(argv[0]) ){
p->sParse.nBlob = sqlite3_value_bytes(argv[0]);
p->sParse.aBlob = (u8*)sqlite3_value_blob(argv[0]);
}else{
p->sParse.zJson = (char*)sqlite3_value_text(argv[0]);
p->sParse.nJson = sqlite3_value_bytes(argv[0]);
if( p->sParse.zJson==0 ){
p->i = p->iEnd = 0;
return SQLITE_OK;
}
if( jsonConvertTextToBlob(&p->sParse, 0) ){
if( p->sParse.oom ){
return SQLITE_NOMEM;
}
goto json_each_malformed_input;
}
}
if( idxNum==3 ){
zRoot = (const char*)sqlite3_value_text(argv[1]);
if( zRoot==0 ) return SQLITE_OK;
if( zRoot[0]!='$' ){
sqlite3_free(cur->pVtab->zErrMsg);
cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot);
jsonEachCursorReset(p);
return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
}
p->nRoot = sqlite3Strlen30(zRoot);
if( zRoot[1]==0 ){
i = p->i = 0;
p->eType = 0;
}else{
i = jsonLookupStep(&p->sParse, 0, zRoot+1, 0);
if( JSON_LOOKUP_ISERROR(i) ){
if( i==JSON_LOOKUP_NOTFOUND ){
p->i = 0;
p->eType = 0;
p->iEnd = 0;
return SQLITE_OK;
}
sqlite3_free(cur->pVtab->zErrMsg);
cur->pVtab->zErrMsg = jsonBadPathError(0, zRoot);
jsonEachCursorReset(p);
return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
}
if( p->sParse.iLabel ){
p->i = p->sParse.iLabel;
p->eType = JSONB_OBJECT;
}else{
p->i = i;
p->eType = JSONB_ARRAY;
}
}
jsonAppendRaw(&p->path, zRoot, p->nRoot);
}else{
i = p->i = 0;
p->eType = 0;
p->nRoot = 1;
jsonAppendRaw(&p->path, "$", 1);
}
p->nParent = 0;
n = jsonbPayloadSize(&p->sParse, i, &sz);
p->iEnd = i+n+sz;
if( (p->sParse.aBlob[i] & 0x0f)>=JSONB_ARRAY && !p->bRecursive ){
p->i = i + n;
p->eType = p->sParse.aBlob[i] & 0x0f;
p->aParent = sqlite3DbMallocZero(p->db, sizeof(JsonParent));
if( p->aParent==0 ) return SQLITE_NOMEM;
p->nParent = 1;
p->nParentAlloc = 1;
p->aParent[0].iKey = 0;
p->aParent[0].iEnd = p->iEnd;
p->aParent[0].iHead = p->i;
p->aParent[0].iValue = i;
}
return SQLITE_OK;
json_each_malformed_input:
sqlite3_free(cur->pVtab->zErrMsg);
cur->pVtab->zErrMsg = sqlite3_mprintf("malformed JSON");
jsonEachCursorReset(p);
return cur->pVtab->zErrMsg ? SQLITE_ERROR : SQLITE_NOMEM;
}
/* The methods of the json_each virtual table */
static sqlite3_module jsonEachModule = {
0, /* iVersion */
0, /* xCreate */
jsonEachConnect, /* xConnect */
jsonEachBestIndex, /* xBestIndex */
jsonEachDisconnect, /* xDisconnect */
0, /* xDestroy */
jsonEachOpenEach, /* xOpen - open a cursor */
jsonEachClose, /* xClose - close a cursor */
jsonEachFilter, /* xFilter - configure scan constraints */
jsonEachNext, /* xNext - advance a cursor */
jsonEachEof, /* xEof - check for end of scan */
jsonEachColumn, /* xColumn - read data */
jsonEachRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
/* The methods of the json_tree virtual table. */
static sqlite3_module jsonTreeModule = {
0, /* iVersion */
0, /* xCreate */
jsonEachConnect, /* xConnect */
jsonEachBestIndex, /* xBestIndex */
jsonEachDisconnect, /* xDisconnect */
0, /* xDestroy */
jsonEachOpenTree, /* xOpen - open a cursor */
jsonEachClose, /* xClose - close a cursor */
jsonEachFilter, /* xFilter - configure scan constraints */
jsonEachNext, /* xNext - advance a cursor */
jsonEachEof, /* xEof - check for end of scan */
jsonEachColumn, /* xColumn - read data */
jsonEachRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#endif /* !defined(SQLITE_OMIT_JSON) */
/*
** Register JSON functions.
*/
void sqlite3RegisterJsonFunctions(void){
#ifndef SQLITE_OMIT_JSON
static FuncDef aJsonFunc[] = {
/* sqlite3_result_subtype() ----, ,--- sqlite3_value_subtype() */
/* | | */
/* Uses cache ------, | | ,---- Returns JSONB */
/* | | | | */
/* Number of arguments ---, | | | | ,--- Flags */
/* | | | | | | */
JFUNCTION(json, 1,1,1, 0,0,0, jsonRemoveFunc),
JFUNCTION(jsonb, 1,1,0, 0,1,0, jsonRemoveFunc),
JFUNCTION(json_array, -1,0,1, 1,0,0, jsonArrayFunc),
JFUNCTION(jsonb_array, -1,0,1, 1,1,0, jsonArrayFunc),
JFUNCTION(json_array_length, 1,1,0, 0,0,0, jsonArrayLengthFunc),
JFUNCTION(json_array_length, 2,1,0, 0,0,0, jsonArrayLengthFunc),
JFUNCTION(json_error_position,1,1,0, 0,0,0, jsonErrorFunc),
JFUNCTION(json_extract, -1,1,1, 0,0,0, jsonExtractFunc),
JFUNCTION(jsonb_extract, -1,1,0, 0,1,0, jsonExtractFunc),
JFUNCTION(->, 2,1,1, 0,0,JSON_JSON, jsonExtractFunc),
JFUNCTION(->>, 2,1,0, 0,0,JSON_SQL, jsonExtractFunc),
JFUNCTION(json_insert, -1,1,1, 1,0,0, jsonSetFunc),
JFUNCTION(jsonb_insert, -1,1,0, 1,1,0, jsonSetFunc),
JFUNCTION(json_object, -1,0,1, 1,0,0, jsonObjectFunc),
JFUNCTION(jsonb_object, -1,0,1, 1,1,0, jsonObjectFunc),
JFUNCTION(json_patch, 2,1,1, 0,0,0, jsonPatchFunc),
JFUNCTION(jsonb_patch, 2,1,0, 0,1,0, jsonPatchFunc),
JFUNCTION(json_pretty, 1,1,0, 0,0,0, jsonPrettyFunc),
JFUNCTION(json_pretty, 2,1,0, 0,0,0, jsonPrettyFunc),
JFUNCTION(json_quote, 1,0,1, 1,0,0, jsonQuoteFunc),
JFUNCTION(json_remove, -1,1,1, 0,0,0, jsonRemoveFunc),
JFUNCTION(jsonb_remove, -1,1,0, 0,1,0, jsonRemoveFunc),
JFUNCTION(json_replace, -1,1,1, 1,0,0, jsonReplaceFunc),
JFUNCTION(jsonb_replace, -1,1,0, 1,1,0, jsonReplaceFunc),
JFUNCTION(json_set, -1,1,1, 1,0,JSON_ISSET, jsonSetFunc),
JFUNCTION(jsonb_set, -1,1,0, 1,1,JSON_ISSET, jsonSetFunc),
JFUNCTION(json_type, 1,1,0, 0,0,0, jsonTypeFunc),
JFUNCTION(json_type, 2,1,0, 0,0,0, jsonTypeFunc),
JFUNCTION(json_valid, 1,1,0, 0,0,0, jsonValidFunc),
JFUNCTION(json_valid, 2,1,0, 0,0,0, jsonValidFunc),
#if SQLITE_DEBUG
JFUNCTION(json_parse, 1,1,0, 0,0,0, jsonParseFunc),
#endif
WAGGREGATE(json_group_array, 1, 0, 0,
jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|
SQLITE_DETERMINISTIC),
WAGGREGATE(jsonb_group_array, 1, JSON_BLOB, 0,
jsonArrayStep, jsonArrayFinal, jsonArrayValue, jsonGroupInverse,
SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC),
WAGGREGATE(json_group_object, 2, 0, 0,
jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|SQLITE_DETERMINISTIC),
WAGGREGATE(jsonb_group_object,2, JSON_BLOB, 0,
jsonObjectStep, jsonObjectFinal, jsonObjectValue, jsonGroupInverse,
SQLITE_SUBTYPE|SQLITE_RESULT_SUBTYPE|SQLITE_UTF8|
SQLITE_DETERMINISTIC)
};
sqlite3InsertBuiltinFuncs(aJsonFunc, ArraySize(aJsonFunc));
#endif
}
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON)
/*
** Register the JSON table-valued functions
*/
int sqlite3JsonTableFunctions(sqlite3 *db){
int rc = SQLITE_OK;
static const struct {
const char *zName;
sqlite3_module *pModule;
} aMod[] = {
{ "json_each", &jsonEachModule },
{ "json_tree", &jsonTreeModule },
};
unsigned int i;
for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
}
return rc;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) */