/*
** 2004 May 26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to implement APIs that are part of the
** VDBE.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
#include "opcodes.h"
#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return TRUE (non-zero) of the statement supplied as an argument needs
** to be recompiled. A statement needs to be recompiled whenever the
** execution environment changes in a way that would alter the program
** that sqlite3_prepare() generates. For example, if new functions or
** collating sequences are registered or if an authorizer function is
** added or changed.
*/
int sqlite3_expired(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe*)pStmt;
return p==0 || p->expired;
}
#endif
/*
** Check on a Vdbe to make sure it has not been finalized. Log
** an error and return true if it has been finalized (or is otherwise
** invalid). Return false if it is ok.
*/
static int vdbeSafety(Vdbe *p){
if( p->db==0 ){
sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
return 1;
}else{
return 0;
}
}
static int vdbeSafetyNotNull(Vdbe *p){
if( p==0 ){
sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
return 1;
}else{
return vdbeSafety(p);
}
}
#ifndef SQLITE_OMIT_TRACE
/*
** Invoke the profile callback. This routine is only called if we already
** know that the profile callback is defined and needs to be invoked.
*/
static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
sqlite3_int64 iNow;
sqlite3_int64 iElapse;
assert( p->startTime>0 );
assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
assert( db->init.busy==0 );
assert( p->zSql!=0 );
sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
iElapse = (iNow - p->startTime)*1000000;
#ifndef SQLITE_OMIT_DEPRECATED
if( db->xProfile ){
db->xProfile(db->pProfileArg, p->zSql, iElapse);
}
#endif
if( db->mTrace & SQLITE_TRACE_PROFILE ){
db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
}
p->startTime = 0;
}
/*
** The checkProfileCallback(DB,P) macro checks to see if a profile callback
** is needed, and it invokes the callback if it is needed.
*/
# define checkProfileCallback(DB,P) \
if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
#else
# define checkProfileCallback(DB,P) /*no-op*/
#endif
/*
** The following routine destroys a virtual machine that is created by
** the sqlite3_compile() routine. The integer returned is an SQLITE_
** success/failure code that describes the result of executing the virtual
** machine.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_finalize(sqlite3_stmt *pStmt){
int rc;
if( pStmt==0 ){
/* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
** pointer is a harmless no-op. */
rc = SQLITE_OK;
}else{
Vdbe *v = (Vdbe*)pStmt;
sqlite3 *db = v->db;
if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
sqlite3_mutex_enter(db->mutex);
checkProfileCallback(db, v);
assert( v->eVdbeState>=VDBE_READY_STATE );
rc = sqlite3VdbeReset(v);
sqlite3VdbeDelete(v);
rc = sqlite3ApiExit(db, rc);
sqlite3LeaveMutexAndCloseZombie(db);
}
return rc;
}
/*
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
** the prior execution is returned.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_reset(sqlite3_stmt *pStmt){
int rc;
if( pStmt==0 ){
rc = SQLITE_OK;
}else{
Vdbe *v = (Vdbe*)pStmt;
sqlite3 *db = v->db;
sqlite3_mutex_enter(db->mutex);
checkProfileCallback(db, v);
rc = sqlite3VdbeReset(v);
sqlite3VdbeRewind(v);
assert( (rc & (db->errMask))==rc );
rc = sqlite3ApiExit(db, rc);
sqlite3_mutex_leave(db->mutex);
}
return rc;
}
/*
** Set all the parameters in the compiled SQL statement to NULL.
*/
int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
int i;
int rc = SQLITE_OK;
Vdbe *p = (Vdbe*)pStmt;
#if SQLITE_THREADSAFE
sqlite3_mutex *mutex;
#endif
#ifdef SQLITE_ENABLE_API_ARMOR
if( pStmt==0 ){
return SQLITE_MISUSE_BKPT;
}
#endif
#if SQLITE_THREADSAFE
mutex = p->db->mutex;
#endif
sqlite3_mutex_enter(mutex);
for(i=0; i<p->nVar; i++){
sqlite3VdbeMemRelease(&p->aVar[i]);
p->aVar[i].flags = MEM_Null;
}
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
if( p->expmask ){
p->expired = 1;
}
sqlite3_mutex_leave(mutex);
return rc;
}
/**************************** sqlite3_value_ *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
const void *sqlite3_value_blob(sqlite3_value *pVal){
Mem *p = (Mem*)pVal;
if( p->flags & (MEM_Blob|MEM_Str) ){
if( ExpandBlob(p)!=SQLITE_OK ){
assert( p->flags==MEM_Null && p->z==0 );
return 0;
}
p->flags |= MEM_Blob;
return p->n ? p->z : 0;
}else{
return sqlite3_value_text(pVal);
}
}
int sqlite3_value_bytes(sqlite3_value *pVal){
return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
int sqlite3_value_bytes16(sqlite3_value *pVal){
return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
double sqlite3_value_double(sqlite3_value *pVal){
return sqlite3VdbeRealValue((Mem*)pVal);
}
int sqlite3_value_int(sqlite3_value *pVal){
return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
return sqlite3VdbeIntValue((Mem*)pVal);
}
unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
Mem *pMem = (Mem*)pVal;
return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
}
void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
Mem *p = (Mem*)pVal;
if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
(MEM_Null|MEM_Term|MEM_Subtype)
&& zPType!=0
&& p->eSubtype=='p'
&& strcmp(p->u.zPType, zPType)==0
){
return (void*)p->z;
}else{
return 0;
}
}
const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_value_text16(sqlite3_value* pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
const void *sqlite3_value_text16be(sqlite3_value *pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
const void *sqlite3_value_text16le(sqlite3_value *pVal){
return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
/* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
** point number string BLOB NULL
*/
int sqlite3_value_type(sqlite3_value* pVal){
static const u8 aType[] = {
SQLITE_BLOB, /* 0x00 (not possible) */
SQLITE_NULL, /* 0x01 NULL */
SQLITE_TEXT, /* 0x02 TEXT */
SQLITE_NULL, /* 0x03 (not possible) */
SQLITE_INTEGER, /* 0x04 INTEGER */
SQLITE_NULL, /* 0x05 (not possible) */
SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
SQLITE_NULL, /* 0x07 (not possible) */
SQLITE_FLOAT, /* 0x08 FLOAT */
SQLITE_NULL, /* 0x09 (not possible) */
SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
SQLITE_NULL, /* 0x0b (not possible) */
SQLITE_INTEGER, /* 0x0c (not possible) */
SQLITE_NULL, /* 0x0d (not possible) */
SQLITE_INTEGER, /* 0x0e (not possible) */
SQLITE_NULL, /* 0x0f (not possible) */
SQLITE_BLOB, /* 0x10 BLOB */
SQLITE_NULL, /* 0x11 (not possible) */
SQLITE_TEXT, /* 0x12 (not possible) */
SQLITE_NULL, /* 0x13 (not possible) */
SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
SQLITE_NULL, /* 0x15 (not possible) */
SQLITE_INTEGER, /* 0x16 (not possible) */
SQLITE_NULL, /* 0x17 (not possible) */
SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
SQLITE_NULL, /* 0x19 (not possible) */
SQLITE_FLOAT, /* 0x1a (not possible) */
SQLITE_NULL, /* 0x1b (not possible) */
SQLITE_INTEGER, /* 0x1c (not possible) */
SQLITE_NULL, /* 0x1d (not possible) */
SQLITE_INTEGER, /* 0x1e (not possible) */
SQLITE_NULL, /* 0x1f (not possible) */
SQLITE_FLOAT, /* 0x20 INTREAL */
SQLITE_NULL, /* 0x21 (not possible) */
SQLITE_FLOAT, /* 0x22 INTREAL + TEXT */
SQLITE_NULL, /* 0x23 (not possible) */
SQLITE_FLOAT, /* 0x24 (not possible) */
SQLITE_NULL, /* 0x25 (not possible) */
SQLITE_FLOAT, /* 0x26 (not possible) */
SQLITE_NULL, /* 0x27 (not possible) */
SQLITE_FLOAT, /* 0x28 (not possible) */
SQLITE_NULL, /* 0x29 (not possible) */
SQLITE_FLOAT, /* 0x2a (not possible) */
SQLITE_NULL, /* 0x2b (not possible) */
SQLITE_FLOAT, /* 0x2c (not possible) */
SQLITE_NULL, /* 0x2d (not possible) */
SQLITE_FLOAT, /* 0x2e (not possible) */
SQLITE_NULL, /* 0x2f (not possible) */
SQLITE_BLOB, /* 0x30 (not possible) */
SQLITE_NULL, /* 0x31 (not possible) */
SQLITE_TEXT, /* 0x32 (not possible) */
SQLITE_NULL, /* 0x33 (not possible) */
SQLITE_FLOAT, /* 0x34 (not possible) */
SQLITE_NULL, /* 0x35 (not possible) */
SQLITE_FLOAT, /* 0x36 (not possible) */
SQLITE_NULL, /* 0x37 (not possible) */
SQLITE_FLOAT, /* 0x38 (not possible) */
SQLITE_NULL, /* 0x39 (not possible) */
SQLITE_FLOAT, /* 0x3a (not possible) */
SQLITE_NULL, /* 0x3b (not possible) */
SQLITE_FLOAT, /* 0x3c (not possible) */
SQLITE_NULL, /* 0x3d (not possible) */
SQLITE_FLOAT, /* 0x3e (not possible) */
SQLITE_NULL, /* 0x3f (not possible) */
};
#ifdef SQLITE_DEBUG
{
int eType = SQLITE_BLOB;
if( pVal->flags & MEM_Null ){
eType = SQLITE_NULL;
}else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
eType = SQLITE_FLOAT;
}else if( pVal->flags & MEM_Int ){
eType = SQLITE_INTEGER;
}else if( pVal->flags & MEM_Str ){
eType = SQLITE_TEXT;
}
assert( eType == aType[pVal->flags&MEM_AffMask] );
}
#endif
return aType[pVal->flags&MEM_AffMask];
}
int sqlite3_value_encoding(sqlite3_value *pVal){
return pVal->enc;
}
/* Return true if a parameter to xUpdate represents an unchanged column */
int sqlite3_value_nochange(sqlite3_value *pVal){
return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
}
/* Return true if a parameter value originated from an sqlite3_bind() */
int sqlite3_value_frombind(sqlite3_value *pVal){
return (pVal->flags&MEM_FromBind)!=0;
}
/* Make a copy of an sqlite3_value object
*/
sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
sqlite3_value *pNew;
if( pOrig==0 ) return 0;
pNew = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return 0;
memset(pNew, 0, sizeof(*pNew));
memcpy(pNew, pOrig, MEMCELLSIZE);
pNew->flags &= ~MEM_Dyn;
pNew->db = 0;
if( pNew->flags&(MEM_Str|MEM_Blob) ){
pNew->flags &= ~(MEM_Static|MEM_Dyn);
pNew->flags |= MEM_Ephem;
if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
sqlite3ValueFree(pNew);
pNew = 0;
}
}else if( pNew->flags & MEM_Null ){
/* Do not duplicate pointer values */
pNew->flags &= ~(MEM_Term|MEM_Subtype);
}
return pNew;
}
/* Destroy an sqlite3_value object previously obtained from
** sqlite3_value_dup().
*/
void sqlite3_value_free(sqlite3_value *pOld){
sqlite3ValueFree(pOld);
}
/**************************** sqlite3_result_ *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
** result as a string or blob. Appropriate errors are set if the string/blob
** is too big or if an OOM occurs.
**
** The invokeValueDestructor(P,X) routine invokes destructor function X()
** on value P if P is not going to be used and need to be destroyed.
*/
static void setResultStrOrError(
sqlite3_context *pCtx, /* Function context */
const char *z, /* String pointer */
int n, /* Bytes in string, or negative */
u8 enc, /* Encoding of z. 0 for BLOBs */
void (*xDel)(void*) /* Destructor function */
){
Mem *pOut = pCtx->pOut;
int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
if( rc ){
if( rc==SQLITE_TOOBIG ){
sqlite3_result_error_toobig(pCtx);
}else{
/* The only errors possible from sqlite3VdbeMemSetStr are
** SQLITE_TOOBIG and SQLITE_NOMEM */
assert( rc==SQLITE_NOMEM );
sqlite3_result_error_nomem(pCtx);
}
return;
}
sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
if( sqlite3VdbeMemTooBig(pOut) ){
sqlite3_result_error_toobig(pCtx);
}
}
static int invokeValueDestructor(
const void *p, /* Value to destroy */
void (*xDel)(void*), /* The destructor */
sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if not NULL */
){
assert( xDel!=SQLITE_DYNAMIC );
if( xDel==0 ){
/* noop */
}else if( xDel==SQLITE_TRANSIENT ){
/* noop */
}else{
xDel((void*)p);
}
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx!=0 ){
sqlite3_result_error_toobig(pCtx);
}
#else
assert( pCtx!=0 );
sqlite3_result_error_toobig(pCtx);
#endif
return SQLITE_TOOBIG;
}
void sqlite3_result_blob(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 || n<0 ){
invokeValueDestructor(z, xDel, pCtx);
return;
}
#endif
assert( n>=0 );
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
setResultStrOrError(pCtx, z, n, 0, xDel);
}
void sqlite3_result_blob64(
sqlite3_context *pCtx,
const void *z,
sqlite3_uint64 n,
void (*xDel)(void *)
){
assert( xDel!=SQLITE_DYNAMIC );
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ){
invokeValueDestructor(z, xDel, 0);
return;
}
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
if( n>0x7fffffff ){
(void)invokeValueDestructor(z, xDel, pCtx);
}else{
setResultStrOrError(pCtx, z, (int)n, 0, xDel);
}
}
void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
}
void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
pCtx->isError = SQLITE_ERROR;
sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
}
void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
void sqlite3_result_null(sqlite3_context *pCtx){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemSetNull(pCtx->pOut);
}
void sqlite3_result_pointer(
sqlite3_context *pCtx,
void *pPtr,
const char *zPType,
void (*xDestructor)(void*)
){
Mem *pOut;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ){
invokeValueDestructor(pPtr, xDestructor, 0);
return;
}
#endif
pOut = pCtx->pOut;
assert( sqlite3_mutex_held(pOut->db->mutex) );
sqlite3VdbeMemRelease(pOut);
pOut->flags = MEM_Null;
sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
}
void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
Mem *pOut;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
#if defined(SQLITE_STRICT_SUBTYPE) && SQLITE_STRICT_SUBTYPE+0!=0
if( pCtx->pFunc!=0
&& (pCtx->pFunc->funcFlags & SQLITE_RESULT_SUBTYPE)==0
){
char zErr[200];
sqlite3_snprintf(sizeof(zErr), zErr,
"misuse of sqlite3_result_subtype() by %s()",
pCtx->pFunc->zName);
sqlite3_result_error(pCtx, zErr, -1);
return;
}
#endif /* SQLITE_STRICT_SUBTYPE */
pOut = pCtx->pOut;
assert( sqlite3_mutex_held(pOut->db->mutex) );
pOut->eSubtype = eSubtype & 0xff;
pOut->flags |= MEM_Subtype;
}
void sqlite3_result_text(
sqlite3_context *pCtx,
const char *z,
int n,
void (*xDel)(void *)
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ){
invokeValueDestructor(z, xDel, 0);
return;
}
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
}
void sqlite3_result_text64(
sqlite3_context *pCtx,
const char *z,
sqlite3_uint64 n,
void (*xDel)(void *),
unsigned char enc
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ){
invokeValueDestructor(z, xDel, 0);
return;
}
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
assert( xDel!=SQLITE_DYNAMIC );
if( enc!=SQLITE_UTF8 ){
if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
n &= ~(u64)1;
}
if( n>0x7fffffff ){
(void)invokeValueDestructor(z, xDel, pCtx);
}else{
setResultStrOrError(pCtx, z, (int)n, enc, xDel);
sqlite3VdbeMemZeroTerminateIfAble(pCtx->pOut);
}
}
#ifndef SQLITE_OMIT_UTF16
void sqlite3_result_text16(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16NATIVE, xDel);
}
void sqlite3_result_text16be(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16BE, xDel);
}
void sqlite3_result_text16le(
sqlite3_context *pCtx,
const void *z,
int n,
void (*xDel)(void *)
){
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
setResultStrOrError(pCtx, z, n & ~(u64)1, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
Mem *pOut;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
if( pValue==0 ){
sqlite3_result_null(pCtx);
return;
}
#endif
pOut = pCtx->pOut;
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemCopy(pOut, pValue);
sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
if( sqlite3VdbeMemTooBig(pOut) ){
sqlite3_result_error_toobig(pCtx);
}
}
void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
}
int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
Mem *pOut;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return SQLITE_MISUSE_BKPT;
#endif
pOut = pCtx->pOut;
assert( sqlite3_mutex_held(pOut->db->mutex) );
if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
sqlite3_result_error_toobig(pCtx);
return SQLITE_TOOBIG;
}
#ifndef SQLITE_OMIT_INCRBLOB
sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
return SQLITE_OK;
#else
return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
#endif
}
void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
pCtx->isError = errCode ? errCode : -1;
#ifdef SQLITE_DEBUG
if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
#endif
if( pCtx->pOut->flags & MEM_Null ){
setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
SQLITE_STATIC);
}
}
/* Force an SQLITE_TOOBIG error. */
void sqlite3_result_error_toobig(sqlite3_context *pCtx){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
pCtx->isError = SQLITE_TOOBIG;
sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
SQLITE_UTF8, SQLITE_STATIC);
}
/* An SQLITE_NOMEM error. */
void sqlite3_result_error_nomem(sqlite3_context *pCtx){
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
sqlite3VdbeMemSetNull(pCtx->pOut);
pCtx->isError = SQLITE_NOMEM_BKPT;
sqlite3OomFault(pCtx->pOut->db);
}
#ifndef SQLITE_UNTESTABLE
/* Force the INT64 value currently stored as the result to be
** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
** test-control.
*/
void sqlite3ResultIntReal(sqlite3_context *pCtx){
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
if( pCtx->pOut->flags & MEM_Int ){
pCtx->pOut->flags &= ~MEM_Int;
pCtx->pOut->flags |= MEM_IntReal;
}
}
#endif
/*
** This function is called after a transaction has been committed. It
** invokes callbacks registered with sqlite3_wal_hook() as required.
*/
static int doWalCallbacks(sqlite3 *db){
int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_WAL
int i;
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
int nEntry;
sqlite3BtreeEnter(pBt);
nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
sqlite3BtreeLeave(pBt);
if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
}
}
}
#endif
return rc;
}
/*
** Execute the statement pStmt, either until a row of data is ready, the
** statement is completely executed or an error occurs.
**
** This routine implements the bulk of the logic behind the sqlite_step()
** API. The only thing omitted is the automatic recompile if a
** schema change has occurred. That detail is handled by the
** outer sqlite3_step() wrapper procedure.
*/
static int sqlite3Step(Vdbe *p){
sqlite3 *db;
int rc;
assert(p);
db = p->db;
if( p->eVdbeState!=VDBE_RUN_STATE ){
restart_step:
if( p->eVdbeState==VDBE_READY_STATE ){
if( p->expired ){
p->rc = SQLITE_SCHEMA;
rc = SQLITE_ERROR;
if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
/* If this statement was prepared using saved SQL and an
** error has occurred, then return the error code in p->rc to the
** caller. Set the error code in the database handle to the same
** value.
*/
rc = sqlite3VdbeTransferError(p);
}
goto end_of_step;
}
/* If there are no other statements currently running, then
** reset the interrupt flag. This prevents a call to sqlite3_interrupt
** from interrupting a statement that has not yet started.
*/
if( db->nVdbeActive==0 ){
AtomicStore(&db->u1.isInterrupted, 0);
}
assert( db->nVdbeWrite>0 || db->autoCommit==0
|| (db->nDeferredCons==0 && db->nDeferredImmCons==0)
);
#ifndef SQLITE_OMIT_TRACE
if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
&& !db->init.busy && p->zSql ){
sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
}else{
assert( p->startTime==0 );
}
#endif
db->nVdbeActive++;
if( p->readOnly==0 ) db->nVdbeWrite++;
if( p->bIsReader ) db->nVdbeRead++;
p->pc = 0;
p->eVdbeState = VDBE_RUN_STATE;
}else
if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){
/* We used to require that sqlite3_reset() be called before retrying
** sqlite3_step() after any error or after SQLITE_DONE. But beginning
** with version 3.7.0, we changed this so that sqlite3_reset() would
** be called automatically instead of throwing the SQLITE_MISUSE error.
** This "automatic-reset" change is not technically an incompatibility,
** since any application that receives an SQLITE_MISUSE is broken by
** definition.
**
** Nevertheless, some published applications that were originally written
** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
** returns, and those were broken by the automatic-reset change. As a
** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
** legacy behavior of returning SQLITE_MISUSE for cases where the
** previous sqlite3_step() returned something other than a SQLITE_LOCKED
** or SQLITE_BUSY error.
*/
#ifdef SQLITE_OMIT_AUTORESET
if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
sqlite3_reset((sqlite3_stmt*)p);
}else{
return SQLITE_MISUSE_BKPT;
}
#else
sqlite3_reset((sqlite3_stmt*)p);
#endif
assert( p->eVdbeState==VDBE_READY_STATE );
goto restart_step;
}
}
#ifdef SQLITE_DEBUG
p->rcApp = SQLITE_OK;
#endif
#ifndef SQLITE_OMIT_EXPLAIN
if( p->explain ){
rc = sqlite3VdbeList(p);
}else
#endif /* SQLITE_OMIT_EXPLAIN */
{
db->nVdbeExec++;
rc = sqlite3VdbeExec(p);
db->nVdbeExec--;
}
if( rc==SQLITE_ROW ){
assert( p->rc==SQLITE_OK );
assert( db->mallocFailed==0 );
db->errCode = SQLITE_ROW;
return SQLITE_ROW;
}else{
#ifndef SQLITE_OMIT_TRACE
/* If the statement completed successfully, invoke the profile callback */
checkProfileCallback(db, p);
#endif
p->pResultRow = 0;
if( rc==SQLITE_DONE && db->autoCommit ){
assert( p->rc==SQLITE_OK );
p->rc = doWalCallbacks(db);
if( p->rc!=SQLITE_OK ){
rc = SQLITE_ERROR;
}
}else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
/* If this statement was prepared using saved SQL and an
** error has occurred, then return the error code in p->rc to the
** caller. Set the error code in the database handle to the same value.
*/
rc = sqlite3VdbeTransferError(p);
}
}
db->errCode = rc;
if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
p->rc = SQLITE_NOMEM_BKPT;
if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
}
end_of_step:
/* There are only a limited number of result codes allowed from the
** statements prepared using the legacy sqlite3_prepare() interface */
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
|| rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
|| (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
);
return (rc&db->errMask);
}
/*
** This is the top-level implementation of sqlite3_step(). Call
** sqlite3Step() to do most of the work. If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
int sqlite3_step(sqlite3_stmt *pStmt){
int rc = SQLITE_OK; /* Result from sqlite3Step() */
Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
int cnt = 0; /* Counter to prevent infinite loop of reprepares */
sqlite3 *db; /* The database connection */
if( vdbeSafetyNotNull(v) ){
return SQLITE_MISUSE_BKPT;
}
db = v->db;
sqlite3_mutex_enter(db->mutex);
while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
&& cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
int savedPc = v->pc;
rc = sqlite3Reprepare(v);
if( rc!=SQLITE_OK ){
/* This case occurs after failing to recompile an sql statement.
** The error message from the SQL compiler has already been loaded
** into the database handle. This block copies the error message
** from the database handle into the statement and sets the statement
** program counter to 0 to ensure that when the statement is
** finalized or reset the parser error message is available via
** sqlite3_errmsg() and sqlite3_errcode().
*/
const char *zErr = (const char *)sqlite3_value_text(db->pErr);
sqlite3DbFree(db, v->zErrMsg);
if( !db->mallocFailed ){
v->zErrMsg = sqlite3DbStrDup(db, zErr);
v->rc = rc = sqlite3ApiExit(db, rc);
} else {
v->zErrMsg = 0;
v->rc = rc = SQLITE_NOMEM_BKPT;
}
break;
}
sqlite3_reset(pStmt);
if( savedPc>=0 ){
/* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
** already been done once on a prior invocation that failed due to
** SQLITE_SCHEMA. tag-20220401a */
v->minWriteFileFormat = 254;
}
assert( v->expired==0 );
}
sqlite3_mutex_leave(db->mutex);
return rc;
}
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
void *sqlite3_user_data(sqlite3_context *p){
#ifdef SQLITE_ENABLE_API_ARMOR
if( p==0 ) return 0;
#endif
assert( p && p->pFunc );
return p->pFunc->pUserData;
}
/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
**
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
#ifdef SQLITE_ENABLE_API_ARMOR
if( p==0 ) return 0;
#else
assert( p && p->pOut );
#endif
return p->pOut->db;
}
/*
** If this routine is invoked from within an xColumn method of a virtual
** table, then it returns true if and only if the the call is during an
** UPDATE operation and the value of the column will not be modified
** by the UPDATE.
**
** If this routine is called from any context other than within the
** xColumn method of a virtual table, then the return value is meaningless
** and arbitrary.
**
** Virtual table implements might use this routine to optimize their
** performance by substituting a NULL result, or some other light-weight
** value, as a signal to the xUpdate routine that the column is unchanged.
*/
int sqlite3_vtab_nochange(sqlite3_context *p){
#ifdef SQLITE_ENABLE_API_ARMOR
if( p==0 ) return 0;
#else
assert( p );
#endif
return sqlite3_value_nochange(p->pOut);
}
/*
** The destructor function for a ValueList object. This needs to be
** a separate function, unknowable to the application, to ensure that
** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not
** preceded by activation of IN processing via sqlite3_vtab_int() do not
** try to access a fake ValueList object inserted by a hostile extension.
*/
void sqlite3VdbeValueListFree(void *pToDelete){
sqlite3_free(pToDelete);
}
/*
** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
** sqlite3_vtab_in_next() (if bNext!=0).
*/
static int valueFromValueList(
sqlite3_value *pVal, /* Pointer to the ValueList object */
sqlite3_value **ppOut, /* Store the next value from the list here */
int bNext /* 1 for _next(). 0 for _first() */
){
int rc;
ValueList *pRhs;
*ppOut = 0;
if( pVal==0 ) return SQLITE_MISUSE_BKPT;
if( (pVal->flags & MEM_Dyn)==0 || pVal->xDel!=sqlite3VdbeValueListFree ){
return SQLITE_ERROR;
}else{
assert( (pVal->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
(MEM_Null|MEM_Term|MEM_Subtype) );
assert( pVal->eSubtype=='p' );
assert( pVal->u.zPType!=0 && strcmp(pVal->u.zPType,"ValueList")==0 );
pRhs = (ValueList*)pVal->z;
}
if( bNext ){
rc = sqlite3BtreeNext(pRhs->pCsr, 0);
}else{
int dummy = 0;
rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
}
if( rc==SQLITE_OK ){
u32 sz; /* Size of current row in bytes */
Mem sMem; /* Raw content of current row */
memset(&sMem, 0, sizeof(sMem));
sz = sqlite3BtreePayloadSize(pRhs->pCsr);
rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
if( rc==SQLITE_OK ){
u8 *zBuf = (u8*)sMem.z;
u32 iSerial;
sqlite3_value *pOut = pRhs->pOut;
int iOff = 1 + getVarint32(&zBuf[1], iSerial);
sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
pOut->enc = ENC(pOut->db);
if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
rc = SQLITE_NOMEM;
}else{
*ppOut = pOut;
}
}
sqlite3VdbeMemRelease(&sMem);
}
return rc;
}
/*
** Set the iterator value pVal to point to the first value in the set.
** Set (*ppOut) to point to this value before returning.
*/
int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
return valueFromValueList(pVal, ppOut, 0);
}
/*
** Set the iterator value pVal to point to the next value in the set.
** Set (*ppOut) to point to this value before returning.
*/
int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
return valueFromValueList(pVal, ppOut, 1);
}
/*
** Return the current time for a statement. If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless
** of the amount of time that elapses between invocations. In other words,
** the time returned is always the time of the first call.
*/
sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
int rc;
#ifndef SQLITE_ENABLE_STAT4
sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
assert( p->pVdbe!=0 );
#else
sqlite3_int64 iTime = 0;
sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
#endif
if( *piTime==0 ){
rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
if( rc ) *piTime = 0;
}
return *piTime;
}
/*
** Create a new aggregate context for p and return a pointer to
** its pMem->z element.
*/
static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
Mem *pMem = p->pMem;
assert( (pMem->flags & MEM_Agg)==0 );
if( nByte<=0 ){
sqlite3VdbeMemSetNull(pMem);
pMem->z = 0;
}else{
sqlite3VdbeMemClearAndResize(pMem, nByte);
pMem->flags = MEM_Agg;
pMem->u.pDef = p->pFunc;
if( pMem->z ){
memset(pMem->z, 0, nByte);
}
}
return (void*)pMem->z;
}
/*
** Allocate or return the aggregate context for a user function. A new
** context is allocated on the first call. Subsequent calls return the
** same context that was returned on prior calls.
*/
void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
assert( p && p->pFunc && p->pFunc->xFinalize );
assert( sqlite3_mutex_held(p->pOut->db->mutex) );
testcase( nByte<0 );
if( (p->pMem->flags & MEM_Agg)==0 ){
return createAggContext(p, nByte);
}else{
return (void*)p->pMem->z;
}
}
/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
**
** The left-most argument is 0.
**
** Undocumented behavior: If iArg is negative then access a cache of
** auxiliary data pointers that is available to all functions within a
** single prepared statement. The iArg values must match.
*/
void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
AuxData *pAuxData;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return 0;
#endif
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
#if SQLITE_ENABLE_STAT4
if( pCtx->pVdbe==0 ) return 0;
#else
assert( pCtx->pVdbe!=0 );
#endif
for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
return pAuxData->pAux;
}
}
return 0;
}
/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
**
** The left-most argument is 0.
**
** Undocumented behavior: If iArg is negative then make the data available
** to all functions within the current prepared statement using iArg as an
** access code.
*/
void sqlite3_set_auxdata(
sqlite3_context *pCtx,
int iArg,
void *pAux,
void (*xDelete)(void*)
){
AuxData *pAuxData;
Vdbe *pVdbe;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pCtx==0 ) return;
#endif
pVdbe= pCtx->pVdbe;
assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
#ifdef SQLITE_ENABLE_STAT4
if( pVdbe==0 ) goto failed;
#else
assert( pVdbe!=0 );
#endif
for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
break;
}
}
if( pAuxData==0 ){
pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
if( !pAuxData ) goto failed;
pAuxData->iAuxOp = pCtx->iOp;
pAuxData->iAuxArg = iArg;
pAuxData->pNextAux = pVdbe->pAuxData;
pVdbe->pAuxData = pAuxData;
if( pCtx->isError==0 ) pCtx->isError = -1;
}else if( pAuxData->xDeleteAux ){
pAuxData->xDeleteAux(pAuxData->pAux);
}
pAuxData->pAux = pAux;
pAuxData->xDeleteAux = xDelete;
return;
failed:
if( xDelete ){
xDelete(pAux);
}
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** Return the number of times the Step function of an aggregate has been
** called.
**
** This function is deprecated. Do not use it for new code. It is
** provide only to avoid breaking legacy code. New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
int sqlite3_aggregate_count(sqlite3_context *p){
assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
return p->pMem->n;
}
#endif
/*
** Return the number of columns in the result set for the statement pStmt.
*/
int sqlite3_column_count(sqlite3_stmt *pStmt){
Vdbe *pVm = (Vdbe *)pStmt;
if( pVm==0 ) return 0;
return pVm->nResColumn;
}
/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
int sqlite3_data_count(sqlite3_stmt *pStmt){
Vdbe *pVm = (Vdbe *)pStmt;
if( pVm==0 || pVm->pResultRow==0 ) return 0;
return pVm->nResColumn;
}
/*
** Return a pointer to static memory containing an SQL NULL value.
*/
static const Mem *columnNullValue(void){
/* Even though the Mem structure contains an element
** of type i64, on certain architectures (x86) with certain compiler
** switches (-Os), gcc may align this Mem object on a 4-byte boundary
** instead of an 8-byte one. This all works fine, except that when
** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
** that a Mem structure is located on an 8-byte boundary. To prevent
** these assert()s from failing, when building with SQLITE_DEBUG defined
** using gcc, we force nullMem to be 8-byte aligned using the magical
** __attribute__((aligned(8))) macro. */
static const Mem nullMem
#if defined(SQLITE_DEBUG) && defined(__GNUC__)
__attribute__((aligned(8)))
#endif
= {
/* .u = */ {0},
/* .z = */ (char*)0,
/* .n = */ (int)0,
/* .flags = */ (u16)MEM_Null,
/* .enc = */ (u8)0,
/* .eSubtype = */ (u8)0,
/* .db = */ (sqlite3*)0,
/* .szMalloc = */ (int)0,
/* .uTemp = */ (u32)0,
/* .zMalloc = */ (char*)0,
/* .xDel = */ (void(*)(void*))0,
#ifdef SQLITE_DEBUG
/* .pScopyFrom = */ (Mem*)0,
/* .mScopyFlags= */ 0,
#endif
};
return &nullMem;
}
/*
** Check to see if column iCol of the given statement is valid. If
** it is, return a pointer to the Mem for the value of that column.
** If iCol is not valid, return a pointer to a Mem which has a value
** of NULL.
*/
static Mem *columnMem(sqlite3_stmt *pStmt, int i){
Vdbe *pVm;
Mem *pOut;
pVm = (Vdbe *)pStmt;
if( pVm==0 ) return (Mem*)columnNullValue();
assert( pVm->db );
sqlite3_mutex_enter(pVm->db->mutex);
if( pVm->pResultRow!=0 && i<pVm->nResColumn && i>=0 ){
pOut = &pVm->pResultRow[i];
}else{
sqlite3Error(pVm->db, SQLITE_RANGE);
pOut = (Mem*)columnNullValue();
}
return pOut;
}
/*
** This function is called after invoking an sqlite3_value_XXX function on a
** column value (i.e. a value returned by evaluating an SQL expression in the
** select list of a SELECT statement) that may cause a malloc() failure. If
** malloc() has failed, the threads mallocFailed flag is cleared and the result
** code of statement pStmt set to SQLITE_NOMEM.
**
** Specifically, this is called from within:
**
** sqlite3_column_int()
** sqlite3_column_int64()
** sqlite3_column_text()
** sqlite3_column_text16()
** sqlite3_column_real()
** sqlite3_column_bytes()
** sqlite3_column_bytes16()
** sqlite3_column_blob()
*/
static void columnMallocFailure(sqlite3_stmt *pStmt)
{
/* If malloc() failed during an encoding conversion within an
** sqlite3_column_XXX API, then set the return code of the statement to
** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
** and _finalize() will return NOMEM.
*/
Vdbe *p = (Vdbe *)pStmt;
if( p ){
assert( p->db!=0 );
assert( sqlite3_mutex_held(p->db->mutex) );
p->rc = sqlite3ApiExit(p->db, p->rc);
sqlite3_mutex_leave(p->db->mutex);
}
}
/**************************** sqlite3_column_ *******************************
** The following routines are used to access elements of the current row
** in the result set.
*/
const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
const void *val;
val = sqlite3_value_blob( columnMem(pStmt,i) );
/* Even though there is no encoding conversion, value_blob() might
** need to call malloc() to expand the result of a zeroblob()
** expression.
*/
columnMallocFailure(pStmt);
return val;
}
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_bytes( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
double val = sqlite3_value_double( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
int val = sqlite3_value_int( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
Mem *pOut = columnMem(pStmt, i);
if( pOut->flags&MEM_Static ){
pOut->flags &= ~MEM_Static;
pOut->flags |= MEM_Ephem;
}
columnMallocFailure(pStmt);
return (sqlite3_value *)pOut;
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return val;
}
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
int iType = sqlite3_value_type( columnMem(pStmt,i) );
columnMallocFailure(pStmt);
return iType;
}
/*
** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN.
*/
static const char * const azExplainColNames8[] = {
"addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */
"id", "parent", "notused", "detail" /* EQP */
};
static const u16 azExplainColNames16data[] = {
/* 0 */ 'a', 'd', 'd', 'r', 0,
/* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0,
/* 12 */ 'p', '1', 0,
/* 15 */ 'p', '2', 0,
/* 18 */ 'p', '3', 0,
/* 21 */ 'p', '4', 0,
/* 24 */ 'p', '5', 0,
/* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0,
/* 35 */ 'i', 'd', 0,
/* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0,
/* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0,
/* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0
};
static const u8 iExplainColNames16[] = {
0, 5, 12, 15, 18, 21, 24, 27,
35, 38, 45, 53
};
/*
** Convert the N-th element of pStmt->pColName[] into a string using
** xFunc() then return that string. If N is out of range, return 0.
**
** There are up to 5 names for each column. useType determines which
** name is returned. Here are the names:
**
** 0 The column name as it should be displayed for output
** 1 The datatype name for the column
** 2 The name of the database that the column derives from
** 3 The name of the table that the column derives from
** 4 The name of the table column that the result column derives from
**
** If the result is not a simple column reference (if it is an expression
** or a constant) then useTypes 2, 3, and 4 return NULL.
*/
static const void *columnName(
sqlite3_stmt *pStmt, /* The statement */
int N, /* Which column to get the name for */
int useUtf16, /* True to return the name as UTF16 */
int useType /* What type of name */
){
const void *ret;
Vdbe *p;
int n;
sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pStmt==0 ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
if( N<0 ) return 0;
ret = 0;
p = (Vdbe *)pStmt;
db = p->db;
assert( db!=0 );
sqlite3_mutex_enter(db->mutex);
if( p->explain ){
if( useType>0 ) goto columnName_end;
n = p->explain==1 ? 8 : 4;
if( N>=n ) goto columnName_end;
if( useUtf16 ){
int i = iExplainColNames16[N + 8*p->explain - 8];
ret = (void*)&azExplainColNames16data[i];
}else{
ret = (void*)azExplainColNames8[N + 8*p->explain - 8];
}
goto columnName_end;
}
n = p->nResColumn;
if( N<n ){
u8 prior_mallocFailed = db->mallocFailed;
N += useType*n;
#ifndef SQLITE_OMIT_UTF16
if( useUtf16 ){
ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
}else
#endif
{
ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
}
/* A malloc may have failed inside of the _text() call. If this
** is the case, clear the mallocFailed flag and return NULL.
*/
assert( db->mallocFailed==0 || db->mallocFailed==1 );
if( db->mallocFailed > prior_mallocFailed ){
sqlite3OomClear(db);
ret = 0;
}
}
columnName_end:
sqlite3_mutex_leave(db->mutex);
return ret;
}
/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 0, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 1, COLNAME_NAME);
}
#endif
/*
** Constraint: If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
# error "Must not define both SQLITE_OMIT_DECLTYPE \
and SQLITE_ENABLE_COLUMN_METADATA"
#endif
#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */
#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 0, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 1, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 0, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 1, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */
/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 0, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
return columnName(pStmt, N, 1, COLNAME_COLUMN);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */
/******************************* sqlite3_bind_ ***************************
**
** Routines used to attach values to wildcards in a compiled SQL statement.
*/
/*
** Unbind the value bound to variable i in virtual machine p. This is the
** the same as binding a NULL value to the column. If the "i" parameter is
** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK.
**
** A successful evaluation of this routine acquires the mutex on p.
** the mutex is released if any kind of error occurs.
**
** The error code stored in database p->db is overwritten with the return
** value in any case.
**
** (tag-20240917-01) If vdbeUnbind(p,(u32)(i-1)) returns SQLITE_OK,
** that means all of the the following will be true:
**
** p!=0
** p->pVar!=0
** i>0
** i<=p->nVar
**
** An assert() is normally added after vdbeUnbind() to help static analyzers
** realize this.
*/
static int vdbeUnbind(Vdbe *p, unsigned int i){
Mem *pVar;
if( vdbeSafetyNotNull(p) ){
return SQLITE_MISUSE_BKPT;
}
sqlite3_mutex_enter(p->db->mutex);
if( p->eVdbeState!=VDBE_READY_STATE ){
sqlite3Error(p->db, SQLITE_MISUSE_BKPT);
sqlite3_mutex_leave(p->db->mutex);
sqlite3_log(SQLITE_MISUSE,
"bind on a busy prepared statement: [%s]", p->zSql);
return SQLITE_MISUSE_BKPT;
}
if( i>=(unsigned int)p->nVar ){
sqlite3Error(p->db, SQLITE_RANGE);
sqlite3_mutex_leave(p->db->mutex);
return SQLITE_RANGE;
}
pVar = &p->aVar[i];
sqlite3VdbeMemRelease(pVar);
pVar->flags = MEM_Null;
p->db->errCode = SQLITE_OK;
/* If the bit corresponding to this variable in Vdbe.expmask is set, then
** binding a new value to this variable invalidates the current query plan.
**
** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
** parameter in the WHERE clause might influence the choice of query plan
** for a statement, then the statement will be automatically recompiled,
** as if there had been a schema change, on the first sqlite3_step() call
** following any change to the bindings of that parameter.
*/
assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
p->expired = 1;
}
return SQLITE_OK;
}
/*
** Bind a text or BLOB value.
*/
static int bindText(
sqlite3_stmt *pStmt, /* The statement to bind against */
int i, /* Index of the parameter to bind */
const void *zData, /* Pointer to the data to be bound */
i64 nData, /* Number of bytes of data to be bound */
void (*xDel)(void*), /* Destructor for the data */
u8 encoding /* Encoding for the data */
){
Vdbe *p = (Vdbe *)pStmt;
Mem *pVar;
int rc;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
if( zData!=0 ){
pVar = &p->aVar[i-1];
rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
if( rc==SQLITE_OK && encoding!=0 ){
rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
}
if( rc ){
sqlite3Error(p->db, rc);
rc = sqlite3ApiExit(p->db, rc);
}
}
sqlite3_mutex_leave(p->db->mutex);
}else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
xDel((void*)zData);
}
return rc;
}
/*
** Bind a blob value to an SQL statement variable.
*/
int sqlite3_bind_blob(
sqlite3_stmt *pStmt,
int i,
const void *zData,
int nData,
void (*xDel)(void*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
if( nData<0 ) return SQLITE_MISUSE_BKPT;
#endif
return bindText(pStmt, i, zData, nData, xDel, 0);
}
int sqlite3_bind_blob64(
sqlite3_stmt *pStmt,
int i,
const void *zData,
sqlite3_uint64 nData,
void (*xDel)(void*)
){
assert( xDel!=SQLITE_DYNAMIC );
return bindText(pStmt, i, zData, nData, xDel, 0);
}
int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
return sqlite3_bind_int64(p, i, (i64)iValue);
}
int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
int rc;
Vdbe *p = (Vdbe*)pStmt;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
int sqlite3_bind_pointer(
sqlite3_stmt *pStmt,
int i,
void *pPtr,
const char *zPTtype,
void (*xDestructor)(void*)
){
int rc;
Vdbe *p = (Vdbe*)pStmt;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
sqlite3_mutex_leave(p->db->mutex);
}else if( xDestructor ){
xDestructor(pPtr);
}
return rc;
}
int sqlite3_bind_text(
sqlite3_stmt *pStmt,
int i,
const char *zData,
int nData,
void (*xDel)(void*)
){
return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
int sqlite3_bind_text64(
sqlite3_stmt *pStmt,
int i,
const char *zData,
sqlite3_uint64 nData,
void (*xDel)(void*),
unsigned char enc
){
assert( xDel!=SQLITE_DYNAMIC );
if( enc!=SQLITE_UTF8 ){
if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
nData &= ~(u16)1;
}
return bindText(pStmt, i, zData, nData, xDel, enc);
}
#ifndef SQLITE_OMIT_UTF16
int sqlite3_bind_text16(
sqlite3_stmt *pStmt,
int i,
const void *zData,
int n,
void (*xDel)(void*)
){
return bindText(pStmt, i, zData, n & ~(u64)1, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
int rc;
switch( sqlite3_value_type((sqlite3_value*)pValue) ){
case SQLITE_INTEGER: {
rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
break;
}
case SQLITE_FLOAT: {
assert( pValue->flags & (MEM_Real|MEM_IntReal) );
rc = sqlite3_bind_double(pStmt, i,
(pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
);
break;
}
case SQLITE_BLOB: {
if( pValue->flags & MEM_Zero ){
rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
}else{
rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
}
break;
}
case SQLITE_TEXT: {
rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
pValue->enc);
break;
}
default: {
rc = sqlite3_bind_null(pStmt, i);
break;
}
}
return rc;
}
int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
int rc;
Vdbe *p = (Vdbe *)pStmt;
rc = vdbeUnbind(p, (u32)(i-1));
if( rc==SQLITE_OK ){
assert( p!=0 && p->aVar!=0 && i>0 && i<=p->nVar ); /* tag-20240917-01 */
#ifndef SQLITE_OMIT_INCRBLOB
sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
#else
rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
#endif
sqlite3_mutex_leave(p->db->mutex);
}
return rc;
}
int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
int rc;
Vdbe *p = (Vdbe *)pStmt;
#ifdef SQLITE_ENABLE_API_ARMOR
if( p==0 ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(p->db->mutex);
if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
rc = SQLITE_TOOBIG;
}else{
assert( (n & 0x7FFFFFFF)==n );
rc = sqlite3_bind_zeroblob(pStmt, i, n);
}
rc = sqlite3ApiExit(p->db, rc);
sqlite3_mutex_leave(p->db->mutex);
return rc;
}
/*
** Return the number of wildcards that can be potentially bound to.
** This routine is added to support DBD::SQLite.
*/
int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe*)pStmt;
return p ? p->nVar : 0;
}
/*
** Return the name of a wildcard parameter. Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
Vdbe *p = (Vdbe*)pStmt;
if( p==0 ) return 0;
return sqlite3VListNumToName(p->pVList, i);
}
/*
** Given a wildcard parameter name, return the index of the variable
** with that name. If there is no variable with the given name,
** return 0.
*/
int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
if( p==0 || zName==0 ) return 0;
return sqlite3VListNameToNum(p->pVList, zName, nName);
}
int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
}
/*
** Transfer all bindings from the first statement over to the second.
*/
int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
Vdbe *pFrom = (Vdbe*)pFromStmt;
Vdbe *pTo = (Vdbe*)pToStmt;
int i;
assert( pTo->db==pFrom->db );
assert( pTo->nVar==pFrom->nVar );
sqlite3_mutex_enter(pTo->db->mutex);
for(i=0; i<pFrom->nVar; i++){
sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
}
sqlite3_mutex_leave(pTo->db->mutex);
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface. Internal/core SQLite code
** should call sqlite3TransferBindings.
**
** It is misuse to call this routine with statements from different
** database connections. But as this is a deprecated interface, we
** will not bother to check for that condition.
**
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
** SQLITE_OK is returned.
*/
int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
Vdbe *pFrom = (Vdbe*)pFromStmt;
Vdbe *pTo = (Vdbe*)pToStmt;
if( pFrom->nVar!=pTo->nVar ){
return SQLITE_ERROR;
}
assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
if( pTo->expmask ){
pTo->expired = 1;
}
assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
if( pFrom->expmask ){
pFrom->expired = 1;
}
return sqlite3TransferBindings(pFromStmt, pToStmt);
}
#endif
/*
** Return the sqlite3* database handle to which the prepared statement given
** in the argument belongs. This is the same database handle that was
** the first argument to the sqlite3_prepare() that was used to create
** the statement in the first place.
*/
sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
return pStmt ? ((Vdbe*)pStmt)->db : 0;
}
/*
** Return true if the prepared statement is guaranteed to not modify the
** database.
*/
int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
}
/*
** Return 1 if the statement is an EXPLAIN and return 2 if the
** statement is an EXPLAIN QUERY PLAN
*/
int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
return pStmt ? ((Vdbe*)pStmt)->explain : 0;
}
/*
** Set the explain mode for a statement.
*/
int sqlite3_stmt_explain(sqlite3_stmt *pStmt, int eMode){
Vdbe *v = (Vdbe*)pStmt;
int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
if( pStmt==0 ) return SQLITE_MISUSE_BKPT;
#endif
sqlite3_mutex_enter(v->db->mutex);
if( ((int)v->explain)==eMode ){
rc = SQLITE_OK;
}else if( eMode<0 || eMode>2 ){
rc = SQLITE_ERROR;
}else if( (v->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
rc = SQLITE_ERROR;
}else if( v->eVdbeState!=VDBE_READY_STATE ){
rc = SQLITE_BUSY;
}else if( v->nMem>=10 && (eMode!=2 || v->haveEqpOps) ){
/* No reprepare necessary */
v->explain = eMode;
rc = SQLITE_OK;
}else{
v->explain = eMode;
rc = sqlite3Reprepare(v);
v->haveEqpOps = eMode==2;
}
if( v->explain ){
v->nResColumn = 12 - 4*v->explain;
}else{
v->nResColumn = v->nResAlloc;
}
sqlite3_mutex_leave(v->db->mutex);
return rc;
}
/*
** Return true if the prepared statement is in need of being reset.
*/
int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
Vdbe *v = (Vdbe*)pStmt;
return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
}
/*
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb. If pStmt is NULL, return the first
** prepared statement for the database connection. Return NULL if there
** are no more.
*/
sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
sqlite3_stmt *pNext;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !sqlite3SafetyCheckOk(pDb) ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
sqlite3_mutex_enter(pDb->mutex);
if( pStmt==0 ){
pNext = (sqlite3_stmt*)pDb->pVdbe;
}else{
pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext;
}
sqlite3_mutex_leave(pDb->mutex);
return pNext;
}
/*
** Return the value of a status counter for a prepared statement
*/
int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
Vdbe *pVdbe = (Vdbe*)pStmt;
u32 v;
#ifdef SQLITE_ENABLE_API_ARMOR
if( !pStmt
|| (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
if( op==SQLITE_STMTSTATUS_MEMUSED ){
sqlite3 *db = pVdbe->db;
sqlite3_mutex_enter(db->mutex);
v = 0;
db->pnBytesFreed = (int*)&v;
assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
db->lookaside.pEnd = db->lookaside.pStart;
sqlite3VdbeDelete(pVdbe);
db->pnBytesFreed = 0;
db->lookaside.pEnd = db->lookaside.pTrueEnd;
sqlite3_mutex_leave(db->mutex);
}else{
v = pVdbe->aCounter[op];
if( resetFlag ) pVdbe->aCounter[op] = 0;
}
return (int)v;
}
/*
** Return the SQL associated with a prepared statement
*/
const char *sqlite3_sql(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe *)pStmt;
return p ? p->zSql : 0;
}
/*
** Return the SQL associated with a prepared statement with
** bound parameters expanded. Space to hold the returned string is
** obtained from sqlite3_malloc(). The caller is responsible for
** freeing the returned string by passing it to sqlite3_free().
**
** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
** expanded bound parameters.
*/
char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
#ifdef SQLITE_OMIT_TRACE
return 0;
#else
char *z = 0;
const char *zSql = sqlite3_sql(pStmt);
if( zSql ){
Vdbe *p = (Vdbe *)pStmt;
sqlite3_mutex_enter(p->db->mutex);
z = sqlite3VdbeExpandSql(p, zSql);
sqlite3_mutex_leave(p->db->mutex);
}
return z;
#endif
}
#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Return the normalized SQL associated with a prepared statement.
*/
const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe *)pStmt;
if( p==0 ) return 0;
if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
sqlite3_mutex_enter(p->db->mutex);
p->zNormSql = sqlite3Normalize(p, p->zSql);
sqlite3_mutex_leave(p->db->mutex);
}
return p->zNormSql;
}
#endif /* SQLITE_ENABLE_NORMALIZE */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Allocate and populate an UnpackedRecord structure based on the serialized
** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
** if successful, or a NULL pointer if an OOM error is encountered.
*/
static UnpackedRecord *vdbeUnpackRecord(
KeyInfo *pKeyInfo,
int nKey,
const void *pKey
){
UnpackedRecord *pRet; /* Return value */
pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
if( pRet ){
memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
}
return pRet;
}
/*
** This function is called from within a pre-update callback to retrieve
** a field of the row currently being updated or deleted.
*/
int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
PreUpdate *p;
Mem *pMem;
int rc = SQLITE_OK;
#ifdef SQLITE_ENABLE_API_ARMOR
if( db==0 || ppValue==0 ){
return SQLITE_MISUSE_BKPT;
}
#endif
p = db->pPreUpdate;
/* Test that this call is being made from within an SQLITE_DELETE or
** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
if( !p || p->op==SQLITE_INSERT ){
rc = SQLITE_MISUSE_BKPT;
goto preupdate_old_out;
}
if( p->pPk ){
iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
}
if( iIdx>=p->pCsr->nField || iIdx<0 ){
rc = SQLITE_RANGE;
goto preupdate_old_out;
}
if( iIdx==p->pTab->iPKey ){
*ppValue = pMem = &p->oldipk;
sqlite3VdbeMemSetInt64(pMem, p->iKey1);
}else{
/* If the old.* record has not yet been loaded into memory, do so now. */
if( p->pUnpacked==0 ){
u32 nRec;
u8 *aRec;
assert( p->pCsr->eCurType==CURTYPE_BTREE );
nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
aRec = sqlite3DbMallocRaw(db, nRec);
if( !aRec ) goto preupdate_old_out;
rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
if( rc==SQLITE_OK ){
p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
if( !p->pUnpacked ) rc = SQLITE_NOMEM;
}
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, aRec);
goto preupdate_old_out;
}
p->aRecord = aRec;
}
pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
if( iIdx>=p->pUnpacked->nField ){
/* This occurs when the table has been extended using ALTER TABLE
** ADD COLUMN. The value to return is the default value of the column. */
Column *pCol = &p->pTab->aCol[iIdx];
if( pCol->iDflt>0 ){
if( p->apDflt==0 ){
int nByte = sizeof(sqlite3_value*)*p->pTab->nCol;
p->apDflt = (sqlite3_value**)sqlite3DbMallocZero(db, nByte);
if( p->apDflt==0 ) goto preupdate_old_out;
}
if( p->apDflt[iIdx]==0 ){
sqlite3_value *pVal = 0;
Expr *pDflt;
assert( p->pTab!=0 && IsOrdinaryTable(p->pTab) );
pDflt = p->pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
rc = sqlite3ValueFromExpr(db, pDflt, ENC(db), pCol->affinity, &pVal);
if( rc==SQLITE_OK && pVal==0 ){
rc = SQLITE_CORRUPT_BKPT;
}
p->apDflt[iIdx] = pVal;
}
*ppValue = p->apDflt[iIdx];
}else{
*ppValue = (sqlite3_value *)columnNullValue();
}
}else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
if( pMem->flags & (MEM_Int|MEM_IntReal) ){
testcase( pMem->flags & MEM_Int );
testcase( pMem->flags & MEM_IntReal );
sqlite3VdbeMemRealify(pMem);
}
}
}
preupdate_old_out:
sqlite3Error(db, rc);
return sqlite3ApiExit(db, rc);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** This function is called from within a pre-update callback to retrieve
** the number of columns in the row being updated, deleted or inserted.
*/
int sqlite3_preupdate_count(sqlite3 *db){
PreUpdate *p;
#ifdef SQLITE_ENABLE_API_ARMOR
p = db!=0 ? db->pPreUpdate : 0;
#else
p = db->pPreUpdate;
#endif
return (p ? p->keyinfo.nKeyField : 0);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** This function is designed to be called from within a pre-update callback
** only. It returns zero if the change that caused the callback was made
** immediately by a user SQL statement. Or, if the change was made by a
** trigger program, it returns the number of trigger programs currently
** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
** top-level trigger etc.).
**
** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
** or SET DEFAULT action is considered a trigger.
*/
int sqlite3_preupdate_depth(sqlite3 *db){
PreUpdate *p;
#ifdef SQLITE_ENABLE_API_ARMOR
p = db!=0 ? db->pPreUpdate : 0;
#else
p = db->pPreUpdate;
#endif
return (p ? p->v->nFrame : 0);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** This function is designed to be called from within a pre-update callback
** only.
*/
int sqlite3_preupdate_blobwrite(sqlite3 *db){
PreUpdate *p;
#ifdef SQLITE_ENABLE_API_ARMOR
p = db!=0 ? db->pPreUpdate : 0;
#else
p = db->pPreUpdate;
#endif
return (p ? p->iBlobWrite : -1);
}
#endif
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** This function is called from within a pre-update callback to retrieve
** a field of the row currently being updated or inserted.
*/
int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
PreUpdate *p;
int rc = SQLITE_OK;
Mem *pMem;
#ifdef SQLITE_ENABLE_API_ARMOR
if( db==0 || ppValue==0 ){
return SQLITE_MISUSE_BKPT;
}
#endif
p = db->pPreUpdate;
if( !p || p->op==SQLITE_DELETE ){
rc = SQLITE_MISUSE_BKPT;
goto preupdate_new_out;
}
if( p->pPk && p->op!=SQLITE_UPDATE ){
iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
}
if( iIdx>=p->pCsr->nField || iIdx<0 ){
rc = SQLITE_RANGE;
goto preupdate_new_out;
}
if( p->op==SQLITE_INSERT ){
/* For an INSERT, memory cell p->iNewReg contains the serialized record
** that is being inserted. Deserialize it. */
UnpackedRecord *pUnpack = p->pNewUnpacked;
if( !pUnpack ){
Mem *pData = &p->v->aMem[p->iNewReg];
rc = ExpandBlob(pData);
if( rc!=SQLITE_OK ) goto preupdate_new_out;
pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
if( !pUnpack ){
rc = SQLITE_NOMEM;
goto preupdate_new_out;
}
p->pNewUnpacked = pUnpack;
}
pMem = &pUnpack->aMem[iIdx];
if( iIdx==p->pTab->iPKey ){
sqlite3VdbeMemSetInt64(pMem, p->iKey2);
}else if( iIdx>=pUnpack->nField ){
pMem = (sqlite3_value *)columnNullValue();
}
}else{
/* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
** value. Make a copy of the cell contents and return a pointer to it.
** It is not safe to return a pointer to the memory cell itself as the
** caller may modify the value text encoding.
*/
assert( p->op==SQLITE_UPDATE );
if( !p->aNew ){
p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
if( !p->aNew ){
rc = SQLITE_NOMEM;
goto preupdate_new_out;
}
}
assert( iIdx>=0 && iIdx<p->pCsr->nField );
pMem = &p->aNew[iIdx];
if( pMem->flags==0 ){
if( iIdx==p->pTab->iPKey ){
sqlite3VdbeMemSetInt64(pMem, p->iKey2);
}else{
rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
if( rc!=SQLITE_OK ) goto preupdate_new_out;
}
}
}
*ppValue = pMem;
preupdate_new_out:
sqlite3Error(db, rc);
return sqlite3ApiExit(db, rc);
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Return status data for a single loop within query pStmt.
*/
int sqlite3_stmt_scanstatus_v2(
sqlite3_stmt *pStmt, /* Prepared statement being queried */
int iScan, /* Index of loop to report on */
int iScanStatusOp, /* Which metric to return */
int flags,
void *pOut /* OUT: Write the answer here */
){
Vdbe *p = (Vdbe*)pStmt;
VdbeOp *aOp;
int nOp;
ScanStatus *pScan = 0;
int idx;
#ifdef SQLITE_ENABLE_API_ARMOR
if( p==0 || pOut==0
|| iScanStatusOp<SQLITE_SCANSTAT_NLOOP
|| iScanStatusOp>SQLITE_SCANSTAT_NCYCLE ){
return 1;
}
#endif
aOp = p->aOp;
nOp = p->nOp;
if( p->pFrame ){
VdbeFrame *pFrame;
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
aOp = pFrame->aOp;
nOp = pFrame->nOp;
}
if( iScan<0 ){
int ii;
if( iScanStatusOp==SQLITE_SCANSTAT_NCYCLE ){
i64 res = 0;
for(ii=0; ii<nOp; ii++){
res += aOp[ii].nCycle;
}
*(i64*)pOut = res;
return 0;
}
return 1;
}
if( flags & SQLITE_SCANSTAT_COMPLEX ){
idx = iScan;
}else{
/* If the COMPLEX flag is clear, then this function must ignore any
** ScanStatus structures with ScanStatus.addrLoop set to 0. */
for(idx=0; idx<p->nScan; idx++){
pScan = &p->aScan[idx];
if( pScan->zName ){
iScan--;
if( iScan<0 ) break;
}
}
}
if( idx>=p->nScan ) return 1;
assert( pScan==0 || pScan==&p->aScan[idx] );
pScan = &p->aScan[idx];
switch( iScanStatusOp ){
case SQLITE_SCANSTAT_NLOOP: {
if( pScan->addrLoop>0 ){
*(sqlite3_int64*)pOut = aOp[pScan->addrLoop].nExec;
}else{
*(sqlite3_int64*)pOut = -1;
}
break;
}
case SQLITE_SCANSTAT_NVISIT: {
if( pScan->addrVisit>0 ){
*(sqlite3_int64*)pOut = aOp[pScan->addrVisit].nExec;
}else{
*(sqlite3_int64*)pOut = -1;
}
break;
}
case SQLITE_SCANSTAT_EST: {
double r = 1.0;
LogEst x = pScan->nEst;
while( x<100 ){
x += 10;
r *= 0.5;
}
*(double*)pOut = r*sqlite3LogEstToInt(x);
break;
}
case SQLITE_SCANSTAT_NAME: {
*(const char**)pOut = pScan->zName;
break;
}
case SQLITE_SCANSTAT_EXPLAIN: {
if( pScan->addrExplain ){
*(const char**)pOut = aOp[ pScan->addrExplain ].p4.z;
}else{
*(const char**)pOut = 0;
}
break;
}
case SQLITE_SCANSTAT_SELECTID: {
if( pScan->addrExplain ){
*(int*)pOut = aOp[ pScan->addrExplain ].p1;
}else{
*(int*)pOut = -1;
}
break;
}
case SQLITE_SCANSTAT_PARENTID: {
if( pScan->addrExplain ){
*(int*)pOut = aOp[ pScan->addrExplain ].p2;
}else{
*(int*)pOut = -1;
}
break;
}
case SQLITE_SCANSTAT_NCYCLE: {
i64 res = 0;
if( pScan->aAddrRange[0]==0 ){
res = -1;
}else{
int ii;
for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
int iIns = pScan->aAddrRange[ii];
int iEnd = pScan->aAddrRange[ii+1];
if( iIns==0 ) break;
if( iIns>0 ){
while( iIns<=iEnd ){
res += aOp[iIns].nCycle;
iIns++;
}
}else{
int iOp;
for(iOp=0; iOp<nOp; iOp++){
Op *pOp = &aOp[iOp];
if( pOp->p1!=iEnd ) continue;
if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_NCYCLE)==0 ){
continue;
}
res += aOp[iOp].nCycle;
}
}
}
}
*(i64*)pOut = res;
break;
}
default: {
return 1;
}
}
return 0;
}
/*
** Return status data for a single loop within query pStmt.
*/
int sqlite3_stmt_scanstatus(
sqlite3_stmt *pStmt, /* Prepared statement being queried */
int iScan, /* Index of loop to report on */
int iScanStatusOp, /* Which metric to return */
void *pOut /* OUT: Write the answer here */
){
return sqlite3_stmt_scanstatus_v2(pStmt, iScan, iScanStatusOp, 0, pOut);
}
/*
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
*/
void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
Vdbe *p = (Vdbe*)pStmt;
int ii;
for(ii=0; p!=0 && ii<p->nOp; ii++){
Op *pOp = &p->aOp[ii];
pOp->nExec = 0;
pOp->nCycle = 0;
}
}
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */