/* ** 2016-06-29 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file demonstrates how to create a table-valued-function that ** returns the values in a C-language array. ** Examples: ** ** SELECT * FROM carray($ptr,5) ** ** The query above returns 5 integers contained in a C-language array ** at the address $ptr. $ptr is a pointer to the array of integers. ** The pointer value must be assigned to $ptr using the ** sqlite3_bind_pointer() interface with a pointer type of "carray". ** For example: ** ** static int aX[] = { 53, 9, 17, 2231, 4, 99 }; ** int i = sqlite3_bind_parameter_index(pStmt, "$ptr"); ** sqlite3_bind_pointer(pStmt, i, aX, "carray", 0); ** ** There is an optional third parameter to determine the datatype of ** the C-language array. Allowed values of the third parameter are ** 'int32', 'int64', 'double', 'char*', 'struct iovec'. Example: ** ** SELECT * FROM carray($ptr,10,'char*'); ** ** The default value of the third parameter is 'int32'. ** ** HOW IT WORKS ** ** The carray "function" is really a virtual table with the ** following schema: ** ** CREATE TABLE carray( ** value, ** pointer HIDDEN, ** count HIDDEN, ** ctype TEXT HIDDEN ** ); ** ** If the hidden columns "pointer" and "count" are unconstrained, then ** the virtual table has no rows. Otherwise, the virtual table interprets ** the integer value of "pointer" as a pointer to the array and "count" ** as the number of elements in the array. The virtual table steps through ** the array, element by element. */ #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #include <assert.h> #include <string.h> #ifdef _WIN32 struct iovec { void *iov_base; size_t iov_len; }; #else # include <sys/uio.h> #endif /* Allowed values for the mFlags parameter to sqlite3_carray_bind(). ** Must exactly match the definitions in carray.h. */ #ifndef CARRAY_INT32 # define CARRAY_INT32 0 /* Data is 32-bit signed integers */ # define CARRAY_INT64 1 /* Data is 64-bit signed integers */ # define CARRAY_DOUBLE 2 /* Data is doubles */ # define CARRAY_TEXT 3 /* Data is char* */ # define CARRAY_BLOB 4 /* Data is struct iovec* */ #endif #ifndef SQLITE_API # ifdef _WIN32 # define SQLITE_API __declspec(dllexport) # else # define SQLITE_API # endif #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Names of allowed datatypes */ static const char *azType[] = { "int32", "int64", "double", "char*", "struct iovec" }; /* ** Structure used to hold the sqlite3_carray_bind() information */ typedef struct carray_bind carray_bind; struct carray_bind { void *aData; /* The data */ int nData; /* Number of elements */ int mFlags; /* Control flags */ void (*xDel)(void*); /* Destructor for aData */ }; /* carray_cursor is a subclass of sqlite3_vtab_cursor which will ** serve as the underlying representation of a cursor that scans ** over rows of the result */ typedef struct carray_cursor carray_cursor; struct carray_cursor { sqlite3_vtab_cursor base; /* Base class - must be first */ sqlite3_int64 iRowid; /* The rowid */ void *pPtr; /* Pointer to the array of values */ sqlite3_int64 iCnt; /* Number of integers in the array */ unsigned char eType; /* One of the CARRAY_type values */ }; /* ** The carrayConnect() method is invoked to create a new ** carray_vtab that describes the carray virtual table. ** ** Think of this routine as the constructor for carray_vtab objects. ** ** All this routine needs to do is: ** ** (1) Allocate the carray_vtab object and initialize all fields. ** ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the ** result set of queries against carray will look like. */ static int carrayConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3_vtab *pNew; int rc; /* Column numbers */ #define CARRAY_COLUMN_VALUE 0 #define CARRAY_COLUMN_POINTER 1 #define CARRAY_COLUMN_COUNT 2 #define CARRAY_COLUMN_CTYPE 3 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(value,pointer hidden,count hidden,ctype hidden)"); if( rc==SQLITE_OK ){ pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); if( pNew==0 ) return SQLITE_NOMEM; memset(pNew, 0, sizeof(*pNew)); } return rc; } /* ** This method is the destructor for carray_cursor objects. */ static int carrayDisconnect(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return SQLITE_OK; } /* ** Constructor for a new carray_cursor object. */ static int carrayOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ carray_cursor *pCur; pCur = sqlite3_malloc( sizeof(*pCur) ); if( pCur==0 ) return SQLITE_NOMEM; memset(pCur, 0, sizeof(*pCur)); *ppCursor = &pCur->base; return SQLITE_OK; } /* ** Destructor for a carray_cursor. */ static int carrayClose(sqlite3_vtab_cursor *cur){ sqlite3_free(cur); return SQLITE_OK; } /* ** Advance a carray_cursor to its next row of output. */ static int carrayNext(sqlite3_vtab_cursor *cur){ carray_cursor *pCur = (carray_cursor*)cur; pCur->iRowid++; return SQLITE_OK; } /* ** Return values of columns for the row at which the carray_cursor ** is currently pointing. */ static int carrayColumn( sqlite3_vtab_cursor *cur, /* The cursor */ sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ int i /* Which column to return */ ){ carray_cursor *pCur = (carray_cursor*)cur; sqlite3_int64 x = 0; switch( i ){ case CARRAY_COLUMN_POINTER: return SQLITE_OK; case CARRAY_COLUMN_COUNT: x = pCur->iCnt; break; case CARRAY_COLUMN_CTYPE: { sqlite3_result_text(ctx, azType[pCur->eType], -1, SQLITE_STATIC); return SQLITE_OK; } default: { switch( pCur->eType ){ case CARRAY_INT32: { int *p = (int*)pCur->pPtr; sqlite3_result_int(ctx, p[pCur->iRowid-1]); return SQLITE_OK; } case CARRAY_INT64: { sqlite3_int64 *p = (sqlite3_int64*)pCur->pPtr; sqlite3_result_int64(ctx, p[pCur->iRowid-1]); return SQLITE_OK; } case CARRAY_DOUBLE: { double *p = (double*)pCur->pPtr; sqlite3_result_double(ctx, p[pCur->iRowid-1]); return SQLITE_OK; } case CARRAY_TEXT: { const char **p = (const char**)pCur->pPtr; sqlite3_result_text(ctx, p[pCur->iRowid-1], -1, SQLITE_TRANSIENT); return SQLITE_OK; } case CARRAY_BLOB: { const struct iovec *p = (struct iovec*)pCur->pPtr; sqlite3_result_blob(ctx, p[pCur->iRowid-1].iov_base, (int)p[pCur->iRowid-1].iov_len, SQLITE_TRANSIENT); return SQLITE_OK; } } } } sqlite3_result_int64(ctx, x); return SQLITE_OK; } /* ** Return the rowid for the current row. In this implementation, the ** rowid is the same as the output value. */ static int carrayRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ carray_cursor *pCur = (carray_cursor*)cur; *pRowid = pCur->iRowid; return SQLITE_OK; } /* ** Return TRUE if the cursor has been moved off of the last ** row of output. */ static int carrayEof(sqlite3_vtab_cursor *cur){ carray_cursor *pCur = (carray_cursor*)cur; return pCur->iRowid>pCur->iCnt; } /* ** This method is called to "rewind" the carray_cursor object back ** to the first row of output. */ static int carrayFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ carray_cursor *pCur = (carray_cursor *)pVtabCursor; pCur->pPtr = 0; pCur->iCnt = 0; switch( idxNum ){ case 1: { carray_bind *pBind = sqlite3_value_pointer(argv[0], "carray-bind"); if( pBind==0 ) break; pCur->pPtr = pBind->aData; pCur->iCnt = pBind->nData; pCur->eType = pBind->mFlags & 0x07; break; } case 2: case 3: { pCur->pPtr = sqlite3_value_pointer(argv[0], "carray"); pCur->iCnt = pCur->pPtr ? sqlite3_value_int64(argv[1]) : 0; if( idxNum<3 ){ pCur->eType = CARRAY_INT32; }else{ unsigned char i; const char *zType = (const char*)sqlite3_value_text(argv[2]); for(i=0; i<sizeof(azType)/sizeof(azType[0]); i++){ if( sqlite3_stricmp(zType, azType[i])==0 ) break; } if( i>=sizeof(azType)/sizeof(azType[0]) ){ pVtabCursor->pVtab->zErrMsg = sqlite3_mprintf( "unknown datatype: %Q", zType); return SQLITE_ERROR; }else{ pCur->eType = i; } } break; } } pCur->iRowid = 1; return SQLITE_OK; } /* ** SQLite will invoke this method one or more times while planning a query ** that uses the carray virtual table. This routine needs to create ** a query plan for each invocation and compute an estimated cost for that ** plan. ** ** In this implementation idxNum is used to represent the ** query plan. idxStr is unused. ** ** idxNum is: ** ** 1 If only the pointer= constraint exists. In this case, the ** parameter must be bound using sqlite3_carray_bind(). ** ** 2 if the pointer= and count= constraints exist. ** ** 3 if the ctype= constraint also exists. ** ** idxNum is 0 otherwise and carray becomes an empty table. */ static int carrayBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop over constraints */ int ptrIdx = -1; /* Index of the pointer= constraint, or -1 if none */ int cntIdx = -1; /* Index of the count= constraint, or -1 if none */ int ctypeIdx = -1; /* Index of the ctype= constraint, or -1 if none */ const struct sqlite3_index_constraint *pConstraint; pConstraint = pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ if( pConstraint->usable==0 ) continue; if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; switch( pConstraint->iColumn ){ case CARRAY_COLUMN_POINTER: ptrIdx = i; break; case CARRAY_COLUMN_COUNT: cntIdx = i; break; case CARRAY_COLUMN_CTYPE: ctypeIdx = i; break; } } if( ptrIdx>=0 ){ pIdxInfo->aConstraintUsage[ptrIdx].argvIndex = 1; pIdxInfo->aConstraintUsage[ptrIdx].omit = 1; pIdxInfo->estimatedCost = (double)1; pIdxInfo->estimatedRows = 100; pIdxInfo->idxNum = 1; if( cntIdx>=0 ){ pIdxInfo->aConstraintUsage[cntIdx].argvIndex = 2; pIdxInfo->aConstraintUsage[cntIdx].omit = 1; pIdxInfo->idxNum = 2; if( ctypeIdx>=0 ){ pIdxInfo->aConstraintUsage[ctypeIdx].argvIndex = 3; pIdxInfo->aConstraintUsage[ctypeIdx].omit = 1; pIdxInfo->idxNum = 3; } } }else{ pIdxInfo->estimatedCost = (double)2147483647; pIdxInfo->estimatedRows = 2147483647; pIdxInfo->idxNum = 0; } return SQLITE_OK; } /* ** This following structure defines all the methods for the ** carray virtual table. */ static sqlite3_module carrayModule = { 0, /* iVersion */ 0, /* xCreate */ carrayConnect, /* xConnect */ carrayBestIndex, /* xBestIndex */ carrayDisconnect, /* xDisconnect */ 0, /* xDestroy */ carrayOpen, /* xOpen - open a cursor */ carrayClose, /* xClose - close a cursor */ carrayFilter, /* xFilter - configure scan constraints */ carrayNext, /* xNext - advance a cursor */ carrayEof, /* xEof - check for end of scan */ carrayColumn, /* xColumn - read data */ carrayRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadow */ 0 /* xIntegrity */ }; /* ** Destructor for the carray_bind object */ static void carrayBindDel(void *pPtr){ carray_bind *p = (carray_bind*)pPtr; if( p->xDel!=SQLITE_STATIC ){ p->xDel(p->aData); } sqlite3_free(p); } /* ** Invoke this interface in order to bind to the single-argument ** version of CARRAY(). */ SQLITE_API int sqlite3_carray_bind( sqlite3_stmt *pStmt, int idx, void *aData, int nData, int mFlags, void (*xDestroy)(void*) ){ carray_bind *pNew; int i; pNew = sqlite3_malloc64(sizeof(*pNew)); if( pNew==0 ){ if( xDestroy!=SQLITE_STATIC && xDestroy!=SQLITE_TRANSIENT ){ xDestroy(aData); } return SQLITE_NOMEM; } pNew->nData = nData; pNew->mFlags = mFlags; if( xDestroy==SQLITE_TRANSIENT ){ sqlite3_int64 sz = nData; switch( mFlags & 0x07 ){ case CARRAY_INT32: sz *= 4; break; case CARRAY_INT64: sz *= 8; break; case CARRAY_DOUBLE: sz *= 8; break; case CARRAY_TEXT: sz *= sizeof(char*); break; case CARRAY_BLOB: sz *= sizeof(struct iovec); break; } if( (mFlags & 0x07)==CARRAY_TEXT ){ for(i=0; i<nData; i++){ const char *z = ((char**)aData)[i]; if( z ) sz += strlen(z) + 1; } }else if( (mFlags & 0x07)==CARRAY_BLOB ){ for(i=0; i<nData; i++){ sz += ((struct iovec*)aData)[i].iov_len; } } pNew->aData = sqlite3_malloc64( sz ); if( pNew->aData==0 ){ sqlite3_free(pNew); return SQLITE_NOMEM; } if( (mFlags & 0x07)==CARRAY_TEXT ){ char **az = (char**)pNew->aData; char *z = (char*)&az[nData]; for(i=0; i<nData; i++){ const char *zData = ((char**)aData)[i]; sqlite3_int64 n; if( zData==0 ){ az[i] = 0; continue; } az[i] = z; n = strlen(zData); memcpy(z, zData, n+1); z += n+1; } }else if( (mFlags & 0x07)==CARRAY_BLOB ){ struct iovec *p = (struct iovec*)pNew->aData; unsigned char *z = (unsigned char*)&p[nData]; for(i=0; i<nData; i++){ size_t n = ((struct iovec*)aData)[i].iov_len; p[i].iov_len = n; p[i].iov_base = z; z += n; memcpy(p[i].iov_base, ((struct iovec*)aData)[i].iov_base, n); } }else{ memcpy(pNew->aData, aData, sz); } pNew->xDel = sqlite3_free; }else{ pNew->aData = aData; pNew->xDel = xDestroy; } return sqlite3_bind_pointer(pStmt, idx, pNew, "carray-bind", carrayBindDel); } /* ** For testing purpose in the TCL test harness, we need a method for ** setting the pointer value. The inttoptr(X) SQL function accomplishes ** this. Tcl script will bind an integer to X and the inttoptr() SQL ** function will use sqlite3_result_pointer() to convert that integer into ** a pointer. ** ** This is for testing on TCL only. */ #ifdef SQLITE_TEST static void inttoptrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ void *p; sqlite3_int64 i64; i64 = sqlite3_value_int64(argv[0]); if( sizeof(i64)==sizeof(p) ){ memcpy(&p, &i64, sizeof(p)); }else{ int i32 = i64 & 0xffffffff; memcpy(&p, &i32, sizeof(p)); } sqlite3_result_pointer(context, p, "carray", 0); } #endif /* SQLITE_TEST */ #endif /* SQLITE_OMIT_VIRTUALTABLE */ SQLITE_API int sqlite3_carray_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc = SQLITE_OK; SQLITE_EXTENSION_INIT2(pApi); #ifndef SQLITE_OMIT_VIRTUALTABLE rc = sqlite3_create_module(db, "carray", &carrayModule, 0); #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "inttoptr", 1, SQLITE_UTF8, 0, inttoptrFunc, 0, 0); } #endif /* SQLITE_TEST */ #endif /* SQLITE_OMIT_VIRTUALTABLE */ return rc; }