SQLite

Check-in [6fc4e79a]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Track total memory usage using a 64-bit integer on 64-bit systems. Add the sqlite3_status64() interface. Make the sqlite3_status() and sqlite3_status64() interfaces atomic using mutexes and verify correct mutex operation using assert() statements.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 6fc4e79a2350295a15ac464593ad39d904953041
User & Date: drh 2015-03-23 19:55:21
Context
2015-03-23
21:32
Disable loadable extensions in the command-line shell on VxWorks user-space. (check-in: 0ee2d38d user: drh tags: trunk)
19:55
Track total memory usage using a 64-bit integer on 64-bit systems. Add the sqlite3_status64() interface. Make the sqlite3_status() and sqlite3_status64() interfaces atomic using mutexes and verify correct mutex operation using assert() statements. (check-in: 6fc4e79a user: drh tags: trunk)
19:16
Fix a non-C89 variable declaration that causes problems for MSVC. (Closed-Leaf check-in: 3de085ea user: drh tags: status64)
19:03
Fix datetype size asserts in btree.c. (check-in: ff4812d0 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/main.c.
123
124
125
126
127
128
129





130
131
132
133
134
135
136

#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif






  /* If SQLite is already completely initialized, then this call
  ** to sqlite3_initialize() should be a no-op.  But the initialization
  ** must be complete.  So isInit must not be set until the very end
  ** of this routine.
  */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;







>
>
>
>
>







123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif

  /* If the following assert() fails on some obscure processor/compiler
  ** combination, the work-around is to set the correct pointer
  ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */
  assert( SQLITE_PTRSIZE==sizeof(char*) );

  /* If SQLite is already completely initialized, then this call
  ** to sqlite3_initialize() should be a no-op.  But the initialization
  ** must be complete.  So isInit must not be set until the very end
  ** of this routine.
  */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
Changes to src/malloc.c.
70
71
72
73
74
75
76







77
78
79
80
81
82
83
  ** True if heap is nearly "full" where "full" is defined by the
  ** sqlite3_soft_heap_limit() setting.
  */
  int nearlyFull;
} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };

#define mem0 GLOBAL(struct Mem0Global, mem0)








/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(







>
>
>
>
>
>
>







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  ** True if heap is nearly "full" where "full" is defined by the
  ** sqlite3_soft_heap_limit() setting.
  */
  int nearlyFull;
} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };

#define mem0 GLOBAL(struct Mem0Global, mem0)

/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}

/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
** Change the alarm callback
*/
static int sqlite3MemoryAlarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  int nUsed;
  sqlite3_mutex_enter(mem0.mutex);
  mem0.alarmCallback = xCallback;
  mem0.alarmArg = pArg;
  mem0.alarmThreshold = iThreshold;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
  sqlite3_mutex_leave(mem0.mutex);







|







100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
** Change the alarm callback
*/
static int sqlite3MemoryAlarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  sqlite3_int64 nUsed;
  sqlite3_mutex_enter(mem0.mutex);
  mem0.alarmCallback = xCallback;
  mem0.alarmArg = pArg;
  mem0.alarmThreshold = iThreshold;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
  sqlite3_mutex_leave(mem0.mutex);
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmCallback!=0 ){
    int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmCallback ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it







|
















|
|







269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmCallback!=0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmCallback ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3_mutex_leave(mem0.mutex);
    p = sqlite3Malloc(n);
    if( sqlite3GlobalConfig.bMemstat && p ){
      sqlite3_mutex_enter(mem0.mutex);
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
      sqlite3_mutex_leave(mem0.mutex);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );









|






|







364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3_mutex_leave(mem0.mutex);
    p = sqlite3Malloc(n);
    if( sqlite3GlobalConfig.bMemstat && p ){
      sqlite3_mutex_enter(mem0.mutex);
      sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
      sqlite3_mutex_leave(mem0.mutex);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      /* Release memory back to the heap */
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }







|









|
|
|







412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      /* Release memory back to the heap */
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3GlobalConfig.m.xFree(p);
  }
}








|
|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
*/
void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
    sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3GlobalConfig.m.xFree(p);
  }
}

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
  return pNew;







|







573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
  return pNew;
Changes to src/pcache1.c.
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
  if( nByte<=pcache1.szSlot ){
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );

      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);

      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite3MallocSize(p);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
#endif
    sqlite3_free(p);
  }
  return nFreed;
}








<








>
|












>
|

















|













|







191
192
193
194
195
196
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );

  if( nByte<=pcache1.szSlot ){
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite3MallocSize(p);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
#endif
    sqlite3_free(p);
  }
  return nFreed;
}

981
982
983
984
985
986
987








988
989
990
991
992
993
994
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }









#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**







>
>
>
>
>
>
>
>







982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }

/*
** Return the global mutex used by this PCACHE implementation.  The
** sqlite3_status() routine needs access to this mutex.
*/
sqlite3_mutex *sqlite3Pcache1Mutex(void){
  return pcache1.mutex;
}

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
Changes to src/sqlite.h.in.
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>







|







1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status64()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330

6331
6332
6333
6334






6335
6336
6337
6338
6339
6340
6341
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_LAST                    25

/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.

**
** See also: [sqlite3_db_status()]
*/
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);








/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters







|













|
|

<
|
|
<
<
<
>




>
>
>
>
>
>







6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324

6325
6326



6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_LAST                    25

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() and sqlite3_status64() routines return
** SQLITE_OK on success and a non-zero [error code] on failure.
**

** If either the current value or the highwater mark is too large to
** be represented by a 32-bit integer, then the values returned by



** sqlite3_status() are undefined.
**
** See also: [sqlite3_db_status()]
*/
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
int sqlite3_status64(
  int op,
  sqlite3_int64 *pCurrent,
  sqlite3_int64 *pHighwater,
  int resetFlag
);


/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters
Changes to src/sqliteInt.h.
590
591
592
593
594
595
596














597
598
599
600
601
602
603
** The LogEst can be negative to indicate fractional values. 
** Examples:
**
**    0.5 -> -10           0.1 -> -33        0.0625 -> -40
*/
typedef INT16_TYPE LogEst;















/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined







>
>
>
>
>
>
>
>
>
>
>
>
>
>







590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
** The LogEst can be negative to indicate fractional values. 
** Examples:
**
**    0.5 -> -10           0.1 -> -33        0.0625 -> -40
*/
typedef INT16_TYPE LogEst;

/*
** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
*/
#ifndef SQLITE_PTRSIZE
# if defined(__SIZEOF_POINTER__)
#   define SQLITE_PTRSIZE __SIZEOF_POINTER__
# elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
       defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
#   define SQLITE_PTRSIZE 4
# else
#   define SQLITE_PTRSIZE 8
# endif
#endif

/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
3093
3094
3095
3096
3097
3098
3099
3100
3101

3102




3103
3104
3105
3106
3107
3108
3109
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);
#endif

int sqlite3StatusValue(int);
void sqlite3StatusAdd(int, int);

void sqlite3StatusSet(int, int);





#ifndef SQLITE_OMIT_FLOATING_POINT
  int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif








|
|
>

>
>
>
>







3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
  sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
  sqlite3_mutex_methods const *sqlite3NoopMutex(void);
  sqlite3_mutex *sqlite3MutexAlloc(int);
  int sqlite3MutexInit(void);
  int sqlite3MutexEnd(void);
#endif

sqlite3_int64 sqlite3StatusValue(int);
void sqlite3StatusUp(int, int);
void sqlite3StatusDown(int, int);
void sqlite3StatusSet(int, int);

/* Access to mutexes used by sqlite3_status() */
sqlite3_mutex *sqlite3Pcache1Mutex(void);
sqlite3_mutex *sqlite3MallocMutex(void);

#ifndef SQLITE_OMIT_FLOATING_POINT
  int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif

Changes to src/status.c.
17
18
19
20
21
22
23

24
25




26

















27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48



49
50
51
52
53
54







55
56
57
58



59
60
61
62
63








64

65
66

67
68
69
70



71
72
73
74
75
76
77
78
79
80
81
82
83
84






85
86
87
88
89
90
91


92
93
94
95
96

97













98
99
100
101
102
103
104
#include "vdbeInt.h"

/*
** Variables in which to record status information.
*/
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {

  int nowValue[10];         /* Current value */
  int mxValue[10];          /* Maximum value */




} sqlite3Stat = { {0,}, {0,} };



















/* The "wsdStat" macro will resolve to the status information
** state vector.  If writable static data is unsupported on the target,
** we have to locate the state vector at run-time.  In the more common
** case where writable static data is supported, wsdStat can refer directly
** to the "sqlite3Stat" state vector declared above.
*/
#ifdef SQLITE_OMIT_WSD
# define wsdStatInit  sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
# define wsdStat x[0]
#else
# define wsdStatInit
# define wsdStat sqlite3Stat
#endif

/*
** Return the current value of a status parameter.

*/
int sqlite3StatusValue(int op){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  return wsdStat.nowValue[op];
}

/*
** Add N to the value of a status record.  It is assumed that the
** caller holds appropriate locks.







*/
void sqlite3StatusAdd(int op, int N){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  wsdStat.nowValue[op] += N;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}










/*
** Set the value of a status to X.

*/
void sqlite3StatusSet(int op, int X){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  wsdStat.nowValue[op] = X;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}

/*
** Query status information.
**
** This implementation assumes that reading or writing an aligned
** 32-bit integer is an atomic operation.  If that assumption is not true,
** then this routine is not threadsafe.
*/
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){






  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif


  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }

  return SQLITE_OK;













}

/*
** Query status information for a single database connection
*/
int sqlite3_db_status(
  sqlite3 *db,          /* The database connection whose status is desired */







>
|
|
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















|
>

|


>
>
>




|
|
>
>
>
>
>
>
>

|


>
>
>





>
>
>
>
>
>
>
>
|
>

|
>




>
>
>








<
<
<
<

|
>
>
>
>
>
>







>
>





>

>
>
>
>
>
>
>
>
>
>
>
>
>







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127




128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "vdbeInt.h"

/*
** Variables in which to record status information.
*/
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {
#if SQLITE_PTRSIZE>4
  sqlite3_int64 nowValue[10];         /* Current value */
  sqlite3_int64 mxValue[10];          /* Maximum value */
#else
  u32 nowValue[10];                   /* Current value */
  u32 mxValue[10];                    /* Maximum value */
#endif
} sqlite3Stat = { {0,}, {0,} };

/*
** Elements of sqlite3Stat[] are protected by either the memory allocator
** mutex, or by the pcache1 mutex.  The following array determines which.
*/
static const char statMutex[] = {
  0,  /* SQLITE_STATUS_MEMORY_USED */
  1,  /* SQLITE_STATUS_PAGECACHE_USED */
  1,  /* SQLITE_STATUS_PAGECACHE_OVERFLOW */
  0,  /* SQLITE_STATUS_SCRATCH_USED */
  0,  /* SQLITE_STATUS_SCRATCH_OVERFLOW */
  0,  /* SQLITE_STATUS_MALLOC_SIZE */
  0,  /* SQLITE_STATUS_PARSER_STACK */
  1,  /* SQLITE_STATUS_PAGECACHE_SIZE */
  0,  /* SQLITE_STATUS_SCRATCH_SIZE */
  0,  /* SQLITE_STATUS_MALLOC_COUNT */
};


/* The "wsdStat" macro will resolve to the status information
** state vector.  If writable static data is unsupported on the target,
** we have to locate the state vector at run-time.  In the more common
** case where writable static data is supported, wsdStat can refer directly
** to the "sqlite3Stat" state vector declared above.
*/
#ifdef SQLITE_OMIT_WSD
# define wsdStatInit  sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
# define wsdStat x[0]
#else
# define wsdStatInit
# define wsdStat sqlite3Stat
#endif

/*
** Return the current value of a status parameter.  The caller must
** be holding the appropriate mutex.
*/
sqlite3_int64 sqlite3StatusValue(int op){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  return wsdStat.nowValue[op];
}

/*
** Add N to the value of a status record.  The caller must hold the
** appropriate mutex.  (Locking is checked by assert()).
**
** The StatusUp() routine can accept positive or negative values for N.
** The value of N is added to the current status value and the high-water
** mark is adjusted if necessary.
**
** The StatusDown() routine lowers the current value by N.  The highwater
** mark is unchanged.  N must be non-negative for StatusDown().
*/
void sqlite3StatusUp(int op, int N){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  wsdStat.nowValue[op] += N;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}
void sqlite3StatusDown(int op, int N){
  wsdStatInit;
  assert( N>=0 );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  wsdStat.nowValue[op] -= N;
}

/*
** Set the value of a status to X.  The highwater mark is adjusted if
** necessary.  The caller must hold the appropriate mutex.
*/
void sqlite3StatusSet(int op, int X){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  wsdStat.nowValue[op] = X;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}

/*
** Query status information.




*/
int sqlite3_status64(
  int op,
  sqlite3_int64 *pCurrent,
  sqlite3_int64 *pHighwater,
  int resetFlag
){
  sqlite3_mutex *pMutex;
  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif
  pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex();
  sqlite3_mutex_enter(pMutex);
  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
  sqlite3_mutex_leave(pMutex);
  return SQLITE_OK;
}
int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
  sqlite3_int64 iCur, iHwtr;
  int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif
  rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag);
  if( rc==0 ){
    *pCurrent = (int)iCur;
    *pHighwater = (int)iHwtr;
  }
  return rc;
}

/*
** Query status information for a single database connection
*/
int sqlite3_db_status(
  sqlite3 *db,          /* The database connection whose status is desired */
Changes to src/tokenize.c.
455
456
457
458
459
460
461

462
463
464

465
466
467
468
469
470
471
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
#ifdef YYTRACKMAXSTACKDEPTH

  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );

#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){







>



>







455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){