1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
| /*
** 2012 April 10
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This module implements a VIRTUAL TABLE that can be used to search
** a large vocabulary for close matches. For example, this virtual
** table can be used to suggest corrections to misspelled words. Or,
** it could be used with FTS4 to do full-text search using potentially
** misspelled words.
**
** Create an instance of the virtual table this way:
**
** CREATE VIRTUAL TABLE demo USING spellfix1;
**
** The "spellfix1" term is the name of this module. The "demo" is the
** name of the virtual table you will be creating. The table is initially
** empty. You have to populate it with your vocabulary. Suppose you
** have a list of words in a table named "big_vocabulary". Then do this:
**
** INSERT INTO demo(word) SELECT word FROM big_vocabulary;
**
** If you intend to use this virtual table in cooperation with an FTS4
** table (for spelling correctly of search terms) then you can extract
** the vocabulary using an fts3aux table:
**
** INSERT INTO demo(word) SELECT term FROM search_aux WHERE col='*';
**
** You can also provide the virtual table with a "rank" for each word.
** The "rank" is an estimate of how common the word is. Larger numbers
** mean the word is more common. If you omit the rank when populating
** the table, then a rank of 1 is assumed. But if you have rank
** information, you can supply it and the virtual table will show a
** slight preference for selecting more commonly used terms. To
** populate the rank from an fts4aux table "search_aux" do something
** like this:
**
** INSERT INTO demo(word,rank)
** SELECT term, documents FROM search_aux WHERE col='*';
**
** To query the virtual table, include a MATCH operator in the WHERE
** clause. For example:
**
** SELECT word FROM demo WHERE word MATCH 'kennasaw';
**
** Using a dataset of American place names (derived from
** http://geonames.usgs.gov/domestic/download_data.htm) the query above
** returns 20 results beginning with:
**
** kennesaw
** kenosha
** kenesaw
** kenaga
** keanak
**
** If you append the character '*' to the end of the pattern, then
** a prefix search is performed. For example:
**
** SELECT word FROM demo WHERE word MATCH 'kennes*';
**
** Yields 20 results beginning with:
**
** kennesaw
** kennestone
** kenneson
** kenneys
** keanes
** keenes
**
** The virtual table actually has a unique rowid with five columns plus three
** extra hidden columns. The columns are as follows:
**
** rowid A unique integer number associated with each
** vocabulary item in the table. This can be used
** as a foreign key on other tables in the database.
**
** word The text of the word that matches the pattern.
** Both word and pattern can contains unicode characters
** and can be mixed case.
**
** rank This is the rank of the word, as specified in the
** original INSERT statement.
**
** distance This is an edit distance or Levensthein distance going
** from the pattern to the word.
**
** langid This is the language-id of the word. All queries are
** against a single language-id, which defaults to 0.
** For any given query this value is the same on all rows.
**
** score The score is a combination of rank and distance. The
** idea is that a lower score is better. The virtual table
** attempts to find words with the lowest score and
** by default (unless overridden by ORDER BY) returns
** results in order of increasing score.
**
** top (HIDDEN) For any query, this value is the same on all
** rows. It is an integer which is the maximum number of
** rows that will be output. The actually number of rows
** output might be less than this number, but it will never
** be greater. The default value for top is 20, but that
** can be changed for each query by including a term of
** the form "top=N" in the WHERE clause of the query.
**
** scope (HIDDEN) For any query, this value is the same on all
** rows. The scope is a measure of how widely the virtual
** table looks for matching words. Smaller values of
** scope cause a broader search. The scope is normally
** choosen automatically and is capped at 4. Applications
** can change the scope by including a term of the form
** "scope=N" in the WHERE clause of the query. Increasing
** the scope will make the query run faster, but will reduce
** the possible corrections.
**
** srchcnt (HIDDEN) For any query, this value is the same on all
** rows. This value is an integer which is the number of
** of words examined using the edit-distance algorithm to
** find the top matches that are ultimately displayed. This
** value is for diagnostic use only.
**
** soundslike (HIDDEN) When inserting vocabulary entries, this field
** can be set to an spelling that matches what the word
** sounds like. See the DEALING WITH UNUSUAL AND DIFFICULT
** SPELLINGS section below for details.
**
** When inserting into or updating the virtual table, only the rowid, word,
** rank, and langid may be changes. Any attempt to set or modify the values
** of distance, score, top, scope, or srchcnt is silently ignored.
**
** ALGORITHM
**
** A shadow table named "%_vocab" (where the % is replaced by the name of
** the virtual table; Ex: "demo_vocab" for the "demo" virtual table) is
** constructed with these columns:
**
** id The unique id (INTEGER PRIMARY KEY)
**
** rank The rank of word.
**
** langid The language id for this entry.
**
** word The original UTF8 text of the vocabulary word
**
** k1 The word transliterated into lower-case ASCII.
** There is a standard table of mappings from non-ASCII
** characters into ASCII. Examples: "æ" -> "ae",
** "þ" -> "th", "ß" -> "ss", "á" -> "a", ... The
** accessory function spellfix1_translit(X) will do
** the non-ASCII to ASCII mapping. The built-in lower(X)
** function will convert to lower-case. Thus:
** k1 = lower(spellfix1_translit(word)).
**
** k2 This field holds a phonetic code derived from k1. Letters
** that have similar sounds are mapped into the same symbol.
** For example, all vowels and vowel clusters become the
** single symbol "A". And the letters "p", "b", "f", and
** "v" all become "B". All nasal sounds are represented
** as "N". And so forth. The mapping is base on
** ideas found in Soundex, Metaphone, and other
** long-standing phonetic matching systems. This key can
** be generated by the function spellfix1_charclass(X).
** Hence: k2 = spellfix1_charclass(k1)
**
** There is also a function for computing the Wagner edit distance or the
** Levenshtein distance between a pattern and a word. This function
** is exposed as spellfix1_editdist(X,Y). The edit distance function
** returns the "cost" of converting X into Y. Some transformations
** cost more than others. Changing one vowel into a different vowel,
** for example is relatively cheap, as is doubling a constant, or
** omitting the second character of a double-constant. Other transformations
** or more expensive. The idea is that the edit distance function returns
** a low cost of words that are similar and a higher cost for words
** that are futher apart. In this implementation, the maximum cost
** of any single-character edit (delete, insert, or substitute) is 100,
** with lower costs for some edits (such as transforming vowels).
**
** The "score" for a comparison is the edit distance between the pattern
** and the word, adjusted down by the base-2 logorithm of the word rank.
** For example, a match with distance 100 but rank 1000 would have a
** score of 122 (= 100 - log2(1000) + 32) where as a match with distance
** 100 with a rank of 1 would have a score of 131 (100 - log2(1) + 32).
** (NB: The constant 32 is added to each score to keep it from going
** negative in case the edit distance is zero.) In this way, frequently
** used words get a slightly lower cost which tends to move them toward
** the top of the list of alternative spellings.
**
** A straightforward implementation of a spelling corrector would be
** to compare the search term against every word in the vocabulary
** and select the 20 with the lowest scores. However, there will
** typically be hundreds of thousands or millions of words in the
** vocabulary, and so this approach is not fast enough.
**
** Suppose the term that is being spell-corrected is X. To limit
** the search space, X is converted to a k2-like key using the
** equivalent of:
**
** key = spellfix1_charclass(lower(spellfix1_translit(X)))
**
** This key is then limited to "scope" characters. The default scope
** value is 4, but an alternative scope can be specified using the
** "scope=N" term in the WHERE clause. After the key has been truncated,
** the edit distance is run against every term in the vocabulary that
** has a k2 value that begins with the abbreviated key.
**
** For example, suppose the input word is "Paskagula". The phonetic
** key is "BACACALA" which is then truncated to 4 characters "BACA".
** The edit distance is then run on the 4980 entries (out of
** 272,597 entries total) of the vocabulary whose k2 values begin with
** BACA, yielding "Pascagoula" as the best match.
**
** Only terms of the vocabulary with a matching langid are searched.
** Hence, the same table can contain entries from multiple languages
** and only the requested language will be used. The default langid
** is 0.
**
** DEALING WITH UNUSUAL AND DIFFICULT SPELLINGS
**
** The algorithm above works quite well for most cases, but there are
** exceptions. These exceptions can be dealt with by making additional
** entries in the virtual table using the "soundslike" column.
**
** For example, many words of Greek origin begin with letters "ps" where
** the "p" is silent. Ex: psalm, pseudonym, psoriasis, psyche. In
** another example, many Scottish surnames can be spelled with an
** initial "Mac" or "Mc". Thus, "MacKay" and "McKay" are both pronounced
** the same.
**
** Accommodation can be made for words that are not spelled as they
** sound by making additional entries into the virtual table for the
** same word, but adding an alternative spelling in the "soundslike"
** column. For example, the canonical entry for "psalm" would be this:
**
** INSERT INTO demo(word) VALUES('psalm');
**
** To enhance the ability to correct the spelling of "salm" into
** "psalm", make an addition entry like this:
**
** INSERT INTO demo(word,soundslike) VALUES('psalm','salm');
**
** It is ok to make multiple entries for the same word as long as
** each entry has a different soundslike value. Note that if no
** soundslike value is specified, the soundslike defaults to the word
** itself.
**
** Listed below are some cases where it might make sense to add additional
** soundslike entries. The specific entries will depend on the application
** and the target language.
**
** * Silent "p" in words beginning with "ps": psalm, psyche
**
** * Silent "p" in words beginning with "pn": pneumonia, pneumatic
**
** * Silent "p" in words beginning with "pt": pterodactyl, ptolemaic
**
** * Silent "d" in words beginning with "dj": djinn, Djikarta
**
** * Silent "k" in words beginning with "kn": knight, Knuthson
**
** * Silent "g" in words beginning with "gn": gnarly, gnome, gnat
**
** * "Mac" versus "Mc" beginning Scottish surnames
**
** * "Tch" sounds in Slavic words: Tchaikovsky vs. Chaykovsky
**
** * The letter "j" pronounced like "h" in Spanish: LaJolla
**
** * Words beginning with "wr" versus "r": write vs. rite
**
** * Miscellanous problem words such as "debt", "tsetse",
** "Nguyen", "Van Nuyes".
*/
#if SQLITE_CORE
# include "sqliteInt.h"
#else
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#endif /* !SQLITE_CORE */
/*
** Character classes for ASCII characters:
**
** 0 '' Silent letters: H W
** 1 'A' Any vowel: A E I O U (Y)
** 2 'B' A bilabeal stop or fricative: B F P V
** 3 'C' Other fricatives or back stops: C G J K Q S X Z
** 4 'D' Alveolar stops: D T
** 5 'H' Letter H at the beginning of a word
** 6 'L' Glides: L R
** 7 'M' Nasals: M N
** 8 'W' Letter W at the beginning of a word
** 9 'Y' Letter Y at the beginning of a word.
** 10 '9' A digit: 0 1 2 3 4 5 6 7 8 9
** 11 ' ' White space
** 12 '?' Other.
*/
#define CCLASS_SILENT 0
#define CCLASS_VOWEL 1
#define CCLASS_B 2
#define CCLASS_C 3
#define CCLASS_D 4
#define CCLASS_H 5
#define CCLASS_L 6
#define CCLASS_M 7
#define CCLASS_W 8
#define CCLASS_Y 9
#define CCLASS_DIGIT 10
#define CCLASS_SPACE 11
#define CCLASS_OTHER 12
/*
** The following table gives the character class for non-initial ASCII
** characters.
*/
static const unsigned char midClass[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
/* 0x */ 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 12, 11, 12, 12, 12,
/* 1x */ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
/* 2x */ 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
/* 3x */ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12,
/* 4x */ 12, 1, 2, 3, 4, 1, 2, 3, 0, 1, 3, 3, 6, 7, 7, 1,
/* 5x */ 2, 3, 6, 3, 4, 1, 2, 0, 3, 1, 3, 12, 12, 12, 12, 12,
/* 6x */ 12, 1, 2, 3, 4, 1, 2, 3, 0, 1, 3, 3, 6, 7, 7, 1,
/* 7x */ 2, 3, 6, 3, 4, 1, 2, 0, 3, 1, 3, 12, 12, 12, 12, 12,
};
/*
** This tables gives the character class for ASCII characters that form the
** initial character of a word. The only difference from midClass is with
** the letters H, W, and Y.
*/
static const unsigned char initClass[] = {
/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xa xb xc xd xe xf */
/* 0x */ 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 12, 11, 12, 12, 12,
/* 1x */ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
/* 2x */ 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
/* 3x */ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12,
/* 4x */ 12, 1, 2, 3, 4, 1, 2, 3, 5, 1, 3, 3, 6, 7, 7, 1,
/* 5x */ 2, 3, 6, 3, 4, 1, 2, 8, 3, 9, 3, 12, 12, 12, 12, 12,
/* 6x */ 12, 1, 2, 3, 4, 1, 2, 3, 5, 1, 3, 3, 6, 7, 7, 1,
/* 7x */ 2, 3, 6, 3, 4, 1, 2, 8, 3, 9, 3, 12, 12, 12, 12, 12,
};
/*
** Mapping from the character class number (0-12) to a symbol for each
** character class. Note that initClass[] can be used to map the class
** symbol back into the class number.
*/
static const unsigned char className[] = ".ABCDHLMWY9 ?";
/*
** Generate a string of character classes corresponding to the
** ASCII characters in the input string zIn. If the input is not
** ASCII then the behavior is undefined.
**
** Space to hold the result is obtained from sqlite3_malloc()
**
** Return NULL if memory allocation fails.
*/
static unsigned char *characterClassString(const unsigned char *zIn, int nIn){
unsigned char *zOut = sqlite3_malloc( nIn + 1 );
int i;
int nOut = 0;
char cPrev = 0x77;
const unsigned char *aClass = initClass;
if( zOut==0 ) return 0;
for(i=0; i<nIn; i++){
unsigned char c = zIn[i];
c = aClass[c&0x7f];
if( c==CCLASS_OTHER && cPrev!=CCLASS_DIGIT ) continue;
cPrev = c;
if( c==CCLASS_SILENT ) continue;
if( c==CCLASS_SPACE ) continue;
aClass = midClass;
c = className[c];
if( c!=zOut[nOut-1] ) zOut[nOut++] = c;
}
zOut[nOut] = 0;
return zOut;
}
/*
** This is an SQL function wrapper around characterClassString(). See
** the description of characterClassString() for additional information.
*/
static void characterClassSqlFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zIn;
unsigned char *zOut;
zIn = sqlite3_value_text(argv[0]);
if( zIn==0 ) return;
zOut = characterClassString(zIn, sqlite3_value_bytes(argv[0]));
if( zOut==0 ){
sqlite3_result_error_nomem(context);
}else{
sqlite3_result_text(context, (char*)zOut, -1, sqlite3_free);
}
}
/*
** Return the character class number for a character given its
** context.
*/
static char characterClass(char cPrev, char c){
return cPrev==0 ? initClass[c&0x7f] : midClass[c&0x7f];
}
/*
** Return the cost of inserting or deleting character c immediately
** following character cPrev. If cPrev==0, that means c is the first
** character of the word.
*/
static int insertOrDeleteCost(char cPrev, char c){
char classC = characterClass(cPrev, c);
char classCprev;
if( classC==CCLASS_SILENT ){
/* Insert or delete "silent" characters such as H or W */
return 1;
}
if( cPrev==c ){
/* Repeated characters, or miss a repeat */
return 10;
}
classCprev = characterClass(cPrev, cPrev);
if( classC==classCprev ){
if( classC==CCLASS_VOWEL ){
/* Remove or add a new vowel to a vowel cluster */
return 15;
}else{
/* Remove or add a consonant not in the same class */
return 50;
}
}
/* any other character insertion or deletion */
return 100;
}
/*
** Divide the insertion cost by this factor when appending to the
** end of the word.
*/
#define FINAL_INS_COST_DIV 4
/*
** Return the cost of substituting cTo in place of cFrom assuming
** the previous character is cPrev. If cPrev==0 then cTo is the first
** character of the word.
*/
static int substituteCost(char cPrev, char cFrom, char cTo){
char classFrom, classTo;
if( cFrom==cTo ){
/* Exact match */
return 0;
}
if( cFrom==(cTo^0x20) && ((cTo>='A' && cTo<='Z') || (cTo>='a' && cTo<='z')) ){
/* differ only in case */
return 0;
}
classFrom = characterClass(cPrev, cFrom);
classTo = characterClass(cPrev, cTo);
if( classFrom==classTo ){
/* Same character class */
return classFrom=='A' ? 25 : 40;
}
if( classFrom>=CCLASS_B && classFrom<=CCLASS_Y
&& classTo>=CCLASS_B && classTo<=CCLASS_Y ){
/* Convert from one consonant to another, but in a different class */
return 75;
}
/* Any other subsitution */
return 100;
}
/*
** Given two strings zA and zB which are pure ASCII, return the cost
** of transforming zA into zB. If zA ends with '*' assume that it is
** a prefix of zB and give only minimal penalty for extra characters
** on the end of zB.
**
** Smaller numbers mean a closer match.
**
** Negative values indicate an error:
** -1 One of the inputs is NULL
** -2 Non-ASCII characters on input
** -3 Unable to allocate memory
*/
static int editdist(const char *zA, const char *zB){
int nA, nB; /* Number of characters in zA[] and zB[] */
int xA, xB; /* Loop counters for zA[] and zB[] */
char cA, cB; /* Current character of zA and zB */
char cAprev, cBprev; /* Previous character of zA and zB */
int d; /* North-west cost value */
int dc = 0; /* North-west character value */
int res; /* Final result */
int *m; /* The cost matrix */
char *cx; /* Corresponding character values */
int *toFree = 0; /* Malloced space */
int mStack[60+15]; /* Stack space to use if not too much is needed */
/* Early out if either input is NULL */
if( zA==0 || zB==0 ) return -1;
/* Skip any common prefix */
while( zA[0] && zA[0]==zB[0] ){ dc = zA[0]; zA++; zB++; }
if( zA[0]==0 && zB[0]==0 ) return 0;
#if 0
printf("A=\"%s\" B=\"%s\" dc=%c\n", zA, zB, dc?dc:' ');
#endif
/* Verify input strings and measure their lengths */
for(nA=0; zA[nA]; nA++){
if( zA[nA]>127 ) return -2;
}
for(nB=0; zB[nB]; nB++){
if( zB[nB]>127 ) return -2;
}
/* Special processing if either string is empty */
if( nA==0 ){
cBprev = dc;
for(xB=res=0; (cB = zB[xB])!=0; xB++){
res += insertOrDeleteCost(cBprev, cB)/FINAL_INS_COST_DIV;
cBprev = cB;
}
return res;
}
if( nB==0 ){
cAprev = dc;
for(xA=res=0; (cA = zA[xA])!=0; xA++){
res += insertOrDeleteCost(cAprev, cA);
cAprev = cA;
}
return res;
}
/* A is a prefix of B */
if( zA[0]=='*' && zA[1]==0 ) return 0;
/* Allocate and initialize the Wagner matrix */
if( nB<(sizeof(mStack)*4)/(sizeof(mStack[0])*5) ){
m = mStack;
}else{
m = toFree = sqlite3_malloc( (nB+1)*5*sizeof(m[0])/4 );
if( m==0 ) return -3;
}
cx = (char*)&m[nB+1];
/* Compute the Wagner edit distance */
m[0] = 0;
cx[0] = dc;
cBprev = dc;
for(xB=1; xB<=nB; xB++){
cB = zB[xB-1];
cx[xB] = cB;
m[xB] = m[xB-1] + insertOrDeleteCost(cBprev, cB);
cBprev = cB;
}
cAprev = dc;
for(xA=1; xA<=nA; xA++){
int lastA = (xA==nA);
cA = zA[xA-1];
if( cA=='*' && lastA ) break;
d = m[0];
dc = cx[0];
m[0] = d + insertOrDeleteCost(cAprev, cA);
cBprev = 0;
for(xB=1; xB<=nB; xB++){
int totalCost, insCost, delCost, subCost, ncx;
cB = zB[xB-1];
/* Cost to insert cB */
insCost = insertOrDeleteCost(cx[xB-1], cB);
if( lastA ) insCost /= FINAL_INS_COST_DIV;
/* Cost to delete cA */
delCost = insertOrDeleteCost(cx[xB], cA);
/* Cost to substitute cA->cB */
subCost = substituteCost(cx[xB-1], cA, cB);
/* Best cost */
totalCost = insCost + m[xB-1];
ncx = cB;
if( (delCost + m[xB])<totalCost ){
totalCost = delCost + m[xB];
ncx = cA;
}
if( (subCost + d)<totalCost ){
totalCost = subCost + d;
}
#if 0
printf("%d,%d d=%4d u=%4d r=%4d dc=%c cA=%c cB=%c"
" ins=%4d del=%4d sub=%4d t=%4d ncx=%c\n",
xA, xB, d, m[xB], m[xB-1], dc?dc:' ', cA, cB,
insCost, delCost, subCost, totalCost, ncx?ncx:' ');
#endif
/* Update the matrix */
d = m[xB];
dc = cx[xB];
m[xB] = totalCost;
cx[xB] = ncx;
cBprev = cB;
}
cAprev = cA;
}
/* Free the wagner matrix and return the result */
if( cA=='*' && nB>nA ){
res = m[nA];
for(xB=nA+1; xB<=nB; xB++){
if( m[xB]<res ) res = m[xB];
}
}else{
res = m[nB];
}
sqlite3_free(toFree);
return res;
}
/*
** Function: editdist(A,B)
**
** Return the cost of transforming string A into string B. Both strings
** must be pure ASCII text. If A ends with '*' then it is assumed to be
** a prefix of B and extra characters on the end of B have minimal additional
** cost.
*/
static void editdistSqlFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int res = editdist((const char*)sqlite3_value_text(argv[0]),
(const char*)sqlite3_value_text(argv[1]));
if( res<0 ){
if( res==(-3) ){
sqlite3_result_error_nomem(context);
}else if( res==(-2) ){
sqlite3_result_error(context, "non-ASCII input to editdist()", -1);
}else{
sqlite3_result_error(context, "NULL input to editdist()", -1);
}
}else{
sqlite3_result_int(context, res);
}
}
#if !SQLITE_CORE
/*
** This lookup table is used to help decode the first byte of
** a multi-byte UTF8 character.
*/
static const unsigned char sqlite3Utf8Trans1[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
};
#endif
/*
** Return the value of the first UTF-8 character in the string.
*/
static int utf8Read(const unsigned char *z, int n, int *pSize){
int c, i;
if( n==0 ){
c = i = 0;
}else{
c = z[0];
i = 1;
if( c>=0xc0 ){
c = sqlite3Utf8Trans1[c-0xc0];
while( i<n && (z[i] & 0xc0)==0x80 ){
c = (c<<6) + (0x3f & z[i++]);
}
}
}
*pSize = i;
return c;
}
/*
** Table of translations from unicode characters into ASCII.
*/
static const struct {
unsigned short int cFrom;
unsigned char cTo0, cTo1;
} translit[] = {
{ 0x00A0, 0x20, 0x00 }, /* to */
{ 0x00B5, 0x75, 0x00 }, /* µ to u */
{ 0x00C0, 0x41, 0x00 }, /* À to A */
{ 0x00C1, 0x41, 0x00 }, /* Á to A */
{ 0x00C2, 0x41, 0x00 }, /* Â to A */
{ 0x00C3, 0x41, 0x00 }, /* Ã to A */
{ 0x00C4, 0x41, 0x65 }, /* Ä to Ae */
{ 0x00C5, 0x41, 0x61 }, /* Å to Aa */
{ 0x00C6, 0x41, 0x45 }, /* Æ to AE */
{ 0x00C7, 0x43, 0x00 }, /* Ç to C */
{ 0x00C8, 0x45, 0x00 }, /* È to E */
{ 0x00C9, 0x45, 0x00 }, /* É to E */
{ 0x00CA, 0x45, 0x00 }, /* Ê to E */
{ 0x00CB, 0x45, 0x00 }, /* Ë to E */
{ 0x00CC, 0x49, 0x00 }, /* Ì to I */
{ 0x00CD, 0x49, 0x00 }, /* Í to I */
{ 0x00CE, 0x49, 0x00 }, /* Î to I */
{ 0x00CF, 0x49, 0x00 }, /* Ï to I */
{ 0x00D0, 0x44, 0x00 }, /* Ð to D */
{ 0x00D1, 0x4E, 0x00 }, /* Ñ to N */
{ 0x00D2, 0x4F, 0x00 }, /* Ò to O */
{ 0x00D3, 0x4F, 0x00 }, /* Ó to O */
{ 0x00D4, 0x4F, 0x00 }, /* Ô to O */
{ 0x00D5, 0x4F, 0x00 }, /* Õ to O */
{ 0x00D6, 0x4F, 0x65 }, /* Ö to Oe */
{ 0x00D7, 0x78, 0x00 }, /* × to x */
{ 0x00D8, 0x4F, 0x00 }, /* Ø to O */
{ 0x00D9, 0x55, 0x00 }, /* Ù to U */
{ 0x00DA, 0x55, 0x00 }, /* Ú to U */
{ 0x00DB, 0x55, 0x00 }, /* Û to U */
{ 0x00DC, 0x55, 0x65 }, /* Ü to Ue */
{ 0x00DD, 0x59, 0x00 }, /* Ý to Y */
{ 0x00DE, 0x54, 0x68 }, /* Þ to Th */
{ 0x00DF, 0x73, 0x73 }, /* ß to ss */
{ 0x00E0, 0x61, 0x00 }, /* à to a */
{ 0x00E1, 0x61, 0x00 }, /* á to a */
{ 0x00E2, 0x61, 0x00 }, /* â to a */
{ 0x00E3, 0x61, 0x00 }, /* ã to a */
{ 0x00E4, 0x61, 0x65 }, /* ä to ae */
{ 0x00E5, 0x61, 0x61 }, /* å to aa */
{ 0x00E6, 0x61, 0x65 }, /* æ to ae */
{ 0x00E7, 0x63, 0x00 }, /* ç to c */
{ 0x00E8, 0x65, 0x00 }, /* è to e */
{ 0x00E9, 0x65, 0x00 }, /* é to e */
{ 0x00EA, 0x65, 0x00 }, /* ê to e */
{ 0x00EB, 0x65, 0x00 }, /* ë to e */
{ 0x00EC, 0x69, 0x00 }, /* ì to i */
{ 0x00ED, 0x69, 0x00 }, /* í to i */
{ 0x00EE, 0x69, 0x00 }, /* î to i */
{ 0x00EF, 0x69, 0x00 }, /* ï to i */
{ 0x00F0, 0x64, 0x00 }, /* ð to d */
{ 0x00F1, 0x6E, 0x00 }, /* ñ to n */
{ 0x00F2, 0x6F, 0x00 }, /* ò to o */
{ 0x00F3, 0x6F, 0x00 }, /* ó to o */
{ 0x00F4, 0x6F, 0x00 }, /* ô to o */
{ 0x00F5, 0x6F, 0x00 }, /* õ to o */
{ 0x00F6, 0x6F, 0x65 }, /* ö to oe */
{ 0x00F7, 0x3A, 0x00 }, /* ÷ to : */
{ 0x00F8, 0x6F, 0x00 }, /* ø to o */
{ 0x00F9, 0x75, 0x00 }, /* ù to u */
{ 0x00FA, 0x75, 0x00 }, /* ú to u */
{ 0x00FB, 0x75, 0x00 }, /* û to u */
{ 0x00FC, 0x75, 0x65 }, /* ü to ue */
{ 0x00FD, 0x79, 0x00 }, /* ý to y */
{ 0x00FE, 0x74, 0x68 }, /* þ to th */
{ 0x00FF, 0x79, 0x00 }, /* ÿ to y */
{ 0x0100, 0x41, 0x00 }, /* Ā to A */
{ 0x0101, 0x61, 0x00 }, /* ā to a */
{ 0x0102, 0x41, 0x00 }, /* Ă to A */
{ 0x0103, 0x61, 0x00 }, /* ă to a */
{ 0x0104, 0x41, 0x00 }, /* Ą to A */
{ 0x0105, 0x61, 0x00 }, /* ą to a */
{ 0x0106, 0x43, 0x00 }, /* Ć to C */
{ 0x0107, 0x63, 0x00 }, /* ć to c */
{ 0x0108, 0x43, 0x68 }, /* Ĉ to Ch */
{ 0x0109, 0x63, 0x68 }, /* ĉ to ch */
{ 0x010A, 0x43, 0x00 }, /* Ċ to C */
{ 0x010B, 0x63, 0x00 }, /* ċ to c */
{ 0x010C, 0x43, 0x00 }, /* Č to C */
{ 0x010D, 0x63, 0x00 }, /* č to c */
{ 0x010E, 0x44, 0x00 }, /* Ď to D */
{ 0x010F, 0x64, 0x00 }, /* ď to d */
{ 0x0110, 0x44, 0x00 }, /* Đ to D */
{ 0x0111, 0x64, 0x00 }, /* đ to d */
{ 0x0112, 0x45, 0x00 }, /* Ē to E */
{ 0x0113, 0x65, 0x00 }, /* ē to e */
{ 0x0114, 0x45, 0x00 }, /* Ĕ to E */
{ 0x0115, 0x65, 0x00 }, /* ĕ to e */
{ 0x0116, 0x45, 0x00 }, /* Ė to E */
{ 0x0117, 0x65, 0x00 }, /* ė to e */
{ 0x0118, 0x45, 0x00 }, /* Ę to E */
{ 0x0119, 0x65, 0x00 }, /* ę to e */
{ 0x011A, 0x45, 0x00 }, /* Ě to E */
{ 0x011B, 0x65, 0x00 }, /* ě to e */
{ 0x011C, 0x47, 0x68 }, /* Ĝ to Gh */
{ 0x011D, 0x67, 0x68 }, /* ĝ to gh */
{ 0x011E, 0x47, 0x00 }, /* Ğ to G */
{ 0x011F, 0x67, 0x00 }, /* ğ to g */
{ 0x0120, 0x47, 0x00 }, /* Ġ to G */
{ 0x0121, 0x67, 0x00 }, /* ġ to g */
{ 0x0122, 0x47, 0x00 }, /* Ģ to G */
{ 0x0123, 0x67, 0x00 }, /* ģ to g */
{ 0x0124, 0x48, 0x68 }, /* Ĥ to Hh */
{ 0x0125, 0x68, 0x68 }, /* ĥ to hh */
{ 0x0126, 0x48, 0x00 }, /* Ħ to H */
{ 0x0127, 0x68, 0x00 }, /* ħ to h */
{ 0x0128, 0x49, 0x00 }, /* Ĩ to I */
{ 0x0129, 0x69, 0x00 }, /* ĩ to i */
{ 0x012A, 0x49, 0x00 }, /* Ī to I */
{ 0x012B, 0x69, 0x00 }, /* ī to i */
{ 0x012C, 0x49, 0x00 }, /* Ĭ to I */
{ 0x012D, 0x69, 0x00 }, /* ĭ to i */
{ 0x012E, 0x49, 0x00 }, /* Į to I */
{ 0x012F, 0x69, 0x00 }, /* į to i */
{ 0x0130, 0x49, 0x00 }, /* İ to I */
{ 0x0131, 0x69, 0x00 }, /* ı to i */
{ 0x0132, 0x49, 0x4A }, /* IJ to IJ */
{ 0x0133, 0x69, 0x6A }, /* ij to ij */
{ 0x0134, 0x4A, 0x68 }, /* Ĵ to Jh */
{ 0x0135, 0x6A, 0x68 }, /* ĵ to jh */
{ 0x0136, 0x4B, 0x00 }, /* Ķ to K */
{ 0x0137, 0x6B, 0x00 }, /* ķ to k */
{ 0x0138, 0x6B, 0x00 }, /* ĸ to k */
{ 0x0139, 0x4C, 0x00 }, /* Ĺ to L */
{ 0x013A, 0x6C, 0x00 }, /* ĺ to l */
{ 0x013B, 0x4C, 0x00 }, /* Ļ to L */
{ 0x013C, 0x6C, 0x00 }, /* ļ to l */
{ 0x013D, 0x4C, 0x00 }, /* Ľ to L */
{ 0x013E, 0x6C, 0x00 }, /* ľ to l */
{ 0x013F, 0x4C, 0x2E }, /* Ŀ to L. */
{ 0x0140, 0x6C, 0x2E }, /* ŀ to l. */
{ 0x0141, 0x4C, 0x00 }, /* Ł to L */
{ 0x0142, 0x6C, 0x00 }, /* ł to l */
{ 0x0143, 0x4E, 0x00 }, /* Ń to N */
{ 0x0144, 0x6E, 0x00 }, /* ń to n */
{ 0x0145, 0x4E, 0x00 }, /* Ņ to N */
{ 0x0146, 0x6E, 0x00 }, /* ņ to n */
{ 0x0147, 0x4E, 0x00 }, /* Ň to N */
{ 0x0148, 0x6E, 0x00 }, /* ň to n */
{ 0x0149, 0x27, 0x6E }, /* ʼn to 'n */
{ 0x014A, 0x4E, 0x47 }, /* Ŋ to NG */
{ 0x014B, 0x6E, 0x67 }, /* ŋ to ng */
{ 0x014C, 0x4F, 0x00 }, /* Ō to O */
{ 0x014D, 0x6F, 0x00 }, /* ō to o */
{ 0x014E, 0x4F, 0x00 }, /* Ŏ to O */
{ 0x014F, 0x6F, 0x00 }, /* ŏ to o */
{ 0x0150, 0x4F, 0x00 }, /* Ő to O */
{ 0x0151, 0x6F, 0x00 }, /* ő to o */
{ 0x0152, 0x4F, 0x45 }, /* Œ to OE */
{ 0x0153, 0x6F, 0x65 }, /* œ to oe */
{ 0x0154, 0x52, 0x00 }, /* Ŕ to R */
{ 0x0155, 0x72, 0x00 }, /* ŕ to r */
{ 0x0156, 0x52, 0x00 }, /* Ŗ to R */
{ 0x0157, 0x72, 0x00 }, /* ŗ to r */
{ 0x0158, 0x52, 0x00 }, /* Ř to R */
{ 0x0159, 0x72, 0x00 }, /* ř to r */
{ 0x015A, 0x53, 0x00 }, /* Ś to S */
{ 0x015B, 0x73, 0x00 }, /* ś to s */
{ 0x015C, 0x53, 0x68 }, /* Ŝ to Sh */
{ 0x015D, 0x73, 0x68 }, /* ŝ to sh */
{ 0x015E, 0x53, 0x00 }, /* Ş to S */
{ 0x015F, 0x73, 0x00 }, /* ş to s */
{ 0x0160, 0x53, 0x00 }, /* Š to S */
{ 0x0161, 0x73, 0x00 }, /* š to s */
{ 0x0162, 0x54, 0x00 }, /* Ţ to T */
{ 0x0163, 0x74, 0x00 }, /* ţ to t */
{ 0x0164, 0x54, 0x00 }, /* Ť to T */
{ 0x0165, 0x74, 0x00 }, /* ť to t */
{ 0x0166, 0x54, 0x00 }, /* Ŧ to T */
{ 0x0167, 0x74, 0x00 }, /* ŧ to t */
{ 0x0168, 0x55, 0x00 }, /* Ũ to U */
{ 0x0169, 0x75, 0x00 }, /* ũ to u */
{ 0x016A, 0x55, 0x00 }, /* Ū to U */
{ 0x016B, 0x75, 0x00 }, /* ū to u */
{ 0x016C, 0x55, 0x00 }, /* Ŭ to U */
{ 0x016D, 0x75, 0x00 }, /* ŭ to u */
{ 0x016E, 0x55, 0x00 }, /* Ů to U */
{ 0x016F, 0x75, 0x00 }, /* ů to u */
{ 0x0170, 0x55, 0x00 }, /* Ű to U */
{ 0x0171, 0x75, 0x00 }, /* ű to u */
{ 0x0172, 0x55, 0x00 }, /* Ų to U */
{ 0x0173, 0x75, 0x00 }, /* ų to u */
{ 0x0174, 0x57, 0x00 }, /* Ŵ to W */
{ 0x0175, 0x77, 0x00 }, /* ŵ to w */
{ 0x0176, 0x59, 0x00 }, /* Ŷ to Y */
{ 0x0177, 0x79, 0x00 }, /* ŷ to y */
{ 0x0178, 0x59, 0x00 }, /* Ÿ to Y */
{ 0x0179, 0x5A, 0x00 }, /* Ź to Z */
{ 0x017A, 0x7A, 0x00 }, /* ź to z */
{ 0x017B, 0x5A, 0x00 }, /* Ż to Z */
{ 0x017C, 0x7A, 0x00 }, /* ż to z */
{ 0x017D, 0x5A, 0x00 }, /* Ž to Z */
{ 0x017E, 0x7A, 0x00 }, /* ž to z */
{ 0x017F, 0x73, 0x00 }, /* ſ to s */
{ 0x0192, 0x66, 0x00 }, /* ƒ to f */
{ 0x0218, 0x53, 0x00 }, /* Ș to S */
{ 0x0219, 0x73, 0x00 }, /* ș to s */
{ 0x021A, 0x54, 0x00 }, /* Ț to T */
{ 0x021B, 0x74, 0x00 }, /* ț to t */
{ 0x0386, 0x41, 0x00 }, /* Ά to A */
{ 0x0388, 0x45, 0x00 }, /* Έ to E */
{ 0x0389, 0x49, 0x00 }, /* Ή to I */
{ 0x038A, 0x49, 0x00 }, /* Ί to I */
{ 0x038C, 0x4f, 0x00 }, /* Ό to O */
{ 0x038E, 0x59, 0x00 }, /* Ύ to Y */
{ 0x038F, 0x4f, 0x00 }, /* Ώ to O */
{ 0x0390, 0x69, 0x00 }, /* ΐ to i */
{ 0x0391, 0x41, 0x00 }, /* Α to A */
{ 0x0392, 0x42, 0x00 }, /* Β to B */
{ 0x0393, 0x47, 0x00 }, /* Γ to G */
{ 0x0394, 0x44, 0x00 }, /* Δ to D */
{ 0x0395, 0x45, 0x00 }, /* Ε to E */
{ 0x0396, 0x5a, 0x00 }, /* Ζ to Z */
{ 0x0397, 0x49, 0x00 }, /* Η to I */
{ 0x0398, 0x54, 0x68 }, /* Θ to Th */
{ 0x0399, 0x49, 0x00 }, /* Ι to I */
{ 0x039A, 0x4b, 0x00 }, /* Κ to K */
{ 0x039B, 0x4c, 0x00 }, /* Λ to L */
{ 0x039C, 0x4d, 0x00 }, /* Μ to M */
{ 0x039D, 0x4e, 0x00 }, /* Ν to N */
{ 0x039E, 0x58, 0x00 }, /* Ξ to X */
{ 0x039F, 0x4f, 0x00 }, /* Ο to O */
{ 0x03A0, 0x50, 0x00 }, /* Π to P */
{ 0x03A1, 0x52, 0x00 }, /* Ρ to R */
{ 0x03A3, 0x53, 0x00 }, /* Σ to S */
{ 0x03A4, 0x54, 0x00 }, /* Τ to T */
{ 0x03A5, 0x59, 0x00 }, /* Υ to Y */
{ 0x03A6, 0x46, 0x00 }, /* Φ to F */
{ 0x03A7, 0x43, 0x68 }, /* Χ to Ch */
{ 0x03A8, 0x50, 0x73 }, /* Ψ to Ps */
{ 0x03A9, 0x4f, 0x00 }, /* Ω to O */
{ 0x03AA, 0x49, 0x00 }, /* Ϊ to I */
{ 0x03AB, 0x59, 0x00 }, /* Ϋ to Y */
{ 0x03AC, 0x61, 0x00 }, /* ά to a */
{ 0x03AD, 0x65, 0x00 }, /* έ to e */
{ 0x03AE, 0x69, 0x00 }, /* ή to i */
{ 0x03AF, 0x69, 0x00 }, /* ί to i */
{ 0x03B1, 0x61, 0x00 }, /* α to a */
{ 0x03B2, 0x62, 0x00 }, /* β to b */
{ 0x03B3, 0x67, 0x00 }, /* γ to g */
{ 0x03B4, 0x64, 0x00 }, /* δ to d */
{ 0x03B5, 0x65, 0x00 }, /* ε to e */
{ 0x03B6, 0x7a, 0x00 }, /* ζ to z */
{ 0x03B7, 0x69, 0x00 }, /* η to i */
{ 0x03B8, 0x74, 0x68 }, /* θ to th */
{ 0x03B9, 0x69, 0x00 }, /* ι to i */
{ 0x03BA, 0x6b, 0x00 }, /* κ to k */
{ 0x03BB, 0x6c, 0x00 }, /* λ to l */
{ 0x03BC, 0x6d, 0x00 }, /* μ to m */
{ 0x03BD, 0x6e, 0x00 }, /* ν to n */
{ 0x03BE, 0x78, 0x00 }, /* ξ to x */
{ 0x03BF, 0x6f, 0x00 }, /* ο to o */
{ 0x03C0, 0x70, 0x00 }, /* π to p */
{ 0x03C1, 0x72, 0x00 }, /* ρ to r */
{ 0x03C3, 0x73, 0x00 }, /* σ to s */
{ 0x03C4, 0x74, 0x00 }, /* τ to t */
{ 0x03C5, 0x79, 0x00 }, /* υ to y */
{ 0x03C6, 0x66, 0x00 }, /* φ to f */
{ 0x03C7, 0x63, 0x68 }, /* χ to ch */
{ 0x03C8, 0x70, 0x73 }, /* ψ to ps */
{ 0x03C9, 0x6f, 0x00 }, /* ω to o */
{ 0x03CA, 0x69, 0x00 }, /* ϊ to i */
{ 0x03CB, 0x79, 0x00 }, /* ϋ to y */
{ 0x03CC, 0x6f, 0x00 }, /* ό to o */
{ 0x03CD, 0x79, 0x00 }, /* ύ to y */
{ 0x03CE, 0x69, 0x00 }, /* ώ to i */
{ 0x0400, 0x45, 0x00 }, /* Ѐ to E */
{ 0x0401, 0x45, 0x00 }, /* Ё to E */
{ 0x0402, 0x44, 0x00 }, /* Ђ to D */
{ 0x0403, 0x47, 0x00 }, /* Ѓ to G */
{ 0x0404, 0x45, 0x00 }, /* Є to E */
{ 0x0405, 0x5a, 0x00 }, /* Ѕ to Z */
{ 0x0406, 0x49, 0x00 }, /* І to I */
{ 0x0407, 0x49, 0x00 }, /* Ї to I */
{ 0x0408, 0x4a, 0x00 }, /* Ј to J */
{ 0x0409, 0x49, 0x00 }, /* Љ to I */
{ 0x040A, 0x4e, 0x00 }, /* Њ to N */
{ 0x040B, 0x44, 0x00 }, /* Ћ to D */
{ 0x040C, 0x4b, 0x00 }, /* Ќ to K */
{ 0x040D, 0x49, 0x00 }, /* Ѝ to I */
{ 0x040E, 0x55, 0x00 }, /* Ў to U */
{ 0x040F, 0x44, 0x00 }, /* Џ to D */
{ 0x0410, 0x41, 0x00 }, /* А to A */
{ 0x0411, 0x42, 0x00 }, /* Б to B */
{ 0x0412, 0x56, 0x00 }, /* В to V */
{ 0x0413, 0x47, 0x00 }, /* Г to G */
{ 0x0414, 0x44, 0x00 }, /* Д to D */
{ 0x0415, 0x45, 0x00 }, /* Е to E */
{ 0x0416, 0x5a, 0x68 }, /* Ж to Zh */
{ 0x0417, 0x5a, 0x00 }, /* З to Z */
{ 0x0418, 0x49, 0x00 }, /* И to I */
{ 0x0419, 0x49, 0x00 }, /* Й to I */
{ 0x041A, 0x4b, 0x00 }, /* К to K */
{ 0x041B, 0x4c, 0x00 }, /* Л to L */
{ 0x041C, 0x4d, 0x00 }, /* М to M */
{ 0x041D, 0x4e, 0x00 }, /* Н to N */
{ 0x041E, 0x4f, 0x00 }, /* О to O */
{ 0x041F, 0x50, 0x00 }, /* П to P */
{ 0x0420, 0x52, 0x00 }, /* Р to R */
{ 0x0421, 0x53, 0x00 }, /* С to S */
{ 0x0422, 0x54, 0x00 }, /* Т to T */
{ 0x0423, 0x55, 0x00 }, /* У to U */
{ 0x0424, 0x46, 0x00 }, /* Ф to F */
{ 0x0425, 0x4b, 0x68 }, /* Х to Kh */
{ 0x0426, 0x54, 0x63 }, /* Ц to Tc */
{ 0x0427, 0x43, 0x68 }, /* Ч to Ch */
{ 0x0428, 0x53, 0x68 }, /* Ш to Sh */
{ 0x0429, 0x53, 0x68 }, /* Щ to Shch */
{ 0x042B, 0x59, 0x00 }, /* Ы to Y */
{ 0x042D, 0x45, 0x00 }, /* Э to E */
{ 0x042E, 0x49, 0x75 }, /* Ю to Iu */
{ 0x042F, 0x49, 0x61 }, /* Я to Ia */
{ 0x0430, 0x61, 0x00 }, /* а to a */
{ 0x0431, 0x62, 0x00 }, /* б to b */
{ 0x0432, 0x76, 0x00 }, /* в to v */
{ 0x0433, 0x67, 0x00 }, /* г to g */
{ 0x0434, 0x64, 0x00 }, /* д to d */
{ 0x0435, 0x65, 0x00 }, /* е to e */
{ 0x0436, 0x7a, 0x68 }, /* ж to zh */
{ 0x0437, 0x7a, 0x00 }, /* з to z */
{ 0x0438, 0x69, 0x00 }, /* и to i */
{ 0x0439, 0x69, 0x00 }, /* й to i */
{ 0x043A, 0x6b, 0x00 }, /* к to k */
{ 0x043B, 0x6c, 0x00 }, /* л to l */
{ 0x043C, 0x6d, 0x00 }, /* м to m */
{ 0x043D, 0x6e, 0x00 }, /* н to n */
{ 0x043E, 0x6f, 0x00 }, /* о to o */
{ 0x043F, 0x70, 0x00 }, /* п to p */
{ 0x0440, 0x72, 0x00 }, /* р to r */
{ 0x0441, 0x73, 0x00 }, /* с to s */
{ 0x0442, 0x74, 0x00 }, /* т to t */
{ 0x0443, 0x75, 0x00 }, /* у to u */
{ 0x0444, 0x66, 0x00 }, /* ф to f */
{ 0x0445, 0x6b, 0x68 }, /* х to kh */
{ 0x0446, 0x74, 0x63 }, /* ц to tc */
{ 0x0447, 0x63, 0x68 }, /* ч to ch */
{ 0x0448, 0x73, 0x68 }, /* ш to sh */
{ 0x0449, 0x73, 0x68 }, /* щ to shch */
{ 0x044B, 0x79, 0x00 }, /* ы to y */
{ 0x044D, 0x65, 0x00 }, /* э to e */
{ 0x044E, 0x69, 0x75 }, /* ю to iu */
{ 0x044F, 0x69, 0x61 }, /* я to ia */
{ 0x0450, 0x65, 0x00 }, /* ѐ to e */
{ 0x0451, 0x65, 0x00 }, /* ё to e */
{ 0x0452, 0x64, 0x00 }, /* ђ to d */
{ 0x0453, 0x67, 0x00 }, /* ѓ to g */
{ 0x0454, 0x65, 0x00 }, /* є to e */
{ 0x0455, 0x7a, 0x00 }, /* ѕ to z */
{ 0x0456, 0x69, 0x00 }, /* і to i */
{ 0x0457, 0x69, 0x00 }, /* ї to i */
{ 0x0458, 0x6a, 0x00 }, /* ј to j */
{ 0x0459, 0x69, 0x00 }, /* љ to i */
{ 0x045A, 0x6e, 0x00 }, /* њ to n */
{ 0x045B, 0x64, 0x00 }, /* ћ to d */
{ 0x045C, 0x6b, 0x00 }, /* ќ to k */
{ 0x045D, 0x69, 0x00 }, /* ѝ to i */
{ 0x045E, 0x75, 0x00 }, /* ў to u */
{ 0x045F, 0x64, 0x00 }, /* џ to d */
{ 0x1E02, 0x42, 0x00 }, /* Ḃ to B */
{ 0x1E03, 0x62, 0x00 }, /* ḃ to b */
{ 0x1E0A, 0x44, 0x00 }, /* Ḋ to D */
{ 0x1E0B, 0x64, 0x00 }, /* ḋ to d */
{ 0x1E1E, 0x46, 0x00 }, /* Ḟ to F */
{ 0x1E1F, 0x66, 0x00 }, /* ḟ to f */
{ 0x1E40, 0x4D, 0x00 }, /* Ṁ to M */
{ 0x1E41, 0x6D, 0x00 }, /* ṁ to m */
{ 0x1E56, 0x50, 0x00 }, /* Ṗ to P */
{ 0x1E57, 0x70, 0x00 }, /* ṗ to p */
{ 0x1E60, 0x53, 0x00 }, /* Ṡ to S */
{ 0x1E61, 0x73, 0x00 }, /* ṡ to s */
{ 0x1E6A, 0x54, 0x00 }, /* Ṫ to T */
{ 0x1E6B, 0x74, 0x00 }, /* ṫ to t */
{ 0x1E80, 0x57, 0x00 }, /* Ẁ to W */
{ 0x1E81, 0x77, 0x00 }, /* ẁ to w */
{ 0x1E82, 0x57, 0x00 }, /* Ẃ to W */
{ 0x1E83, 0x77, 0x00 }, /* ẃ to w */
{ 0x1E84, 0x57, 0x00 }, /* Ẅ to W */
{ 0x1E85, 0x77, 0x00 }, /* ẅ to w */
{ 0x1EF2, 0x59, 0x00 }, /* Ỳ to Y */
{ 0x1EF3, 0x79, 0x00 }, /* ỳ to y */
{ 0xFB00, 0x66, 0x66 }, /* ff to ff */
{ 0xFB01, 0x66, 0x69 }, /* fi to fi */
{ 0xFB02, 0x66, 0x6C }, /* fl to fl */
{ 0xFB05, 0x73, 0x74 }, /* ſt to st */
{ 0xFB06, 0x73, 0x74 }, /* st to st */
};
/*
** Convert the input string from UTF-8 into pure ASCII by converting
** all non-ASCII characters to some combination of characters in the
** ASCII subset.
**
** The returned string might contain more characters than the input.
**
** Space to hold the returned string comes from sqlite3_malloc() and
** should be freed by the caller.
*/
static unsigned char *transliterate(const unsigned char *zIn, int nIn){
unsigned char *zOut = sqlite3_malloc( nIn*4 + 1 );
int i, c, sz, nOut;
if( zOut==0 ) return 0;
i = nOut = 0;
while( i<nIn ){
c = utf8Read(zIn, nIn, &sz);
zIn += sz;
nIn -= sz;
if( c<=127 ){
zOut[nOut++] = c;
}else{
int xTop, xBtm, x;
xTop = sizeof(translit)/sizeof(translit[0]) - 1;
xBtm = 0;
while( xTop>=xBtm ){
x = (xTop + xBtm)/2;
if( translit[x].cFrom==c ){
zOut[nOut++] = translit[x].cTo0;
if( translit[x].cTo1 ){
zOut[nOut++] = translit[x].cTo1;
/* Add an extra "ch" after the "sh" for Щ and щ */
if( c==0x0429 || c== 0x0449 ){
zOut[nOut++] = 'c';
zOut[nOut++] = 'h';
}
}
c = 0;
break;
}else if( translit[x].cFrom>c ){
xTop = x-1;
}else{
xBtm = x+1;
}
}
if( c ) zOut[nOut++] = '?';
}
}
zOut[nOut] = 0;
return zOut;
}
/*
** spellfix1_translit(X)
**
** Convert a string that contains non-ASCII Roman characters into
** pure ASCII.
*/
static void transliterateSqlFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zIn = sqlite3_value_text(argv[0]);
int nIn = sqlite3_value_bytes(argv[0]);
unsigned char *zOut = transliterate(zIn, nIn);
if( zOut==0 ){
sqlite3_result_error_nomem(context);
}else{
sqlite3_result_text(context, (char*)zOut, -1, sqlite3_free);
}
}
/*
** spellfix1_scriptcode(X)
**
** Try to determine the dominant script used by the word X and return
** its ISO 15924 numeric code.
**
** The current implementation only understands the following scripts:
**
** 215 (Latin)
** 220 (Cyrillic)
** 200 (Greek)
**
** This routine will return 998 if the input X contains characters from
** two or more of the above scripts or 999 if X contains no characters
** from any of the above scripts.
*/
static void scriptCodeSqlFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const unsigned char *zIn = sqlite3_value_text(argv[0]);
int nIn = sqlite3_value_bytes(argv[0]);
int c, sz;
int scriptMask = 0;
int res;
# define SCRIPT_LATIN 0x0001
# define SCRIPT_CYRILLIC 0x0002
# define SCRIPT_GREEK 0x0004
while( nIn>0 ){
c = utf8Read(zIn, nIn, &sz);
zIn += sz;
nIn -= sz;
if( c<0x02af ){
scriptMask |= SCRIPT_LATIN;
}else if( c>=0x0400 && c<=0x04ff ){
scriptMask |= SCRIPT_CYRILLIC;
}else if( c>=0x0386 && c<=0x03ce ){
scriptMask |= SCRIPT_GREEK;
}
}
switch( scriptMask ){
case 0: res = 999; break;
case SCRIPT_LATIN: res = 215; break;
case SCRIPT_CYRILLIC: res = 220; break;
case SCRIPT_GREEK: res = 200; break;
default: res = 998; break;
}
sqlite3_result_int(context, res);
}
/*****************************************************************************
** Fuzzy-search virtual table
*****************************************************************************/
typedef struct spellfix1_vtab spellfix1_vtab;
typedef struct spellfix1_cursor spellfix1_cursor;
/* Fuzzy-search virtual table object */
struct spellfix1_vtab {
sqlite3_vtab base; /* Base class - must be first */
sqlite3 *db; /* Database connection */
char *zDbName; /* Name of database holding this table */
char *zTableName; /* Name of the virtual table */
};
/* Fuzzy-search cursor object */
struct spellfix1_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
spellfix1_vtab *pVTab; /* The table to which this cursor belongs */
int nRow; /* Number of rows of content */
int nAlloc; /* Number of allocated rows */
int iRow; /* Current row of content */
int iLang; /* Value of the lang= constraint */
int iTop; /* Value of the top= constraint */
int iScope; /* Value of the scope= constraint */
int nSearch; /* Number of vocabulary items checked */
struct spellfix1_row { /* For each row of content */
sqlite3_int64 iRowid; /* Rowid for this row */
char *zWord; /* Text for this row */
int iRank; /* Rank for this row */
int iDistance; /* Distance from pattern for this row */
int iScore; /* Score for sorting */
} *a;
};
/*
** Construct one or more SQL statements from the format string given
** and then evaluate those statements. The success code is written
** into *pRc.
**
** If *pRc is initially non-zero then this routine is a no-op.
*/
static void spellfix1DbExec(
int *pRc, /* Success code */
sqlite3 *db, /* Database in which to run SQL */
const char *zFormat, /* Format string for SQL */
... /* Arguments to the format string */
){
va_list ap;
char *zSql;
if( *pRc ) return;
va_start(ap, zFormat);
zSql = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
if( zSql==0 ){
*pRc = SQLITE_NOMEM;
}else{
*pRc = sqlite3_exec(db, zSql, 0, 0, 0);
sqlite3_free(zSql);
}
}
/*
** xDisconnect/xDestroy method for the fuzzy-search module.
*/
static int spellfix1Uninit(int isDestroy, sqlite3_vtab *pVTab){
spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
int rc = SQLITE_OK;
if( isDestroy ){
sqlite3 *db = p->db;
spellfix1DbExec(&rc, db, "DROP TABLE IF EXISTS \"%w\".\"%w_vocab\"",
p->zDbName, p->zTableName);
}
if( rc==SQLITE_OK ){
sqlite3_free(p->zTableName);
sqlite3_free(p);
}
return rc;
}
static int spellfix1Disconnect(sqlite3_vtab *pVTab){
return spellfix1Uninit(0, pVTab);
}
static int spellfix1Destroy(sqlite3_vtab *pVTab){
return spellfix1Uninit(1, pVTab);
}
/*
** xConnect/xCreate method for the spellfix1 module. Arguments are:
**
** argv[0] -> module name ("spellfix1")
** argv[1] -> database name
** argv[2] -> table name
** argv[3].. -> optional arguments (currently ignored)
*/
static int spellfix1Init(
int isCreate,
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr
){
spellfix1_vtab *pNew = 0;
const char *zModule = argv[0];
const char *zDbName = argv[1];
const char *zTableName = argv[2];
int nDbName;
int rc = SQLITE_OK;
if( argc<3 ){
*pzErr = sqlite3_mprintf(
"%s: wrong number of CREATE VIRTUAL TABLE arguments", argv[0]
);
rc = SQLITE_ERROR;
}else{
nDbName = strlen(zDbName);
pNew = sqlite3_malloc( sizeof(*pNew) + nDbName + 1);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pNew, 0, sizeof(*pNew));
pNew->zDbName = (char*)&pNew[1];
memcpy(pNew->zDbName, zDbName, nDbName+1);
pNew->zTableName = sqlite3_mprintf("%s", zTableName);
pNew->db = db;
if( pNew->zTableName==0 ){
rc = SQLITE_NOMEM;
}else{
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(word,rank,distance,langid,"
"score,top HIDDEN,scope HIDDEN,srchcnt HIDDEN,"
"soundslike HIDDEN)"
);
}
if( rc==SQLITE_OK && isCreate ){
sqlite3_uint64 r;
spellfix1DbExec(&rc, db,
"CREATE TABLE IF NOT EXISTS \"%w\".\"%w_vocab\"(\n"
" id INTEGER PRIMARY KEY,\n"
" rank INT,\n"
" langid INT,\n"
" word TEXT,\n"
" k1 TEXT,\n"
" k2 TEXT\n"
");\n",
zDbName, zTableName
);
sqlite3_randomness(sizeof(r), &r);
spellfix1DbExec(&rc, db,
"CREATE INDEX IF NOT EXISTS \"%w\".\"%w_index_%llx\" "
"ON \"%w_vocab\"(langid,k2);",
zDbName, zModule, r, zTableName
);
}
}
}
*ppVTab = (sqlite3_vtab *)pNew;
return rc;
}
/*
** The xConnect and xCreate methods
*/
static int spellfix1Connect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr
){
return spellfix1Init(0, db, pAux, argc, argv, ppVTab, pzErr);
}
static int spellfix1Create(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVTab,
char **pzErr
){
return spellfix1Init(1, db, pAux, argc, argv, ppVTab, pzErr);
}
/*
** Reset a cursor so that it contains zero rows of content but holds
** space for N rows.
*/
static void spellfix1ResetCursor(spellfix1_cursor *pCur, int N){
int i;
for(i=0; i<pCur->nRow; i++){
sqlite3_free(pCur->a[i].zWord);
}
pCur->a = sqlite3_realloc(pCur->a, sizeof(pCur->a[0])*N);
pCur->nAlloc = N;
pCur->nRow = 0;
pCur->iRow = 0;
pCur->nSearch = 0;
}
/*
** Close a fuzzy-search cursor.
*/
static int spellfix1Close(sqlite3_vtab_cursor *cur){
spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
spellfix1ResetCursor(pCur, 0);
sqlite3_free(pCur);
return SQLITE_OK;
}
/*
** Search for terms of these forms:
**
** (A) word MATCH $str
** (B) langid == $langid
** (C) top = $top
** (D) scope = $scope
**
** The plan number is a bit mask formed with these bits:
**
** 0x01 (A) is found
** 0x02 (B) is found
** 0x04 (C) is found
** 0x08 (D) is found
**
** filter.argv[*] values contains $str, $langid, $top, and $scope,
** if specified and in that order.
*/
static int spellfix1BestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
int iPlan = 0;
int iLangTerm = -1;
int iTopTerm = -1;
int iScopeTerm = -1;
int i;
const struct sqlite3_index_constraint *pConstraint;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
/* Terms of the form: word MATCH $str */
if( (iPlan & 1)==0
&& pConstraint->iColumn==0
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
){
iPlan |= 1;
pIdxInfo->aConstraintUsage[i].argvIndex = 1;
pIdxInfo->aConstraintUsage[i].omit = 1;
}
/* Terms of the form: langid = $langid */
if( (iPlan & 2)==0
&& pConstraint->iColumn==3
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
){
iPlan |= 2;
iLangTerm = i;
}
/* Terms of the form: top = $top */
if( (iPlan & 4)==0
&& pConstraint->iColumn==5
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
){
iPlan |= 4;
iTopTerm = i;
}
/* Terms of the form: scope = $scope */
if( (iPlan & 8)==0
&& pConstraint->iColumn==6
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
){
iPlan |= 8;
iScopeTerm = i;
}
}
if( iPlan&1 ){
int idx = 2;
pIdxInfo->idxNum = iPlan;
if( pIdxInfo->nOrderBy==1
&& pIdxInfo->aOrderBy[0].iColumn==4
&& pIdxInfo->aOrderBy[0].desc==0
){
pIdxInfo->orderByConsumed = 1; /* Default order by iScore */
}
if( iPlan&2 ){
pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx++;
pIdxInfo->aConstraintUsage[iLangTerm].omit = 1;
}
if( iPlan&4 ){
pIdxInfo->aConstraintUsage[iTopTerm].argvIndex = idx++;
pIdxInfo->aConstraintUsage[iTopTerm].omit = 1;
}
if( iPlan&8 ){
pIdxInfo->aConstraintUsage[iScopeTerm].argvIndex = idx++;
pIdxInfo->aConstraintUsage[iScopeTerm].omit = 1;
}
pIdxInfo->estimatedCost = (double)10000;
}else{
pIdxInfo->idxNum = 0;
pIdxInfo->estimatedCost = (double)10000000;
}
return SQLITE_OK;
}
/*
** Open a new fuzzy-search cursor.
*/
static int spellfix1Open(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
spellfix1_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
pCur->pVTab = p;
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Adjust a distance measurement by the words rank in order to show
** preference to common words.
*/
static int spellfix1Score(int iDistance, int iRank){
int iLog2;
for(iLog2=0; iRank>0; iLog2++, iRank>>=1){}
return iDistance + 32 - iLog2;
}
/*
** Compare two spellfix1_row objects for sorting purposes in qsort() such
** that they sort in order of increasing distance.
*/
static int spellfix1RowCompare(const void *A, const void *B){
const struct spellfix1_row *a = (const struct spellfix1_row*)A;
const struct spellfix1_row *b = (const struct spellfix1_row*)B;
return a->iScore - b->iScore;
}
/*
** This version of the xFilter method work if the MATCH term is present
** and we are doing a scan.
*/
static int spellfix1FilterForMatch(
spellfix1_cursor *pCur,
int idxNum,
int argc,
sqlite3_value **argv
){
const unsigned char *zPatternIn;
char *zPattern;
int nPattern;
char *zClass;
int nClass;
int iLimit = 20;
int iScope = 4;
int iLang = 0;
char *zSql;
int rc;
sqlite3_stmt *pStmt;
int idx = 1;
spellfix1_vtab *p = pCur->pVTab;
if( idxNum&2 ){
iLang = sqlite3_value_int(argv[idx++]);
}
if( idxNum&4 ){
iLimit = sqlite3_value_int(argv[idx++]);
if( iLimit<1 ) iLimit = 1;
}
if( idxNum&8 ){
iScope = sqlite3_value_int(argv[idx++]);
if( iScope<1 ) iScope = 1;
}
spellfix1ResetCursor(pCur, iLimit);
zPatternIn = sqlite3_value_text(argv[0]);
if( zPatternIn==0 ) return SQLITE_OK;
zPattern = (char*)transliterate(zPatternIn, sqlite3_value_bytes(argv[0]));
if( zPattern==0 ) return SQLITE_NOMEM;
nPattern = strlen(zPattern);
if( zPattern[nPattern-1]=='*' ) nPattern--;
if( nPattern<iScope ) iScope = nPattern;
zClass = (char*)characterClassString((unsigned char*)zPattern,
strlen(zPattern));
nClass = strlen(zClass);
if( nClass>iScope ){
zClass[iScope] = 0;
nClass = iScope;
}
zSql = sqlite3_mprintf(
"SELECT id, word, rank, k1"
" FROM \"%w\".\"%w_vocab\""
" WHERE langid=%d AND k2 GLOB '%q*'",
p->zDbName, p->zTableName, iLang, zClass
);
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc==SQLITE_OK ){
const char *zK1;
int iDist;
int iRank;
int iScore;
int iWorst = 999999999;
int idx;
int idxWorst;
int i;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
zK1 = (const char*)sqlite3_column_text(pStmt, 3);
if( zK1==0 ) continue;
pCur->nSearch++;
iRank = sqlite3_column_int(pStmt, 2);
iDist = editdist(zPattern, zK1);
iScore = spellfix1Score(iDist,iRank);
if( pCur->nRow<pCur->nAlloc ){
idx = pCur->nRow;
}else if( iScore<iWorst ){
idx = idxWorst;
sqlite3_free(pCur->a[idx].zWord);
}else{
continue;
}
pCur->a[idx].zWord = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
pCur->a[idx].iRowid = sqlite3_column_int64(pStmt, 0);
pCur->a[idx].iRank = iRank;
pCur->a[idx].iDistance = iDist;
pCur->a[idx].iScore = iScore;
if( pCur->nRow<pCur->nAlloc ) pCur->nRow++;
if( pCur->nRow==pCur->nAlloc ){
iWorst = pCur->a[0].iScore;
idxWorst = 0;
for(i=1; i<pCur->nRow; i++){
iScore = pCur->a[i].iScore;
if( iWorst<iScore ){
iWorst = iScore;
idxWorst = i;
}
}
}
}
}
qsort(pCur->a, pCur->nRow, sizeof(pCur->a[0]), spellfix1RowCompare);
pCur->iTop = iLimit;
pCur->iScope = iScope;
sqlite3_finalize(pStmt);
sqlite3_free(zPattern);
sqlite3_free(zClass);
return SQLITE_OK;
}
/*
** This version of xFilter handles a full-table scan case
*/
static int spellfix1FilterForFullScan(
spellfix1_cursor *pCur,
int idxNum,
int argc,
sqlite3_value **argv
){
spellfix1ResetCursor(pCur, 0);
return SQLITE_OK;
}
/*
** Called to "rewind" a cursor back to the beginning so that
** it starts its output over again. Always called at least once
** prior to any spellfix1Column, spellfix1Rowid, or spellfix1Eof call.
*/
static int spellfix1Filter(
sqlite3_vtab_cursor *cur,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
int rc;
if( idxNum & 1 ){
rc = spellfix1FilterForMatch(pCur, idxNum, argc, argv);
}else{
rc = spellfix1FilterForFullScan(pCur, idxNum, argc, argv);
}
return rc;
}
/*
** Advance a cursor to its next row of output
*/
static int spellfix1Next(sqlite3_vtab_cursor *cur){
spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
if( pCur->iRow < pCur->nRow ) pCur->iRow++;
return SQLITE_OK;
}
/*
** Return TRUE if we are at the end-of-file
*/
static int spellfix1Eof(sqlite3_vtab_cursor *cur){
spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
return pCur->iRow>=pCur->nRow;
}
/*
** Return columns from the current row.
*/
static int spellfix1Column(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
spellfix1_cursor *pCur = (spellfix1_cursor*)cur;
switch( i ){
case 0: {
sqlite3_result_text(ctx, pCur->a[pCur->iRow].zWord, -1, SQLITE_STATIC);
break;
}
case 1: {
sqlite3_result_int(ctx, pCur->a[pCur->iRow].iRank);
break;
}
case 2: {
sqlite3_result_int(ctx, pCur->a[pCur->iRow].iDistance);
break;
}
case 3: {
sqlite3_result_int(ctx, pCur->iLang);
break;
}
case 4: {
sqlite3_result_int(ctx, pCur->a[pCur->iRow].iScore);
break;
}
case 5: {
sqlite3_result_int(ctx, pCur->iTop);
break;
}
case 6: {
sqlite3_result_int(ctx, pCur->iScope);
break;
}
case 7: {
sqlite3_result_int(ctx, pCur->nSearch);
break;
}
default: {
sqlite3_result_null(ctx);
break;
}
}
return SQLITE_OK;
}
/*
** The rowid.
*/
static int spellfix1Rowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
spellfix1_cursor *pCur = (spellfix1_cursor*)cur;
*pRowid = pCur->a[pCur->iRow].iRowid;
return SQLITE_OK;
}
/*
** The xUpdate() method.
*/
static int spellfix1Update(
sqlite3_vtab *pVTab,
int argc,
sqlite3_value **argv,
sqlite_int64 *pRowid
){
int rc = SQLITE_OK;
sqlite3_int64 rowid, newRowid;
spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
sqlite3 *db = p->db;
if( argc==1 ){
/* A delete operation on the rowid given by argv[0] */
rowid = *pRowid = sqlite3_value_int64(argv[0]);
spellfix1DbExec(&rc, db, "DELETE FROM \"%w\".\"%w_vocab\" "
" WHERE id=%lld",
p->zDbName, p->zTableName, rowid);
}else{
const unsigned char *zWord = sqlite3_value_text(argv[2]);
int nWord = sqlite3_value_bytes(argv[2]);
int iLang = sqlite3_value_int(argv[5]);
int iRank = sqlite3_value_int(argv[3]);
const unsigned char *zSoundslike = sqlite3_value_text(argv[10]);
int nSoundslike = sqlite3_value_bytes(argv[10]);
char *zK1, *zK2;
int i;
char c;
if( zWord==0 ){
pVTab->zErrMsg = sqlite3_mprintf("%w.word may not be NULL",
p->zTableName);
return SQLITE_CONSTRAINT;
}
if( iRank<1 ) iRank = 1;
if( zSoundslike ){
zK1 = (char*)transliterate(zSoundslike, nSoundslike);
}else{
zK1 = (char*)transliterate(zWord, nWord);
}
if( zK1==0 ) return SQLITE_NOMEM;
for(i=0; (c = zK1[i])!=0; i++){
if( c>='A' && c<='Z' ) zK1[i] += 'a' - 'A';
}
zK2 = (char*)characterClassString((const unsigned char*)zK1, i);
if( zK2==0 ){
sqlite3_free(zK1);
return SQLITE_NOMEM;
}
if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
spellfix1DbExec(&rc, db,
"INSERT INTO \"%w\".\"%w_vocab\"(rank,langid,word,k1,k2) "
"VALUES(%d,%d,%Q,%Q,%Q)",
p->zDbName, p->zTableName,
iRank, iLang, zWord, zK1, zK2
);
*pRowid = sqlite3_last_insert_rowid(db);
}else{
rowid = sqlite3_value_int64(argv[0]);
newRowid = *pRowid = sqlite3_value_int64(argv[1]);
spellfix1DbExec(&rc, db,
"UPDATE \"%w\".\"%w_vocab\" SET id=%lld, rank=%d, lang=%d,"
" word=%Q, rank=%d, k1=%Q, k2=%Q WHERE id=%lld",
p->zDbName, p->zTableName, newRowid, iRank, iLang,
zWord, zK1, zK2, rowid
);
}
sqlite3_free(zK1);
sqlite3_free(zK2);
}
return rc;
}
/*
** Rename the spellfix1 table.
*/
static int spellfix1Rename(sqlite3_vtab *pVTab, const char *zNew){
spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
sqlite3 *db = p->db;
int rc = SQLITE_OK;
char *zNewName = sqlite3_mprintf("%s", zNew);
if( zNewName==0 ){
return SQLITE_NOMEM;
}
spellfix1DbExec(&rc, db,
"ALTER TABLE \"%w\".\"%w_vocab\" RENAME TO \"%w_vocab\"",
p->zDbName, p->zTableName, zNewName
);
if( rc==SQLITE_OK ){
sqlite3_free(p->zTableName);
p->zTableName = zNewName;
}
return rc;
}
/*
** A virtual table module that provides fuzzy search.
*/
static sqlite3_module spellfix1Module = {
0, /* iVersion */
spellfix1Create, /* xCreate - handle CREATE VIRTUAL TABLE */
spellfix1Connect, /* xConnect - reconnected to an existing table */
spellfix1BestIndex, /* xBestIndex - figure out how to do a query */
spellfix1Disconnect, /* xDisconnect - close a connection */
spellfix1Destroy, /* xDestroy - handle DROP TABLE */
spellfix1Open, /* xOpen - open a cursor */
spellfix1Close, /* xClose - close a cursor */
spellfix1Filter, /* xFilter - configure scan constraints */
spellfix1Next, /* xNext - advance a cursor */
spellfix1Eof, /* xEof - check for end of scan */
spellfix1Column, /* xColumn - read data */
spellfix1Rowid, /* xRowid - read data */
spellfix1Update, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
spellfix1Rename, /* xRename */
};
/*
** Register the various functions and the virtual table.
*/
static int spellfix1Register(sqlite3 *db){
int nErr = 0;
int i;
nErr += sqlite3_create_function(db, "spellfix1_translit", 1, SQLITE_UTF8, 0,
transliterateSqlFunc, 0, 0);
nErr += sqlite3_create_function(db, "spellfix1_editdist", 2, SQLITE_UTF8, 0,
editdistSqlFunc, 0, 0);
nErr += sqlite3_create_function(db, "spellfix1_charclass", 1, SQLITE_UTF8, 0,
characterClassSqlFunc, 0, 0);
nErr += sqlite3_create_function(db, "spellfix1_scriptcode", 1, SQLITE_UTF8, 0,
scriptCodeSqlFunc, 0, 0);
nErr += sqlite3_create_module(db, "spellfix1", &spellfix1Module, 0);
/* Verify sanity of the translit[] table */
for(i=0; i<sizeof(translit)/sizeof(translit[0])-1; i++){
assert( translit[i].cFrom<translit[i+1].cFrom );
}
return nErr ? SQLITE_ERROR : SQLITE_OK;
}
#if SQLITE_CORE || defined(SQLITE_TEST)
/*
** Register the spellfix1 virtual table and its associated functions.
*/
int sqlite3Spellfix1Register(sqlite3 *db){
return spellfix1Register(db);
}
#endif
#if !SQLITE_CORE
/*
** Extension load function.
*/
int sqlite3_extension_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
SQLITE_EXTENSION_INIT2(pApi);
return spellfix1Register(db);
}
#endif /* !SQLITE_CORE */
|