Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Difference From 4431ab2769f8140f To f4df828793bf8266
2013-10-08
| ||
20:37 | Add hooks to run the "lsmtest" tree-structure tests and performance comparisons on the btree module. check-in: 8140c0abef user: dan tags: trunk | |
17:38 | Fix another bug in b-tree rebalancing. check-in: f4df828793 user: dan tags: trunk | |
2013-10-07
| ||
20:43 | Further progress on b-tree module. check-in: 51c2c9358d user: dan tags: trunk | |
2013-09-28
| ||
15:07 | Still further progress on the same. check-in: 4431ab2769 user: dan tags: trunk | |
11:23 | Fixes for b-tree balancing routines. Still incomplete. check-in: 9e8d7525d8 user: dan tags: trunk | |
Changes to main.mk.
︙ | ︙ | |||
266 267 268 269 270 271 272 273 274 275 276 277 278 279 | $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ parse.c \ # Header files used by all library source files. # HDR = \ $(TOP)/src/hash.h \ $(TOP)/src/hwtime.h \ keywordhash.h \ $(TOP)/src/kv.h \ $(TOP)/src/lsm.h \ $(TOP)/src/lsmInt.h \ $(TOP)/src/mutex.h \ | > | 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | $(TOP)/src/vdbemem.c \ $(TOP)/src/where.c \ parse.c \ # Header files used by all library source files. # HDR = \ $(TOP)/src/btInt.h \ $(TOP)/src/hash.h \ $(TOP)/src/hwtime.h \ keywordhash.h \ $(TOP)/src/kv.h \ $(TOP)/src/lsm.h \ $(TOP)/src/lsmInt.h \ $(TOP)/src/mutex.h \ |
︙ | ︙ |
Changes to src/btInt.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** */ #include "bt.h" typedef sqlite4_int64 i64; typedef sqlite4_uint64 u64; typedef unsigned int u32; typedef unsigned short u16; typedef unsigned char u8; | > > | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** */ #include "bt.h" /* #define BT_STDERR_DEBUG 1 */ typedef sqlite4_int64 i64; typedef sqlite4_uint64 u64; typedef unsigned int u32; typedef unsigned short u16; typedef unsigned char u8; |
︙ | ︙ |
Changes to src/bt_main.c.
︙ | ︙ | |||
287 288 289 290 291 292 293 | fprintf(f, "cell-offsets=("); for(i=0; i<nCell; i++){ u8 *ptr = btCellPtrFind(aData, nData, i); fprintf(f, "%s%d", i==0?"":" ", (int)btGetU16(ptr)); } fprintf(f, ")\n"); | > > > > > > > > | > > > > > > > > > > | 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | fprintf(f, "cell-offsets=("); for(i=0; i<nCell; i++){ u8 *ptr = btCellPtrFind(aData, nData, i); fprintf(f, "%s%d", i==0?"":" ", (int)btGetU16(ptr)); } fprintf(f, ")\n"); for(i=0; i<nCell; i++){ int nKey; int j; u8 *pCell = btCellFind(aData, nData, i); fprintf(f, " Key %d: ", i); pCell += sqlite4BtVarintGet32(pCell, &nKey); for(j=0; j<nKey; j++){ fprintf(f, "%02X", (int)pCell[j]); } if( btFlags(aData, nData) & BT_PGFLAGS_INTERNAL ){ fprintf(f, " child=%d ", (int)btGetU32(&pCell[j])); } fprintf(f, "\n"); } } static int printPgToStderr(BtPage *pPg){ printPage(stderr, sqlite4BtPagePgno(pPg), sqlite4BtPageData(pPg), 1024); return 0; } #endif /* ** This function compares the key passed via parameters pK and nK to the ** key stored as part of cell iCell on the database page stored in buffer |
︙ | ︙ | |||
332 333 334 335 336 337 338 | } } *piRes = res; return rc; } | | | > | 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | } } *piRes = res; return rc; } static int btCsrSeek( bt_cursor *pCsr, const void *pK, /* Key to seek for */ int nK, /* Size of key pK in bytes */ int eSeek, /* Seek mode (a BT_SEEK_XXX constant) */ int bUpdate ){ const int pgsz = sqlite4BtPagerPagesize(pCsr->pDb->pPager); u32 pgno; /* Page number for next page to load */ int rc = SQLITE4_OK; /* Return Code */ /* Reset the cursor */ btCsrReset(pCsr); |
︙ | ︙ | |||
384 385 386 387 388 389 390 391 392 393 394 395 396 | iHi = iTst; } } if( rc!=SQLITE4_OK ) break; assert( iHi==iLo ); pCsr->aiCell[pCsr->nPg-1] = iHi; if( aData[0] & BT_PGFLAGS_INTERNAL ){ if( iHi==nCell ){ pgno = btGetU32(&aData[1]); }else{ u8 *pCell; int nByte; | > > > > | < | > > > > > > > > > > > > > > > > | 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | iHi = iTst; } } if( rc!=SQLITE4_OK ) break; assert( iHi==iLo ); pCsr->aiCell[pCsr->nPg-1] = iHi; #if 0 printPage(stderr, pgno, aData, pgsz); #endif if( aData[0] & BT_PGFLAGS_INTERNAL ){ if( iHi==nCell ){ pgno = btGetU32(&aData[1]); }else{ u8 *pCell; int nByte; pCell = btCellFind(aData, pgsz, iHi); pCell += sqlite4BtVarintGet32(pCell, &nByte); pCell += nByte; pgno = btGetU32(pCell); } }else{ pgno = 0; if( res!=0 ){ assert( BT_SEEK_LEFAST<0 && BT_SEEK_LE<0 ); if( eSeek<0 ){ rc = sqlite4BtCsrPrev(pCsr); }else if( eSeek==BT_SEEK_EQ ){ rc = SQLITE4_NOTFOUND; }else if( iHi==nCell ){ if( bUpdate ){ rc = SQLITE4_NOTFOUND; }else{ rc = sqlite4BtCsrNext(pCsr); } }else{ rc = SQLITE4_INEXACT; } if( rc==SQLITE4_OK ) rc = SQLITE4_INEXACT; } } } } return rc; } int sqlite4BtCsrSeek( bt_cursor *pCsr, const void *pK, /* Key to seek for */ int nK, /* Size of key pK in bytes */ int eSeek /* Seek mode (a BT_SEEK_XXX constant) */ ){ return btCsrSeek(pCsr, pK, nK, eSeek, 0); } /* ** This function seeks the cursor as required for either sqlite4BtCsrFirst() ** (if parameter bLast is false) or sqlite4BtCsrLast() (if bLast is true). */ static int btCsrEnd(bt_cursor *pCsr, int bLast){ const int pgsz = sqlite4BtPagerPagesize(pCsr->pDb->pPager); |
︙ | ︙ | |||
558 559 560 561 562 563 564 565 566 567 568 569 570 571 | const int pgsz = sqlite4BtPagerPagesize(pCsr->pDb->pPager); u8 *aData; u8 *pCell; int iCell = pCsr->aiCell[pCsr->nPg-1]; int nK; aData = (u8*)sqlite4BtPageData(pCsr->apPage[pCsr->nPg-1]); pCell = btCellFind(aData, pgsz, iCell); pCell += sqlite4BtVarintGet32(pCell, &nK); if( nK==0 ){ assert( 0 ); }else{ *ppK = pCell; | > | 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | const int pgsz = sqlite4BtPagerPagesize(pCsr->pDb->pPager); u8 *aData; u8 *pCell; int iCell = pCsr->aiCell[pCsr->nPg-1]; int nK; aData = (u8*)sqlite4BtPageData(pCsr->apPage[pCsr->nPg-1]); assert( btCellCount(aData, pgsz)>iCell ); pCell = btCellFind(aData, pgsz, iCell); pCell += sqlite4BtVarintGet32(pCell, &nK); if( nK==0 ){ assert( 0 ); }else{ *ppK = pCell; |
︙ | ︙ | |||
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 | int nKV; /* Number of KV pairs */ KeyValue *apKV; /* New KV pairs being inserted */ /* Populated by btGatherSiblings */ int nIn; /* Number of sibling pages */ BtPage *apPg[5]; /* Array of sibling pages */ /* Array populated by btBalanceMeasure */ int *anCellSz; int anOut[5]; /* Cell counts for output pages */ /* Variables used by btBalanceOutput */ int nOut; /* Number of output pages */ int iOut; /* Current output page */ u8 *apOut[5]; /* Buffers to assemble output in */ }; static int btGatherSiblings(BalanceCtx *p){ bt_cursor *pCsr = p->pCsr; bt_db * const pDb = pCsr->pDb; const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); int rc = SQLITE4_OK; int nCell; /* Number of cells in parent page */ u8 *aParent; /* Buffer of parent page */ | > > > > > > | | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 | int nKV; /* Number of KV pairs */ KeyValue *apKV; /* New KV pairs being inserted */ /* Populated by btGatherSiblings */ int nIn; /* Number of sibling pages */ BtPage *apPg[5]; /* Array of sibling pages */ int nCell; /* Number of input cells */ /* Array populated by btBalanceMeasure */ int *anCellSz; /* Populated in btBalance() */ int anOut[5]; /* Cell counts for output pages */ /* Variables used by btBalanceOutput */ int nOut; /* Number of output pages */ int iOut; /* Current output page */ u8 *apOut[5]; /* Buffers to assemble output in */ KeyValue aPCell[5]; /* Cells to push into the parent page */ u8 *pTmp; /* Space for apCell[x].pKey if required */ int iTmp; /* Offset to free space within pTmp */ }; static int btGatherSiblings(BalanceCtx *p){ bt_cursor *pCsr = p->pCsr; bt_db * const pDb = pCsr->pDb; const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); int rc = SQLITE4_OK; int nCell; /* Number of cells in parent page */ u8 *aParent; /* Buffer of parent page */ int iChild; /* Index of child page within parent */ int nSib; /* Number of siblings */ int iSib; /* Index of left-most sibling page */ int i; aParent = sqlite4BtPageData(pCsr->apPage[pCsr->nPg-2]); iChild = pCsr->aiCell[pCsr->nPg-2]; |
︙ | ︙ | |||
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 | }else{ iSib = iChild-1; } for(i=0; i<nSib && rc==SQLITE4_OK; i++){ u32 pgno = btChildPgno(aParent, pgsz, iSib+i); rc = sqlite4BtPageGet(pDb->pPager, pgno, &p->apPg[i]); } p->nIn = nSib; pCsr->aiCell[pCsr->nPg-2] = iSib; return rc; } static int btSetChildPgno(bt_db *pDb, BtPage *pPg, int iChild, u32 pgno){ const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); int rc; rc = sqlite4BtPageWrite(pPg); if( rc==SQLITE4_OK ){ | > > > > > > > > > > > > > > > > > | 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 | }else{ iSib = iChild-1; } for(i=0; i<nSib && rc==SQLITE4_OK; i++){ u32 pgno = btChildPgno(aParent, pgsz, iSib+i); rc = sqlite4BtPageGet(pDb->pPager, pgno, &p->apPg[i]); assert( (iSib+i)!=iChild || p->apPg[i]==pCsr->apPage[pCsr->nPg-1] ); } p->nIn = nSib; pCsr->aiCell[pCsr->nPg-2] = iSib; return rc; } /* ** Argument pCell points to a cell on an internal node. Decode the ** cell into key-value object *pKV. An internal cell always has ** the same format: ** ** * Number of bytes in the key (nKey) as a varint. ** * nKey bytes of key data. ** * A page pointer, stored as a 32-bit big-endian unsigned. */ static void btInternalCellToKeyValue(u8 *pCell, KeyValue *pKV){ pKV->pK = pCell + sqlite4BtVarintGet32(pCell, &pKV->nK); pKV->pgno = btGetU32(&((u8*)pKV->pK)[pKV->nK]); pKV->pV = 0; pKV->nV = 0; } static int btSetChildPgno(bt_db *pDb, BtPage *pPg, int iChild, u32 pgno){ const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); int rc; rc = sqlite4BtPageWrite(pPg); if( rc==SQLITE4_OK ){ |
︙ | ︙ | |||
843 844 845 846 847 848 849 850 851 852 853 854 855 856 | return rc; } /* Called recursively by btBalance(). todo: Fix this! */ static int btInsertAndBalance(bt_cursor *, int, KeyValue *); static int btDeleteFromPage(bt_cursor *, int); static int btBalanceMeasure( BalanceCtx *p, /* Description of balance operation */ int iCell, /* Cell number in this iteration */ u8 *pCell, int nByte, /* Binary cell */ KeyValue *pKV /* Key-value cell */ ){ | > | 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 | return rc; } /* Called recursively by btBalance(). todo: Fix this! */ static int btInsertAndBalance(bt_cursor *, int, KeyValue *); static int btDeleteFromPage(bt_cursor *, int); static int btBalanceIfUnderfull(bt_cursor *pCsr); static int btBalanceMeasure( BalanceCtx *p, /* Description of balance operation */ int iCell, /* Cell number in this iteration */ u8 *pCell, int nByte, /* Binary cell */ KeyValue *pKV /* Key-value cell */ ){ |
︙ | ︙ | |||
864 865 866 867 868 869 870 | static int btBalanceOutput( BalanceCtx *p, /* Description of balance operation */ int iCell, /* Cell number in this iteration */ u8 *pCell, int nByte, /* Binary cell to copy to output */ KeyValue *pKV /* Key-value cell to write to output */ ){ | | > > > | > > > > > > > > > > > | | < < < | | | | > > | | < < | < < < < > > | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | > > > > > > > > > > > | > > > | > > > > > | < < | < | | > | | | > > | | | > | < > > > > > > | | | > | < < < < | > | < | | > | > | > | < | < | | | | | | | > | > > > | > > > > > > | > > > > > > > > > > > > > | | > | > > > | | | | | | > > > > | | > > | | > | > > | 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 | static int btBalanceOutput( BalanceCtx *p, /* Description of balance operation */ int iCell, /* Cell number in this iteration */ u8 *pCell, int nByte, /* Binary cell to copy to output */ KeyValue *pKV /* Key-value cell to write to output */ ){ u8 *aOut = p->apOut[p->iOut]; /* Buffer for current output page */ int iOff; /* Offset of new cell within page */ int nCell; /* Number of cells already on page */ assert( (pCell==0)!=(pKV==0) ); if( p->bLeaf==0 && iCell==p->anOut[p->iOut] ){ /* This cell is destined for the parent page of the siblings being ** rebalanced. So instead of writing it to a page buffer it is copied ** into the BalanceCtx.aPCell[] array. ** ** When this cell is eventually written to the parent, the accompanying ** page pointer will be the page number of sibling page p->iOut. This ** value will be filled in later. ** ** The pointer that is currently part of the cell is used as the ** right-child pointer of page p->iOut. This value is written now. */ int nKey; u8 *pKey; u8 *pCopy; u32 pgno; KeyValue *pPKey = &p->aPCell[p->iOut]; if( pCell ){ pKey = pCell + sqlite4BtVarintGet32(pCell, &nKey); pgno = btGetU32(&pKey[nKey]); }else{ pKey = pKV->pK; nKey = pKV->nK; pgno = pKV->pgno; } pCopy = &p->pTmp[p->iTmp]; p->iTmp += nKey; memcpy(pCopy, pKey, nKey); pPKey->pK = pCopy; pPKey->nK = nKey; btPutU32(&aOut[1], pgno); p->iOut++; }else{ /* Write the new cell into the output page. */ iOff = btFreeOffset(aOut, p->pgsz); if( iOff==0 ) iOff = (p->bLeaf ? 1 : 5); nCell = btCellCount(aOut, p->pgsz); btPutU16(btCellPtrFind(aOut, p->pgsz, nCell), iOff); if( pCell ){ memcpy(&aOut[iOff], pCell, nByte); iOff += nByte; }else{ iOff += btKVCellWrite(pKV, p->pgsz, &aOut[iOff]); } btPutU16(&aOut[p->pgsz-2], nCell+1); btPutU16(&aOut[p->pgsz-6], iOff); if( (iCell+1)==p->anOut[p->iOut] ){ /* That was the last cell for this page. Fill in the rest of the ** output page footer and the flags byte at the start of the page. */ int nFree; /* Free space remaining on output page */ nFree = p->pgsz - iOff - (6 + 2*(nCell+1)); aOut[0] = (p->bLeaf ? 0 : BT_PGFLAGS_INTERNAL); btPutU16(&aOut[p->pgsz-4], nFree); /* If the siblings are leaf pages, increment BalanceCtx.iOut here. ** for internal nodes, it will be incremented by the next call to ** this function, after a divider cell is pushed into the parent ** node. */ p->iOut += p->bLeaf; } } return SQLITE4_OK; } static int btBalanceVisitCells( BalanceCtx *p, int (*xVisit)(BalanceCtx*, int, u8*, int, KeyValue*) ){ const int pgsz = sqlite4BtPagerPagesize(p->pCsr->pDb->pPager); int rc = SQLITE4_OK; /* Return code */ int iPg; /* Current page in apPg[] */ int iCall = 0; int i; /* Used to iterate through KV pairs */ BtPage *pIns = p->pCsr->apPage[p->pCsr->nPg-1]; int iIns = p->pCsr->aiCell[p->pCsr->nPg-1]; /* Check that page pIns is actually a member of the ctx.apPg[] array. */ #ifndef NDEBUG for(i=0; p->apPg[i]!=pIns; i++) assert( i<p->nIn ); #endif for(iPg=0; iPg<p->nIn && rc==SQLITE4_OK; iPg++){ BtPage *pPg; /* Current page */ u8 *aData; /* Page data */ int nCell; /* Number of cells on page pPg */ int iCell; /* Current cell in pPg */ pPg = p->apPg[iPg]; aData = sqlite4BtPageData(pPg); nCell = btCellCount(aData, pgsz); for(iCell=0; iCell<nCell && rc==SQLITE4_OK; iCell++){ int nByte; u8 *pCell; if( pPg==pIns && iCell==iIns ){ for(i=0; i<p->nKV; i++){ assert( iCall<p->nCell ); rc = xVisit(p, iCall++, 0, 0, &p->apKV[i]); if( rc!=SQLITE4_OK ) break; } } pCell = btCellFindSize(aData, pgsz, iCell, &nByte); rc = xVisit(p, iCall++, pCell, nByte, 0); } if( pPg==pIns && iIns==nCell ){ for(i=0; i<p->nKV && rc==SQLITE4_OK; i++){ assert( iCall<p->nCell ); rc = xVisit(p, iCall++, 0, 0, &p->apKV[i]); } } /* If the siblings being balanced are not leaves, and the page just ** processed was not the right-most sibling, visit a cell from the ** parent page. */ if( p->bLeaf==0 && iPg<(p->nIn-1) && rc==SQLITE4_OK ){ int iPar = p->pCsr->nPg-2; u8 *aParent = sqlite4BtPageData(p->pCsr->apPage[iPar]); u8 *pCell = btCellFind(aParent, pgsz, p->pCsr->aiCell[iPar] + iPg); KeyValue kv; btInternalCellToKeyValue(pCell, &kv); kv.pgno = btGetU32(&aData[1]); rc = xVisit(p, iCall++, 0, 0, &kv); } } assert( rc!=SQLITE4_OK || iCall==p->nCell ); return rc; } int btBalance( bt_cursor *pCsr, /* Cursor pointed to page to rebalance */ int bLeaf, /* True if rebalancing leaf pages */ int nKV, /* Number of entries in apKV[] array */ KeyValue *apKV /* Extra entries to add while rebalancing */ ){ bt_db * const pDb = pCsr->pDb; const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); const int nSpacePerPage = (pgsz - 1 - 6 - (!bLeaf)*4); int iPg; /* Used to iterate through pages */ int iCell; /* Used to iterate through cells */ int anByteOut[5]; /* Bytes of content on each output page */ BtPage *pPar; /* Parent page */ int iSib; /* Index of left-most sibling */ int rc = SQLITE4_OK; /* Return code */ BalanceCtx ctx; memset(&ctx, 0, sizeof(ctx)); ctx.pCsr = pCsr; ctx.nKV = nKV; ctx.apKV = apKV; ctx.pgsz = pgsz; ctx.bLeaf = bLeaf; memset(anByteOut, 0, sizeof(anByteOut)); /* Gather the sibling pages from which cells will be redistributed into ** the ctx.apPg[] array. */ assert( bLeaf==0 || bLeaf==1 ); assert( pCsr->nPg>1 ); rc = btGatherSiblings(&ctx); if( rc!=SQLITE4_OK ) goto rebalance_out; pPar = pCsr->apPage[pCsr->nPg-2]; iSib = pCsr->aiCell[pCsr->nPg-2]; /* Count the number of input cells. */ ctx.nCell = nKV; for(iPg=0; iPg<ctx.nIn; iPg++){ u8 *aData = sqlite4BtPageData(ctx.apPg[iPg]); ctx.nCell += btCellCount(aData, pgsz); } if( bLeaf==0 ) ctx.nCell += (ctx.nIn-1); assert( ctx.nCell>0 ); /* Allocate and populate the anCellSz[] array */ ctx.anCellSz = (int*)sqlite4_malloc(pDb->pEnv, sizeof(int)*ctx.nCell); if( ctx.anCellSz==0 ){ rc = btErrorBkpt(SQLITE4_NOMEM); goto rebalance_out; } rc = btBalanceVisitCells(&ctx, btBalanceMeasure); /* Now figure out the number of output pages required. Set ctx.nOut to ** this value. */ iCell = 0; for(iPg=0; iCell<ctx.nCell; iPg++){ assert( iPg<array_size(ctx.anOut) ); if( bLeaf==0 && iPg!=0 ){ /* This cell will be pushed up to the parent node as a divider cell, ** not written to any output page. */ iCell++; } assert( anByteOut[iPg]==0 ); for(/* noop */; iCell<ctx.nCell; iCell++){ int nByte = (ctx.anCellSz[iCell] + 2); if( nByte+anByteOut[iPg]>nSpacePerPage ) break; anByteOut[iPg] += nByte; } ctx.anOut[iPg] = iCell; } ctx.nOut = iPg; assert( ctx.anOut[ctx.nOut-1]==ctx.nCell ); /* The loop in the previous block populated the anOut[] array in such a ** way as to make the (ctx.nOut-1) leftmost pages completely full but ** leave the rightmost page partially empty. Or, if bLeaf==0, perhaps ** even completely empty. This block attempts to redistribute cells a bit ** more evenly. */ iCell = ctx.nCell; for(iPg=(ctx.nOut-2); iPg>=0; iPg--){ int iR = iPg+1; while( 1 ){ int nLeft = ctx.anCellSz[ ctx.anOut[iPg]-1 ] + 2; int nRight = (bLeaf ? nLeft : (ctx.anCellSz[ ctx.anOut[iPg] ] + 2)); if( anByteOut[iPg]==nLeft || (anByteOut[iR] + nRight) > anByteOut[iPg] ){ break; } ctx.anOut[iPg]--; anByteOut[iPg] -= nLeft; anByteOut[iR] += nRight; } } #ifdef BT_STDERR_DEBUG { int iDbg; fprintf(stderr, "\nbtBalance(): bLeaf=%d nIn=%d anIn[] = ", ctx.bLeaf, ctx.nIn ); for(iDbg=0; iDbg<ctx.nIn; iDbg++){ u8 *aData = sqlite4BtPageData(ctx.apPg[iDbg]); fprintf(stderr, "%d ", btCellCount(aData, pgsz)); } fprintf(stderr, " -> nOut=%d anOut[] = ", ctx.nOut); for(iDbg=0; iDbg<ctx.nOut; iDbg++){ fprintf(stderr, "%d ", ctx.anOut[iDbg]); } fprintf(stderr, "\n"); fflush(stderr); } #endif /* Allocate buffers for the output pages. If the pages being balanced ** are not leaves, grab one more buffer from the pager layer to use ** to temporarily store a copy of the keys destined for the parent ** page. */ for(iPg=0; iPg<ctx.nOut; iPg++){ rc = btNewBuffer(pDb, &ctx.apOut[iPg]); if( rc!=SQLITE4_OK ) goto rebalance_out; memset(ctx.apOut[iPg] + pgsz-6, 0, 6); } if( bLeaf==0 ){ rc = btNewBuffer(pDb, &ctx.pTmp); if( rc!=SQLITE4_OK ) goto rebalance_out; } /* Populate the new buffers with the new page images. */ rc = btBalanceVisitCells(&ctx, btBalanceOutput); if( rc!=SQLITE4_OK ) goto rebalance_out; if( ctx.bLeaf==0 ){ /* Set the right-child pointer of the rightmost new sibling to a copy ** of the same pointer from the rightmost original sibling. */ u8 *aRightSibling = sqlite4BtPageData(ctx.apPg[ctx.nIn-1]); memcpy(&(ctx.apOut[ctx.nOut-1])[1], &aRightSibling[1], 4); } /* Clobber the old pages with the new buffers */ for(iPg=0; iPg<ctx.nOut; iPg++){ if( iPg>=ctx.nIn ){ rc = sqlite4BtPageAllocate(pDb->pPager, &ctx.apPg[iPg]); if( rc!=SQLITE4_OK ) goto rebalance_out; } btSetBuffer(pDb, ctx.apPg[iPg], ctx.apOut[iPg]); ctx.apOut[iPg] = 0; } for(iPg=ctx.nOut; iPg<ctx.nIn; iPg++){ rc = sqlite4BtPageTrim(ctx.apPg[iPg]); ctx.apPg[iPg] = 0; if( rc!=SQLITE4_OK ) goto rebalance_out; } #ifdef BT_STDERR_DEBUG { int iDbg; for(iDbg=0; iDbg<ctx.nOut; iDbg++){ u8 *aData = sqlite4BtPageData(ctx.apPg[iDbg]); printPage(stderr, sqlite4BtPagePgno(ctx.apPg[iDbg]), aData, pgsz); } } #endif /* The leaves are written. Now gather the keys and page numbers to ** push up into the parent page. This is only required when rebalancing ** b-tree leaves. When internal nodes are balanced, the btBalanceOutput ** loop accumulates the cells destined for the parent page. */ for(iPg=0; iPg<(ctx.nOut-1); iPg++){ if( bLeaf ){ u8 *aData = sqlite4BtPageData(ctx.apPg[iPg]); u8 *pCell; pCell = btCellFind(aData, pgsz, btCellCount(aData, pgsz)-1); ctx.aPCell[iPg].pgno = sqlite4BtPagePgno(ctx.apPg[iPg]); pCell += sqlite4BtVarintGet32(pCell, &ctx.aPCell[iPg].nK); ctx.aPCell[iPg].pK = pCell; }else{ ctx.aPCell[iPg].pgno = sqlite4BtPagePgno(ctx.apPg[iPg]); } } rc = btSetChildPgno( pDb, pPar, iSib+ctx.nIn-1, sqlite4BtPagePgno(ctx.apPg[ctx.nOut-1]) ); if( rc==SQLITE4_OK ){ pCsr->nPg--; rc = btDeleteFromPage(pCsr, ctx.nIn-1); } iPg = pCsr->nPg; if( rc==SQLITE4_OK && ctx.nOut>1 ){ rc = btInsertAndBalance(pCsr, ctx.nOut-1, ctx.aPCell); } if( rc==SQLITE4_OK && iPg==pCsr->nPg ){ rc = btBalanceIfUnderfull(pCsr); } #ifdef BT_STDERR_DEBUG { u8 *aData = sqlite4BtPageData(pPar); printPage(stderr, sqlite4BtPagePgno(pPar), aData, pgsz); } #endif rebalance_out: for(iPg=0; iPg<array_size(ctx.apPg); iPg++){ sqlite4BtPageRelease(ctx.apPg[iPg]); } btFreeBuffer(pDb, ctx.pTmp); sqlite4_free(pDb->pEnv, ctx.anCellSz); return rc; } static int btExtendTree(bt_cursor *pCsr){ bt_db * const pDb = pCsr->pDb; const int pgsz = sqlite4BtPagerPagesize(pDb->pPager); int rc; /* Return code */ |
︙ | ︙ | |||
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 | u8 *aData; /* Page buffer */ int nCell; /* Number of cells on this page already */ int nFree; /* Contiguous free space on this page */ int nReq = 0; /* Space required for type (a) cells */ int iCell; /* Position to insert new key */ int iWrite; /* Byte offset at which to write new cell */ int i; BtPage *pLeaf; /* Bytes of space required on the current page. */ for(i=0; i<nKV; i++){ nReq += btKVCellSize(&apKV[i], pgsz) + 2; } iCell = pCsr->aiCell[pCsr->nPg-1]; assert( pCsr->nPg>0 ); pLeaf = pCsr->apPage[pCsr->nPg-1]; aData = (u8*)sqlite4BtPageData(pLeaf); nCell = btCellCount(aData, pgsz); assert( iCell<=btCellCount(aData, pgsz) ); if( nCell==0 ){ /* If the nCell field is zero, then the rest of the header may ** contain invalid values (zeroes - as it may never have been ** initialized). So set our stack variables to values appropriate ** to an empty page explicitly here. */ | > > > > > > > > > > > > | | 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 | u8 *aData; /* Page buffer */ int nCell; /* Number of cells on this page already */ int nFree; /* Contiguous free space on this page */ int nReq = 0; /* Space required for type (a) cells */ int iCell; /* Position to insert new key */ int iWrite; /* Byte offset at which to write new cell */ int i; int bLeaf; /* True if inserting into leaf page */ BtPage *pLeaf; /* Bytes of space required on the current page. */ for(i=0; i<nKV; i++){ nReq += btKVCellSize(&apKV[i], pgsz) + 2; } iCell = pCsr->aiCell[pCsr->nPg-1]; assert( pCsr->nPg>0 ); pLeaf = pCsr->apPage[pCsr->nPg-1]; aData = (u8*)sqlite4BtPageData(pLeaf); /* Set the bLeaf variable to true if inserting into a leaf page, or ** false otherwise. Return SQLITE4_CORRUPT if the page is a leaf but ** the KeyValue pairs being inserted are suitable for internal nodes, ** or vice-versa. */ assert( nKV>0 ); bLeaf = (apKV[0].pgno==0); if( (0==(btFlags(aData, pgsz) & BT_PGFLAGS_INTERNAL))!=bLeaf ){ return btErrorBkpt(SQLITE4_CORRUPT); } nCell = btCellCount(aData, pgsz); assert( iCell<=btCellCount(aData, pgsz) ); if( nCell==0 ){ /* If the nCell field is zero, then the rest of the header may ** contain invalid values (zeroes - as it may never have been ** initialized). So set our stack variables to values appropriate ** to an empty page explicitly here. */ iWrite = (bLeaf ? 1 : 5); nFree = pgsz - iWrite - 6; }else{ if( btFreeContiguous(aData, pgsz)<nReq && btFreeSpace(aData, pgsz)>=nReq ){ /* Special case - the new entry will not fit on the page at present ** but would if the page were defragmented. So defragment it before ** continuing. */ rc = btDefragmentPage(pCsr->pDb, pLeaf); |
︙ | ︙ | |||
1226 1227 1228 1229 1230 1231 1232 | rc = sqlite4BtPageWrite(pLeaf); if( rc==SQLITE4_OK ){ aData = sqlite4BtPageData(pLeaf); /* Make space within the cell pointer array */ if( iCell!=nCell ){ u8 *aFrom = btCellPtrFind(aData, pgsz, nCell-1); | | | 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | rc = sqlite4BtPageWrite(pLeaf); if( rc==SQLITE4_OK ){ aData = sqlite4BtPageData(pLeaf); /* Make space within the cell pointer array */ if( iCell!=nCell ){ u8 *aFrom = btCellPtrFind(aData, pgsz, nCell-1); u8 *aTo = btCellPtrFind(aData, pgsz, nCell-1+nKV); memmove(aTo, aFrom, (nCell-iCell) * 2); } for(i=0; i<nKV; i++){ /* Write the cell pointer */ btPutU16(btCellPtrFind(aData, pgsz, iCell+i), iWrite); |
︙ | ︙ | |||
1260 1261 1262 1263 1264 1265 1266 | /* The new entry will not fit on the leaf page. Entries will have ** to be shuffled between existing leaves and new leaves may need ** to be added to make space for it. */ if( pCsr->nPg==1 ){ rc = btExtendTree(pCsr); } if( rc==SQLITE4_OK ){ | | | 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 | /* The new entry will not fit on the leaf page. Entries will have ** to be shuffled between existing leaves and new leaves may need ** to be added to make space for it. */ if( pCsr->nPg==1 ){ rc = btExtendTree(pCsr); } if( rc==SQLITE4_OK ){ rc = btBalance(pCsr, bLeaf, nKV, apKV); } } return rc; } static int btDeleteFromPage(bt_cursor *pCsr, int nDel){ |
︙ | ︙ | |||
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 | /* Increase total free space */ btPutU16(&aData[pgsz-4], btFreeSpace(aData, pgsz) + nFreed); } return rc; } /* ** Insert a new key/value pair or replace an existing one. */ int sqlite4BtReplace(bt_db *db, const void *pK, int nK, const void *pV, int nV){ int rc = SQLITE4_OK; bt_cursor csr; btCsrSetup(db, &csr); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | > > > | 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 | /* Increase total free space */ btPutU16(&aData[pgsz-4], btFreeSpace(aData, pgsz) + nFreed); } return rc; } static int btBalanceIfUnderfull(bt_cursor *pCsr){ const int pgsz = sqlite4BtPagerPagesize(pCsr->pDb->pPager); int rc = SQLITE4_OK; int iPg = pCsr->nPg-1; BtPage *pPg = pCsr->apPage[iPg]; u8 *aData = sqlite4BtPageData(pPg); int nCell = btCellCount(aData, pgsz); int nFree = btFreeSpace(aData, pgsz); int bLeaf = (0==(btFlags(aData, pgsz) & BT_PGFLAGS_INTERNAL)); if( iPg==0 ){ /* Root page. If it contains no cells at all and is not already ** a leaf, shorten the tree by one here by copying the contents ** of the only child into the root. */ if( nCell==0 && bLeaf==0 ){ BtPager *pPager = pCsr->pDb->pPager; u32 pgno = btChildPgno(aData, pgsz, 0); BtPage *pChild; rc = sqlite4BtPageWrite(pPg); if( rc==SQLITE4_OK ){ rc = sqlite4BtPageGet(pPager, pgno, &pChild); } if( rc==SQLITE4_OK ){ u8 *a = sqlite4BtPageData(pChild); memcpy(aData, a, pgsz); rc = sqlite4BtPageTrim(pChild); } } }else if( nCell==0 || (nFree>(2*pgsz/3) && bLeaf==0) ){ rc = btBalance(pCsr, bLeaf, 0, 0); } return rc; } /* ** Insert a new key/value pair or replace an existing one. */ int sqlite4BtReplace(bt_db *db, const void *pK, int nK, const void *pV, int nV){ int rc = SQLITE4_OK; bt_cursor csr; btCsrSetup(db, &csr); rc = btCsrSeek(&csr, pK, nK, BT_SEEK_GE, 1); if( rc==SQLITE4_OK ){ /* The cursor currently points to an entry with key pK/nK. This call ** should therefore replace that entry. So delete it and then re-seek ** the cursor. */ rc = sqlite4BtDelete(&csr); if( rc==SQLITE4_OK ){ rc = btCsrSeek(&csr, pK, nK, BT_SEEK_GE, 1); } } if( rc==SQLITE4_OK ) rc = btErrorBkpt(SQLITE4_CORRUPT); if( rc==SQLITE4_NOTFOUND || rc==SQLITE4_INEXACT ){ /* Insert the new KV pair into the current leaf. */ KeyValue kv; kv.pgno = 0; kv.pK = pK; kv.nK = nK; kv.pV = pV; kv.nV = nV; rc = btInsertAndBalance(&csr, 1, &kv); } return rc; } int sqlite4BtDelete(bt_cursor *pCsr){ int rc; rc = btDeleteFromPage(pCsr, 1); if( rc==SQLITE4_OK ){ rc = btBalanceIfUnderfull(pCsr); } } int sqlite4BtSetCookie(bt_db *db, unsigned int iVal){ return sqlite4BtPagerSetCookie(db->pPager, iVal); } int sqlite4BtGetCookie(bt_db *db, unsigned int *piVal){ return sqlite4BtPagerGetCookie(db->pPager, piVal); } |
Changes to src/bt_pager.c.
︙ | ︙ | |||
107 108 109 110 111 112 113 | aNew = (BtPage **)sqlite4_malloc(p->pEnv, nNew*sizeof(BtPage*)); if( aNew==0 ) return btErrorBkpt(SQLITE4_NOMEM); memset(aNew, 0, nNew*sizeof(BtPage*)); for(i=0; i<p->hash.nHash; i++){ while( aOld[i] ){ BtPage *pShift = aOld[i]; aOld[i] = pShift->pNextHash; | | | 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | aNew = (BtPage **)sqlite4_malloc(p->pEnv, nNew*sizeof(BtPage*)); if( aNew==0 ) return btErrorBkpt(SQLITE4_NOMEM); memset(aNew, 0, nNew*sizeof(BtPage*)); for(i=0; i<p->hash.nHash; i++){ while( aOld[i] ){ BtPage *pShift = aOld[i]; aOld[i] = pShift->pNextHash; h = hashkey(nNew, pShift->pgno); pShift->pNextHash = aNew[h]; aNew[h] = pShift; } } p->hash.aHash = aNew; p->hash.nHash = nNew; sqlite4_free(p->pEnv, aOld); |
︙ | ︙ | |||
455 456 457 458 459 460 461 462 463 464 465 466 467 468 | /* ** Read, write and trim existing database pages. */ int sqlite4BtPageGet(BtPager *p, u32 pgno, BtPage **ppPg){ int rc = SQLITE4_OK; /* Return code */ BtPage *pRet; /* Returned page handle */ /* Search the cache for an existing page. */ pRet = btHashSearch(p, pgno); /* If the page is not in the cache, load it from disk */ if( pRet==0 ){ rc = btAllocatePage(p, &pRet); | > > > > | 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | /* ** Read, write and trim existing database pages. */ int sqlite4BtPageGet(BtPager *p, u32 pgno, BtPage **ppPg){ int rc = SQLITE4_OK; /* Return code */ BtPage *pRet; /* Returned page handle */ if( pgno>100000 ){ return btErrorBkpt(SQLITE4_CORRUPT); } /* Search the cache for an existing page. */ pRet = btHashSearch(p, pgno); /* If the page is not in the cache, load it from disk */ if( pRet==0 ){ rc = btAllocatePage(p, &pRet); |
︙ | ︙ | |||
496 497 498 499 500 501 502 503 | pPg->flags |= BT_PAGE_DIRTY; pPg->pNextDirty = pPg->pPager->pDirty; pPg->pPager->pDirty = pPg; } return SQLITE4_OK; } int sqlite4BtPageTrim(BtPage *pPg){ | > > > > | > | | > | 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | pPg->flags |= BT_PAGE_DIRTY; pPg->pNextDirty = pPg->pPager->pDirty; pPg->pPager->pDirty = pPg; } return SQLITE4_OK; } /* ** Decrement the refcount on page pPg. Also, indicate that page pPg is ** no longer in use. */ int sqlite4BtPageTrim(BtPage *pPg){ /* assert( !"todo" ); */ return SQLITE4_OK; } int sqlite4BtPageRelease(BtPage *pPg){ if( pPg ){ assert( pPg->nRef>=1 ); pPg->nRef--; } return SQLITE4_OK; } void sqlite4BtPageReference(BtPage *pPg){ assert( pPg->nRef>=1 ); pPg->nRef++; return SQLITE4_OK; |
︙ | ︙ | |||
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | sqlite4BtPageRelease(pPg); pPg = 0; }else{ p->dbhdr.nPg = pgno; } } fprintf(stderr, "allocated page %d\n", pgno); *ppPg = pPg; return rc; } /* ** Return the current page number of the argument page reference. | > > | 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | sqlite4BtPageRelease(pPg); pPg = 0; }else{ p->dbhdr.nPg = pgno; } } #ifdef BT_STDERR_DEBUG fprintf(stderr, "allocated page %d\n", pgno); #endif *ppPg = pPg; return rc; } /* ** Return the current page number of the argument page reference. |
︙ | ︙ |
Changes to test/simple3.test.
︙ | ︙ | |||
87 88 89 90 91 92 93 | INSERT INTO t1 VALUES(6, $val); } do_execsql_test 2.5 { SELECT a, length(b) FROM t1 } {1 200 3 200 4 200 5 200 6 200} | > | > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | > > > | > > | > > > > | > > > > > > > | > > > | > > > > > | | > | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | INSERT INTO t1 VALUES(6, $val); } do_execsql_test 2.5 { SELECT a, length(b) FROM t1 } {1 200 3 200 4 200 5 200 6 200} #------------------------------------------------------------------------- proc lshuffle {list} { set nVal [llength $list] for {set i 0} {$i < $nVal} {incr i} { set i2 [expr int(rand()*$nVal)] set tmp [lindex $list $i] lset list $i [lindex $list $i2] lset list $i2 $tmp } return $list } proc K {a} { set a } proc int_list {nVal} { set ret [list] for {set i 0} {$i < $nVal} {incr i} { lappend ret $i } return $ret } do_test 3.0 { catch { db close } forcedelete test.db sqlite4 db file:test.db?kv=bt } {} do_execsql_test 3.1 { CREATE TABLE t1(a PRIMARY KEY, b); } set nRow 100000 set nStep [expr $nRow / 50] foreach {tn shuffle_proc} { 1 K 2 lshuffle } { set iRow 0 foreach k [$shuffle_proc [int_list $nRow]] { incr iRow execsql { INSERT INTO t1 VALUES($k, randomblob(100)); } if {0==($iRow % $nStep)} { do_execsql_test 4.$tn.1.$iRow { SELECT count(*) FROM t1; } $iRow } } do_test 4.$tn.2 { set nInitial [db one {SELECT count(*) FROM t1}] for {set i 0} {$i < $nRow} {incr i} { set res [execsql {SELECT count(*) FROM t1 WHERE a = $i}] if {$res!="1"} { error "res = $res for i=$i" } } } {} set iRow 0 foreach k [$shuffle_proc [int_list $nRow]] { incr iRow execsql { DELETE FROM t1 WHERE a = $k } if {0==($iRow % $nStep)} { do_execsql_test 4.$tn.3.$iRow { SELECT count(*) FROM t1; } [expr $nRow - $iRow] } } } finish_test |