SQLite

Artifact [18a53540]
Login

Artifact 18a53540aa35dbdf77f715ea928422a4ed9011dc16ea7b50f803fd1617fcc4f5:


     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
   286
   287
   288
   289
   290
   291
   292
   293
   294
   295
   296
   297
   298
   299
   300
   301
   302
   303
   304
   305
   306
   307
   308
   309
   310
   311
   312
   313
   314
   315
   316
   317
   318
   319
   320
   321
   322
   323
   324
   325
   326
   327
   328
   329
   330
   331
   332
   333
   334
   335
   336
   337
   338
   339
   340
   341
   342
   343
   344
   345
   346
   347
   348
   349
   350
   351
   352
   353
   354
   355
   356
   357
   358
   359
   360
   361
   362
   363
   364
   365
   366
   367
   368
   369
   370
   371
   372
   373
   374
   375
   376
   377
   378
   379
   380
   381
   382
   383
   384
   385
   386
   387
   388
   389
   390
   391
   392
   393
   394
   395
   396
   397
   398
   399
   400
   401
   402
   403
   404
   405
   406
   407
   408
   409
   410
   411
   412
   413
   414
   415
   416
   417
   418
   419
   420
   421
   422
   423
   424
   425
   426
   427
   428
   429
   430
   431
   432
   433
   434
   435
   436
   437
   438
   439
   440
   441
   442
   443
   444
   445
   446
   447
   448
   449
   450
   451
   452
   453
   454
   455
   456
   457
   458
   459
   460
   461
   462
   463
   464
   465
   466
   467
   468
   469
   470
   471
   472
   473
   474
   475
   476
   477
   478
   479
   480
   481
   482
   483
   484
   485
   486
   487
   488
   489
   490
   491
   492
   493
   494
   495
   496
   497
   498
   499
   500
   501
   502
   503
   504
   505
   506
   507
   508
   509
   510
   511
   512
   513
   514
   515
   516
   517
   518
   519
   520
   521
   522
   523
   524
   525
   526
   527
   528
   529
   530
   531
   532
   533
   534
   535
   536
   537
   538
   539
   540
   541
   542
   543
   544
   545
   546
   547
   548
   549
   550
   551
   552
   553
   554
   555
   556
   557
   558
   559
   560
   561
   562
   563
   564
   565
   566
   567
   568
   569
   570
   571
   572
   573
   574
   575
   576
   577
   578
   579
   580
   581
   582
   583
   584
   585
   586
   587
   588
   589
   590
   591
   592
   593
   594
   595
   596
   597
   598
   599
   600
   601
   602
   603
   604
   605
   606
   607
   608
   609
   610
   611
   612
   613
   614
   615
   616
   617
   618
   619
   620
   621
   622
   623
   624
   625
   626
   627
   628
   629
   630
   631
   632
   633
   634
   635
   636
   637
   638
   639
   640
   641
   642
   643
   644
   645
   646
   647
   648
   649
   650
   651
   652
   653
   654
   655
   656
   657
   658
   659
   660
   661
   662
   663
   664
   665
   666
   667
   668
   669
   670
   671
   672
   673
   674
   675
   676
   677
   678
   679
   680
   681
   682
   683
   684
   685
   686
   687
   688
   689
   690
   691
   692
   693
   694
   695
   696
   697
   698
   699
   700
   701
   702
   703
   704
   705
   706
   707
   708
   709
   710
   711
   712
   713
   714
   715
   716
   717
   718
   719
   720
   721
   722
   723
   724
   725
   726
   727
   728
   729
   730
   731
   732
   733
   734
   735
   736
   737
   738
   739
   740
   741
   742
   743
   744
   745
   746
   747
   748
   749
   750
   751
   752
   753
   754
   755
   756
   757
   758
   759
   760
   761
   762
   763
   764
   765
   766
   767
   768
   769
   770
   771
   772
   773
   774
   775
   776
   777
   778
   779
   780
   781
   782
   783
   784
   785
   786
   787
   788
   789
   790
   791
   792
   793
   794
   795
   796
   797
   798
   799
   800
   801
   802
   803
   804
   805
   806
   807
   808
   809
   810
   811
   812
   813
   814
   815
   816
   817
   818
   819
   820
   821
   822
   823
   824
   825
   826
   827
   828
   829
   830
   831
   832
   833
   834
   835
   836
   837
   838
   839
   840
   841
   842
   843
   844
   845
   846
   847
   848
   849
   850
   851
   852
   853
   854
   855
   856
   857
   858
   859
   860
   861
   862
   863
   864
   865
   866
   867
   868
   869
   870
   871
   872
   873
   874
   875
   876
   877
   878
   879
   880
   881
   882
   883
   884
   885
   886
   887
   888
   889
   890
   891
   892
   893
   894
   895
   896
   897
   898
   899
   900
   901
   902
   903
   904
   905
   906
   907
   908
   909
   910
   911
   912
   913
   914
   915
   916
   917
   918
   919
   920
   921
   922
   923
   924
   925
   926
   927
   928
   929
   930
   931
   932
   933
   934
   935
   936
   937
   938
   939
   940
   941
   942
   943
   944
   945
   946
   947
   948
   949
   950
   951
   952
   953
   954
   955
   956
   957
   958
   959
   960
   961
   962
   963
   964
   965
   966
   967
   968
   969
   970
   971
   972
   973
   974
   975
   976
   977
   978
   979
   980
   981
   982
   983
   984
   985
   986
   987
   988
   989
   990
   991
   992
   993
   994
   995
   996
   997
   998
   999
  1000
  1001
  1002
  1003
  1004
  1005
  1006
  1007
  1008
  1009
  1010
  1011
  1012
  1013
  1014
  1015
  1016
  1017
  1018
  1019
  1020
  1021
  1022
  1023
  1024
  1025
  1026
  1027
  1028
  1029
  1030
  1031
  1032
  1033
  1034
  1035
  1036
  1037
  1038
  1039
  1040
  1041
  1042
  1043
  1044
  1045
  1046
  1047
  1048
  1049
  1050
  1051
  1052
  1053
  1054
  1055
  1056
  1057
  1058
  1059
  1060
  1061
  1062
  1063
  1064
  1065
  1066
  1067
  1068
  1069
  1070
  1071
  1072
  1073
  1074
  1075
  1076
  1077
  1078
  1079
  1080
  1081
  1082
  1083
  1084
  1085
  1086
  1087
  1088
  1089
  1090
  1091
  1092
  1093
  1094
  1095
  1096
  1097
  1098
  1099
  1100
  1101
  1102
  1103
  1104
  1105
  1106
  1107
  1108
  1109
  1110
  1111
  1112
  1113
  1114
  1115
  1116
  1117
  1118
  1119
  1120
  1121
  1122
  1123
  1124
  1125
  1126
  1127
  1128
  1129
  1130
  1131
  1132
  1133
  1134
  1135
  1136
  1137
  1138
  1139
  1140
  1141
  1142
  1143
  1144
  1145
  1146
  1147
  1148
  1149
  1150
  1151
  1152
  1153
  1154
  1155
  1156
  1157
  1158
  1159
  1160
  1161
  1162
  1163
  1164
  1165
  1166
  1167
  1168
  1169
  1170
  1171
  1172
  1173
  1174
  1175
  1176
  1177
  1178
  1179
  1180
  1181
  1182
  1183
  1184
  1185
  1186
  1187
  1188
  1189
  1190
  1191
  1192
  1193
  1194
  1195
  1196
  1197
  1198
  1199
  1200
  1201
  1202
  1203
  1204
  1205
  1206
  1207
  1208
  1209
  1210
  1211
  1212
  1213
  1214
  1215
  1216
  1217
  1218
  1219
  1220
  1221
  1222
  1223
  1224
  1225
  1226
  1227
  1228
  1229
  1230
  1231
  1232
  1233
  1234
  1235
  1236
  1237
  1238
  1239
  1240
  1241
  1242
  1243
  1244
  1245
  1246
  1247
  1248
  1249
  1250
  1251
  1252
  1253
  1254
  1255
  1256
  1257
  1258
  1259
  1260
  1261
  1262
  1263
  1264
  1265
  1266
  1267
  1268
  1269
  1270
  1271
  1272
  1273
  1274
  1275
  1276
  1277
  1278
  1279
  1280
  1281
  1282
  1283
  1284
  1285
  1286
  1287
  1288
  1289
  1290
  1291
  1292
  1293
  1294
  1295
  1296
  1297
  1298
  1299
  1300
  1301
  1302
  1303
  1304
  1305
  1306
  1307
  1308
  1309
  1310
  1311
  1312
  1313
  1314
  1315
  1316
  1317
  1318
  1319
  1320
  1321
  1322
  1323
  1324
  1325
  1326
  1327
  1328
  1329
  1330
  1331
  1332
  1333
  1334
  1335
  1336
  1337
  1338
  1339
  1340
  1341
  1342
  1343
  1344
  1345
  1346
  1347
  1348
  1349
  1350
  1351
  1352
  1353
  1354
  1355
  1356
  1357
  1358
  1359
  1360
  1361
  1362
  1363
  1364
  1365
  1366
  1367
  1368
  1369
  1370
  1371
  1372
  1373
  1374
  1375
  1376
  1377
  1378
  1379
  1380
  1381
  1382
  1383
  1384
  1385
  1386
  1387
  1388
  1389
  1390
  1391
  1392
  1393
  1394
  1395
  1396
  1397
  1398
  1399
  1400
  1401
  1402
  1403
  1404
  1405
  1406
  1407
  1408
  1409
  1410
  1411
  1412
  1413
  1414
  1415
  1416
  1417
  1418
  1419
  1420
  1421
  1422
  1423
  1424
  1425
  1426
  1427
  1428
  1429
  1430
  1431
  1432
  1433
  1434
  1435
  1436
  1437
  1438
  1439
  1440
  1441
  1442
  1443
  1444
  1445
  1446
  1447
  1448
  1449
  1450
  1451
  1452
  1453
  1454
  1455
  1456
  1457
  1458
  1459
  1460
  1461
  1462
  1463
  1464
  1465
  1466
  1467
  1468
  1469
  1470
  1471
  1472
  1473
  1474
  1475
  1476
  1477
  1478
  1479
  1480
  1481
  1482
  1483
  1484
  1485
  1486
  1487
  1488
  1489
  1490
  1491
  1492
  1493
  1494
  1495
  1496
  1497
  1498
  1499
  1500
  1501
  1502
  1503
  1504
  1505
  1506
  1507
  1508
  1509
  1510
  1511
  1512
  1513
  1514
  1515
  1516
  1517
  1518
  1519
  1520
  1521
  1522
  1523
  1524
  1525
  1526
  1527
  1528
  1529
  1530
  1531
  1532
  1533
  1534
  1535
  1536
  1537
  1538
  1539
  1540
  1541
  1542
  1543
  1544
  1545
  1546
  1547
  1548
  1549
  1550
  1551
  1552
  1553
  1554
  1555
  1556
  1557
  1558
  1559
  1560
  1561
  1562
  1563
  1564
  1565
  1566
  1567
  1568
  1569
  1570
  1571
  1572
  1573
  1574
  1575
  1576
  1577
  1578
  1579
  1580
  1581
  1582
  1583
  1584
  1585
  1586
  1587
  1588
  1589
  1590
  1591
  1592
  1593
  1594
  1595
  1596
  1597
  1598
  1599
  1600
  1601
  1602
  1603
  1604
  1605
  1606
  1607
  1608
  1609
  1610
  1611
  1612
  1613
  1614
  1615
  1616
  1617
  1618
  1619
  1620
  1621
  1622
  1623
  1624
  1625
  1626
  1627
  1628
  1629
  1630
  1631
  1632
  1633
  1634
  1635
  1636
  1637
  1638
  1639
  1640
  1641
  1642
  1643
  1644
  1645
  1646
  1647
  1648
  1649
  1650
  1651
  1652
  1653
  1654
  1655
  1656
  1657
  1658
  1659
  1660
  1661
  1662
  1663
  1664
  1665
  1666
  1667
  1668
  1669
  1670
  1671
  1672
  1673
  1674
  1675
  1676
  1677
  1678
  1679
  1680
  1681
  1682
  1683
  1684
  1685
  1686
  1687
  1688
  1689
  1690
  1691
  1692
  1693
  1694
  1695
  1696
  1697
  1698
  1699
  1700
  1701
  1702
  1703
  1704
  1705
  1706
  1707
  1708
  1709
  1710
  1711
  1712
  1713
  1714
  1715
  1716
  1717
  1718
  1719
  1720
  1721
  1722
  1723
  1724
  1725
  1726
  1727
  1728
  1729
  1730
  1731
  1732
  1733
  1734
  1735
  1736
  1737
  1738
  1739
  1740
  1741
  1742
  1743
  1744
  1745
  1746
  1747
  1748
  1749
  1750
  1751
  1752
  1753
  1754
  1755
  1756
  1757
  1758
  1759
  1760
  1761
  1762
  1763
  1764
  1765
  1766
  1767
  1768
  1769
  1770
  1771
  1772
  1773
  1774
  1775
  1776
  1777
  1778
  1779
  1780
  1781
  1782
  1783
  1784
  1785
  1786
  1787
  1788
  1789
  1790
  1791
  1792
  1793
  1794
  1795
  1796
  1797
  1798
  1799
  1800
  1801
  1802
  1803
  1804
  1805
  1806
  1807
  1808
  1809
  1810
  1811
  1812
  1813
  1814
  1815
  1816
  1817
  1818
  1819
  1820
  1821
  1822
  1823
  1824
  1825
  1826
  1827
  1828
  1829
  1830
  1831
  1832
  1833
  1834
  1835
  1836
  1837
  1838
  1839
  1840
  1841
  1842
  1843
  1844
  1845
  1846
  1847
  1848
  1849
  1850
  1851
  1852
  1853
  1854
  1855
  1856
  1857
  1858
  1859
  1860
  1861
  1862
  1863
  1864
  1865
  1866
  1867
  1868
  1869
  1870
  1871
  1872
  1873
  1874
  1875
  1876
  1877
  1878
  1879
  1880
  1881
  1882
  1883
  1884
  1885
  1886
  1887
  1888
  1889
  1890
  1891
  1892
  1893
  1894
  1895
  1896
  1897
  1898
  1899
  1900
  1901
  1902
  1903
  1904
  1905
  1906
  1907
  1908
  1909
  1910
  1911
  1912
  1913
  1914
  1915
  1916
  1917
  1918
  1919
  1920
  1921
  1922
  1923
  1924
  1925
  1926
  1927
  1928
  1929
  1930
  1931
  1932
  1933
  1934
  1935
  1936
  1937
  1938
  1939
  1940
  1941
  1942
  1943
  1944
  1945
  1946
  1947
  1948
  1949
  1950
  1951
  1952
  1953
  1954
  1955
  1956
  1957
  1958
  1959
  1960
  1961
  1962
  1963
  1964
  1965
  1966
  1967
  1968
  1969
  1970
  1971
  1972
  1973
  1974
  1975
  1976
  1977
  1978
  1979
  1980
  1981
  1982
  1983
  1984
  1985
  1986
  1987
  1988
  1989
  1990
  1991
  1992
  1993
  1994
  1995
  1996
  1997
  1998
  1999
  2000
  2001
  2002
  2003
  2004
  2005
  2006
  2007
  2008
  2009
  2010
  2011
  2012
  2013
  2014
  2015
  2016
  2017
  2018
  2019
  2020
  2021
  2022
  2023
  2024
  2025
  2026
  2027
  2028
  2029
  2030
  2031
  2032
  2033
  2034
  2035
  2036
  2037
  2038
  2039
  2040
  2041
  2042
  2043
  2044
  2045
  2046
  2047
  2048
  2049
  2050
  2051
  2052
  2053
  2054
  2055
  2056
  2057
  2058
  2059
  2060
  2061
  2062
  2063
  2064
  2065
  2066
  2067
  2068
  2069
  2070
  2071
  2072
  2073
  2074
  2075
  2076
  2077
  2078
  2079
  2080
  2081
  2082
  2083
  2084
  2085
  2086
  2087
  2088
  2089
  2090
  2091
  2092
  2093
  2094
  2095
  2096
  2097
  2098
  2099
  2100
  2101
  2102
  2103
  2104
  2105
  2106
  2107
  2108
  2109
  2110
  2111
  2112
  2113
  2114
  2115
  2116
  2117
  2118
  2119
  2120
  2121
  2122
  2123
  2124
  2125
  2126
  2127
  2128
  2129
  2130
  2131
  2132
  2133
  2134
  2135
  2136
  2137
  2138
  2139
  2140
  2141
  2142
  2143
  2144
  2145
  2146
  2147
  2148
  2149
  2150
  2151
  2152
  2153
  2154
  2155
  2156
  2157
  2158
  2159
  2160
  2161
  2162
  2163
  2164
  2165
  2166
  2167
  2168
  2169
  2170
  2171
  2172
  2173
  2174
  2175
  2176
  2177
  2178
  2179
  2180
  2181
  2182
  2183
  2184
  2185
  2186
  2187
  2188
  2189
  2190
  2191
  2192
  2193
  2194
  2195
  2196
  2197
  2198
  2199
  2200
  2201
  2202
  2203
  2204
  2205
  2206
  2207
  2208
  2209
  2210
  2211
  2212
  2213
  2214
  2215
  2216
  2217
  2218
  2219
  2220
  2221
  2222
  2223
  2224
  2225
  2226
  2227
  2228
  2229
  2230
  2231
  2232
  2233
  2234
  2235
  2236
  2237
  2238
  2239
  2240
  2241
  2242
  2243
  2244
  2245
  2246
  2247
  2248
  2249
  2250
  2251
  2252
  2253
  2254
  2255
  2256
  2257
  2258
  2259
  2260
  2261
  2262
  2263
  2264
  2265
  2266
  2267
  2268
  2269
  2270
  2271
  2272
  2273
  2274
  2275
  2276
  2277
  2278
  2279
  2280
  2281
  2282
  2283
  2284
  2285
  2286
  2287
  2288
  2289
  2290
  2291
  2292
  2293
  2294
  2295
  2296
  2297
  2298
  2299
  2300
  2301
  2302
  2303
  2304
  2305
  2306
  2307
  2308
  2309
  2310
  2311
  2312
  2313
  2314
  2315
  2316
  2317
  2318
  2319
  2320
  2321
  2322
  2323
  2324
  2325
  2326
  2327
  2328
  2329
  2330
  2331
  2332
  2333
  2334
  2335
  2336
  2337
  2338
  2339
  2340
  2341
  2342
  2343
  2344
  2345
  2346
  2347
  2348
  2349
  2350
  2351
  2352
  2353
  2354
  2355
  2356
  2357
  2358
  2359
  2360
  2361
  2362
  2363
  2364
  2365
  2366
  2367
  2368
  2369
  2370
  2371
  2372
  2373
  2374
  2375
  2376
  2377
  2378
  2379
  2380
  2381
  2382
  2383
  2384
  2385
  2386
  2387
  2388
  2389
  2390
  2391
  2392
  2393
  2394
  2395
  2396
  2397
  2398
  2399
  2400
  2401
  2402
  2403
  2404
  2405
  2406
  2407
  2408
  2409
  2410
  2411
  2412
  2413
  2414
  2415
  2416
  2417
  2418
  2419
  2420
  2421
  2422
  2423
  2424
  2425
  2426
  2427
  2428
  2429
  2430
  2431
  2432
  2433
  2434
  2435
  2436
  2437
  2438
  2439
  2440
  2441
  2442
  2443
  2444
  2445
  2446
  2447
  2448
  2449
  2450
  2451
  2452
  2453
  2454
  2455
  2456
  2457
  2458
  2459
  2460
  2461
  2462
  2463
  2464
  2465
  2466
  2467
  2468
  2469
  2470
  2471
  2472
  2473
  2474
  2475
  2476
  2477
  2478
  2479
  2480
  2481
  2482
  2483
  2484
  2485
  2486
  2487
  2488
  2489
  2490
  2491
  2492
  2493
  2494
  2495
  2496
  2497
  2498
  2499
  2500
  2501
  2502
  2503
  2504
  2505
  2506
  2507
  2508
  2509
  2510
  2511
  2512
  2513
  2514
  2515
  2516
  2517
  2518
  2519
  2520
  2521
  2522
  2523
  2524
  2525
  2526
  2527
  2528
  2529
  2530
  2531
  2532
  2533
  2534
  2535
  2536
  2537
  2538
  2539
  2540
  2541
  2542
  2543
  2544
  2545
  2546
  2547
  2548
  2549
  2550
  2551
  2552
  2553
  2554
  2555
  2556
  2557
  2558
  2559
  2560
  2561
  2562
  2563
  2564
  2565
  2566
  2567
  2568
  2569
  2570
  2571
  2572
  2573
  2574
  2575
  2576
  2577
  2578
  2579
  2580
  2581
  2582
  2583
  2584
  2585
  2586
  2587
  2588
  2589
  2590
  2591
  2592
  2593
  2594
  2595
  2596
  2597
  2598
  2599
  2600
  2601
  2602
  2603
  2604
  2605
  2606
  2607
  2608
  2609
  2610
  2611
  2612
  2613
  2614
  2615
  2616
  2617
  2618
  2619
  2620
  2621
  2622
  2623
  2624
  2625
  2626
  2627
  2628
  2629
  2630
  2631
  2632
  2633
  2634
  2635
  2636
  2637
  2638
  2639
  2640
  2641
  2642
  2643
  2644
  2645
  2646
  2647
  2648
  2649
  2650
  2651
  2652
  2653
  2654
  2655
  2656
  2657
  2658
  2659
  2660
  2661
  2662
  2663
  2664
  2665
  2666
  2667
  2668
  2669
  2670
  2671
  2672
  2673
  2674
  2675
  2676
  2677
  2678
  2679
  2680
  2681
  2682
  2683
  2684
  2685
  2686
  2687
  2688
  2689
  2690
  2691
  2692
  2693
  2694
  2695
  2696
  2697
  2698
  2699
  2700
  2701
  2702
  2703
  2704
  2705
  2706
  2707
  2708
  2709
  2710
  2711
  2712
  2713
  2714
  2715
  2716
  2717
  2718
  2719
  2720
  2721
  2722
  2723
  2724
  2725
  2726
  2727
  2728
  2729
  2730
  2731
  2732
  2733
  2734
  2735
  2736
  2737
  2738
  2739
  2740
  2741
  2742
  2743
  2744
  2745
  2746
  2747
  2748
  2749
  2750
  2751
  2752
  2753
  2754
  2755
  2756
  2757
  2758
  2759
  2760
  2761
  2762
  2763
  2764
  2765
  2766
  2767
  2768
  2769
  2770
  2771
  2772
  2773
  2774
  2775
  2776
  2777
  2778
  2779
  2780
  2781
  2782
  2783
  2784
  2785
  2786
  2787
  2788
  2789
  2790
  2791
  2792
  2793
  2794
  2795
  2796
  2797
  2798
  2799
  2800
  2801
  2802
  2803
  2804
  2805
  2806
  2807
  2808
  2809
  2810
  2811
  2812
  2813
  2814
  2815
  2816
  2817
  2818
  2819
  2820
  2821
  2822
  2823
  2824
  2825
  2826
  2827
  2828
  2829
  2830
  2831
  2832
  2833
  2834
  2835
  2836
  2837
  2838
  2839
  2840
  2841
  2842
  2843
  2844
  2845
  2846
  2847
  2848
  2849
  2850
  2851
  2852
  2853
  2854
  2855
  2856
  2857
  2858
  2859
  2860
  2861
  2862
  2863
  2864
  2865
  2866
  2867
  2868
  2869
  2870
  2871
  2872
  2873
  2874
  2875
  2876
  2877
  2878
  2879
  2880
  2881
  2882
  2883
  2884
  2885
  2886
  2887
  2888
  2889
  2890
  2891
  2892
  2893
  2894
  2895
  2896
  2897
  2898
  2899
  2900
  2901
  2902
  2903
  2904
  2905
  2906
  2907
  2908
  2909
  2910
  2911
  2912
  2913
  2914
  2915
  2916
  2917
  2918
  2919
  2920
  2921
  2922
  2923
  2924
  2925
  2926
  2927
  2928
  2929
  2930
  2931
  2932
  2933
  2934
  2935
  2936
  2937
  2938
  2939
  2940
  2941
  2942
  2943
  2944
  2945
  2946
  2947
  2948
  2949
  2950
  2951
  2952
  2953
  2954
  2955
  2956
  2957
  2958
  2959
  2960
  2961
  2962
  2963
  2964
  2965
  2966
  2967
  2968
  2969
  2970
  2971
  2972
  2973
  2974
  2975
  2976
  2977
  2978
  2979
  2980
  2981
  2982
  2983
  2984
  2985
  2986
  2987
  2988
  2989
  2990
  2991
  2992
  2993
  2994
  2995
  2996
  2997
  2998
  2999
  3000
  3001
  3002
  3003
  3004
  3005
  3006
  3007
  3008
  3009
  3010
  3011
  3012
  3013
  3014
  3015
  3016
  3017
  3018
  3019
  3020
  3021
  3022
  3023
  3024
  3025
  3026
  3027
  3028
  3029
  3030
  3031
  3032
  3033
  3034
  3035
  3036
  3037
  3038
  3039
  3040
  3041
  3042
  3043
  3044
  3045
  3046
  3047
  3048
  3049
  3050
  3051
  3052
  3053
  3054
  3055
  3056
  3057
  3058
  3059
  3060
  3061
  3062
  3063
  3064
  3065
  3066
  3067
  3068
  3069
  3070
  3071
  3072
  3073
  3074
  3075
  3076
  3077
  3078
  3079
  3080
  3081
  3082
  3083
  3084
  3085
  3086
  3087
  3088
  3089
  3090
  3091
  3092
  3093
  3094
  3095
  3096
  3097
  3098
  3099
  3100
  3101
  3102
  3103
  3104
  3105
  3106
  3107
  3108
  3109
  3110
  3111
  3112
  3113
  3114
  3115
  3116
  3117
  3118
  3119
  3120
  3121
  3122
  3123
  3124
  3125
  3126
  3127
  3128
  3129
  3130
  3131
  3132
  3133
  3134
  3135
  3136
  3137
  3138
  3139
  3140
  3141
  3142
  3143
  3144
  3145
  3146
  3147
  3148
  3149
  3150
  3151
  3152
  3153
  3154
  3155
  3156
  3157
  3158
  3159
  3160
  3161
  3162
  3163
  3164
  3165
  3166
  3167
  3168
  3169
  3170
  3171
  3172
  3173
  3174
  3175
  3176
  3177
  3178
  3179
  3180
  3181
  3182
  3183
  3184
  3185
  3186
  3187
  3188
  3189
  3190
  3191
  3192
  3193
  3194
  3195
  3196
  3197
  3198
  3199
  3200
  3201
  3202
  3203
  3204
  3205
  3206
  3207
  3208
  3209
  3210
  3211
  3212
  3213
  3214
  3215
  3216
  3217
  3218
  3219
  3220
  3221
  3222
  3223
  3224
  3225
  3226
  3227
  3228
  3229
  3230
  3231
  3232
  3233
  3234
  3235
  3236
  3237
  3238
  3239
  3240
  3241
  3242
  3243
  3244
  3245
  3246
  3247
  3248
  3249
  3250
  3251
  3252
  3253
  3254
  3255
  3256
  3257
  3258
  3259
  3260
  3261
  3262
  3263
  3264
  3265
  3266
  3267
  3268
  3269
  3270
  3271
  3272
  3273
  3274
  3275
  3276
  3277
  3278
  3279
  3280
  3281
  3282
  3283
  3284
  3285
  3286
  3287
  3288
  3289
  3290
  3291
  3292
  3293
  3294
  3295
  3296
  3297
  3298
  3299
  3300
  3301
  3302
  3303
  3304
  3305
  3306
  3307
  3308
  3309
  3310
  3311
  3312
  3313
  3314
  3315
  3316
  3317
  3318
  3319
  3320
  3321
  3322
  3323
  3324
  3325
  3326
  3327
  3328
  3329
  3330
  3331
  3332
  3333
  3334
  3335
  3336
  3337
  3338
  3339
  3340
  3341
  3342
  3343
  3344
  3345
  3346
  3347
  3348
  3349
  3350
  3351
  3352
  3353
  3354
  3355
  3356
  3357
  3358
  3359
  3360
  3361
  3362
  3363
  3364
  3365
  3366
  3367
  3368
  3369
  3370
  3371
  3372
  3373
  3374
  3375
  3376
  3377
  3378
  3379
  3380
  3381
  3382
  3383
  3384
  3385
  3386
  3387
  3388
  3389
  3390
  3391
  3392
  3393
  3394
  3395
  3396
  3397
  3398
  3399
  3400
  3401
  3402
  3403
  3404
  3405
  3406
  3407
  3408
  3409
  3410
  3411
  3412
  3413
  3414
  3415
  3416
  3417
  3418
  3419
  3420
  3421
  3422
  3423
  3424
  3425
  3426
  3427
  3428
  3429
  3430
  3431
  3432
  3433
  3434
  3435
  3436
  3437
  3438
  3439
  3440
  3441
  3442
  3443
  3444
  3445
  3446
  3447
  3448
  3449
  3450
  3451
  3452
  3453
  3454
  3455
  3456
  3457
  3458
  3459
  3460
  3461
  3462
  3463
  3464
  3465
  3466
  3467
  3468
  3469
  3470
  3471
  3472
  3473
  3474
  3475
  3476
  3477
  3478
  3479
  3480
  3481
  3482
  3483
  3484
  3485
  3486
  3487
  3488
  3489
  3490
  3491
  3492
  3493
  3494
  3495
  3496
  3497
  3498
  3499
  3500
  3501
  3502
  3503
  3504
  3505
  3506
  3507
  3508
  3509
  3510
  3511
  3512
  3513
  3514
  3515
  3516
  3517
  3518
  3519
  3520
  3521
  3522
  3523
  3524
  3525
  3526
  3527
  3528
  3529
  3530
  3531
  3532
  3533
  3534
  3535
  3536
  3537
  3538
  3539
  3540
  3541
  3542
  3543
  3544
  3545
  3546
  3547
  3548
  3549
  3550
  3551
  3552
  3553
  3554
  3555
  3556
  3557
  3558
  3559
  3560
  3561
  3562
  3563
  3564
  3565
  3566
  3567
  3568
  3569
  3570
  3571
  3572
  3573
  3574
  3575
  3576
  3577
  3578
  3579
  3580
  3581
  3582
  3583
  3584
  3585
  3586
  3587
  3588
  3589
  3590
  3591
  3592
  3593
  3594
  3595
  3596
  3597
  3598
  3599
  3600
  3601
  3602
  3603
  3604
  3605
  3606
  3607
  3608
  3609
  3610
  3611
  3612
  3613
  3614
  3615
  3616
  3617
  3618
  3619
  3620
  3621
  3622
  3623
  3624
  3625
  3626
  3627
  3628
  3629
  3630
  3631
  3632
  3633
  3634
  3635
  3636
  3637
  3638
  3639
  3640
  3641
  3642
  3643
  3644
  3645
  3646
  3647
  3648
  3649
  3650
  3651
  3652
  3653
  3654
  3655
  3656
  3657
  3658
  3659
  3660
  3661
  3662
  3663
  3664
  3665
  3666
  3667
  3668
  3669
  3670
  3671
  3672
  3673
  3674
  3675
  3676
  3677
  3678
  3679
  3680
  3681
  3682
  3683
  3684
  3685
  3686
  3687
  3688
  3689
  3690
  3691
  3692
  3693
  3694
  3695
  3696
  3697
  3698
  3699
  3700
  3701
  3702
  3703
  3704
  3705
  3706
  3707
  3708
  3709
  3710
  3711
  3712
  3713
  3714
  3715
  3716
  3717
  3718
  3719
  3720
  3721
  3722
  3723
  3724
  3725
  3726
  3727
  3728
  3729
  3730
  3731
  3732
  3733
  3734
  3735
  3736
  3737
  3738
  3739
  3740
  3741
  3742
  3743
  3744
  3745
  3746
  3747
  3748
  3749
  3750
  3751
  3752
  3753
  3754
  3755
  3756
  3757
  3758
  3759
  3760
  3761
  3762
  3763
  3764
  3765
  3766
  3767
  3768
  3769
  3770
  3771
  3772
  3773
  3774
  3775
  3776
  3777
  3778
  3779
  3780
  3781
  3782
  3783
  3784
  3785
  3786
  3787
  3788
  3789
  3790
  3791
  3792
  3793
  3794
  3795
  3796
  3797
  3798
  3799
  3800
  3801
  3802
  3803
  3804
  3805
  3806
  3807
  3808
  3809
  3810
  3811
  3812
  3813
  3814
  3815
  3816
  3817
  3818
  3819
  3820
  3821
  3822
  3823
  3824
  3825
  3826
  3827
  3828
  3829
  3830
  3831
  3832
  3833
  3834
  3835
  3836
  3837
  3838
  3839
  3840
  3841
  3842
  3843
  3844
  3845
  3846
  3847
  3848
  3849
  3850
  3851
  3852
  3853
  3854
  3855
  3856
  3857
  3858
  3859
  3860
  3861
  3862
  3863
  3864
  3865
  3866
  3867
  3868
  3869
  3870
  3871
  3872
  3873
  3874
  3875
  3876
  3877
  3878
  3879
  3880
  3881
  3882
  3883
  3884
  3885
  3886
  3887
  3888
  3889
  3890
  3891
  3892
  3893
  3894
  3895
  3896
  3897
  3898
  3899
  3900
  3901
  3902
  3903
  3904
  3905
  3906
  3907
  3908
  3909
  3910
  3911
  3912
  3913
  3914
  3915
  3916
  3917
  3918
  3919
  3920
  3921
  3922
  3923
  3924
  3925
  3926
  3927
  3928
  3929
  3930
  3931
  3932
  3933
  3934
  3935
  3936
  3937
  3938
  3939
  3940
  3941
  3942
  3943
  3944
  3945
  3946
  3947
  3948
  3949
  3950
  3951
  3952
  3953
  3954
  3955
  3956
  3957
  3958
  3959
  3960
  3961
  3962
  3963
  3964
  3965
  3966
  3967
  3968
  3969
  3970
  3971
  3972
  3973
  3974
  3975
  3976
  3977
  3978
  3979
  3980
  3981
  3982
  3983
  3984
  3985
  3986
  3987
  3988
  3989
  3990
  3991
  3992
  3993
  3994
  3995
  3996
  3997
  3998
  3999
  4000
  4001
  4002
  4003
  4004
  4005
  4006
  4007
  4008
  4009
  4010
  4011
  4012
  4013
  4014
  4015
  4016
  4017
  4018
  4019
  4020
  4021
  4022
  4023
  4024
  4025
  4026
  4027
  4028
  4029
  4030
  4031
  4032
  4033
  4034
  4035
  4036
  4037
  4038
  4039
  4040
  4041
  4042
  4043
  4044
  4045
  4046
  4047
  4048
  4049
  4050
  4051
  4052
  4053
  4054
  4055
  4056
  4057
  4058
  4059
  4060
  4061
  4062
  4063
  4064
  4065
  4066
  4067
  4068
  4069
  4070
  4071
  4072
  4073
  4074
  4075
  4076
  4077
  4078
  4079
  4080
  4081
  4082
  4083
  4084
  4085
  4086
  4087
  4088
  4089
  4090
  4091
  4092
  4093
  4094
  4095
  4096
  4097
  4098
  4099
  4100
  4101
  4102
  4103
  4104
  4105
  4106
  4107
  4108
  4109
  4110
  4111
  4112
  4113
  4114
  4115
  4116
  4117
  4118
  4119
  4120
  4121
  4122
  4123
  4124
  4125
  4126
  4127
  4128
  4129
  4130
  4131
  4132
  4133
  4134
  4135
  4136
  4137
  4138
  4139
  4140
  4141
  4142
  4143
  4144
  4145
  4146
  4147
  4148
  4149
  4150
  4151
  4152
  4153
  4154
  4155
  4156
  4157
  4158
  4159
  4160
  4161
  4162
  4163
  4164
  4165
  4166
  4167
  4168
  4169
  4170
  4171
  4172
  4173
  4174
  4175
  4176
  4177
  4178
  4179
  4180
  4181
  4182
  4183
  4184
  4185
  4186
  4187
  4188
  4189
  4190
  4191
  4192
  4193
  4194
  4195
  4196
  4197
  4198
  4199
  4200
  4201
  4202
  4203
  4204
  4205
  4206
  4207
  4208
  4209
  4210
  4211
  4212
  4213
  4214
  4215
  4216
  4217
  4218
  4219
  4220
  4221
  4222
  4223
  4224
  4225
  4226
  4227
  4228
  4229
  4230
  4231
  4232
  4233
  4234
  4235
  4236
  4237
  4238
  4239
  4240
  4241
  4242
  4243
  4244
  4245
  4246
  4247
  4248
  4249
  4250
  4251
  4252
  4253
  4254
  4255
  4256
  4257
  4258
  4259
  4260
  4261
  4262
  4263
  4264
  4265
  4266
  4267
  4268
  4269
  4270
  4271
  4272
  4273
  4274
  4275
  4276
  4277
  4278
  4279
  4280
  4281
  4282
  4283
  4284
  4285
  4286
  4287
  4288
  4289
  4290
  4291
  4292
  4293
  4294
  4295
  4296
  4297
  4298
  4299
  4300
  4301
  4302
  4303
  4304
  4305
  4306
  4307
  4308
  4309
  4310
  4311
  4312
  4313
  4314
  4315
  4316
  4317
  4318
  4319
  4320
  4321
  4322
  4323
  4324
  4325
  4326
  4327
  4328
  4329
  4330
  4331
  4332
  4333
  4334
  4335
  4336
  4337
  4338
  4339
  4340
  4341
  4342
  4343
  4344
  4345
  4346
  4347
  4348
  4349
  4350
  4351
  4352
  4353
  4354
  4355
  4356
  4357
  4358
  4359
  4360
  4361
  4362
  4363
  4364
  4365
  4366
  4367
  4368
  4369
  4370
  4371
  4372
  4373
  4374
  4375
  4376
  4377
  4378
  4379
  4380
  4381
  4382
  4383
  4384
  4385
  4386
  4387
  4388
  4389
  4390
  4391
  4392
  4393
  4394
  4395
  4396
  4397
  4398
  4399
  4400
  4401
  4402
  4403
  4404
  4405
  4406
  4407
  4408
  4409
  4410
  4411
  4412
  4413
  4414
  4415
  4416
  4417
  4418
  4419
  4420
  4421
  4422
  4423
  4424
  4425
  4426
  4427
  4428
  4429
  4430
  4431
  4432
  4433
  4434
  4435
  4436
  4437
  4438
  4439
  4440
  4441
  4442
  4443
  4444
  4445
  4446
  4447
  4448
  4449
  4450
  4451
  4452
  4453
  4454
  4455
  4456
  4457
  4458
  4459
  4460
  4461
  4462
  4463
  4464
  4465
  4466
  4467
  4468
  4469
  4470
  4471
  4472
  4473
  4474
  4475
  4476
  4477
  4478
  4479
  4480
  4481
  4482
  4483
  4484
  4485
  4486
  4487
  4488
  4489
  4490
  4491
  4492
  4493
  4494
  4495
  4496
  4497
  4498
  4499
  4500
  4501
  4502
  4503
  4504
  4505
  4506
  4507
  4508
  4509
  4510
  4511
  4512
  4513
  4514
  4515
  4516
  4517
  4518
  4519
  4520
  4521
  4522
  4523
  4524
  4525
  4526
  4527
  4528
  4529
  4530
  4531
  4532
  4533
  4534
  4535
  4536
  4537
  4538
  4539
  4540
  4541
  4542
  4543
  4544
  4545
  4546
  4547
  4548
  4549
  4550
  4551
  4552
  4553
  4554
  4555
  4556
  4557
  4558
  4559
  4560
  4561
  4562
  4563
  4564
  4565
  4566
  4567
  4568
  4569
  4570
  4571
  4572
  4573
  4574
  4575
  4576
  4577
  4578
  4579
  4580
  4581
  4582
  4583
  4584
  4585
  4586
  4587
  4588
  4589
  4590
  4591
  4592
  4593
  4594
  4595
  4596
  4597
  4598
  4599
  4600
  4601
  4602
  4603
  4604
  4605
  4606
  4607
  4608
  4609
  4610
  4611
  4612
  4613
  4614
  4615
  4616
  4617
  4618
  4619
  4620
  4621
  4622
  4623
  4624
  4625
  4626
  4627
  4628
  4629
  4630
  4631
  4632
  4633
  4634
  4635
  4636
  4637
  4638
  4639
  4640
  4641
  4642
  4643
  4644
  4645
  4646
  4647
  4648
  4649
  4650
  4651
  4652
  4653
  4654
  4655
  4656
  4657
  4658
  4659
  4660
  4661
  4662
  4663
  4664
  4665
  4666
  4667
  4668
  4669
  4670
  4671
  4672
  4673
  4674
  4675
  4676
  4677
  4678
  4679
  4680
  4681
  4682
  4683
  4684
  4685
  4686
  4687
  4688
  4689
  4690
  4691
  4692
  4693
  4694
  4695
  4696
  4697
  4698
  4699
  4700
  4701
  4702
  4703
  4704
  4705
  4706
  4707
  4708
  4709
  4710
  4711
  4712
  4713
  4714
  4715
  4716
  4717
  4718
  4719
  4720
  4721
  4722
  4723
  4724
  4725
  4726
  4727
  4728
  4729
  4730
  4731
  4732
  4733
  4734
  4735
  4736
  4737
  4738
  4739
  4740
  4741
  4742
  4743
  4744
  4745
  4746
  4747
  4748
  4749
  4750
  4751
  4752
  4753
  4754
  4755
  4756
  4757
  4758
  4759
  4760
  4761
  4762
  4763
  4764
  4765
  4766
  4767
  4768
  4769
  4770
  4771
  4772
  4773
  4774
  4775
  4776
  4777
  4778
  4779
  4780
  4781
  4782
  4783
  4784
  4785
  4786
  4787
  4788
  4789
  4790
  4791
  4792
  4793
  4794
  4795
  4796
  4797
  4798
  4799
  4800
  4801
  4802
  4803
  4804
  4805
  4806
  4807
  4808
  4809
  4810
  4811
  4812
  4813
  4814
  4815
  4816
  4817
  4818
  4819
  4820
  4821
  4822
  4823
  4824
  4825
  4826
  4827
  4828
  4829
  4830
  4831
  4832
  4833
  4834
  4835
  4836
  4837
  4838
  4839
  4840
  4841
  4842
  4843
  4844
  4845
  4846
  4847
  4848
  4849
  4850
  4851
  4852
  4853
  4854
  4855
  4856
  4857
  4858
  4859
  4860
  4861
  4862
  4863
  4864
  4865
  4866
  4867
  4868
  4869
  4870
  4871
  4872
  4873
  4874
  4875
  4876
  4877
  4878
  4879
  4880
  4881
  4882
  4883
  4884
  4885
  4886
  4887
  4888
  4889
  4890
  4891
  4892
  4893
  4894
  4895
  4896
  4897
  4898
  4899
  4900
  4901
  4902
  4903
  4904
  4905
  4906
  4907
  4908
  4909
  4910
  4911
  4912
  4913
  4914
  4915
  4916
  4917
  4918
  4919
  4920
  4921
  4922
  4923
  4924
  4925
  4926
  4927
  4928
  4929
  4930
  4931
  4932
  4933
  4934
  4935
  4936
  4937
  4938
  4939
  4940
  4941
  4942
  4943
  4944
  4945
  4946
  4947
  4948
  4949
  4950
  4951
  4952
  4953
  4954
  4955
  4956
  4957
  4958
  4959
  4960
  4961
  4962
  4963
  4964
  4965
  4966
  4967
  4968
  4969
  4970
  4971
  4972
  4973
  4974
  4975
  4976
  4977
  4978
  4979
  4980
  4981
  4982
  4983
  4984
  4985
  4986
  4987
  4988
  4989
  4990
  4991
  4992
  4993
  4994
  4995
  4996
  4997
  4998
  4999
  5000
  5001
  5002
  5003
  5004
  5005
  5006
  5007
  5008
  5009
  5010
  5011
  5012
  5013
  5014
  5015
  5016
  5017
  5018
  5019
  5020
  5021
  5022
  5023
  5024
  5025
  5026
  5027
  5028
  5029
  5030
  5031
  5032
  5033
  5034
  5035
  5036
  5037
  5038
  5039
  5040
  5041
  5042
  5043
  5044
  5045
  5046
  5047
  5048
  5049
  5050
  5051
  5052
  5053
  5054
  5055
  5056
  5057
  5058
  5059
  5060
  5061
  5062
  5063
  5064
  5065
  5066
  5067
  5068
  5069
  5070
  5071
  5072
  5073
  5074
  5075
  5076
  5077
  5078
  5079
  5080
  5081
  5082
  5083
  5084
  5085
  5086
  5087
  5088
  5089
  5090
  5091
  5092
  5093
  5094
  5095
  5096
  5097
  5098
  5099
  5100
  5101
  5102
  5103
  5104
  5105
  5106
  5107
  5108
  5109
  5110
  5111
  5112
  5113
  5114
  5115
  5116
  5117
  5118
  5119
  5120
  5121
  5122
  5123
  5124
  5125
  5126
  5127
  5128
  5129
  5130
  5131
  5132
  5133
  5134
  5135
  5136
  5137
  5138
  5139
  5140
  5141
  5142
  5143
  5144
  5145
  5146
  5147
  5148
  5149
  5150
  5151
  5152
  5153
  5154
  5155
  5156
  5157
  5158
  5159
  5160
  5161
  5162
  5163
  5164
  5165
  5166
  5167
  5168
  5169
  5170
  5171
  5172
  5173
  5174
  5175
  5176
  5177
  5178
  5179
  5180
  5181
  5182
  5183
  5184
  5185
  5186
  5187
  5188
  5189
  5190
  5191
  5192
  5193
  5194
  5195
  5196
  5197
  5198
  5199
  5200
  5201
  5202
  5203
  5204
  5205
  5206
  5207
  5208
  5209
  5210
  5211
  5212
  5213
  5214
  5215
  5216
  5217
  5218
  5219
  5220
  5221
  5222
  5223
  5224
  5225
  5226
  5227
  5228
  5229
  5230
  5231
  5232
  5233
  5234
  5235
  5236
  5237
  5238
  5239
  5240
  5241
  5242
  5243
  5244
  5245
  5246
  5247
  5248
  5249
  5250
  5251
  5252
  5253
  5254
  5255
  5256
  5257
  5258
  5259
  5260
  5261
  5262
  5263
  5264
  5265
  5266
  5267
  5268
  5269
  5270
  5271
  5272
  5273
  5274
  5275
  5276
  5277
  5278
  5279
  5280
  5281
  5282
  5283
  5284
  5285
  5286
  5287
  5288
  5289
  5290
  5291
  5292
  5293
  5294
  5295
  5296
  5297
  5298
  5299
  5300
  5301
  5302
  5303
  5304
  5305
  5306
  5307
  5308
  5309
  5310
  5311
  5312
  5313
  5314
  5315
  5316
  5317
  5318
  5319
  5320
  5321
  5322
  5323
  5324
  5325
  5326
  5327
  5328
  5329
  5330
  5331
  5332
  5333
  5334
  5335
  5336
  5337
  5338
  5339
  5340
  5341
  5342
  5343
  5344
  5345
  5346
  5347
  5348
  5349
  5350
  5351
  5352
  5353
  5354
  5355
  5356
  5357
  5358
  5359
  5360
  5361
  5362
  5363
  5364
  5365
  5366
  5367
  5368
  5369
  5370
  5371
  5372
  5373
  5374
  5375
  5376
  5377
  5378
  5379
  5380
  5381
  5382
  5383
  5384
  5385
  5386
  5387
  5388
  5389
  5390
  5391
  5392
  5393
  5394
  5395
  5396
  5397
  5398
  5399
  5400
  5401
  5402
  5403
  5404
  5405
  5406
  5407
  5408
  5409
  5410
  5411
  5412
  5413
  5414
  5415
  5416
  5417
  5418
  5419
  5420
  5421
  5422
  5423
  5424
  5425
  5426
  5427
  5428
  5429
  5430
  5431
  5432
  5433
  5434
  5435
  5436
  5437
  5438
  5439
  5440
  5441
  5442
  5443
  5444
  5445
  5446
  5447
  5448
  5449
  5450
  5451
  5452
  5453
  5454
  5455
  5456
  5457
  5458
  5459
  5460
  5461
  5462
  5463
  5464
  5465
  5466
  5467
  5468
  5469
  5470
  5471
  5472
  5473
  5474
  5475
  5476
  5477
  5478
  5479
  5480
  5481
  5482
  5483
  5484
  5485
  5486
  5487
  5488
  5489
  5490
  5491
  5492
  5493
  5494
  5495
  5496
  5497
  5498
  5499
  5500
  5501
  5502
  5503
  5504
  5505
  5506
  5507
  5508
  5509
  5510
  5511
  5512
  5513
  5514
  5515
  5516
  5517
  5518
  5519
  5520
  5521
  5522
  5523
  5524
  5525
  5526
  5527
  5528
  5529
  5530
  5531
  5532
  5533
  5534
  5535
  5536
  5537
  5538
  5539
  5540
  5541
  5542
  5543
  5544
  5545
  5546
  5547
  5548
  5549
  5550
  5551
  5552
  5553
  5554
  5555
  5556
  5557
  5558
  5559
  5560
  5561
  5562
  5563
  5564
  5565
  5566
  5567
  5568
  5569
  5570
  5571
  5572
  5573
  5574
  5575
  5576
  5577
  5578
  5579
  5580
  5581
  5582
  5583
  5584
  5585
  5586
  5587
  5588
  5589
  5590
  5591
  5592
  5593
  5594
  5595
  5596
  5597
  5598
  5599
  5600
  5601
  5602
  5603
  5604
  5605
  5606
  5607
  5608
  5609
  5610
  5611
  5612
  5613
  5614
  5615
  5616
  5617
  5618
  5619
  5620
  5621
  5622
  5623
  5624
  5625
  5626
  5627
  5628
  5629
  5630
  5631
  5632
  5633
  5634
  5635
  5636
  5637
  5638
  5639
  5640
  5641
  5642
  5643
  5644
  5645
  5646
  5647
  5648
  5649
  5650
  5651
  5652
  5653
  5654
  5655
  5656
  5657
  5658
  5659
  5660
  5661
  5662
  5663
  5664
  5665
  5666
  5667
  5668
  5669
  5670
  5671
  5672
  5673
  5674
  5675
  5676
  5677
  5678
  5679
  5680
  5681
  5682
  5683
  5684
  5685
  5686
  5687
  5688
  5689
  5690
  5691
  5692
  5693
  5694
  5695
  5696
  5697
  5698
  5699
  5700
  5701
  5702
  5703
  5704
  5705
  5706
  5707
  5708
  5709
  5710
  5711
  5712
  5713
  5714
  5715
  5716
  5717
  5718
  5719
  5720
  5721
  5722
  5723
  5724
  5725
  5726
  5727
  5728
  5729
  5730
  5731
  5732
  5733
  5734
  5735
  5736
  5737
  5738
  5739
  5740
  5741
  5742
  5743
  5744
  5745
  5746
  5747
  5748
  5749
  5750
  5751
  5752
  5753
  5754
  5755
  5756
  5757
  5758
  5759
  5760
  5761
  5762
  5763
  5764
  5765
  5766
  5767
  5768
  5769
  5770
  5771
  5772
  5773
  5774
  5775
  5776
  5777
  5778
  5779
  5780
  5781
  5782
  5783
  5784
  5785
  5786
  5787
  5788
  5789
  5790
  5791
  5792
  5793
  5794
  5795
  5796
  5797
  5798
  5799
  5800
  5801
  5802
  5803
  5804
  5805
  5806
  5807
  5808
  5809
  5810
  5811
  5812
  5813
  5814
  5815
  5816
  5817
  5818
  5819
  5820
  5821
  5822
  5823
  5824
  5825
  5826
  5827
  5828
  5829
  5830
  5831
  5832
  5833
  5834
  5835
  5836
  5837
  5838
  5839
  5840
  5841
  5842
  5843
  5844
  5845
  5846
  5847
  5848
  5849
  5850
  5851
  5852
  5853
  5854
  5855
  5856
  5857
  5858
  5859
  5860
  5861
  5862
  5863
  5864
  5865
  5866
  5867
  5868
  5869
  5870
  5871
  5872
  5873
  5874
  5875
  5876
  5877
  5878
  5879
  5880
  5881
  5882
  5883
  5884
  5885
  5886
  5887
  5888
  5889
  5890
  5891
  5892
  5893
  5894
  5895
  5896
  5897
  5898
  5899
  5900
  5901
  5902
  5903
  5904
  5905
  5906
  5907
  5908
  5909
  5910
  5911
  5912
  5913
  5914
  5915
  5916
  5917
  5918
  5919
  5920
  5921
  5922
  5923
  5924
  5925
  5926
  5927
  5928
  5929
  5930
  5931
  5932
  5933
  5934
  5935
  5936
  5937
  5938
  5939
  5940
  5941
  5942
  5943
  5944
  5945
  5946
  5947
  5948
  5949
  5950
  5951
  5952
  5953
  5954
  5955
  5956
  5957
  5958
  5959
  5960
  5961
  5962
  5963
  5964
  5965
  5966
  5967
  5968
  5969
  5970
  5971
  5972
  5973
  5974
  5975
  5976
  5977
  5978
  5979
  5980
  5981
  5982
  5983
  5984
  5985
  5986
  5987
  5988
  5989
  5990
  5991
  5992
  5993
  5994
  5995
  5996
  5997
  5998
  5999
  6000
  6001
  6002
  6003
  6004
  6005
  6006
  6007
  6008
  6009
  6010
  6011
  6012
  6013
  6014
  6015
  6016
  6017
  6018
  6019
  6020
  6021
  6022
  6023
  6024
  6025
  6026
  6027
  6028
  6029
  6030
  6031
  6032
  6033
  6034
  6035
  6036
  6037
  6038
  6039
  6040
  6041
  6042
  6043
  6044
  6045
  6046
  6047
  6048
  6049
  6050
  6051
  6052
  6053
  6054
  6055
  6056
  6057
  6058
  6059
  6060
  6061
  6062
  6063
  6064
  6065
  6066
  6067
  6068
  6069
  6070
  6071
  6072
  6073
  6074
  6075
  6076
  6077
  6078
  6079
  6080
  6081
  6082
  6083
  6084
  6085
  6086
  6087
  6088
  6089
  6090
  6091
  6092
  6093
  6094
  6095
  6096
  6097
  6098
  6099
  6100
  6101
  6102
  6103
  6104
  6105
  6106
  6107
  6108
  6109
  6110
  6111
  6112
  6113
  6114
  6115
  6116
  6117
  6118
  6119
  6120
  6121
  6122
  6123
  6124
  6125
  6126
  6127
  6128
  6129
  6130
  6131
  6132
  6133
  6134
  6135
  6136
  6137
  6138
  6139
  6140
  6141
  6142
  6143
  6144
  6145
  6146
  6147
  6148
  6149
  6150
  6151
  6152
  6153
  6154
  6155
  6156
  6157
  6158
  6159
  6160
  6161
  6162
  6163
  6164
  6165
  6166
  6167
  6168
  6169
  6170
  6171
  6172
  6173
  6174
  6175
  6176
  6177
  6178
  6179
  6180
  6181
  6182
  6183
  6184
  6185
  6186
  6187
  6188
  6189
  6190
  6191
  6192
  6193
  6194
  6195
  6196
  6197
  6198
  6199
  6200
  6201
  6202
  6203
  6204
  6205
  6206
  6207
  6208
  6209
  6210
  6211
  6212
  6213
  6214
  6215
  6216
  6217
  6218
  6219
  6220
  6221
  6222
  6223
  6224
  6225
  6226
  6227
  6228
  6229
  6230
  6231
  6232
  6233
  6234
  6235
  6236
  6237
  6238
  6239
  6240
  6241
  6242
  6243
  6244
  6245
  6246
  6247
  6248
  6249
  6250
  6251
  6252
  6253
  6254
  6255
  6256
  6257
  6258
  6259
  6260
  6261
  6262
  6263
  6264
  6265
  6266
  6267
  6268
  6269
  6270
  6271
  6272
  6273
  6274
  6275
  6276
  6277
  6278
  6279
  6280
  6281
  6282
  6283
  6284
  6285
  6286
  6287
  6288
  6289
  6290
  6291
  6292
  6293
  6294
  6295
  6296
  6297
  6298
  6299
  6300
  6301
  6302
  6303
  6304
  6305
  6306
  6307
  6308
  6309
  6310
  6311
  6312
  6313
  6314
  6315
  6316
  6317
  6318
  6319
  6320
  6321
  6322
  6323
  6324
  6325
  6326
  6327
  6328
  6329
  6330
  6331
  6332
  6333
  6334
  6335
  6336
  6337
  6338
  6339
  6340
  6341
  6342
  6343
  6344
  6345
  6346
  6347
  6348
  6349
  6350
  6351
  6352
  6353
  6354
  6355
  6356
  6357
  6358
  6359
  6360
  6361
  6362
  6363
  6364
  6365
  6366
  6367
  6368
  6369
  6370
  6371
  6372
  6373
  6374
  6375
  6376
  6377
  6378
  6379
  6380
  6381
  6382
  6383
  6384
  6385
  6386
  6387
  6388
  6389
  6390
  6391
  6392
  6393
  6394
  6395
  6396
  6397
  6398
  6399
  6400
  6401
  6402
  6403
  6404
  6405
  6406
  6407
  6408
  6409
  6410
  6411
  6412
  6413
  6414
  6415
  6416
  6417
  6418
  6419
  6420
  6421
  6422
  6423
  6424
  6425
  6426
  6427
  6428
  6429
  6430
  6431
  6432
  6433
  6434
  6435
  6436
  6437
  6438
  6439
  6440
  6441
  6442
  6443
  6444
  6445
  6446
  6447
  6448
  6449
  6450
  6451
  6452
  6453
  6454
  6455
  6456
  6457
  6458
  6459
  6460
  6461
  6462
  6463
  6464
  6465
  6466
  6467
  6468
  6469
  6470
  6471
  6472
  6473
  6474
  6475
  6476
  6477
  6478
  6479
  6480
  6481
  6482
  6483
  6484
  6485
  6486
  6487
  6488
  6489
  6490
  6491
  6492
  6493
  6494
  6495
  6496
  6497
  6498
  6499
  6500
  6501
  6502
  6503
  6504
  6505
  6506
  6507
  6508
  6509
  6510
  6511
  6512
  6513
  6514
  6515
  6516
  6517
  6518
  6519
  6520
  6521
  6522
  6523
  6524
  6525
  6526
  6527
  6528
  6529
  6530
  6531
  6532
  6533
  6534
  6535
  6536
  6537
  6538
  6539
  6540
  6541
  6542
  6543
  6544
  6545
  6546
  6547
  6548
  6549
  6550
  6551
  6552
  6553
  6554
  6555
  6556
  6557
  6558
  6559
  6560
  6561
  6562
  6563
  6564
  6565
  6566
  6567
  6568
  6569
  6570
  6571
  6572
  6573
  6574
  6575
  6576
  6577
  6578
  6579
  6580
  6581
  6582
  6583
  6584
  6585
  6586
  6587
  6588
  6589
  6590
  6591
  6592
  6593
  6594
  6595
  6596
  6597
  6598
  6599
  6600
  6601
  6602
  6603
  6604
  6605
  6606
  6607
  6608
  6609
  6610
  6611
  6612
  6613
  6614
  6615
  6616
  6617
  6618
  6619
  6620
  6621
  6622
  6623
  6624
  6625
  6626
  6627
  6628
  6629
  6630
  6631
  6632
  6633
  6634
  6635
  6636
  6637
  6638
  6639
  6640
  6641
  6642
  6643
  6644
  6645
  6646
  6647
  6648
  6649
  6650
  6651
  6652
  6653
  6654
  6655
  6656
  6657
  6658
  6659
  6660
  6661
  6662
  6663
  6664
  6665
  6666
  6667
  6668
  6669
  6670
  6671
  6672
  6673
  6674
  6675
  6676
  6677
  6678
  6679
  6680
  6681
  6682
  6683
  6684
  6685
  6686
  6687
  6688
  6689
  6690
  6691
  6692
  6693
  6694
  6695
  6696
  6697
  6698
  6699
  6700
  6701
  6702
  6703
  6704
  6705
  6706
  6707
  6708
  6709
  6710
  6711
  6712
  6713
  6714
  6715
  6716
  6717
  6718
  6719
  6720
  6721
  6722
  6723
  6724
  6725
  6726
  6727
  6728
  6729
  6730
  6731
  6732
  6733
  6734
  6735
  6736
  6737
  6738
  6739
  6740
  6741
  6742
  6743
  6744
  6745
  6746
  6747
  6748
  6749
  6750
  6751
  6752
  6753
  6754
  6755
  6756
  6757
  6758
  6759
  6760
  6761
  6762
  6763
  6764
  6765
  6766
  6767
  6768
  6769
  6770
  6771
  6772
  6773
  6774
  6775
  6776
  6777
  6778
  6779
  6780
  6781
  6782
  6783
  6784
  6785
  6786
  6787
  6788
  6789
  6790
  6791
  6792
  6793
  6794
  6795
  6796
  6797
  6798
  6799
  6800
  6801
  6802
  6803
  6804
  6805
  6806
  6807
  6808
  6809
  6810
  6811
  6812
  6813
  6814
  6815
  6816
  6817
  6818
  6819
  6820
  6821
  6822
  6823
  6824
  6825
  6826
  6827
  6828
  6829
  6830
  6831
  6832
  6833
  6834
  6835
  6836
  6837
  6838
  6839
  6840
  6841
  6842
  6843
  6844
  6845
  6846
  6847
  6848
  6849
  6850
  6851
  6852
  6853
  6854
  6855
  6856
  6857
  6858
  6859
  6860
  6861
  6862
  6863
  6864
  6865
  6866
  6867
  6868
  6869
  6870
  6871
  6872
  6873
  6874
  6875
  6876
  6877
  6878
  6879
  6880
  6881
  6882
  6883
  6884
  6885
  6886
  6887
  6888
  6889
  6890
  6891
  6892
  6893
  6894
  6895
  6896
  6897
  6898
  6899
  6900
  6901
  6902
  6903
  6904
  6905
  6906
  6907
  6908
  6909
  6910
  6911
  6912
  6913
  6914
  6915
  6916
  6917
  6918
  6919
  6920
  6921
  6922
  6923
  6924
  6925
  6926
  6927
  6928
  6929
  6930
  6931
  6932
  6933
  6934
  6935
  6936
  6937
  6938
  6939
  6940
  6941
  6942
  6943
  6944
  6945
  6946
  6947
  6948
  6949
  6950
  6951
  6952
  6953
  6954
  6955
  6956
  6957
  6958
  6959
  6960
  6961
  6962
  6963
  6964
  6965
  6966
  6967
  6968
  6969
  6970
  6971
  6972
  6973
  6974
  6975
  6976
  6977
  6978
  6979
  6980
  6981
  6982
  6983
  6984
  6985
  6986
  6987
  6988
  6989
  6990
  6991
  6992
  6993
  6994
  6995
  6996
  6997
  6998
  6999
  7000
  7001
  7002
  7003
  7004
  7005
  7006
  7007
  7008
  7009
  7010
  7011
  7012
  7013
  7014
  7015
  7016
  7017
  7018
  7019
  7020
  7021
  7022
  7023
  7024
  7025
  7026
  7027
  7028
  7029
  7030
  7031
  7032
  7033
  7034
  7035
  7036
  7037
  7038
  7039
  7040
  7041
  7042
  7043
  7044
  7045
  7046
  7047
  7048
  7049
  7050
  7051
  7052
  7053
  7054
  7055
  7056
  7057
  7058
  7059
  7060
  7061
  7062
  7063
  7064
  7065
  7066
  7067
  7068
  7069
  7070
  7071
  7072
  7073
  7074
  7075
  7076
  7077
  7078
  7079
  7080
  7081
  7082
  7083
  7084
  7085
  7086
  7087
  7088
  7089
  7090
  7091
  7092
  7093
  7094
  7095
  7096
  7097
  7098
  7099
  7100
  7101
  7102
  7103
  7104
  7105
  7106
  7107
  7108
  7109
  7110
  7111
  7112
  7113
  7114
  7115
  7116
  7117
  7118
  7119
  7120
  7121
  7122
  7123
  7124
  7125
  7126
  7127
  7128
  7129
  7130
  7131
  7132
  7133
  7134
  7135
  7136
  7137
  7138
  7139
  7140
  7141
  7142
  7143
  7144
  7145
  7146
  7147
  7148
  7149
  7150
  7151
  7152
  7153
  7154
  7155
  7156
  7157
  7158
  7159
  7160
  7161
  7162
  7163
  7164
  7165
  7166
  7167
  7168
  7169
  7170
  7171
  7172
  7173
  7174
  7175
  7176
  7177
  7178
  7179
  7180
  7181
  7182
  7183
  7184
  7185
  7186
  7187
  7188
  7189
  7190
  7191
  7192
  7193
  7194
  7195
  7196
  7197
  7198
  7199
  7200
  7201
  7202
  7203
  7204
  7205
  7206
  7207
  7208
  7209
  7210
  7211
  7212
  7213
  7214
  7215
  7216
  7217
  7218
  7219
  7220
  7221
  7222
  7223
  7224
  7225
  7226
  7227
  7228
  7229
  7230
  7231
  7232
  7233
  7234
  7235
  7236
  7237
  7238
  7239
  7240
  7241
  7242
  7243
  7244
  7245
  7246
  7247
  7248
  7249
  7250
  7251
  7252
  7253
  7254
  7255
  7256
  7257
  7258
  7259
  7260
  7261
  7262
  7263
  7264
  7265
  7266
  7267
  7268
  7269
  7270
  7271
  7272
  7273
  7274
  7275
  7276
  7277
  7278
  7279
  7280
  7281
  7282
  7283
  7284
  7285
  7286
  7287
  7288
  7289
  7290
  7291
  7292
  7293
  7294
  7295
  7296
  7297
  7298
  7299
  7300
  7301
  7302
  7303
  7304
  7305
  7306
  7307
  7308
  7309
  7310
  7311
  7312
  7313
  7314
  7315
  7316
  7317
  7318
  7319
  7320
  7321
  7322
  7323
  7324
  7325
  7326
  7327
  7328
  7329
  7330
  7331
  7332
  7333
  7334
  7335
  7336
  7337
  7338
  7339
  7340
  7341
  7342
  7343
  7344
  7345
  7346
  7347
  7348
  7349
  7350
  7351
  7352
  7353
  7354
  7355
  7356
  7357
  7358
  7359
  7360
  7361
  7362
  7363
  7364
  7365
  7366
  7367
  7368
  7369
  7370
  7371
  7372
  7373
  7374
  7375
  7376
  7377
  7378
  7379
  7380
  7381
  7382
  7383
  7384
  7385
  7386
  7387
  7388
  7389
  7390
  7391
  7392
  7393
  7394
  7395
  7396
  7397
  7398
  7399
  7400
  7401
  7402
  7403
  7404
  7405
  7406
  7407
  7408
  7409
  7410
  7411
  7412
  7413
  7414
  7415
  7416
  7417
  7418
  7419
  7420
  7421
  7422
  7423
  7424
  7425
  7426
  7427
  7428
  7429
  7430
  7431
  7432
  7433
  7434
  7435
  7436
  7437
  7438
  7439
  7440
  7441
  7442
  7443
  7444
  7445
  7446
  7447
  7448
  7449
  7450
  7451
  7452
  7453
  7454
  7455
  7456
  7457
  7458
  7459
  7460
  7461
  7462
  7463
  7464
  7465
  7466
  7467
  7468
  7469
  7470
  7471
  7472
  7473
  7474
  7475
  7476
  7477
  7478
  7479
  7480
  7481
  7482
  7483
  7484
  7485
  7486
  7487
  7488
  7489
  7490
  7491
  7492
  7493
  7494
  7495
  7496
  7497
  7498
  7499
  7500
  7501
  7502
  7503
  7504
  7505
  7506
  7507
  7508
  7509
  7510
  7511
  7512
  7513
  7514
  7515
  7516
  7517
  7518
  7519
  7520
  7521
  7522
  7523
  7524
  7525
  7526
  7527
  7528
  7529
  7530
  7531
  7532
  7533
  7534
  7535
  7536
  7537
  7538
  7539
  7540
  7541
  7542
  7543
  7544
  7545
  7546
  7547
  7548
  7549
  7550
  7551
  7552
  7553
  7554
  7555
  7556
  7557
  7558
  7559
  7560
  7561
  7562
  7563
  7564
  7565
  7566
  7567
  7568
  7569
  7570
  7571
  7572
  7573
  7574
  7575
  7576
  7577
  7578
  7579
  7580
  7581
  7582
  7583
  7584
  7585
  7586
  7587
  7588
  7589
  7590
  7591
  7592
  7593
  7594
  7595
  7596
  7597
  7598
  7599
  7600
  7601
  7602
  7603
  7604
  7605
  7606
  7607
  7608
  7609
  7610
  7611
  7612
  7613
  7614
  7615
  7616
  7617
  7618
  7619
  7620
  7621
  7622
  7623
  7624
  7625
  7626
  7627
  7628
  7629
  7630
  7631
  7632
  7633
  7634
  7635
  7636
  7637
  7638
  7639
  7640
  7641
  7642
  7643
  7644
  7645
  7646
  7647
  7648
  7649
  7650
  7651
  7652
  7653
  7654
  7655
  7656
  7657
  7658
  7659
  7660
  7661
  7662
  7663
  7664
  7665
  7666
  7667
  7668
  7669
  7670
  7671
  7672
  7673
  7674
  7675
  7676
  7677
  7678
  7679
  7680
  7681
  7682
  7683
  7684
  7685
  7686
  7687
  7688
  7689
  7690
  7691
  7692
  7693
  7694
  7695
  7696
  7697
  7698
  7699
  7700
  7701
  7702
  7703
  7704
  7705
  7706
  7707
  7708
  7709
  7710
  7711
  7712
  7713
  7714
  7715
  7716
  7717
  7718
  7719
  7720
  7721
  7722
  7723
  7724
  7725
  7726
  7727
  7728
  7729
  7730
  7731
  7732
  7733
  7734
  7735
  7736
  7737
  7738
  7739
  7740
  7741
  7742
  7743
  7744
  7745
  7746
  7747
  7748
  7749
  7750
  7751
  7752
  7753
  7754
  7755
  7756
  7757
  7758
  7759
  7760
  7761
  7762
  7763
  7764
  7765
  7766
  7767
  7768
  7769
  7770
  7771
  7772
  7773
  7774
  7775
  7776
  7777
  7778
  7779
  7780
  7781
  7782
  7783
  7784
  7785
  7786
  7787
  7788
  7789
  7790
  7791
  7792
  7793
  7794
  7795
  7796
  7797
  7798
  7799
  7800
  7801
  7802
  7803
  7804
  7805
  7806
  7807
  7808
  7809
  7810
  7811
  7812
  7813
  7814
  7815
  7816
  7817
  7818
  7819
  7820
  7821
  7822
  7823
  7824
  7825
  7826
  7827
  7828
  7829
  7830
  7831
  7832
  7833
  7834
  7835
  7836
  7837
  7838
  7839
  7840
  7841
  7842
  7843
  7844
  7845
  7846
  7847
  7848
  7849
  7850
  7851
  7852
  7853
  7854
  7855
  7856
  7857
  7858
  7859
  7860
  7861
  7862
  7863
  7864
  7865
  7866
  7867
  7868
  7869
  7870
  7871
  7872
  7873
  7874
  7875
  7876
  7877
  7878
  7879
  7880
  7881
  7882
  7883
  7884
  7885
  7886
  7887
  7888
  7889
  7890
  7891
  7892
  7893
  7894
  7895
  7896
  7897
  7898
  7899
  7900
  7901
  7902
  7903
  7904
  7905
  7906
  7907
  7908
  7909
  7910
  7911
  7912
  7913
  7914
  7915
  7916
  7917
  7918
  7919
  7920
  7921
  7922
  7923
  7924
  7925
  7926
  7927
  7928
  7929
  7930
  7931
  7932
  7933
  7934
  7935
  7936
  7937
  7938
  7939
  7940
  7941
  7942
  7943
  7944
  7945
  7946
  7947
  7948
  7949
  7950
  7951
  7952
  7953
  7954
  7955
  7956
  7957
  7958
  7959
  7960
  7961
  7962
  7963
  7964
  7965
  7966
  7967
  7968
  7969
  7970
  7971
  7972
  7973
  7974
  7975
  7976
  7977
  7978
  7979
  7980
  7981
  7982
  7983
  7984
  7985
  7986
  7987
  7988
  7989
  7990
  7991
  7992
  7993
  7994
  7995
  7996
  7997
  7998
  7999
  8000
  8001
  8002
  8003
  8004
  8005
  8006
  8007
  8008
  8009
  8010
  8011
  8012
  8013
  8014
  8015
  8016
  8017
  8018
  8019
  8020
  8021
  8022
  8023
  8024
  8025
  8026
  8027
  8028
  8029
  8030
  8031
  8032
  8033
  8034
  8035
  8036
  8037
  8038
  8039
  8040
  8041
  8042
  8043
  8044
  8045
  8046
  8047
  8048
  8049
  8050
  8051
  8052
  8053
  8054
  8055
  8056
  8057
  8058
  8059
  8060
  8061
  8062
  8063
  8064
  8065
  8066
  8067
  8068
  8069
  8070
  8071
  8072
  8073
  8074
  8075
  8076
  8077
  8078
  8079
  8080
  8081
  8082
  8083
  8084
  8085
  8086
  8087
  8088
  8089
  8090
  8091
  8092
  8093
  8094
  8095
  8096
  8097
  8098
  8099
  8100
  8101
  8102
  8103
  8104
  8105
  8106
  8107
  8108
  8109
  8110
  8111
  8112
  8113
  8114
  8115
  8116
  8117
  8118
  8119
  8120
  8121
  8122
  8123
  8124
  8125
  8126
  8127
  8128
  8129
  8130
  8131
  8132
  8133
  8134
  8135
  8136
  8137
  8138
  8139
  8140
  8141
  8142
  8143
  8144
  8145
  8146
  8147
  8148
  8149
  8150
  8151
  8152
  8153
  8154
  8155
  8156
  8157
  8158
  8159
  8160
  8161
  8162
  8163
  8164
  8165
  8166
  8167
  8168
  8169
  8170
  8171
  8172
  8173
  8174
  8175
  8176
  8177
  8178
  8179
  8180
  8181
  8182
  8183
  8184
  8185
  8186
  8187
  8188
  8189
  8190
  8191
  8192
  8193
  8194
  8195
  8196
  8197
  8198
  8199
  8200
  8201
  8202
  8203
  8204
  8205
  8206
  8207
  8208
  8209
  8210
  8211
  8212
  8213
  8214
  8215
  8216
  8217
  8218
  8219
  8220
  8221
  8222
  8223
  8224
  8225
  8226
  8227
  8228
  8229
  8230
  8231
  8232
  8233
  8234
  8235
  8236
  8237
  8238
  8239
  8240
  8241
  8242
  8243
  8244
  8245
  8246
  8247
  8248
  8249
  8250
  8251
  8252
  8253
  8254
  8255
  8256
  8257
  8258
  8259
  8260
  8261
  8262
  8263
  8264
  8265
  8266
  8267
  8268
  8269
  8270
  8271
  8272
  8273
  8274
  8275
  8276
  8277
  8278
  8279
  8280
  8281
  8282
  8283
  8284
  8285
  8286
  8287
  8288
  8289
  8290
  8291
  8292
  8293
  8294
  8295
  8296
  8297
  8298
  8299
  8300
  8301
  8302
  8303
  8304
  8305
  8306
  8307
  8308
  8309
  8310
  8311
  8312
  8313
  8314
  8315
  8316
  8317
  8318
  8319
  8320
  8321
  8322
  8323
  8324
  8325
  8326
  8327
  8328
  8329
  8330
  8331
  8332
  8333
  8334
  8335
  8336
  8337
  8338
  8339
  8340
  8341
  8342
  8343
  8344
  8345
  8346
  8347
  8348
  8349
  8350
  8351
  8352
  8353
  8354
  8355
  8356
  8357
  8358
  8359
  8360
  8361
  8362
  8363
  8364
  8365
  8366
  8367
  8368
  8369
  8370
  8371
  8372
  8373
  8374
  8375
  8376
  8377
  8378
  8379
  8380
  8381
  8382
  8383
  8384
  8385
  8386
  8387
  8388
  8389
  8390
  8391
  8392
  8393
  8394
  8395
  8396
  8397
  8398
  8399
  8400
  8401
  8402
  8403
  8404
  8405
  8406
  8407
  8408
  8409
  8410
  8411
  8412
  8413
  8414
  8415
  8416
  8417
  8418
  8419
  8420
  8421
  8422
  8423
  8424
  8425
  8426
  8427
  8428
  8429
  8430
  8431
  8432
  8433
  8434
  8435
  8436
  8437
  8438
  8439
  8440
  8441
  8442
  8443
  8444
  8445
  8446
  8447
  8448
  8449
  8450
  8451
  8452
  8453
  8454
  8455
  8456
  8457
  8458
  8459
  8460
  8461
  8462
  8463
  8464
  8465
  8466
  8467
  8468
  8469
  8470
  8471
  8472
  8473
  8474
  8475
  8476
  8477
  8478
  8479
  8480
  8481
  8482
  8483
  8484
  8485
  8486
  8487
  8488
  8489
  8490
  8491
  8492
  8493
  8494
  8495
  8496
  8497
  8498
  8499
  8500
  8501
  8502
  8503
  8504
  8505
  8506
  8507
  8508
  8509
  8510
  8511
  8512
  8513
  8514
  8515
  8516
  8517
  8518
  8519
  8520
  8521
  8522
  8523
  8524
  8525
  8526
  8527
  8528
  8529
  8530
  8531
  8532
  8533
  8534
  8535
  8536
  8537
  8538
  8539
  8540
  8541
  8542
  8543
  8544
  8545
  8546
  8547
  8548
  8549
  8550
  8551
  8552
  8553
  8554
  8555
  8556
  8557
  8558
  8559
  8560
  8561
  8562
  8563
  8564
  8565
  8566
  8567
  8568
  8569
  8570
  8571
  8572
  8573
  8574
  8575
  8576
  8577
  8578
  8579
  8580
  8581
  8582
  8583
  8584
  8585
  8586
  8587
  8588
  8589
  8590
  8591
  8592
  8593
  8594
  8595
  8596
  8597
  8598
  8599
  8600
  8601
  8602
  8603
  8604
  8605
  8606
  8607
  8608
  8609
  8610
  8611
  8612
  8613
  8614
  8615
  8616
  8617
  8618
  8619
  8620
  8621
  8622
  8623
  8624
  8625
  8626
  8627
  8628
  8629
  8630
  8631
  8632
  8633
  8634
  8635
  8636
  8637
  8638
  8639
  8640
  8641
  8642
  8643
  8644
  8645
  8646
  8647
  8648
  8649
  8650
  8651
  8652
  8653
  8654
  8655
  8656
  8657
  8658
  8659
  8660
  8661
  8662
  8663
  8664
  8665
  8666
  8667
  8668
  8669
  8670
  8671
  8672
  8673
  8674
  8675
  8676
  8677
  8678
  8679
  8680
  8681
  8682
  8683
  8684
  8685
  8686
  8687
  8688
  8689
  8690
  8691
  8692
  8693
  8694
  8695
  8696
  8697
  8698
  8699
  8700
  8701
  8702
  8703
  8704
  8705
  8706
  8707
  8708
  8709
  8710
  8711
  8712
  8713
  8714
  8715
  8716
  8717
  8718
  8719
  8720
  8721
  8722
  8723
  8724
  8725
  8726
  8727
  8728
  8729
  8730
  8731
  8732
  8733
  8734
  8735
  8736
  8737
  8738
  8739
  8740
  8741
  8742
  8743
  8744
  8745
  8746
  8747
  8748
  8749
  8750
  8751
  8752
  8753
  8754
  8755
  8756
  8757
  8758
  8759
  8760
  8761
  8762
  8763
  8764
  8765
  8766
  8767
  8768
  8769
  8770
  8771
  8772
  8773
  8774
  8775
  8776
  8777
  8778
  8779
  8780
  8781
  8782
  8783
  8784
  8785
  8786
  8787
  8788
  8789
  8790
  8791
  8792
  8793
  8794
  8795
  8796
  8797
  8798
  8799
  8800
  8801
  8802
  8803
  8804
  8805
  8806
  8807
  8808
  8809
  8810
  8811
  8812
  8813
  8814
  8815
  8816
  8817
  8818
  8819
  8820
  8821
  8822
  8823
  8824
  8825
  8826
  8827
  8828
  8829
  8830
  8831
  8832
  8833
  8834
  8835
  8836
  8837
  8838
  8839
  8840
  8841
  8842
  8843
  8844
  8845
  8846
  8847
  8848
  8849
  8850
  8851
  8852
  8853
  8854
  8855
  8856
  8857
  8858
  8859
  8860
  8861
  8862
  8863
  8864
  8865
  8866
  8867
  8868
  8869
  8870
  8871
  8872
  8873
  8874
  8875
  8876
  8877
  8878
  8879
  8880
  8881
  8882
  8883
  8884
  8885
  8886
  8887
  8888
  8889
  8890
  8891
  8892
  8893
  8894
  8895
  8896
  8897
  8898
  8899
  8900
  8901
  8902
  8903
  8904
  8905
  8906
  8907
  8908
  8909
  8910
  8911
  8912
  8913
  8914
  8915
  8916
  8917
  8918
  8919
  8920
  8921
  8922
  8923
  8924
  8925
  8926
  8927
  8928
  8929
  8930
  8931
  8932
  8933
  8934
  8935
  8936
  8937
  8938
  8939
  8940
  8941
  8942
  8943
  8944
  8945
  8946
  8947
  8948
  8949
  8950
  8951
  8952
  8953
  8954
  8955
  8956
  8957
  8958
  8959
  8960
  8961
  8962
  8963
  8964
  8965
  8966
  8967
  8968
  8969
  8970
  8971
  8972
  8973
  8974
  8975
  8976
  8977
  8978
  8979
  8980
  8981
  8982
  8983
  8984
  8985
  8986
  8987
  8988
  8989
  8990
  8991
  8992
  8993
  8994
  8995
  8996
  8997
  8998
  8999
  9000
  9001
  9002
  9003
  9004
  9005
  9006
  9007
  9008
  9009
  9010
  9011
  9012
  9013
  9014
  9015
  9016
  9017
  9018
  9019
  9020
  9021
  9022
  9023
  9024
  9025
  9026
  9027
  9028
  9029
  9030
  9031
  9032
  9033
  9034
  9035
  9036
  9037
  9038
  9039
  9040
  9041
  9042
  9043
  9044
  9045
  9046
  9047
  9048
  9049
  9050
  9051
  9052
  9053
  9054
  9055
  9056
  9057
  9058
  9059
  9060
  9061
  9062
  9063
  9064
  9065
  9066
  9067
  9068
  9069
  9070
  9071
  9072
  9073
  9074
  9075
  9076
  9077
  9078
  9079
  9080
  9081
  9082
  9083
  9084
  9085
  9086
  9087
  9088
  9089
  9090
  9091
  9092
  9093
  9094
  9095
  9096
  9097
  9098
  9099
  9100
  9101
  9102
  9103
  9104
  9105
  9106
  9107
  9108
  9109
  9110
  9111
  9112
  9113
  9114
  9115
  9116
  9117
  9118
  9119
  9120
  9121
  9122
  9123
  9124
  9125
  9126
  9127
  9128
  9129
  9130
  9131
  9132
  9133
  9134
  9135
  9136
  9137
  9138
  9139
  9140
  9141
  9142
  9143
  9144
  9145
  9146
  9147
  9148
  9149
  9150
  9151
  9152
  9153
  9154
  9155
  9156
  9157
  9158
  9159
  9160
  9161
  9162
  9163
  9164
  9165
  9166
  9167
  9168
  9169
  9170
  9171
  9172
  9173
  9174
  9175
  9176
  9177
  9178
  9179
  9180
  9181
  9182
  9183
  9184
  9185
  9186
  9187
  9188
  9189
  9190
  9191
  9192
  9193
  9194
  9195
  9196
  9197
  9198
  9199
  9200
  9201
  9202
  9203
  9204
  9205
  9206
  9207
  9208
  9209
  9210
  9211
  9212
  9213
  9214
  9215
  9216
  9217
  9218
  9219
  9220
  9221
  9222
  9223
  9224
  9225
  9226
  9227
  9228
  9229
  9230
  9231
  9232
  9233
  9234
  9235
  9236
  9237
  9238
  9239
  9240
  9241
  9242
  9243
  9244
  9245
  9246
  9247
  9248
  9249
  9250
  9251
  9252
  9253
  9254
  9255
  9256
  9257
  9258
  9259
  9260
  9261
  9262
  9263
  9264
  9265
  9266
  9267
  9268
  9269
  9270
  9271
  9272
  9273
  9274
  9275
  9276
  9277
  9278
  9279
  9280
  9281
  9282
  9283
  9284
  9285
  9286
  9287
  9288
  9289
  9290
  9291
  9292
  9293
  9294
  9295
  9296
  9297
  9298
  9299
  9300
  9301
  9302
  9303
  9304
  9305
  9306
  9307
  9308
  9309
  9310
  9311
  9312
  9313
  9314
  9315
  9316
  9317
  9318
  9319
  9320
  9321
  9322
  9323
  9324
  9325
  9326
  9327
  9328
  9329
  9330
  9331
  9332
  9333
  9334
  9335
  9336
  9337
  9338
  9339
  9340
  9341
  9342
  9343
  9344
  9345
  9346
  9347
  9348
  9349
  9350
  9351
  9352
  9353
  9354
  9355
  9356
  9357
  9358
  9359
  9360
  9361
  9362
  9363
  9364
  9365
  9366
  9367
  9368
  9369
  9370
  9371
  9372
  9373
  9374
  9375
  9376
  9377
  9378
  9379
  9380
  9381
  9382
  9383
  9384
  9385
  9386
  9387
  9388
  9389
  9390
  9391
  9392
  9393
  9394
  9395
  9396
  9397
  9398
  9399
  9400
  9401
  9402
  9403
  9404
  9405
  9406
  9407
  9408
  9409
  9410
  9411
  9412
  9413
  9414
  9415
  9416
  9417
  9418
  9419
  9420
  9421
  9422
  9423
  9424
  9425
  9426
  9427
  9428
  9429
  9430
  9431
  9432
  9433
  9434
  9435
  9436
  9437
  9438
  9439
  9440
  9441
  9442
  9443
  9444
  9445
  9446
  9447
  9448
  9449
  9450
  9451
  9452
  9453
  9454
  9455
  9456
  9457
  9458
  9459
  9460
  9461
  9462
  9463
  9464
  9465
  9466
  9467
  9468
  9469
  9470
  9471
  9472
  9473
  9474
  9475
  9476
  9477
  9478
  9479
  9480
  9481
  9482
  9483
  9484
  9485
  9486
  9487
  9488
  9489
  9490
  9491
  9492
  9493
  9494
  9495
  9496
  9497
  9498
  9499
  9500
  9501
  9502
  9503
  9504
  9505
  9506
  9507
  9508
  9509
  9510
  9511
  9512
  9513
  9514
  9515
  9516
  9517
  9518
  9519
  9520
  9521
  9522
  9523
  9524
  9525
  9526
  9527
  9528
  9529
  9530
  9531
  9532
  9533
  9534
  9535
  9536
  9537
  9538
  9539
  9540
  9541
  9542
  9543
  9544
  9545
  9546
  9547
  9548
  9549
  9550
  9551
  9552
  9553
  9554
  9555
  9556
  9557
  9558
  9559
  9560
  9561
  9562
  9563
  9564
  9565
  9566
  9567
  9568
  9569
  9570
  9571
  9572
  9573
  9574
  9575
  9576
  9577
  9578
  9579
  9580
  9581
  9582
  9583
  9584
  9585
  9586
  9587
  9588
  9589
  9590
  9591
  9592
  9593
  9594
  9595
  9596
  9597
  9598
  9599
  9600
  9601
  9602
  9603
  9604
  9605
  9606
  9607
  9608
  9609
  9610
  9611
  9612
  9613
  9614
  9615
  9616
  9617
  9618
  9619
  9620
  9621
  9622
  9623
  9624
  9625
  9626
  9627
  9628
  9629
  9630
  9631
  9632
  9633
  9634
  9635
  9636
  9637
  9638
  9639
  9640
  9641
  9642
  9643
  9644
  9645
  9646
  9647
  9648
  9649
  9650
  9651
  9652
  9653
  9654
  9655
  9656
  9657
  9658
  9659
  9660
  9661
  9662
  9663
  9664
  9665
  9666
  9667
  9668
  9669
  9670
  9671
  9672
  9673
  9674
  9675
  9676
  9677
  9678
  9679
  9680
  9681
  9682
  9683
  9684
  9685
  9686
  9687
  9688
  9689
  9690
  9691
  9692
  9693
  9694
  9695
  9696
  9697
  9698
  9699
  9700
  9701
  9702
  9703
  9704
  9705
  9706
  9707
  9708
  9709
  9710
  9711
  9712
  9713
  9714
  9715
  9716
  9717
  9718
  9719
  9720
  9721
  9722
  9723
  9724
  9725
  9726
  9727
  9728
  9729
  9730
  9731
  9732
  9733
  9734
  9735
  9736
  9737
  9738
  9739
  9740
  9741
  9742
  9743
  9744
  9745
  9746
  9747
  9748
  9749
  9750
  9751
  9752
  9753
  9754
  9755
  9756
  9757
  9758
  9759
  9760
  9761
  9762
  9763
  9764
  9765
  9766
  9767
  9768
  9769
  9770
  9771
  9772
  9773
  9774
  9775
  9776
  9777
  9778
  9779
  9780
  9781
  9782
  9783
  9784
  9785
  9786
  9787
  9788
  9789
  9790
  9791
  9792
  9793
  9794
  9795
  9796
  9797
  9798
  9799
  9800
  9801
  9802
  9803
  9804
  9805
  9806
  9807
  9808
  9809
  9810
  9811
  9812
  9813
  9814
  9815
  9816
  9817
  9818
  9819
  9820
  9821
  9822
  9823
  9824
  9825
  9826
  9827
  9828
  9829
  9830
  9831
  9832
  9833
  9834
  9835
  9836
  9837
  9838
  9839
  9840
  9841
  9842
  9843
  9844
  9845
  9846
  9847
  9848
  9849
  9850
  9851
  9852
  9853
  9854
  9855
  9856
  9857
  9858
  9859
  9860
  9861
  9862
  9863
  9864
  9865
  9866
  9867
  9868
  9869
  9870
  9871
  9872
  9873
  9874
  9875
  9876
  9877
  9878
  9879
  9880
  9881
  9882
  9883
  9884
  9885
  9886
  9887
  9888
  9889
  9890
  9891
  9892
  9893
  9894
  9895
  9896
  9897
  9898
  9899
  9900
  9901
  9902
  9903
  9904
  9905
  9906
  9907
  9908
  9909
  9910
  9911
  9912
  9913
  9914
  9915
  9916
  9917
  9918
  9919
  9920
  9921
  9922
  9923
  9924
  9925
  9926
  9927
  9928
  9929
  9930
  9931
  9932
  9933
  9934
  9935
  9936
  9937
  9938
  9939
  9940
  9941
  9942
  9943
  9944
  9945
  9946
  9947
  9948
  9949
  9950
  9951
  9952
  9953
  9954
  9955
  9956
  9957
  9958
  9959
  9960
  9961
  9962
  9963
  9964
  9965
  9966
  9967
  9968
  9969
  9970
  9971
  9972
  9973
  9974
  9975
  9976
  9977
  9978
  9979
  9980
  9981
  9982
  9983
  9984
  9985
  9986
  9987
  9988
  9989
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements an external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;

/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if 0
int sqlite3BtreeTrace=1;  /* True to enable tracing */
# define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
#else
# define TRACE(X)
#endif

/*
** Extract a 2-byte big-endian integer from an array of unsigned bytes.
** But if the value is zero, make it 65536.
**
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page.  If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)

/*
** Values passed as the 5th argument to allocateBtreePage()
*/
#define BTALLOC_ANY   0           /* Allocate any page */
#define BTALLOC_EXACT 1           /* Allocate exact page if possible */
#define BTALLOC_LE    2           /* Allocate any page <= the parameter */

/*
** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not 
** defined, or 0 if it is. For example:
**
**   bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define IfNotOmitAV(expr) (expr)
#else
#define IfNotOmitAV(expr) 0
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache.  This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for 
** test builds.
**
** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
*/
#ifdef SQLITE_TEST
BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#else
static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
int sqlite3_enable_shared_cache(int enable){
  sqlite3GlobalConfig.sharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif



#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
  ** and clearAllSharedCacheTableLocks()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not necessary. 
  ** So define the lock related functions as no-ops.
  */
  #define querySharedCacheTableLock(a,b,c) SQLITE_OK
  #define setSharedCacheTableLock(a,b,c) SQLITE_OK
  #define clearAllSharedCacheTableLocks(a)
  #define downgradeAllSharedCacheTableLocks(a)
  #define hasSharedCacheTableLock(a,b,c,d) 1
  #define hasReadConflicts(a, b) 0
#endif

/*
** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
** (MemPage*) as an argument. The (MemPage*) must not be NULL.
**
** If SQLITE_DEBUG is not defined, then this macro is equivalent to
** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
** with the page number and filename associated with the (MemPage*).
*/
#ifdef SQLITE_DEBUG
int corruptPageError(int lineno, MemPage *p){
  char *zMsg;
  sqlite3BeginBenignMalloc();
  zMsg = sqlite3_mprintf("database corruption page %d of %s",
      (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
  );
  sqlite3EndBenignMalloc();
  if( zMsg ){
    sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
  }
  sqlite3_free(zMsg);
  return SQLITE_CORRUPT_BKPT;
}
# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
#else
# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the 
** table with root page iRoot.   Return 1 if it does and 0 if not.
**
** For example, when writing to a table with root-page iRoot via 
** Btree connection pBtree:
**
**    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
**
** When writing to an index that resides in a sharable database, the 
** caller should have first obtained a lock specifying the root page of
** the corresponding table. This makes things a bit more complicated,
** as this module treats each table as a separate structure. To determine
** the table corresponding to the index being written, this
** function has to search through the database schema.
**
** Instead of a lock on the table/index rooted at page iRoot, the caller may
** hold a write-lock on the schema table (root page 1). This is also
** acceptable.
*/
static int hasSharedCacheTableLock(
  Btree *pBtree,         /* Handle that must hold lock */
  Pgno iRoot,            /* Root page of b-tree */
  int isIndex,           /* True if iRoot is the root of an index b-tree */
  int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
){
  Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
  Pgno iTab = 0;
  BtLock *pLock;

  /* If this database is not shareable, or if the client is reading
  ** and has the read-uncommitted flag set, then no lock is required. 
  ** Return true immediately.
  */
  if( (pBtree->sharable==0)
   || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
  ){
    return 1;
  }

  /* If the client is reading  or writing an index and the schema is
  ** not loaded, then it is too difficult to actually check to see if
  ** the correct locks are held.  So do not bother - just return true.
  ** This case does not come up very often anyhow.
  */
  if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
    return 1;
  }

  /* Figure out the root-page that the lock should be held on. For table
  ** b-trees, this is just the root page of the b-tree being read or
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
  if( isIndex ){
    HashElem *p;
    for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
      Index *pIdx = (Index *)sqliteHashData(p);
      if( pIdx->tnum==(int)iRoot ){
        if( iTab ){
          /* Two or more indexes share the same root page.  There must
          ** be imposter tables.  So just return true.  The assert is not
          ** useful in that case. */
          return 1;
        }
        iTab = pIdx->pTable->tnum;
      }
    }
  }else{
    iTab = iRoot;
  }

  /* Search for the required lock. Either a write-lock on root-page iTab, a 
  ** write-lock on the schema table, or (if the client is reading) a
  ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
  for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
    if( pLock->pBtree==pBtree 
     && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
     && pLock->eLock>=eLockType 
    ){
      return 1;
    }
  }

  /* Failed to find the required lock. */
  return 0;
}
#endif /* SQLITE_DEBUG */

#ifdef SQLITE_DEBUG
/*
**** This function may be used as part of assert() statements only. ****
**
** Return true if it would be illegal for pBtree to write into the
** table or index rooted at iRoot because other shared connections are
** simultaneously reading that same table or index.
**
** It is illegal for pBtree to write if some other Btree object that
** shares the same BtShared object is currently reading or writing
** the iRoot table.  Except, if the other Btree object has the
** read-uncommitted flag set, then it is OK for the other object to
** have a read cursor.
**
** For example, before writing to any part of the table or index
** rooted at page iRoot, one should call:
**
**    assert( !hasReadConflicts(pBtree, iRoot) );
*/
static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
  BtCursor *p;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( p->pgnoRoot==iRoot 
     && p->pBtree!=pBtree
     && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
    ){
      return 1;
    }
  }
  return 0;
}
#endif    /* #ifdef SQLITE_DEBUG */

/*
** Query to see if Btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling
** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
*/
static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );
  assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
  
  /* If requesting a write-lock, then the Btree must have an open write
  ** transaction on this file. And, obviously, for this to be so there 
  ** must be an open write transaction on the file itself.
  */
  assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
  assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
  
  /* This routine is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

  /* If some other connection is holding an exclusive lock, the
  ** requested lock may not be obtained.
  */
  if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
    sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    /* The condition (pIter->eLock!=eLock) in the following if(...) 
    ** statement is a simplification of:
    **
    **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
    **
    ** since we know that if eLock==WRITE_LOCK, then no other connection
    ** may hold a WRITE_LOCK on any table in this file (since there can
    ** only be a single writer).
    */
    assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
    assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
    if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
      sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
      if( eLock==WRITE_LOCK ){
        assert( p==pBt->pWriter );
        pBt->btsFlags |= BTS_PENDING;
      }
      return SQLITE_LOCKED_SHAREDCACHE;
    }
  }
  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** This function assumes the following:
**
**   (a) The specified Btree object p is connected to a sharable
**       database (one with the BtShared.sharable flag set), and
**
**   (b) No other Btree objects hold a lock that conflicts
**       with the requested lock (i.e. querySharedCacheTableLock() has
**       already been called and returned SQLITE_OK).
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );

  /* A connection with the read-uncommitted flag set will never try to
  ** obtain a read-lock using this function. The only read-lock obtained
  ** by a connection in read-uncommitted mode is on the sqlite_master 
  ** table, and that lock is obtained in BtreeBeginTrans().  */
  assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );

  /* This function should only be called on a sharable b-tree after it 
  ** has been determined that no other b-tree holds a conflicting lock.  */
  assert( p->sharable );
  assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );

  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }
  }

  /* If the above search did not find a BtLock struct associating Btree p
  ** with table iTable, allocate one and link it into the list.
  */
  if( !pLock ){
    pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
    if( !pLock ){
      return SQLITE_NOMEM_BKPT;
    }
    pLock->iTable = iTable;
    pLock->pBtree = p;
    pLock->pNext = pBt->pLock;
    pBt->pLock = pLock;
  }

  /* Set the BtLock.eLock variable to the maximum of the current lock
  ** and the requested lock. This means if a write-lock was already held
  ** and a read-lock requested, we don't incorrectly downgrade the lock.
  */
  assert( WRITE_LOCK>READ_LOCK );
  if( eLock>pLock->eLock ){
    pLock->eLock = eLock;
  }

  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to
** the setSharedCacheTableLock() procedure) held by Btree object p.
**
** This function assumes that Btree p has an open read or write 
** transaction. If it does not, then the BTS_PENDING flag
** may be incorrectly cleared.
*/
static void clearAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  BtLock **ppIter = &pBt->pLock;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );
  assert( p->inTrans>0 );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
    assert( pLock->pBtree->inTrans>=pLock->eLock );
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      assert( pLock->iTable!=1 || pLock==&p->lock );
      if( pLock->iTable!=1 ){
        sqlite3_free(pLock);
      }
    }else{
      ppIter = &pLock->pNext;
    }
  }

  assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
  if( pBt->pWriter==p ){
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
  }else if( pBt->nTransaction==2 ){
    /* This function is called when Btree p is concluding its 
    ** transaction. If there currently exists a writer, and p is not
    ** that writer, then the number of locks held by connections other
    ** than the writer must be about to drop to zero. In this case
    ** set the BTS_PENDING flag to 0.
    **
    ** If there is not currently a writer, then BTS_PENDING must
    ** be zero already. So this next line is harmless in that case.
    */
    pBt->btsFlags &= ~BTS_PENDING;
  }
}

/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  if( pBt->pWriter==p ){
    BtLock *pLock;
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
    for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
      assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
      pLock->eLock = READ_LOCK;
    }
  }
}

#endif /* SQLITE_OMIT_SHARED_CACHE */

static void releasePage(MemPage *pPage);         /* Forward reference */
static void releasePageOne(MemPage *pPage);      /* Forward reference */
static void releasePageNotNull(MemPage *pPage);  /* Forward reference */

/*
***** This routine is used inside of assert() only ****
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite3_mutex_held(p->pBt->mutex);
}

/* Verify that the cursor and the BtShared agree about what is the current
** database connetion. This is important in shared-cache mode. If the database 
** connection pointers get out-of-sync, it is possible for routines like
** btreeInitPage() to reference an stale connection pointer that references a
** a connection that has already closed.  This routine is used inside assert()
** statements only and for the purpose of double-checking that the btree code
** does keep the database connection pointers up-to-date.
*/
static int cursorOwnsBtShared(BtCursor *p){
  assert( cursorHoldsMutex(p) );
  return (p->pBtree->db==p->pBt->db);
}
#endif

/*
** Invalidate the overflow cache of the cursor passed as the first argument.
** on the shared btree structure pBt.
*/
#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void invalidateAllOverflowCache(BtShared *pBt){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  for(p=pBt->pCursor; p; p=p->pNext){
    invalidateOverflowCache(p);
  }
}

#ifndef SQLITE_OMIT_INCRBLOB
/*
** This function is called before modifying the contents of a table
** to invalidate any incrblob cursors that are open on the
** row or one of the rows being modified.
**
** If argument isClearTable is true, then the entire contents of the
** table is about to be deleted. In this case invalidate all incrblob
** cursors open on any row within the table with root-page pgnoRoot.
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
  Btree *pBtree,          /* The database file to check */
  Pgno pgnoRoot,          /* The table that might be changing */
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  if( pBtree->hasIncrblobCur==0 ) return;
  assert( sqlite3BtreeHoldsMutex(pBtree) );
  pBtree->hasIncrblobCur = 0;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( (p->curFlags & BTCF_Incrblob)!=0 ){
      pBtree->hasIncrblobCur = 1;
      if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
        p->eState = CURSOR_INVALID;
      }
    }
  }
}

#else
  /* Stub function when INCRBLOB is omitted */
  #define invalidateIncrblobCursors(w,x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called 
** when a page that previously contained data becomes a free-list leaf 
** page.
**
** The BtShared.pHasContent bitvec exists to work around an obscure
** bug caused by the interaction of two useful IO optimizations surrounding
** free-list leaf pages:
**
**   1) When all data is deleted from a page and the page becomes
**      a free-list leaf page, the page is not written to the database
**      (as free-list leaf pages contain no meaningful data). Sometimes
**      such a page is not even journalled (as it will not be modified,
**      why bother journalling it?).
**
**   2) When a free-list leaf page is reused, its content is not read
**      from the database or written to the journal file (why should it
**      be, if it is not at all meaningful?).
**
** By themselves, these optimizations work fine and provide a handy
** performance boost to bulk delete or insert operations. However, if
** a page is moved to the free-list and then reused within the same
** transaction, a problem comes up. If the page is not journalled when
** it is moved to the free-list and it is also not journalled when it
** is extracted from the free-list and reused, then the original data
** may be lost. In the event of a rollback, it may not be possible
** to restore the database to its original configuration.
**
** The solution is the BtShared.pHasContent bitvec. Whenever a page is 
** moved to become a free-list leaf page, the corresponding bit is
** set in the bitvec. Whenever a leaf page is extracted from the free-list,
** optimization 2 above is omitted if the corresponding bit is already
** set in BtShared.pHasContent. The contents of the bitvec are cleared
** at the end of every transaction.
*/
static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
  int rc = SQLITE_OK;
  if( !pBt->pHasContent ){
    assert( pgno<=pBt->nPage );
    pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
    if( !pBt->pHasContent ){
      rc = SQLITE_NOMEM_BKPT;
    }
  }
  if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
    rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
  }
  return rc;
}

/*
** Query the BtShared.pHasContent vector.
**
** This function is called when a free-list leaf page is removed from the
** free-list for reuse. It returns false if it is safe to retrieve the
** page from the pager layer with the 'no-content' flag set. True otherwise.
*/
static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
  Bitvec *p = pBt->pHasContent;
  return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
}

/*
** Clear (destroy) the BtShared.pHasContent bitvec. This should be
** invoked at the conclusion of each write-transaction.
*/
static void btreeClearHasContent(BtShared *pBt){
  sqlite3BitvecDestroy(pBt->pHasContent);
  pBt->pHasContent = 0;
}

/*
** Release all of the apPage[] pages for a cursor.
*/
static void btreeReleaseAllCursorPages(BtCursor *pCur){
  int i;
  if( pCur->iPage>=0 ){
    for(i=0; i<pCur->iPage; i++){
      releasePageNotNull(pCur->apPage[i]);
    }
    releasePageNotNull(pCur->pPage);
    pCur->iPage = -1;
  }
}

/*
** The cursor passed as the only argument must point to a valid entry
** when this function is called (i.e. have eState==CURSOR_VALID). This
** function saves the current cursor key in variables pCur->nKey and
** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error 
** code otherwise.
**
** If the cursor is open on an intkey table, then the integer key
** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is 
** set to point to a malloced buffer pCur->nKey bytes in size containing 
** the key.
*/
static int saveCursorKey(BtCursor *pCur){
  int rc = SQLITE_OK;
  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->curIntKey ){
    /* Only the rowid is required for a table btree */
    pCur->nKey = sqlite3BtreeIntegerKey(pCur);
  }else{
    /* For an index btree, save the complete key content */
    void *pKey;
    pCur->nKey = sqlite3BtreePayloadSize(pCur);
    pKey = sqlite3Malloc( pCur->nKey );
    if( pKey ){
      rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite3_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM_BKPT;
    }
  }
  assert( !pCur->curIntKey || !pCur->pKey );
  return rc;
}

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->eState==CURSOR_SKIPNEXT ){
    pCur->eState = CURSOR_VALID;
  }else{
    pCur->skipNext = 0;
  }

  rc = saveCursorKey(pCur);
  if( rc==SQLITE_OK ){
    btreeReleaseAllCursorPages(pCur);
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
  return rc;
}

/* Forward reference */
static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);

/*
** Save the positions of all cursors (except pExcept) that are open on
** the table with root-page iRoot.  "Saving the cursor position" means that
** the location in the btree is remembered in such a way that it can be
** moved back to the same spot after the btree has been modified.  This
** routine is called just before cursor pExcept is used to modify the
** table, for example in BtreeDelete() or BtreeInsert().
**
** If there are two or more cursors on the same btree, then all such 
** cursors should have their BTCF_Multiple flag set.  The btreeCursor()
** routine enforces that rule.  This routine only needs to be called in
** the uncommon case when pExpect has the BTCF_Multiple flag set.
**
** If pExpect!=NULL and if no other cursors are found on the same root-page,
** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
** pointless call to this routine.
**
** Implementation note:  This routine merely checks to see if any cursors
** need to be saved.  It calls out to saveCursorsOnList() in the (unusual)
** event that cursors are in need to being saved.
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
  }
  if( p ) return saveCursorsOnList(p, iRoot, pExcept);
  if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
  return SQLITE_OK;
}

/* This helper routine to saveAllCursors does the actual work of saving
** the cursors if and when a cursor is found that actually requires saving.
** The common case is that no cursors need to be saved, so this routine is
** broken out from its caller to avoid unnecessary stack pointer movement.
*/
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,         /* The first cursor that needs saving */
  Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
  BtCursor *pExcept    /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
        }
      }else{
        testcase( p->iPage>=0 );
        btreeReleaseAllCursorPages(p);
      }
    }
    p = p->pNext;
  }while( p );
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
void sqlite3BtreeClearCursor(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite3_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** In this version of BtreeMoveto, pKey is a packed index record
** such as is generated by the OP_MakeRecord opcode.  Unpack the
** record and then call BtreeMovetoUnpacked() to do the work.
*/
static int btreeMoveto(
  BtCursor *pCur,     /* Cursor open on the btree to be searched */
  const void *pKey,   /* Packed key if the btree is an index */
  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  int bias,           /* Bias search to the high end */
  int *pRes           /* Write search results here */
){
  int rc;                    /* Status code */
  UnpackedRecord *pIdxKey;   /* Unpacked index key */

  if( pKey ){
    assert( nKey==(i64)(int)nKey );
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
    if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
    sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
    if( pIdxKey->nField==0 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto moveto_done;
    }
  }else{
    pIdxKey = 0;
  }
  rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
moveto_done:
  if( pIdxKey ){
    sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
  }
  return rc;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
    pCur->skipNext |= skipNext;
    if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
      pCur->eState = CURSOR_SKIPNEXT;
    }
  }
  return rc;
}

#define restoreCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         btreeRestoreCursorPosition(p) : \
         SQLITE_OK)

/*
** Determine whether or not a cursor has moved from the position where
** it was last placed, or has been invalidated for any other reason.
** Cursors can move when the row they are pointing at is deleted out
** from under them, for example.  Cursor might also move if a btree
** is rebalanced.
**
** Calling this routine with a NULL cursor pointer returns false.
**
** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
** back to where it ought to be if this routine returns true.
*/
int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
  return pCur->eState!=CURSOR_VALID;
}

/*
** Return a pointer to a fake BtCursor object that will always answer
** false to the sqlite3BtreeCursorHasMoved() routine above.  The fake
** cursor returned must not be used with any other Btree interface.
*/
BtCursor *sqlite3BtreeFakeValidCursor(void){
  static u8 fakeCursor = CURSOR_VALID;
  assert( offsetof(BtCursor, eState)==0 );
  return (BtCursor*)&fakeCursor;
}

/*
** This routine restores a cursor back to its original position after it
** has been moved by some outside activity (such as a btree rebalance or
** a row having been deleted out from under the cursor).  
**
** On success, the *pDifferentRow parameter is false if the cursor is left
** pointing at exactly the same row.  *pDifferntRow is the row the cursor
** was pointing to has been deleted, forcing the cursor to point to some
** nearby row.
**
** This routine should only be called for a cursor that just returned
** TRUE from sqlite3BtreeCursorHasMoved().
*/
int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
  int rc;

  assert( pCur!=0 );
  assert( pCur->eState!=CURSOR_VALID );
  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pDifferentRow = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID ){
    *pDifferentRow = 1;
  }else{
    assert( pCur->skipNext==0 );
    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Provide hints to the cursor.  The particular hint given (and the type
** and number of the varargs parameters) is determined by the eHintType
** parameter.  See the definitions of the BTREE_HINT_* macros for details.
*/
void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
  /* Used only by system that substitute their own storage engine */
}
#endif

/*
** Provide flag hints to the cursor.
*/
void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
  assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
  pCur->hints = x;
}


#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**
** Return 0 (not a valid page) for pgno==1 since there is
** no pointer map associated with page 1.  The integrity_check logic
** requires that ptrmapPageno(*,1)!=1.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
  int nPagesPerMapPage;
  Pgno iPtrMap, ret;
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno<2 ) return 0;
  nPagesPerMapPage = (pBt->usableSize/5)+1;
  iPtrMap = (pgno-2)/nPagesPerMapPage;
  ret = (iPtrMap*nPagesPerMapPage) + 2; 
  if( ret==PENDING_BYTE_PAGE(pBt) ){
    ret++;
  }
  return ret;
}

/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
**
** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
** a no-op.  If an error occurs, the appropriate error code is written
** into *pRC.
*/
static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
  DbPage *pDbPage;  /* The pointer map page */
  u8 *pPtrmap;      /* The pointer map data */
  Pgno iPtrmap;     /* The pointer map page number */
  int offset;       /* Offset in pointer map page */
  int rc;           /* Return code from subfunctions */

  if( *pRC ) return;

  assert( sqlite3_mutex_held(pBt->mutex) );
  /* The master-journal page number must never be used as a pointer map page */
  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );

  assert( pBt->autoVacuum );
  if( key==0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=SQLITE_OK ){
    *pRC = rc;
    return;
  }
  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    goto ptrmap_exit;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
    *pRC= rc = sqlite3PagerWrite(pDbPage);
    if( rc==SQLITE_OK ){
      pPtrmap[offset] = eType;
      put4byte(&pPtrmap[offset+1], parent);
    }
  }

ptrmap_exit:
  sqlite3PagerUnref(pDbPage);
}

/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
  DbPage *pDbPage;   /* The pointer map page */
  int iPtrmap;       /* Pointer map page index */
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    sqlite3PagerUnref(pDbPage);
    return SQLITE_CORRUPT_BKPT;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  assert( pEType!=0 );
  *pEType = pPtrmap[offset];
  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);

  sqlite3PagerUnref(pDbPage);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
  return SQLITE_OK;
}

#else /* if defined SQLITE_OMIT_AUTOVACUUM */
  #define ptrmapPut(w,x,y,z,rc)
  #define ptrmapGet(w,x,y,z) SQLITE_OK
  #define ptrmapPutOvflPtr(x, y, rc)
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** findCellPastPtr() does the same except it skips past the initial
** 4-byte child pointer found on interior pages, if there is one.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
#define findCellPastPtr(P,I) \
  ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))


/*
** This is common tail processing for btreeParseCellPtr() and
** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
** on a single B-tree page.  Make necessary adjustments to the CellInfo
** structure.
*/
static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  /* If the payload will not fit completely on the local page, we have
  ** to decide how much to store locally and how much to spill onto
  ** overflow pages.  The strategy is to minimize the amount of unused
  ** space on overflow pages while keeping the amount of local storage
  ** in between minLocal and maxLocal.
  **
  ** Warning:  changing the way overflow payload is distributed in any
  ** way will result in an incompatible file format.
  */
  int minLocal;  /* Minimum amount of payload held locally */
  int maxLocal;  /* Maximum amount of payload held locally */
  int surplus;   /* Overflow payload available for local storage */

  minLocal = pPage->minLocal;
  maxLocal = pPage->maxLocal;
  surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
  testcase( surplus==maxLocal );
  testcase( surplus==maxLocal+1 );
  if( surplus <= maxLocal ){
    pInfo->nLocal = (u16)surplus;
  }else{
    pInfo->nLocal = (u16)minLocal;
  }
  pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
}

/*
** The following routines are implementations of the MemPage.xParseCell()
** method.
**
** Parse a cell content block and fill in the CellInfo structure.
**
** btreeParseCellPtr()        =>   table btree leaf nodes
** btreeParseCellNoPayload()  =>   table btree internal nodes
** btreeParseCellPtrIndex()   =>   index btree nodes
**
** There is also a wrapper function btreeParseCell() that works for
** all MemPage types and that references the cell by index rather than
** by pointer.
*/
static void btreeParseCellPtrNoPayload(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 );
  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;
  pInfo->pPayload = 0;
  return;
}
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */
  u64 iKey;               /* Extracted Key value */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf );
  assert( pPage->childPtrSize==0 );
  pIter = pCell;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint32(pIter, nPayload);
  **
  ** The code is inlined to avoid a function call.
  */
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);
    }while( (*pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;

  /* The next block of code is equivalent to:
  **
  **     pIter += getVarint(pIter, (u64*)&pInfo->nKey);
  **
  ** The code is inlined to avoid a function call.
  */
  iKey = *pIter;
  if( iKey>=0x80 ){
    u8 *pEnd = &pIter[7];
    iKey &= 0x7f;
    while(1){
      iKey = (iKey<<7) | (*++pIter & 0x7f);
      if( (*pIter)<0x80 ) break;
      if( pIter>=pEnd ){
        iKey = (iKey<<8) | *++pIter;
        break;
      }
    }
  }
  pIter++;

  pInfo->nKey = *(i64*)&iKey;
  pInfo->nPayload = nPayload;
  pInfo->pPayload = pIter;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCellPtrIndex(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u8 *pIter;              /* For scanning through pCell */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->leaf==0 || pPage->leaf==1 );
  assert( pPage->intKeyLeaf==0 );
  pIter = pCell + pPage->childPtrSize;
  nPayload = *pIter;
  if( nPayload>=0x80 ){
    u8 *pEnd = &pIter[8];
    nPayload &= 0x7f;
    do{
      nPayload = (nPayload<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;
  pInfo->nKey = nPayload;
  pInfo->nPayload = nPayload;
  pInfo->pPayload = pIter;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
}

/*
** The following routines are implementations of the MemPage.xCellSize
** method.
**
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
**
** cellSizePtrNoPayload()    =>   table internal nodes
** cellSizePtr()             =>   all index nodes & table leaf nodes
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
  u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
  u8 *pEnd;                                /* End mark for a varint */
  u32 nSize;                               /* Size value to return */

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#endif

  nSize = *pIter;
  if( nSize>=0x80 ){
    pEnd = &pIter[8];
    nSize &= 0x7f;
    do{
      nSize = (nSize<<7) | (*++pIter & 0x7f);
    }while( *(pIter)>=0x80 && pIter<pEnd );
  }
  pIter++;
  if( pPage->intKey ){
    /* pIter now points at the 64-bit integer key value, a variable length 
    ** integer. The following block moves pIter to point at the first byte
    ** past the end of the key value. */
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );
  }
  testcase( nSize==pPage->maxLocal );
  testcase( nSize==pPage->maxLocal+1 );
  if( nSize<=pPage->maxLocal ){
    nSize += (u32)(pIter - pCell);
    if( nSize<4 ) nSize = 4;
  }else{
    int minLocal = pPage->minLocal;
    nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
    testcase( nSize==pPage->maxLocal );
    testcase( nSize==pPage->maxLocal+1 );
    if( nSize>pPage->maxLocal ){
      nSize = minLocal;
    }
    nSize += 4 + (u16)(pIter - pCell);
  }
  assert( nSize==debuginfo.nSize || CORRUPT_DB );
  return (u16)nSize;
}
static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
  u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
  u8 *pEnd;              /* End mark for a varint */

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  pPage->xParseCell(pPage, pCell, &debuginfo);
#else
  UNUSED_PARAMETER(pPage);
#endif

  assert( pPage->childPtrSize==4 );
  pEnd = pIter + 9;
  while( (*pIter++)&0x80 && pIter<pEnd );
  assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
  return (u16)(pIter - pCell);
}


#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
  return pPage->xCellSize(pPage, findCell(pPage, iCell));
}
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  pPage->xParseCell(pPage, pCell, &info);
  if( info.nLocal<info.nPayload ){
    Pgno ovfl = get4byte(&pCell[info.nSize-4]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif


/*
** Defragment the page given. This routine reorganizes cells within the
** page so that there are no free-blocks on the free-block list.
**
** Parameter nMaxFrag is the maximum amount of fragmented space that may be
** present in the page after this routine returns.
**
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
** b-tree page so that there are no freeblocks or fragment bytes, all
** unused bytes are contained in the unallocated space region, and all
** cells are packed tightly at the end of the page.
*/
static int defragmentPage(MemPage *pPage, int nMaxFrag){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */
  unsigned char *src;        /* Source of content */
  int iCellFirst;            /* First allowable cell index */
  int iCellLast;             /* Last possible cell index */

  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  temp = 0;
  src = data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  iCellFirst = cellOffset + 2*nCell;
  usableSize = pPage->pBt->usableSize;

  /* This block handles pages with two or fewer free blocks and nMaxFrag
  ** or fewer fragmented bytes. In this case it is faster to move the
  ** two (or one) blocks of cells using memmove() and add the required
  ** offsets to each pointer in the cell-pointer array than it is to 
  ** reconstruct the entire page.  */
  if( (int)data[hdr+7]<=nMaxFrag ){
    int iFree = get2byte(&data[hdr+1]);
    if( iFree ){
      int iFree2 = get2byte(&data[iFree]);

      /* pageFindSlot() has already verified that free blocks are sorted
      ** in order of offset within the page, and that no block extends
      ** past the end of the page. Provided the two free slots do not 
      ** overlap, this guarantees that the memmove() calls below will not
      ** overwrite the usableSize byte buffer, even if the database page
      ** is corrupt.  */
      assert( iFree2==0 || iFree2>iFree );
      assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
      assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );

      if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
        u8 *pEnd = &data[cellOffset + nCell*2];
        u8 *pAddr;
        int sz2 = 0;
        int sz = get2byte(&data[iFree+2]);
        int top = get2byte(&data[hdr+5]);
        if( top>=iFree ){
          return SQLITE_CORRUPT_PAGE(pPage);
        }
        if( iFree2 ){
          assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
          sz2 = get2byte(&data[iFree2+2]);
          assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
          memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
          sz += sz2;
        }
        cbrk = top+sz;
        assert( cbrk+(iFree-top) <= usableSize );
        memmove(&data[cbrk], &data[top], iFree-top);
        for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
          pc = get2byte(pAddr);
          if( pc<iFree ){ put2byte(pAddr, pc+sz); }
          else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
        }
        goto defragment_out;
      }
    }
  }

  cbrk = usableSize;
  iCellLast = usableSize - 4;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
    testcase( pc==iCellFirst );
    testcase( pc==iCellLast );
    /* These conditions have already been verified in btreeInitPage()
    ** if PRAGMA cell_size_check=ON.
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = pPage->xCellSize(pPage, &src[pc]);
    cbrk -= size;
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    put2byte(pAddr, cbrk);
    if( temp==0 ){
      int x;
      if( cbrk==pc ) continue;
      temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
      x = get2byte(&data[hdr+5]);
      memcpy(&temp[x], &data[x], (cbrk+size) - x);
      src = temp;
    }
    memcpy(&data[cbrk], &src[pc], size);
  }
  data[hdr+7] = 0;

 defragment_out:
  if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  return SQLITE_OK;
}

/*
** Search the free-list on page pPg for space to store a cell nByte bytes in
** size. If one can be found, return a pointer to the space and remove it
** from the free-list.
**
** If no suitable space can be found on the free-list, return NULL.
**
** This function may detect corruption within pPg.  If corruption is
** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
**
** Slots on the free list that are between 1 and 3 bytes larger than nByte
** will be ignored if adding the extra space to the fragmentation count
** causes the fragmentation count to exceed 60.
*/
static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
  const int hdr = pPg->hdrOffset;
  u8 * const aData = pPg->aData;
  int iAddr = hdr + 1;
  int pc = get2byte(&aData[iAddr]);
  int x;
  int usableSize = pPg->pBt->usableSize;
  int size;            /* Size of the free slot */

  assert( pc>0 );
  while( pc<=usableSize-4 ){
    /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( (x = size - nByte)>=0 ){
      testcase( x==4 );
      testcase( x==3 );
      if( size+pc > usableSize ){
        *pRc = SQLITE_CORRUPT_PAGE(pPg);
        return 0;
      }else if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>57 ) return 0;

        /* Remove the slot from the free-list. Update the number of
        ** fragmented bytes within the page. */
        memcpy(&aData[iAddr], &aData[pc], 2);
        aData[hdr+7] += (u8)x;
      }else{
        /* The slot remains on the free-list. Reduce its size to account
         ** for the portion used by the new allocation. */
        put2byte(&aData[pc+2], x);
      }
      return &aData[pc + x];
    }
    iAddr = pc;
    pc = get2byte(&aData[pc]);
    if( pc<iAddr+size ) break;
  }
  if( pc ){
    *pRc = SQLITE_CORRUPT_PAGE(pPg);
  }

  return 0;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
** The caller guarantees that there is sufficient space to make the
** allocation.  This routine might need to defragment in order to bring
** all the space together, however.  This routine will avoid using
** the first two bytes past the cell pointer area since presumably this
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */
  int rc = SQLITE_OK;                  /* Integer return code */
  int gap;        /* First byte of gap between cell pointers and cell content */
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte < (int)(pPage->pBt->usableSize-8) );

  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
  ** and the reserved space is zero (the usual value for reserved space)
  ** then the cell content offset of an empty page wants to be 65536.
  ** However, that integer is too large to be stored in a 2-byte unsigned
  ** integer, so a value of 0 is used in its place. */
  top = get2byte(&data[hdr+5]);
  assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
  if( gap>top ){
    if( top==0 && pPage->pBt->usableSize==65536 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_PAGE(pPage);
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
    u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
    if( pSpace ){
      assert( pSpace>=data && (pSpace - data)<65536 );
      *pIdx = (int)(pSpace - data);
      return SQLITE_OK;
    }else if( rc ){
      return rc;
    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
    assert( pPage->nCell>0 || CORRUPT_DB );
    rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+2+nByte<=top );
  }


  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.  The btreeInitPage() call has already
  ** validated the freelist.  Given that the freelist is valid, there
  ** is no way that the allocation can extend off the end of the page.
  ** The assert() below verifies the previous sentence.
  */
  top -= nByte;
  put2byte(&data[hdr+5], top);
  assert( top+nByte <= (int)pPage->pBt->usableSize );
  *pIdx = top;
  return SQLITE_OK;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aData[iStart]
** and the size of the block is iSize bytes.
**
** Adjacent freeblocks are coalesced.
**
** Note that even though the freeblock list was checked by btreeInitPage(),
** that routine will not detect overlap between cells or freeblocks.  Nor
** does it detect cells or freeblocks that encrouch into the reserved bytes
** at the end of the page.  So do additional corruption checks inside this
** routine and return SQLITE_CORRUPT if any problems are found.
*/
static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
  u16 iPtr;                             /* Address of ptr to next freeblock */
  u16 iFreeBlk;                         /* Address of the next freeblock */
  u8 hdr;                               /* Page header size.  0 or 100 */
  u8 nFrag = 0;                         /* Reduction in fragmentation */
  u16 iOrigSize = iSize;                /* Original value of iSize */
  u16 x;                                /* Offset to cell content area */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */

  assert( pPage->pBt!=0 );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
  assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( iSize>=4 );   /* Minimum cell size is 4 */
  assert( iStart<=pPage->pBt->usableSize-4 );

  /* The list of freeblocks must be in ascending order.  Find the 
  ** spot on the list where iStart should be inserted.
  */
  hdr = pPage->hdrOffset;
  iPtr = hdr + 1;
  if( data[iPtr+1]==0 && data[iPtr]==0 ){
    iFreeBlk = 0;  /* Shortcut for the case when the freelist is empty */
  }else{
    while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
      if( iFreeBlk<iPtr+4 ){
        if( iFreeBlk==0 ) break;
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      iPtr = iFreeBlk;
    }
    if( iFreeBlk>pPage->pBt->usableSize-4 ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    assert( iFreeBlk>iPtr || iFreeBlk==0 );
  
    /* At this point:
    **    iFreeBlk:   First freeblock after iStart, or zero if none
    **    iPtr:       The address of a pointer to iFreeBlk
    **
    ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
    */
    if( iFreeBlk && iEnd+3>=iFreeBlk ){
      nFrag = iFreeBlk - iEnd;
      if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
      iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
      if( iEnd > pPage->pBt->usableSize ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      iSize = iEnd - iStart;
      iFreeBlk = get2byte(&data[iFreeBlk]);
    }
  
    /* If iPtr is another freeblock (that is, if iPtr is not the freelist
    ** pointer in the page header) then check to see if iStart should be
    ** coalesced onto the end of iPtr.
    */
    if( iPtr>hdr+1 ){
      int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
      if( iPtrEnd+3>=iStart ){
        if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
        nFrag += iStart - iPtrEnd;
        iSize = iEnd - iPtr;
        iStart = iPtr;
      }
    }
    if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
    data[hdr+7] -= nFrag;
  }
  x = get2byte(&data[hdr+5]);
  if( iStart<=x ){
    /* The new freeblock is at the beginning of the cell content area,
    ** so just extend the cell content area rather than create another
    ** freelist entry */
    if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
    put2byte(&data[hdr+1], iFreeBlk);
    put2byte(&data[hdr+5], iEnd);
  }else{
    /* Insert the new freeblock into the freelist */
    put2byte(&data[iPtr], iStart);
  }
  if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
    /* Overwrite deleted information with zeros when the secure_delete
    ** option is enabled */
    memset(&data[iStart], 0, iSize);
  }
  put2byte(&data[iStart], iFreeBlk);
  put2byte(&data[iStart+2], iSize);
  pPage->nFree += iOrigSize;
  return SQLITE_OK;
}

/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
**
** Only the following combinations are supported.  Anything different
** indicates a corrupt database files:
**
**         PTF_ZERODATA
**         PTF_ZERODATA | PTF_LEAF
**         PTF_LEAFDATA | PTF_INTKEY
**         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
*/
static int decodeFlags(MemPage *pPage, int flagByte){
  BtShared *pBt;     /* A copy of pPage->pBt */

  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pPage->xCellSize = cellSizePtr;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
    ** interior table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
    ** leaf table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    if( pPage->leaf ){
      pPage->intKeyLeaf = 1;
      pPage->xParseCell = btreeParseCellPtr;
    }else{
      pPage->intKeyLeaf = 0;
      pPage->xCellSize = cellSizePtrNoPayload;
      pPage->xParseCell = btreeParseCellPtrNoPayload;
    }
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
    ** interior index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
    ** leaf index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->xParseCell = btreeParseCellPtrIndex;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
** Initialize the auxiliary information for a disk block.
**
** Return SQLITE_OK on success.  If we see that the page does
** not contain a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
static int btreeInitPage(MemPage *pPage){
  int pc;            /* Address of a freeblock within pPage->aData[] */
  u8 hdr;            /* Offset to beginning of page header */
  u8 *data;          /* Equal to pPage->aData */
  BtShared *pBt;        /* The main btree structure */
  int usableSize;    /* Amount of usable space on each page */
  u16 cellOffset;    /* Offset from start of page to first cell pointer */
  int nFree;         /* Number of unused bytes on the page */
  int top;           /* First byte of the cell content area */
  int iCellFirst;    /* First allowable cell or freeblock offset */
  int iCellLast;     /* Last possible cell or freeblock offset */

  assert( pPage->pBt!=0 );
  assert( pPage->pBt->db!=0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
  assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
  assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
  assert( pPage->isInit==0 );

  pBt = pPage->pBt;
  hdr = pPage->hdrOffset;
  data = pPage->aData;
  /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
  ** the b-tree page type. */
  if( decodeFlags(pPage, data[hdr]) ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nOverflow = 0;
  usableSize = pBt->usableSize;
  pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
  pPage->aDataEnd = &data[usableSize];
  pPage->aCellIdx = &data[cellOffset];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
  ** the start of the cell content area. A zero value for this integer is
  ** interpreted as 65536. */
  top = get2byteNotZero(&data[hdr+5]);
  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  pPage->nCell = get2byte(&data[hdr+3]);
  if( pPage->nCell>MX_CELL(pBt) ){
    /* To many cells for a single page.  The page must be corrupt */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  testcase( pPage->nCell==MX_CELL(pBt) );
  /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
  ** possible for a root page of a table that contains no rows) then the
  ** offset to the cell content area will equal the page size minus the
  ** bytes of reserved space. */
  assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );

  /* A malformed database page might cause us to read past the end
  ** of page when parsing a cell.  
  **
  ** The following block of code checks early to see if a cell extends
  ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
  ** returned if it does.
  */
  iCellFirst = cellOffset + 2*pPage->nCell;
  iCellLast = usableSize - 4;
  if( pBt->db->flags & SQLITE_CellSizeCk ){
    int i;            /* Index into the cell pointer array */
    int sz;           /* Size of a cell */

    if( !pPage->leaf ) iCellLast--;
    for(i=0; i<pPage->nCell; i++){
      pc = get2byteAligned(&data[cellOffset+i*2]);
      testcase( pc==iCellFirst );
      testcase( pc==iCellLast );
      if( pc<iCellFirst || pc>iCellLast ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      sz = pPage->xCellSize(pPage, &data[pc]);
      testcase( pc+sz==usableSize );
      if( pc+sz>usableSize ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
    }
    if( !pPage->leaf ) iCellLast++;
  }  

  /* Compute the total free space on the page
  ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
  ** start of the first freeblock on the page, or is zero if there are no
  ** freeblocks. */
  pc = get2byte(&data[hdr+1]);
  nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
  if( pc>0 ){
    u32 next, size;
    if( pc<iCellFirst ){
      /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
      ** always be at least one cell before the first freeblock.
      */
      return SQLITE_CORRUPT_PAGE(pPage); 
    }
    while( 1 ){
      if( pc>iCellLast ){
        /* Freeblock off the end of the page */
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      nFree = nFree + size;
      if( next<=pc+size+3 ) break;
      pc = next;
    }
    if( next>0 ){
      /* Freeblock not in ascending order */
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    if( pc+size>(unsigned int)usableSize ){
      /* Last freeblock extends past page end */
      return SQLITE_CORRUPT_PAGE(pPage);
    }
  }

  /* At this point, nFree contains the sum of the offset to the start
  ** of the cell-content area plus the number of free bytes within
  ** the cell-content area. If this is greater than the usable-size
  ** of the page, then the page must be corrupted. This check also
  ** serves to verify that the offset to the start of the cell-content
  ** area, according to the page header, lies within the page.
  */
  if( nFree>usableSize ){
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  pPage->nFree = (u16)(nFree - iCellFirst);
  pPage->isInit = 1;
  return SQLITE_OK;
}

/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  BtShared *pBt = pPage->pBt;
  u8 hdr = pPage->hdrOffset;
  u16 first;

  assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->btsFlags & BTS_FAST_SECURE ){
    memset(&data[hdr], 0, pBt->usableSize - hdr);
  }
  data[hdr] = (char)flags;
  first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
  memset(&data[hdr+1], 0, 4);
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = (u16)(pBt->usableSize - first);
  decodeFlags(pPage, flags);
  pPage->cellOffset = first;
  pPage->aDataEnd = &data[pBt->usableSize];
  pPage->aCellIdx = &data[first];
  pPage->aDataOfst = &data[pPage->childPtrSize];
  pPage->nOverflow = 0;
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nCell = 0;
  pPage->isInit = 1;
}


/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( pgno!=pPage->pgno ){
    pPage->aData = sqlite3PagerGetData(pDbPage);
    pPage->pDbPage = pDbPage;
    pPage->pBt = pBt;
    pPage->pgno = pgno;
    pPage->hdrOffset = pgno==1 ? 100 : 0;
  }
  assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**
** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
** about the content of the page at this time.  So do not go to the disk
** to fetch the content.  Just fill in the content with zeros for now.
** If in the future we call sqlite3PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc;
  DbPage *pDbPage;

  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

/*
** Retrieve a page from the pager cache. If the requested page is not
** already in the pager cache return NULL. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
  DbPage *pDbPage;
  assert( sqlite3_mutex_held(pBt->mutex) );
  pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  if( pDbPage ){
    return btreePageFromDbPage(pDbPage, pgno, pBt);
  }
  return 0;
}

/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){
  return pBt->nPage;
}
u32 sqlite3BtreeLastPage(Btree *p){
  assert( sqlite3BtreeHoldsMutex(p) );
  assert( ((p->pBt->nPage)&0x80000000)==0 );
  return btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.
**
** If pCur!=0 then the page is being fetched as part of a moveToChild()
** call.  Do additional sanity checking on the page in this case.
** And if the fetch fails, this routine must decrement pCur->iPage.
**
** The page is fetched as read-write unless pCur is not NULL and is
** a read-only cursor.
**
** If an error occurs, then *ppPage is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,                  /* The database file */
  Pgno pgno,                      /* Number of the page to get */
  MemPage **ppPage,               /* Write the page pointer here */
  BtCursor *pCur,                 /* Cursor to receive the page, or NULL */
  int bReadOnly                   /* True for a read-only page */
){
  int rc;
  DbPage *pDbPage;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pCur==0 || ppPage==&pCur->pPage );
  assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
  assert( pCur==0 || pCur->iPage>0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
    goto getAndInitPage_error;
  }
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
  if( rc ){
    goto getAndInitPage_error;
  }
  *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( (*ppPage)->isInit==0 ){
    btreePageFromDbPage(pDbPage, pgno, pBt);
    rc = btreeInitPage(*ppPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      goto getAndInitPage_error;
    }
  }
  assert( (*ppPage)->pgno==pgno );
  assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );

  /* If obtaining a child page for a cursor, we must verify that the page is
  ** compatible with the root page. */
  if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
    rc = SQLITE_CORRUPT_PGNO(pgno);
    releasePage(*ppPage);
    goto getAndInitPage_error;
  }
  return SQLITE_OK;

getAndInitPage_error:
  if( pCur ){
    pCur->iPage--;
    pCur->pPage = pCur->apPage[pCur->iPage];
  }
  testcase( pgno==0 );
  assert( pgno!=0 || rc==SQLITE_CORRUPT );
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to btreeGetPage.
**
** Page1 is a special case and must be released using releasePageOne().
*/
static void releasePageNotNull(MemPage *pPage){
  assert( pPage->aData );
  assert( pPage->pBt );
  assert( pPage->pDbPage!=0 );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  sqlite3PagerUnrefNotNull(pPage->pDbPage);
}
static void releasePage(MemPage *pPage){
  if( pPage ) releasePageNotNull(pPage);
}
static void releasePageOne(MemPage *pPage){
  assert( pPage!=0 );
  assert( pPage->aData );
  assert( pPage->pBt );
  assert( pPage->pDbPage!=0 );
  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  sqlite3PagerUnrefPageOne(pPage->pDbPage);
}

/*
** Get an unused page.
**
** This works just like btreeGetPage() with the addition:
**
**   *  If the page is already in use for some other purpose, immediately
**      release it and return an SQLITE_CURRUPT error.
**   *  Make sure the isInit flag is clear
*/
static int btreeGetUnusedPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc = btreeGetPage(pBt, pgno, ppPage, flags);
  if( rc==SQLITE_OK ){
    if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
      releasePage(*ppPage);
      *ppPage = 0;
      return SQLITE_CORRUPT_BKPT;
    }
    (*ppPage)->isInit = 0;
  }else{
    *ppPage = 0;
  }
  return rc;
}


/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(DbPage *pData){
  MemPage *pPage;
  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  assert( sqlite3PagerPageRefcount(pData)>0 );
  if( pPage->isInit ){
    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
    pPage->isInit = 0;
    if( sqlite3PagerPageRefcount(pData)>1 ){
      /* pPage might not be a btree page;  it might be an overflow page
      ** or ptrmap page or a free page.  In those cases, the following
      ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
      ** But no harm is done by this.  And it is very important that
      ** btreeInitPage() be called on every btree page so we make
      ** the call for every page that comes in for re-initing. */
      btreeInitPage(pPage);
    }
  }
}

/*
** Invoke the busy handler for a btree.
*/
static int btreeInvokeBusyHandler(void *pArg){
  BtShared *pBt = (BtShared*)pArg;
  assert( pBt->db );
  assert( sqlite3_mutex_held(pBt->db->mutex) );
  return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
}

/*
** Open a database file.
** 
** zFilename is the name of the database file.  If zFilename is NULL
** then an ephemeral database is created.  The ephemeral database might
** be exclusively in memory, or it might use a disk-based memory cache.
** Either way, the ephemeral database will be automatically deleted 
** when sqlite3BtreeClose() is called.
**
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
**
** The "flags" parameter is a bitmask that might contain bits like
** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
**
** If the database is already opened in the same database connection
** and we are in shared cache mode, then the open will fail with an
** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
** objects in the same database connection since doing so will lead
** to problems with locking.
*/
int sqlite3BtreeOpen(
  sqlite3_vfs *pVfs,      /* VFS to use for this b-tree */
  const char *zFilename,  /* Name of the file containing the BTree database */
  sqlite3 *db,            /* Associated database handle */
  Btree **ppBtree,        /* Pointer to new Btree object written here */
  int flags,              /* Options */
  int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
){
  BtShared *pBt = 0;             /* Shared part of btree structure */
  Btree *p;                      /* Handle to return */
  sqlite3_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
  int rc = SQLITE_OK;            /* Result code from this function */
  u8 nReserve;                   /* Byte of unused space on each page */
  unsigned char zDbHeader[100];  /* Database header content */

  /* True if opening an ephemeral, temporary database */
  const int isTempDb = zFilename==0 || zFilename[0]==0;

  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database.
  */
#ifdef SQLITE_OMIT_MEMORYDB
  const int isMemdb = 0;
#else
  const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
                       || (isTempDb && sqlite3TempInMemory(db))
                       || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
#endif

  assert( db!=0 );
  assert( pVfs!=0 );
  assert( sqlite3_mutex_held(db->mutex) );
  assert( (flags&0xff)==flags );   /* flags fit in 8 bits */

  /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
  assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );

  /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
  assert( (flags & BTREE_SINGLE)==0 || isTempDb );

  if( isMemdb ){
    flags |= BTREE_MEMORY;
  }
  if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
    vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
  }
  p = sqlite3MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM_BKPT;
  }
  p->inTrans = TRANS_NONE;
  p->db = db;
#ifndef SQLITE_OMIT_SHARED_CACHE
  p->lock.pBtree = p;
  p->lock.iTable = 1;
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
      int nFilename = sqlite3Strlen30(zFilename)+1;
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )

      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM_BKPT;
      }
      if( isMemdb ){
        memcpy(zFullPathname, zFilename, nFilename);
      }else{
        rc = sqlite3OsFullPathname(pVfs, zFilename,
                                   nFullPathname, zFullPathname);
        if( rc ){
          sqlite3_free(zFullPathname);
          sqlite3_free(p);
          return rc;
        }
      }
#if SQLITE_THREADSAFE
      mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
      sqlite3_mutex_enter(mutexOpen);
      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
      sqlite3_mutex_enter(mutexShared);
#endif
      for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
        assert( pBt->nRef>0 );
        if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
                 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
          int iDb;
          for(iDb=db->nDb-1; iDb>=0; iDb--){
            Btree *pExisting = db->aDb[iDb].pBt;
            if( pExisting && pExisting->pBt==pBt ){
              sqlite3_mutex_leave(mutexShared);
              sqlite3_mutex_leave(mutexOpen);
              sqlite3_free(zFullPathname);
              sqlite3_free(p);
              return SQLITE_CONSTRAINT;
            }
          }
          p->pBt = pBt;
          pBt->nRef++;
          break;
        }
      }
      sqlite3_mutex_leave(mutexShared);
      sqlite3_free(zFullPathname);
    }
#ifdef SQLITE_DEBUG
    else{
      /* In debug mode, we mark all persistent databases as sharable
      ** even when they are not.  This exercises the locking code and
      ** gives more opportunity for asserts(sqlite3_mutex_held())
      ** statements to find locking problems.
      */
      p->sharable = 1;
    }
#endif
  }
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 );
    assert( sizeof(u64)==8 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite3MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM_BKPT;
      goto btree_open_out;
    }
    rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
                          sizeof(MemPage), flags, vfsFlags, pageReinit);
    if( rc==SQLITE_OK ){
      sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
      rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
    }
    if( rc!=SQLITE_OK ){
      goto btree_open_out;
    }
    pBt->openFlags = (u8)flags;
    pBt->db = db;
    sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
    p->pBt = pBt;
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#if defined(SQLITE_SECURE_DELETE)
    pBt->btsFlags |= BTS_SECURE_DELETE;
#elif defined(SQLITE_FAST_SECURE_DELETE)
    pBt->btsFlags |= BTS_OVERWRITE;
#endif
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
      ** regular file-name. In this case the auto-vacuum applies as per normal.
      */
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
      ** determined by the one-byte unsigned integer found at an offset of 20
      ** into the database file header. */
      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
    rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
    if( rc ) goto btree_open_out;
    pBt->usableSize = pBt->pageSize - nReserve;
    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
   
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
    /* Add the new BtShared object to the linked list sharable BtShareds.
    */
    pBt->nRef = 1;
    if( p->sharable ){
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
      MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
      if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM_BKPT;
          goto btree_open_out;
        }
      }
      sqlite3_mutex_enter(mutexShared);
      pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
      sqlite3_mutex_leave(mutexShared);
    }
#endif
  }

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /* If the new Btree uses a sharable pBtShared, then link the new
  ** Btree into the list of all sharable Btrees for the same connection.
  ** The list is kept in ascending order by pBt address.
  */
  if( p->sharable ){
    int i;
    Btree *pSib;
    for(i=0; i<db->nDb; i++){
      if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
        while( pSib->pPrev ){ pSib = pSib->pPrev; }
        if( (uptr)p->pBt<(uptr)pSib->pBt ){
          p->pNext = pSib;
          p->pPrev = 0;
          pSib->pPrev = p;
        }else{
          while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
            pSib = pSib->pNext;
          }
          p->pNext = pSib->pNext;
          p->pPrev = pSib;
          if( p->pNext ){
            p->pNext->pPrev = p;
          }
          pSib->pNext = p;
        }
        break;
      }
    }
  }
#endif
  *ppBtree = p;

btree_open_out:
  if( rc!=SQLITE_OK ){
    if( pBt && pBt->pPager ){
      sqlite3PagerClose(pBt->pPager, 0);
    }
    sqlite3_free(pBt);
    sqlite3_free(p);
    *ppBtree = 0;
  }else{
    sqlite3_file *pFile;

    /* If the B-Tree was successfully opened, set the pager-cache size to the
    ** default value. Except, when opening on an existing shared pager-cache,
    ** do not change the pager-cache size.
    */
    if( sqlite3BtreeSchema(p, 0, 0)==0 ){
      sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
    }

    pFile = sqlite3PagerFile(pBt->pPager);
    if( pFile->pMethods ){
      sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
    }
  }
  if( mutexOpen ){
    assert( sqlite3_mutex_held(mutexOpen) );
    sqlite3_mutex_leave(mutexOpen);
  }
  assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
  return rc;
}

/*
** Decrement the BtShared.nRef counter.  When it reaches zero,
** remove the BtShared structure from the sharing list.  Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int removeFromSharingList(BtShared *pBt){
#ifndef SQLITE_OMIT_SHARED_CACHE
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )
  BtShared *pList;
  int removed = 0;

  assert( sqlite3_mutex_notheld(pBt->mutex) );
  MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  sqlite3_mutex_enter(pMaster);
  pBt->nRef--;
  if( pBt->nRef<=0 ){
    if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
    }else{
      pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
      while( ALWAYS(pList) && pList->pNext!=pBt ){
        pList=pList->pNext;
      }
      if( ALWAYS(pList) ){
        pList->pNext = pBt->pNext;
      }
    }
    if( SQLITE_THREADSAFE ){
      sqlite3_mutex_free(pBt->mutex);
    }
    removed = 1;
  }
  sqlite3_mutex_leave(pMaster);
  return removed;
#else
  return 1;
#endif
}

/*
** Make sure pBt->pTmpSpace points to an allocation of 
** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
** pointer.
*/
static void allocateTempSpace(BtShared *pBt){
  if( !pBt->pTmpSpace ){
    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );

    /* One of the uses of pBt->pTmpSpace is to format cells before
    ** inserting them into a leaf page (function fillInCell()). If
    ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
    ** by the various routines that manipulate binary cells. Which
    ** can mean that fillInCell() only initializes the first 2 or 3
    ** bytes of pTmpSpace, but that the first 4 bytes are copied from
    ** it into a database page. This is not actually a problem, but it
    ** does cause a valgrind error when the 1 or 2 bytes of unitialized 
    ** data is passed to system call write(). So to avoid this error,
    ** zero the first 4 bytes of temp space here.
    **
    ** Also:  Provide four bytes of initialized space before the
    ** beginning of pTmpSpace as an area available to prepend the
    ** left-child pointer to the beginning of a cell.
    */
    if( pBt->pTmpSpace ){
      memset(pBt->pTmpSpace, 0, 8);
      pBt->pTmpSpace += 4;
    }
  }
}

/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
  if( pBt->pTmpSpace ){
    pBt->pTmpSpace -= 4;
    sqlite3PageFree(pBt->pTmpSpace);
    pBt->pTmpSpace = 0;
  }
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite3BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite3BtreeCloseCursor(pTmp);
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite3BtreeRollback(p, SQLITE_OK, 0);
  sqlite3BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );
  if( !p->sharable || removeFromSharingList(pBt) ){
    /* The pBt is no longer on the sharing list, so we can access
    ** it without having to hold the mutex.
    **
    ** Clean out and delete the BtShared object.
    */
    assert( !pBt->pCursor );
    sqlite3PagerClose(pBt->pPager, p->db);
    if( pBt->xFreeSchema && pBt->pSchema ){
      pBt->xFreeSchema(pBt->pSchema);
    }
    sqlite3DbFree(0, pBt->pSchema);
    freeTempSpace(pBt);
    sqlite3_free(pBt);
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  assert( p->wantToLock==0 );
  assert( p->locked==0 );
  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  if( p->pNext ) p->pNext->pPrev = p->pPrev;
#endif

  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Change the "soft" limit on the number of pages in the cache.
** Unused and unmodified pages will be recycled when the number of
** pages in the cache exceeds this soft limit.  But the size of the
** cache is allowed to grow larger than this limit if it contains
** dirty pages or pages still in active use.
*/
int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the "spill" limit on the number of pages in the cache.
** If the number of pages exceeds this limit during a write transaction,
** the pager might attempt to "spill" pages to the journal early in
** order to free up memory.
**
** The value returned is the current spill size.  If zero is passed
** as an argument, no changes are made to the spill size setting, so
** using mxPage of 0 is a way to query the current spill size.
*/
int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  int res;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return res;
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite3BtreeSetPagerFlags(
  Btree *p,              /* The btree to set the safety level on */
  unsigned pgFlags       /* Various PAGER_* flags */
){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetFlags(pBt->pPager, pgFlags);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Change the default pages size and the number of reserved bytes per page.
** Or, if the page size has already been fixed, return SQLITE_READONLY 
** without changing anything.
**
** The page size must be a power of 2 between 512 and 65536.  If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
**
** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
** and autovacuum mode can no longer be changed.
*/
int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  assert( nReserve>=-1 && nReserve<=255 );
  sqlite3BtreeEnter(p);
#if SQLITE_HAS_CODEC
  if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
#endif
  if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
    sqlite3BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }
  assert( nReserve>=0 && nReserve<=255 );
  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
        ((pageSize-1)&pageSize)==0 ){
    assert( (pageSize & 7)==0 );
    assert( !pBt->pCursor );
    pBt->pageSize = (u32)pageSize;
    freeTempSpace(pBt);
  }
  rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
  pBt->usableSize = pBt->pageSize - (u16)nReserve;
  if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Return the currently defined page size
*/
int sqlite3BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}

/*
** This function is similar to sqlite3BtreeGetReserve(), except that it
** may only be called if it is guaranteed that the b-tree mutex is already
** held.
**
** This is useful in one special case in the backup API code where it is
** known that the shared b-tree mutex is held, but the mutex on the 
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
** were to be called, it might collide with some other operation on the
** database handle that owns *p, causing undefined behavior.
*/
int sqlite3BtreeGetReserveNoMutex(Btree *p){
  int n;
  assert( sqlite3_mutex_held(p->pBt->mutex) );
  n = p->pBt->pageSize - p->pBt->usableSize;
  return n;
}

/*
** Return the number of bytes of space at the end of every page that
** are intentually left unused.  This is the "reserved" space that is
** sometimes used by extensions.
**
** If SQLITE_HAS_MUTEX is defined then the number returned is the
** greater of the current reserved space and the maximum requested
** reserve space.
*/
int sqlite3BtreeGetOptimalReserve(Btree *p){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3BtreeGetReserveNoMutex(p);
#ifdef SQLITE_HAS_CODEC
  if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
#endif
  sqlite3BtreeLeave(p);
  return n;
}


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return n;
}

/*
** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
**
**    newFlag==0       Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
**    newFlag==1       BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
**    newFlag==2       BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
**    newFlag==(-1)    No changes
**
** This routine acts as a query if newFlag is less than zero
**
** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
** freelist leaf pages are not written back to the database.  Thus in-page
** deleted content is cleared, but freelist deleted content is not.
**
** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
** that freelist leaf pages are written back into the database, increasing
** the amount of disk I/O.
*/
int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
  int b;
  if( p==0 ) return 0;
  sqlite3BtreeEnter(p);
  assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
  assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
  if( newFlag>=0 ){
    p->pBt->btsFlags &= ~BTS_FAST_SECURE;
    p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
  }
  b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
  sqlite3BtreeLeave(p);
  return b;
}

/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return SQLITE_READONLY;
#else
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;
  u8 av = (u8)autoVacuum;

  sqlite3BtreeEnter(p);
  if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
    rc = SQLITE_READONLY;
  }else{
    pBt->autoVacuum = av ?1:0;
    pBt->incrVacuum = av==2 ?1:0;
  }
  sqlite3BtreeLeave(p);
  return rc;
#endif
}

/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
** enabled 1 is returned. Otherwise 0.
*/
int sqlite3BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return BTREE_AUTOVACUUM_NONE;
#else
  int rc;
  sqlite3BtreeEnter(p);
  rc = (
    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
    BTREE_AUTOVACUUM_INCR
  );
  sqlite3BtreeLeave(p);
  return rc;
#endif
}

/*
** If the user has not set the safety-level for this database connection
** using "PRAGMA synchronous", and if the safety-level is not already
** set to the value passed to this function as the second parameter,
** set it so.
*/
#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
    && !defined(SQLITE_OMIT_WAL)
static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
  sqlite3 *db;
  Db *pDb;
  if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
    while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
    if( pDb->bSyncSet==0 
     && pDb->safety_level!=safety_level 
     && pDb!=&db->aDb[1] 
    ){
      pDb->safety_level = safety_level;
      sqlite3PagerSetFlags(pBt->pPager,
          pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
    }
  }
}
#else
# define setDefaultSyncFlag(pBt,safety_level)
#endif

/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
** is returned if we run out of memory. 
*/
static int lockBtree(BtShared *pBt){
  int rc;              /* Result code from subfunctions */
  MemPage *pPage1;     /* Page 1 of the database file */
  int nPage;           /* Number of pages in the database */
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite3PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite3PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
    ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
    ** 61 74 20 33 00. */
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>1 ){
      goto page1_init_failed;
    }
#else
    if( page1[18]>2 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>2 ){
      goto page1_init_failed;
    }

    /* If the write version is set to 2, this database should be accessed
    ** in WAL mode. If the log is not already open, open it now. Then 
    ** return SQLITE_OK and return without populating BtShared.pPage1.
    ** The caller detects this and calls this function again. This is
    ** required as the version of page 1 currently in the page1 buffer
    ** may not be the latest version - there may be a newer one in the log
    ** file.
    */
    if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
      int isOpen = 0;
      rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
      if( rc!=SQLITE_OK ){
        goto page1_init_failed;
      }else{
        setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
        if( isOpen==0 ){
          releasePageOne(pPage1);
          return SQLITE_OK;
        }
      }
      rc = SQLITE_NOTADB;
    }else{
      setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
    }
#endif

    /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
    ** fractions and the leaf payload fraction values must be 64, 32, and 32.
    **
    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pageSize = (page1[16]<<8) | (page1[17]<<16);
    /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
    ** between 512 and 65536 inclusive. */
    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
    ** integer at offset 20 is the number of bytes of space at the end of
    ** each page to reserve for extensions. 
    **
    ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
    ** determined by the one-byte unsigned integer found at an offset of 20
    ** into the database file header. */
    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
      */
      releasePageOne(pPage1);
      pBt->usableSize = usableSize;
      pBt->pageSize = pageSize;
      freeTempSpace(pBt);
      rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
  }

  /* maxLocal is the maximum amount of payload to store locally for
  ** a cell.  Make sure it is small enough so that at least minFanout
  ** cells can will fit on one page.  We assume a 10-byte page header.
  ** Besides the payload, the cell must store:
  **     2-byte pointer to the cell
  **     4-byte child pointer
  **     9-byte nKey value
  **     4-byte nData value
  **     4-byte overflow page pointer
  ** So a cell consists of a 2-byte pointer, a header which is as much as
  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  ** page pointer.
  */
  pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
  pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
  pBt->maxLeaf = (u16)(pBt->usableSize - 35);
  pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
  if( pBt->maxLocal>127 ){
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;
  return SQLITE_OK;

page1_init_failed:
  releasePageOne(pPage1);
  pBt->pPage1 = 0;
  return rc;
}

#ifndef NDEBUG
/*
** Return the number of cursors open on pBt. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** Only write cursors are counted if wrOnly is true.  If wrOnly is
** false then all cursors are counted.
**
** For the purposes of this routine, a cursor is any cursor that
** is capable of reading or writing to the database.  Cursors that
** have been tripped into the CURSOR_FAULT state are not counted.
*/
static int countValidCursors(BtShared *pBt, int wrOnly){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
     && pCur->eState!=CURSOR_FAULT ) r++; 
  }
  return r;
}
#endif

/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which 
** has the effect of releasing the read lock.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    MemPage *pPage1 = pBt->pPage1;
    assert( pPage1->aData );
    assert( sqlite3PagerRefcount(pBt->pPager)==1 );
    pBt->pPage1 = 0;
    releasePageOne(pPage1);
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
*/
static int newDatabase(BtShared *pBt){
  MemPage *pP1;
  unsigned char *data;
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pBt->nPage>0 ){
    return SQLITE_OK;
  }
  pP1 = pBt->pPage1;
  assert( pP1!=0 );
  data = pP1->aData;
  rc = sqlite3PagerWrite(pP1->pDbPage);
  if( rc ) return rc;
  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  assert( sizeof(zMagicHeader)==16 );
  data[16] = (u8)((pBt->pageSize>>8)&0xff);
  data[17] = (u8)((pBt->pageSize>>16)&0xff);
  data[18] = 1;
  data[19] = 1;
  assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
  data[20] = (u8)(pBt->pageSize - pBt->usableSize);
  data[21] = 64;
  data[22] = 32;
  data[23] = 32;
  memset(&data[24], 0, 100-24);
  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
  pBt->nPage = 1;
  data[31] = 1;
  return SQLITE_OK;
}

/*
** Initialize the first page of the database file (creating a database
** consisting of a single page and no schema objects). Return SQLITE_OK
** if successful, or an SQLite error code otherwise.
*/
int sqlite3BtreeNewDb(Btree *p){
  int rc;
  sqlite3BtreeEnter(p);
  p->pBt->nPage = 0;
  rc = newDatabase(p->pBt);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction.  If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database.  A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any 
** changes to the database.  None of the following routines 
** will work unless a transaction is started first:
**
**      sqlite3BtreeCreateTable()
**      sqlite3BtreeCreateIndex()
**      sqlite3BtreeClearTable()
**      sqlite3BtreeDropTable()
**      sqlite3BtreeInsert()
**      sqlite3BtreeDelete()
**      sqlite3BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one.  But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B.  A has a read lock and B has
** a reserved lock.  B tries to promote to exclusive but is blocked because
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }
  assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );

  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  {
    sqlite3 *pBlock = 0;
    /* If another database handle has already opened a write transaction 
    ** on this shared-btree structure and a second write transaction is
    ** requested, return SQLITE_LOCKED.
    */
    if( (wrflag && pBt->inTransaction==TRANS_WRITE)
     || (pBt->btsFlags & BTS_PENDING)!=0
    ){
      pBlock = pBt->pWriter->db;
    }else if( wrflag>1 ){
      BtLock *pIter;
      for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
        if( pIter->pBtree!=p ){
          pBlock = pIter->pBtree->db;
          break;
        }
      }
    }
    if( pBlock ){
      sqlite3ConnectionBlocked(p->db, pBlock);
      rc = SQLITE_LOCKED_SHAREDCACHE;
      goto trans_begun;
    }
  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  if( SQLITE_OK!=rc ) goto trans_begun;

  pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
  if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
  do {
    /* Call lockBtree() until either pBt->pPage1 is populated or
    ** lockBtree() returns something other than SQLITE_OK. lockBtree()
    ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
    ** reading page 1 it discovers that the page-size of the database 
    ** file is not pBt->pageSize. In this case lockBtree() will update
    ** pBt->pageSize to the page-size of the file on disk.
    */
    while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );

    if( rc==SQLITE_OK && wrflag ){
      if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
        rc = SQLITE_READONLY;
      }else{
        rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
        if( rc==SQLITE_OK ){
          rc = newDatabase(pBt);
        }
      }
    }
  
    if( rc!=SQLITE_OK ){
      unlockBtreeIfUnused(pBt);
    }
  }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
          btreeInvokeBusyHandler(pBt) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
      if( p->sharable ){
        assert( p->lock.pBtree==p && p->lock.iTable==1 );
        p->lock.eLock = READ_LOCK;
        p->lock.pNext = pBt->pLock;
        pBt->pLock = &p->lock;
      }
#endif
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
    if( p->inTrans>pBt->inTransaction ){
      pBt->inTransaction = p->inTrans;
    }
    if( wrflag ){
      MemPage *pPage1 = pBt->pPage1;
#ifndef SQLITE_OMIT_SHARED_CACHE
      assert( !pBt->pWriter );
      pBt->pWriter = p;
      pBt->btsFlags &= ~BTS_EXCLUSIVE;
      if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
#endif

      /* If the db-size header field is incorrect (as it may be if an old
      ** client has been writing the database file), update it now. Doing
      ** this sooner rather than later means the database size can safely 
      ** re-read the database size from page 1 if a savepoint or transaction
      ** rollback occurs within the transaction.
      */
      if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
        rc = sqlite3PagerWrite(pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          put4byte(&pPage1->aData[28], pBt->nPage);
        }
      }
    }
  }


trans_begun:
  if( rc==SQLITE_OK && wrflag ){
    /* This call makes sure that the pager has the correct number of
    ** open savepoints. If the second parameter is greater than 0 and
    ** the sub-journal is not already open, then it will be opened here.
    */
    rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
  }

  btreeIntegrity(p);
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_AUTOVACUUM

/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
  int i;                             /* Counter variable */
  int nCell;                         /* Number of cells in page pPage */
  int rc;                            /* Return code */
  BtShared *pBt = pPage->pBt;
  Pgno pgno = pPage->pgno;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
  if( rc!=SQLITE_OK ) return rc;
  nCell = pPage->nCell;

  for(i=0; i<nCell; i++){
    u8 *pCell = findCell(pPage, i);

    ptrmapPutOvflPtr(pPage, pCell, &rc);

    if( !pPage->leaf ){
      Pgno childPgno = get4byte(pCell);
      ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
    }
  }

  if( !pPage->leaf ){
    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
  }

  return rc;
}

/*
** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
** that it points to iTo. Parameter eType describes the type of pointer to
** be modified, as  follows:
**
** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
**                   page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
**                   page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
**                   overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_PAGE(pPage);
    }
    put4byte(pPage->aData, iTo);
  }else{
    int i;
    int nCell;
    int rc;

    rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
    if( rc ) return rc;
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload ){
          if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
            return SQLITE_CORRUPT_PAGE(pPage);
          }
          if( iFrom==get4byte(pCell+info.nSize-4) ){
            put4byte(pCell+info.nSize-4, iTo);
            break;
          }
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_PAGE(pPage);
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }
  }
  return SQLITE_OK;
}


/*
** Move the open database page pDbPage to location iFreePage in the 
** database. The pDbPage reference remains valid.
**
** The isCommit flag indicates that there is no need to remember that
** the journal needs to be sync()ed before database page pDbPage->pgno 
** can be written to. The caller has already promised not to write to that
** page.
*/
static int relocatePage(
  BtShared *pBt,           /* Btree */
  MemPage *pDbPage,        /* Open page to move */
  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  Pgno iFreePage,          /* The location to move pDbPage to */
  int isCommit             /* isCommit flag passed to sqlite3PagerMovepage */
){
  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );

  /* Move page iDbPage from its current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pDbPage->pgno = iFreePage;

  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  ** that point to overflow pages. The pointer map entries for all these
  ** pages need to be changed.
  **
  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  ** pointer to a subsequent overflow page. If this is the case, then
  ** the pointer map needs to be updated for the subsequent overflow page.
  */
  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
    rc = setChildPtrmaps(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }else{
    Pgno nextOvfl = get4byte(pDbPage->aData);
    if( nextOvfl!=0 ){
      ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
    }
    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
    releasePage(pPtrPage);
    if( rc==SQLITE_OK ){
      ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
    }
  }
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful, return
** SQLITE_OK. If there is no work to do (and therefore no point in 
** calling this function again), return SQLITE_DONE. Or, if an error 
** occurs, return some other error code.
**
** More specifically, this function attempts to re-organize the database so 
** that the last page of the file currently in use is no longer in use.
**
** Parameter nFin is the number of pages that this database would contain
** were this function called until it returns SQLITE_DONE.
**
** If the bCommit parameter is non-zero, this function assumes that the 
** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE 
** or an error. bCommit is passed true for an auto-vacuum-on-commit 
** operation, or false for an incremental vacuum.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( iLastPg>nFin );

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
    u8 eType;
    Pgno iPtrPage;

    nFreeList = get4byte(&pBt->pPage1->aData[36]);
    if( nFreeList==0 ){
      return SQLITE_DONE;
    }

    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( bCommit==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if bCommit is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;
      u8 eMode = BTALLOC_ANY;   /* Mode parameter for allocateBtreePage() */
      Pgno iNear = 0;           /* nearby parameter for allocateBtreePage() */

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If bCommit is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if bCommit is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */
      if( bCommit==0 ){
        eMode = BTALLOC_LE;
        iNear = nFin;
      }
      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( bCommit && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      
      rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  if( bCommit==0 ){
    do {
      iLastPg--;
    }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
    pBt->bDoTruncate = 1;
    pBt->nPage = iLastPg;
  }
  return SQLITE_OK;
}

/*
** The database opened by the first argument is an auto-vacuum database
** nOrig pages in size containing nFree free pages. Return the expected 
** size of the database in pages following an auto-vacuum operation.
*/
static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
  int nEntry;                     /* Number of entries on one ptrmap page */
  Pgno nPtrmap;                   /* Number of PtrMap pages to be freed */
  Pgno nFin;                      /* Return value */

  nEntry = pBt->usableSize/5;
  nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
  nFin = nOrig - nFree - nPtrmap;
  if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }
  while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
    nFin--;
  }

  return nFin;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite3BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{
    Pgno nOrig = btreePagecount(pBt);
    Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
    Pgno nFin = finalDbSize(pBt, nOrig, nFree);

    if( nOrig<nFin ){
      rc = SQLITE_CORRUPT_BKPT;
    }else if( nFree>0 ){
      rc = saveAllCursors(pBt, 0, 0);
      if( rc==SQLITE_OK ){
        invalidateAllOverflowCache(pBt);
        rc = incrVacuumStep(pBt, nFin, nOrig, 0);
      }
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        put4byte(&pBt->pPage1->aData[28], pBt->nPage);
      }
    }else{
      rc = SQLITE_DONE;
    }
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine is called prior to sqlite3PagerCommit when a transaction
** is committed for an auto-vacuum database.
**
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
** the database file should be truncated to during the commit process. 
** i.e. the database has been reorganized so that only the first *pnTrunc
** pages are in use.
*/
static int autoVacuumCommit(BtShared *pBt){
  int rc = SQLITE_OK;
  Pager *pPager = pBt->pPager;
  VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )

  assert( sqlite3_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin;         /* Number of pages in database after autovacuuming */
    Pgno nFree;        /* Number of pages on the freelist initially */
    Pgno iFree;        /* The next page to be freed */
    Pgno nOrig;        /* Database size before freeing */

    nOrig = btreePagecount(pBt);
    if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
      /* It is not possible to create a database for which the final page
      ** is either a pointer-map page or the pending-byte page. If one
      ** is encountered, this indicates corruption.
      */
      return SQLITE_CORRUPT_BKPT;
    }

    nFree = get4byte(&pBt->pPage1->aData[36]);
    nFin = finalDbSize(pBt, nOrig, nFree);
    if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
    if( nFin<nOrig ){
      rc = saveAllCursors(pBt, 0, 0);
    }
    for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
      rc = incrVacuumStep(pBt, nFin, iFree, 1);
    }
    if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
      rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[32], 0);
      put4byte(&pBt->pPage1->aData[36], 0);
      put4byte(&pBt->pPage1->aData[28], nFin);
      pBt->bDoTruncate = 1;
      pBt->nPage = nFin;
    }
    if( rc!=SQLITE_OK ){
      sqlite3PagerRollback(pPager);
    }
  }

  assert( nRef>=sqlite3PagerRefcount(pPager) );
  return rc;
}

#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
# define setChildPtrmaps(x) SQLITE_OK
#endif

/*
** This routine does the first phase of a two-phase commit.  This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal.  Then the contents of the journal are flushed out to
** the disk.  After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed.  See sqlite3BtreeCommitPhaseTwo() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file 
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  int rc = SQLITE_OK;
  if( p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    sqlite3BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt);
      if( rc!=SQLITE_OK ){
        sqlite3BtreeLeave(p);
        return rc;
      }
    }
    if( pBt->bDoTruncate ){
      sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
    }
#endif
    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  sqlite3 *db = p->db;
  assert( sqlite3BtreeHoldsMutex(p) );

#ifndef SQLITE_OMIT_AUTOVACUUM
  pBt->bDoTruncate = 0;
#endif
  if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
  }else{
    /* If the handle had any kind of transaction open, decrement the 
    ** transaction count of the shared btree. If the transaction count 
    ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
    ** call below will unlock the pager.  */
    if( p->inTrans!=TRANS_NONE ){
      clearAllSharedCacheTableLocks(p);
      pBt->nTransaction--;
      if( 0==pBt->nTransaction ){
        pBt->inTransaction = TRANS_NONE;
      }
    }

    /* Set the current transaction state to TRANS_NONE and unlock the 
    ** pager if this call closed the only read or write transaction.  */
    p->inTrans = TRANS_NONE;
    unlockBtreeIfUnused(pBt);
  }

  btreeIntegrity(p);
}

/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit.  The
** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
** be invoked prior to calling this routine.  The sqlite3BtreeCommitPhaseOne()
** routine did all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter.  All this
** routine has to do is delete or truncate or zero the header in the
** the rollback journal (which causes the transaction to commit) and
** drop locks.
**
** Normally, if an error occurs while the pager layer is attempting to 
** finalize the underlying journal file, this function returns an error and
** the upper layer will attempt a rollback. However, if the second argument
** is non-zero then this b-tree transaction is part of a multi-file 
** transaction. In this case, the transaction has already been committed 
** (by deleting a master journal file) and the caller will ignore this 
** functions return code. So, even if an error occurs in the pager layer,
** reset the b-tree objects internal state to indicate that the write
** transaction has been closed. This is quite safe, as the pager will have
** transitioned to the error state.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){

  if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
  sqlite3BtreeEnter(p);
  btreeIntegrity(p);

  /* If the handle has a write-transaction open, commit the shared-btrees 
  ** transaction and set the shared state to TRANS_READ.
  */
  if( p->inTrans==TRANS_WRITE ){
    int rc;
    BtShared *pBt = p->pBt;
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK && bCleanup==0 ){
      sqlite3BtreeLeave(p);
      return rc;
    }
    p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Do both phases of a commit.
*/
int sqlite3BtreeCommit(Btree *p){
  int rc;
  sqlite3BtreeEnter(p);
  rc = sqlite3BtreeCommitPhaseOne(p, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeCommitPhaseTwo(p, 0);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on any BtShared that pBtree
** references.  Or if the writeOnly flag is set to 1, then only
** trip write cursors and leave read cursors unchanged.
**
** Every cursor is a candidate to be tripped, including cursors
** that belong to other database connections that happen to be
** sharing the cache with pBtree.
**
** This routine gets called when a rollback occurs. If the writeOnly
** flag is true, then only write-cursors need be tripped - read-only
** cursors save their current positions so that they may continue 
** following the rollback. Or, if writeOnly is false, all cursors are 
** tripped. In general, writeOnly is false if the transaction being
** rolled back modified the database schema. In this case b-tree root
** pages may be moved or deleted from the database altogether, making
** it unsafe for read cursors to continue.
**
** If the writeOnly flag is true and an error is encountered while 
** saving the current position of a read-only cursor, all cursors, 
** including all read-cursors are tripped.
**
** SQLITE_OK is returned if successful, or if an error occurs while
** saving a cursor position, an SQLite error code.
*/
int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
  BtCursor *p;
  int rc = SQLITE_OK;

  assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
  if( pBtree ){
    sqlite3BtreeEnter(pBtree);
    for(p=pBtree->pBt->pCursor; p; p=p->pNext){
      if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
        if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
          rc = saveCursorPosition(p);
          if( rc!=SQLITE_OK ){
            (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
            break;
          }
        }
      }else{
        sqlite3BtreeClearCursor(p);
        p->eState = CURSOR_FAULT;
        p->skipNext = errCode;
      }
      btreeReleaseAllCursorPages(p);
    }
    sqlite3BtreeLeave(pBtree);
  }
  return rc;
}

/*
** Rollback the transaction in progress.
**
** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
** Only write cursors are tripped if writeOnly is true but all cursors are
** tripped if writeOnly is false.  Any attempt to use
** a tripped cursor will result in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;

  assert( writeOnly==1 || writeOnly==0 );
  assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
  sqlite3BtreeEnter(p);
  if( tripCode==SQLITE_OK ){
    rc = tripCode = saveAllCursors(pBt, 0, 0);
    if( rc ) writeOnly = 0;
  }else{
    rc = SQLITE_OK;
  }
  if( tripCode ){
    int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
    assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
    if( rc2!=SQLITE_OK ) rc = rc2;
  }
  btreeIntegrity(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

    assert( TRANS_WRITE==pBt->inTransaction );
    rc2 = sqlite3PagerRollback(pBt->pPager);
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePageOne(pPage1);
    }
    assert( countValidCursors(pBt, 1)==0 );
    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction. The subtransaction can be rolled
** back independently of the main transaction. You must start a transaction 
** before starting a subtransaction. The subtransaction is ended automatically 
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
**
** A statement sub-transaction is implemented as an anonymous savepoint. The
** value passed as the second parameter is the total number of savepoints,
** including the new anonymous savepoint, open on the B-Tree. i.e. if there
** are no active savepoints and no other statement-transactions open,
** iStatement is 1. This anonymous savepoint can be released or rolled back
** using the sqlite3BtreeSavepoint() function.
*/
int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( iStatement>0 );
  assert( iStatement>p->db->nSavepoint );
  assert( pBt->inTransaction==TRANS_WRITE );
  /* At the pager level, a statement transaction is a savepoint with
  ** an index greater than all savepoints created explicitly using
  ** SQL statements. It is illegal to open, release or rollback any
  ** such savepoints while the statement transaction savepoint is active.
  */
  rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
** or SAVEPOINT_RELEASE. This function either releases or rolls back the
** savepoint identified by parameter iSavepoint, depending on the value 
** of op.
**
** Normally, iSavepoint is greater than or equal to zero. However, if op is
** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 
** contents of the entire transaction are rolled back. This is different
** from a normal transaction rollback, as no locks are released and the
** transaction remains open.
*/
int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
  int rc = SQLITE_OK;
  if( p && p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
    assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
    sqlite3BtreeEnter(p);
    if( op==SAVEPOINT_ROLLBACK ){
      rc = saveAllCursors(pBt, 0, 0);
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
    }
    if( rc==SQLITE_OK ){
      if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
        pBt->nPage = 0;
      }
      rc = newDatabase(pBt);
      pBt->nPage = get4byte(28 + pBt->pPage1->aData);

      /* The database size was written into the offset 28 of the header
      ** when the transaction started, so we know that the value at offset
      ** 28 is nonzero. */
      assert( pBt->nPage>0 );
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
** be used for reading.  If the BTREE_WRCSR bit is set, then the cursor
** can be used for reading or for writing if other conditions for writing
** are also met.  These are the conditions that must be met in order
** for writing to be allowed:
**
** 1:  The cursor must have been opened with wrFlag containing BTREE_WRCSR
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
** is set.  If FORDELETE is set, that is a hint to the implementation that
** this cursor will only be used to seek to and delete entries of an index
** as part of a larger DELETE statement.  The FORDELETE hint is not used by
** this implementation.  But in a hypothetical alternative storage engine 
** in which index entries are automatically deleted when corresponding table
** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
** operations on this cursor can be no-ops and all READ operations can 
** return a null row (2-bytes: 0x01 0x00).
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite3BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 
       || wrFlag==BTREE_WRCSR 
       || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 
  );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );
  assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );

  if( wrFlag ){
    allocateTempSpace(pBt);
    if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
    }
  }
  pCur->pNext = pBt->pCursor;
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  return SQLITE_OK;
}
int sqlite3BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  BtCursor *pCur                              /* Write new cursor here */
){
  int rc;
  if( iTable<1 ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    sqlite3BtreeEnter(p);
    rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
    sqlite3BtreeLeave(p);
  }
  return rc;
}

/*
** Return the size of a BtCursor object in bytes.
**
** This interfaces is needed so that users of cursors can preallocate
** sufficient storage to hold a cursor.  The BtCursor object is opaque
** to users so they cannot do the sizeof() themselves - they must call
** this routine.
*/
int sqlite3BtreeCursorSize(void){
  return ROUND8(sizeof(BtCursor));
}

/*
** Initialize memory that will be converted into a BtCursor object.
**
** The simple approach here would be to memset() the entire object
** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
** do not need to be zeroed and they are large, so we can save a lot
** of run-time by skipping the initialization of those elements.
*/
void sqlite3BtreeCursorZero(BtCursor *p){
  memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
}

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite3BtreeCloseCursor(BtCursor *pCur){
  Btree *pBtree = pCur->pBtree;
  if( pBtree ){
    BtShared *pBt = pCur->pBt;
    sqlite3BtreeEnter(pBtree);
    assert( pBt->pCursor!=0 );
    if( pBt->pCursor==pCur ){
      pBt->pCursor = pCur->pNext;
    }else{
      BtCursor *pPrev = pBt->pCursor;
      do{
        if( pPrev->pNext==pCur ){
          pPrev->pNext = pCur->pNext;
          break;
        }
        pPrev = pPrev->pNext;
      }while( ALWAYS(pPrev) );
    }
    btreeReleaseAllCursorPages(pCur);
    unlockBtreeIfUnused(pBt);
    sqlite3_free(pCur->aOverflow);
    sqlite3_free(pCur->pKey);
    sqlite3BtreeLeave(pBtree);
  }
  return SQLITE_OK;
}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** btreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
*/
#ifndef NDEBUG
  static int cellInfoEqual(CellInfo *a, CellInfo *b){
    if( a->nKey!=b->nKey ) return 0;
    if( a->pPayload!=b->pPayload ) return 0;
    if( a->nPayload!=b->nPayload ) return 0;
    if( a->nLocal!=b->nLocal ) return 0;
    if( a->nSize!=b->nSize ) return 0;
    return 1;
  }
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    memset(&info, 0, sizeof(info));
    btreeParseCell(pCur->pPage, pCur->ix, &info);
    assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
  }
#else
  #define assertCellInfo(x)
#endif
static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
  if( pCur->info.nSize==0 ){
    pCur->curFlags |= BTCF_ValidNKey;
    btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
  }else{
    assertCellInfo(pCur);
  }
}

#ifndef NDEBUG  /* The next routine used only within assert() statements */
/*
** Return true if the given BtCursor is valid.  A valid cursor is one
** that is currently pointing to a row in a (non-empty) table.
** This is a verification routine is used only within assert() statements.
*/
int sqlite3BtreeCursorIsValid(BtCursor *pCur){
  return pCur && pCur->eState==CURSOR_VALID;
}
#endif /* NDEBUG */
int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
  assert( pCur!=0 );
  return pCur->eState==CURSOR_VALID;
}

/*
** Return the value of the integer key or "rowid" for a table btree.
** This routine is only valid for a cursor that is pointing into a
** ordinary table btree.  If the cursor points to an index btree or
** is invalid, the result of this routine is undefined.
*/
i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->curIntKey );
  getCellInfo(pCur);
  return pCur->info.nKey;
}

#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
/*
** Return the offset into the database file for the start of the
** payload to which the cursor is pointing.
*/
i64 sqlite3BtreeOffset(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
         (i64)(pCur->info.pPayload - pCur->pPage->aData);
}
#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */

/*
** Return the number of bytes of payload for the entry that pCur is
** currently pointing to.  For table btrees, this will be the amount
** of data.  For index btrees, this will be the size of the key.
**
** The caller must guarantee that the cursor is pointing to a non-NULL
** valid entry.  In other words, the calling procedure must guarantee
** that the cursor has Cursor.eState==CURSOR_VALID.
*/
u32 sqlite3BtreePayloadSize(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  return pCur->info.nPayload;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so. 
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** The page number of the next overflow page in the linked list is 
** written to *pPgnoNext. If page ovfl is the last page in its linked 
** list, *pPgnoNext is set to zero. 
**
** If ppPage is not NULL, and a reference to the MemPage object corresponding
** to page number pOvfl was obtained, then *ppPage is set to point to that
** reference. It is the responsibility of the caller to call releasePage()
** on *ppPage to free the reference. In no reference was obtained (because
** the pointer-map was used to obtain the value for *pPgnoNext), then
** *ppPage is set to zero.
*/
static int getOverflowPage(
  BtShared *pBt,               /* The database file */
  Pgno ovfl,                   /* Current overflow page number */
  MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
  Pgno *pPgnoNext              /* OUT: Next overflow page number */
){
  Pgno next = 0;
  MemPage *pPage = 0;
  int rc = SQLITE_OK;

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert(pPgnoNext);

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* Try to find the next page in the overflow list using the
  ** autovacuum pointer-map pages. Guess that the next page in 
  ** the overflow list is page number (ovfl+1). If that guess turns 
  ** out to be wrong, fall back to loading the data of page 
  ** number ovfl to determine the next page number.
  */
  if( pBt->autoVacuum ){
    Pgno pgno;
    Pgno iGuess = ovfl+1;
    u8 eType;

    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
      iGuess++;
    }

    if( iGuess<=btreePagecount(pBt) ){
      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
      if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
        next = iGuess;
        rc = SQLITE_DONE;
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
  if( ppPage ){
    *ppPage = pPage;
  }else{
    releasePage(pPage);
  }
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}

/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int copyPayload(
  void *pPayload,           /* Pointer to page data */
  void *pBuf,               /* Pointer to buffer */
  int nByte,                /* Number of bytes to copy */
  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  DbPage *pDbPage           /* Page containing pPayload */
){
  if( eOp ){
    /* Copy data from buffer to page (a write operation) */
    int rc = sqlite3PagerWrite(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    memcpy(pPayload, pBuf, nByte);
  }else{
    /* Copy data from page to buffer (a read operation) */
    memcpy(pBuf, pPayload, nByte);
  }
  return SQLITE_OK;
}

/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. The eOp
** argument is interpreted as follows:
**
**   0: The operation is a read. Populate the overflow cache.
**   1: The operation is a write. Populate the overflow cache.
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the current cursor entry uses one or more overflow pages
** this function may allocate space for and lazily populate
** the overflow page-list cache array (BtCursor.aOverflow). 
** Subsequent calls use this cache to make seeking to the supplied offset 
** more efficient.
**
** Once an overflow page-list cache has been allocated, it must be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
*/
static int accessPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 offset,          /* Begin reading this far into payload */
  u32 amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  int iIdx = 0;
  MemPage *pPage = pCur->pPage;               /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
  unsigned char * const pBufStart = pBuf;     /* Start of original out buffer */
#endif

  assert( pPage );
  assert( eOp==0 || eOp==1 );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->ix<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );

  getCellInfo(pCur);
  aPayload = pCur->info.pPayload;
  assert( offset+amt <= pCur->info.nPayload );

  assert( aPayload > pPage->aData );
  if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
    /* Trying to read or write past the end of the data is an error.  The
    ** conditional above is really:
    **    &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
    ** but is recast into its current form to avoid integer overflow problems
    */
    return SQLITE_CORRUPT_PAGE(pPage);
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

    /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
    **
    ** The aOverflow[] array is sized at one entry for each overflow page
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( pCur->aOverflow==0
       || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
      ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(
            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          return SQLITE_NOMEM_BKPT;
        }else{
          pCur->aOverflow = aNew;
        }
      }
      memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
      pCur->curFlags |= BTCF_ValidOvfl;
    }else{
      /* If the overflow page-list cache has been allocated and the
      ** entry for the first required overflow page is valid, skip
      ** directly to it.
      */
      if( pCur->aOverflow[offset/ovflSize] ){
        iIdx = (offset/ovflSize);
        nextPage = pCur->aOverflow[iIdx];
        offset = (offset%ovflSize);
      }
    }

    assert( rc==SQLITE_OK && amt>0 );
    while( nextPage ){
      /* If required, populate the overflow page-list cache. */
      assert( pCur->aOverflow[iIdx]==0
              || pCur->aOverflow[iIdx]==nextPage
              || CORRUPT_DB );
      pCur->aOverflow[iIdx] = nextPage;

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.
        */
        assert( pCur->curFlags & BTCF_ValidOvfl );
        assert( pCur->pBtree->db==pBt->db );
        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite3_file *fd;      /* File from which to do direct overflow read */
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) there is no open write-transaction, and
        **   4) the database is file-backed, and
        **   5) the page is not in the WAL file
        **   6) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( eOp==0                                             /* (1) */
         && offset==0                                          /* (2) */
         && pBt->inTransaction==TRANS_READ                     /* (3) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
         && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (6) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* due to (6) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
              (eOp==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite3PagerUnref(pDbPage);
            offset = 0;
          }
        }
        amt -= a;
        if( amt==0 ) return rc;
        pBuf += a;
      }
      if( rc ) break;
      iIdx++;
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    /* Overflow chain ends prematurely */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  return rc;
}

/*
** Read part of the payload for the row at which that cursor pCur is currently
** pointing.  "amt" bytes will be transferred into pBuf[].  The transfer
** begins at "offset".
**
** pCur can be pointing to either a table or an index b-tree.
** If pointing to a table btree, then the content section is read.  If
** pCur is pointing to an index b-tree then the key section is read.
**
** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
** to a valid row in the table.  For sqlite3BtreePayloadChecked(), the
** cursor might be invalid or might need to be restored before being read.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->pPage );
  assert( pCur->ix<pCur->pPage->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** This variant of sqlite3BtreePayload() works even if the cursor has not
** in the CURSOR_VALID state.  It is only used by the sqlite3_blob_read()
** interface.
*/
#ifndef SQLITE_OMIT_INCRBLOB
static SQLITE_NOINLINE int accessPayloadChecked(
  BtCursor *pCur,
  u32 offset,
  u32 amt,
  void *pBuf
){
  int rc;
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
  assert( cursorOwnsBtShared(pCur) );
  rc = btreeRestoreCursorPosition(pCur);
  return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
}
int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  if( pCur->eState==CURSOR_VALID ){
    assert( cursorOwnsBtShared(pCur) );
    return accessPayload(pCur, offset, amt, pBuf, 0);
  }else{
    return accessPayloadChecked(pCur, offset, amt, pBuf);
  }
}
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if index btrees (pPage->intKey==0) and is the data for
** table btrees (pPage->intKey==1). The number of bytes of available
** key/data is written into *pAmt.  If *pAmt==0, then the value
** returned will not be a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const void *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 *pAmt            /* Write the number of available bytes here */
){
  int amt;
  assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
  assert( pCur->eState==CURSOR_VALID );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->ix<pCur->pPage->nCell );
  assert( pCur->info.nSize>0 );
  assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
  assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
  amt = pCur->info.nLocal;
  if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
    /* There is too little space on the page for the expected amount
    ** of local content. Database must be corrupt. */
    assert( CORRUPT_DB );
    amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
  }
  *pAmt = (u32)amt;
  return (void*)pCur->info.pPayload;
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
  return fetchPayload(pCur, pAmt);
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  BtShared *pBt = pCur->pBt;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->iPage>=0 );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->aiIdx[pCur->iPage] = pCur->ix;
  pCur->apPage[pCur->iPage] = pCur->pPage;
  pCur->ix = 0;
  pCur->iPage++;
  return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
}

#ifdef SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
  if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
                            ** in a corrupt database */
  assert( iIdx<=pParent->nCell );
  if( iIdx==pParent->nCell ){
    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  }else{
    assert( get4byte(findCell(pParent, iIdx))==iChild );
  }
}
#else
#  define assertParentIndex(x,y,z) 
#endif

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  MemPage *pLeaf;
  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->pPage );
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->pPage->pgno
  );
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  pCur->ix = pCur->aiIdx[pCur->iPage-1];
  pLeaf = pCur->pPage;
  pCur->pPage = pCur->apPage[--pCur->iPage];
  releasePageNotNull(pLeaf);
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a
** virtual root page when the actual root page contains no cells and a 
** single child page. This can only happen with the table rooted at page 1.
**
** If the b-tree structure is empty, the cursor state is set to 
** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
** the cursor is set to point to the first cell located on the root
** (or virtual root) page and the cursor state is set to CURSOR_VALID.
**
** If this function returns successfully, it may be assumed that the
** page-header flags indicate that the [virtual] root-page is the expected 
** kind of b-tree page (i.e. if when opening the cursor the caller did not
** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
** indicating a table b-tree, or if the caller did specify a KeyInfo 
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;

  assert( cursorOwnsBtShared(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
  assert( pCur->pgnoRoot>0 || pCur->iPage<0 );

  if( pCur->iPage>=0 ){
    if( pCur->iPage ){
      releasePageNotNull(pCur->pPage);
      while( --pCur->iPage ){
        releasePageNotNull(pCur->apPage[pCur->iPage]);
      }
      pCur->pPage = pCur->apPage[0];
      goto skip_init;
    }
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_EMPTY;
  }else{
    assert( pCur->iPage==(-1) );
    if( pCur->eState>=CURSOR_REQUIRESEEK ){
      if( pCur->eState==CURSOR_FAULT ){
        assert( pCur->skipNext!=SQLITE_OK );
        return pCur->skipNext;
      }
      sqlite3BtreeClearCursor(pCur);
    }
    rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
                        0, pCur->curPagerFlags);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;
    pCur->curIntKey = pCur->pPage->intKey;
  }
  pRoot = pCur->pPage;
  assert( pRoot->pgno==pCur->pgnoRoot );

  /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
  ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
  ** NULL, the caller expects a table b-tree. If this is not the case,
  ** return an SQLITE_CORRUPT error. 
  **
  ** Earlier versions of SQLite assumed that this test could not fail
  ** if the root page was already loaded when this function was called (i.e.
  ** if pCur->iPage>=0). But this is not so if the database is corrupted 
  ** in such a way that page pRoot is linked into a second b-tree table 
  ** (or the freelist).  */
  assert( pRoot->intKey==1 || pRoot->intKey==0 );
  if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
    return SQLITE_CORRUPT_PAGE(pCur->pPage);
  }

skip_init:  
  pCur->ix = 0;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);

  pRoot = pCur->pPage;
  if( pRoot->nCell>0 ){
    pCur->eState = CURSOR_VALID;
  }else if( !pRoot->leaf ){
    Pgno subpage;
    if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    pCur->eState = CURSOR_VALID;
    rc = moveToChild(pCur, subpage);
  }else{
    pCur->eState = CURSOR_INVALID;
    rc = SQLITE_EMPTY;
  }
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
    assert( pCur->ix<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->ix));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing.  Notice the difference
** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( !(pPage = pCur->pPage)->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->ix = pPage->nCell;
    rc = moveToChild(pCur, pgno);
    if( rc ) return rc;
  }
  pCur->ix = pPage->nCell-1;
  assert( pCur->info.nSize==0 );
  assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
  return SQLITE_OK;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->pPage->nCell>0 );
    *pRes = 0;
    rc = moveToLeftmost(pCur);
  }else if( rc==SQLITE_EMPTY ){
    assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
    *pRes = 1;
    rc = SQLITE_OK;
  }
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
    int ii;
    for(ii=0; ii<pCur->iPage; ii++){
      assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
    }
    assert( pCur->ix==pCur->pPage->nCell-1 );
    assert( pCur->pPage->leaf );
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    *pRes = 0;
    rc = moveToRightmost(pCur);
    if( rc==SQLITE_OK ){
      pCur->curFlags |= BTCF_AtLast;
    }else{
      pCur->curFlags &= ~BTCF_AtLast;
    }
  }else if( rc==SQLITE_EMPTY ){
    assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
    *pRes = 1;
    rc = SQLITE_OK;
  }
  return rc;
}

/* Move the cursor so that it points to an entry near the key 
** specified by pIdxKey or intKey.   Return a success code.
**
** For INTKEY tables, the intKey parameter is used.  pIdxKey 
** must be NULL.  For index tables, pIdxKey is used and intKey
** is ignored.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** An integer is written into *pRes which is the result of
** comparing the key with the entry to which the cursor is 
** pointing.  The meaning of the integer written into
** *pRes is as follows:
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than intKey/pIdxKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches intKey/pIdxKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than intKey/pIdxKey.
**
** For index tables, the pIdxKey->eqSeen field is set to 1 if there
** exists an entry in the table that exactly matches pIdxKey.  
*/
int sqlite3BtreeMovetoUnpacked(
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;
  RecordCompare xRecordCompare;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
  assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pIdxKey==0
   && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( pCur->info.nKey<intKey ){
      if( (pCur->curFlags & BTCF_AtLast)!=0 ){
        *pRes = -1;
        return SQLITE_OK;
      }
      /* If the requested key is one more than the previous key, then
      ** try to get there using sqlite3BtreeNext() rather than a full
      ** binary search.  This is an optimization only.  The correct answer
      ** is still obtained without this case, only a little more slowely */
      if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
        *pRes = 0;
        rc = sqlite3BtreeNext(pCur, 0);
        if( rc==SQLITE_OK ){
          getCellInfo(pCur);
          if( pCur->info.nKey==intKey ){
            return SQLITE_OK;
          }
        }else if( rc==SQLITE_DONE ){
          rc = SQLITE_OK;
        }else{
          return rc;
        }
      }
    }
  }

  if( pIdxKey ){
    xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
    pIdxKey->errCode = 0;
    assert( pIdxKey->default_rc==1 
         || pIdxKey->default_rc==0 
         || pIdxKey->default_rc==-1
    );
  }else{
    xRecordCompare = 0; /* All keys are integers */
  }

  rc = moveToRoot(pCur);
  if( rc ){
    if( rc==SQLITE_EMPTY ){
      assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
      *pRes = -1;
      return SQLITE_OK;
    }
    return rc;
  }
  assert( pCur->pPage );
  assert( pCur->pPage->isInit );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->pPage->nCell > 0 );
  assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
  assert( pCur->curIntKey || pIdxKey );
  for(;;){
    int lwr, upr, idx, c;
    Pgno chldPg;
    MemPage *pPage = pCur->pPage;
    u8 *pCell;                          /* Pointer to current cell in pPage */

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    assert( biasRight==0 || biasRight==1 );
    idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
    pCur->ix = (u16)idx;
    if( xRecordCompare==0 ){
      for(;;){
        i64 nCellKey;
        pCell = findCellPastPtr(pPage, idx);
        if( pPage->intKeyLeaf ){
          while( 0x80 <= *(pCell++) ){
            if( pCell>=pPage->aDataEnd ){
              return SQLITE_CORRUPT_PAGE(pPage);
            }
          }
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey<intKey ){
          lwr = idx+1;
          if( lwr>upr ){ c = -1; break; }
        }else if( nCellKey>intKey ){
          upr = idx-1;
          if( lwr>upr ){ c = +1; break; }
        }else{
          assert( nCellKey==intKey );
          pCur->ix = (u16)idx;
          if( !pPage->leaf ){
            lwr = idx;
            goto moveto_next_layer;
          }else{
            pCur->curFlags |= BTCF_ValidNKey;
            pCur->info.nKey = nCellKey;
            pCur->info.nSize = 0;
            *pRes = 0;
            return SQLITE_OK;
          }
        }
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2; */
      }
    }else{
      for(;;){
        int nCell;  /* Size of the pCell cell in bytes */
        pCell = findCellPastPtr(pPage, idx);

        /* The maximum supported page-size is 65536 bytes. This means that
        ** the maximum number of record bytes stored on an index B-Tree
        ** page is less than 16384 bytes and may be stored as a 2-byte
        ** varint. This information is used to attempt to avoid parsing 
        ** the entire cell by checking for the cases where the record is 
        ** stored entirely within the b-tree page by inspecting the first 
        ** 2 bytes of the cell.
        */
        nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. 
          **
          ** If the record is corrupt, the xRecordCompare routine may read
          ** up to two varints past the end of the buffer. An extra 18 
          ** bytes of padding is allocated at the end of the buffer in
          ** case this happens.  */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          pPage->xParseCell(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          testcase( nCell<0 );   /* True if key size is 2^32 or more */
          testcase( nCell==0 );  /* Invalid key size:  0x80 0x80 0x00 */
          testcase( nCell==1 );  /* Invalid key size:  0x80 0x80 0x01 */
          testcase( nCell==2 );  /* Minimum legal index key size */
          if( nCell<2 ){
            rc = SQLITE_CORRUPT_PAGE(pPage);
            goto moveto_finish;
          }
          pCellKey = sqlite3Malloc( nCell+18 );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM_BKPT;
            goto moveto_finish;
          }
          pCur->ix = (u16)idx;
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          pCur->curFlags &= ~BTCF_ValidOvfl;
          if( rc ){
            sqlite3_free(pCellKey);
            goto moveto_finish;
          }
          c = xRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite3_free(pCellKey);
        }
        assert( 
            (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
         && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
        );
        if( c<0 ){
          lwr = idx+1;
        }else if( c>0 ){
          upr = idx-1;
        }else{
          assert( c==0 );
          *pRes = 0;
          rc = SQLITE_OK;
          pCur->ix = (u16)idx;
          if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
          goto moveto_finish;
        }
        if( lwr>upr ) break;
        assert( lwr+upr>=0 );
        idx = (lwr+upr)>>1;  /* idx = (lwr+upr)/2 */
      }
    }
    assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
    assert( pPage->isInit );
    if( pPage->leaf ){
      assert( pCur->ix<pCur->pPage->nCell );
      pCur->ix = (u16)idx;
      *pRes = c;
      rc = SQLITE_OK;
      goto moveto_finish;
    }
moveto_next_layer:
    if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    pCur->ix = (u16)lwr;
    rc = moveToChild(pCur, chldPg);
    if( rc ) break;
  }
moveto_finish:
  pCur->info.nSize = 0;
  assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
  return rc;
}


/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite3BtreeNext() moves
** past the last entry in the table or sqlite3BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite3BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Return an estimate for the number of rows in the table that pCur is
** pointing to.  Return a negative number if no estimate is currently 
** available.
*/
i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
  i64 n;
  u8 i;

  assert( cursorOwnsBtShared(pCur) );
  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );

  /* Currently this interface is only called by the OP_IfSmaller
  ** opcode, and it that case the cursor will always be valid and
  ** will always point to a leaf node. */
  if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
  if( NEVER(pCur->pPage->leaf==0) ) return -1;

  n = pCur->pPage->nCell;
  for(i=0; i<pCur->iPage; i++){
    n *= pCur->apPage[i]->nCell;
  }
  return n;
}

/*
** Advance the cursor to the next entry in the database. 
** Return value:
**
**    SQLITE_OK        success
**    SQLITE_DONE      cursor is already pointing at the last element
**    otherwise        some kind of error occurred
**
** The main entry point is sqlite3BtreeNext().  That routine is optimized
** for the common case of merely incrementing the cell counter BtCursor.aiIdx
** to the next cell on the current page.  The (slower) btreeNext() helper
** routine is called when it is necessary to move to a different page or
** to restore the cursor.
**
** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
** cursor corresponds to an SQL index and this routine could have been
** skipped if the SQL index had been a unique index.  The F argument
** is a hint to the implement.  SQLite btree implementation does not use
** this hint, but COMDB2 does.
*/
static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  if( pCur->eState!=CURSOR_VALID ){
    assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      return SQLITE_DONE;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext>0 ){
        pCur->skipNext = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->pPage;
  idx = ++pCur->ix;
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
  testcase( idx>pPage->nCell );

  if( idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      return moveToLeftmost(pCur);
    }
    do{
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        return SQLITE_DONE;
      }
      moveToParent(pCur);
      pPage = pCur->pPage;
    }while( pCur->ix>=pPage->nCell );
    if( pPage->intKey ){
      return sqlite3BtreeNext(pCur, 0);
    }else{
      return SQLITE_OK;
    }
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}
int sqlite3BtreeNext(BtCursor *pCur, int flags){
  MemPage *pPage;
  UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
  assert( cursorOwnsBtShared(pCur) );
  assert( flags==0 || flags==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
  pPage = pCur->pPage;
  if( (++pCur->ix)>=pPage->nCell ){
    pCur->ix--;
    return btreeNext(pCur);
  }
  if( pPage->leaf ){
    return SQLITE_OK;
  }else{
    return moveToLeftmost(pCur);
  }
}

/*
** Step the cursor to the back to the previous entry in the database.
** Return values:
**
**     SQLITE_OK     success
**     SQLITE_DONE   the cursor is already on the first element of the table
**     otherwise     some kind of error occurred
**
** The main entry point is sqlite3BtreePrevious().  That routine is optimized
** for the common case of merely decrementing the cell counter BtCursor.aiIdx
** to the previous cell on the current page.  The (slower) btreePrevious()
** helper routine is called when it is necessary to move to a different page
** or to restore the cursor.
**
** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
** the cursor corresponds to an SQL index and this routine could have been
** skipped if the SQL index had been a unique index.  The F argument is a
** hint to the implement.  The native SQLite btree implementation does not
** use this hint, but COMDB2 does.
*/
static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
  int rc;
  MemPage *pPage;

  assert( cursorOwnsBtShared(pCur) );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
  assert( pCur->info.nSize==0 );
  if( pCur->eState!=CURSOR_VALID ){
    rc = restoreCursorPosition(pCur);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( CURSOR_INVALID==pCur->eState ){
      return SQLITE_DONE;
    }
    if( pCur->skipNext ){
      assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
      pCur->eState = CURSOR_VALID;
      if( pCur->skipNext<0 ){
        pCur->skipNext = 0;
        return SQLITE_OK;
      }
      pCur->skipNext = 0;
    }
  }

  pPage = pCur->pPage;
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->ix;
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ) return rc;
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->ix==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        return SQLITE_DONE;
      }
      moveToParent(pCur);
    }
    assert( pCur->info.nSize==0 );
    assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );

    pCur->ix--;
    pPage = pCur->pPage;
    if( pPage->intKey && !pPage->leaf ){
      rc = sqlite3BtreePrevious(pCur, 0);
    }else{
      rc = SQLITE_OK;
    }
  }
  return rc;
}
int sqlite3BtreePrevious(BtCursor *pCur, int flags){
  assert( cursorOwnsBtShared(pCur) );
  assert( flags==0 || flags==1 );
  assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
  UNUSED_PARAMETER( flags );  /* Used in COMDB2 but not native SQLite */
  pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
  pCur->info.nSize = 0;
  if( pCur->eState!=CURSOR_VALID
   || pCur->ix==0
   || pCur->pPage->leaf==0
  ){
    return btreePrevious(pCur);
  }
  pCur->ix--;
  return SQLITE_OK;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
** has already been called on the new page.)  The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite3PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage is set to NULL in the event of an error.
**
** If the "nearby" parameter is not 0, then an effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
** anywhere on the free-list, then it is guaranteed to be returned.  If
** eMode is BTALLOC_LT then the page returned will be less than or equal
** to nearby if any such page exists.  If eMode is BTALLOC_ANY then there
** are no restrictions on which page is returned.
*/
static int allocateBtreePage(
  BtShared *pBt,         /* The btree */
  MemPage **ppPage,      /* Store pointer to the allocated page here */
  Pgno *pPgno,           /* Store the page number here */
  Pgno nearby,           /* Search for a page near this one */
  u8 eMode               /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
){
  MemPage *pPage1;
  int rc;
  u32 n;     /* Number of pages on the freelist */
  u32 k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
  ** stores stores the total number of pages on the freelist. */
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    u32 nSearch = 0;   /* Count of the number of search attempts */
    
    /* If eMode==BTALLOC_EXACT and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( eMode==BTALLOC_EXACT ){
      if( nearby<=mxPage ){
        u8 eType;
        assert( nearby>0 );
        assert( pBt->autoVacuum );
        rc = ptrmapGet(pBt, nearby, &eType, 0);
        if( rc ) return rc;
        if( eType==PTRMAP_FREEPAGE ){
          searchList = 1;
        }
      }
    }else if( eMode==BTALLOC_LE ){
      searchList = 1;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite3PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
        ** is the page number of the next freelist trunk page in the list or
        ** zero if this is the last freelist trunk page. */
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
        ** stores the page number of the first page of the freelist, or zero if
        ** the freelist is empty. */
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage || nSearch++ > n ){
        rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
      }else{
        rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
      /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
      ** is the number of leaf page pointers to follow. */
      k = get4byte(&pTrunk->aData[4]);
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        *pPgno = iTrunk;
        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
        *ppPage = pTrunk;
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>(u32)(pBt->usableSize/4 - 2) ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_PGNO(iTrunk);
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList 
            && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) 
      ){
        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        *pPgno = iTrunk;
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){
          if( !pPrevTrunk ){
            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
          }else{
            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
            if( rc!=SQLITE_OK ){
              goto end_allocate_page;
            }
            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
          }
        }else{
          /* The trunk page is required by the caller but it contains 
          ** pointers to free-list leaves. The first leaf becomes a trunk
          ** page in this case.
          */
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_PGNO(iTrunk);
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
          }
          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
          put4byte(&pNewTrunk->aData[4], k-1);
          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
          releasePage(pNewTrunk);
          if( !pPrevTrunk ){
            assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
            put4byte(&pPage1->aData[32], iNewTrunk);
          }else{
            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
            if( rc ){
              goto end_allocate_page;
            }
            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
          }
        }
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
      }else if( k>0 ){
        /* Extract a leaf from the trunk */
        u32 closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        if( nearby>0 ){
          u32 i;
          closest = 0;
          if( eMode==BTALLOC_LE ){
            for(i=0; i<k; i++){
              iPage = get4byte(&aData[8+i*4]);
              if( iPage<=nearby ){
                closest = i;
                break;
              }
            }
          }else{
            int dist;
            dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
            for(i=1; i<k; i++){
              int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
              if( d2<dist ){
                closest = i;
                dist = d2;
              }
            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        testcase( iPage==mxPage );
        if( iPage>mxPage ){
          rc = SQLITE_CORRUPT_PGNO(iTrunk);
          goto end_allocate_page;
        }
        testcase( iPage==mxPage );
        if( !searchList 
         || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) 
        ){
          int noContent;
          *pPgno = iPage;
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite3PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
          rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
              *ppPage = 0;
            }
          }
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so append a new page to the
    ** database image.
    **
    ** Normally, new pages allocated by this block can be requested from the
    ** pager layer with the 'no-content' flag set. This prevents the pager
    ** from trying to read the pages content from disk. However, if the
    ** current transaction has already run one or more incremental-vacuum
    ** steps, then the page we are about to allocate may contain content
    ** that is required in the event of a rollback. In this case, do
    ** not set the no-content flag. This causes the pager to load and journal
    ** the current page content before overwriting it.
    **
    ** Note that the pager will not actually attempt to load or journal 
    ** content for any page that really does lie past the end of the database
    ** file on disk. So the effects of disabling the no-content optimization
    ** here are confined to those pages that lie between the end of the
    ** database image and the end of the database file.
    */
    int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;

    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
    if( rc ) return rc;
    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      *ppPage = 0;
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }

  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );

end_allocate_page:
  releasePage(pTrunk);
  releasePage(pPrevTrunk);
  assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
  assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
  return rc;
}

/*
** This function is used to add page iPage to the database file free-list. 
** It is assumed that the page is not already a part of the free-list.
**
** The value passed as the second argument to this function is optional.
** If the caller happens to have a pointer to the MemPage object 
** corresponding to page iPage handy, it may pass it as the second value. 
** Otherwise, it may pass NULL.
**
** If a pointer to a MemPage object is passed as the second argument,
** its reference count is not altered by this function.
*/
static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
  MemPage *pTrunk = 0;                /* Free-list trunk page */
  Pgno iTrunk = 0;                    /* Page number of free-list trunk page */ 
  MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
  MemPage *pPage;                     /* Page being freed. May be NULL. */
  int rc;                             /* Return Code */
  int nFree;                          /* Initial number of pages on free-list */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( CORRUPT_DB || iPage>1 );
  assert( !pMemPage || pMemPage->pgno==iPage );

  if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
  if( pMemPage ){
    pPage = pMemPage;
    sqlite3PagerRef(pPage->pDbPage);
  }else{
    pPage = btreePageLookup(pBt, iPage);
  }

  /* Increment the free page count on pPage1 */
  rc = sqlite3PagerWrite(pPage1->pDbPage);
  if( rc ) goto freepage_out;
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
     ||            ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

  /* If the database supports auto-vacuum, write an entry in the pointer-map
  ** to indicate that the page is free.
  */
  if( ISAUTOVACUUM ){
    ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
    if( rc ) goto freepage_out;
  }

  /* Now manipulate the actual database free-list structure. There are two
  ** possibilities. If the free-list is currently empty, or if the first
  ** trunk page in the free-list is full, then this page will become a
  ** new free-list trunk page. Otherwise, it will become a leaf of the
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto freepage_out;
    }
    if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
      /* In this case there is room on the trunk page to insert the page
      ** being freed as a new leaf.
      **
      ** Note that the trunk page is not really full until it contains
      ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
      ** coded.  But due to a coding error in versions of SQLite prior to
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".
      **
      ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
      ** avoid using the last six entries in the freelist trunk page array in
      ** order that database files created by newer versions of SQLite can be
      ** read by older versions of SQLite.
      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
        }
        rc = btreeSetHasContent(pBt, iPage);
      }
      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
      goto freepage_out;
    }
  }

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
    goto freepage_out;
  }
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
  put4byte(&pPage->aData[4], 0);
  put4byte(&pPage1->aData[32], iPage);
  TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));

freepage_out:
  if( pPage ){
    pPage->isInit = 0;
  }
  releasePage(pPage);
  releasePage(pTrunk);
  return rc;
}
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.  Store
** size information about the cell in pInfo.
*/
static int clearCell(
  MemPage *pPage,          /* The page that contains the Cell */
  unsigned char *pCell,    /* First byte of the Cell */
  CellInfo *pInfo          /* Size information about the cell */
){
  BtShared *pBt;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, pInfo);
  if( pInfo->nLocal==pInfo->nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
    /* Cell extends past end of page */
    return SQLITE_CORRUPT_PAGE(pPage);
  }
  ovflPgno = get4byte(pCell + pInfo->nSize - 4);
  pBt = pPage->pBt;
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 
    (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
  );
  while( nOvfl-- ){
    Pgno iNext = 0;
    MemPage *pOvfl = 0;
    if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
      /* 0 is not a legal page number and page 1 cannot be an 
      ** overflow page. Therefore if ovflPgno<2 or past the end of the 
      ** file the database must be corrupt. */
      return SQLITE_CORRUPT_BKPT;
    }
    if( nOvfl ){
      rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
      if( rc ) return rc;
    }

    if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
     && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
    ){
      /* There is no reason any cursor should have an outstanding reference 
      ** to an overflow page belonging to a cell that is being deleted/updated.
      ** So if there exists more than one reference to this page, then it 
      ** must not really be an overflow page and the database must be corrupt. 
      ** It is helpful to detect this before calling freePage2(), as 
      ** freePage2() may zero the page contents if secure-delete mode is
      ** enabled. If this 'overflow' page happens to be a page that the
      ** caller is iterating through or using in some other way, this
      ** can be problematic.
      */
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = freePage2(pBt, pOvfl, ovflPgno);
    }

    if( pOvfl ){
      sqlite3PagerUnref(pOvfl->pDbPage);
    }
    if( rc ) return rc;
    ovflPgno = iNext;
  }
  return SQLITE_OK;
}

/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[].  Overflow pages are
** allocated and filled in as necessary.  The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area.  pCell might point to some temporary storage.  The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
  MemPage *pPage,                /* The page that contains the cell */
  unsigned char *pCell,          /* Complete text of the cell */
  const BtreePayload *pX,        /* Payload with which to construct the cell */
  int *pnSize                    /* Write cell size here */
){
  int nPayload;
  const u8 *pSrc;
  int nSrc, n, rc, mn;
  int spaceLeft;
  MemPage *pToRelease;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt;
  Pgno pgnoOvfl;
  int nHeader;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );

  /* pPage is not necessarily writeable since pCell might be auxiliary
  ** buffer space that is separate from the pPage buffer area */
  assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

  /* Fill in the header. */
  nHeader = pPage->childPtrSize;
  if( pPage->intKey ){
    nPayload = pX->nData + pX->nZero;
    pSrc = pX->pData;
    nSrc = pX->nData;
    assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
    nHeader += putVarint32(&pCell[nHeader], nPayload);
    nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
  }else{
    assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
    nSrc = nPayload = (int)pX->nKey;
    pSrc = pX->pKey;
    nHeader += putVarint32(&pCell[nHeader], nPayload);
  }
  
  /* Fill in the payload */
  pPayload = &pCell[nHeader];
  if( nPayload<=pPage->maxLocal ){
    /* This is the common case where everything fits on the btree page
    ** and no overflow pages are required. */
    n = nHeader + nPayload;
    testcase( n==3 );
    testcase( n==4 );
    if( n<4 ) n = 4;
    *pnSize = n;
    assert( nSrc<=nPayload );
    testcase( nSrc<nPayload );
    memcpy(pPayload, pSrc, nSrc);
    memset(pPayload+nSrc, 0, nPayload-nSrc);
    return SQLITE_OK;
  }

  /* If we reach this point, it means that some of the content will need
  ** to spill onto overflow pages.
  */
  mn = pPage->minLocal;
  n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
  testcase( n==pPage->maxLocal );
  testcase( n==pPage->maxLocal+1 );
  if( n > pPage->maxLocal ) n = mn;
  spaceLeft = n;
  *pnSize = n + nHeader + 4;
  pPrior = &pCell[nHeader+n];
  pToRelease = 0;
  pgnoOvfl = 0;
  pBt = pPage->pBt;

  /* At this point variables should be set as follows:
  **
  **   nPayload           Total payload size in bytes
  **   pPayload           Begin writing payload here
  **   spaceLeft          Space available at pPayload.  If nPayload>spaceLeft,
  **                      that means content must spill into overflow pages.
  **   *pnSize            Size of the local cell (not counting overflow pages)
  **   pPrior             Where to write the pgno of the first overflow page
  **
  ** Use a call to btreeParseCellPtr() to verify that the values above
  ** were computed correctly.
  */
#ifdef SQLITE_DEBUG
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader==(int)(info.pPayload - pCell) );
    assert( info.nKey==pX->nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
  while( 1 ){
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;

    /* If pToRelease is not zero than pPayload points into the data area
    ** of pToRelease.  Make sure pToRelease is still writeable. */
    assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );

    /* If pPayload is part of the data area of pPage, then make sure pPage
    ** is still writeable */
    assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

    if( nSrc>=n ){
      memcpy(pPayload, pSrc, n);
    }else if( nSrc>0 ){
      n = nSrc;
      memcpy(pPayload, pSrc, n);
    }else{
      memset(pPayload, 0, n);
    }
    nPayload -= n;
    if( nPayload<=0 ) break;
    pPayload += n;
    pSrc += n;
    nSrc -= n;
    spaceLeft -= n;
    if( spaceLeft==0 ){
      MemPage *pOvfl = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
        } while( 
          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
        );
      }
#endif
      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the database supports auto-vacuum, and the second or subsequent
      ** overflow page is being allocated, add an entry to the pointer-map
      ** for that page now. 
      **
      ** If this is the first overflow page, then write a partial entry 
      ** to the pointer-map. If we write nothing to this pointer-map slot,
      ** then the optimistic overflow chain processing in clearCell()
      ** may misinterpret the uninitialized values and delete the
      ** wrong pages from the database.
      */
      if( pBt->autoVacuum && rc==SQLITE_OK ){
        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
        ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
        if( rc ){
          releasePage(pOvfl);
        }
      }
#endif
      if( rc ){
        releasePage(pToRelease);
        return rc;
      }

      /* If pToRelease is not zero than pPrior points into the data area
      ** of pToRelease.  Make sure pToRelease is still writeable. */
      assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );

      /* If pPrior is part of the data area of pPage, then make sure pPage
      ** is still writeable */
      assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
            || sqlite3PagerIswriteable(pPage->pDbPage) );

      put4byte(pPrior, pgnoOvfl);
      releasePage(pToRelease);
      pToRelease = pOvfl;
      pPrior = pOvfl->aData;
      put4byte(pPrior, 0);
      pPayload = &pOvfl->aData[4];
      spaceLeft = pBt->usableSize - 4;
    }
  }
  releasePage(pToRelease);
  return SQLITE_OK;
}

/*
** Remove the i-th cell from pPage.  This routine effects pPage only.
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;
  assert( idx>=0 && idx<pPage->nCell );
  assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &pPage->aCellIdx[2*idx];
  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;
  if( pPage->nCell==0 ){
    memset(&data[hdr+1], 0, 4);
    data[hdr+7] = 0;
    put2byte(&data[hdr+5], pPage->pBt->usableSize);
    pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
                       - pPage->childPtrSize - 8;
  }else{
    memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
    put2byte(&data[hdr+3], pPage->nCell);
    pPage->nFree += 2;
  }
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->apOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** *pRC must be SQLITE_OK when this routine is called.
*/
static void insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
  int *pRC          /* Read and write return code from here */
){
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  u8 *data;         /* The content of the whole page */
  u8 *pIns;         /* The point in pPage->aCellIdx[] where no cell inserted */

  assert( *pRC==SQLITE_OK );
  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
  assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
  assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  /* The cell should normally be sized correctly.  However, when moving a
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp, pCell, sz);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    /* Comparison against ArraySize-1 since we hold back one extra slot
    ** as a contingency.  In other words, never need more than 3 overflow
    ** slots but 4 are allocated, just to be safe. */
    assert( j < ArraySize(pPage->apOvfl)-1 );
    pPage->apOvfl[j] = pCell;
    pPage->aiOvfl[j] = (u16)i;

    /* When multiple overflows occur, they are always sequential and in
    ** sorted order.  This invariants arise because multiple overflows can
    ** only occur when inserting divider cells into the parent page during
    ** balancing, and the dividers are adjacent and sorted.
    */
    assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
    assert( j==0 || i==pPage->aiOvfl[j-1]+1 );   /* Overflows are sequential */
  }else{
    int rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    assert( &data[pPage->cellOffset]==pPage->aCellIdx );
    rc = allocateSpace(pPage, sz, &idx);
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following properties
    ** if it returns successfully */
    assert( idx >= 0 );
    assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx], pCell, sz);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    pIns = pPage->aCellIdx + i*2;
    memmove(pIns+2, pIns, 2*(pPage->nCell - i));
    put2byte(pIns, idx);
    pPage->nCell++;
    /* increment the cell count */
    if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
    assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      ptrmapPutOvflPtr(pPage, pCell, pRC);
    }
#endif
  }
}

/*
** A CellArray object contains a cache of pointers and sizes for a
** consecutive sequence of cells that might be held on multiple pages.
*/
typedef struct CellArray CellArray;
struct CellArray {
  int nCell;              /* Number of cells in apCell[] */
  MemPage *pRef;          /* Reference page */
  u8 **apCell;            /* All cells begin balanced */
  u16 *szCell;            /* Local size of all cells in apCell[] */
};

/*
** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
** computed.
*/
static void populateCellCache(CellArray *p, int idx, int N){
  assert( idx>=0 && idx+N<=p->nCell );
  while( N>0 ){
    assert( p->apCell[idx]!=0 );
    if( p->szCell[idx]==0 ){
      p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
    }else{
      assert( CORRUPT_DB ||
              p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
    }
    idx++;
    N--;
  }
}

/*
** Return the size of the Nth element of the cell array
*/
static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
  assert( N>=0 && N<p->nCell );
  assert( p->szCell[N]==0 );
  p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
  return p->szCell[N];
}
static u16 cachedCellSize(CellArray *p, int N){
  assert( N>=0 && N<p->nCell );
  if( p->szCell[N] ) return p->szCell[N];
  return computeCellSize(p, N);
}

/*
** Array apCell[] contains pointers to nCell b-tree page cells. The 
** szCell[] array contains the size in bytes of each cell. This function
** replaces the current contents of page pPg with the contents of the cell
** array.
**
** Some of the cells in apCell[] may currently be stored in pPg. This
** function works around problems caused by this by making a copy of any 
** such cells before overwriting the page data.
**
** The MemPage.nFree field is invalidated by this function. It is the 
** responsibility of the caller to set it correctly.
*/
static int rebuildPage(
  MemPage *pPg,                   /* Edit this page */
  int nCell,                      /* Final number of cells on page */
  u8 **apCell,                    /* Array of cells */
  u16 *szCell                     /* Array of cell sizes */
){
  const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
  u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
  const int usableSize = pPg->pBt->usableSize;
  u8 * const pEnd = &aData[usableSize];
  int i;
  u8 *pCellptr = pPg->aCellIdx;
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  u8 *pData;

  i = get2byte(&aData[hdr+5]);
  memcpy(&pTmp[i], &aData[i], usableSize - i);

  pData = pEnd;
  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( SQLITE_WITHIN(pCell,aData,pEnd) ){
      pCell = &pTmp[pCell - aData];
    }
    pData -= szCell[i];
    put2byte(pCellptr, (pData - aData));
    pCellptr += 2;
    if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
    memcpy(pData, pCell, szCell[i]);
    assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
    testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
  }

  /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
  pPg->nCell = nCell;
  pPg->nOverflow = 0;

  put2byte(&aData[hdr+1], 0);
  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);
  aData[hdr+7] = 0x00;
  return SQLITE_OK;
}

/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
** contains the size in bytes of each such cell. This function attempts to 
** add the cells stored in the array to page pPg. If it cannot (because 
** the page needs to be defragmented before the cells will fit), non-zero
** is returned. Otherwise, if the cells are added successfully, zero is
** returned.
**
** Argument pCellptr points to the first entry in the cell-pointer array
** (part of page pPg) to populate. After cell apCell[0] is written to the
** page body, a 16-bit offset is written to pCellptr. And so on, for each
** cell in the array. It is the responsibility of the caller to ensure
** that it is safe to overwrite this part of the cell-pointer array.
**
** When this function is called, *ppData points to the start of the 
** content area on page pPg. If the size of the content area is extended,
** *ppData is updated to point to the new start of the content area
** before returning.
**
** Finally, argument pBegin points to the byte immediately following the
** end of the space required by this page for the cell-pointer area (for
** all cells - not just those inserted by the current call). If the content
** area must be extended to before this point in order to accomodate all
** cells in apCell[], then the cells do not fit and non-zero is returned.
*/
static int pageInsertArray(
  MemPage *pPg,                   /* Page to add cells to */
  u8 *pBegin,                     /* End of cell-pointer array */
  u8 **ppData,                    /* IN/OUT: Page content -area pointer */
  u8 *pCellptr,                   /* Pointer to cell-pointer area */
  int iFirst,                     /* Index of first cell to add */
  int nCell,                      /* Number of cells to add to pPg */
  CellArray *pCArray              /* Array of cells */
){
  int i;
  u8 *aData = pPg->aData;
  u8 *pData = *ppData;
  int iEnd = iFirst + nCell;
  assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
  for(i=iFirst; i<iEnd; i++){
    int sz, rc;
    u8 *pSlot;
    sz = cachedCellSize(pCArray, i);
    if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
      if( (pData - pBegin)<sz ) return 1;
      pData -= sz;
      pSlot = pData;
    }
    /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
    ** database.  But they might for a corrupt database.  Hence use memmove()
    ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
    assert( (pSlot+sz)<=pCArray->apCell[i]
         || pSlot>=(pCArray->apCell[i]+sz)
         || CORRUPT_DB );
    memmove(pSlot, pCArray->apCell[i], sz);
    put2byte(pCellptr, (pSlot - aData));
    pCellptr += 2;
  }
  *ppData = pData;
  return 0;
}

/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 
** contains the size in bytes of each such cell. This function adds the
** space associated with each cell in the array that is currently stored 
** within the body of pPg to the pPg free-list. The cell-pointers and other
** fields of the page are not updated.
**
** This function returns the total number of cells added to the free-list.
*/
static int pageFreeArray(
  MemPage *pPg,                   /* Page to edit */
  int iFirst,                     /* First cell to delete */
  int nCell,                      /* Cells to delete */
  CellArray *pCArray              /* Array of cells */
){
  u8 * const aData = pPg->aData;
  u8 * const pEnd = &aData[pPg->pBt->usableSize];
  u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
  int nRet = 0;
  int i;
  int iEnd = iFirst + nCell;
  u8 *pFree = 0;
  int szFree = 0;

  for(i=iFirst; i<iEnd; i++){
    u8 *pCell = pCArray->apCell[i];
    if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
      int sz;
      /* No need to use cachedCellSize() here.  The sizes of all cells that
      ** are to be freed have already been computing while deciding which
      ** cells need freeing */
      sz = pCArray->szCell[i];  assert( sz>0 );
      if( pFree!=(pCell + sz) ){
        if( pFree ){
          assert( pFree>aData && (pFree - aData)<65536 );
          freeSpace(pPg, (u16)(pFree - aData), szFree);
        }
        pFree = pCell;
        szFree = sz;
        if( pFree+sz>pEnd ) return 0;
      }else{
        pFree = pCell;
        szFree += sz;
      }
      nRet++;
    }
  }
  if( pFree ){
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*
** apCell[] and szCell[] contains pointers to and sizes of all cells in the
** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
** with apCell[iOld].  After balancing, this page should hold nNew cells
** starting at apCell[iNew].
**
** This routine makes the necessary adjustments to pPg so that it contains
** the correct cells after being balanced.
**
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static int editPage(
  MemPage *pPg,                   /* Edit this page */
  int iOld,                       /* Index of first cell currently on page */
  int iNew,                       /* Index of new first cell on page */
  int nNew,                       /* Final number of cells on page */
  CellArray *pCArray              /* Array of cells and sizes */
){
  u8 * const aData = pPg->aData;
  const int hdr = pPg->hdrOffset;
  u8 *pBegin = &pPg->aCellIdx[nNew * 2];
  int nCell = pPg->nCell;       /* Cells stored on pPg */
  u8 *pData;
  u8 *pCellptr;
  int i;
  int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
  int iNewEnd = iNew + nNew;

#ifdef SQLITE_DEBUG
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  memcpy(pTmp, aData, pPg->pBt->usableSize);
#endif

  /* Remove cells from the start and end of the page */
  if( iOld<iNew ){
    int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
    memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
    nCell -= nShift;
  }
  if( iNewEnd < iOldEnd ){
    nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    pCellptr = pPg->aCellIdx;
    memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
    if( pageInsertArray(
          pPg, pBegin, &pData, pCellptr,
          iNew, nAdd, pCArray
    ) ) goto editpage_fail;
    nCell += nAdd;
  }

  /* Add any overflow cells */
  for(i=0; i<pPg->nOverflow; i++){
    int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
    if( iCell>=0 && iCell<nNew ){
      pCellptr = &pPg->aCellIdx[iCell * 2];
      memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
      nCell++;
      if( pageInsertArray(
            pPg, pBegin, &pData, pCellptr,
            iCell+iNew, 1, pCArray
      ) ) goto editpage_fail;
    }
  }

  /* Append cells to the end of the page */
  pCellptr = &pPg->aCellIdx[nCell*2];
  if( pageInsertArray(
        pPg, pBegin, &pData, pCellptr,
        iNew+nCell, nNew-nCell, pCArray
  ) ) goto editpage_fail;

  pPg->nCell = nNew;
  pPg->nOverflow = 0;

  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);

#ifdef SQLITE_DEBUG
  for(i=0; i<nNew && !CORRUPT_DB; i++){
    u8 *pCell = pCArray->apCell[i+iNew];
    int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
    if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
      pCell = &pTmp[pCell - aData];
    }
    assert( 0==memcmp(pCell, &aData[iOff],
            pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
  }
#endif

  return SQLITE_OK;
 editpage_fail:
  /* Unable to edit this page. Rebuild it from scratch instead. */
  populateCellCache(pCArray, iNew, nNew);
  return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course).  Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1             /* Number of neighbors on either side of pPage */
#define NB (NN*2+1)      /* Total pages involved in the balance */


#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent.  pPage must have a single overflow entry
** which is also the right-most entry on the page.
**
** The pSpace buffer is used to store a temporary copy of the divider
** cell that will be inserted into pParent. Such a cell consists of a 4
** byte page number followed by a variable length integer. In other
** words, at most 13 bytes. Hence the pSpace buffer must be at
** least 13 bytes in size.
*/
static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
  BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
  MemPage *pNew;                       /* Newly allocated page */
  int rc;                              /* Return Code */
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

  if( rc==SQLITE_OK ){

    u8 *pOut = &pSpace[4];
    u8 *pCell = pPage->apOvfl[0];
    u16 szCell = pPage->xCellSize(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    rc = rebuildPage(pNew, 1, &pCell, &szCell);
    if( NEVER(rc) ) return rc;
    pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;

    /* If this is an auto-vacuum database, update the pointer map
    ** with entries for the new page, and any pointer from the 
    ** cell on the page to an overflow page. If either of these
    ** operations fails, the return code is set, but the contents
    ** of the parent page are still manipulated by thh code below.
    ** That is Ok, at this point the parent page is guaranteed to
    ** be marked as dirty. Returning an error code will cause a
    ** rollback, undoing any changes made to the parent page.
    */
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
      if( szCell>pNew->minLocal ){
        ptrmapPutOvflPtr(pNew, pCell, &rc);
      }
    }
  
    /* Create a divider cell to insert into pParent. The divider cell
    ** consists of a 4-byte page number (the page number of pPage) and
    ** a variable length key value (which must be the same value as the
    ** largest key on pPage).
    **
    ** To find the largest key value on pPage, first find the right-most 
    ** cell on pPage. The first two fields of this cell are the 
    ** record-length (a variable length integer at most 32-bits in size)
    ** and the key value (a variable length integer, may have any value).
    ** The first of the while(...) loops below skips over the record-length
    ** field. The second while(...) loop copies the key value from the
    ** cell on pPage into the pSpace buffer.
    */
    pCell = findCell(pPage, pPage->nCell-1);
    pStop = &pCell[9];
    while( (*(pCell++)&0x80) && pCell<pStop );
    pStop = &pCell[9];
    while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );

    /* Insert the new divider cell into pParent. */
    if( rc==SQLITE_OK ){
      insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
                   0, pPage->pgno, &rc);
    }

    /* Set the right-child pointer of pParent to point to the new page. */
    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  
    /* Release the reference to the new page. */
    releasePage(pNew);
  }

  return rc;
}
#endif /* SQLITE_OMIT_QUICKBALANCE */

#if 0
/*
** This function does not contribute anything to the operation of SQLite.
** it is sometimes activated temporarily while debugging code responsible 
** for setting pointer-map entries.
*/
static int ptrmapCheckPages(MemPage **apPage, int nPage){
  int i, j;
  for(i=0; i<nPage; i++){
    Pgno n;
    u8 e;
    MemPage *pPage = apPage[i];
    BtShared *pBt = pPage->pBt;
    assert( pPage->isInit );

    for(j=0; j<pPage->nCell; j++){
      CellInfo info;
      u8 *z;
     
      z = findCell(pPage, j);
      pPage->xParseCell(pPage, z, &info);
      if( info.nLocal<info.nPayload ){
        Pgno ovfl = get4byte(&z[info.nSize-4]);
        ptrmapGet(pBt, ovfl, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
      }
      if( !pPage->leaf ){
        Pgno child = get4byte(z);
        ptrmapGet(pBt, child, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_BTREE );
      }
    }
    if( !pPage->leaf ){
      Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
      ptrmapGet(pBt, child, &e, &n);
      assert( n==pPage->pgno && e==PTRMAP_BTREE );
    }
  }
  return 1;
}
#endif

/*
** This function is used to copy the contents of the b-tree node stored 
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.apOvfl[] array), they are not copied to pTo. 
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    BtShared * const pBt = pFrom->pBt;
    u8 * const aFrom = pFrom->aData;
    u8 * const aTo = pTo->aData;
    int const iFromHdr = pFrom->hdrOffset;
    int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
    int rc;
    int iData;
  
  
    assert( pFrom->isInit );
    assert( pFrom->nFree>=iToHdr );
    assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
  
    /* Copy the b-tree node content from page pFrom to page pTo. */
    iData = get2byte(&aFrom[iFromHdr+5]);
    memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
    memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
  
    /* Reinitialize page pTo so that the contents of the MemPage structure
    ** match the new data. The initialization of pTo can actually fail under
    ** fairly obscure circumstances, even though it is a copy of initialized 
    ** page pFrom.
    */
    pTo->isInit = 0;
    rc = btreeInitPage(pTo);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
  
    /* If this is an auto-vacuum database, update the pointer-map entries
    ** for any b-tree or overflow pages that pTo now contains the pointers to.
    */
    if( ISAUTOVACUUM ){
      *pRC = setChildPtrmaps(pTo);
    }
  }
}

/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one
** side if the page is the first or last child of its parent. If the page 
** has fewer than 2 siblings (something which can only happen if the page
** is a root page or a child of a root page) then all available siblings
** participate in the balancing.
**
** The number of siblings of the page might be increased or decreased by 
** one or two in an effort to keep pages nearly full but not over full. 
**
** Note that when this routine is called, some of the cells on the page
** might not actually be stored in MemPage.aData[]. This can happen
** if the page is overfull. This routine ensures that all cells allocated
** to the page and its siblings fit into MemPage.aData[] before returning.
**
** In the course of balancing the page and its siblings, cells may be
** inserted into or removed from the parent page (pParent). Doing so
** may cause the parent page to become overfull or underfull. If this
** happens, it is the responsibility of the caller to invoke the correct
** balancing routine to fix this problem (see the balance() routine). 
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer big enough to hold one page. If while inserting cells into the parent
** page (pParent) the parent page becomes overfull, this buffer is
** used to store the parent's overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot,                     /* True if pParent is a root-page */
  int bBulk                       /* True if this call is part of a bulk load */
){
  BtShared *pBt;               /* The whole database */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nNew = 0;                /* Number of pages in apNew[] */
  int nOld;                    /* Number of pages in apOld[] */
  int i, j, k;                 /* Loop counters */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc = SQLITE_OK;          /* The return code */
  u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
  int szScratch;               /* Size of scratch memory requested */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  u8 *pRight;                  /* Location in parent of right-sibling pointer */
  u8 *apDiv[NB-1];             /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in b.paCell[] of cell after i-th page */
  int cntOld[NB+2];            /* Old index in b.apCell[] */
  int szNew[NB+2];             /* Combined size of cells placed on i-th page */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */
  u8 abDone[NB+2];             /* True after i'th new page is populated */
  Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
  Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
  u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */
  CellArray b;                  /* Parsed information on cells being balanced */

  memset(abDone, 0, sizeof(abDone));
  b.nCell = 0;
  b.apCell = 0;
  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );

#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite3BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM_BKPT;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
  ** either side of pPage. More siblings are taken from one side, however, 
  ** if there are fewer than NN siblings on the other side. If pParent
  ** has NB or fewer children then all children of pParent are taken.  
  **
  ** This loop also drops the divider cells from the parent page. This
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
  }else{
    assert( bBulk==0 || bBulk==1 );
    if( iParentIdx==0 ){                 
      nxDiv = 0;
    }else if( iParentIdx==i ){
      nxDiv = i-2+bBulk;
    }else{
      nxDiv = iParentIdx-1;
    }
    i = 2-bBulk;
  }
  nOld = i+1;
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
    rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
      apDiv[i] = pParent->apOvfl[0];
      pgno = get4byte(apDiv[i]);
      szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);
      szNew[i] = pParent->xCellSize(pParent, apDiv[i]);

      /* Drop the cell from the parent page. apDiv[i] still points to
      ** the cell within the parent, even though it has been dropped.
      ** This is safe because dropping a cell only overwrites the first
      ** four bytes of it, and this function does not need the first
      ** four bytes of the divider cell. So the pointer is safe to use
      ** later on.  
      **
      ** But not if we are in secure-delete mode. In secure-delete mode,
      ** the dropCell() routine will overwrite the entire cell with zeroes.
      ** In this case, temporarily copy the cell into the aOvflSpace[]
      ** buffer. It will be copied out again as soon as the aSpace[] buffer
      ** is allocated.  */
      if( pBt->btsFlags & BTS_FAST_SECURE ){
        int iOff;

        iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
        if( (iOff+szNew[i])>(int)pBt->usableSize ){
          rc = SQLITE_CORRUPT_BKPT;
          memset(apOld, 0, (i+1)*sizeof(MemPage*));
          goto balance_cleanup;
        }else{
          memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
          apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
        }
      }
      dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
    }
  }

  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 3)&~3;

  /*
  ** Allocate space for memory structures
  */
  szScratch =
       nMaxCells*sizeof(u8*)                       /* b.apCell */
     + nMaxCells*sizeof(u16)                       /* b.szCell */
     + pBt->pageSize;                              /* aSpace1 */

  assert( szScratch<=6*(int)pBt->pageSize );
  b.apCell = sqlite3StackAllocRaw(0, szScratch );
  if( b.apCell==0 ){
    rc = SQLITE_NOMEM_BKPT;
    goto balance_cleanup;
  }
  b.szCell = (u16*)&b.apCell[nMaxCells];
  aSpace1 = (u8*)&b.szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local b.apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[]. The divider cells have already
  ** been removed from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in b.apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** b.apCell[] include child pointers.  Either way, all cells in b.apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  b.pRef = apOld[0];
  leafCorrection = b.pRef->leaf*4;
  leafData = b.pRef->intKeyLeaf;
  for(i=0; i<nOld; i++){
    MemPage *pOld = apOld[i];
    int limit = pOld->nCell;
    u8 *aData = pOld->aData;
    u16 maskPage = pOld->maskPage;
    u8 *piCell = aData + pOld->cellOffset;
    u8 *piEnd;

    /* Verify that all sibling pages are of the same "type" (table-leaf,
    ** table-interior, index-leaf, or index-interior).
    */
    if( pOld->aData[0]!=apOld[0]->aData[0] ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }

    /* Load b.apCell[] with pointers to all cells in pOld.  If pOld
    ** contains overflow cells, include them in the b.apCell[] array
    ** in the correct spot.
    **
    ** Note that when there are multiple overflow cells, it is always the
    ** case that they are sequential and adjacent.  This invariant arises
    ** because multiple overflows can only occurs when inserting divider
    ** cells into a parent on a prior balance, and divider cells are always
    ** adjacent and are inserted in order.  There is an assert() tagged
    ** with "NOTE 1" in the overflow cell insertion loop to prove this
    ** invariant.
    **
    ** This must be done in advance.  Once the balance starts, the cell
    ** offset section of the btree page will be overwritten and we will no
    ** long be able to find the cells if a pointer to each cell is not saved
    ** first.
    */
    memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
    if( pOld->nOverflow>0 ){
      limit = pOld->aiOvfl[0];
      for(j=0; j<limit; j++){
        b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
        piCell += 2;
        b.nCell++;
      }
      for(k=0; k<pOld->nOverflow; k++){
        assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
        b.apCell[b.nCell] = pOld->apOvfl[k];
        b.nCell++;
      }
    }
    piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
    while( piCell<piEnd ){
      assert( b.nCell<nMaxCells );
      b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
      piCell += 2;
      b.nCell++;
    }

    cntOld[i] = b.nCell;
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( b.nCell<nMaxCells );
      b.szCell[b.nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
      assert( sz<=pBt->maxLocal+23 );
      assert( iSpace1 <= (int)pBt->pageSize );
      memcpy(pTemp, apDiv[i], sz);
      b.apCell[b.nCell] = pTemp+leafCorrection;
      assert( leafCorrection==0 || leafCorrection==4 );
      b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
      if( !pOld->leaf ){
        assert( leafCorrection==0 );
        assert( pOld->hdrOffset==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
      }else{
        assert( leafCorrection==4 );
        while( b.szCell[b.nCell]<4 ){
          /* Do not allow any cells smaller than 4 bytes. If a smaller cell
          ** does exist, pad it with 0x00 bytes. */
          assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
          assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
          aSpace1[iSpace1++] = 0x00;
          b.szCell[b.nCell]++;
        }
      }
      b.nCell++;
    }
  }

  /*
  ** Figure out the number of pages needed to hold all b.nCell cells.
  ** Store this number in "k".  Also compute szNew[] which is the total
  ** size of all cells on the i-th page and cntNew[] which is the index
  ** in b.apCell[] of the cell that divides page i from page i+1.  
  ** cntNew[k] should equal b.nCell.
  **
  ** Values computed by this block:
  **
  **           k: The total number of sibling pages
  **    szNew[i]: Spaced used on the i-th sibling page.
  **   cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
  **              the right of the i-th sibling page.
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(i=0; i<nOld; i++){
    MemPage *p = apOld[i];
    szNew[i] = usableSpace - p->nFree;
    for(j=0; j<p->nOverflow; j++){
      szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
    }
    cntNew[i] = cntOld[i];
  }
  k = nOld;
  for(i=0; i<k; i++){
    int sz;
    while( szNew[i]>usableSpace ){
      if( i+1>=k ){
        k = i+2;
        if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
        szNew[k-1] = 0;
        cntNew[k-1] = b.nCell;
      }
      sz = 2 + cachedCellSize(&b, cntNew[i]-1);
      szNew[i] -= sz;
      if( !leafData ){
        if( cntNew[i]<b.nCell ){
          sz = 2 + cachedCellSize(&b, cntNew[i]);
        }else{
          sz = 0;
        }
      }
      szNew[i+1] += sz;
      cntNew[i]--;
    }
    while( cntNew[i]<b.nCell ){
      sz = 2 + cachedCellSize(&b, cntNew[i]);
      if( szNew[i]+sz>usableSpace ) break;
      szNew[i] += sz;
      cntNew[i]++;
      if( !leafData ){
        if( cntNew[i]<b.nCell ){
          sz = 2 + cachedCellSize(&b, cntNew[i]);
        }else{
          sz = 0;
        }
      }
      szNew[i+1] -= sz;
    }
    if( cntNew[i]>=b.nCell ){
      k = i+1;
    }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }
  }

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side (siblings with smaller keys). The left siblings are
  ** always nearly full, while the right-most sibling might be nearly empty.
  ** The next block of code attempts to adjust the packing of siblings to
  ** get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
    int szLeft = szNew[i-1]; /* Size of sibling on the left */
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    (void)cachedCellSize(&b, d);
    do{
      assert( d<nMaxCells );
      assert( r<nMaxCells );
      (void)cachedCellSize(&b, r);
      if( szRight!=0
       && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
        break;
      }
      szRight += b.szCell[d] + 2;
      szLeft -= b.szCell[r] + 2;
      cntNew[i-1] = r;
      r--;
      d--;
    }while( r>=0 );
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
    if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto balance_cleanup;
    }
  }

  /* Sanity check:  For a non-corrupt database file one of the follwing
  ** must be true:
  **    (1) We found one or more cells (cntNew[0])>0), or
  **    (2) pPage is a virtual root page.  A virtual root page is when
  **        the real root page is page 1 and we are the only child of
  **        that page.
  */
  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
  TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
    apOld[0]->pgno, apOld[0]->nCell,
    nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
    nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
  ));

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  pageFlags = apOld[0]->aData[0];
  for(i=0; i<k; i++){
    MemPage *pNew;
    if( i<nOld ){
      pNew = apNew[i] = apOld[i];
      apOld[i] = 0;
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
      if( rc ) goto balance_cleanup;
      zeroPage(pNew, pageFlags);
      apNew[i] = pNew;
      nNew++;
      cntOld[i] = b.nCell;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
    }
  }

  /*
  ** Reassign page numbers so that the new pages are in ascending order. 
  ** This helps to keep entries in the disk file in order so that a scan
  ** of the table is closer to a linear scan through the file. That in turn 
  ** helps the operating system to deliver pages from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since n is never more 
  ** than (NB+2) (a small constant), that should not be a problem.
  **
  ** When NB==3, this one optimization makes the database about 25% faster 
  ** for large insertions and deletions.
  */
  for(i=0; i<nNew; i++){
    aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
    aPgFlags[i] = apNew[i]->pDbPage->flags;
    for(j=0; j<i; j++){
      if( aPgno[j]==aPgno[i] ){
        /* This branch is taken if the set of sibling pages somehow contains
        ** duplicate entries. This can happen if the database is corrupt. 
        ** It would be simpler to detect this as part of the loop below, but
        ** we do the detection here in order to avoid populating the pager
        ** cache with two separate objects associated with the same
        ** page number.  */
        assert( CORRUPT_DB );
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;
      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */
    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];
    aPgOrder[iBest] = 0xffffffff;
    if( iBest!=i ){
      if( iBest>i ){
        sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
      }
      sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
      apNew[i]->pgno = pgno;
    }
  }

  TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
         "%d(%d nc=%d) %d(%d nc=%d)\n",
    apNew[0]->pgno, szNew[0], cntNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
    nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
    nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
    nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
    nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
    nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
    nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
    nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
  ));

  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  put4byte(pRight, apNew[nNew-1]->pgno);

  /* If the sibling pages are not leaves, ensure that the right-child pointer
  ** of the right-most new sibling page is set to the value that was 
  ** originally in the same field of the right-most old sibling page. */
  if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
    MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
    memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
  }

  /* Make any required updates to pointer map entries associated with 
  ** cells stored on sibling pages following the balance operation. Pointer
  ** map entries associated with divider cells are set by the insertCell()
  ** routine. The associated pointer map entries are:
  **
  **   a) if the cell contains a reference to an overflow chain, the
  **      entry associated with the first page in the overflow chain, and
  **
  **   b) if the sibling pages are not leaves, the child page associated
  **      with the cell.
  **
  ** If the sibling pages are not leaves, then the pointer map entry 
  ** associated with the right-child of each sibling may also need to be 
  ** updated. This happens below, after the sibling pages have been 
  ** populated, not here.
  */
  if( ISAUTOVACUUM ){
    MemPage *pNew = apNew[0];
    u8 *aOld = pNew->aData;
    int cntOldNext = pNew->nCell + pNew->nOverflow;
    int usableSize = pBt->usableSize;
    int iNew = 0;
    int iOld = 0;

    for(i=0; i<b.nCell; i++){
      u8 *pCell = b.apCell[i];
      if( i==cntOldNext ){
        MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
        cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
        aOld = pOld->aData;
      }
      if( i==cntNew[iNew] ){
        pNew = apNew[++iNew];
        if( !leafData ) continue;
      }

      /* Cell pCell is destined for new sibling page pNew. Originally, it
      ** was either part of sibling page iOld (possibly an overflow cell), 
      ** or else the divider cell to the left of sibling page iOld. So,
      ** if sibling page iOld had the same page number as pNew, and if
      ** pCell really was a part of sibling page iOld (not a divider or
      ** overflow cell), we can skip updating the pointer map entries.  */
      if( iOld>=nNew
       || pNew->pgno!=aPgno[iOld]
       || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
      ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( cachedCellSize(&b,i)>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, pCell, &rc);
        }
        if( rc ) goto balance_cleanup;
      }
    }
  }

  /* Insert new divider cells into pParent. */
  for(i=0; i<nNew-1; i++){
    u8 *pCell;
    u8 *pTemp;
    int sz;
    MemPage *pNew = apNew[i];
    j = cntNew[i];

    assert( j<nMaxCells );
    assert( b.apCell[j]!=0 );
    pCell = b.apCell[j];
    sz = b.szCell[j] + leafCorrection;
    pTemp = &aOvflSpace[iOvflSpace];
    if( !pNew->leaf ){
      memcpy(&pNew->aData[8], pCell, 4);
    }else if( leafData ){
      /* If the tree is a leaf-data tree, and the siblings are leaves, 
      ** then there is no divider cell in b.apCell[]. Instead, the divider 
      ** cell consists of the integer key for the right-most cell of 
      ** the sibling-page assembled above only.
      */
      CellInfo info;
      j--;
      pNew->xParseCell(pNew, b.apCell[j], &info);
      pCell = pTemp;
      sz = 4 + putVarint(&pCell[4], info.nKey);
      pTemp = 0;
    }else{
      pCell -= 4;
      /* Obscure case for non-leaf-data trees: If the cell at pCell was
      ** previously stored on a leaf node, and its reported size was 4
      ** bytes, then it may actually be smaller than this 
      ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
      ** any cell). But it is important to pass the correct size to 
      ** insertCell(), so reparse the cell now.
      **
      ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
      ** and WITHOUT ROWID tables with exactly one column which is the
      ** primary key.
      */
      if( b.szCell[j]==4 ){
        assert(leafCorrection==4);
        sz = pParent->xCellSize(pParent, pCell);
      }
    }
    iOvflSpace += sz;
    assert( sz<=pBt->maxLocal+23 );
    assert( iOvflSpace <= (int)pBt->pageSize );
    insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
    if( rc!=SQLITE_OK ) goto balance_cleanup;
    assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  }

  /* Now update the actual sibling pages. The order in which they are updated
  ** is important, as this code needs to avoid disrupting any page from which
  ** cells may still to be read. In practice, this means:
  **
  **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the left-hand sibling apNew[iPg-1] has been updated.
  **
  **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the right-hand sibling apNew[iPg+1] has been updated.
  **
  ** If neither of the above apply, the page is safe to update.
  **
  ** The iPg value in the following loop starts at nNew-1 goes down
  ** to 0, then back up to nNew-1 again, thus making two passes over
  ** the pages.  On the initial downward pass, only condition (1) above
  ** needs to be tested because (2) will always be true from the previous
  ** step.  On the upward pass, both conditions are always true, so the
  ** upwards pass simply processes pages that were missed on the downward
  ** pass.
  */
  for(i=1-nNew; i<nNew; i++){
    int iPg = i<0 ? -i : i;
    assert( iPg>=0 && iPg<nNew );
    if( abDone[iPg] ) continue;         /* Skip pages already processed */
    if( i>=0                            /* On the upwards pass, or... */
     || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
    ){
      int iNew;
      int iOld;
      int nNewCell;

      /* Verify condition (1):  If cells are moving left, update iPg
      ** only after iPg-1 has already been updated. */
      assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );

      /* Verify condition (2):  If cells are moving right, update iPg
      ** only after iPg+1 has already been updated. */
      assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );

      if( iPg==0 ){
        iNew = iOld = 0;
        nNewCell = cntNew[0];
      }else{
        iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
        iNew = cntNew[iPg-1] + !leafData;
        nNewCell = cntNew[iPg] - iNew;
      }

      rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
      if( rc ) goto balance_cleanup;
      abDone[iPg]++;
      apNew[iPg]->nFree = usableSpace-szNew[iPg];
      assert( apNew[iPg]->nOverflow==0 );
      assert( apNew[iPg]->nCell==nNewCell );
    }
  }

  /* All pages have been processed exactly once */
  assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );

  assert( nOld>0 );
  assert( nNew>0 );

  if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
    /* The root page of the b-tree now contains no cells. The only sibling
    ** page is the right-child of the parent. Copy the contents of the
    ** child page into the parent, decreasing the overall height of the
    ** b-tree structure by one. This is described as the "balance-shallower"
    ** sub-algorithm in some documentation.
    **
    ** If this is an auto-vacuum database, the call to copyNodeContent() 
    ** sets all pointer-map entries corresponding to database image pages 
    ** for which the pointer is stored within the content being copied.
    **
    ** It is critical that the child page be defragmented before being
    ** copied into the parent, because if the parent is page 1 then it will
    ** by smaller than the child due to the database header, and so all the
    ** free space needs to be up front.
    */
    assert( nNew==1 || CORRUPT_DB );
    rc = defragmentPage(apNew[0], -1);
    testcase( rc!=SQLITE_OK );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
      || rc!=SQLITE_OK
    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);
  }else if( ISAUTOVACUUM && !leafCorrection ){
    /* Fix the pointer map entries associated with the right-child of each
    ** sibling page. All other pointer map entries have already been taken
    ** care of.  */
    for(i=0; i<nNew; i++){
      u32 key = get4byte(&apNew[i]->aData[8]);
      ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
    }
  }

  assert( pParent->isInit );
  TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
          nOld, nNew, b.nCell));

  /* Free any old pages that were not reused as new pages.
  */
  for(i=nNew; i<nOld; i++){
    freePage(apOld[i], &rc);
  }

#if 0
  if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
    /* The ptrmapCheckPages() contains assert() statements that verify that
    ** all pointer map pages are set correctly. This is helpful while 
    ** debugging. This is usually disabled because a corrupt database may
    ** cause an assert() statement to fail.  */
    ptrmapCheckPages(apNew, nNew);
    ptrmapCheckPages(&pParent, 1);
  }
#endif

  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite3StackFree(0, b.apCell);
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }

  return rc;
}


/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root
** page, including overflow cells, are copied into the child. The root
** page is then overwritten to make it an empty page with the right-child 
** pointer pointing to the new page.
**
** Before returning, all pointer-map entries corresponding to pages 
** that the new child-page now contains pointers to are updated. The
** entry corresponding to the new right-child pointer of the root
** page is also updated.
**
** If successful, *ppChild is set to contain a reference to the child 
** page and SQLITE_OK is returned. In this case the caller is required
** to call releasePage() on *ppChild exactly once. If an error occurs,
** an error code is returned and *ppChild is set to 0.
*/
static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
  int rc;                        /* Return value from subprocedures */
  MemPage *pChild = 0;           /* Pointer to a new child page */
  Pgno pgnoChild = 0;            /* Page number of the new child page */
  BtShared *pBt = pRoot->pBt;    /* The BTree */

  assert( pRoot->nOverflow>0 );
  assert( sqlite3_mutex_held(pBt->mutex) );

  /* Make pRoot, the root page of the b-tree, writable. Allocate a new 
  ** page that will become the new right-child of pPage. Copy the contents
  ** of the node stored on pRoot into the new child page.
  */
  rc = sqlite3PagerWrite(pRoot->pDbPage);
  if( rc==SQLITE_OK ){
    rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
    copyNodeContent(pRoot, pChild, &rc);
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
    }
  }
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aiOvfl, pRoot->aiOvfl,
         pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
  memcpy(pChild->apOvfl, pRoot->apOvfl,
         pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
  pChild->nOverflow = pRoot->nOverflow;

  /* Zero the contents of pRoot. Then install pChild as the right-child. */
  zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);

  *ppChild = pChild;
  return SQLITE_OK;
}

/*
** The page that pCur currently points to has just been modified in
** some way. This function figures out if this modification means the
** tree needs to be balanced, and if so calls the appropriate balancing 
** routine. Balancing routines are:
**
**   balance_quick()
**   balance_deeper()
**   balance_nonroot()
*/
static int balance(BtCursor *pCur){
  int rc = SQLITE_OK;
  const int nMin = pCur->pBt->usableSize * 2 / 3;
  u8 aBalanceQuickSpace[13];
  u8 *pFree = 0;

  VVA_ONLY( int balance_quick_called = 0 );
  VVA_ONLY( int balance_deeper_called = 0 );

  do {
    int iPage = pCur->iPage;
    MemPage *pPage = pCur->pPage;

    if( iPage==0 ){
      if( pPage->nOverflow ){
        /* The root page of the b-tree is overfull. In this case call the
        ** balance_deeper() function to create a new child for the root-page
        ** and copy the current contents of the root-page to it. The
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( balance_deeper_called==0 );
        VVA_ONLY( balance_deeper_called++ );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->ix = 0;
          pCur->aiIdx[0] = 0;
          pCur->apPage[0] = pPage;
          pCur->pPage = pCur->apPage[1];
          assert( pCur->pPage->nOverflow );
        }
      }else{
        break;
      }
    }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
      break;
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite3PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->intKeyLeaf
         && pPage->nOverflow==1
         && pPage->aiOvfl[0]==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next iteration of the do-loop will balance pParent 
          ** use either balance_nonroot() or balance_deeper(). Until this
          ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
          ** of the aBalanceQuickSpace[] might sneak in.
          */
          assert( balance_quick_called==0 ); 
          VVA_ONLY( balance_quick_called++ );
          rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
        }else
#endif
        {
          /* In this case, call balance_nonroot() to redistribute cells
          ** between pPage and up to 2 of its sibling pages. This involves
          ** modifying the contents of pParent, which may cause pParent to
          ** become overfull or underfull. The next iteration of the do-loop
          ** will balance the parent page to correct this.
          ** 
          ** If the parent page becomes overfull, the overflow cell or cells
          ** are stored in the pSpace buffer allocated immediately below. 
          ** A subsequent iteration of the do-loop will deal with this by
          ** calling balance_nonroot() (balance_deeper() may be called first,
          ** but it doesn't deal with overflow cells - just moves them to a
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
                               pCur->hints&BTREE_BULKLOAD);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }

          /* The pSpace buffer will be freed after the next call to
          ** balance_nonroot(), or just before this function returns, whichever
          ** comes first. */
          pFree = pSpace;
        }
      }

      pPage->nOverflow = 0;

      /* The next iteration of the do-loop balances the parent page. */
      releasePage(pPage);
      pCur->iPage--;
      assert( pCur->iPage>=0 );
      pCur->pPage = pCur->apPage[pCur->iPage];
    }
  }while( rc==SQLITE_OK );

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;
}


/*
** Insert a new record into the BTree.  The content of the new record
** is described by the pX object.  The pCur cursor is used only to
** define what table the record should be inserted into, and is left
** pointing at a random location.
**
** For a table btree (used for rowid tables), only the pX.nKey value of
** the key is used. The pX.pKey value must be NULL.  The pX.nKey is the
** rowid or INTEGER PRIMARY KEY of the row.  The pX.nData,pData,nZero fields
** hold the content of the row.
**
** For an index btree (used for indexes and WITHOUT ROWID tables), the
** key is an arbitrary byte sequence stored in pX.pKey,nKey.  The 
** pX.pData,nData,nZero fields must be zero.
**
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
** been performed.  In other words, if seekResult!=0 then the cursor
** is currently pointing to a cell that will be adjacent to the cell
** to be inserted.  If seekResult<0 then pCur points to a cell that is
** smaller then (pKey,nKey).  If seekResult>0 then pCur points to a cell
** that is larger than (pKey,nKey).
**
** If seekResult==0, that means pCur is pointing at some unknown location.
** In that case, this routine must seek the cursor to the correct insertion
** point for (pKey,nKey) before doing the insertion.  For index btrees,
** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
** key values and pX->aMem can be used instead of pX->pKey to avoid having
** to decode the key.
*/
int sqlite3BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const BtreePayload *pX,        /* Content of the row to be inserted */
  int flags,                     /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew = 0;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorOwnsBtShared(pCur) );
  assert( (pCur->curFlags & BTCF_WriteFlag)!=0
              && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
  ** keys with no associated data. If the cursor was opened expecting an
  ** intkey table, the caller should be inserting integer keys with a
  ** blob of associated data.  */
  assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );

  /* Save the positions of any other cursors open on this table.
  **
  ** In some cases, the call to btreeMoveto() below is a no-op. For
  ** example, when inserting data into a table with auto-generated integer
  ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the 
  ** integer key to use. It then calls this function to actually insert the 
  ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
  ** that the cursor is already where it needs to be and returns without
  ** doing any work. To avoid thwarting these optimizations, it is important
  ** not to clear the cursor here.
  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  if( pCur->pKeyInfo==0 ){
    assert( pX->pKey==0 );
    /* If this is an insert into a table b-tree, invalidate any incrblob 
    ** cursors open on the row being replaced */
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);

    /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing 
    ** to a row with the same key as the new entry being inserted.  */
    assert( (flags & BTREE_SAVEPOSITION)==0 || 
            ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );

    /* If the cursor is currently on the last row and we are appending a
    ** new row onto the end, set the "loc" to avoid an unnecessary
    ** btreeMoveto() call */
    if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
      loc = 0;
    }else if( loc==0 ){
      rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
      if( rc ) return rc;
    }
  }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
    if( pX->nMem ){
      UnpackedRecord r;
      r.pKeyInfo = pCur->pKeyInfo;
      r.aMem = pX->aMem;
      r.nField = pX->nMem;
      r.default_rc = 0;
      r.errCode = 0;
      r.r1 = 0;
      r.r2 = 0;
      r.eqSeen = 0;
      rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
    }else{
      rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
    }
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->pPage;
  assert( pPage->intKey || pX->nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  newCell = pBt->pTmpSpace;
  assert( newCell!=0 );
  rc = fillInCell(pPage, newCell, pX, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==pPage->xCellSize(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->ix;
  if( loc==0 ){
    CellInfo info;
    assert( idx<pPage->nCell );
    rc = sqlite3PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    rc = clearCell(pPage, oldCell, &info);
    if( info.nSize==szNew && info.nLocal==info.nPayload 
     && (!ISAUTOVACUUM || szNew<pPage->minLocal)
    ){
      /* Overwrite the old cell with the new if they are the same size.
      ** We could also try to do this if the old cell is smaller, then add
      ** the leftover space to the free list.  But experiments show that
      ** doing that is no faster then skipping this optimization and just
      ** calling dropCell() and insertCell(). 
      **
      ** This optimization cannot be used on an autovacuum database if the
      ** new entry uses overflow pages, as the insertCell() call below is
      ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry.  */
      assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
      if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
      memcpy(oldCell, newCell, szNew);
      return SQLITE_OK;
    }
    dropCell(pPage, idx, info.nSize, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->ix;
    pCur->curFlags &= ~BTCF_ValidNKey;
  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( pPage->nOverflow==0 || rc==SQLITE_OK );
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );

  /* If no error has occurred and pPage has an overflow cell, call balance() 
  ** to redistribute the cells within the tree. Since balance() may move
  ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
  ** variables.
  **
  ** Previous versions of SQLite called moveToRoot() to move the cursor
  ** back to the root page as balance() used to invalidate the contents
  ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
  ** set the cursor state to "invalid". This makes common insert operations
  ** slightly faster.
  **
  ** There is a subtle but important optimization here too. When inserting
  ** multiple records into an intkey b-tree using a single cursor (as can
  ** happen while processing an "INSERT INTO ... SELECT" statement), it
  ** is advantageous to leave the cursor pointing to the last entry in
  ** the b-tree if possible. If the cursor is left pointing to the last
  ** entry in the table, and the next row inserted has an integer key
  ** larger than the largest existing key, it is possible to insert the
  ** row without seeking the cursor. This can be a big performance boost.
  */
  pCur->info.nSize = 0;
  if( pPage->nOverflow ){
    assert( rc==SQLITE_OK );
    pCur->curFlags &= ~(BTCF_ValidNKey);
    rc = balance(pCur);

    /* Must make sure nOverflow is reset to zero even if the balance()
    ** fails. Internal data structure corruption will result otherwise. 
    ** Also, set the cursor state to invalid. This stops saveCursorPosition()
    ** from trying to save the current position of the cursor.  */
    pCur->pPage->nOverflow = 0;
    pCur->eState = CURSOR_INVALID;
    if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
      btreeReleaseAllCursorPages(pCur);
      if( pCur->pKeyInfo ){
        assert( pCur->pKey==0 );
        pCur->pKey = sqlite3Malloc( pX->nKey );
        if( pCur->pKey==0 ){
          rc = SQLITE_NOMEM;
        }else{
          memcpy(pCur->pKey, pX->pKey, pX->nKey);
        }
      }
      pCur->eState = CURSOR_REQUIRESEEK;
      pCur->nKey = pX->nKey;
    }
  }
  assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to. 
**
** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
** the cursor is left pointing at an arbitrary location after the delete.
** But if that bit is set, then the cursor is left in a state such that
** the next call to BtreeNext() or BtreePrev() moves it to the same row
** as it would have been on if the call to BtreeDelete() had been omitted.
**
** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
** associated with a single table entry and its indexes.  Only one of those
** deletes is considered the "primary" delete.  The primary delete occurs
** on a cursor that is not a BTREE_FORDELETE cursor.  All but one delete
** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
** but which might be used by alternative storage engines.
*/
int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 
  CellInfo info;                       /* Size of the cell being deleted */
  int bSkipnext = 0;                   /* Leaf cursor in SKIPNEXT state */
  u8 bPreserve = flags & BTREE_SAVEPOSITION;  /* Keep cursor valid */

  assert( cursorOwnsBtShared(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->curFlags & BTCF_WriteFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );
  assert( pCur->ix<pCur->pPage->nCell );
  assert( pCur->eState==CURSOR_VALID );
  assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->ix;
  pPage = pCur->pPage;
  pCell = findCell(pPage, iCellIdx);

  /* If the bPreserve flag is set to true, then the cursor position must
  ** be preserved following this delete operation. If the current delete
  ** will cause a b-tree rebalance, then this is done by saving the cursor
  ** key and leaving the cursor in CURSOR_REQUIRESEEK state before 
  ** returning. 
  **
  ** Or, if the current delete will not cause a rebalance, then the cursor
  ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
  ** before or after the deleted entry. In this case set bSkipnext to true.  */
  if( bPreserve ){
    if( !pPage->leaf 
     || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
    ){
      /* A b-tree rebalance will be required after deleting this entry.
      ** Save the cursor key.  */
      rc = saveCursorKey(pCur);
      if( rc ) return rc;
    }else{
      bSkipnext = 1;
    }
  }

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
  ** of the 'next' entry, as the previous entry is always a part of the
  ** sub-tree headed by the child page of the cell being deleted. This makes
  ** balancing the tree following the delete operation easier.  */
  if( !pPage->leaf ){
    rc = sqlite3BtreePrevious(pCur, 0);
    assert( rc!=SQLITE_DONE );
    if( rc ) return rc;
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications.  */
  if( pCur->curFlags & BTCF_Multiple ){
    rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
    if( rc ) return rc;
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
  }

  /* Make the page containing the entry to be deleted writable. Then free any
  ** overflow pages associated with the entry and finally remove the cell
  ** itself from within the page.  */
  rc = sqlite3PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell, &info);
  dropCell(pPage, iCellIdx, info.nSize, &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
  ** is currently pointing to the largest entry in the sub-tree headed
  ** by the child-page of the cell that was just deleted from an internal
  ** node. The cell from the leaf node needs to be moved to the internal
  ** node to replace the deleted cell.  */
  if( !pPage->leaf ){
    MemPage *pLeaf = pCur->pPage;
    int nCell;
    Pgno n;
    unsigned char *pTmp;

    if( iCellDepth<pCur->iPage-1 ){
      n = pCur->apPage[iCellDepth+1]->pgno;
    }else{
      n = pCur->pPage->pgno;
    }
    pCell = findCell(pLeaf, pLeaf->nCell-1);
    if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
    nCell = pLeaf->xCellSize(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );
    pTmp = pBt->pTmpSpace;
    assert( pTmp!=0 );
    rc = sqlite3PagerWrite(pLeaf->pDbPage);
    if( rc==SQLITE_OK ){
      insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
    }
    dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
    if( rc ) return rc;
  }

  /* Balance the tree. If the entry deleted was located on a leaf page,
  ** then the cursor still points to that page. In this case the first
  ** call to balance() repairs the tree, and the if(...) condition is
  ** never true.
  **
  ** Otherwise, if the entry deleted was on an internal node page, then
  ** pCur is pointing to the leaf page from which a cell was removed to
  ** replace the cell deleted from the internal node. This is slightly
  ** tricky as the leaf node may be underfull, and the internal node may
  ** be either under or overfull. In this case run the balancing algorithm
  ** on the leaf node first. If the balance proceeds far enough up the
  ** tree that we can be sure that any problem in the internal node has
  ** been corrected, so be it. Otherwise, after balancing the leaf node,
  ** walk the cursor up the tree to the internal node and balance it as 
  ** well.  */
  rc = balance(pCur);
  if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
    releasePageNotNull(pCur->pPage);
    pCur->iPage--;
    while( pCur->iPage>iCellDepth ){
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    pCur->pPage = pCur->apPage[pCur->iPage];
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->pPage || CORRUPT_DB );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->ix = pPage->nCell-1;
      }else{
        pCur->skipNext = 1;
      }
    }else{
      rc = moveToRoot(pCur);
      if( bPreserve ){
        btreeReleaseAllCursorPages(pCur);
        pCur->eState = CURSOR_REQUIRESEEK;
      }
      if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
    }
  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  int ptfFlags;          /* Page-type flage for the root page of new table */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );

#ifdef SQLITE_OMIT_AUTOVACUUM
  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  if( rc ){
    return rc;
  }
#else
  if( pBt->autoVacuum ){
    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
    MemPage *pPageMove; /* The page to move to. */

    /* Creating a new table may probably require moving an existing database
    ** to make room for the new tables root page. In case this page turns
    ** out to be an overflow page, delete all overflow page-map caches
    ** held by open cursors.
    */
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 || CORRUPT_DB );
    testcase( pgnoRoot<3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were
      ** allocated pgnoMove. If required (i.e. if it was not allocated
      ** by extending the file), the current page at position pgnoMove
      ** is already journaled.
      */
      u8 eType = 0;
      Pgno iPtrPage = 0;

      /* Save the positions of any open cursors. This is required in
      ** case they are holding a reference to an xFetch reference
      ** corresponding to page pgnoRoot.  */
      rc = saveAllCursors(pBt, 0, 0);
      releasePage(pPageMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite3PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
    }else{
      pRoot = pPageMove;
    } 

    /* Update the pointer-map and meta-data with the new root-page number. */
    ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
    if( rc ){
      releasePage(pRoot);
      return rc;
    }

    /* When the new root page was allocated, page 1 was made writable in
    ** order either to increase the database filesize, or to decrement the
    ** freelist count.  Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
    */
    assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
    rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
    if( NEVER(rc) ){
      releasePage(pRoot);
      return rc;
    }

  }else{
    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
    if( rc ) return rc;
  }
#endif
  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  if( createTabFlags & BTREE_INTKEY ){
    ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
  }else{
    ptfFlags = PTF_ZERODATA | PTF_LEAF;
  }
  zeroPage(pRoot, ptfFlags);
  sqlite3PagerUnref(pRoot->pDbPage);
  assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Erase the given database page and all its children.  Return
** the page to the freelist.
*/
static int clearDatabasePage(
  BtShared *pBt,           /* The BTree that contains the table */
  Pgno pgno,               /* Page number to clear */
  int freePageFlag,        /* Deallocate page if true */
  int *pnChange            /* Add number of Cells freed to this counter */
){
  MemPage *pPage;
  int rc;
  unsigned char *pCell;
  int i;
  int hdr;
  CellInfo info;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
  if( rc ) return rc;
  if( pPage->bBusy ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  pPage->bBusy = 1;
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell, &info);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey || CORRUPT_DB );
    testcase( !pPage->intKey );
    *pnChange += pPage->nCell;
  }
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
  }

cleardatabasepage_out:
  pPage->bBusy = 0;
  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table.  Open write cursors are moved to the
** root of the table.
**
** If pnChange is not NULL, then table iTable must be an intkey table. The
** integer value pointed to by pnChange is incremented by the number of
** entries in the table.
*/
int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );

  rc = saveAllCursors(pBt, (Pgno)iTable, 0);

  if( SQLITE_OK==rc ){
    /* Invalidate all incrblob cursors open on table iTable (assuming iTable
    ** is the root of a table b-tree - if it is not, the following call is
    ** a no-op).  */
    invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite3BtreeLeave(p);
  return rc;
}

/*
** Delete all information from the single table that pCur is open on.
**
** This routine only work for pCur on an ephemeral table.
*/
int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
  return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page 
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable.  In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
** page number that used to be the last root page in the file before
** the move.  If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
  int rc;
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( p->inTrans==TRANS_WRITE );
  assert( iTable>=2 );

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite3BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;

#ifdef SQLITE_OMIT_AUTOVACUUM
  freePage(pPage, &rc);
  releasePage(pPage);
#else
  if( pBt->autoVacuum ){
    Pgno maxRootPgno;
    sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

    if( iTable==maxRootPgno ){
      /* If the table being dropped is the table with the largest root-page
      ** number in the database, put the root page on the free list. 
      */
      freePage(pPage, &rc);
      releasePage(pPage);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }else{
      /* The table being dropped does not have the largest root-page
      ** number in the database. So move the page that does into the 
      ** gap left by the deleted root-page.
      */
      MemPage *pMove;
      releasePage(pPage);
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pMove = 0;
      rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
      freePage(pMove, &rc);
      releasePage(pMove);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      *piMoved = maxRootPgno;
    }

    /* Set the new 'max-root-page' value in the database header. This
    ** is the old value less one, less one more if that happens to
    ** be a root-page number, less one again if that is the
    ** PENDING_BYTE_PAGE.
    */
    maxRootPgno--;
    while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
           || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
      maxRootPgno--;
    }
    assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

    rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  }else{
    freePage(pPage, &rc);
    releasePage(pPage);
  }
#endif
  return rc;  
}
int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite3BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite3BtreeLeave(p);
  return rc;
}


/*
** This function may only be called if the b-tree connection already
** has a read or write transaction open on the database.
**
** Read the meta-information out of a database file.  Meta[0]
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
**
** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
** of reading the value out of the header, it instead loads the "DataVersion"
** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
** database file.  It is a number computed by the pager.  But its access
** pattern is the same as header meta values, and so it is convenient to
** read it from this routine.
*/
void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE );
  assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
  assert( pBt->pPage1 );
  assert( idx>=0 && idx<=15 );

  if( idx==BTREE_DATA_VERSION ){
    *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
  }else{
    *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
  }

  /* If auto-vacuum is disabled in this build and this is an auto-vacuum
  ** database, mark the database as read-only.  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
    pBt->btsFlags |= BTS_READ_ONLY;
  }
#endif

  sqlite3BtreeLeave(p);
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  BtShared *pBt = p->pBt;
  unsigned char *pP1;
  int rc;
  assert( idx>=1 && idx<=15 );
  sqlite3BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1!=0 );
  pP1 = pBt->pPage1->aData;
  rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  if( rc==SQLITE_OK ){
    put4byte(&pP1[36 + idx*4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( idx==BTREE_INCR_VACUUM ){
      assert( pBt->autoVacuum || iMeta==0 );
      assert( iMeta==0 || iMeta==1 );
      pBt->incrVacuum = (u8)iMeta;
    }
#endif
  }
  sqlite3BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_BTREECOUNT
/*
** The first argument, pCur, is a cursor opened on some b-tree. Count the
** number of entries in the b-tree and write the result to *pnEntry.
**
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */

  rc = moveToRoot(pCur);
  if( rc==SQLITE_EMPTY ){
    *pnEntry = 0;
    return SQLITE_OK;
  }

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */
    MemPage *pPage;                    /* Current page of the b-tree */

    /* If this is a leaf page or the tree is not an int-key tree, then 
    ** this page contains countable entries. Increment the entry counter
    ** accordingly.
    */
    pPage = pCur->pPage;
    if( pPage->leaf || !pPage->intKey ){
      nEntry += pPage->nCell;
    }

    /* pPage is a leaf node. This loop navigates the cursor so that it 
    ** points to the first interior cell that it points to the parent of
    ** the next page in the tree that has not yet been visited. The
    ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
    ** of the page, or to the number of cells in the page if the next page
    ** to visit is the right-child of its parent.
    **
    ** If all pages in the tree have been visited, return SQLITE_OK to the
    ** caller.
    */
    if( pPage->leaf ){
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return moveToRoot(pCur);
        }
        moveToParent(pCur);
      }while ( pCur->ix>=pCur->pPage->nCell );

      pCur->ix++;
      pPage = pCur->pPage;
    }

    /* Descend to the child node of the cell that the cursor currently 
    ** points at. This is the right-child if (iIdx==pPage->nCell).
    */
    iIdx = pCur->ix;
    if( iIdx==pPage->nCell ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
    }else{
      rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
    }
  }

  /* An error has occurred. Return an error code. */
  return rc;
}
#endif

/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite3BtreePager(Btree *p){
  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,
  const char *zFormat,
  ...
){
  va_list ap;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( pCheck->zPfx ){
    sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
  }
  sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK

/*
** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
** corresponds to page iPg is already set.
*/
static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
}

/*
** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
*/
static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
  assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
  pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
}


/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 or more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, "invalid page number %d", iPage);
    return 1;
  }
  if( getPageReferenced(pCheck, iPage) ){
    checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
    return 1;
  }
  setPageReferenced(pCheck, iPage);
  return 0;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent           /* Expected pointer map parent page number */
){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
    checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck,
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N                 /* Expected number of pages in the list */
){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
      checkAppendMsg(pCheck, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
      }
#endif
      if( n>(int)pCheck->pBt->usableSize/4-2 ){
        checkAppendMsg(pCheck,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
          }
#endif
          checkRef(pCheck, iFreePage);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite3PagerUnref(pOvflPage);

    if( isFreeList && N<(iPage!=0) ){
      checkAppendMsg(pCheck, "free-page count in header is too small");
    }
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** An implementation of a min-heap.
**
** aHeap[0] is the number of elements on the heap.  aHeap[1] is the
** root element.  The daughter nodes of aHeap[N] are aHeap[N*2]
** and aHeap[N*2+1].
**
** The heap property is this:  Every node is less than or equal to both
** of its daughter nodes.  A consequence of the heap property is that the
** root node aHeap[1] is always the minimum value currently in the heap.
**
** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
** the heap, preserving the heap property.  The btreeHeapPull() routine
** removes the root element from the heap (the minimum value in the heap)
** and then moves other nodes around as necessary to preserve the heap
** property.
**
** This heap is used for cell overlap and coverage testing.  Each u32
** entry represents the span of a cell or freeblock on a btree page.  
** The upper 16 bits are the index of the first byte of a range and the
** lower 16 bits are the index of the last byte of that range.
*/
static void btreeHeapInsert(u32 *aHeap, u32 x){
  u32 j, i = ++aHeap[0];
  aHeap[i] = x;
  while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
    x = aHeap[j];
    aHeap[j] = aHeap[i];
    aHeap[i] = x;
    i = j;
  }
}
static int btreeHeapPull(u32 *aHeap, u32 *pOut){
  u32 j, i, x;
  if( (x = aHeap[0])==0 ) return 0;
  *pOut = aHeap[1];
  aHeap[1] = aHeap[x];
  aHeap[x] = 0xffffffff;
  aHeap[0]--;
  i = 1;
  while( (j = i*2)<=aHeap[0] ){
    if( aHeap[j]>aHeap[j+1] ) j++;
    if( aHeap[i]<aHeap[j] ) break;
    x = aHeap[i];
    aHeap[i] = aHeap[j];
    aHeap[j] = x;
    i = j;
  }
  return 1;  
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree.  Return
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**      2.  Make sure integer cell keys are in order.
**      3.  Check the integrity of overflow pages.
**      4.  Recursively call checkTreePage on all children.
**      5.  Verify that the depth of all children is the same.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  i64 *piMinKey,        /* Write minimum integer primary key here */
  i64 maxKey            /* Error if integer primary key greater than this */
){
  MemPage *pPage = 0;      /* The page being analyzed */
  int i;                   /* Loop counter */
  int rc;                  /* Result code from subroutine call */
  int depth = -1, d2;      /* Depth of a subtree */
  int pgno;                /* Page number */
  int nFrag;               /* Number of fragmented bytes on the page */
  int hdr;                 /* Offset to the page header */
  int cellStart;           /* Offset to the start of the cell pointer array */
  int nCell;               /* Number of cells */
  int doCoverageCheck = 1; /* True if cell coverage checking should be done */
  int keyCanBeEqual = 1;   /* True if IPK can be equal to maxKey
                           ** False if IPK must be strictly less than maxKey */
  u8 *data;                /* Page content */
  u8 *pCell;               /* Cell content */
  u8 *pCellIdx;            /* Next element of the cell pointer array */
  BtShared *pBt;           /* The BtShared object that owns pPage */
  u32 pc;                  /* Address of a cell */
  u32 usableSize;          /* Usable size of the page */
  u32 contentOffset;       /* Offset to the start of the cell content area */
  u32 *heap = 0;           /* Min-heap used for checking cell coverage */
  u32 x, prev = 0;         /* Next and previous entry on the min-heap */
  const char *saved_zPfx = pCheck->zPfx;
  int saved_v1 = pCheck->v1;
  int saved_v2 = pCheck->v2;
  u8 savedIsInit = 0;

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage) ) return 0;
  pCheck->zPfx = "Page %d: ";
  pCheck->v1 = iPage;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck,
       "unable to get the page. error code=%d", rc);
    goto end_of_check;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  savedIsInit = pPage->isInit;
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck,
                   "btreeInitPage() returns error code %d", rc);
    goto end_of_check;
  }
  data = pPage->aData;
  hdr = pPage->hdrOffset;

  /* Set up for cell analysis */
  pCheck->zPfx = "On tree page %d cell %d: ";
  contentOffset = get2byteNotZero(&data[hdr+5]);
  assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */

  /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
  ** number of cells on the page. */
  nCell = get2byte(&data[hdr+3]);
  assert( pPage->nCell==nCell );

  /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
  ** immediately follows the b-tree page header. */
  cellStart = hdr + 12 - 4*pPage->leaf;
  assert( pPage->aCellIdx==&data[cellStart] );
  pCellIdx = &data[cellStart + 2*(nCell-1)];

  if( !pPage->leaf ){
    /* Analyze the right-child page of internal pages */
    pgno = get4byte(&data[hdr+8]);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      pCheck->zPfx = "On page %d at right child: ";
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
    }
#endif
    depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
    keyCanBeEqual = 0;
  }else{
    /* For leaf pages, the coverage check will occur in the same loop
    ** as the other cell checks, so initialize the heap.  */
    heap = pCheck->heap;
    heap[0] = 0;
  }

  /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
  ** integer offsets to the cell contents. */
  for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
    CellInfo info;

    /* Check cell size */
    pCheck->v2 = i;
    assert( pCellIdx==&data[cellStart + i*2] );
    pc = get2byteAligned(pCellIdx);
    pCellIdx -= 2;
    if( pc<contentOffset || pc>usableSize-4 ){
      checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
                             pc, contentOffset, usableSize-4);
      doCoverageCheck = 0;
      continue;
    }
    pCell = &data[pc];
    pPage->xParseCell(pPage, pCell, &info);
    if( pc+info.nSize>usableSize ){
      checkAppendMsg(pCheck, "Extends off end of page");
      doCoverageCheck = 0;
      continue;
    }

    /* Check for integer primary key out of range */
    if( pPage->intKey ){
      if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
        checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
      }
      maxKey = info.nKey;
      keyCanBeEqual = 0;     /* Only the first key on the page may ==maxKey */
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );
      nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
      pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage);
    }

    if( !pPage->leaf ){
      /* Check sanity of left child page for internal pages */
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
      }
#endif
      d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
      keyCanBeEqual = 0;
      if( d2!=depth ){
        checkAppendMsg(pCheck, "Child page depth differs");
        depth = d2;
      }
    }else{
      /* Populate the coverage-checking heap for leaf pages */
      btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
    }
  }
  *piMinKey = maxKey;

  /* Check for complete coverage of the page
  */
  pCheck->zPfx = 0;
  if( doCoverageCheck && pCheck->mxErr>0 ){
    /* For leaf pages, the min-heap has already been initialized and the
    ** cells have already been inserted.  But for internal pages, that has
    ** not yet been done, so do it now */
    if( !pPage->leaf ){
      heap = pCheck->heap;
      heap[0] = 0;
      for(i=nCell-1; i>=0; i--){
        u32 size;
        pc = get2byteAligned(&data[cellStart+i*2]);
        size = pPage->xCellSize(pPage, &data[pc]);
        btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
      }
    }
    /* Add the freeblocks to the min-heap
    **
    ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
    ** is the offset of the first freeblock, or zero if there are no
    ** freeblocks on the page. 
    */
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( (u32)i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( (u32)(i+size)<=usableSize );  /* Enforced by btreeInitPage() */
      btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
      /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
      ** big-endian integer which is the offset in the b-tree page of the next
      ** freeblock in the chain, or zero if the freeblock is the last on the
      ** chain. */
      j = get2byte(&data[i]);
      /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
      ** increasing offset. */
      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( (u32)j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    /* Analyze the min-heap looking for overlap between cells and/or 
    ** freeblocks, and counting the number of untracked bytes in nFrag.
    ** 
    ** Each min-heap entry is of the form:    (start_address<<16)|end_address.
    ** There is an implied first entry the covers the page header, the cell
    ** pointer index, and the gap between the cell pointer index and the start
    ** of cell content.  
    **
    ** The loop below pulls entries from the min-heap in order and compares
    ** the start_address against the previous end_address.  If there is an
    ** overlap, that means bytes are used multiple times.  If there is a gap,
    ** that gap is added to the fragmentation count.
    */
    nFrag = 0;
    prev = contentOffset - 1;   /* Implied first min-heap entry */
    while( btreeHeapPull(heap,&x) ){
      if( (prev&0xffff)>=(x>>16) ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %u of page %d", x>>16, iPage);
        break;
      }else{
        nFrag += (x>>16) - (prev&0xffff) - 1;
        prev = x;
      }
    }
    nFrag += usableSize - (prev&0xffff) - 1;
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( heap[0]==0 && nFrag!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          nFrag, data[hdr+7], iPage);
    }
  }

end_of_check:
  if( !doCoverageCheck ) pPage->isInit = savedIsInit;
  releasePage(pPage);
  pCheck->zPfx = saved_zPfx;
  pCheck->v1 = saved_v1;
  pCheck->v2 = saved_v2;
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table.  nRoot is the number of entries in aRoot.
**
** A read-only or read-write transaction must be opened before calling
** this function.
**
** Write the number of error seen in *pnErr.  Except for some memory
** allocation errors,  an error message held in memory obtained from
** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
** returned.  If a memory allocation error occurs, NULL is returned.
*/
char *sqlite3BtreeIntegrityCheck(
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  int savedDbFlags = pBt->db->flags;
  char zErr[100];
  VVA_ONLY( int nRef );

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
  assert( nRef>=0 );
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  sCheck.zPfx = 0;
  sCheck.v1 = 0;
  sCheck.v2 = 0;
  sCheck.aPgRef = 0;
  sCheck.heap = 0;
  sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
  sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
  if( sCheck.nPage==0 ){
    goto integrity_ck_cleanup;
  }

  sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
  if( !sCheck.aPgRef ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }
  sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
  if( sCheck.heap==0 ){
    sCheck.mallocFailed = 1;
    goto integrity_ck_cleanup;
  }

  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);

  /* Check the integrity of the freelist
  */
  sCheck.zPfx = "Main freelist: ";
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]));
  sCheck.zPfx = 0;

  /* Check all the tables.
  */
  testcase( pBt->db->flags & SQLITE_CellSizeCk );
  pBt->db->flags &= ~SQLITE_CellSizeCk;
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    i64 notUsed;
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
    }
#endif
    checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
  }
  pBt->db->flags = savedDbFlags;

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( getPageReferenced(&sCheck, i)==0 ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( getPageReferenced(&sCheck, i)==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Page %d is never used", i);
    }
    if( getPageReferenced(&sCheck, i)!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Clean  up and report errors.
  */
integrity_ck_cleanup:
  sqlite3PageFree(sCheck.heap);
  sqlite3_free(sCheck.aPgRef);
  if( sCheck.mallocFailed ){
    sqlite3StrAccumReset(&sCheck.errMsg);
    sCheck.nErr++;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  /* Make sure this analysis did not leave any unref() pages. */
  assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
  sqlite3BtreeLeave(p);
  return sqlite3StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.  Return
** an empty string if the database is in-memory or a TEMP database.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerFilename(p->pBt->pPager, 1);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite3BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite3PagerJournalname(p->pBt->pPager);
}

/*
** Return non-zero if a transaction is active.
*/
int sqlite3BtreeIsInTrans(Btree *p){
  assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on the Btree passed as the first argument.
**
** Return SQLITE_LOCKED if this or any other connection has an open 
** transaction on the shared-cache the argument Btree is connected to.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;
  if( p ){
    BtShared *pBt = p->pBt;
    sqlite3BtreeEnter(p);
    if( pBt->inTransaction!=TRANS_NONE ){
      rc = SQLITE_LOCKED;
    }else{
      rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}
#endif

/*
** Return non-zero if a read (or write) transaction is active.
*/
int sqlite3BtreeIsInReadTrans(Btree *p){
  assert( p );
  assert( sqlite3_mutex_held(p->db->mutex) );
  return p->inTrans!=TRANS_NONE;
}

int sqlite3BtreeIsInBackup(Btree *p){
  assert( p );
  assert( sqlite3_mutex_held(p->db->mutex) );
  return p->nBackup!=0;
}

/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with 
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent 
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned. 
**
** If the nBytes parameter is 0 and the blob of memory has not yet been
** allocated, a null pointer is returned. If the blob has already been
** allocated, it is returned as normal.
**
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. The xFree function should not call sqlite3_free()
** on the memory, the btree layer does that.
*/
void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  sqlite3BtreeEnter(p);
  if( !pBt->pSchema && nBytes ){
    pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite3BtreeLeave(p);
  return pBt->pSchema;
}

/*
** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 
** btree as the argument handle holds an exclusive lock on the 
** sqlite_master table. Otherwise SQLITE_OK.
*/
int sqlite3BtreeSchemaLocked(Btree *p){
  int rc;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
  sqlite3BtreeLeave(p);
  return rc;
}


#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab.  The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  int rc = SQLITE_OK;
  assert( p->inTrans!=TRANS_NONE );
  if( p->sharable ){
    u8 lockType = READ_LOCK + isWriteLock;
    assert( READ_LOCK+1==WRITE_LOCK );
    assert( isWriteLock==0 || isWriteLock==1 );

    sqlite3BtreeEnter(p);
    rc = querySharedCacheTableLock(p, iTab, lockType);
    if( rc==SQLITE_OK ){
      rc = setSharedCacheTableLock(p, iTab, lockType);
    }
    sqlite3BtreeLeave(p);
  }
  return rc;
}
#endif

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
**
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorOwnsBtShared(pCsr) );
  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->curFlags & BTCF_Incrblob );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  if( pCsr->eState!=CURSOR_VALID ){
    return SQLITE_ABORT;
  }

  /* Save the positions of all other cursors open on this table. This is
  ** required in case any of them are holding references to an xFetch
  ** version of the b-tree page modified by the accessPayload call below.
  **
  ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
  ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
  ** saveAllCursors can only return SQLITE_OK.
  */
  VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
  assert( rc==SQLITE_OK );

  /* Check some assumptions: 
  **   (a) the cursor is open for writing,
  **   (b) there is a read/write transaction open,
  **   (c) the connection holds a write-lock on the table (if required),
  **   (d) there are no conflicting read-locks, and
  **   (e) the cursor points at a valid row of an intKey table.
  */
  if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
    return SQLITE_READONLY;
  }
  assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
              && pCsr->pBt->inTransaction==TRANS_WRITE );
  assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
  assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
  assert( pCsr->pPage->intKey );

  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
}

/* 
** Mark this cursor as an incremental blob cursor.
*/
void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
  pCur->curFlags |= BTCF_Incrblob;
  pCur->pBtree->hasIncrblobCur = 1;
}
#endif

/*
** Set both the "read version" (single byte at byte offset 18) and 
** "write version" (single byte at byte offset 19) fields in the database
** header to iVersion.
*/
int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
  BtShared *pBt = pBtree->pBt;
  int rc;                         /* Return code */
 
  assert( iVersion==1 || iVersion==2 );

  /* If setting the version fields to 1, do not automatically open the
  ** WAL connection, even if the version fields are currently set to 2.
  */
  pBt->btsFlags &= ~BTS_NO_WAL;
  if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;

  rc = sqlite3BtreeBeginTrans(pBtree, 0);
  if( rc==SQLITE_OK ){
    u8 *aData = pBt->pPage1->aData;
    if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
      rc = sqlite3BtreeBeginTrans(pBtree, 2);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          aData[18] = (u8)iVersion;
          aData[19] = (u8)iVersion;
        }
      }
    }
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** Return true if the cursor has a hint specified.  This routine is
** only used from within assert() statements
*/
int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
  return (pCsr->hints & mask)!=0;
}

/*
** Return true if the given Btree is read-only.
*/
int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }

#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** Return true if the Btree passed as the only argument is sharable.
*/
int sqlite3BtreeSharable(Btree *p){
  return p->sharable;
}

/*
** Return the number of connections to the BtShared object accessed by
** the Btree handle passed as the only argument. For private caches 
** this is always 1. For shared caches it may be 1 or greater.
*/
int sqlite3BtreeConnectionCount(Btree *p){
  testcase( p->sharable );
  return p->pBt->nRef;
}
#endif