SQLite4
Changes On Branch remove-btree
Not logged in

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch remove-btree Excluding Merge-Ins

This is equivalent to a diff from 29c1ec8e6b to 6838c8a3a7

2012-02-21
20:03
Only the bare basics work. But we might as well go ahead and call this the trunk since we are unlikely to ever need to bisect back into this massive rewrite effort. check-in: a101b3e1c4 user: drh tags: trunk
20:01
Inserting multiple rows into a table and querying via full-table scan is now working. Leaf check-in: 6838c8a3a7 user: drh tags: remove-btree
19:57
Improved storage tracing output. check-in: d4c10f88ad user: drh tags: remove-btree
2012-02-08
21:47
This is an incremental check-in for the massive change that removes the old b-tree layer and substitutes a uniform key-value namespace. Nothing works at this point. This check-in is just a checkpoint. check-in: 87d659d624 user: drh tags: remove-btree
2012-01-26
22:11
Always call OP_MakeKey before OP_MakeRecord prior to adding content to an index. check-in: 29c1ec8e6b user: drh tags: trunk
20:53
Fix the data codec so that it handles Inf and NaN. Make sure OP_MakeKey is only called with an index cursor. check-in: bfa05539ea user: drh tags: trunk

Changes to ext/fts3/fts3.c.

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>

#include "fts3.h"
#ifndef SQLITE_CORE 
# include "sqlite4ext.h"
  SQLITE_EXTENSION_INIT1
#endif

static int fts3EvalNext(Fts3Cursor *pCsr);
static int fts3EvalStart(Fts3Cursor *pCsr);
static int fts3TermSegReaderCursor(
    Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);

/* 







<
<
<
<







303
304
305
306
307
308
309




310
311
312
313
314
315
316
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>

#include "fts3.h"





static int fts3EvalNext(Fts3Cursor *pCsr);
static int fts3EvalStart(Fts3Cursor *pCsr);
static int fts3TermSegReaderCursor(
    Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);

/* 

Changes to ext/fts3/fts3Int.h.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/* If not building as part of the core, include sqlite4ext.h. */
#ifndef SQLITE_CORE
# include "sqlite4ext.h" 
extern const sqlite4_api_routines *sqlite4_api;
#endif

#include "sqlite4.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single







<
<
<
<
<
<







25
26
27
28
29
30
31






32
33
34
35
36
37
38
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)







#include "sqlite4.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single

Changes to main.mk.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

# Object files for the SQLite library.
#
LIBOBJ+= alter.o analyze.o attach.o auth.o \
         backup.o bitvec.o btmutex.o btree.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o journal.o kvmem.o legacy.o loadext.o \
         main.o malloc.o math.o mem0.o mem1.o mem2.o mem3.o mem5.o \
         memjournal.o \
         mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \
         notify.o opcodes.o os.o os_os2.o os_unix.o os_win.o \
         pager.o parse.o pcache.o pcache1.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o storage.o \
         table.o tokenize.o trigger.o \
         update.o util.o varint.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbeblob.o vdbecodec.o \
         vdbemem.o vdbesort.o vdbetrace.o \
         walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \
  $(TOP)/src/alter.c \
  $(TOP)/src/analyze.c \
  $(TOP)/src/attach.c \
  $(TOP)/src/auth.c \
  $(TOP)/src/backup.c \
  $(TOP)/src/bitvec.c \
  $(TOP)/src/btmutex.c \
  $(TOP)/src/btree.c \
  $(TOP)/src/btree.h \
  $(TOP)/src/btreeInt.h \
  $(TOP)/src/build.c \
  $(TOP)/src/callback.c \
  $(TOP)/src/complete.c \
  $(TOP)/src/ctime.c \
  $(TOP)/src/date.c \
  $(TOP)/src/delete.c \
  $(TOP)/src/expr.c \
  $(TOP)/src/fault.c \
  $(TOP)/src/fkey.c \
  $(TOP)/src/func.c \
  $(TOP)/src/global.c \
  $(TOP)/src/hash.c \
  $(TOP)/src/hash.h \
  $(TOP)/src/hwtime.h \
  $(TOP)/src/insert.c \
  $(TOP)/src/journal.c \
  $(TOP)/src/kvmem.c \
  $(TOP)/src/legacy.c \
  $(TOP)/src/loadext.c \
  $(TOP)/src/main.c \
  $(TOP)/src/malloc.c \
  $(TOP)/src/math.c \
  $(TOP)/src/mem0.c \
  $(TOP)/src/mem1.c \
  $(TOP)/src/mem2.c \
  $(TOP)/src/mem3.c \
  $(TOP)/src/mem5.c \
  $(TOP)/src/memjournal.c \
  $(TOP)/src/mutex.c \
  $(TOP)/src/mutex.h \
  $(TOP)/src/mutex_noop.c \
  $(TOP)/src/mutex_os2.c \
  $(TOP)/src/mutex_unix.c \
  $(TOP)/src/mutex_w32.c \
  $(TOP)/src/notify.c \
  $(TOP)/src/os.c \
  $(TOP)/src/os.h \
  $(TOP)/src/os_common.h \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \
  $(TOP)/src/pager.c \
  $(TOP)/src/pager.h \
  $(TOP)/src/parse.y \
  $(TOP)/src/pcache.c \
  $(TOP)/src/pcache.h \
  $(TOP)/src/pcache1.c \
  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \
  $(TOP)/src/resolve.c \
  $(TOP)/src/rowset.c \
  $(TOP)/src/select.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \
  $(TOP)/src/sqlite4ext.h \
  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \
  $(TOP)/src/status.c \
  $(TOP)/src/storage.c \
  $(TOP)/src/storage.h \
  $(TOP)/src/table.c \
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \
  $(TOP)/src/util.c \
  $(TOP)/src/varint.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbeblob.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/vdbesort.c \
  $(TOP)/src/vdbetrace.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Source code for extensions
#
SRC += \
  $(TOP)/ext/fts1/fts1.c \
  $(TOP)/ext/fts1/fts1.h \
  $(TOP)/ext/fts1/fts1_hash.c \
  $(TOP)/ext/fts1/fts1_hash.h \
  $(TOP)/ext/fts1/fts1_porter.c \
  $(TOP)/ext/fts1/fts1_tokenizer.h \
  $(TOP)/ext/fts1/fts1_tokenizer1.c
SRC += \
  $(TOP)/ext/fts2/fts2.c \
  $(TOP)/ext/fts2/fts2.h \
  $(TOP)/ext/fts2/fts2_hash.c \
  $(TOP)/ext/fts2/fts2_hash.h \
  $(TOP)/ext/fts2/fts2_icu.c \
  $(TOP)/ext/fts2/fts2_porter.c \
  $(TOP)/ext/fts2/fts2_tokenizer.h \
  $(TOP)/ext/fts2/fts2_tokenizer.c \
  $(TOP)/ext/fts2/fts2_tokenizer1.c
SRC += \
  $(TOP)/ext/fts3/fts3.c \
  $(TOP)/ext/fts3/fts3.h \
  $(TOP)/ext/fts3/fts3Int.h \
  $(TOP)/ext/fts3/fts3_aux.c \
  $(TOP)/ext/fts3/fts3_expr.c \
  $(TOP)/ext/fts3/fts3_hash.c \
  $(TOP)/ext/fts3/fts3_hash.h \







|




|

<

|
|



|












<

<
<
<
<















<


<








<






<






<
<

<
<
<









<

















<











<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







47
48
49
50
51
52
53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80




81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97

98
99
100
101
102
103
104
105

106
107
108
109
110
111

112
113
114
115
116
117


118



119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155


















156
157
158
159
160
161
162
TCCX =  $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) 
TCCX += -I$(TOP)/ext/rtree -I$(TOP)/ext/icu -I$(TOP)/ext/fts3
TCCX += -I$(TOP)/ext/async

# Object files for the SQLite library.
#
LIBOBJ+= alter.o analyze.o attach.o auth.o \
         bitvec.o build.o \
         callback.o complete.o ctime.o date.o delete.o expr.o fault.o fkey.o \
         fts3.o fts3_aux.o fts3_expr.o fts3_hash.o fts3_icu.o fts3_porter.o \
         fts3_snippet.o fts3_tokenizer.o fts3_tokenizer1.o \
         fts3_write.o func.o global.o hash.o \
         icu.o insert.o kvmem.o legacy.o \
         main.o malloc.o math.o mem0.o mem1.o mem2.o mem3.o mem5.o \

         mutex.o mutex_noop.o mutex_os2.o mutex_unix.o mutex_w32.o \
         opcodes.o os.o os_os2.o os_unix.o os_win.o \
         parse.o pragma.o prepare.o printf.o \
         random.o resolve.o rowset.o rtree.o select.o status.o storage.o \
         table.o tokenize.o trigger.o \
         update.o util.o varint.o \
         vdbe.o vdbeapi.o vdbeaux.o vdbecodec.o vdbecursor.o \
         vdbemem.o vdbesort.o vdbetrace.o \
         walker.o where.o utf.o vtab.o



# All of the source code files.
#
SRC = \
  $(TOP)/src/alter.c \
  $(TOP)/src/analyze.c \
  $(TOP)/src/attach.c \
  $(TOP)/src/auth.c \

  $(TOP)/src/bitvec.c \




  $(TOP)/src/build.c \
  $(TOP)/src/callback.c \
  $(TOP)/src/complete.c \
  $(TOP)/src/ctime.c \
  $(TOP)/src/date.c \
  $(TOP)/src/delete.c \
  $(TOP)/src/expr.c \
  $(TOP)/src/fault.c \
  $(TOP)/src/fkey.c \
  $(TOP)/src/func.c \
  $(TOP)/src/global.c \
  $(TOP)/src/hash.c \
  $(TOP)/src/hash.h \
  $(TOP)/src/hwtime.h \
  $(TOP)/src/insert.c \

  $(TOP)/src/kvmem.c \
  $(TOP)/src/legacy.c \

  $(TOP)/src/main.c \
  $(TOP)/src/malloc.c \
  $(TOP)/src/math.c \
  $(TOP)/src/mem0.c \
  $(TOP)/src/mem1.c \
  $(TOP)/src/mem2.c \
  $(TOP)/src/mem3.c \
  $(TOP)/src/mem5.c \

  $(TOP)/src/mutex.c \
  $(TOP)/src/mutex.h \
  $(TOP)/src/mutex_noop.c \
  $(TOP)/src/mutex_os2.c \
  $(TOP)/src/mutex_unix.c \
  $(TOP)/src/mutex_w32.c \

  $(TOP)/src/os.c \
  $(TOP)/src/os.h \
  $(TOP)/src/os_common.h \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \


  $(TOP)/src/parse.y \



  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \
  $(TOP)/src/resolve.c \
  $(TOP)/src/rowset.c \
  $(TOP)/src/select.c \
  $(TOP)/src/shell.c \
  $(TOP)/src/sqlite.h.in \

  $(TOP)/src/sqliteInt.h \
  $(TOP)/src/sqliteLimit.h \
  $(TOP)/src/status.c \
  $(TOP)/src/storage.c \
  $(TOP)/src/storage.h \
  $(TOP)/src/table.c \
  $(TOP)/src/tclsqlite.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/trigger.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/update.c \
  $(TOP)/src/util.c \
  $(TOP)/src/varint.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbe.h \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \

  $(TOP)/src/vdbemem.c \
  $(TOP)/src/vdbesort.c \
  $(TOP)/src/vdbetrace.c \
  $(TOP)/src/vdbeInt.h \
  $(TOP)/src/vtab.c \
  $(TOP)/src/walker.c \
  $(TOP)/src/where.c

# Source code for extensions
#
SRC += \


















  $(TOP)/ext/fts3/fts3.c \
  $(TOP)/ext/fts3/fts3.h \
  $(TOP)/ext/fts3/fts3Int.h \
  $(TOP)/ext/fts3/fts3_aux.c \
  $(TOP)/ext/fts3/fts3_expr.c \
  $(TOP)/ext/fts3/fts3_hash.c \
  $(TOP)/ext/fts3/fts3_hash.h \
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

# Source code to the test files.
#
TESTSRC = \
  $(TOP)/ext/fts3/fts3_term.c \
  $(TOP)/ext/fts3/fts3_test.c \
  $(TOP)/src/test1.c \
  $(TOP)/src/test2.c \
  $(TOP)/src/test3.c \
  $(TOP)/src/test4.c \
  $(TOP)/src/test5.c \
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \
  $(TOP)/src/test8.c \
  $(TOP)/src/test9.c \
  $(TOP)/src/test_autoext.c \
  $(TOP)/src/test_backup.c \
  $(TOP)/src/test_btree.c \
  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \
  $(TOP)/src/test_func.c \
  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \
  $(TOP)/src/test_pcache.c \
  $(TOP)/src/test_quota.c \
  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \
  $(TOP)/src/test_server.c \
  $(TOP)/src/test_storage.c \
  $(TOP)/src/test_superlock.c \
  $(TOP)/src/test_syscall.c \
  $(TOP)/src/test_tclvar.c \
  $(TOP)/src/test_thread.c \
  $(TOP)/src/test_vfs.c \
  $(TOP)/src/test_wholenumber.c \
  $(TOP)/src/test_wsd.c

#TESTSRC += $(TOP)/ext/fts2/fts2_tokenizer.c
#TESTSRC += $(TOP)/ext/fts3/fts3_tokenizer.c

TESTSRC2 = \
  $(TOP)/src/attach.c \
  $(TOP)/src/backup.c \
  $(TOP)/src/btree.c \
  $(TOP)/src/build.c \
  $(TOP)/src/date.c \
  $(TOP)/src/expr.c \
  $(TOP)/src/func.c \
  $(TOP)/src/insert.c \
  $(TOP)/src/mem5.c \
  $(TOP)/src/os.c \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \
  $(TOP)/src/pager.c \
  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \
  $(TOP)/src/pcache.c \
  $(TOP)/src/pcache1.c \
  $(TOP)/src/select.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/util.c \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/where.c \
  parse.c \
  $(TOP)/ext/fts3/fts3.c \
  $(TOP)/ext/fts3/fts3_aux.c \
  $(TOP)/ext/fts3/fts3_expr.c \
  $(TOP)/ext/fts3/fts3_tokenizer.c \
  $(TOP)/ext/fts3/fts3_write.c

# Header files used by all library source files.
#
HDR = \
   $(TOP)/src/btree.h \
   $(TOP)/src/btreeInt.h \
   $(TOP)/src/hash.h \
   $(TOP)/src/hwtime.h \
   keywordhash.h \
   $(TOP)/src/mutex.h \
   opcodes.h \
   $(TOP)/src/os.h \
   $(TOP)/src/os_common.h \
   $(TOP)/src/pager.h \
   $(TOP)/src/pcache.h \
   parse.h  \
   sqlite4.h  \
   $(TOP)/src/sqlite4ext.h \
   $(TOP)/src/sqliteInt.h  \
   $(TOP)/src/sqliteLimit.h \
   $(TOP)/src/storage.h \
   $(TOP)/src/vdbe.h \
   $(TOP)/src/vdbeInt.h

# Header files used by extensions
#
EXTHDR += \
  $(TOP)/ext/fts1/fts1.h \
  $(TOP)/ext/fts1/fts1_hash.h \
  $(TOP)/ext/fts1/fts1_tokenizer.h
EXTHDR += \
  $(TOP)/ext/fts2/fts2.h \
  $(TOP)/ext/fts2/fts2_hash.h \
  $(TOP)/ext/fts2/fts2_tokenizer.h
EXTHDR += \
  $(TOP)/ext/fts3/fts3.h \
  $(TOP)/ext/fts3/fts3Int.h \
  $(TOP)/ext/fts3/fts3_hash.h \
  $(TOP)/ext/fts3/fts3_tokenizer.h
EXTHDR += \
  $(TOP)/ext/rtree/rtree.h
EXTHDR += \







<
<






<
<
<



<









<
<


<

<
<











<
<










<




<
<



















<
<







<
<


<






<
<
|
<
<
<
<
<
<
<
<







188
189
190
191
192
193
194


195
196
197
198
199
200



201
202
203

204
205
206
207
208
209
210
211
212


213
214

215


216
217
218
219
220
221
222
223
224
225
226


227
228
229
230
231
232
233
234
235
236

237
238
239
240


241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259


260
261
262
263
264
265
266


267
268

269
270
271
272
273
274


275








276
277
278
279
280
281
282

# Source code to the test files.
#
TESTSRC = \
  $(TOP)/ext/fts3/fts3_term.c \
  $(TOP)/ext/fts3/fts3_test.c \
  $(TOP)/src/test1.c \


  $(TOP)/src/test4.c \
  $(TOP)/src/test5.c \
  $(TOP)/src/test6.c \
  $(TOP)/src/test7.c \
  $(TOP)/src/test8.c \
  $(TOP)/src/test9.c \



  $(TOP)/src/test_config.c \
  $(TOP)/src/test_demovfs.c \
  $(TOP)/src/test_devsym.c \

  $(TOP)/src/test_fuzzer.c \
  $(TOP)/src/test_hexio.c \
  $(TOP)/src/test_init.c \
  $(TOP)/src/test_intarray.c \
  $(TOP)/src/test_journal.c \
  $(TOP)/src/test_malloc.c \
  $(TOP)/src/test_mutex.c \
  $(TOP)/src/test_onefile.c \
  $(TOP)/src/test_osinst.c \


  $(TOP)/src/test_rtree.c \
  $(TOP)/src/test_schema.c \

  $(TOP)/src/test_storage.c \


  $(TOP)/src/test_tclvar.c \
  $(TOP)/src/test_thread.c \
  $(TOP)/src/test_vfs.c \
  $(TOP)/src/test_wholenumber.c \
  $(TOP)/src/test_wsd.c

#TESTSRC += $(TOP)/ext/fts2/fts2_tokenizer.c
#TESTSRC += $(TOP)/ext/fts3/fts3_tokenizer.c

TESTSRC2 = \
  $(TOP)/src/attach.c \


  $(TOP)/src/build.c \
  $(TOP)/src/date.c \
  $(TOP)/src/expr.c \
  $(TOP)/src/func.c \
  $(TOP)/src/insert.c \
  $(TOP)/src/mem5.c \
  $(TOP)/src/os.c \
  $(TOP)/src/os_os2.c \
  $(TOP)/src/os_unix.c \
  $(TOP)/src/os_win.c \

  $(TOP)/src/pragma.c \
  $(TOP)/src/prepare.c \
  $(TOP)/src/printf.c \
  $(TOP)/src/random.c \


  $(TOP)/src/select.c \
  $(TOP)/src/tokenize.c \
  $(TOP)/src/utf.c \
  $(TOP)/src/util.c \
  $(TOP)/src/vdbeapi.c \
  $(TOP)/src/vdbeaux.c \
  $(TOP)/src/vdbe.c \
  $(TOP)/src/vdbemem.c \
  $(TOP)/src/where.c \
  parse.c \
  $(TOP)/ext/fts3/fts3.c \
  $(TOP)/ext/fts3/fts3_aux.c \
  $(TOP)/ext/fts3/fts3_expr.c \
  $(TOP)/ext/fts3/fts3_tokenizer.c \
  $(TOP)/ext/fts3/fts3_write.c

# Header files used by all library source files.
#
HDR = \


   $(TOP)/src/hash.h \
   $(TOP)/src/hwtime.h \
   keywordhash.h \
   $(TOP)/src/mutex.h \
   opcodes.h \
   $(TOP)/src/os.h \
   $(TOP)/src/os_common.h \


   parse.h  \
   sqlite4.h  \

   $(TOP)/src/sqliteInt.h  \
   $(TOP)/src/sqliteLimit.h \
   $(TOP)/src/storage.h \
   $(TOP)/src/vdbe.h \
   $(TOP)/src/vdbeInt.h



EXTHDR = \








  $(TOP)/ext/fts3/fts3.h \
  $(TOP)/ext/fts3/fts3Int.h \
  $(TOP)/ext/fts3/fts3_hash.h \
  $(TOP)/ext/fts3/fts3_tokenizer.h
EXTHDR += \
  $(TOP)/ext/rtree/rtree.h
EXTHDR += \

Changes to notes/key_encoding.txt.

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117





118












119


120

121
122



123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
and 0x0c.

Finite non-zero values are classified as either large, or small.
Small values have an absolute value less than 1.  Large values have an
absolute value of 1 or more.  The value 1.0 is considered large.

For both large and small values, we compute a mantissa M and an
exponent E.  The mantissa is a base-10 representation of the
value.  The exponent E determines where to put the decimal point.

Each decimal digit of the mantissa is stored in a half-byte.  There
are two decimal digits per byte.  Digit 0 has a value of 1.  Digit 9
has a value of A (binary 1010).  The other digits have values in 
between.  A value of 0 is the end-of-content marker.  The mantissa 
is composed  of one or more bytes, ending with a single byte where
the lower four bits at least are the end-of-content mark.  The upper
four bits of the last byte may or may not be zero too, depending on
how many other digits exist in the mantissa.

If we assume all digits of the mantissa occur to the right of the
decimal point, then the exponent E is one less than the power of ten 
by which one must multiply the mantissa to recover the original value. 
Or, E is one less than the number of digits that occur to the left of 
the decimal point.

Examples:

   Value          Exponent E      Significand M (in hex)
  --------        ----------      ----------------------
    1.0              0              20





    100.0            2              20












    1234             3              23 45 00


    12345            4              23 45 60

    12.345           1              23 45 60
    0.123            -1             23 40




The E value is stored in the encoding as an unsigned varint.  And 
since E can be negative, that means we need separate cases for positive
and negative E value.  That is why large and small numbers are treated
differently.  Large numbers have a positive or zero E and small numbers
have a negative E.

Large negative numbers have an initial byte of 0x08 followed by the
ones-complement of the varint of E followed by the ones-complement of
M.  Small negative numbers have an initial byte of 0x09 followed by
the varint of -E followed by the ones-complement of M.  Small positive
numbers have an initial byte of 0x0b followed by the ones-complement of
the varint of -E followed by M.  Finally, large positive nubmers have
an initial byte of 0x0c followed by the varint of E followed by M.

SUMMARY

Each SQL value is encoded as one or more bytes.  The first byte of
the encoding is as follows:


  0x05 NULL
  0x06 NaN
  0x07 negative infinity
  0x08 negative-large ~E ~M
  0x09 negative-small -E ~M
  0x0a zero







|


|
|
<
|
<
<
|
<


|
|
<
|



|
|
|
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
|
|
>
>
>




|
|












|
>







88
89
90
91
92
93
94
95
96
97
98
99

100


101

102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
and 0x0c.

Finite non-zero values are classified as either large, or small.
Small values have an absolute value less than 1.  Large values have an
absolute value of 1 or more.  The value 1.0 is considered large.

For both large and small values, we compute a mantissa M and an
exponent E.  The mantissa is a base-100 representation of the
value.  The exponent E determines where to put the decimal point.

Each centimal digit of the mantissa is stored in a byte.  If the
value of the centimal digit is X (hence X>=0 and X<=99) then the

byte value will be 2*X+1 for every byte of the mantissa, except


for the last byte which will be 2*X+0.


If we assume all digits of the mantissa occur to the right of the
decimal point, then the exponent E is the power of one hundred
by which one must multiply the mantissa to recover the original 

value.

Examples:

   Value               Exponent E    Significand M (in hex)
  --------             ----------    ----------------------
    1.0                    1          02
    10.0                   1          14
    99.0                   1          b4
    99.01                  1          b5 02
    99.0001                1          b5 01 02
    100.0                  2          03 00
    100.1                  2          03 02
    100.01                 2          03 01 02
    1234                   2          19 44
    9999                   2          c7 c6
    9999.000001            2          c7 c7 01 01 02
    9999.000009            2          c7 c7 01 01 12
    9999.00001             2          c7 c7 01 01 14
    9999.00009             2          c7 c7 01 01 b4
    9999.000099            2          c7 c7 01 01 c6
    9999.0001              2          c7 c7 01 02
    9999.001               2          c7 c7 01 14
    9999.01                2          c7 c7 02
    9999.1                 2          c7 c7 14
    10000                  3          02
    10001                  3          03 00 02
    12345                  3          03 2f 5a
    123450                 4          19 45 64
    1234.5                 3          19 45 64 
    12.345                 2          19 45 64
    0.123                  0          19 3c
    0.0123                 0          03 2e
    0.00123               -1          19 3c
    9223372036854775807   10          13 2d 43 91 07 89 6d 9b 75 0e

The E value is stored in the encoding as an unsigned varint.  And 
since E can be negative, that means we need separate cases for positive
and negative E value.  That is why large and small numbers are treated
differently.  Large numbers have a positive E and small numbers
have a zero or negative E.

Large negative numbers have an initial byte of 0x08 followed by the
ones-complement of the varint of E followed by the ones-complement of
M.  Small negative numbers have an initial byte of 0x09 followed by
the varint of -E followed by the ones-complement of M.  Small positive
numbers have an initial byte of 0x0b followed by the ones-complement of
the varint of -E followed by M.  Finally, large positive nubmers have
an initial byte of 0x0c followed by the varint of E followed by M.

SUMMARY

Each SQL value is encoded as one or more bytes.  The first byte of
the encoding, its meaning, and a terse description of the bytes that
follow is given by the following table:

  0x05 NULL
  0x06 NaN
  0x07 negative infinity
  0x08 negative-large ~E ~M
  0x09 negative-small -E ~M
  0x0a zero

Changes to src/alter.c.

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  int iDb;                   /* Index of database containing pTab */
#ifndef SQLITE_OMIT_TRIGGER
  Trigger *pTrig;
#endif

  v = sqlite4GetVdbe(pParse);
  if( NEVER(v==0) ) return;
  assert( sqlite4BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=sqlite4TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite4SchemaToIndex(pParse->db, pTrig->pSchema);







<







335
336
337
338
339
340
341

342
343
344
345
346
347
348
  int iDb;                   /* Index of database containing pTab */
#ifndef SQLITE_OMIT_TRIGGER
  Trigger *pTrig;
#endif

  v = sqlite4GetVdbe(pParse);
  if( NEVER(v==0) ) return;

  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_TRIGGER
  /* Drop any table triggers from the internal schema. */
  for(pTrig=sqlite4TriggerList(pParse, pTab); pTrig; pTrig=pTrig->pNext){
    int iTrigDb = sqlite4SchemaToIndex(pParse->db, pTrig->pSchema);
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#endif
  VTable *pVTab = 0;        /* Non-zero if this is a v-tab with an xRename() */
  int savedDbFlags;         /* Saved value of db->flags */

  savedDbFlags = db->flags;  
  if( NEVER(db->mallocFailed) ) goto exit_rename_table;
  assert( pSrc->nSrc==1 );
  assert( sqlite4BtreeHoldsAllMutexes(pParse->db) );

  pTab = sqlite4LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_rename_table;
  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  zDb = db->aDb[iDb].zName;
  db->flags |= SQLITE_PreferBuiltin;








<







407
408
409
410
411
412
413

414
415
416
417
418
419
420
#endif
  VTable *pVTab = 0;        /* Non-zero if this is a v-tab with an xRename() */
  int savedDbFlags;         /* Saved value of db->flags */

  savedDbFlags = db->flags;  
  if( NEVER(db->mallocFailed) ) goto exit_rename_table;
  assert( pSrc->nSrc==1 );


  pTab = sqlite4LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_rename_table;
  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  zDb = db->aDb[iDb].zName;
  db->flags |= SQLITE_PreferBuiltin;

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
exit_rename_table:
  sqlite4SrcListDelete(db, pSrc);
  sqlite4DbFree(db, zName);
  db->flags = savedDbFlags;
}


/*
** Generate code to make sure the file format number is at least minFormat.
** The generated code will increase the file format number if necessary.
*/
void sqlite4MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
  Vdbe *v;
  v = sqlite4GetVdbe(pParse);
  /* The VDBE should have been allocated before this routine is called.
  ** If that allocation failed, we would have quit before reaching this
  ** point */
  if( ALWAYS(v) ){
    int r1 = sqlite4GetTempReg(pParse);
    int r2 = sqlite4GetTempReg(pParse);
    int j1;
    sqlite4VdbeAddOp3(v, OP_ReadCookie, iDb, r1, BTREE_FILE_FORMAT);
    sqlite4VdbeUsesBtree(v, iDb);
    sqlite4VdbeAddOp2(v, OP_Integer, minFormat, r2);
    j1 = sqlite4VdbeAddOp3(v, OP_Ge, r2, 0, r1);
    sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, r2);
    sqlite4VdbeJumpHere(v, j1);
    sqlite4ReleaseTempReg(pParse, r1);
    sqlite4ReleaseTempReg(pParse, r2);
  }
}

/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
**
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







581
582
583
584
585
586
587

























588
589
590
591
592
593
594
exit_rename_table:
  sqlite4SrcListDelete(db, pSrc);
  sqlite4DbFree(db, zName);
  db->flags = savedDbFlags;
}



























/*
** This function is called after an "ALTER TABLE ... ADD" statement
** has been parsed. Argument pColDef contains the text of the new
** column definition.
**
** The Table structure pParse->pNewTable was extended to include
** the new column during parsing.
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
  sqlite4 *db;              /* The database connection; */

  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ) return;
  pNew = pParse->pNewTable;
  assert( pNew );

  assert( sqlite4BtreeHoldsAllMutexes(db) );
  iDb = sqlite4SchemaToIndex(db, pNew->pSchema);
  zDb = db->aDb[iDb].zName;
  zTab = &pNew->zName[16];  /* Skip the "sqlite_altertab_" prefix on the name */
  pCol = &pNew->aCol[pNew->nCol-1];
  pDflt = pCol->pDflt;
  pTab = sqlite4FindTable(db, zTab, zDb);
  assert( pTab );







<







605
606
607
608
609
610
611

612
613
614
615
616
617
618
  sqlite4 *db;              /* The database connection; */

  db = pParse->db;
  if( pParse->nErr || db->mallocFailed ) return;
  pNew = pParse->pNewTable;
  assert( pNew );


  iDb = sqlite4SchemaToIndex(db, pNew->pSchema);
  zDb = db->aDb[iDb].zName;
  zTab = &pNew->zName[16];  /* Skip the "sqlite_altertab_" prefix on the name */
  pCol = &pNew->aCol[pNew->nCol-1];
  pDflt = pCol->pDflt;
  pTab = sqlite4FindTable(db, zTab, zDb);
  assert( pTab );
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
      zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
      zTab
    );
    sqlite4DbFree(db, zCol);
    db->flags = savedDbFlags;
  }

  /* If the default value of the new column is NULL, then set the file
  ** format to 2. If the default value of the new column is not NULL,
  ** the file format becomes 3.
  */
  sqlite4MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2);

  /* Reload the schema of the modified table. */
  reloadTableSchema(pParse, pTab, pTab->zName);
}

/*
** This function is called by the parser after the table-name in
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument 







<
<
<
<
<
<







687
688
689
690
691
692
693






694
695
696
697
698
699
700
      zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1,
      zTab
    );
    sqlite4DbFree(db, zCol);
    db->flags = savedDbFlags;
  }







  /* Reload the schema of the modified table. */
  reloadTableSchema(pParse, pTab, pTab->zName);
}

/*
** This function is called by the parser after the table-name in
** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument 
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  int iDb;
  int i;
  int nAlloc;
  sqlite4 *db = pParse->db;

  /* Look up the table being altered. */
  assert( pParse->pNewTable==0 );
  assert( sqlite4BtreeHoldsAllMutexes(db) );
  if( db->mallocFailed ) goto exit_begin_add_column;
  pTab = sqlite4LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_begin_add_column;

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(pTab) ){
    sqlite4ErrorMsg(pParse, "virtual tables may not be altered");







<







717
718
719
720
721
722
723

724
725
726
727
728
729
730
  int iDb;
  int i;
  int nAlloc;
  sqlite4 *db = pParse->db;

  /* Look up the table being altered. */
  assert( pParse->pNewTable==0 );

  if( db->mallocFailed ) goto exit_begin_add_column;
  pTab = sqlite4LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase);
  if( !pTab ) goto exit_begin_add_column;

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(pTab) ){
    sqlite4ErrorMsg(pParse, "virtual tables may not be altered");

Changes to src/analyze.c.

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
  u8 aCreateTbl[] = {0, 0};

  int i;
  sqlite4 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite4GetVdbe(pParse);
  if( v==0 ) return;
  assert( sqlite4BtreeHoldsAllMutexes(db) );
  assert( sqlite4VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){







<







153
154
155
156
157
158
159

160
161
162
163
164
165
166
  u8 aCreateTbl[] = {0, 0};

  int i;
  sqlite4 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite4GetVdbe(pParse);
  if( v==0 ) return;

  assert( sqlite4VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite4BtreeHoldsAllMutexes(db) );
  iDb = sqlite4SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite4AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif








<


<







473
474
475
476
477
478
479

480
481

482
483
484
485
486
487
488
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }

  iDb = sqlite4SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );

#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite4AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zName ) ){
    return;
  }
#endif

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
  int iMem;

  sqlite4BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
** in pTab that should be analyzed.
*/
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite4BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite4BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{







<

















<







720
721
722
723
724
725
726

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743

744
745
746
747
748
749
750
  int iMem;

  sqlite4BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;

  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
** in pTab that should be analyzed.
*/
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );

  iDb = sqlite4SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite4BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite4BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite4ReadSchema(pParse) ){
    return;
  }

  assert( pName2!=0 || pName1==0 );
  if( pName1==0 ){
    /* Form 1:  Analyze everything */







<







773
774
775
776
777
778
779

780
781
782
783
784
785
786
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */

  if( SQLITE_OK!=sqlite4ReadSchema(pParse) ){
    return;
  }

  assert( pName2!=0 || pName1==0 );
  if( pName1==0 ){
    /* Form 1:  Analyze everything */
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
int sqlite4AnalysisLoad(sqlite4 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite4DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3
    sqlite4DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif







|


<







1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

1073
1074
1075
1076
1077
1078
1079
int sqlite4AnalysisLoad(sqlite4 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pKV!=0 );

  /* Clear any prior statistics */

  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite4DefaultRowEst(pIdx);
#ifdef SQLITE_ENABLE_STAT3
    sqlite4DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif

Changes to src/attach.c.

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite4_result_error(context, zErr, -1);
    sqlite4_free(zErr);
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;
  rc = sqlite4BtreeOpen(pVfs, zPath, db, &aNew->pBt, 0, flags);
  if( rc==SQLITE_OK ) sqlite4KVStoreOpen(zPath, &aNew->pKV);
  sqlite4_free( zPath );
  db->nDb++;
  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite4MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){
    Pager *pPager;
    aNew->pSchema = sqlite4SchemaGet(db, aNew->pBt);
    if( !aNew->pSchema ){
      rc = SQLITE_NOMEM;
    }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
      zErrDyn = sqlite4MPrintf(db, 
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }
    pPager = sqlite4BtreePager(aNew->pBt);
    sqlite4PagerLockingMode(pPager, db->dfltLockMode);
    /*sqlite4BtreeSecureDelete(aNew->pBt,
                             sqlite4BtreeSecureDelete(db->aDb[0].pBt,-1) );*/
  }
  aNew->safety_level = 3;
  aNew->zName = sqlite4DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }


#ifdef SQLITE_HAS_CODEC
  if( rc==SQLITE_OK ){
    extern int sqlite4CodecAttach(sqlite4*, int, const void*, int);
    extern void sqlite4CodecGetKey(sqlite4*, int, void**, int*);
    int nKey;
    char *zKey;
    int t = sqlite4_value_type(argv[2]);
    switch( t ){
      case SQLITE_INTEGER:
      case SQLITE_FLOAT:
        zErrDyn = sqlite4DbStrDup(db, "Invalid key value");
        rc = SQLITE_ERROR;
        break;
        
      case SQLITE_TEXT:
      case SQLITE_BLOB:
        nKey = sqlite4_value_bytes(argv[2]);
        zKey = (char *)sqlite4_value_blob(argv[2]);
        rc = sqlite4CodecAttach(db, db->nDb-1, zKey, nKey);
        break;

      case SQLITE_NULL:
        /* No key specified.  Use the key from the main database */
        sqlite4CodecGetKey(db, 0, (void**)&zKey, &nKey);
        if( nKey>0 || sqlite4BtreeGetReserve(db->aDb[0].pBt)>0 ){
          rc = sqlite4CodecAttach(db, db->nDb-1, zKey, nKey);
        }
        break;
    }
  }
#endif

  /* If the file was opened successfully, read the schema for the new database.
  ** If this fails, or if opening the file failed, then close the file and 
  ** remove the entry from the db->aDb[] array. i.e. put everything back the way
  ** we found it.
  */
  if( rc==SQLITE_OK ){
    sqlite4BtreeEnterAll(db);
    rc = sqlite4Init(db, &zErrDyn);
    sqlite4BtreeLeaveAll(db);
  }
  if( rc ){
    int iDb = db->nDb - 1;
    assert( iDb>=2 );
    if( db->aDb[iDb].pBt ){
      sqlite4BtreeClose(db->aDb[iDb].pBt);
      db->aDb[iDb].pBt = 0;
      sqlite4KVStoreClose(db->aDb[iDb].pKV);
      db->aDb[iDb].pKV = 0;
      db->aDb[iDb].pSchema = 0;
    }
    sqlite4ResetInternalSchema(db, -1);
    db->nDb = iDb;
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){







<
|






<
|







<
<
<
<

<





<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






<

<




|
<
<







134
135
136
137
138
139
140

141
142
143
144
145
146
147

148
149
150
151
152
153
154
155




156

157
158
159
160
161

































162
163
164
165
166
167

168

169
170
171
172
173


174
175
176
177
178
179
180
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite4_result_error(context, zErr, -1);
    sqlite4_free(zErr);
    return;
  }
  assert( pVfs );
  flags |= SQLITE_OPEN_MAIN_DB;

  rc = sqlite4KVStoreOpen(db, zName, zPath, &aNew->pKV, 0);
  sqlite4_free( zPath );
  db->nDb++;
  if( rc==SQLITE_CONSTRAINT ){
    rc = SQLITE_ERROR;
    zErrDyn = sqlite4MPrintf(db, "database is already attached");
  }else if( rc==SQLITE_OK ){

    aNew->pSchema = sqlite4SchemaGet(db);
    if( !aNew->pSchema ){
      rc = SQLITE_NOMEM;
    }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
      zErrDyn = sqlite4MPrintf(db, 
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }




  }

  aNew->zName = sqlite4DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }


































  /* If the file was opened successfully, read the schema for the new database.
  ** If this fails, or if opening the file failed, then close the file and 
  ** remove the entry from the db->aDb[] array. i.e. put everything back the way
  ** we found it.
  */
  if( rc==SQLITE_OK ){

    rc = sqlite4Init(db, &zErrDyn);

  }
  if( rc ){
    int iDb = db->nDb - 1;
    assert( iDb>=2 );
    if( db->aDb[iDb].pKV ){


      sqlite4KVStoreClose(db->aDb[iDb].pKV);
      db->aDb[iDb].pKV = 0;
      db->aDb[iDb].pSchema = 0;
    }
    sqlite4ResetInternalSchema(db, -1);
    db->nDb = iDb;
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  char zErr[128];

  UNUSED_PARAMETER(NotUsed);

  if( zName==0 ) zName = "";
  for(i=0; i<db->nDb; i++){
    pDb = &db->aDb[i];
    if( pDb->pBt==0 ) continue;
    if( sqlite4StrICmp(pDb->zName, zName)==0 ) break;
  }

  if( i>=db->nDb ){
    sqlite4_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
    goto detach_error;
  }
  if( i<2 ){
    sqlite4_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
    goto detach_error;
  }
  if( !db->autoCommit ){
    sqlite4_snprintf(sizeof(zErr), zErr,
                     "cannot DETACH database within transaction");
    goto detach_error;
  }
  if( sqlite4BtreeIsInReadTrans(pDb->pBt) || sqlite4BtreeIsInBackup(pDb->pBt) ){
    sqlite4_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
    goto detach_error;
  }

  sqlite4BtreeClose(pDb->pBt);
  pDb->pBt = 0;
  sqlite4KVStoreClose(pDb->pKV);
  pDb->pKV = 0;
  pDb->pSchema = 0;
  sqlite4ResetInternalSchema(db, -1);
  return;

detach_error:







|
















|




<
<







218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246


247
248
249
250
251
252
253
  char zErr[128];

  UNUSED_PARAMETER(NotUsed);

  if( zName==0 ) zName = "";
  for(i=0; i<db->nDb; i++){
    pDb = &db->aDb[i];
    if( pDb->pKV==0 ) continue;
    if( sqlite4StrICmp(pDb->zName, zName)==0 ) break;
  }

  if( i>=db->nDb ){
    sqlite4_snprintf(sizeof(zErr),zErr, "no such database: %s", zName);
    goto detach_error;
  }
  if( i<2 ){
    sqlite4_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName);
    goto detach_error;
  }
  if( !db->autoCommit ){
    sqlite4_snprintf(sizeof(zErr), zErr,
                     "cannot DETACH database within transaction");
    goto detach_error;
  }
  if( pDb->pKV->iTransLevel ){
    sqlite4_snprintf(sizeof(zErr),zErr, "database %s is locked", zName);
    goto detach_error;
  }



  sqlite4KVStoreClose(pDb->pKV);
  pDb->pKV = 0;
  pDb->pSchema = 0;
  sqlite4ResetInternalSchema(db, -1);
  return;

detach_error:

Deleted src/backup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the implementation of the sqlite4_backup_XXX() 
** API functions and the related features.
*/
#include "sqliteInt.h"
#include "btreeInt.h"

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Structure allocated for each backup operation.
*/
struct sqlite4_backup {
  sqlite4* pDestDb;        /* Destination database handle */
  Btree *pDest;            /* Destination b-tree file */
  u32 iDestSchema;         /* Original schema cookie in destination */
  int bDestLocked;         /* True once a write-transaction is open on pDest */

  Pgno iNext;              /* Page number of the next source page to copy */
  sqlite4* pSrcDb;         /* Source database handle */
  Btree *pSrc;             /* Source b-tree file */

  int rc;                  /* Backup process error code */

  /* These two variables are set by every call to backup_step(). They are
  ** read by calls to backup_remaining() and backup_pagecount().
  */
  Pgno nRemaining;         /* Number of pages left to copy */
  Pgno nPagecount;         /* Total number of pages to copy */

  int isAttached;          /* True once backup has been registered with pager */
  sqlite4_backup *pNext;   /* Next backup associated with source pager */
};

/*
** THREAD SAFETY NOTES:
**
**   Once it has been created using backup_init(), a single sqlite4_backup
**   structure may be accessed via two groups of thread-safe entry points:
**
**     * Via the sqlite4_backup_XXX() API function backup_step() and 
**       backup_finish(). Both these functions obtain the source database
**       handle mutex and the mutex associated with the source BtShared 
**       structure, in that order.
**
**     * Via the BackupUpdate() and BackupRestart() functions, which are
**       invoked by the pager layer to report various state changes in
**       the page cache associated with the source database. The mutex
**       associated with the source database BtShared structure will always 
**       be held when either of these functions are invoked.
**
**   The other sqlite4_backup_XXX() API functions, backup_remaining() and
**   backup_pagecount() are not thread-safe functions. If they are called
**   while some other thread is calling backup_step() or backup_finish(),
**   the values returned may be invalid. There is no way for a call to
**   BackupUpdate() or BackupRestart() to interfere with backup_remaining()
**   or backup_pagecount().
**
**   Depending on the SQLite configuration, the database handles and/or
**   the Btree objects may have their own mutexes that require locking.
**   Non-sharable Btrees (in-memory databases for example), do not have
**   associated mutexes.
*/

/*
** Return a pointer corresponding to database zDb (i.e. "main", "temp")
** in connection handle pDb. If such a database cannot be found, return
** a NULL pointer and write an error message to pErrorDb.
**
** If the "temp" database is requested, it may need to be opened by this 
** function. If an error occurs while doing so, return 0 and write an 
** error message to pErrorDb.
*/
static Btree *findBtree(sqlite4 *pErrorDb, sqlite4 *pDb, const char *zDb){
  int i = sqlite4FindDbName(pDb, zDb);

  if( i==1 ){
    Parse *pParse;
    int rc = 0;
    pParse = sqlite4StackAllocZero(pErrorDb, sizeof(*pParse));
    if( pParse==0 ){
      sqlite4Error(pErrorDb, SQLITE_NOMEM, "out of memory");
      rc = SQLITE_NOMEM;
    }else{
      pParse->db = pDb;
      if( sqlite4OpenTempDatabase(pParse) ){
        sqlite4Error(pErrorDb, pParse->rc, "%s", pParse->zErrMsg);
        rc = SQLITE_ERROR;
      }
      sqlite4DbFree(pErrorDb, pParse->zErrMsg);
      sqlite4StackFree(pErrorDb, pParse);
    }
    if( rc ){
      return 0;
    }
  }

  if( i<0 ){
    sqlite4Error(pErrorDb, SQLITE_ERROR, "unknown database %s", zDb);
    return 0;
  }

  return pDb->aDb[i].pBt;
}

/*
** Attempt to set the page size of the destination to match the page size
** of the source.
*/
static int setDestPgsz(sqlite4_backup *p){
  int rc;
  rc = sqlite4BtreeSetPageSize(p->pDest,sqlite4BtreeGetPageSize(p->pSrc),-1,0);
  return rc;
}

/*
** Create an sqlite4_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite4_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
** stored in database handle pDestDb.
*/
sqlite4_backup *sqlite4_backup_init(
  sqlite4* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite4* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite4_backup *p;                    /* Value to return */

  /* Lock the source database handle. The destination database
  ** handle is not locked in this routine, but it is locked in
  ** sqlite4_backup_step(). The user is required to ensure that no
  ** other thread accesses the destination handle for the duration
  ** of the backup operation.  Any attempt to use the destination
  ** database connection while a backup is in progress may cause
  ** a malfunction or a deadlock.
  */
  sqlite4_mutex_enter(pSrcDb->mutex);
  sqlite4_mutex_enter(pDestDb->mutex);

  if( pSrcDb==pDestDb ){
    sqlite4Error(
        pDestDb, SQLITE_ERROR, "source and destination must be distinct"
    );
    p = 0;
  }else {
    /* Allocate space for a new sqlite4_backup object...
    ** EVIDENCE-OF: R-64852-21591 The sqlite4_backup object is created by a
    ** call to sqlite4_backup_init() and is destroyed by a call to
    ** sqlite4_backup_finish(). */
    p = (sqlite4_backup *)sqlite4_malloc(sizeof(sqlite4_backup));
    if( !p ){
      sqlite4Error(pDestDb, SQLITE_NOMEM, 0);
    }
  }

  /* If the allocation succeeded, populate the new object. */
  if( p ){
    memset(p, 0, sizeof(sqlite4_backup));
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

    if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){
      /* One (or both) of the named databases did not exist or an OOM
      ** error was hit.  The error has already been written into the
      ** pDestDb handle.  All that is left to do here is free the
      ** sqlite4_backup structure.
      */
      sqlite4_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }

  sqlite4_mutex_leave(pDestDb->mutex);
  sqlite4_mutex_leave(pSrcDb->mutex);
  return p;
}

/*
** Argument rc is an SQLite error code. Return true if this error is 
** considered fatal if encountered during a backup operation. All errors
** are considered fatal except for SQLITE_BUSY and SQLITE_LOCKED.
*/
static int isFatalError(int rc){
  return (rc!=SQLITE_OK && rc!=SQLITE_BUSY && ALWAYS(rc!=SQLITE_LOCKED));
}

/*
** Parameter zSrcData points to a buffer containing the data for 
** page iSrcPg from the source database. Copy this data into the 
** destination database.
*/
static int backupOnePage(sqlite4_backup *p, Pgno iSrcPg, const u8 *zSrcData){
  Pager * const pDestPager = sqlite4BtreePager(p->pDest);
  const int nSrcPgsz = sqlite4BtreeGetPageSize(p->pSrc);
  int nDestPgsz = sqlite4BtreeGetPageSize(p->pDest);
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  int nSrcReserve = sqlite4BtreeGetReserve(p->pSrc);
  int nDestReserve = sqlite4BtreeGetReserve(p->pDest);
#endif

  int rc = SQLITE_OK;
  i64 iOff;

  assert( p->bDestLocked );
  assert( !isFatalError(p->rc) );
  assert( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) );
  assert( zSrcData );

  /* Catch the case where the destination is an in-memory database and the
  ** page sizes of the source and destination differ. 
  */
  if( nSrcPgsz!=nDestPgsz && sqlite4PagerIsMemdb(pDestPager) ){
    rc = SQLITE_READONLY;
  }

#ifdef SQLITE_HAS_CODEC
  /* Backup is not possible if the page size of the destination is changing
  ** and a codec is in use.
  */
  if( nSrcPgsz!=nDestPgsz && sqlite4PagerGetCodec(pDestPager)!=0 ){
    rc = SQLITE_READONLY;
  }

  /* Backup is not possible if the number of bytes of reserve space differ
  ** between source and destination.  If there is a difference, try to
  ** fix the destination to agree with the source.  If that is not possible,
  ** then the backup cannot proceed.
  */
  if( nSrcReserve!=nDestReserve ){
    u32 newPgsz = nSrcPgsz;
    rc = sqlite4PagerSetPagesize(pDestPager, &newPgsz, nSrcReserve);
    if( rc==SQLITE_OK && newPgsz!=nSrcPgsz ) rc = SQLITE_READONLY;
  }
#endif

  /* This loop runs once for each destination page spanned by the source 
  ** page. For each iteration, variable iOff is set to the byte offset
  ** of the destination page.
  */
  for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
    DbPage *pDestPg = 0;
    Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
    if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
    if( SQLITE_OK==(rc = sqlite4PagerGet(pDestPager, iDest, &pDestPg))
     && SQLITE_OK==(rc = sqlite4PagerWrite(pDestPg))
    ){
      const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
      u8 *zDestData = sqlite4PagerGetData(pDestPg);
      u8 *zOut = &zDestData[iOff%nDestPgsz];

      /* Copy the data from the source page into the destination page.
      ** Then clear the Btree layer MemPage.isInit flag. Both this module
      ** and the pager code use this trick (clearing the first byte
      ** of the page 'extra' space to invalidate the Btree layers
      ** cached parse of the page). MemPage.isInit is marked 
      ** "MUST BE FIRST" for this purpose.
      */
      memcpy(zOut, zIn, nCopy);
      ((u8 *)sqlite4PagerGetExtra(pDestPg))[0] = 0;
    }
    sqlite4PagerUnref(pDestPg);
  }

  return rc;
}

/*
** If pFile is currently larger than iSize bytes, then truncate it to
** exactly iSize bytes. If pFile is not larger than iSize bytes, then
** this function is a no-op.
**
** Return SQLITE_OK if everything is successful, or an SQLite error 
** code if an error occurs.
*/
static int backupTruncateFile(sqlite4_file *pFile, i64 iSize){
  i64 iCurrent;
  int rc = sqlite4OsFileSize(pFile, &iCurrent);
  if( rc==SQLITE_OK && iCurrent>iSize ){
    rc = sqlite4OsTruncate(pFile, iSize);
  }
  return rc;
}

/*
** Register this backup object with the associated source pager for
** callbacks when pages are changed or the cache invalidated.
*/
static void attachBackupObject(sqlite4_backup *p){
  sqlite4_backup **pp;
  assert( sqlite4BtreeHoldsMutex(p->pSrc) );
  pp = sqlite4PagerBackupPtr(sqlite4BtreePager(p->pSrc));
  p->pNext = *pp;
  *pp = p;
  p->isAttached = 1;
}

/*
** Copy nPage pages from the source b-tree to the destination.
*/
int sqlite4_backup_step(sqlite4_backup *p, int nPage){
  int rc;
  int destMode;       /* Destination journal mode */
  int pgszSrc = 0;    /* Source page size */
  int pgszDest = 0;   /* Destination page size */

  sqlite4_mutex_enter(p->pSrcDb->mutex);
  sqlite4BtreeEnter(p->pSrc);
  if( p->pDestDb ){
    sqlite4_mutex_enter(p->pDestDb->mutex);
  }

  rc = p->rc;
  if( !isFatalError(rc) ){
    Pager * const pSrcPager = sqlite4BtreePager(p->pSrc);     /* Source pager */
    Pager * const pDestPager = sqlite4BtreePager(p->pDest);   /* Dest pager */
    int ii;                            /* Iterator variable */
    int nSrcPage = -1;                 /* Size of source db in pages */
    int bCloseTrans = 0;               /* True if src db requires unlocking */

    /* If the source pager is currently in a write-transaction, return
    ** SQLITE_BUSY immediately.
    */
    if( p->pDestDb && p->pSrc->pBt->inTransaction==TRANS_WRITE ){
      rc = SQLITE_BUSY;
    }else{
      rc = SQLITE_OK;
    }

    /* Lock the destination database, if it is not locked already. */
    if( SQLITE_OK==rc && p->bDestLocked==0
     && SQLITE_OK==(rc = sqlite4BtreeBeginTrans(p->pDest, 2)) 
    ){
      p->bDestLocked = 1;
      sqlite4BtreeGetMeta(p->pDest, BTREE_SCHEMA_VERSION, &p->iDestSchema);
    }

    /* If there is no open read-transaction on the source database, open
    ** one now. If a transaction is opened here, then it will be closed
    ** before this function exits.
    */
    if( rc==SQLITE_OK && 0==sqlite4BtreeIsInReadTrans(p->pSrc) ){
      rc = sqlite4BtreeBeginTrans(p->pSrc, 0);
      bCloseTrans = 1;
    }

    /* Do not allow backup if the destination database is in WAL mode
    ** and the page sizes are different between source and destination */
    pgszSrc = sqlite4BtreeGetPageSize(p->pSrc);
    pgszDest = sqlite4BtreeGetPageSize(p->pDest);
    destMode = sqlite4PagerGetJournalMode(sqlite4BtreePager(p->pDest));
    if( SQLITE_OK==rc && destMode==PAGER_JOURNALMODE_WAL && pgszSrc!=pgszDest ){
      rc = SQLITE_READONLY;
    }
  
    /* Now that there is a read-lock on the source database, query the
    ** source pager for the number of pages in the database.
    */
    nSrcPage = (int)sqlite4BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite4PagerGet(pSrcPager, iSrcPg, &pSrcPg);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite4PagerGetData(pSrcPg));
          sqlite4PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
    if( rc==SQLITE_OK ){
      p->nPagecount = nSrcPage;
      p->nRemaining = nSrcPage+1-p->iNext;
      if( p->iNext>(Pgno)nSrcPage ){
        rc = SQLITE_DONE;
      }else if( !p->isAttached ){
        attachBackupObject(p);
      }
    }
  
    /* Update the schema version field in the destination database. This
    ** is to make sure that the schema-version really does change in
    ** the case where the source and destination databases have the
    ** same schema version.
    */
    if( rc==SQLITE_DONE ){
      rc = sqlite4BtreeUpdateMeta(p->pDest,1,p->iDestSchema+1);
      if( rc==SQLITE_OK ){
        if( p->pDestDb ){
          sqlite4ResetInternalSchema(p->pDestDb, -1);
        }
        if( destMode==PAGER_JOURNALMODE_WAL ){
          rc = sqlite4BtreeSetVersion(p->pDest, 2);
        }
      }
      if( rc==SQLITE_OK ){
        int nDestTruncate;
        /* Set nDestTruncate to the final number of pages in the destination
        ** database. The complication here is that the destination page
        ** size may be different to the source page size. 
        **
        ** If the source page size is smaller than the destination page size, 
        ** round up. In this case the call to sqlite4OsTruncate() below will
        ** fix the size of the file. However it is important to call
        ** sqlite4PagerTruncateImage() here so that any pages in the 
        ** destination file that lie beyond the nDestTruncate page mark are
        ** journalled by PagerCommitPhaseOne() before they are destroyed
        ** by the file truncation.
        */
        assert( pgszSrc==sqlite4BtreeGetPageSize(p->pSrc) );
        assert( pgszDest==sqlite4BtreeGetPageSize(p->pDest) );
        if( pgszSrc<pgszDest ){
          int ratio = pgszDest/pgszSrc;
          nDestTruncate = (nSrcPage+ratio-1)/ratio;
          if( nDestTruncate==(int)PENDING_BYTE_PAGE(p->pDest->pBt) ){
            nDestTruncate--;
          }
        }else{
          nDestTruncate = nSrcPage * (pgszSrc/pgszDest);
        }
        sqlite4PagerTruncateImage(pDestPager, nDestTruncate);

        if( pgszSrc<pgszDest ){
          /* If the source page-size is smaller than the destination page-size,
          ** two extra things may need to happen:
          **
          **   * The destination may need to be truncated, and
          **
          **   * Data stored on the pages immediately following the 
          **     pending-byte page in the source database may need to be
          **     copied into the destination database.
          */
          const i64 iSize = (i64)pgszSrc * (i64)nSrcPage;
          sqlite4_file * const pFile = sqlite4PagerFile(pDestPager);
          i64 iOff;
          i64 iEnd;

          assert( pFile );
          assert( (i64)nDestTruncate*(i64)pgszDest >= iSize || (
                nDestTruncate==(int)(PENDING_BYTE_PAGE(p->pDest->pBt)-1)
             && iSize>=PENDING_BYTE && iSize<=PENDING_BYTE+pgszDest
          ));

          /* This call ensures that all data required to recreate the original
          ** database has been stored in the journal for pDestPager and the
          ** journal synced to disk. So at this point we may safely modify
          ** the database file in any way, knowing that if a power failure
          ** occurs, the original database will be reconstructed from the 
          ** journal file.  */
          rc = sqlite4PagerCommitPhaseOne(pDestPager, 0, 1);

          /* Write the extra pages and truncate the database file as required */
          iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
          for(
            iOff=PENDING_BYTE+pgszSrc; 
            rc==SQLITE_OK && iOff<iEnd; 
            iOff+=pgszSrc
          ){
            PgHdr *pSrcPg = 0;
            const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
            rc = sqlite4PagerGet(pSrcPager, iSrcPg, &pSrcPg);
            if( rc==SQLITE_OK ){
              u8 *zData = sqlite4PagerGetData(pSrcPg);
              rc = sqlite4OsWrite(pFile, zData, pgszSrc, iOff);
            }
            sqlite4PagerUnref(pSrcPg);
          }
          if( rc==SQLITE_OK ){
            rc = backupTruncateFile(pFile, iSize);
          }

          /* Sync the database file to disk. */
          if( rc==SQLITE_OK ){
            rc = sqlite4PagerSync(pDestPager);
          }
        }else{
          rc = sqlite4PagerCommitPhaseOne(pDestPager, 0, 0);
        }
    
        /* Finish committing the transaction to the destination database. */
        if( SQLITE_OK==rc
         && SQLITE_OK==(rc = sqlite4BtreeCommitPhaseTwo(p->pDest, 0))
        ){
          rc = SQLITE_DONE;
        }
      }
    }
  
    /* If bCloseTrans is true, then this function opened a read transaction
    ** on the source database. Close the read transaction here. There is
    ** no need to check the return values of the btree methods here, as
    ** "committing" a read-only transaction cannot fail.
    */
    if( bCloseTrans ){
      TESTONLY( int rc2 );
      TESTONLY( rc2  = ) sqlite4BtreeCommitPhaseOne(p->pSrc, 0);
      TESTONLY( rc2 |= ) sqlite4BtreeCommitPhaseTwo(p->pSrc, 0);
      assert( rc2==SQLITE_OK );
    }
  
    if( rc==SQLITE_IOERR_NOMEM ){
      rc = SQLITE_NOMEM;
    }
    p->rc = rc;
  }
  if( p->pDestDb ){
    sqlite4_mutex_leave(p->pDestDb->mutex);
  }
  sqlite4BtreeLeave(p->pSrc);
  sqlite4_mutex_leave(p->pSrcDb->mutex);
  return rc;
}

/*
** Release all resources associated with an sqlite4_backup* handle.
*/
int sqlite4_backup_finish(sqlite4_backup *p){
  sqlite4_backup **pp;                 /* Ptr to head of pagers backup list */
  MUTEX_LOGIC( sqlite4_mutex *mutex; ) /* Mutex to protect source database */
  int rc;                              /* Value to return */

  /* Enter the mutexes */
  if( p==0 ) return SQLITE_OK;
  sqlite4_mutex_enter(p->pSrcDb->mutex);
  sqlite4BtreeEnter(p->pSrc);
  MUTEX_LOGIC( mutex = p->pSrcDb->mutex; )
  if( p->pDestDb ){
    sqlite4_mutex_enter(p->pDestDb->mutex);
  }

  /* Detach this backup from the source pager. */
  if( p->pDestDb ){
    p->pSrc->nBackup--;
  }
  if( p->isAttached ){
    pp = sqlite4PagerBackupPtr(sqlite4BtreePager(p->pSrc));
    while( *pp!=p ){
      pp = &(*pp)->pNext;
    }
    *pp = p->pNext;
  }

  /* If a transaction is still open on the Btree, roll it back. */
  sqlite4BtreeRollback(p->pDest);

  /* Set the error code of the destination database handle. */
  rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
  sqlite4Error(p->pDestDb, rc, 0);

  /* Exit the mutexes and free the backup context structure. */
  if( p->pDestDb ){
    sqlite4_mutex_leave(p->pDestDb->mutex);
  }
  sqlite4BtreeLeave(p->pSrc);
  if( p->pDestDb ){
    /* EVIDENCE-OF: R-64852-21591 The sqlite4_backup object is created by a
    ** call to sqlite4_backup_init() and is destroyed by a call to
    ** sqlite4_backup_finish(). */
    sqlite4_free(p);
  }
  sqlite4_mutex_leave(mutex);
  return rc;
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite4_backup_step().
*/
int sqlite4_backup_remaining(sqlite4_backup *p){
  return p->nRemaining;
}

/*
** Return the total number of pages in the source database as of the most 
** recent call to sqlite4_backup_step().
*/
int sqlite4_backup_pagecount(sqlite4_backup *p){
  return p->nPagecount;
}

/*
** This function is called after the contents of page iPage of the
** source database have been modified. If page iPage has already been 
** copied into the destination database, then the data written to the
** destination is now invalidated. The destination copy of iPage needs
** to be updated with the new data before the backup operation is
** complete.
**
** It is assumed that the mutex associated with the BtShared object
** corresponding to the source database is held when this function is
** called.
*/
void sqlite4BackupUpdate(sqlite4_backup *pBackup, Pgno iPage, const u8 *aData){
  sqlite4_backup *p;                   /* Iterator variable */
  for(p=pBackup; p; p=p->pNext){
    assert( sqlite4_mutex_held(p->pSrc->pBt->mutex) );
    if( !isFatalError(p->rc) && iPage<p->iNext ){
      /* The backup process p has already copied page iPage. But now it
      ** has been modified by a transaction on the source pager. Copy
      ** the new data into the backup.
      */
      int rc;
      assert( p->pDestDb );
      sqlite4_mutex_enter(p->pDestDb->mutex);
      rc = backupOnePage(p, iPage, aData);
      sqlite4_mutex_leave(p->pDestDb->mutex);
      assert( rc!=SQLITE_BUSY && rc!=SQLITE_LOCKED );
      if( rc!=SQLITE_OK ){
        p->rc = rc;
      }
    }
  }
}

/*
** Restart the backup process. This is called when the pager layer
** detects that the database has been modified by an external database
** connection. In this case there is no way of knowing which of the
** pages that have been copied into the destination database are still 
** valid and which are not, so the entire process needs to be restarted.
**
** It is assumed that the mutex associated with the BtShared object
** corresponding to the source database is held when this function is
** called.
*/
void sqlite4BackupRestart(sqlite4_backup *pBackup){
  sqlite4_backup *p;                   /* Iterator variable */
  for(p=pBackup; p; p=p->pNext){
    assert( sqlite4_mutex_held(p->pSrc->pBt->mutex) );
    p->iNext = 1;
  }
}

#ifndef SQLITE_OMIT_VACUUM
/*
** Copy the complete content of pBtFrom into pBtTo.  A transaction
** must be active for both files.
**
** The size of file pTo may be reduced by this operation. If anything 
** goes wrong, the transaction on pTo is rolled back. If successful, the 
** transaction is committed before returning.
*/
int sqlite4BtreeCopyFile(Btree *pTo, Btree *pFrom){
  int rc;
  sqlite4_file *pFd;              /* File descriptor for database pTo */
  sqlite4_backup b;
  sqlite4BtreeEnter(pTo);
  sqlite4BtreeEnter(pFrom);

  assert( sqlite4BtreeIsInTrans(pTo) );
  pFd = sqlite4PagerFile(sqlite4BtreePager(pTo));
  if( pFd->pMethods ){
    i64 nByte = sqlite4BtreeGetPageSize(pFrom)*(i64)sqlite4BtreeLastPage(pFrom);
    rc = sqlite4OsFileControl(pFd, SQLITE_FCNTL_OVERWRITE, &nByte);
    if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
    if( rc ) goto copy_finished;
  }

  /* Set up an sqlite4_backup object. sqlite4_backup.pDestDb must be set
  ** to 0. This is used by the implementations of sqlite4_backup_step()
  ** and sqlite4_backup_finish() to detect that they are being called
  ** from this function, not directly by the user.
  */
  memset(&b, 0, sizeof(b));
  b.pSrcDb = pFrom->db;
  b.pSrc = pFrom;
  b.pDest = pTo;
  b.iNext = 1;

  /* 0x7FFFFFFF is the hard limit for the number of pages in a database
  ** file. By passing this as the number of pages to copy to
  ** sqlite4_backup_step(), we can guarantee that the copy finishes 
  ** within a single call (unless an error occurs). The assert() statement
  ** checks this assumption - (p->rc) should be set to either SQLITE_DONE 
  ** or an error code.
  */
  sqlite4_backup_step(&b, 0x7FFFFFFF);
  assert( b.rc!=SQLITE_OK );
  rc = sqlite4_backup_finish(&b);
  if( rc==SQLITE_OK ){
    pTo->pBt->btsFlags &= ~BTS_PAGESIZE_FIXED;
  }else{
    sqlite4PagerClearCache(sqlite4BtreePager(b.pDest));
  }

  assert( sqlite4BtreeIsInTrans(pTo)==0 );
copy_finished:
  sqlite4BtreeLeave(pFrom);
  sqlite4BtreeLeave(pTo);
  return rc;
}
#endif /* SQLITE_OMIT_VACUUM */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted src/btmutex.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
** 2007 August 27
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement mutexes on Btree objects.
** This code really belongs in btree.c.  But btree.c is getting too
** big and we want to break it down some.  This packaged seemed like
** a good breakout.
*/
#include "btreeInt.h"
#ifndef SQLITE_OMIT_SHARED_CACHE
#if SQLITE_THREADSAFE

/*
** Obtain the BtShared mutex associated with B-Tree handle p. Also,
** set BtShared.db to the database handle associated with p and the
** p->locked boolean to true.
*/
static void lockBtreeMutex(Btree *p){
  assert( p->locked==0 );
  assert( sqlite4_mutex_notheld(p->pBt->mutex) );
  assert( sqlite4_mutex_held(p->db->mutex) );

  sqlite4_mutex_enter(p->pBt->mutex);
  p->pBt->db = p->db;
  p->locked = 1;
}

/*
** Release the BtShared mutex associated with B-Tree handle p and
** clear the p->locked boolean.
*/
static void unlockBtreeMutex(Btree *p){
  BtShared *pBt = p->pBt;
  assert( p->locked==1 );
  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( sqlite4_mutex_held(p->db->mutex) );
  assert( p->db==pBt->db );

  sqlite4_mutex_leave(pBt->mutex);
  p->locked = 0;
}

/*
** Enter a mutex on the given BTree object.
**
** If the object is not sharable, then no mutex is ever required
** and this routine is a no-op.  The underlying mutex is non-recursive.
** But we keep a reference count in Btree.wantToLock so the behavior
** of this interface is recursive.
**
** To avoid deadlocks, multiple Btrees are locked in the same order
** by all database connections.  The p->pNext is a list of other
** Btrees belonging to the same database connection as the p Btree
** which need to be locked after p.  If we cannot get a lock on
** p, then first unlock all of the others on p->pNext, then wait
** for the lock to become available on p, then relock all of the
** subsequent Btrees that desire a lock.
*/
void sqlite4BtreeEnter(Btree *p){
  Btree *pLater;

  /* Some basic sanity checking on the Btree.  The list of Btrees
  ** connected by pNext and pPrev should be in sorted order by
  ** Btree.pBt value. All elements of the list should belong to
  ** the same connection. Only shared Btrees are on the list. */
  assert( p->pNext==0 || p->pNext->pBt>p->pBt );
  assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
  assert( p->pNext==0 || p->pNext->db==p->db );
  assert( p->pPrev==0 || p->pPrev->db==p->db );
  assert( p->sharable || (p->pNext==0 && p->pPrev==0) );

  /* Check for locking consistency */
  assert( !p->locked || p->wantToLock>0 );
  assert( p->sharable || p->wantToLock==0 );

  /* We should already hold a lock on the database connection */
  assert( sqlite4_mutex_held(p->db->mutex) );

  /* Unless the database is sharable and unlocked, then BtShared.db
  ** should already be set correctly. */
  assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );

  if( !p->sharable ) return;
  p->wantToLock++;
  if( p->locked ) return;

  /* In most cases, we should be able to acquire the lock we
  ** want without having to go throught the ascending lock
  ** procedure that follows.  Just be sure not to block.
  */
  if( sqlite4_mutex_try(p->pBt->mutex)==SQLITE_OK ){
    p->pBt->db = p->db;
    p->locked = 1;
    return;
  }

  /* To avoid deadlock, first release all locks with a larger
  ** BtShared address.  Then acquire our lock.  Then reacquire
  ** the other BtShared locks that we used to hold in ascending
  ** order.
  */
  for(pLater=p->pNext; pLater; pLater=pLater->pNext){
    assert( pLater->sharable );
    assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
    assert( !pLater->locked || pLater->wantToLock>0 );
    if( pLater->locked ){
      unlockBtreeMutex(pLater);
    }
  }
  lockBtreeMutex(p);
  for(pLater=p->pNext; pLater; pLater=pLater->pNext){
    if( pLater->wantToLock ){
      lockBtreeMutex(pLater);
    }
  }
}

/*
** Exit the recursive mutex on a Btree.
*/
void sqlite4BtreeLeave(Btree *p){
  if( p->sharable ){
    assert( p->wantToLock>0 );
    p->wantToLock--;
    if( p->wantToLock==0 ){
      unlockBtreeMutex(p);
    }
  }
}

#ifndef NDEBUG
/*
** Return true if the BtShared mutex is held on the btree, or if the
** B-Tree is not marked as sharable.
**
** This routine is used only from within assert() statements.
*/
int sqlite4BtreeHoldsMutex(Btree *p){
  assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
  assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
  assert( p->sharable==0 || p->locked==0 || sqlite4_mutex_held(p->pBt->mutex) );
  assert( p->sharable==0 || p->locked==0 || sqlite4_mutex_held(p->db->mutex) );

  return (p->sharable==0 || p->locked);
}
#endif


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Enter and leave a mutex on a Btree given a cursor owned by that
** Btree.  These entry points are used by incremental I/O and can be
** omitted if that module is not used.
*/
void sqlite4BtreeEnterCursor(BtCursor *pCur){
  sqlite4BtreeEnter(pCur->pBtree);
}
void sqlite4BtreeLeaveCursor(BtCursor *pCur){
  sqlite4BtreeLeave(pCur->pBtree);
}
#endif /* SQLITE_OMIT_INCRBLOB */


/*
** Enter the mutex on every Btree associated with a database
** connection.  This is needed (for example) prior to parsing
** a statement since we will be comparing table and column names
** against all schemas and we do not want those schemas being
** reset out from under us.
**
** There is a corresponding leave-all procedures.
**
** Enter the mutexes in accending order by BtShared pointer address
** to avoid the possibility of deadlock when two threads with
** two or more btrees in common both try to lock all their btrees
** at the same instant.
*/
void sqlite4BtreeEnterAll(sqlite4 *db){
  int i;
  Btree *p;
  assert( sqlite4_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite4BtreeEnter(p);
  }
}
void sqlite4BtreeLeaveAll(sqlite4 *db){
  int i;
  Btree *p;
  assert( sqlite4_mutex_held(db->mutex) );
  for(i=0; i<db->nDb; i++){
    p = db->aDb[i].pBt;
    if( p ) sqlite4BtreeLeave(p);
  }
}

/*
** Return true if a particular Btree requires a lock.  Return FALSE if
** no lock is ever required since it is not sharable.
*/
int sqlite4BtreeSharable(Btree *p){
  return p->sharable;
}

#ifndef NDEBUG
/*
** Return true if the current thread holds the database connection
** mutex and all required BtShared mutexes.
**
** This routine is used inside assert() statements only.
*/
int sqlite4BtreeHoldsAllMutexes(sqlite4 *db){
  int i;
  if( !sqlite4_mutex_held(db->mutex) ){
    return 0;
  }
  for(i=0; i<db->nDb; i++){
    Btree *p;
    p = db->aDb[i].pBt;
    if( p && p->sharable &&
         (p->wantToLock==0 || !sqlite4_mutex_held(p->pBt->mutex)) ){
      return 0;
    }
  }
  return 1;
}
#endif /* NDEBUG */

#ifndef NDEBUG
/*
** Return true if the correct mutexes are held for accessing the
** db->aDb[iDb].pSchema structure.  The mutexes required for schema
** access are:
**
**   (1) The mutex on db
**   (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
**
** If pSchema is not NULL, then iDb is computed from pSchema and
** db using sqlite4SchemaToIndex().
*/
int sqlite4SchemaMutexHeld(sqlite4 *db, int iDb, Schema *pSchema){
  Btree *p;
  assert( db!=0 );
  if( pSchema ) iDb = sqlite4SchemaToIndex(db, pSchema);
  assert( iDb>=0 && iDb<db->nDb );
  if( !sqlite4_mutex_held(db->mutex) ) return 0;
  if( iDb==1 ) return 1;
  p = db->aDb[iDb].pBt;
  assert( p!=0 );
  return p->sharable==0 || p->locked==1;
}
#endif /* NDEBUG */

#else /* SQLITE_THREADSAFE>0 above.  SQLITE_THREADSAFE==0 below */
/*
** The following are special cases for mutex enter routines for use
** in single threaded applications that use shared cache.  Except for
** these two routines, all mutex operations are no-ops in that case and
** are null #defines in btree.h.
**
** If shared cache is disabled, then all btree mutex routines, including
** the ones below, are no-ops and are null #defines in btree.h.
*/

void sqlite4BtreeEnter(Btree *p){
  p->pBt->db = p->db;
}
void sqlite4BtreeEnterAll(sqlite4 *db){
  int i;
  for(i=0; i<db->nDb; i++){
    Btree *p = db->aDb[i].pBt;
    if( p ){
      p->pBt->db = p->db;
    }
  }
}
#endif /* if SQLITE_THREADSAFE */
#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































































































































































































































































































Deleted src/btree.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a external (disk-based) database using BTrees.
** See the header comment on "btreeInt.h" for additional information.
** Including a description of file format and an overview of operation.
*/
#include "btreeInt.h"

/*
** The header string that appears at the beginning of every
** SQLite database.
*/
static const char zMagicHeader[] = SQLITE_FILE_HEADER;

/*
** Set this global variable to 1 to enable tracing using the TRACE
** macro.
*/
#if 0
int sqlite4BtreeTrace=1;  /* True to enable tracing */
# define TRACE(X)  if(sqlite4BtreeTrace){printf X;fflush(stdout);}
#else
# define TRACE(X)
#endif

/*
** Extract a 2-byte big-endian integer from an array of unsigned bytes.
** But if the value is zero, make it 65536.
**
** This routine is used to extract the "offset to cell content area" value
** from the header of a btree page.  If the page size is 65536 and the page
** is empty, the offset should be 65536, but the 2-byte value stores zero.
** This routine makes the necessary adjustment to 65536.
*/
#define get2byteNotZero(X)  (((((int)get2byte(X))-1)&0xffff)+1)

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** A list of BtShared objects that are eligible for participation
** in shared cache.  This variable has file scope during normal builds,
** but the test harness needs to access it so we make it global for 
** test builds.
**
** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
*/
#ifdef SQLITE_TEST
BtShared *SQLITE_WSD sqlite4SharedCacheList = 0;
#else
static BtShared *SQLITE_WSD sqlite4SharedCacheList = 0;
#endif
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite4_open(), sqlite4_open16(), or sqlite4_open_v2().
*/
int sqlite4_enable_shared_cache(int enable){
  sqlite4GlobalConfig.sharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif



#ifdef SQLITE_OMIT_SHARED_CACHE
  /*
  ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
  ** and clearAllSharedCacheTableLocks()
  ** manipulate entries in the BtShared.pLock linked list used to store
  ** shared-cache table level locks. If the library is compiled with the
  ** shared-cache feature disabled, then there is only ever one user
  ** of each BtShared structure and so this locking is not necessary. 
  ** So define the lock related functions as no-ops.
  */
  #define querySharedCacheTableLock(a,b,c) SQLITE_OK
  #define setSharedCacheTableLock(a,b,c) SQLITE_OK
  #define clearAllSharedCacheTableLocks(a)
  #define downgradeAllSharedCacheTableLocks(a)
  #define hasSharedCacheTableLock(a,b,c,d) 1
  #define hasReadConflicts(a, b) 0
#endif

#ifndef SQLITE_OMIT_SHARED_CACHE

#ifdef SQLITE_DEBUG
/*
**** This function is only used as part of an assert() statement. ***
**
** Check to see if pBtree holds the required locks to read or write to the 
** table with root page iRoot.   Return 1 if it does and 0 if not.
**
** For example, when writing to a table with root-page iRoot via 
** Btree connection pBtree:
**
**    assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
**
** When writing to an index that resides in a sharable database, the 
** caller should have first obtained a lock specifying the root page of
** the corresponding table. This makes things a bit more complicated,
** as this module treats each table as a separate structure. To determine
** the table corresponding to the index being written, this
** function has to search through the database schema.
**
** Instead of a lock on the table/index rooted at page iRoot, the caller may
** hold a write-lock on the schema table (root page 1). This is also
** acceptable.
*/
static int hasSharedCacheTableLock(
  Btree *pBtree,         /* Handle that must hold lock */
  Pgno iRoot,            /* Root page of b-tree */
  int isIndex,           /* True if iRoot is the root of an index b-tree */
  int eLockType          /* Required lock type (READ_LOCK or WRITE_LOCK) */
){
  Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
  Pgno iTab = 0;
  BtLock *pLock;

  /* If this database is not shareable, or if the client is reading
  ** and has the read-uncommitted flag set, then no lock is required. 
  ** Return true immediately.
  */
  if( (pBtree->sharable==0)
   || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
  ){
    return 1;
  }

  /* If the client is reading  or writing an index and the schema is
  ** not loaded, then it is too difficult to actually check to see if
  ** the correct locks are held.  So do not bother - just return true.
  ** This case does not come up very often anyhow.
  */
  if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
    return 1;
  }

  /* Figure out the root-page that the lock should be held on. For table
  ** b-trees, this is just the root page of the b-tree being read or
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
  if( isIndex ){
    HashElem *p;
    for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
      Index *pIdx = (Index *)sqliteHashData(p);
      if( pIdx->tnum==(int)iRoot ){
        iTab = pIdx->pTable->tnum;
      }
    }
  }else{
    iTab = iRoot;
  }

  /* Search for the required lock. Either a write-lock on root-page iTab, a 
  ** write-lock on the schema table, or (if the client is reading) a
  ** read-lock on iTab will suffice. Return 1 if any of these are found.  */
  for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
    if( pLock->pBtree==pBtree 
     && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
     && pLock->eLock>=eLockType 
    ){
      return 1;
    }
  }

  /* Failed to find the required lock. */
  return 0;
}
#endif /* SQLITE_DEBUG */

#ifdef SQLITE_DEBUG
/*
**** This function may be used as part of assert() statements only. ****
**
** Return true if it would be illegal for pBtree to write into the
** table or index rooted at iRoot because other shared connections are
** simultaneously reading that same table or index.
**
** It is illegal for pBtree to write if some other Btree object that
** shares the same BtShared object is currently reading or writing
** the iRoot table.  Except, if the other Btree object has the
** read-uncommitted flag set, then it is OK for the other object to
** have a read cursor.
**
** For example, before writing to any part of the table or index
** rooted at page iRoot, one should call:
**
**    assert( !hasReadConflicts(pBtree, iRoot) );
*/
static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
  BtCursor *p;
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    if( p->pgnoRoot==iRoot 
     && p->pBtree!=pBtree
     && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
    ){
      return 1;
    }
  }
  return 0;
}
#endif    /* #ifdef SQLITE_DEBUG */

/*
** Query to see if Btree handle p may obtain a lock of type eLock 
** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
** SQLITE_OK if the lock may be obtained (by calling
** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
*/
static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pIter;

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );
  assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
  
  /* If requesting a write-lock, then the Btree must have an open write
  ** transaction on this file. And, obviously, for this to be so there 
  ** must be an open write transaction on the file itself.
  */
  assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
  assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
  
  /* This routine is a no-op if the shared-cache is not enabled */
  if( !p->sharable ){
    return SQLITE_OK;
  }

  /* If some other connection is holding an exclusive lock, the
  ** requested lock may not be obtained.
  */
  if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
    sqlite4ConnectionBlocked(p->db, pBt->pWriter->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    /* The condition (pIter->eLock!=eLock) in the following if(...) 
    ** statement is a simplification of:
    **
    **   (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
    **
    ** since we know that if eLock==WRITE_LOCK, then no other connection
    ** may hold a WRITE_LOCK on any table in this file (since there can
    ** only be a single writer).
    */
    assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
    assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
    if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
      sqlite4ConnectionBlocked(p->db, pIter->pBtree->db);
      if( eLock==WRITE_LOCK ){
        assert( p==pBt->pWriter );
        pBt->btsFlags |= BTS_PENDING;
      }
      return SQLITE_LOCKED_SHAREDCACHE;
    }
  }
  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Add a lock on the table with root-page iTable to the shared-btree used
** by Btree handle p. Parameter eLock must be either READ_LOCK or 
** WRITE_LOCK.
**
** This function assumes the following:
**
**   (a) The specified Btree object p is connected to a sharable
**       database (one with the BtShared.sharable flag set), and
**
**   (b) No other Btree objects hold a lock that conflicts
**       with the requested lock (i.e. querySharedCacheTableLock() has
**       already been called and returned SQLITE_OK).
**
** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM 
** is returned if a malloc attempt fails.
*/
static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
  BtShared *pBt = p->pBt;
  BtLock *pLock = 0;
  BtLock *pIter;

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
  assert( p->db!=0 );

  /* A connection with the read-uncommitted flag set will never try to
  ** obtain a read-lock using this function. The only read-lock obtained
  ** by a connection in read-uncommitted mode is on the sqlite_master 
  ** table, and that lock is obtained in BtreeBeginTrans().  */
  assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );

  /* This function should only be called on a sharable b-tree after it 
  ** has been determined that no other b-tree holds a conflicting lock.  */
  assert( p->sharable );
  assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );

  /* First search the list for an existing lock on this table. */
  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
    if( pIter->iTable==iTable && pIter->pBtree==p ){
      pLock = pIter;
      break;
    }
  }

  /* If the above search did not find a BtLock struct associating Btree p
  ** with table iTable, allocate one and link it into the list.
  */
  if( !pLock ){
    pLock = (BtLock *)sqlite4MallocZero(sizeof(BtLock));
    if( !pLock ){
      return SQLITE_NOMEM;
    }
    pLock->iTable = iTable;
    pLock->pBtree = p;
    pLock->pNext = pBt->pLock;
    pBt->pLock = pLock;
  }

  /* Set the BtLock.eLock variable to the maximum of the current lock
  ** and the requested lock. This means if a write-lock was already held
  ** and a read-lock requested, we don't incorrectly downgrade the lock.
  */
  assert( WRITE_LOCK>READ_LOCK );
  if( eLock>pLock->eLock ){
    pLock->eLock = eLock;
  }

  return SQLITE_OK;
}
#endif /* !SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Release all the table locks (locks obtained via calls to
** the setSharedCacheTableLock() procedure) held by Btree object p.
**
** This function assumes that Btree p has an open read or write 
** transaction. If it does not, then the BTS_PENDING flag
** may be incorrectly cleared.
*/
static void clearAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  BtLock **ppIter = &pBt->pLock;

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( p->sharable || 0==*ppIter );
  assert( p->inTrans>0 );

  while( *ppIter ){
    BtLock *pLock = *ppIter;
    assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
    assert( pLock->pBtree->inTrans>=pLock->eLock );
    if( pLock->pBtree==p ){
      *ppIter = pLock->pNext;
      assert( pLock->iTable!=1 || pLock==&p->lock );
      if( pLock->iTable!=1 ){
        sqlite4_free(pLock);
      }
    }else{
      ppIter = &pLock->pNext;
    }
  }

  assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
  if( pBt->pWriter==p ){
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
  }else if( pBt->nTransaction==2 ){
    /* This function is called when Btree p is concluding its 
    ** transaction. If there currently exists a writer, and p is not
    ** that writer, then the number of locks held by connections other
    ** than the writer must be about to drop to zero. In this case
    ** set the BTS_PENDING flag to 0.
    **
    ** If there is not currently a writer, then BTS_PENDING must
    ** be zero already. So this next line is harmless in that case.
    */
    pBt->btsFlags &= ~BTS_PENDING;
  }
}

/*
** This function changes all write-locks held by Btree p into read-locks.
*/
static void downgradeAllSharedCacheTableLocks(Btree *p){
  BtShared *pBt = p->pBt;
  if( pBt->pWriter==p ){
    BtLock *pLock;
    pBt->pWriter = 0;
    pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
    for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
      assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
      pLock->eLock = READ_LOCK;
    }
  }
}

#endif /* SQLITE_OMIT_SHARED_CACHE */

static void releasePage(MemPage *pPage);  /* Forward reference */

/*
***** This routine is used inside of assert() only ****
**
** Verify that the cursor holds the mutex on its BtShared
*/
#ifdef SQLITE_DEBUG
static int cursorHoldsMutex(BtCursor *p){
  return sqlite4_mutex_held(p->pBt->mutex);
}
#endif


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Invalidate the overflow page-list cache for cursor pCur, if any.
*/
static void invalidateOverflowCache(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite4_free(pCur->aOverflow);
  pCur->aOverflow = 0;
}

/*
** Invalidate the overflow page-list cache for all cursors opened
** on the shared btree structure pBt.
*/
static void invalidateAllOverflowCache(BtShared *pBt){
  BtCursor *p;
  assert( sqlite4_mutex_held(pBt->mutex) );
  for(p=pBt->pCursor; p; p=p->pNext){
    invalidateOverflowCache(p);
  }
}

/*
** This function is called before modifying the contents of a table
** to invalidate any incrblob cursors that are open on the
** row or one of the rows being modified.
**
** If argument isClearTable is true, then the entire contents of the
** table is about to be deleted. In this case invalidate all incrblob
** cursors open on any row within the table with root-page pgnoRoot.
**
** Otherwise, if argument isClearTable is false, then the row with
** rowid iRow is being replaced or deleted. In this case invalidate
** only those incrblob cursors open on that specific row.
*/
static void invalidateIncrblobCursors(
  Btree *pBtree,          /* The database file to check */
  i64 iRow,               /* The rowid that might be changing */
  int isClearTable        /* True if all rows are being deleted */
){
  BtCursor *p;
  BtShared *pBt = pBtree->pBt;
  assert( sqlite4BtreeHoldsMutex(pBtree) );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
      p->eState = CURSOR_INVALID;
    }
  }
}

#else
  /* Stub functions when INCRBLOB is omitted */
  #define invalidateOverflowCache(x)
  #define invalidateAllOverflowCache(x)
  #define invalidateIncrblobCursors(x,y,z)
#endif /* SQLITE_OMIT_INCRBLOB */

/*
** Set bit pgno of the BtShared.pHasContent bitvec. This is called 
** when a page that previously contained data becomes a free-list leaf 
** page.
**
** The BtShared.pHasContent bitvec exists to work around an obscure
** bug caused by the interaction of two useful IO optimizations surrounding
** free-list leaf pages:
**
**   1) When all data is deleted from a page and the page becomes
**      a free-list leaf page, the page is not written to the database
**      (as free-list leaf pages contain no meaningful data). Sometimes
**      such a page is not even journalled (as it will not be modified,
**      why bother journalling it?).
**
**   2) When a free-list leaf page is reused, its content is not read
**      from the database or written to the journal file (why should it
**      be, if it is not at all meaningful?).
**
** By themselves, these optimizations work fine and provide a handy
** performance boost to bulk delete or insert operations. However, if
** a page is moved to the free-list and then reused within the same
** transaction, a problem comes up. If the page is not journalled when
** it is moved to the free-list and it is also not journalled when it
** is extracted from the free-list and reused, then the original data
** may be lost. In the event of a rollback, it may not be possible
** to restore the database to its original configuration.
**
** The solution is the BtShared.pHasContent bitvec. Whenever a page is 
** moved to become a free-list leaf page, the corresponding bit is
** set in the bitvec. Whenever a leaf page is extracted from the free-list,
** optimization 2 above is omitted if the corresponding bit is already
** set in BtShared.pHasContent. The contents of the bitvec are cleared
** at the end of every transaction.
*/
static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
  int rc = SQLITE_OK;
  if( !pBt->pHasContent ){
    assert( pgno<=pBt->nPage );
    pBt->pHasContent = sqlite4BitvecCreate(pBt->nPage);
    if( !pBt->pHasContent ){
      rc = SQLITE_NOMEM;
    }
  }
  if( rc==SQLITE_OK && pgno<=sqlite4BitvecSize(pBt->pHasContent) ){
    rc = sqlite4BitvecSet(pBt->pHasContent, pgno);
  }
  return rc;
}

/*
** Query the BtShared.pHasContent vector.
**
** This function is called when a free-list leaf page is removed from the
** free-list for reuse. It returns false if it is safe to retrieve the
** page from the pager layer with the 'no-content' flag set. True otherwise.
*/
static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
  Bitvec *p = pBt->pHasContent;
  return (p && (pgno>sqlite4BitvecSize(p) || sqlite4BitvecTest(p, pgno)));
}

/*
** Clear (destroy) the BtShared.pHasContent bitvec. This should be
** invoked at the conclusion of each write-transaction.
*/
static void btreeClearHasContent(BtShared *pBt){
  sqlite4BitvecDestroy(pBt->pHasContent);
  pBt->pHasContent = 0;
}

/*
** Save the current cursor position in the variables BtCursor.nKey 
** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  rc = sqlite4BtreeKeySize(pCur, &pCur->nKey);
  assert( rc==SQLITE_OK );  /* KeySize() cannot fail */

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
  ** data.
  */
  if( 0==pCur->apPage[0]->intKey ){
    void *pKey = sqlite4Malloc( (int)pCur->nKey );
    if( pKey ){
      rc = sqlite4BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
      if( rc==SQLITE_OK ){
        pCur->pKey = pKey;
      }else{
        sqlite4_free(pKey);
      }
    }else{
      rc = SQLITE_NOMEM;
    }
  }
  assert( !pCur->apPage[0]->intKey || !pCur->pKey );

  if( rc==SQLITE_OK ){
    int i;
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
      pCur->apPage[i] = 0;
    }
    pCur->iPage = -1;
    pCur->eState = CURSOR_REQUIRESEEK;
  }

  invalidateOverflowCache(pCur);
  return rc;
}

/*
** Save the positions of all cursors (except pExcept) that are open on
** the table  with root-page iRoot. Usually, this is called just before cursor
** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
*/
static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
  BtCursor *p;
  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( pExcept==0 || pExcept->pBt==pBt );
  for(p=pBt->pCursor; p; p=p->pNext){
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
        p->eState==CURSOR_VALID ){
      int rc = saveCursorPosition(p);
      if( SQLITE_OK!=rc ){
        return rc;
      }
    }
  }
  return SQLITE_OK;
}

/*
** Clear the current cursor position.
*/
void sqlite4BtreeClearCursor(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  sqlite4_free(pCur->pKey);
  pCur->pKey = 0;
  pCur->eState = CURSOR_INVALID;
}

/*
** In this version of BtreeMoveto, pKey is a packed index record
** such as is generated by the OP_MakeRecord opcode.  Unpack the
** record and then call BtreeMovetoUnpacked() to do the work.
*/
static int btreeMoveto(
  BtCursor *pCur,     /* Cursor open on the btree to be searched */
  const void *pKey,   /* Packed key if the btree is an index */
  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  int bias,           /* Bias search to the high end */
  int *pRes           /* Write search results here */
){
  int rc;                    /* Status code */
  UnpackedRecord *pIdxKey;   /* Unpacked index key */
  char aSpace[150];          /* Temp space for pIdxKey - to avoid a malloc */
  char *pFree = 0;

  if( pKey ){
    assert( nKey==(i64)(int)nKey );
    pIdxKey = sqlite4VdbeAllocUnpackedRecord(
        pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
    );
    if( pIdxKey==0 ) return SQLITE_NOMEM;
    sqlite4VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
  }else{
    pIdxKey = 0;
  }
  rc = sqlite4BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
  if( pFree ){
    sqlite4DbFree(pCur->pKeyInfo->db, pFree);
  }
  return rc;
}

/*
** Restore the cursor to the position it was in (or as close to as possible)
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
  if( rc==SQLITE_OK ){
    sqlite4_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
  }
  return rc;
}

#define restoreCursorPosition(p) \
  (p->eState>=CURSOR_REQUIRESEEK ? \
         btreeRestoreCursorPosition(p) : \
         SQLITE_OK)

/*
** Determine whether or not a cursor has moved from the position it
** was last placed at.  Cursors can move when the row they are pointing
** at is deleted out from under them.
**
** This routine returns an error code if something goes wrong.  The
** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
*/
int sqlite4BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
  int rc;

  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pHasMoved = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
    *pHasMoved = 1;
  }else{
    *pHasMoved = 0;
  }
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**
** Return 0 (not a valid page) for pgno==1 since there is
** no pointer map associated with page 1.  The integrity_check logic
** requires that ptrmapPageno(*,1)!=1.
*/
static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
  int nPagesPerMapPage;
  Pgno iPtrMap, ret;
  assert( sqlite4_mutex_held(pBt->mutex) );
  if( pgno<2 ) return 0;
  nPagesPerMapPage = (pBt->usableSize/5)+1;
  iPtrMap = (pgno-2)/nPagesPerMapPage;
  ret = (iPtrMap*nPagesPerMapPage) + 2; 
  if( ret==PENDING_BYTE_PAGE(pBt) ){
    ret++;
  }
  return ret;
}

/*
** Write an entry into the pointer map.
**
** This routine updates the pointer map entry for page number 'key'
** so that it maps to type 'eType' and parent page number 'pgno'.
**
** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
** a no-op.  If an error occurs, the appropriate error code is written
** into *pRC.
*/
static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
  DbPage *pDbPage;  /* The pointer map page */
  u8 *pPtrmap;      /* The pointer map data */
  Pgno iPtrmap;     /* The pointer map page number */
  int offset;       /* Offset in pointer map page */
  int rc;           /* Return code from subfunctions */

  if( *pRC ) return;

  assert( sqlite4_mutex_held(pBt->mutex) );
  /* The master-journal page number must never be used as a pointer map page */
  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );

  assert( pBt->autoVacuum );
  if( key==0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite4PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=SQLITE_OK ){
    *pRC = rc;
    return;
  }
  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    goto ptrmap_exit;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  pPtrmap = (u8 *)sqlite4PagerGetData(pDbPage);

  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
    *pRC= rc = sqlite4PagerWrite(pDbPage);
    if( rc==SQLITE_OK ){
      pPtrmap[offset] = eType;
      put4byte(&pPtrmap[offset+1], parent);
    }
  }

ptrmap_exit:
  sqlite4PagerUnref(pDbPage);
}

/*
** Read an entry from the pointer map.
**
** This routine retrieves the pointer map entry for page 'key', writing
** the type and parent page number to *pEType and *pPgno respectively.
** An error code is returned if something goes wrong, otherwise SQLITE_OK.
*/
static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
  DbPage *pDbPage;   /* The pointer map page */
  int iPtrmap;       /* Pointer map page index */
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite4_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite4PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite4PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    sqlite4PagerUnref(pDbPage);
    return SQLITE_CORRUPT_BKPT;
  }
  assert( offset <= (int)pBt->usableSize-5 );
  assert( pEType!=0 );
  *pEType = pPtrmap[offset];
  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);

  sqlite4PagerUnref(pDbPage);
  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
  return SQLITE_OK;
}

#else /* if defined SQLITE_OMIT_AUTOVACUUM */
  #define ptrmapPut(w,x,y,z,rc)
  #define ptrmapGet(w,x,y,z) SQLITE_OK
  #define ptrmapPutOvflPtr(x, y, rc)
#endif

/*
** Given a btree page and a cell index (0 means the first cell on
** the page, 1 means the second cell, and so forth) return a pointer
** to the cell content.
**
** This routine works only for pages that do not contain overflow cells.
*/
#define findCell(P,I) \
  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))


/*
** This a more complex version of findCell() that works for
** pages that do contain overflow cells.
*/
static u8 *findOverflowCell(MemPage *pPage, int iCell){
  int i;
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  for(i=pPage->nOverflow-1; i>=0; i--){
    int k;
    struct _OvflCell *pOvfl;
    pOvfl = &pPage->aOvfl[i];
    k = pOvfl->idx;
    if( k<=iCell ){
      if( k==iCell ){
        return pOvfl->pCell;
      }
      iCell--;
    }
  }
  return findCell(pPage, iCell);
}

/*
** Parse a cell content block and fill in the CellInfo structure.  There
** are two versions of this function.  btreeParseCell() takes a 
** cell index as the second argument and btreeParseCellPtr() 
** takes a pointer to the body of the cell as its second argument.
**
** Within this file, the parseCell() macro can be called instead of
** btreeParseCellPtr(). Using some compilers, this will be faster.
*/
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
){
  u16 n;                  /* Number bytes in cell content header */
  u32 nPayload;           /* Number of bytes of cell payload */

  assert( sqlite4_mutex_held(pPage->pBt->mutex) );

  pInfo->pCell = pCell;
  assert( pPage->leaf==0 || pPage->leaf==1 );
  n = pPage->childPtrSize;
  assert( n==4-4*pPage->leaf );
  if( pPage->intKey ){
    if( pPage->hasData ){
      n += getVarint32(&pCell[n], nPayload);
    }else{
      nPayload = 0;
    }
    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
    pInfo->nData = nPayload;
  }else{
    pInfo->nData = 0;
    n += getVarint32(&pCell[n], nPayload);
    pInfo->nKey = nPayload;
  }
  pInfo->nPayload = nPayload;
  pInfo->nHeader = n;
  testcase( nPayload==pPage->maxLocal );
  testcase( nPayload==pPage->maxLocal+1 );
  if( likely(nPayload<=pPage->maxLocal) ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
    pInfo->iOverflow = 0;
  }else{
    /* If the payload will not fit completely on the local page, we have
    ** to decide how much to store locally and how much to spill onto
    ** overflow pages.  The strategy is to minimize the amount of unused
    ** space on overflow pages while keeping the amount of local storage
    ** in between minLocal and maxLocal.
    **
    ** Warning:  changing the way overflow payload is distributed in any
    ** way will result in an incompatible file format.
    */
    int minLocal;  /* Minimum amount of payload held locally */
    int maxLocal;  /* Maximum amount of payload held locally */
    int surplus;   /* Overflow payload available for local storage */

    minLocal = pPage->minLocal;
    maxLocal = pPage->maxLocal;
    surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
    testcase( surplus==maxLocal );
    testcase( surplus==maxLocal+1 );
    if( surplus <= maxLocal ){
      pInfo->nLocal = (u16)surplus;
    }else{
      pInfo->nLocal = (u16)minLocal;
    }
    pInfo->iOverflow = (u16)(pInfo->nLocal + n);
    pInfo->nSize = pInfo->iOverflow + 4;
  }
}
#define parseCell(pPage, iCell, pInfo) \
  btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
  CellInfo *pInfo         /* Fill in this structure */
){
  parseCell(pPage, iCell, pInfo);
}

/*
** Compute the total number of bytes that a Cell needs in the cell
** data area of the btree-page.  The return number includes the cell
** data header and the local payload, but not any overflow page or
** the space used by the cell pointer.
*/
static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
  u8 *pIter = &pCell[pPage->childPtrSize];
  u32 nSize;

#ifdef SQLITE_DEBUG
  /* The value returned by this function should always be the same as
  ** the (CellInfo.nSize) value found by doing a full parse of the
  ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
  ** this function verifies that this invariant is not violated. */
  CellInfo debuginfo;
  btreeParseCellPtr(pPage, pCell, &debuginfo);
#endif

  if( pPage->intKey ){
    u8 *pEnd;
    if( pPage->hasData ){
      pIter += getVarint32(pIter, nSize);
    }else{
      nSize = 0;
    }

    /* pIter now points at the 64-bit integer key value, a variable length 
    ** integer. The following block moves pIter to point at the first byte
    ** past the end of the key value. */
    pEnd = &pIter[9];
    while( (*pIter++)&0x80 && pIter<pEnd );
  }else{
    pIter += getVarint32(pIter, nSize);
  }

  testcase( nSize==pPage->maxLocal );
  testcase( nSize==pPage->maxLocal+1 );
  if( nSize>pPage->maxLocal ){
    int minLocal = pPage->minLocal;
    nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
    testcase( nSize==pPage->maxLocal );
    testcase( nSize==pPage->maxLocal+1 );
    if( nSize>pPage->maxLocal ){
      nSize = minLocal;
    }
    nSize += 4;
  }
  nSize += (u32)(pIter - pCell);

  /* The minimum size of any cell is 4 bytes. */
  if( nSize<4 ){
    nSize = 4;
  }

  assert( nSize==debuginfo.nSize );
  return (u16)nSize;
}

#ifdef SQLITE_DEBUG
/* This variation on cellSizePtr() is used inside of assert() statements
** only. */
static u16 cellSize(MemPage *pPage, int iCell){
  return cellSizePtr(pPage, findCell(pPage, iCell));
}
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** If the cell pCell, part of page pPage contains a pointer
** to an overflow page, insert an entry into the pointer-map
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  btreeParseCellPtr(pPage, pCell, &info);
  assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
  if( info.iOverflow ){
    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of a i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */
  int iCellFirst;            /* First allowable cell index */
  int iCellLast;             /* Last possible cell index */


  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  temp = sqlite4PagerTempSpace(pPage->pBt->pPager);
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  usableSize = pPage->pBt->usableSize;
  cbrk = get2byte(&data[hdr+5]);
  memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
  cbrk = usableSize;
  iCellFirst = cellOffset + 2*nCell;
  iCellLast = usableSize - 4;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
    testcase( pc==iCellFirst );
    testcase( pc==iCellLast );
#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
    /* These conditions have already been verified in btreeInitPage()
    ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined 
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = cellSizePtr(pPage, &temp[pc]);
    cbrk -= size;
#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
    if( cbrk<iCellFirst ){
      return SQLITE_CORRUPT_BKPT;
    }
#else
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    memcpy(&data[cbrk], &temp[pc], size);
    put2byte(pAddr, cbrk);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  data[hdr+7] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  if( cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
** The caller guarantees that there is sufficient space to make the
** allocation.  This routine might need to defragment in order to bring
** all the space together, however.  This routine will avoid using
** the first two bytes past the cell pointer area since presumably this
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int nFrag;                           /* Number of fragmented bytes on pPage */
  int top;                             /* First byte of cell content area */
  int gap;        /* First byte of gap between cell pointers and cell content */
  int rc;         /* Integer return code */
  int usableSize; /* Usable size of the page */
  
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  usableSize = pPage->pBt->usableSize;
  assert( nByte < usableSize-8 );

  nFrag = data[hdr+7];
  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  top = get2byteNotZero(&data[hdr+5]);
  if( gap>top ) return SQLITE_CORRUPT_BKPT;
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );

  if( nFrag>=60 ){
    /* Always defragment highly fragmented pages */
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
  }else if( gap+2<=top ){
    /* Search the freelist looking for a free slot big enough to satisfy 
    ** the request. The allocation is made from the first free slot in 
    ** the list that is large enough to accomadate it.
    */
    int pc, addr;
    for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
      int size;            /* Size of the free slot */
      if( pc>usableSize-4 || pc<addr+4 ){
        return SQLITE_CORRUPT_BKPT;
      }
      size = get2byte(&data[pc+2]);
      if( size>=nByte ){
        int x = size - nByte;
        testcase( x==4 );
        testcase( x==3 );
        if( x<4 ){
          /* Remove the slot from the free-list. Update the number of
          ** fragmented bytes within the page. */
          memcpy(&data[addr], &data[pc], 2);
          data[hdr+7] = (u8)(nFrag + x);
        }else if( size+pc > usableSize ){
          return SQLITE_CORRUPT_BKPT;
        }else{
          /* The slot remains on the free-list. Reduce its size to account
          ** for the portion used by the new allocation. */
          put2byte(&data[pc+2], x);
        }
        *pIdx = pc + x;
        return SQLITE_OK;
      }
    }
  }

  /* Check to make sure there is enough space in the gap to satisfy
  ** the allocation.  If not, defragment.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


  /* Allocate memory from the gap in between the cell pointer array
  ** and the cell content area.  The btreeInitPage() call has already
  ** validated the freelist.  Given that the freelist is valid, there
  ** is no way that the allocation can extend off the end of the page.
  ** The assert() below verifies the previous sentence.
  */
  top -= nByte;
  put2byte(&data[hdr+5], top);
  assert( top+nByte <= (int)pPage->pBt->usableSize );
  *pIdx = top;
  return SQLITE_OK;
}

/*
** Return a section of the pPage->aData to the freelist.
** The first byte of the new free block is pPage->aDisk[start]
** and the size of the block is "size" bytes.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static int freeSpace(MemPage *pPage, int start, int size){
  int addr, pbegin, hdr;
  int iLast;                        /* Largest possible freeblock offset */
  unsigned char *data = pPage->aData;

  assert( pPage->pBt!=0 );
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
  assert( (start + size) <= (int)pPage->pBt->usableSize );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( size>=0 );   /* Minimum cell size is 4 */

  if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
    /* Overwrite deleted information with zeros when the secure_delete
    ** option is enabled */
    memset(&data[start], 0, size);
  }

  /* Add the space back into the linked list of freeblocks.  Note that
  ** even though the freeblock list was checked by btreeInitPage(),
  ** btreeInitPage() did not detect overlapping cells or
  ** freeblocks that overlapped cells.   Nor does it detect when the
  ** cell content area exceeds the value in the page header.  If these
  ** situations arise, then subsequent insert operations might corrupt
  ** the freelist.  So we do need to check for corruption while scanning
  ** the freelist.
  */
  hdr = pPage->hdrOffset;
  addr = hdr + 1;
  iLast = pPage->pBt->usableSize - 4;
  assert( start<=iLast );
  while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
    if( pbegin<addr+4 ){
      return SQLITE_CORRUPT_BKPT;
    }
    addr = pbegin;
  }
  if( pbegin>iLast ){
    return SQLITE_CORRUPT_BKPT;
  }
  assert( pbegin>addr || pbegin==0 );
  put2byte(&data[addr], start);
  put2byte(&data[start], pbegin);
  put2byte(&data[start+2], size);
  pPage->nFree = pPage->nFree + (u16)size;

  /* Coalesce adjacent free blocks */
  addr = hdr + 1;
  while( (pbegin = get2byte(&data[addr]))>0 ){
    int pnext, psize, x;
    assert( pbegin>addr );
    assert( pbegin <= (int)pPage->pBt->usableSize-4 );
    pnext = get2byte(&data[pbegin]);
    psize = get2byte(&data[pbegin+2]);
    if( pbegin + psize + 3 >= pnext && pnext>0 ){
      int frag = pnext - (pbegin+psize);
      if( (frag<0) || (frag>(int)data[hdr+7]) ){
        return SQLITE_CORRUPT_BKPT;
      }
      data[hdr+7] -= (u8)frag;
      x = get2byte(&data[pnext]);
      put2byte(&data[pbegin], x);
      x = pnext + get2byte(&data[pnext+2]) - pbegin;
      put2byte(&data[pbegin+2], x);
    }else{
      addr = pbegin;
    }
  }

  /* If the cell content area begins with a freeblock, remove it. */
  if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
    int top;
    pbegin = get2byte(&data[hdr+1]);
    memcpy(&data[hdr+1], &data[pbegin], 2);
    top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
    put2byte(&data[hdr+5], top);
  }
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  return SQLITE_OK;
}

/*
** Decode the flags byte (the first byte of the header) for a page
** and initialize fields of the MemPage structure accordingly.
**
** Only the following combinations are supported.  Anything different
** indicates a corrupt database files:
**
**         PTF_ZERODATA
**         PTF_ZERODATA | PTF_LEAF
**         PTF_LEAFDATA | PTF_INTKEY
**         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
*/
static int decodeFlags(MemPage *pPage, int flagByte){
  BtShared *pBt;     /* A copy of pPage->pBt */

  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    pPage->intKey = 1;
    pPage->hasData = pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    pPage->intKey = 0;
    pPage->hasData = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
** Initialize the auxiliary information for a disk block.
**
** Return SQLITE_OK on success.  If we see that the page does
** not contain a well-formed database page, then return 
** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed.  It only shows that
** we failed to detect any corruption.
*/
static int btreeInitPage(MemPage *pPage){

  assert( pPage->pBt!=0 );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( pPage->pgno==sqlite4PagerPagenumber(pPage->pDbPage) );
  assert( pPage == sqlite4PagerGetExtra(pPage->pDbPage) );
  assert( pPage->aData == sqlite4PagerGetData(pPage->pDbPage) );

  if( !pPage->isInit ){
    u16 pc;            /* Address of a freeblock within pPage->aData[] */
    u8 hdr;            /* Offset to beginning of page header */
    u8 *data;          /* Equal to pPage->aData */
    BtShared *pBt;        /* The main btree structure */
    int usableSize;    /* Amount of usable space on each page */
    u16 cellOffset;    /* Offset from start of page to first cell pointer */
    int nFree;         /* Number of unused bytes on the page */
    int top;           /* First byte of the cell content area */
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;
    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];
    top = get2byteNotZero(&data[hdr+5]);
    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );

    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
    */
    iCellFirst = cellOffset + 2*pPage->nCell;
    iCellLast = usableSize - 4;
#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
    {
      int i;            /* Index into the cell pointer array */
      int sz;           /* Size of a cell */

      if( !pPage->leaf ) iCellLast--;
      for(i=0; i<pPage->nCell; i++){
        pc = get2byte(&data[cellOffset+i*2]);
        testcase( pc==iCellFirst );
        testcase( pc==iCellLast );
        if( pc<iCellFirst || pc>iCellLast ){
          return SQLITE_CORRUPT_BKPT;
        }
        sz = cellSizePtr(pPage, &data[pc]);
        testcase( pc+sz==usableSize );
        if( pc+sz>usableSize ){
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  
#endif

    /* Compute the total free space on the page */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* Start of free block is off the page */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
	** the free-block must lie on the database page.  */
        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start
    ** of the cell-content area plus the number of free bytes within
    ** the cell-content area. If this is greater than the usable-size
    ** of the page, then the page must be corrupted. This check also
    ** serves to verify that the offset to the start of the cell-content
    ** area, according to the page header, lies within the page.
    */
    if( nFree>usableSize ){
      return SQLITE_CORRUPT_BKPT; 
    }
    pPage->nFree = (u16)(nFree - iCellFirst);
    pPage->isInit = 1;
  }
  return SQLITE_OK;
}

/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(MemPage *pPage, int flags){
  unsigned char *data = pPage->aData;
  BtShared *pBt = pPage->pBt;
  u8 hdr = pPage->hdrOffset;
  u16 first;

  assert( sqlite4PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  assert( sqlite4PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  assert( sqlite4PagerGetData(pPage->pDbPage) == data );
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  assert( sqlite4_mutex_held(pBt->mutex) );
  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    memset(&data[hdr], 0, pBt->usableSize - hdr);
  }
  data[hdr] = (char)flags;
  first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
  memset(&data[hdr+1], 0, 4);
  data[hdr+7] = 0;
  put2byte(&data[hdr+5], pBt->usableSize);
  pPage->nFree = (u16)(pBt->usableSize - first);
  decodeFlags(pPage, flags);
  pPage->hdrOffset = hdr;
  pPage->cellOffset = first;
  pPage->aDataEnd = &data[pBt->usableSize];
  pPage->aCellIdx = &data[first];
  pPage->nOverflow = 0;
  assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
  pPage->maskPage = (u16)(pBt->pageSize - 1);
  pPage->nCell = 0;
  pPage->isInit = 1;
}


/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite4PagerGetExtra(pDbPage);
  pPage->aData = sqlite4PagerGetData(pDbPage);
  pPage->pDbPage = pDbPage;
  pPage->pBt = pBt;
  pPage->pgno = pgno;
  pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
**
** If the noContent flag is set, it means that we do not care about
** the content of the page at this time.  So do not go to the disk
** to fetch the content.  Just fill in the content with zeros for now.
** If in the future we call sqlite4PagerWrite() on this page, that
** means we have started to be concerned about content and the disk
** read should occur at that point.
*/
static int btreeGetPage(
  BtShared *pBt,       /* The btree */
  Pgno pgno,           /* Number of the page to fetch */
  MemPage **ppPage,    /* Return the page in this parameter */
  int noContent        /* Do not load page content if true */
){
  int rc;
  DbPage *pDbPage;

  assert( sqlite4_mutex_held(pBt->mutex) );
  rc = sqlite4PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

/*
** Retrieve a page from the pager cache. If the requested page is not
** already in the pager cache return NULL. Initialize the MemPage.pBt and
** MemPage.aData elements if needed.
*/
static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
  DbPage *pDbPage;
  assert( sqlite4_mutex_held(pBt->mutex) );
  pDbPage = sqlite4PagerLookup(pBt->pPager, pgno);
  if( pDbPage ){
    return btreePageFromDbPage(pDbPage, pgno, pBt);
  }
  return 0;
}

/*
** Return the size of the database file in pages. If there is any kind of
** error, return ((unsigned int)-1).
*/
static Pgno btreePagecount(BtShared *pBt){
  return pBt->nPage;
}
u32 sqlite4BtreeLastPage(Btree *p){
  assert( sqlite4BtreeHoldsMutex(p) );
  assert( ((p->pBt->nPage)&0x8000000)==0 );
  return (int)btreePagecount(p->pBt);
}

/*
** Get a page from the pager and initialize it.  This routine is just a
** convenience wrapper around separate calls to btreeGetPage() and 
** btreeInitPage().
**
** If an error occurs, then the value *ppPage is set to is undefined. It
** may remain unchanged, or it may be set to an invalid value.
*/
static int getAndInitPage(
  BtShared *pBt,          /* The database file */
  Pgno pgno,           /* Number of the page to get */
  MemPage **ppPage     /* Write the page pointer here */
){
  int rc;
  assert( sqlite4_mutex_held(pBt->mutex) );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
  }else{
    rc = btreeGetPage(pBt, pgno, ppPage, 0);
    if( rc==SQLITE_OK ){
      rc = btreeInitPage(*ppPage);
      if( rc!=SQLITE_OK ){
        releasePage(*ppPage);
      }
    }
  }

  testcase( pgno==0 );
  assert( pgno!=0 || rc==SQLITE_CORRUPT );
  return rc;
}

/*
** Release a MemPage.  This should be called once for each prior
** call to btreeGetPage.
*/
static void releasePage(MemPage *pPage){
  if( pPage ){
    assert( pPage->aData );
    assert( pPage->pBt );
    assert( sqlite4PagerGetExtra(pPage->pDbPage) == (void*)pPage );
    assert( sqlite4PagerGetData(pPage->pDbPage)==pPage->aData );
    assert( sqlite4_mutex_held(pPage->pBt->mutex) );
    sqlite4PagerUnref(pPage->pDbPage);
  }
}

/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(DbPage *pData){
  MemPage *pPage;
  pPage = (MemPage *)sqlite4PagerGetExtra(pData);
  assert( sqlite4PagerPageRefcount(pData)>0 );
  if( pPage->isInit ){
    assert( sqlite4_mutex_held(pPage->pBt->mutex) );
    pPage->isInit = 0;
    if( sqlite4PagerPageRefcount(pData)>1 ){
      /* pPage might not be a btree page;  it might be an overflow page
      ** or ptrmap page or a free page.  In those cases, the following
      ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
      ** But no harm is done by this.  And it is very important that
      ** btreeInitPage() be called on every btree page so we make
      ** the call for every page that comes in for re-initing. */
      btreeInitPage(pPage);
    }
  }
}

/*
** Invoke the busy handler for a btree.
*/
static int btreeInvokeBusyHandler(void *pArg){
  BtShared *pBt = (BtShared*)pArg;
  assert( pBt->db );
  assert( sqlite4_mutex_held(pBt->db->mutex) );
  return sqlite4InvokeBusyHandler(&pBt->db->busyHandler);
}

/*
** Open a database file.
** 
** zFilename is the name of the database file.  If zFilename is NULL
** then an ephemeral database is created.  The ephemeral database might
** be exclusively in memory, or it might use a disk-based memory cache.
** Either way, the ephemeral database will be automatically deleted 
** when sqlite4BtreeClose() is called.
**
** If zFilename is ":memory:" then an in-memory database is created
** that is automatically destroyed when it is closed.
**
** The "flags" parameter is a bitmask that might contain bits like
** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
**
** If the database is already opened in the same database connection
** and we are in shared cache mode, then the open will fail with an
** SQLITE_CONSTRAINT error.  We cannot allow two or more BtShared
** objects in the same database connection since doing so will lead
** to problems with locking.
*/
int sqlite4BtreeOpen(
  sqlite4_vfs *pVfs,      /* VFS to use for this b-tree */
  const char *zFilename,  /* Name of the file containing the BTree database */
  sqlite4 *db,            /* Associated database handle */
  Btree **ppBtree,        /* Pointer to new Btree object written here */
  int flags,              /* Options */
  int vfsFlags            /* Flags passed through to sqlite4_vfs.xOpen() */
){
  BtShared *pBt = 0;             /* Shared part of btree structure */
  Btree *p;                      /* Handle to return */
  sqlite4_mutex *mutexOpen = 0;  /* Prevents a race condition. Ticket #3537 */
  int rc = SQLITE_OK;            /* Result code from this function */
  u8 nReserve;                   /* Byte of unused space on each page */
  unsigned char zDbHeader[100];  /* Database header content */

  /* True if opening an ephemeral, temporary database */
  const int isTempDb = zFilename==0 || zFilename[0]==0;

  /* Set the variable isMemdb to true for an in-memory database, or 
  ** false for a file-based database.
  */
#ifdef SQLITE_OMIT_MEMORYDB
  const int isMemdb = 0;
#else
  const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
                       || (isTempDb && sqlite4TempInMemory(db));
#endif

  assert( db!=0 );
  assert( pVfs!=0 );
  assert( sqlite4_mutex_held(db->mutex) );
  assert( (flags&0xff)==flags );   /* flags fit in 8 bits */

  /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
  assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );

  /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
  assert( (flags & BTREE_SINGLE)==0 || isTempDb );

  if( isMemdb ){
    flags |= BTREE_MEMORY;
  }
  if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
    vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
  }
  p = sqlite4MallocZero(sizeof(Btree));
  if( !p ){
    return SQLITE_NOMEM;
  }
  p->inTrans = TRANS_NONE;
  p->db = db;
#ifndef SQLITE_OMIT_SHARED_CACHE
  p->lock.pBtree = p;
  p->lock.iTable = 1;
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isMemdb==0 && isTempDb==0 ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite4Malloc(nFullPathname);
      MUTEX_LOGIC( sqlite4_mutex *mutexShared; )
      p->sharable = 1;
      if( !zFullPathname ){
        sqlite4_free(p);
        return SQLITE_NOMEM;
      }
      rc = sqlite4OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
      if( rc ){
        sqlite4_free(zFullPathname);
        sqlite4_free(p);
        return rc;
      }
#if SQLITE_THREADSAFE
      mutexOpen = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
      sqlite4_mutex_enter(mutexOpen);
      mutexShared = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
      sqlite4_mutex_enter(mutexShared);
#endif
      for(pBt=GLOBAL(BtShared*,sqlite4SharedCacheList); pBt; pBt=pBt->pNext){
        assert( pBt->nRef>0 );
        if( 0==strcmp(zFullPathname, sqlite4PagerFilename(pBt->pPager))
                 && sqlite4PagerVfs(pBt->pPager)==pVfs ){
          int iDb;
          for(iDb=db->nDb-1; iDb>=0; iDb--){
            Btree *pExisting = db->aDb[iDb].pBt;
            if( pExisting && pExisting->pBt==pBt ){
              sqlite4_mutex_leave(mutexShared);
              sqlite4_mutex_leave(mutexOpen);
              sqlite4_free(zFullPathname);
              sqlite4_free(p);
              return SQLITE_CONSTRAINT;
            }
          }
          p->pBt = pBt;
          pBt->nRef++;
          break;
        }
      }
      sqlite4_mutex_leave(mutexShared);
      sqlite4_free(zFullPathname);
    }
#ifdef SQLITE_DEBUG
    else{
      /* In debug mode, we mark all persistent databases as sharable
      ** even when they are not.  This exercises the locking code and
      ** gives more opportunity for asserts(sqlite4_mutex_held())
      ** statements to find locking problems.
      */
      p->sharable = 1;
    }
#endif
  }
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 || sizeof(i64)==4 );
    assert( sizeof(u64)==8 || sizeof(u64)==4 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite4MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM;
      goto btree_open_out;
    }
    rc = sqlite4PagerOpen(pVfs, &pBt->pPager, zFilename,
                          EXTRA_SIZE, flags, vfsFlags, pageReinit);
    if( rc==SQLITE_OK ){
      rc = sqlite4PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
    }
    if( rc!=SQLITE_OK ){
      goto btree_open_out;
    }
    pBt->openFlags = (u8)flags;
    pBt->db = db;
    sqlite4PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
    p->pBt = pBt;
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite4PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif
    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
      ** regular file-name. In this case the auto-vacuum applies as per normal.
      */
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
    rc = sqlite4PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
    if( rc ) goto btree_open_out;
    pBt->usableSize = pBt->pageSize - nReserve;
    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
   
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
    /* Add the new BtShared object to the linked list sharable BtShareds.
    */
    if( p->sharable ){
      MUTEX_LOGIC( sqlite4_mutex *mutexShared; )
      pBt->nRef = 1;
      MUTEX_LOGIC( mutexShared = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
      if( SQLITE_THREADSAFE && sqlite4GlobalConfig.bCoreMutex ){
        pBt->mutex = sqlite4MutexAlloc(SQLITE_MUTEX_FAST);
        if( pBt->mutex==0 ){
          rc = SQLITE_NOMEM;
          db->mallocFailed = 0;
          goto btree_open_out;
        }
      }
      sqlite4_mutex_enter(mutexShared);
      pBt->pNext = GLOBAL(BtShared*,sqlite4SharedCacheList);
      GLOBAL(BtShared*,sqlite4SharedCacheList) = pBt;
      sqlite4_mutex_leave(mutexShared);
    }
#endif
  }

#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /* If the new Btree uses a sharable pBtShared, then link the new
  ** Btree into the list of all sharable Btrees for the same connection.
  ** The list is kept in ascending order by pBt address.
  */
  if( p->sharable ){
    int i;
    Btree *pSib;
    for(i=0; i<db->nDb; i++){
      if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
        while( pSib->pPrev ){ pSib = pSib->pPrev; }
        if( p->pBt<pSib->pBt ){
          p->pNext = pSib;
          p->pPrev = 0;
          pSib->pPrev = p;
        }else{
          while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
            pSib = pSib->pNext;
          }
          p->pNext = pSib->pNext;
          p->pPrev = pSib;
          if( p->pNext ){
            p->pNext->pPrev = p;
          }
          pSib->pNext = p;
        }
        break;
      }
    }
  }
#endif
  *ppBtree = p;

btree_open_out:
  if( rc!=SQLITE_OK ){
    if( pBt && pBt->pPager ){
      sqlite4PagerClose(pBt->pPager);
    }
    sqlite4_free(pBt);
    sqlite4_free(p);
    *ppBtree = 0;
  }else{
    /* If the B-Tree was successfully opened, set the pager-cache size to the
    ** default value. Except, when opening on an existing shared pager-cache,
    ** do not change the pager-cache size.
    */
    if( sqlite4BtreeSchema(p, 0, 0)==0 ){
      sqlite4PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
    }
  }
  if( mutexOpen ){
    assert( sqlite4_mutex_held(mutexOpen) );
    sqlite4_mutex_leave(mutexOpen);
  }
  return rc;
}

/*
** Decrement the BtShared.nRef counter.  When it reaches zero,
** remove the BtShared structure from the sharing list.  Return
** true if the BtShared.nRef counter reaches zero and return
** false if it is still positive.
*/
static int removeFromSharingList(BtShared *pBt){
#ifndef SQLITE_OMIT_SHARED_CACHE
  MUTEX_LOGIC( sqlite4_mutex *pMaster; )
  BtShared *pList;
  int removed = 0;

  assert( sqlite4_mutex_notheld(pBt->mutex) );
  MUTEX_LOGIC( pMaster = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  sqlite4_mutex_enter(pMaster);
  pBt->nRef--;
  if( pBt->nRef<=0 ){
    if( GLOBAL(BtShared*,sqlite4SharedCacheList)==pBt ){
      GLOBAL(BtShared*,sqlite4SharedCacheList) = pBt->pNext;
    }else{
      pList = GLOBAL(BtShared*,sqlite4SharedCacheList);
      while( ALWAYS(pList) && pList->pNext!=pBt ){
        pList=pList->pNext;
      }
      if( ALWAYS(pList) ){
        pList->pNext = pBt->pNext;
      }
    }
    if( SQLITE_THREADSAFE ){
      sqlite4_mutex_free(pBt->mutex);
    }
    removed = 1;
  }
  sqlite4_mutex_leave(pMaster);
  return removed;
#else
  return 1;
#endif
}

/*
** Make sure pBt->pTmpSpace points to an allocation of 
** MX_CELL_SIZE(pBt) bytes.
*/
static void allocateTempSpace(BtShared *pBt){
  if( !pBt->pTmpSpace ){
    pBt->pTmpSpace = sqlite4PageMalloc( pBt->pageSize );
  }
}

/*
** Free the pBt->pTmpSpace allocation
*/
static void freeTempSpace(BtShared *pBt){
  sqlite4PageFree( pBt->pTmpSpace);
  pBt->pTmpSpace = 0;
}

/*
** Close an open database and invalidate all cursors.
*/
int sqlite4BtreeClose(Btree *p){
  BtShared *pBt = p->pBt;
  BtCursor *pCur;

  /* Close all cursors opened via this handle.  */
  assert( sqlite4_mutex_held(p->db->mutex) );
  sqlite4BtreeEnter(p);
  pCur = pBt->pCursor;
  while( pCur ){
    BtCursor *pTmp = pCur;
    pCur = pCur->pNext;
    if( pTmp->pBtree==p ){
      sqlite4BtreeCloseCursor(pTmp);
    }
  }

  /* Rollback any active transaction and free the handle structure.
  ** The call to sqlite4BtreeRollback() drops any table-locks held by
  ** this handle.
  */
  sqlite4BtreeRollback(p);
  sqlite4BtreeLeave(p);

  /* If there are still other outstanding references to the shared-btree
  ** structure, return now. The remainder of this procedure cleans 
  ** up the shared-btree.
  */
  assert( p->wantToLock==0 && p->locked==0 );
  if( !p->sharable || removeFromSharingList(pBt) ){
    /* The pBt is no longer on the sharing list, so we can access
    ** it without having to hold the mutex.
    **
    ** Clean out and delete the BtShared object.
    */
    assert( !pBt->pCursor );
    sqlite4PagerClose(pBt->pPager);
    if( pBt->xFreeSchema && pBt->pSchema ){
      pBt->xFreeSchema(pBt->pSchema);
    }
    sqlite4DbFree(0, pBt->pSchema);
    freeTempSpace(pBt);
    sqlite4_free(pBt);
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  assert( p->wantToLock==0 );
  assert( p->locked==0 );
  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  if( p->pNext ) p->pNext->pPrev = p->pPrev;
#endif

  sqlite4_free(p);
  return SQLITE_OK;
}

/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage.  If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing.  Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes.  But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
int sqlite4BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite4_mutex_held(p->db->mutex) );
  sqlite4BtreeEnter(p);
  sqlite4PagerSetCachesize(pBt->pPager, mxPage);
  sqlite4BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures.  Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage)  Level 2 is the default.  There
** is a very low but non-zero probability of damage.  Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
int sqlite4BtreeSetSafetyLevel(
  Btree *p,              /* The btree to set the safety level on */
  int level,             /* PRAGMA synchronous.  1=OFF, 2=NORMAL, 3=FULL */
  int fullSync,          /* PRAGMA fullfsync. */
  int ckptFullSync       /* PRAGMA checkpoint_fullfync */
){
  BtShared *pBt = p->pBt;
  assert( sqlite4_mutex_held(p->db->mutex) );
  assert( level>=1 && level<=3 );
  sqlite4BtreeEnter(p);
  sqlite4PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
  sqlite4BtreeLeave(p);
  return SQLITE_OK;
}
#endif

/*
** Return TRUE if the given btree is set to safety level 1.  In other
** words, return TRUE if no sync() occurs on the disk files.
*/
int sqlite4BtreeSyncDisabled(Btree *p){
  BtShared *pBt = p->pBt;
  int rc;
  assert( sqlite4_mutex_held(p->db->mutex) );  
  sqlite4BtreeEnter(p);
  assert( pBt && pBt->pPager );
  rc = sqlite4PagerNosync(pBt->pPager);
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Change the default pages size and the number of reserved bytes per page.
** Or, if the page size has already been fixed, return SQLITE_READONLY 
** without changing anything.
**
** The page size must be a power of 2 between 512 and 65536.  If the page
** size supplied does not meet this constraint then the page size is not
** changed.
**
** Page sizes are constrained to be a power of two so that the region
** of the database file used for locking (beginning at PENDING_BYTE,
** the first byte past the 1GB boundary, 0x40000000) needs to occur
** at the beginning of a page.
**
** If parameter nReserve is less than zero, then the number of reserved
** bytes per page is left unchanged.
**
** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
** and autovacuum mode can no longer be changed.
*/
int sqlite4BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  assert( nReserve>=-1 && nReserve<=255 );
  sqlite4BtreeEnter(p);
  if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
    sqlite4BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }
  assert( nReserve>=0 && nReserve<=255 );
  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
        ((pageSize-1)&pageSize)==0 ){
    assert( (pageSize & 7)==0 );
    assert( !pBt->pPage1 && !pBt->pCursor );
    pBt->pageSize = (u32)pageSize;
    freeTempSpace(pBt);
  }
  rc = sqlite4PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
  pBt->usableSize = pBt->pageSize - (u16)nReserve;
  if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Return the currently defined page size
*/
int sqlite4BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Return the number of bytes of space at the end of every page that
** are intentually left unused.  This is the "reserved" space that is
** sometimes used by extensions.
*/
int sqlite4BtreeGetReserve(Btree *p){
  int n;
  sqlite4BtreeEnter(p);
  n = p->pBt->pageSize - p->pBt->usableSize;
  sqlite4BtreeLeave(p);
  return n;
}

/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
int sqlite4BtreeMaxPageCount(Btree *p, int mxPage){
  int n;
  sqlite4BtreeEnter(p);
  n = sqlite4PagerMaxPageCount(p->pBt->pPager, mxPage);
  sqlite4BtreeLeave(p);
  return n;
}

/*
** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1.  If newFlag is -1,
** then make no changes.  Always return the value of the BTS_SECURE_DELETE
** setting after the change.
*/
int sqlite4BtreeSecureDelete(Btree *p, int newFlag){
  int b;
  if( p==0 ) return 0;
  sqlite4BtreeEnter(p);
  if( newFlag>=0 ){
    p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
    if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
  } 
  b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
  sqlite4BtreeLeave(p);
  return b;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */

/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
int sqlite4BtreeSetAutoVacuum(Btree *p, int autoVacuum){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return SQLITE_READONLY;
#else
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;
  u8 av = (u8)autoVacuum;

  sqlite4BtreeEnter(p);
  if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
    rc = SQLITE_READONLY;
  }else{
    pBt->autoVacuum = av ?1:0;
    pBt->incrVacuum = av==2 ?1:0;
  }
  sqlite4BtreeLeave(p);
  return rc;
#endif
}

/*
** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
** enabled 1 is returned. Otherwise 0.
*/
int sqlite4BtreeGetAutoVacuum(Btree *p){
#ifdef SQLITE_OMIT_AUTOVACUUM
  return BTREE_AUTOVACUUM_NONE;
#else
  int rc;
  sqlite4BtreeEnter(p);
  rc = (
    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
    BTREE_AUTOVACUUM_INCR
  );
  sqlite4BtreeLeave(p);
  return rc;
#endif
}


/*
** Get a reference to pPage1 of the database file.  This will
** also acquire a readlock on that file.
**
** SQLITE_OK is returned on success.  If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
** is returned if we run out of memory. 
*/
static int lockBtree(BtShared *pBt){
  int rc;              /* Result code from subfunctions */
  MemPage *pPage1;     /* Page 1 of the database file */
  int nPage;           /* Number of pages in the database */
  int nPageFile = 0;   /* Number of pages in the database file */
  int nPageHeader;     /* Number of pages in the database according to hdr */

  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( pBt->pPage1==0 );
  rc = sqlite4PagerSharedLock(pBt->pPager);
  if( rc!=SQLITE_OK ) return rc;
  rc = btreeGetPage(pBt, 1, &pPage1, 0);
  if( rc!=SQLITE_OK ) return rc;

  /* Do some checking to help insure the file we opened really is
  ** a valid database file. 
  */
  nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
  sqlite4PagerPagecount(pBt->pPager, &nPageFile);
  if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>1 ){
      goto page1_init_failed;
    }
#else
    if( page1[18]>2 ){
      pBt->btsFlags |= BTS_READ_ONLY;
    }
    if( page1[19]>2 ){
      goto page1_init_failed;
    }

    /* If the write version is set to 2, this database should be accessed
    ** in WAL mode. If the log is not already open, open it now. Then 
    ** return SQLITE_OK and return without populating BtShared.pPage1.
    ** The caller detects this and calls this function again. This is
    ** required as the version of page 1 currently in the page1 buffer
    ** may not be the latest version - there may be a newer one in the log
    ** file.
    */
    if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
      int isOpen = 0;
      rc = sqlite4PagerOpenWal(pBt->pPager, &isOpen);
      if( rc!=SQLITE_OK ){
        goto page1_init_failed;
      }else if( isOpen==0 ){
        releasePage(pPage1);
        return SQLITE_OK;
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* The maximum embedded fraction must be exactly 25%.  And the minimum
    ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }
    pageSize = (page1[16]<<8) | (page1[17]<<16);
    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
      */
      releasePage(pPage1);
      pBt->usableSize = usableSize;
      pBt->pageSize = pageSize;
      freeTempSpace(pBt);
      rc = sqlite4PagerSetPagesize(pBt->pPager, &pBt->pageSize,
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
#endif
  }

  /* maxLocal is the maximum amount of payload to store locally for
  ** a cell.  Make sure it is small enough so that at least minFanout
  ** cells can will fit on one page.  We assume a 10-byte page header.
  ** Besides the payload, the cell must store:
  **     2-byte pointer to the cell
  **     4-byte child pointer
  **     9-byte nKey value
  **     4-byte nData value
  **     4-byte overflow page pointer
  ** So a cell consists of a 2-byte pointer, a header which is as much as
  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  ** page pointer.
  */
  pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
  pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
  pBt->maxLeaf = (u16)(pBt->usableSize - 35);
  pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
  if( pBt->maxLocal>127 ){
    pBt->max1bytePayload = 127;
  }else{
    pBt->max1bytePayload = (u8)pBt->maxLocal;
  }
  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  pBt->pPage1 = pPage1;
  pBt->nPage = nPage;
  return SQLITE_OK;

page1_init_failed:
  releasePage(pPage1);
  pBt->pPage1 = 0;
  return rc;
}

/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which 
** has the effect of releasing the read lock.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(BtShared *pBt){
  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
  if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
    assert( pBt->pPage1->aData );
    assert( sqlite4PagerRefcount(pBt->pPager)==1 );
    assert( pBt->pPage1->aData );
    releasePage(pBt->pPage1);
    pBt->pPage1 = 0;
  }
}

/*
** If pBt points to an empty file then convert that empty file
** into a new empty database by initializing the first page of
** the database.
*/
static int newDatabase(BtShared *pBt){
  MemPage *pP1;
  unsigned char *data;
  int rc;

  assert( sqlite4_mutex_held(pBt->mutex) );
  if( pBt->nPage>0 ){
    return SQLITE_OK;
  }
  pP1 = pBt->pPage1;
  assert( pP1!=0 );
  data = pP1->aData;
  rc = sqlite4PagerWrite(pP1->pDbPage);
  if( rc ) return rc;
  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  assert( sizeof(zMagicHeader)==16 );
  data[16] = (u8)((pBt->pageSize>>8)&0xff);
  data[17] = (u8)((pBt->pageSize>>16)&0xff);
  data[18] = 1;
  data[19] = 1;
  assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
  data[20] = (u8)(pBt->pageSize - pBt->usableSize);
  data[21] = 64;
  data[22] = 32;
  data[23] = 32;
  memset(&data[24], 0, 100-24);
  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  put4byte(&data[36 + 7*4], pBt->incrVacuum);
#endif
  pBt->nPage = 1;
  data[31] = 1;
  return SQLITE_OK;
}

/*
** Attempt to start a new transaction. A write-transaction
** is started if the second argument is nonzero, otherwise a read-
** transaction.  If the second argument is 2 or more and exclusive
** transaction is started, meaning that no other process is allowed
** to access the database.  A preexisting transaction may not be
** upgraded to exclusive by calling this routine a second time - the
** exclusivity flag only works for a new transaction.
**
** A write-transaction must be started before attempting any 
** changes to the database.  None of the following routines 
** will work unless a transaction is started first:
**
**      sqlite4BtreeCreateTable()
**      sqlite4BtreeCreateIndex()
**      sqlite4BtreeClearTable()
**      sqlite4BtreeDropTable()
**      sqlite4BtreeInsert()
**      sqlite4BtreeDelete()
**      sqlite4BtreeUpdateMeta()
**
** If an initial attempt to acquire the lock fails because of lock contention
** and the database was previously unlocked, then invoke the busy handler
** if there is one.  But if there was previously a read-lock, do not
** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
** returned when there is already a read-lock in order to avoid a deadlock.
**
** Suppose there are two processes A and B.  A has a read lock and B has
** a reserved lock.  B tries to promote to exclusive but is blocked because
** of A's read lock.  A tries to promote to reserved but is blocked by B.
** One or the other of the two processes must give way or there can be
** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
** when A already has a read lock, we encourage A to give up and let B
** proceed.
*/
int sqlite4BtreeBeginTrans(Btree *p, int wrflag){
  sqlite4 *pBlock = 0;
  BtShared *pBt = p->pBt;
  int rc = SQLITE_OK;

  sqlite4BtreeEnter(p);
  btreeIntegrity(p);

  /* If the btree is already in a write-transaction, or it
  ** is already in a read-transaction and a read-transaction
  ** is requested, this is a no-op.
  */
  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
    goto trans_begun;
  }

  /* Write transactions are not possible on a read-only database */
  if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
    rc = SQLITE_READONLY;
    goto trans_begun;
  }

#ifndef SQLITE_OMIT_SHARED_CACHE
  /* If another database handle has already opened a write transaction 
  ** on this shared-btree structure and a second write transaction is
  ** requested, return SQLITE_LOCKED.
  */
  if( (wrflag && pBt->inTransaction==TRANS_WRITE)
   || (pBt->btsFlags & BTS_PENDING)!=0
  ){
    pBlock = pBt->pWriter->db;
  }else if( wrflag>1 ){
    BtLock *pIter;
    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
      if( pIter->pBtree!=p ){
        pBlock = pIter->pBtree->db;
        break;
      }
    }
  }
  if( pBlock ){
    sqlite4ConnectionBlocked(p->db, pBlock);
    rc = SQLITE_LOCKED_SHAREDCACHE;
    goto trans_begun;
  }
#endif

  /* Any read-only or read-write transaction implies a read-lock on 
  ** page 1. So if some other shared-cache client already has a write-lock 
  ** on page 1, the transaction cannot be opened. */
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  if( SQLITE_OK!=rc ) goto trans_begun;

  pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
  if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
  do {
    /* Call lockBtree() until either pBt->pPage1 is populated or
    ** lockBtree() returns something other than SQLITE_OK. lockBtree()
    ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
    ** reading page 1 it discovers that the page-size of the database 
    ** file is not pBt->pageSize. In this case lockBtree() will update
    ** pBt->pageSize to the page-size of the file on disk.
    */
    while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );

    if( rc==SQLITE_OK && wrflag ){
      if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
        rc = SQLITE_READONLY;
      }else{
        rc = sqlite4PagerBegin(pBt->pPager,wrflag>1,sqlite4TempInMemory(p->db));
        if( rc==SQLITE_OK ){
          rc = newDatabase(pBt);
        }
      }
    }
  
    if( rc!=SQLITE_OK ){
      unlockBtreeIfUnused(pBt);
    }
  }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
          btreeInvokeBusyHandler(pBt) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
      if( p->sharable ){
	assert( p->lock.pBtree==p && p->lock.iTable==1 );
        p->lock.eLock = READ_LOCK;
        p->lock.pNext = pBt->pLock;
        pBt->pLock = &p->lock;
      }
#endif
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
    if( p->inTrans>pBt->inTransaction ){
      pBt->inTransaction = p->inTrans;
    }
    if( wrflag ){
      MemPage *pPage1 = pBt->pPage1;
#ifndef SQLITE_OMIT_SHARED_CACHE
      assert( !pBt->pWriter );
      pBt->pWriter = p;
      pBt->btsFlags &= ~BTS_EXCLUSIVE;
      if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
#endif

      /* If the db-size header field is incorrect (as it may be if an old
      ** client has been writing the database file), update it now. Doing
      ** this sooner rather than later means the database size can safely 
      ** re-read the database size from page 1 if a savepoint or transaction
      ** rollback occurs within the transaction.
      */
      if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
        rc = sqlite4PagerWrite(pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          put4byte(&pPage1->aData[28], pBt->nPage);
        }
      }
    }
  }


trans_begun:
  if( rc==SQLITE_OK && wrflag ){
    /* This call makes sure that the pager has the correct number of
    ** open savepoints. If the second parameter is greater than 0 and
    ** the sub-journal is not already open, then it will be opened here.
    */
    rc = sqlite4PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
  }

  btreeIntegrity(p);
  sqlite4BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_AUTOVACUUM

/*
** Set the pointer-map entries for all children of page pPage. Also, if
** pPage contains cells that point to overflow pages, set the pointer
** map entries for the overflow pages as well.
*/
static int setChildPtrmaps(MemPage *pPage){
  int i;                             /* Counter variable */
  int nCell;                         /* Number of cells in page pPage */
  int rc;                            /* Return code */
  BtShared *pBt = pPage->pBt;
  u8 isInitOrig = pPage->isInit;
  Pgno pgno = pPage->pgno;

  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  rc = btreeInitPage(pPage);
  if( rc!=SQLITE_OK ){
    goto set_child_ptrmaps_out;
  }
  nCell = pPage->nCell;

  for(i=0; i<nCell; i++){
    u8 *pCell = findCell(pPage, i);

    ptrmapPutOvflPtr(pPage, pCell, &rc);

    if( !pPage->leaf ){
      Pgno childPgno = get4byte(pCell);
      ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
    }
  }

  if( !pPage->leaf ){
    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
  }

set_child_ptrmaps_out:
  pPage->isInit = isInitOrig;
  return rc;
}

/*
** Somewhere on pPage is a pointer to page iFrom.  Modify this pointer so
** that it points to iTo. Parameter eType describes the type of pointer to
** be modified, as  follows:
**
** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
**                   page of pPage.
**
** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
**                   page pointed to by one of the cells on pPage.
**
** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
**                   overflow page in the list.
*/
static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  if( eType==PTRMAP_OVERFLOW2 ){
    /* The pointer is always the first 4 bytes of the page in this case.  */
    if( get4byte(pPage->aData)!=iFrom ){
      return SQLITE_CORRUPT_BKPT;
    }
    put4byte(pPage->aData, iTo);
  }else{
    u8 isInitOrig = pPage->isInit;
    int i;
    int nCell;

    btreeInitPage(pPage);
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        btreeParseCellPtr(pPage, pCell, &info);
        if( info.iOverflow
         && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
         && iFrom==get4byte(&pCell[info.iOverflow])
        ){
          put4byte(&pCell[info.iOverflow], iTo);
          break;
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
      }
    }
  
    if( i==nCell ){
      if( eType!=PTRMAP_BTREE || 
          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
        return SQLITE_CORRUPT_BKPT;
      }
      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
    }

    pPage->isInit = isInitOrig;
  }
  return SQLITE_OK;
}


/*
** Move the open database page pDbPage to location iFreePage in the 
** database. The pDbPage reference remains valid.
**
** The isCommit flag indicates that there is no need to remember that
** the journal needs to be sync()ed before database page pDbPage->pgno 
** can be written to. The caller has already promised not to write to that
** page.
*/
static int relocatePage(
  BtShared *pBt,           /* Btree */
  MemPage *pDbPage,        /* Open page to move */
  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  Pgno iFreePage,          /* The location to move pDbPage to */
  int isCommit             /* isCommit flag passed to sqlite4PagerMovepage */
){
  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  Pgno iDbPage = pDbPage->pgno;
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );

  /* Move page iDbPage from its current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite4PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pDbPage->pgno = iFreePage;

  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  ** that point to overflow pages. The pointer map entries for all these
  ** pages need to be changed.
  **
  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  ** pointer to a subsequent overflow page. If this is the case, then
  ** the pointer map needs to be updated for the subsequent overflow page.
  */
  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
    rc = setChildPtrmaps(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }else{
    Pgno nextOvfl = get4byte(pDbPage->aData);
    if( nextOvfl!=0 ){
      ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  ** that it points at iFreePage. Also fix the pointer map entry for
  ** iPtrPage.
  */
  if( eType!=PTRMAP_ROOTPAGE ){
    rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    rc = sqlite4PagerWrite(pPtrPage->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(pPtrPage);
      return rc;
    }
    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
    releasePage(pPtrPage);
    if( rc==SQLITE_OK ){
      ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
    }
  }
  return rc;
}

/* Forward declaration required by incrVacuumStep(). */
static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);

/*
** Perform a single step of an incremental-vacuum. If successful,
** return SQLITE_OK. If there is no work to do (and therefore no
** point in calling this function again), return SQLITE_DONE.
**
** More specificly, this function attempts to re-organize the 
** database so that the last page of the file currently in use
** is no longer in use.
**
** If the nFin parameter is non-zero, this function assumes
** that the caller will keep calling incrVacuumStep() until
** it returns SQLITE_DONE or an error, and that nFin is the
** number of pages the database file will contain after this 
** process is complete.  If nFin is zero, it is assumed that
** incrVacuumStep() will be called a finite amount of times
** which may or may not empty the freelist.  A full autovacuum
** has nFin>0.  A "PRAGMA incremental_vacuum" has nFin==0.
*/
static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
  Pgno nFreeList;           /* Number of pages still on the free-list */
  int rc;

  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( iLastPg>nFin );

  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
    u8 eType;
    Pgno iPtrPage;

    nFreeList = get4byte(&pBt->pPage1->aData[36]);
    if( nFreeList==0 ){
      return SQLITE_DONE;
    }

    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( eType==PTRMAP_ROOTPAGE ){
      return SQLITE_CORRUPT_BKPT;
    }

    if( eType==PTRMAP_FREEPAGE ){
      if( nFin==0 ){
        /* Remove the page from the files free-list. This is not required
        ** if nFin is non-zero. In that case, the free-list will be
        ** truncated to zero after this function returns, so it doesn't 
        ** matter if it still contains some garbage entries.
        */
        Pgno iFreePg;
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        assert( iFreePg==iLastPg );
        releasePage(pFreePg);
      }
    } else {
      Pgno iFreePg;             /* Index of free page to move pLastPg to */
      MemPage *pLastPg;

      rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }

      /* If nFin is zero, this loop runs exactly once and page pLastPg
      ** is swapped with the first free page pulled off the free list.
      **
      ** On the other hand, if nFin is greater than zero, then keep
      ** looping until a free-page located within the first nFin pages
      ** of the file is found.
      */
      do {
        MemPage *pFreePg;
        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
        if( rc!=SQLITE_OK ){
          releasePage(pLastPg);
          return rc;
        }
        releasePage(pFreePg);
      }while( nFin!=0 && iFreePg>nFin );
      assert( iFreePg<iLastPg );
      
      rc = sqlite4PagerWrite(pLastPg->pDbPage);
      if( rc==SQLITE_OK ){
        rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
      }
      releasePage(pLastPg);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
  }

  if( nFin==0 ){
    iLastPg--;
    while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
      if( PTRMAP_ISPAGE(pBt, iLastPg) ){
        MemPage *pPg;
        rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = sqlite4PagerWrite(pPg->pDbPage);
        releasePage(pPg);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }
      iLastPg--;
    }
    sqlite4PagerTruncateImage(pBt->pPager, iLastPg);
    pBt->nPage = iLastPg;
  }
  return SQLITE_OK;
}

/*
** A write-transaction must be opened before calling this function.
** It performs a single unit of work towards an incremental vacuum.
**
** If the incremental vacuum is finished after this function has run,
** SQLITE_DONE is returned. If it is not finished, but no error occurred,
** SQLITE_OK is returned. Otherwise an SQLite error code. 
*/
int sqlite4BtreeIncrVacuum(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;

  sqlite4BtreeEnter(p);
  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  if( !pBt->autoVacuum ){
    rc = SQLITE_DONE;
  }else{
    invalidateAllOverflowCache(pBt);
    rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
    if( rc==SQLITE_OK ){
      rc = sqlite4PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[28], pBt->nPage);
    }
  }
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** This routine is called prior to sqlite4PagerCommit when a transaction
** is commited for an auto-vacuum database.
**
** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
** the database file should be truncated to during the commit process. 
** i.e. the database has been reorganized so that only the first *pnTrunc
** pages are in use.
*/
static int autoVacuumCommit(BtShared *pBt){
  int rc = SQLITE_OK;
  Pager *pPager = pBt->pPager;
  VVA_ONLY( int nRef = sqlite4PagerRefcount(pPager) );

  assert( sqlite4_mutex_held(pBt->mutex) );
  invalidateAllOverflowCache(pBt);
  assert(pBt->autoVacuum);
  if( !pBt->incrVacuum ){
    Pgno nFin;         /* Number of pages in database after autovacuuming */
    Pgno nFree;        /* Number of pages on the freelist initially */
    Pgno nPtrmap;      /* Number of PtrMap pages to be freed */
    Pgno iFree;        /* The next page to be freed */
    int nEntry;        /* Number of entries on one ptrmap page */
    Pgno nOrig;        /* Database size before freeing */

    nOrig = btreePagecount(pBt);
    if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
      /* It is not possible to create a database for which the final page
      ** is either a pointer-map page or the pending-byte page. If one
      ** is encountered, this indicates corruption.
      */
      return SQLITE_CORRUPT_BKPT;
    }

    nFree = get4byte(&pBt->pPage1->aData[36]);
    nEntry = pBt->usableSize/5;
    nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
    nFin = nOrig - nFree - nPtrmap;
    if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
      nFin--;
    }
    while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
      nFin--;
    }
    if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;

    for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
      rc = incrVacuumStep(pBt, nFin, iFree);
    }
    if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
      rc = sqlite4PagerWrite(pBt->pPage1->pDbPage);
      put4byte(&pBt->pPage1->aData[32], 0);
      put4byte(&pBt->pPage1->aData[36], 0);
      put4byte(&pBt->pPage1->aData[28], nFin);
      sqlite4PagerTruncateImage(pBt->pPager, nFin);
      pBt->nPage = nFin;
    }
    if( rc!=SQLITE_OK ){
      sqlite4PagerRollback(pPager);
    }
  }

  assert( nRef==sqlite4PagerRefcount(pPager) );
  return rc;
}

#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
# define setChildPtrmaps(x) SQLITE_OK
#endif

/*
** This routine does the first phase of a two-phase commit.  This routine
** causes a rollback journal to be created (if it does not already exist)
** and populated with enough information so that if a power loss occurs
** the database can be restored to its original state by playing back
** the journal.  Then the contents of the journal are flushed out to
** the disk.  After the journal is safely on oxide, the changes to the
** database are written into the database file and flushed to oxide.
** At the end of this call, the rollback journal still exists on the
** disk and we are still holding all locks, so the transaction has not
** committed.  See sqlite4BtreeCommitPhaseTwo() for the second phase of the
** commit process.
**
** This call is a no-op if no write-transaction is currently active on pBt.
**
** Otherwise, sync the database file for the btree pBt. zMaster points to
** the name of a master journal file that should be written into the
** individual journal file, or is NULL, indicating no master journal file 
** (single database transaction).
**
** When this is called, the master journal should already have been
** created, populated with this journal pointer and synced to disk.
**
** Once this is routine has returned, the only thing required to commit
** the write-transaction for this database file is to delete the journal.
*/
int sqlite4BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  int rc = SQLITE_OK;
  if( p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    sqlite4BtreeEnter(p);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      rc = autoVacuumCommit(pBt);
      if( rc!=SQLITE_OK ){
        sqlite4BtreeLeave(p);
        return rc;
      }
    }
#endif
    rc = sqlite4PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
    sqlite4BtreeLeave(p);
  }
  return rc;
}

/*
** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
** at the conclusion of a transaction.
*/
static void btreeEndTransaction(Btree *p){
  BtShared *pBt = p->pBt;
  assert( sqlite4BtreeHoldsMutex(p) );

  btreeClearHasContent(pBt);
  if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
    /* If there are other active statements that belong to this database
    ** handle, downgrade to a read-only transaction. The other statements
    ** may still be reading from the database.  */
    downgradeAllSharedCacheTableLocks(p);
    p->inTrans = TRANS_READ;
  }else{
    /* If the handle had any kind of transaction open, decrement the 
    ** transaction count of the shared btree. If the transaction count 
    ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
    ** call below will unlock the pager.  */
    if( p->inTrans!=TRANS_NONE ){
      clearAllSharedCacheTableLocks(p);
      pBt->nTransaction--;
      if( 0==pBt->nTransaction ){
        pBt->inTransaction = TRANS_NONE;
      }
    }

    /* Set the current transaction state to TRANS_NONE and unlock the 
    ** pager if this call closed the only read or write transaction.  */
    p->inTrans = TRANS_NONE;
    unlockBtreeIfUnused(pBt);
  }

  btreeIntegrity(p);
}

/*
** Commit the transaction currently in progress.
**
** This routine implements the second phase of a 2-phase commit.  The
** sqlite4BtreeCommitPhaseOne() routine does the first phase and should
** be invoked prior to calling this routine.  The sqlite4BtreeCommitPhaseOne()
** routine did all the work of writing information out to disk and flushing the
** contents so that they are written onto the disk platter.  All this
** routine has to do is delete or truncate or zero the header in the
** the rollback journal (which causes the transaction to commit) and
** drop locks.
**
** Normally, if an error occurs while the pager layer is attempting to 
** finalize the underlying journal file, this function returns an error and
** the upper layer will attempt a rollback. However, if the second argument
** is non-zero then this b-tree transaction is part of a multi-file 
** transaction. In this case, the transaction has already been committed 
** (by deleting a master journal file) and the caller will ignore this 
** functions return code. So, even if an error occurs in the pager layer,
** reset the b-tree objects internal state to indicate that the write
** transaction has been closed. This is quite safe, as the pager will have
** transitioned to the error state.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite4BtreeCommitPhaseTwo(Btree *p, int bCleanup){

  if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
  sqlite4BtreeEnter(p);
  btreeIntegrity(p);

  /* If the handle has a write-transaction open, commit the shared-btrees 
  ** transaction and set the shared state to TRANS_READ.
  */
  if( p->inTrans==TRANS_WRITE ){
    int rc;
    BtShared *pBt = p->pBt;
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite4PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK && bCleanup==0 ){
      sqlite4BtreeLeave(p);
      return rc;
    }
    pBt->inTransaction = TRANS_READ;
  }

  btreeEndTransaction(p);
  sqlite4BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Do both phases of a commit.
*/
int sqlite4BtreeCommit(Btree *p){
  int rc;
  sqlite4BtreeEnter(p);
  rc = sqlite4BtreeCommitPhaseOne(p, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite4BtreeCommitPhaseTwo(p, 0);
  }
  sqlite4BtreeLeave(p);
  return rc;
}

#ifndef NDEBUG
/*
** Return the number of write-cursors open on this handle. This is for use
** in assert() expressions, so it is only compiled if NDEBUG is not
** defined.
**
** For the purposes of this routine, a write-cursor is any cursor that
** is capable of writing to the databse.  That means the cursor was
** originally opened for writing and the cursor has not be disabled
** by having its state changed to CURSOR_FAULT.
*/
static int countWriteCursors(BtShared *pBt){
  BtCursor *pCur;
  int r = 0;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
  }
  return r;
}
#endif

/*
** This routine sets the state to CURSOR_FAULT and the error
** code to errCode for every cursor on BtShared that pBtree
** references.
**
** Every cursor is tripped, including cursors that belong
** to other database connections that happen to be sharing
** the cache with pBtree.
**
** This routine gets called when a rollback occurs.
** All cursors using the same cache must be tripped
** to prevent them from trying to use the btree after
** the rollback.  The rollback may have deleted tables
** or moved root pages, so it is not sufficient to
** save the state of the cursor.  The cursor must be
** invalidated.
*/
void sqlite4BtreeTripAllCursors(Btree *pBtree, int errCode){
  BtCursor *p;
  sqlite4BtreeEnter(pBtree);
  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
    int i;
    sqlite4BtreeClearCursor(p);
    p->eState = CURSOR_FAULT;
    p->skipNext = errCode;
    for(i=0; i<=p->iPage; i++){
      releasePage(p->apPage[i]);
      p->apPage[i] = 0;
    }
  }
  sqlite4BtreeLeave(pBtree);
}

/*
** Rollback the transaction in progress.  All cursors will be
** invalided by this operation.  Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file.  If there
** are no active cursors, it also releases the read lock.
*/
int sqlite4BtreeRollback(Btree *p){
  int rc;
  BtShared *pBt = p->pBt;
  MemPage *pPage1;

  sqlite4BtreeEnter(p);
  rc = saveAllCursors(pBt, 0, 0);
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( rc!=SQLITE_OK ){
    /* This is a horrible situation. An IO or malloc() error occurred whilst
    ** trying to save cursor positions. If this is an automatic rollback (as
    ** the result of a constraint, malloc() failure or IO error) then 
    ** the cache may be internally inconsistent (not contain valid trees) so
    ** we cannot simply return the error to the caller. Instead, abort 
    ** all queries that may be using any of the cursors that failed to save.
    */
    sqlite4BtreeTripAllCursors(p, rc);
  }
#endif
  btreeIntegrity(p);

  if( p->inTrans==TRANS_WRITE ){
    int rc2;

    assert( TRANS_WRITE==pBt->inTransaction );
    rc2 = sqlite4PagerRollback(pBt->pPager);
    if( rc2!=SQLITE_OK ){
      rc = rc2;
    }

    /* The rollback may have destroyed the pPage1->aData value.  So
    ** call btreeGetPage() on page 1 again to make
    ** sure pPage1->aData is set correctly. */
    if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
      int nPage = get4byte(28+(u8*)pPage1->aData);
      testcase( nPage==0 );
      if( nPage==0 ) sqlite4PagerPagecount(pBt->pPager, &nPage);
      testcase( pBt->nPage!=nPage );
      pBt->nPage = nPage;
      releasePage(pPage1);
    }
    assert( countWriteCursors(pBt)==0 );
    pBt->inTransaction = TRANS_READ;
  }

  btreeEndTransaction(p);
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Start a statement subtransaction. The subtransaction can can be rolled
** back independently of the main transaction. You must start a transaction 
** before starting a subtransaction. The subtransaction is ended automatically 
** if the main transaction commits or rolls back.
**
** Statement subtransactions are used around individual SQL statements
** that are contained within a BEGIN...COMMIT block.  If a constraint
** error occurs within the statement, the effect of that one statement
** can be rolled back without having to rollback the entire transaction.
**
** A statement sub-transaction is implemented as an anonymous savepoint. The
** value passed as the second parameter is the total number of savepoints,
** including the new anonymous savepoint, open on the B-Tree. i.e. if there
** are no active savepoints and no other statement-transactions open,
** iStatement is 1. This anonymous savepoint can be released or rolled back
** using the sqlite4BtreeSavepoint() function.
*/
int sqlite4BtreeBeginStmt(Btree *p, int iStatement){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite4BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( iStatement>0 );
  assert( iStatement>p->db->nSavepoint );
  assert( pBt->inTransaction==TRANS_WRITE );
  /* At the pager level, a statement transaction is a savepoint with
  ** an index greater than all savepoints created explicitly using
  ** SQL statements. It is illegal to open, release or rollback any
  ** such savepoints while the statement transaction savepoint is active.
  */
  rc = sqlite4PagerOpenSavepoint(pBt->pPager, iStatement);
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
** or SAVEPOINT_RELEASE. This function either releases or rolls back the
** savepoint identified by parameter iSavepoint, depending on the value 
** of op.
**
** Normally, iSavepoint is greater than or equal to zero. However, if op is
** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the 
** contents of the entire transaction are rolled back. This is different
** from a normal transaction rollback, as no locks are released and the
** transaction remains open.
*/
int sqlite4BtreeSavepoint(Btree *p, int op, int iSavepoint){
  int rc = SQLITE_OK;
  if( p && p->inTrans==TRANS_WRITE ){
    BtShared *pBt = p->pBt;
    assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
    assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
    sqlite4BtreeEnter(p);
    rc = sqlite4PagerSavepoint(pBt->pPager, op, iSavepoint);
    if( rc==SQLITE_OK ){
      if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
        pBt->nPage = 0;
      }
      rc = newDatabase(pBt);
      pBt->nPage = get4byte(28 + pBt->pPage1->aData);

      /* The database size was written into the offset 28 of the header
      ** when the transaction started, so we know that the value at offset
      ** 28 is nonzero. */
      assert( pBt->nPage>0 );
    }
    sqlite4BtreeLeave(p);
  }
  return rc;
}

/*
** Create a new cursor for the BTree whose root is on the page
** iTable. If a read-only cursor is requested, it is assumed that
** the caller already has at least a read-only transaction open
** on the database already. If a write-cursor is requested, then
** the caller is assumed to have an open write transaction.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met.  These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1:  The cursor must have been opened with wrFlag==1
**
** 2:  Other database connections that share the same pager cache
**     but which are not in the READ_UNCOMMITTED state may not have
**     cursors open with wrFlag==0 on the same table.  Otherwise
**     the changes made by this write cursor would be visible to
**     the read cursors in the other database connection.
**
** 3:  The database must be writable (not on read-only media)
**
** 4:  There must be an active transaction.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree.  If it is not, then the cursor acquired
** will not work correctly.
**
** It is assumed that the sqlite4BtreeCursorZero() has been called
** on pCur to initialize the memory space prior to invoking this routine.
*/
static int btreeCursor(
  Btree *p,                              /* The btree */
  int iTable,                            /* Root page of table to open */
  int wrFlag,                            /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( wrFlag==0 || wrFlag==1 );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );

  if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
    return SQLITE_READONLY;
  }
  if( iTable==1 && btreePagecount(pBt)==0 ){
    assert( wrFlag==0 );
    iTable = 0;
  }

  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  pCur->wrFlag = (u8)wrFlag;
  pCur->pNext = pBt->pCursor;
  if( pCur->pNext ){
    pCur->pNext->pPrev = pCur;
  }
  pBt->pCursor = pCur;
  pCur->eState = CURSOR_INVALID;
  pCur->cachedRowid = 0;
  return SQLITE_OK;
}
int sqlite4BtreeCursor(
  Btree *p,                                   /* The btree */
  int iTable,                                 /* Root page of table to open */
  int wrFlag,                                 /* 1 to write. 0 read-only */
  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  BtCursor *pCur                              /* Write new cursor here */
){
  int rc;
  sqlite4BtreeEnter(p);
  rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Return the size of a BtCursor object in bytes.
**
** This interfaces is needed so that users of cursors can preallocate
** sufficient storage to hold a cursor.  The BtCursor object is opaque
** to users so they cannot do the sizeof() themselves - they must call
** this routine.
*/
int sqlite4BtreeCursorSize(void){
  return ROUND8(sizeof(BtCursor));
}

/*
** Initialize memory that will be converted into a BtCursor object.
**
** The simple approach here would be to memset() the entire object
** to zero.  But it turns out that the apPage[] and aiIdx[] arrays
** do not need to be zeroed and they are large, so we can save a lot
** of run-time by skipping the initialization of those elements.
*/
void sqlite4BtreeCursorZero(BtCursor *p){
  memset(p, 0, offsetof(BtCursor, iPage));
}

/*
** Set the cached rowid value of every cursor in the same database file
** as pCur and having the same root page number as pCur.  The value is
** set to iRowid.
**
** Only positive rowid values are considered valid for this cache.
** The cache is initialized to zero, indicating an invalid cache.
** A btree will work fine with zero or negative rowids.  We just cannot
** cache zero or negative rowids, which means tables that use zero or
** negative rowids might run a little slower.  But in practice, zero
** or negative rowids are very uncommon so this should not be a problem.
*/
void sqlite4BtreeSetCachedRowid(BtCursor *pCur, sqlite4_int64 iRowid){
  BtCursor *p;
  for(p=pCur->pBt->pCursor; p; p=p->pNext){
    if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
  }
  assert( pCur->cachedRowid==iRowid );
}

/*
** Return the cached rowid for the given cursor.  A negative or zero
** return value indicates that the rowid cache is invalid and should be
** ignored.  If the rowid cache has never before been set, then a
** zero is returned.
*/
sqlite4_int64 sqlite4BtreeGetCachedRowid(BtCursor *pCur){
  return pCur->cachedRowid;
}

/*
** Close a cursor.  The read lock on the database file is released
** when the last cursor is closed.
*/
int sqlite4BtreeCloseCursor(BtCursor *pCur){
  Btree *pBtree = pCur->pBtree;
  if( pBtree ){
    int i;
    BtShared *pBt = pCur->pBt;
    sqlite4BtreeEnter(pBtree);
    sqlite4BtreeClearCursor(pCur);
    if( pCur->pPrev ){
      pCur->pPrev->pNext = pCur->pNext;
    }else{
      pBt->pCursor = pCur->pNext;
    }
    if( pCur->pNext ){
      pCur->pNext->pPrev = pCur->pPrev;
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    invalidateOverflowCache(pCur);
    /* sqlite4_free(pCur); */
    sqlite4BtreeLeave(pBtree);
  }
  return SQLITE_OK;
}

/*
** Make sure the BtCursor* given in the argument has a valid
** BtCursor.info structure.  If it is not already valid, call
** btreeParseCell() to fill it in.
**
** BtCursor.info is a cache of the information in the current cell.
** Using this cache reduces the number of calls to btreeParseCell().
**
** 2007-06-25:  There is a bug in some versions of MSVC that cause the
** compiler to crash when getCellInfo() is implemented as a macro.
** But there is a measureable speed advantage to using the macro on gcc
** (when less compiler optimizations like -Os or -O0 are used and the
** compiler is not doing agressive inlining.)  So we use a real function
** for MSVC and a macro for everything else.  Ticket #2457.
*/
#ifndef NDEBUG
  static void assertCellInfo(BtCursor *pCur){
    CellInfo info;
    int iPage = pCur->iPage;
    memset(&info, 0, sizeof(info));
    btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
    assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
  }
#else
  #define assertCellInfo(x)
#endif
#ifdef _MSC_VER
  /* Use a real function in MSVC to work around bugs in that compiler. */
  static void getCellInfo(BtCursor *pCur){
    if( pCur->info.nSize==0 ){
      int iPage = pCur->iPage;
      btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
      pCur->validNKey = 1;
    }else{
      assertCellInfo(pCur);
    }
  }
#else /* if not _MSC_VER */
  /* Use a macro in all other compilers so that the function is inlined */
#define getCellInfo(pCur)                                                      \
  if( pCur->info.nSize==0 ){                                                   \
    int iPage = pCur->iPage;                                                   \
    btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
    pCur->validNKey = 1;                                                       \
  }else{                                                                       \
    assertCellInfo(pCur);                                                      \
  }
#endif /* _MSC_VER */

#ifndef NDEBUG  /* The next routine used only within assert() statements */
/*
** Return true if the given BtCursor is valid.  A valid cursor is one
** that is currently pointing to a row in a (non-empty) table.
** This is a verification routine is used only within assert() statements.
*/
int sqlite4BtreeCursorIsValid(BtCursor *pCur){
  return pCur && pCur->eState==CURSOR_VALID;
}
#endif /* NDEBUG */

/*
** Set *pSize to the size of the buffer needed to hold the value of
** the key for the current entry.  If the cursor is not pointing
** to a valid entry, *pSize is set to 0. 
**
** For a table with the INTKEY flag set, this routine returns the key
** itself, not the number of bytes in the key.
**
** The caller must position the cursor prior to invoking this routine.
** 
** This routine cannot fail.  It always returns SQLITE_OK.  
*/
int sqlite4BtreeKeySize(BtCursor *pCur, i64 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  if( pCur->eState!=CURSOR_VALID ){
    *pSize = 0;
  }else{
    getCellInfo(pCur);
    *pSize = pCur->info.nKey;
  }
  return SQLITE_OK;
}

/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to.
**
** The caller must guarantee that the cursor is pointing to a non-NULL
** valid entry.  In other words, the calling procedure must guarantee
** that the cursor has Cursor.eState==CURSOR_VALID.
**
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
int sqlite4BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  getCellInfo(pCur);
  *pSize = pCur->info.nData;
  return SQLITE_OK;
}

/*
** Given the page number of an overflow page in the database (parameter
** ovfl), this function finds the page number of the next page in the 
** linked list of overflow pages. If possible, it uses the auto-vacuum
** pointer-map data instead of reading the content of page ovfl to do so. 
**
** If an error occurs an SQLite error code is returned. Otherwise:
**
** The page number of the next overflow page in the linked list is 
** written to *pPgnoNext. If page ovfl is the last page in its linked 
** list, *pPgnoNext is set to zero. 
**
** If ppPage is not NULL, and a reference to the MemPage object corresponding
** to page number pOvfl was obtained, then *ppPage is set to point to that
** reference. It is the responsibility of the caller to call releasePage()
** on *ppPage to free the reference. In no reference was obtained (because
** the pointer-map was used to obtain the value for *pPgnoNext), then
** *ppPage is set to zero.
*/
static int getOverflowPage(
  BtShared *pBt,               /* The database file */
  Pgno ovfl,                   /* Current overflow page number */
  MemPage **ppPage,            /* OUT: MemPage handle (may be NULL) */
  Pgno *pPgnoNext              /* OUT: Next overflow page number */
){
  Pgno next = 0;
  MemPage *pPage = 0;
  int rc = SQLITE_OK;

  assert( sqlite4_mutex_held(pBt->mutex) );
  assert(pPgnoNext);

#ifndef SQLITE_OMIT_AUTOVACUUM
  /* Try to find the next page in the overflow list using the
  ** autovacuum pointer-map pages. Guess that the next page in 
  ** the overflow list is page number (ovfl+1). If that guess turns 
  ** out to be wrong, fall back to loading the data of page 
  ** number ovfl to determine the next page number.
  */
  if( pBt->autoVacuum ){
    Pgno pgno;
    Pgno iGuess = ovfl+1;
    u8 eType;

    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
      iGuess++;
    }

    if( iGuess<=btreePagecount(pBt) ){
      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
      if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
        next = iGuess;
        rc = SQLITE_DONE;
      }
    }
  }
#endif

  assert( next==0 || rc==SQLITE_DONE );
  if( rc==SQLITE_OK ){
    rc = btreeGetPage(pBt, ovfl, &pPage, 0);
    assert( rc==SQLITE_OK || pPage==0 );
    if( rc==SQLITE_OK ){
      next = get4byte(pPage->aData);
    }
  }

  *pPgnoNext = next;
  if( ppPage ){
    *ppPage = pPage;
  }else{
    releasePage(pPage);
  }
  return (rc==SQLITE_DONE ? SQLITE_OK : rc);
}

/*
** Copy data from a buffer to a page, or from a page to a buffer.
**
** pPayload is a pointer to data stored on database page pDbPage.
** If argument eOp is false, then nByte bytes of data are copied
** from pPayload to the buffer pointed at by pBuf. If eOp is true,
** then sqlite4PagerWrite() is called on pDbPage and nByte bytes
** of data are copied from the buffer pBuf to pPayload.
**
** SQLITE_OK is returned on success, otherwise an error code.
*/
static int copyPayload(
  void *pPayload,           /* Pointer to page data */
  void *pBuf,               /* Pointer to buffer */
  int nByte,                /* Number of bytes to copy */
  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  DbPage *pDbPage           /* Page containing pPayload */
){
  if( eOp ){
    /* Copy data from buffer to page (a write operation) */
    int rc = sqlite4PagerWrite(pDbPage);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    memcpy(pPayload, pBuf, nByte);
  }else{
    /* Copy data from page to buffer (a read operation) */
    memcpy(pBuf, pPayload, nByte);
  }
  return SQLITE_OK;
}

/*
** This function is used to read or overwrite payload information
** for the entry that the pCur cursor is pointing to. If the eOp
** parameter is 0, this is a read operation (data copied into
** buffer pBuf). If it is non-zero, a write (data copied from
** buffer pBuf).
**
** A total of "amt" bytes are read or written beginning at "offset".
** Data is read to or from the buffer pBuf.
**
** The content being read or written might appear on the main page
** or be scattered out on multiple overflow pages.
**
** If the BtCursor.isIncrblobHandle flag is set, and the current
** cursor entry uses one or more overflow pages, this function
** allocates space for and lazily popluates the overflow page-list 
** cache array (BtCursor.aOverflow). Subsequent calls use this
** cache to make seeking to the supplied offset more efficient.
**
** Once an overflow page-list cache has been allocated, it may be
** invalidated if some other cursor writes to the same table, or if
** the cursor is moved to a different row. Additionally, in auto-vacuum
** mode, the following events may invalidate an overflow page-list cache.
**
**   * An incremental vacuum,
**   * A commit in auto_vacuum="full" mode,
**   * Creating a table (may require moving an overflow page).
*/
static int accessPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  u32 offset,          /* Begin reading this far into payload */
  u32 amt,             /* Read this many bytes */
  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  int eOp              /* zero to read. non-zero to write. */
){
  unsigned char *aPayload;
  int rc = SQLITE_OK;
  u32 nKey;
  int iIdx = 0;
  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */

  assert( pPage );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  assert( cursorHoldsMutex(pCur) );

  getCellInfo(pCur);
  aPayload = pCur->info.pCell + pCur->info.nHeader;
  nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);

  if( NEVER(offset+amt > nKey+pCur->info.nData) 
   || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
  ){
    /* Trying to read or write past the end of the data is an error */
    return SQLITE_CORRUPT_BKPT;
  }

  /* Check if data must be read/written to/from the btree page itself. */
  if( offset<pCur->info.nLocal ){
    int a = amt;
    if( a+offset>pCur->info.nLocal ){
      a = pCur->info.nLocal - offset;
    }
    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }

  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

#ifndef SQLITE_OMIT_INCRBLOB
    /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
    ** has not been allocated, allocate it now. The array is sized at
    ** one entry for each overflow page in the overflow chain. The
    ** page number of the first overflow page is stored in aOverflow[0],
    ** etc. A value of 0 in the aOverflow[] array means "not yet known"
    ** (the cache is lazily populated).
    */
    if( pCur->isIncrblobHandle && !pCur->aOverflow ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      pCur->aOverflow = (Pgno *)sqlite4MallocZero(sizeof(Pgno)*nOvfl);
      /* nOvfl is always positive.  If it were zero, fetchPayload would have
      ** been used instead of this routine. */
      if( ALWAYS(nOvfl) && !pCur->aOverflow ){
        rc = SQLITE_NOMEM;
      }
    }

    /* If the overflow page-list cache has been allocated and the
    ** entry for the first required overflow page is valid, skip
    ** directly to it.
    */
    if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
      iIdx = (offset/ovflSize);
      nextPage = pCur->aOverflow[iIdx];
      offset = (offset%ovflSize);
    }
#endif

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

#ifndef SQLITE_OMIT_INCRBLOB
      /* If required, populate the overflow page-list cache. */
      if( pCur->aOverflow ){
        assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
        pCur->aOverflow[iIdx] = nextPage;
      }
#endif

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
        ** page-list cache, if any, then fall back to the getOverflowPage()
        ** function.
        */
#ifndef SQLITE_OMIT_INCRBLOB
        if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        } else 
#endif
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite4_file *fd;
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) the database is file-backed, and
        **   4) there is no open write-transaction, and
        **   5) the database is not a WAL database,
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( eOp==0                                             /* (1) */
         && offset==0                                          /* (2) */
         && pBt->inTransaction==TRANS_READ                     /* (4) */
         && (fd = sqlite4PagerFile(pBt->pPager))->pMethods     /* (3) */
         && pBt->pPage1->aData[19]==0x01                       /* (5) */
        ){
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          memcpy(aSave, aWrite, 4);
          rc = sqlite4OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite4PagerGet(pBt->pPager, nextPage, &pDbPage);
          if( rc==SQLITE_OK ){
            aPayload = sqlite4PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
            sqlite4PagerUnref(pDbPage);
            offset = 0;
          }
        }
        amt -= a;
        pBuf += a;
      }
    }
  }

  if( rc==SQLITE_OK && amt>0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  return rc;
}

/*
** Read part of the key associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** The caller must ensure that pCur is pointing to a valid row
** in the table.
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite4BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
}

/*
** Read part of the data associated with cursor pCur.  Exactly
** "amt" bytes will be transfered into pBuf[].  The transfer
** begins at "offset".
**
** Return SQLITE_OK on success or an error code if anything goes
** wrong.  An error is returned if "offset+amt" is larger than
** the available payload.
*/
int sqlite4BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  int rc;

#ifndef SQLITE_OMIT_INCRBLOB
  if ( pCur->eState==CURSOR_INVALID ){
    return SQLITE_ABORT;
  }
#endif

  assert( cursorHoldsMutex(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc==SQLITE_OK ){
    assert( pCur->eState==CURSOR_VALID );
    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
    rc = accessPayload(pCur, offset, amt, pBuf, 0);
  }
  return rc;
}

/*
** Return a pointer to payload information from the entry that the 
** pCur cursor is pointing to.  The pointer is to the beginning of
** the key if skipKey==0 and it points to the beginning of data if
** skipKey==1.  The number of bytes of available key/data is written
** into *pAmt.  If *pAmt==0, then the value returned will not be
** a valid pointer.
**
** This routine is an optimization.  It is common for the entire key
** and data to fit on the local page and for there to be no overflow
** pages.  When that is so, this routine can be used to access the
** key and data without making a copy.  If the key and/or data spills
** onto overflow pages, then accessPayload() must be used to reassemble
** the key/data and copy it into a preallocated buffer.
**
** The pointer returned by this routine looks directly into the cached
** page of the database.  The data might change or move the next time
** any btree routine is called.
*/
static const unsigned char *fetchPayload(
  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  int *pAmt,           /* Write the number of available bytes here */
  int skipKey          /* read beginning at data if this is true */
){
  unsigned char *aPayload;
  MemPage *pPage;
  u32 nKey;
  u32 nLocal;

  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  assert( pCur->eState==CURSOR_VALID );
  assert( cursorHoldsMutex(pCur) );
  pPage = pCur->apPage[pCur->iPage];
  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  if( NEVER(pCur->info.nSize==0) ){
    btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
                   &pCur->info);
  }
  aPayload = pCur->info.pCell;
  aPayload += pCur->info.nHeader;
  if( pPage->intKey ){
    nKey = 0;
  }else{
    nKey = (int)pCur->info.nKey;
  }
  if( skipKey ){
    aPayload += nKey;
    nLocal = pCur->info.nLocal - nKey;
  }else{
    nLocal = pCur->info.nLocal;
    assert( nLocal<=nKey );
  }
  *pAmt = nLocal;
  return aPayload;
}


/*
** For the entry that cursor pCur is point to, return as
** many bytes of the key or data as are available on the local
** b-tree page.  Write the number of available bytes into *pAmt.
**
** The pointer returned is ephemeral.  The key/data may move
** or be destroyed on the next call to any Btree routine,
** including calls from other threads against the same cache.
** Hence, a mutex on the BtShared should be held prior to calling
** this routine.
**
** These routines is used to get quick access to key and data
** in the common case where no overflow pages are used.
*/
const void *sqlite4BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  const void *p = 0;
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  if( ALWAYS(pCur->eState==CURSOR_VALID) ){
    p = (const void*)fetchPayload(pCur, pAmt, 0);
  }
  return p;
}
const void *sqlite4BtreeDataFetch(BtCursor *pCur, int *pAmt){
  const void *p = 0;
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );
  assert( cursorHoldsMutex(pCur) );
  if( ALWAYS(pCur->eState==CURSOR_VALID) ){
    p = (const void*)fetchPayload(pCur, pAmt, 1);
  }
  return p;
}


/*
** Move the cursor down to a new child page.  The newPgno argument is the
** page number of the child page to move to.
**
** This function returns SQLITE_CORRUPT if the page-header flags field of
** the new child page does not match the flags field of the parent (i.e.
** if an intkey page appears to be the parent of a non-intkey page, or
** vice-versa).
*/
static int moveToChild(BtCursor *pCur, u32 newPgno){
  int rc;
  int i = pCur->iPage;
  MemPage *pNewPage;
  BtShared *pBt = pCur->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
    return SQLITE_CORRUPT_BKPT;
  }
  rc = getAndInitPage(pBt, newPgno, &pNewPage);
  if( rc ) return rc;
  pCur->apPage[i+1] = pNewPage;
  pCur->aiIdx[i+1] = 0;
  pCur->iPage++;

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
  if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

#if 0
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
  assert( iIdx<=pParent->nCell );
  if( iIdx==pParent->nCell ){
    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  }else{
    assert( get4byte(findCell(pParent, iIdx))==iChild );
  }
}
#else
#  define assertParentIndex(x,y,z) 
#endif

/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from.  If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );

  /* UPDATE: It is actually possible for the condition tested by the assert
  ** below to be untrue if the database file is corrupt. This can occur if
  ** one cursor has modified page pParent while a reference to it is held 
  ** by a second cursor. Which can only happen if a single page is linked
  ** into more than one b-tree structure in a corrupt database.  */
#if 0
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
#endif
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );

  releasePage(pCur->apPage[pCur->iPage]);
  pCur->iPage--;
  pCur->info.nSize = 0;
  pCur->validNKey = 0;
}

/*
** Move the cursor to point to the root page of its b-tree structure.
**
** If the table has a virtual root page, then the cursor is moved to point
** to the virtual root page instead of the actual root page. A table has a
** virtual root page when the actual root page contains no cells and a 
** single child page. This can only happen with the table rooted at page 1.
**
** If the b-tree structure is empty, the cursor state is set to 
** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
** cell located on the root (or virtual root) page and the cursor state
** is set to CURSOR_VALID.
**
** If this function returns successfully, it may be assumed that the
** page-header flags indicate that the [virtual] root-page is the expected 
** kind of b-tree page (i.e. if when opening the cursor the caller did not
** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
** indicating a table b-tree, or if the caller did specify a KeyInfo 
** structure the flags byte is set to 0x02 or 0x0A, indicating an index
** b-tree).
*/
static int moveToRoot(BtCursor *pCur){
  MemPage *pRoot;
  int rc = SQLITE_OK;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;

  assert( cursorHoldsMutex(pCur) );
  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  if( pCur->eState>=CURSOR_REQUIRESEEK ){
    if( pCur->eState==CURSOR_FAULT ){
      assert( pCur->skipNext!=SQLITE_OK );
      return pCur->skipNext;
    }
    sqlite4BtreeClearCursor(pCur);
  }

  if( pCur->iPage>=0 ){
    int i;
    for(i=1; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    pCur->iPage = 0;
  }else if( pCur->pgnoRoot==0 ){
    pCur->eState = CURSOR_INVALID;
    return SQLITE_OK;
  }else{
    rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
    if( rc!=SQLITE_OK ){
      pCur->eState = CURSOR_INVALID;
      return rc;
    }
    pCur->iPage = 0;

    /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
    ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
    ** NULL, the caller expects a table b-tree. If this is not the case,
    ** return an SQLITE_CORRUPT error.  */
    assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
    if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
      return SQLITE_CORRUPT_BKPT;
    }
  }

  /* Assert that the root page is of the correct type. This must be the
  ** case as the call to this function that loaded the root-page (either
  ** this call or a previous invocation) would have detected corruption 
  ** if the assumption were not true, and it is not possible for the flags 
  ** byte to have been modified while this cursor is holding a reference
  ** to the page.  */
  pRoot = pCur->apPage[0];
  assert( pRoot->pgno==pCur->pgnoRoot );
  assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );

  pCur->aiIdx[0] = 0;
  pCur->info.nSize = 0;
  pCur->atLast = 0;
  pCur->validNKey = 0;

  if( pRoot->nCell==0 && !pRoot->leaf ){
    Pgno subpage;
    if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
    pCur->eState = CURSOR_VALID;
    rc = moveToChild(pCur, subpage);
  }else{
    pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  }
  return rc;
}

/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
**
** The left-most leaf is the one with the smallest key - the first
** in ascending order.
*/
static int moveToLeftmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
    rc = moveToChild(pCur, pgno);
  }
  return rc;
}

/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing.  Notice the difference
** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
**
** The right-most entry is the one with the largest key - the last
** key in ascending order.
*/
static int moveToRightmost(BtCursor *pCur){
  Pgno pgno;
  int rc = SQLITE_OK;
  MemPage *pPage = 0;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    pCur->aiIdx[pCur->iPage] = pPage->nCell;
    rc = moveToChild(pCur, pgno);
  }
  if( rc==SQLITE_OK ){
    pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
    pCur->info.nSize = 0;
    pCur->validNKey = 0;
  }
  return rc;
}

/* Move the cursor to the first entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite4BtreeFirst(BtCursor *pCur, int *pRes){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );
  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( pCur->eState==CURSOR_INVALID ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->apPage[pCur->iPage]->nCell>0 );
      *pRes = 0;
      rc = moveToLeftmost(pCur);
    }
  }
  return rc;
}

/* Move the cursor to the last entry in the table.  Return SQLITE_OK
** on success.  Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
int sqlite4BtreeLast(BtCursor *pCur, int *pRes){
  int rc;
 
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );

  /* If the cursor already points to the last entry, this is a no-op. */
  if( CURSOR_VALID==pCur->eState && pCur->atLast ){
#ifdef SQLITE_DEBUG
    /* This block serves to assert() that the cursor really does point 
    ** to the last entry in the b-tree. */
    int ii;
    for(ii=0; ii<pCur->iPage; ii++){
      assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
    }
    assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
    assert( pCur->apPage[pCur->iPage]->leaf );
#endif
    return SQLITE_OK;
  }

  rc = moveToRoot(pCur);
  if( rc==SQLITE_OK ){
    if( CURSOR_INVALID==pCur->eState ){
      assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
      *pRes = 1;
    }else{
      assert( pCur->eState==CURSOR_VALID );
      *pRes = 0;
      rc = moveToRightmost(pCur);
      pCur->atLast = rc==SQLITE_OK ?1:0;
    }
  }
  return rc;
}

/* Move the cursor so that it points to an entry near the key 
** specified by pIdxKey or intKey.   Return a success code.
**
** For INTKEY tables, the intKey parameter is used.  pIdxKey 
** must be NULL.  For index tables, pIdxKey is used and intKey
** is ignored.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present.  The cursor might point to an entry that comes
** before or after the key.
**
** An integer is written into *pRes which is the result of
** comparing the key with the entry to which the cursor is 
** pointing.  The meaning of the integer written into
** *pRes is as follows:
**
**     *pRes<0      The cursor is left pointing at an entry that
**                  is smaller than intKey/pIdxKey or if the table is empty
**                  and the cursor is therefore left point to nothing.
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches intKey/pIdxKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than intKey/pIdxKey.
**
*/
int sqlite4BtreeMovetoUnpacked(
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );
  assert( pRes );
  assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );

  /* If the cursor is already positioned at the point we are trying
  ** to move to, then just return without doing any work */
  if( pCur->eState==CURSOR_VALID && pCur->validNKey 
   && pCur->apPage[0]->intKey 
  ){
    if( pCur->info.nKey==intKey ){
      *pRes = 0;
      return SQLITE_OK;
    }
    if( pCur->atLast && pCur->info.nKey<intKey ){
      *pRes = -1;
      return SQLITE_OK;
    }
  }

  rc = moveToRoot(pCur);
  if( rc ){
    return rc;
  }
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
  assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
  assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
  if( pCur->eState==CURSOR_INVALID ){
    *pRes = -1;
    assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
    return SQLITE_OK;
  }
  assert( pCur->apPage[0]->intKey || pIdxKey );
  for(;;){
    int lwr, upr, idx;
    Pgno chldPg;
    MemPage *pPage = pCur->apPage[pCur->iPage];
    int c;

    /* pPage->nCell must be greater than zero. If this is the root-page
    ** the cursor would have been INVALID above and this for(;;) loop
    ** not run. If this is not the root-page, then the moveToChild() routine
    ** would have already detected db corruption. Similarly, pPage must
    ** be the right kind (index or table) of b-tree page. Otherwise
    ** a moveToChild() or moveToRoot() call would have detected corruption.  */
    assert( pPage->nCell>0 );
    assert( pPage->intKey==(pIdxKey==0) );
    lwr = 0;
    upr = pPage->nCell-1;
    if( biasRight ){
      pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
    }else{
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
    }
    for(;;){
      u8 *pCell;                          /* Pointer to current cell in pPage */

      assert( idx==pCur->aiIdx[pCur->iPage] );
      pCur->info.nSize = 0;
      pCell = findCell(pPage, idx) + pPage->childPtrSize;
      if( pPage->intKey ){
        i64 nCellKey;
        if( pPage->hasData ){
          u32 dummy;
          pCell += getVarint32(pCell, dummy);
        }
        getVarint(pCell, (u64*)&nCellKey);
        if( nCellKey==intKey ){
          c = 0;
        }else if( nCellKey<intKey ){
          c = -1;
        }else{
          assert( nCellKey>intKey );
          c = +1;
        }
        pCur->validNKey = 1;
        pCur->info.nKey = nCellKey;
      }else{
        /* The maximum supported page-size is 65536 bytes. This means that
        ** the maximum number of record bytes stored on an index B-Tree
        ** page is less than 16384 bytes and may be stored as a 2-byte
        ** varint. This information is used to attempt to avoid parsing 
        ** the entire cell by checking for the cases where the record is 
        ** stored entirely within the b-tree page by inspecting the first 
        ** 2 bytes of the cell.
        */
        int nCell = pCell[0];
        if( nCell<=pPage->max1bytePayload
         /* && (pCell+nCell)<pPage->aDataEnd */
        ){
          /* This branch runs if the record-size field of the cell is a
          ** single byte varint and the record fits entirely on the main
          ** b-tree page.  */
          testcase( pCell+nCell+1==pPage->aDataEnd );
          c = sqlite4VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
        }else if( !(pCell[1] & 0x80) 
          && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
          /* && (pCell+nCell+2)<=pPage->aDataEnd */
        ){
          /* The record-size field is a 2 byte varint and the record 
          ** fits entirely on the main b-tree page.  */
          testcase( pCell+nCell+2==pPage->aDataEnd );
          c = sqlite4VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
        }else{
          /* The record flows over onto one or more overflow pages. In
          ** this case the whole cell needs to be parsed, a buffer allocated
          ** and accessPayload() used to retrieve the record into the
          ** buffer before VdbeRecordCompare() can be called. */
          void *pCellKey;
          u8 * const pCellBody = pCell - pPage->childPtrSize;
          btreeParseCellPtr(pPage, pCellBody, &pCur->info);
          nCell = (int)pCur->info.nKey;
          pCellKey = sqlite4Malloc( nCell );
          if( pCellKey==0 ){
            rc = SQLITE_NOMEM;
            goto moveto_finish;
          }
          rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
          if( rc ){
            sqlite4_free(pCellKey);
            goto moveto_finish;
          }
          c = sqlite4VdbeRecordCompare(nCell, pCellKey, pIdxKey);
          sqlite4_free(pCellKey);
        }
      }
      if( c==0 ){
        if( pPage->intKey && !pPage->leaf ){
          lwr = idx;
          break;
        }else{
          *pRes = 0;
          rc = SQLITE_OK;
          goto moveto_finish;
        }
      }
      if( c<0 ){
        lwr = idx+1;
      }else{
        upr = idx-1;
      }
      if( lwr>upr ){
        break;
      }
      pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
    }
    assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
    assert( pPage->isInit );
    if( pPage->leaf ){
      chldPg = 0;
    }else if( lwr>=pPage->nCell ){
      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    }else{
      chldPg = get4byte(findCell(pPage, lwr));
    }
    if( chldPg==0 ){
      assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
      *pRes = c;
      rc = SQLITE_OK;
      goto moveto_finish;
    }
    pCur->aiIdx[pCur->iPage] = (u16)lwr;
    pCur->info.nSize = 0;
    pCur->validNKey = 0;
    rc = moveToChild(pCur, chldPg);
    if( rc ) goto moveto_finish;
  }
moveto_finish:
  return rc;
}


/*
** Return TRUE if the cursor is not pointing at an entry of the table.
**
** TRUE will be returned after a call to sqlite4BtreeNext() moves
** past the last entry in the table or sqlite4BtreePrev() moves past
** the first entry.  TRUE is also returned if the table is empty.
*/
int sqlite4BtreeEof(BtCursor *pCur){
  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  ** have been deleted? This API will need to change to return an error code
  ** as well as the boolean result value.
  */
  return (CURSOR_VALID!=pCur->eState);
}

/*
** Advance the cursor to the next entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite4BtreeNext(BtCursor *pCur, int *pRes){
  int rc;
  int idx;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pRes!=0 );
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }
  if( pCur->skipNext>0 ){
    pCur->skipNext = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skipNext = 0;

  pPage = pCur->apPage[pCur->iPage];
  idx = ++pCur->aiIdx[pCur->iPage];
  assert( pPage->isInit );

  /* If the database file is corrupt, it is possible for the value of idx 
  ** to be invalid here. This can only occur if a second cursor modifies
  ** the page while cursor pCur is holding a reference to it. Which can
  ** only happen if the database is corrupt in such a way as to link the
  ** page into more than one b-tree structure. */
  testcase( idx>pPage->nCell );

  pCur->info.nSize = 0;
  pCur->validNKey = 0;
  if( idx>=pPage->nCell ){
    if( !pPage->leaf ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
      if( rc ) return rc;
      rc = moveToLeftmost(pCur);
      *pRes = 0;
      return rc;
    }
    do{
      if( pCur->iPage==0 ){
        *pRes = 1;
        pCur->eState = CURSOR_INVALID;
        return SQLITE_OK;
      }
      moveToParent(pCur);
      pPage = pCur->apPage[pCur->iPage];
    }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
    *pRes = 0;
    if( pPage->intKey ){
      rc = sqlite4BtreeNext(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
    return rc;
  }
  *pRes = 0;
  if( pPage->leaf ){
    return SQLITE_OK;
  }
  rc = moveToLeftmost(pCur);
  return rc;
}


/*
** Step the cursor to the back to the previous entry in the database.  If
** successful then set *pRes=0.  If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
int sqlite4BtreePrevious(BtCursor *pCur, int *pRes){
  int rc;
  MemPage *pPage;

  assert( cursorHoldsMutex(pCur) );
  rc = restoreCursorPosition(pCur);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pCur->atLast = 0;
  if( CURSOR_INVALID==pCur->eState ){
    *pRes = 1;
    return SQLITE_OK;
  }
  if( pCur->skipNext<0 ){
    pCur->skipNext = 0;
    *pRes = 0;
    return SQLITE_OK;
  }
  pCur->skipNext = 0;

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->isInit );
  if( !pPage->leaf ){
    int idx = pCur->aiIdx[pCur->iPage];
    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
    if( rc ){
      return rc;
    }
    rc = moveToRightmost(pCur);
  }else{
    while( pCur->aiIdx[pCur->iPage]==0 ){
      if( pCur->iPage==0 ){
        pCur->eState = CURSOR_INVALID;
        *pRes = 1;
        return SQLITE_OK;
      }
      moveToParent(pCur);
    }
    pCur->info.nSize = 0;
    pCur->validNKey = 0;

    pCur->aiIdx[pCur->iPage]--;
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->intKey && !pPage->leaf ){
      rc = sqlite4BtreePrevious(pCur, pRes);
    }else{
      rc = SQLITE_OK;
    }
  }
  *pRes = 0;
  return rc;
}

/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty.  (In other words, sqlite4PagerWrite()
** has already been called on the new page.)  The new page has also
** been referenced and the calling routine is responsible for calling
** sqlite4PagerUnref() on the new page when it is done.
**
** SQLITE_OK is returned on success.  Any other return value indicates
** an error.  *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlite4PagerUnref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
** locate a page close to the page number "nearby".  This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
**
** If the "exact" parameter is not 0, and the page-number nearby exists 
** anywhere on the free-list, then it is guarenteed to be returned. This
** is only used by auto-vacuum databases when allocating a new table.
*/
static int allocateBtreePage(
  BtShared *pBt, 
  MemPage **ppPage, 
  Pgno *pPgno, 
  Pgno nearby,
  u8 exact
){
  MemPage *pPage1;
  int rc;
  u32 n;     /* Number of pages on the freelist */
  u32 k;     /* Number of leaves on the trunk of the freelist */
  MemPage *pTrunk = 0;
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite4_mutex_held(pBt->mutex) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
    Pgno iTrunk;
    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
    
    /* If the 'exact' parameter was true and a query of the pointer-map
    ** shows that the page 'nearby' is somewhere on the free-list, then
    ** the entire-list will be searched for that page.
    */
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( exact && nearby<=mxPage ){
      u8 eType;
      assert( nearby>0 );
      assert( pBt->autoVacuum );
      rc = ptrmapGet(pBt, nearby, &eType, 0);
      if( rc ) return rc;
      if( eType==PTRMAP_FREEPAGE ){
        searchList = 1;
      }
      *pPgno = nearby;
    }
#endif

    /* Decrement the free-list count by 1. Set iTrunk to the index of the
    ** first free-list trunk page. iPrevTrunk is initially 1.
    */
    rc = sqlite4PagerWrite(pPage1->pDbPage);
    if( rc ) return rc;
    put4byte(&pPage1->aData[36], n-1);

    /* The code within this loop is run only once if the 'searchList' variable
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located.
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );

      k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite4PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        *pPgno = iTrunk;
        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
        *ppPage = pTrunk;
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
      }else if( k>(u32)(pBt->usableSize/4 - 2) ){
        /* Value of k is out of range.  Database corruption */
        rc = SQLITE_CORRUPT_BKPT;
        goto end_allocate_page;
#ifndef SQLITE_OMIT_AUTOVACUUM
      }else if( searchList && nearby==iTrunk ){
        /* The list is being searched and this trunk page is the page
        ** to allocate, regardless of whether it has leaves.
        */
        assert( *pPgno==iTrunk );
        *ppPage = pTrunk;
        searchList = 0;
        rc = sqlite4PagerWrite(pTrunk->pDbPage);
        if( rc ){
          goto end_allocate_page;
        }
        if( k==0 ){
          if( !pPrevTrunk ){
            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
          }else{
            rc = sqlite4PagerWrite(pPrevTrunk->pDbPage);
            if( rc!=SQLITE_OK ){
              goto end_allocate_page;
            }
            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
          }
        }else{
          /* The trunk page is required by the caller but it contains 
          ** pointers to free-list leaves. The first leaf becomes a trunk
          ** page in this case.
          */
          MemPage *pNewTrunk;
          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
          if( iNewTrunk>mxPage ){ 
            rc = SQLITE_CORRUPT_BKPT;
            goto end_allocate_page;
          }
          testcase( iNewTrunk==mxPage );
          rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
          if( rc!=SQLITE_OK ){
            goto end_allocate_page;
          }
          rc = sqlite4PagerWrite(pNewTrunk->pDbPage);
          if( rc!=SQLITE_OK ){
            releasePage(pNewTrunk);
            goto end_allocate_page;
          }
          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
          put4byte(&pNewTrunk->aData[4], k-1);
          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
          releasePage(pNewTrunk);
          if( !pPrevTrunk ){
            assert( sqlite4PagerIswriteable(pPage1->pDbPage) );
            put4byte(&pPage1->aData[32], iNewTrunk);
          }else{
            rc = sqlite4PagerWrite(pPrevTrunk->pDbPage);
            if( rc ){
              goto end_allocate_page;
            }
            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
          }
        }
        pTrunk = 0;
        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
#endif
      }else if( k>0 ){
        /* Extract a leaf from the trunk */
        u32 closest;
        Pgno iPage;
        unsigned char *aData = pTrunk->aData;
        if( nearby>0 ){
          u32 i;
          int dist;
          closest = 0;
          dist = sqlite4AbsInt32(get4byte(&aData[8]) - nearby);
          for(i=1; i<k; i++){
            int d2 = sqlite4AbsInt32(get4byte(&aData[8+i*4]) - nearby);
            if( d2<dist ){
              closest = i;
              dist = d2;
            }
          }
        }else{
          closest = 0;
        }

        iPage = get4byte(&aData[8+closest*4]);
        testcase( iPage==mxPage );
        if( iPage>mxPage ){
          rc = SQLITE_CORRUPT_BKPT;
          goto end_allocate_page;
        }
        testcase( iPage==mxPage );
        if( !searchList || iPage==nearby ){
          int noContent;
          *pPgno = iPage;
          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
                 ": %d more free pages\n",
                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
          rc = sqlite4PagerWrite(pTrunk->pDbPage);
          if( rc ) goto end_allocate_page;
          if( closest<k-1 ){
            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
          }
          put4byte(&aData[4], k-1);
          noContent = !btreeGetHasContent(pBt, *pPgno);
          rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
          if( rc==SQLITE_OK ){
            rc = sqlite4PagerWrite((*ppPage)->pDbPage);
            if( rc!=SQLITE_OK ){
              releasePage(*ppPage);
            }
          }
          searchList = 0;
        }
      }
      releasePage(pPrevTrunk);
      pPrevTrunk = 0;
    }while( searchList );
  }else{
    /* There are no pages on the freelist, so create a new page at the
    ** end of the file */
    rc = sqlite4PagerWrite(pBt->pPage1->pDbPage);
    if( rc ) return rc;
    pBt->nPage++;
    if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;

#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
      /* If *pPgno refers to a pointer-map page, allocate two new pages
      ** at the end of the file instead of one. The first allocated page
      ** becomes a new pointer-map page, the second is used by the caller.
      */
      MemPage *pPg = 0;
      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
      assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
      rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
      if( rc==SQLITE_OK ){
        rc = sqlite4PagerWrite(pPg->pDbPage);
        releasePage(pPg);
      }
      if( rc ) return rc;
      pBt->nPage++;
      if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
    }
#endif
    put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
    *pPgno = pBt->nPage;

    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
    rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
    if( rc ) return rc;
    rc = sqlite4PagerWrite((*ppPage)->pDbPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
    }
    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  }

  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );

end_allocate_page:
  releasePage(pTrunk);
  releasePage(pPrevTrunk);
  if( rc==SQLITE_OK ){
    if( sqlite4PagerPageRefcount((*ppPage)->pDbPage)>1 ){
      releasePage(*ppPage);
      return SQLITE_CORRUPT_BKPT;
    }
    (*ppPage)->isInit = 0;
  }else{
    *ppPage = 0;
  }
  assert( rc!=SQLITE_OK || sqlite4PagerIswriteable((*ppPage)->pDbPage) );
  return rc;
}

/*
** This function is used to add page iPage to the database file free-list. 
** It is assumed that the page is not already a part of the free-list.
**
** The value passed as the second argument to this function is optional.
** If the caller happens to have a pointer to the MemPage object 
** corresponding to page iPage handy, it may pass it as the second value. 
** Otherwise, it may pass NULL.
**
** If a pointer to a MemPage object is passed as the second argument,
** its reference count is not altered by this function.
*/
static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
  MemPage *pTrunk = 0;                /* Free-list trunk page */
  Pgno iTrunk = 0;                    /* Page number of free-list trunk page */ 
  MemPage *pPage1 = pBt->pPage1;      /* Local reference to page 1 */
  MemPage *pPage;                     /* Page being freed. May be NULL. */
  int rc;                             /* Return Code */
  int nFree;                          /* Initial number of pages on free-list */

  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( iPage>1 );
  assert( !pMemPage || pMemPage->pgno==iPage );

  if( pMemPage ){
    pPage = pMemPage;
    sqlite4PagerRef(pPage->pDbPage);
  }else{
    pPage = btreePageLookup(pBt, iPage);
  }

  /* Increment the free page count on pPage1 */
  rc = sqlite4PagerWrite(pPage1->pDbPage);
  if( rc ) goto freepage_out;
  nFree = get4byte(&pPage1->aData[36]);
  put4byte(&pPage1->aData[36], nFree+1);

  if( pBt->btsFlags & BTS_SECURE_DELETE ){
    /* If the secure_delete option is enabled, then
    ** always fully overwrite deleted information with zeros.
    */
    if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
     ||            ((rc = sqlite4PagerWrite(pPage->pDbPage))!=0)
    ){
      goto freepage_out;
    }
    memset(pPage->aData, 0, pPage->pBt->pageSize);
  }

  /* If the database supports auto-vacuum, write an entry in the pointer-map
  ** to indicate that the page is free.
  */
  if( ISAUTOVACUUM ){
    ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
    if( rc ) goto freepage_out;
  }

  /* Now manipulate the actual database free-list structure. There are two
  ** possibilities. If the free-list is currently empty, or if the first
  ** trunk page in the free-list is full, then this page will become a
  ** new free-list trunk page. Otherwise, it will become a leaf of the
  ** first trunk page in the current free-list. This block tests if it
  ** is possible to add the page as a new free-list leaf.
  */
  if( nFree!=0 ){
    u32 nLeaf;                /* Initial number of leaf cells on trunk page */

    iTrunk = get4byte(&pPage1->aData[32]);
    rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
    if( rc!=SQLITE_OK ){
      goto freepage_out;
    }

    nLeaf = get4byte(&pTrunk->aData[4]);
    assert( pBt->usableSize>32 );
    if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto freepage_out;
    }
    if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
      /* In this case there is room on the trunk page to insert the page
      ** being freed as a new leaf.
      **
      ** Note that the trunk page is not really full until it contains
      ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
      ** coded.  But due to a coding error in versions of SQLite prior to
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".
      */
      rc = sqlite4PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite4PagerDontWrite(pPage->pDbPage);
        }
        rc = btreeSetHasContent(pBt, iPage);
      }
      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
      goto freepage_out;
    }
  }

  /* If control flows to this point, then it was not possible to add the
  ** the page being freed as a leaf page of the first trunk in the free-list.
  ** Possibly because the free-list is empty, or possibly because the 
  ** first trunk in the free-list is full. Either way, the page being freed
  ** will become the new first trunk page in the free-list.
  */
  if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
    goto freepage_out;
  }
  rc = sqlite4PagerWrite(pPage->pDbPage);
  if( rc!=SQLITE_OK ){
    goto freepage_out;
  }
  put4byte(pPage->aData, iTrunk);
  put4byte(&pPage->aData[4], 0);
  put4byte(&pPage1->aData[32], iPage);
  TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));

freepage_out:
  if( pPage ){
    pPage->isInit = 0;
  }
  releasePage(pPage);
  releasePage(pTrunk);
  return rc;
}
static void freePage(MemPage *pPage, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
  }
}

/*
** Free any overflow pages associated with the given Cell.
*/
static int clearCell(MemPage *pPage, unsigned char *pCell){
  BtShared *pBt = pPage->pBt;
  CellInfo info;
  Pgno ovflPgno;
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  btreeParseCellPtr(pPage, pCell, &info);
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( ovflPgno==0 || nOvfl>0 );
  while( nOvfl-- ){
    Pgno iNext = 0;
    MemPage *pOvfl = 0;
    if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
      /* 0 is not a legal page number and page 1 cannot be an 
      ** overflow page. Therefore if ovflPgno<2 or past the end of the 
      ** file the database must be corrupt. */
      return SQLITE_CORRUPT_BKPT;
    }
    if( nOvfl ){
      rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
      if( rc ) return rc;
    }

    if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
     && sqlite4PagerPageRefcount(pOvfl->pDbPage)!=1
    ){
      /* There is no reason any cursor should have an outstanding reference 
      ** to an overflow page belonging to a cell that is being deleted/updated.
      ** So if there exists more than one reference to this page, then it 
      ** must not really be an overflow page and the database must be corrupt. 
      ** It is helpful to detect this before calling freePage2(), as 
      ** freePage2() may zero the page contents if secure-delete mode is
      ** enabled. If this 'overflow' page happens to be a page that the
      ** caller is iterating through or using in some other way, this
      ** can be problematic.
      */
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = freePage2(pBt, pOvfl, ovflPgno);
    }

    if( pOvfl ){
      sqlite4PagerUnref(pOvfl->pDbPage);
    }
    if( rc ) return rc;
    ovflPgno = iNext;
  }
  return SQLITE_OK;
}

/*
** Create the byte sequence used to represent a cell on page pPage
** and write that byte sequence into pCell[].  Overflow pages are
** allocated and filled in as necessary.  The calling procedure
** is responsible for making sure sufficient space has been allocated
** for pCell[].
**
** Note that pCell does not necessary need to point to the pPage->aData
** area.  pCell might point to some temporary storage.  The cell will
** be constructed in this temporary area then copied into pPage->aData
** later.
*/
static int fillInCell(
  MemPage *pPage,                /* The page that contains the cell */
  unsigned char *pCell,          /* Complete text of the cell */
  const void *pKey, i64 nKey,    /* The key */
  const void *pData,int nData,   /* The data */
  int nZero,                     /* Extra zero bytes to append to pData */
  int *pnSize                    /* Write cell size here */
){
  int nPayload;
  const u8 *pSrc;
  int nSrc, n, rc;
  int spaceLeft;
  MemPage *pOvfl = 0;
  MemPage *pToRelease = 0;
  unsigned char *pPrior;
  unsigned char *pPayload;
  BtShared *pBt = pPage->pBt;
  Pgno pgnoOvfl = 0;
  int nHeader;
  CellInfo info;

  assert( sqlite4_mutex_held(pPage->pBt->mutex) );

  /* pPage is not necessarily writeable since pCell might be auxiliary
  ** buffer space that is separate from the pPage buffer area */
  assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
            || sqlite4PagerIswriteable(pPage->pDbPage) );

  /* Fill in the header. */
  nHeader = 0;
  if( !pPage->leaf ){
    nHeader += 4;
  }
  if( pPage->hasData ){
    nHeader += putVarint(&pCell[nHeader], nData+nZero);
  }else{
    nData = nZero = 0;
  }
  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  btreeParseCellPtr(pPage, pCell, &info);
  assert( info.nHeader==nHeader );
  assert( info.nKey==nKey );
  assert( info.nData==(u32)(nData+nZero) );
  
  /* Fill in the payload */
  nPayload = nData + nZero;
  if( pPage->intKey ){
    pSrc = pData;
    nSrc = nData;
    nData = 0;
  }else{ 
    if( NEVER(nKey>0x7fffffff || pKey==0) ){
      return SQLITE_CORRUPT_BKPT;
    }
    nPayload += (int)nKey;
    pSrc = pKey;
    nSrc = (int)nKey;
  }
  *pnSize = info.nSize;
  spaceLeft = info.nLocal;
  pPayload = &pCell[nHeader];
  pPrior = &pCell[info.iOverflow];

  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
      if( pBt->autoVacuum ){
        do{
          pgnoOvfl++;
        } while( 
          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
        );
      }
#endif
      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the database supports auto-vacuum, and the second or subsequent
      ** overflow page is being allocated, add an entry to the pointer-map
      ** for that page now. 
      **
      ** If this is the first overflow page, then write a partial entry 
      ** to the pointer-map. If we write nothing to this pointer-map slot,
      ** then the optimistic overflow chain processing in clearCell()
      ** may misinterpret the uninitialised values and delete the
      ** wrong pages from the database.
      */
      if( pBt->autoVacuum && rc==SQLITE_OK ){
        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
        ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
        if( rc ){
          releasePage(pOvfl);
        }
      }
#endif
      if( rc ){
        releasePage(pToRelease);
        return rc;
      }

      /* If pToRelease is not zero than pPrior points into the data area
      ** of pToRelease.  Make sure pToRelease is still writeable. */
      assert( pToRelease==0 || sqlite4PagerIswriteable(pToRelease->pDbPage) );

      /* If pPrior is part of the data area of pPage, then make sure pPage
      ** is still writeable */
      assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
            || sqlite4PagerIswriteable(pPage->pDbPage) );

      put4byte(pPrior, pgnoOvfl);
      releasePage(pToRelease);
      pToRelease = pOvfl;
      pPrior = pOvfl->aData;
      put4byte(pPrior, 0);
      pPayload = &pOvfl->aData[4];
      spaceLeft = pBt->usableSize - 4;
    }
    n = nPayload;
    if( n>spaceLeft ) n = spaceLeft;

    /* If pToRelease is not zero than pPayload points into the data area
    ** of pToRelease.  Make sure pToRelease is still writeable. */
    assert( pToRelease==0 || sqlite4PagerIswriteable(pToRelease->pDbPage) );

    /* If pPayload is part of the data area of pPage, then make sure pPage
    ** is still writeable */
    assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
            || sqlite4PagerIswriteable(pPage->pDbPage) );

    if( nSrc>0 ){
      if( n>nSrc ) n = nSrc;
      assert( pSrc );
      memcpy(pPayload, pSrc, n);
    }else{
      memset(pPayload, 0, n);
    }
    nPayload -= n;
    pPayload += n;
    pSrc += n;
    nSrc -= n;
    spaceLeft -= n;
    if( nSrc==0 ){
      nSrc = nData;
      pSrc = pData;
    }
  }
  releasePage(pToRelease);
  return SQLITE_OK;
}

/*
** Remove the i-th cell from pPage.  This routine effects pPage only.
** The cell content is not freed or deallocated.  It is assumed that
** the cell content has been copied someplace else.  This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
*/
static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
  u32 pc;         /* Offset to cell content of cell being deleted */
  u8 *data;       /* pPage->aData */
  u8 *ptr;        /* Used to move bytes around within data[] */
  u8 *endPtr;     /* End of loop */
  int rc;         /* The return code */
  int hdr;        /* Beginning of the header.  0 most pages.  100 page 1 */

  if( *pRC ) return;

  assert( idx>=0 && idx<pPage->nCell );
  assert( sz==cellSize(pPage, idx) );
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  data = pPage->aData;
  ptr = &pPage->aCellIdx[2*idx];
  pc = get2byte(ptr);
  hdr = pPage->hdrOffset;
  testcase( pc==get2byte(&data[hdr+5]) );
  testcase( pc+sz==pPage->pBt->usableSize );
  if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
  assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
  while( ptr<endPtr ){
    *(u16*)ptr = *(u16*)&ptr[2];
    ptr += 2;
  }
  pPage->nCell--;
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
** will not fit, then make a copy of the cell content into pTemp if
** pTemp is not null.  Regardless of pTemp, allocate a new entry
** in pPage->aOvfl[] and make it point to the cell content (either
** in pTemp or the original pCell) and also record its index. 
** Allocating a new entry in pPage->aCell[] implies that 
** pPage->nOverflow is incremented.
**
** If nSkip is non-zero, then do not copy the first nSkip bytes of the
** cell. The caller will overwrite them after this function returns. If
** nSkip is non-zero, then pCell may not point to an invalid memory location 
** (but pCell+nSkip is always valid).
*/
static void insertCell(
  MemPage *pPage,   /* Page into which we are copying */
  int i,            /* New cell becomes the i-th cell of the page */
  u8 *pCell,        /* Content of the new cell */
  int sz,           /* Bytes of content in pCell */
  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  Pgno iChild,      /* If non-zero, replace first 4 bytes with this value */
  int *pRC          /* Read and write return code from here */
){
  int idx = 0;      /* Where to write new cell content in data[] */
  int j;            /* Loop counter */
  int end;          /* First byte past the last cell pointer in data[] */
  int ins;          /* Index in data[] where new cell pointer is inserted */
  int cellOffset;   /* Address of first cell pointer in data[] */
  u8 *data;         /* The content of the whole page */
  u8 *ptr;          /* Used for moving information around in data[] */
  u8 *endPtr;       /* End of the loop */

  int nSkip = (iChild ? 4 : 0);

  if( *pRC ) return;

  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
  assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  /* The cell should normally be sized correctly.  However, when moving a
  ** malformed cell from a leaf page to an interior page, if the cell size
  ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
  ** might be less than 8 (leaf-size + pointer) on the interior node.  Hence
  ** the term after the || in the following assert(). */
  assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
  if( pPage->nOverflow || sz+2>pPage->nFree ){
    if( pTemp ){
      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
      pCell = pTemp;
    }
    if( iChild ){
      put4byte(pCell, iChild);
    }
    j = pPage->nOverflow++;
    assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
    pPage->aOvfl[j].pCell = pCell;
    pPage->aOvfl[j].idx = (u16)i;
  }else{
    int rc = sqlite4PagerWrite(pPage->pDbPage);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
    assert( sqlite4PagerIswriteable(pPage->pDbPage) );
    data = pPage->aData;
    cellOffset = pPage->cellOffset;
    end = cellOffset + 2*pPage->nCell;
    ins = cellOffset + 2*i;
    rc = allocateSpace(pPage, sz, &idx);
    if( rc ){ *pRC = rc; return; }
    /* The allocateSpace() routine guarantees the following two properties
    ** if it returns success */
    assert( idx >= end+2 );
    assert( idx+sz <= (int)pPage->pBt->usableSize );
    pPage->nCell++;
    pPage->nFree -= (u16)(2 + sz);
    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
    if( iChild ){
      put4byte(&data[idx], iChild);
    }
    ptr = &data[end];
    endPtr = &data[ins];
    assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 );  /* ptr is always 2-byte aligned */
    while( ptr>endPtr ){
      *(u16*)ptr = *(u16*)&ptr[-2];
      ptr -= 2;
    }
    put2byte(&data[ins], idx);
    put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pPage->pBt->autoVacuum ){
      /* The cell may contain a pointer to an overflow page. If so, write
      ** the entry for the overflow page into the pointer map.
      */
      ptrmapPutOvflPtr(pPage, pCell, pRC);
    }
#endif
  }
}

/*
** Add a list of cells to a page.  The page should be initially empty.
** The cells are guaranteed to fit on the page.
*/
static void assemblePage(
  MemPage *pPage,   /* The page to be assemblied */
  int nCell,        /* The number of cells to add to this page */
  u8 **apCell,      /* Pointers to cell bodies */
  u16 *aSize        /* Sizes of the cells */
){
  int i;            /* Loop counter */
  u8 *pCellptr;     /* Address of next cell pointer */
  int cellbody;     /* Address of next cell body */
  u8 * const data = pPage->aData;             /* Pointer to data for pPage */
  const int hdr = pPage->hdrOffset;           /* Offset of header on pPage */
  const int nUsable = pPage->pBt->usableSize; /* Usable size of page */

  assert( pPage->nOverflow==0 );
  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
            && (int)MX_CELL(pPage->pBt)<=10921);
  assert( sqlite4PagerIswriteable(pPage->pDbPage) );

  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );

  pCellptr = &pPage->aCellIdx[nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){
    u16 sz = aSize[i];
    pCellptr -= 2;
    cellbody -= sz;
    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], sz);
  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
  pPage->nCell = (u16)nCell;
}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course).  Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1             /* Number of neighbors on either side of pPage */
#define NB (NN*2+1)      /* Total pages involved in the balance */


#ifndef SQLITE_OMIT_QUICKBALANCE
/*
** This version of balance() handles the common special case where
** a new entry is being inserted on the extreme right-end of the
** tree, in other words, when the new entry will become the largest
** entry in the tree.
**
** Instead of trying to balance the 3 right-most leaf pages, just add
** a new page to the right-hand side and put the one new entry in
** that page.  This leaves the right side of the tree somewhat
** unbalanced.  But odds are that we will be inserting new entries
** at the end soon afterwards so the nearly empty page will quickly
** fill up.  On average.
**
** pPage is the leaf page which is the right-most page in the tree.
** pParent is its parent.  pPage must have a single overflow entry
** which is also the right-most entry on the page.
**
** The pSpace buffer is used to store a temporary copy of the divider
** cell that will be inserted into pParent. Such a cell consists of a 4
** byte page number followed by a variable length integer. In other
** words, at most 13 bytes. Hence the pSpace buffer must be at
** least 13 bytes in size.
*/
static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
  BtShared *const pBt = pPage->pBt;    /* B-Tree Database */
  MemPage *pNew;                       /* Newly allocated page */
  int rc;                              /* Return Code */
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite4_mutex_held(pPage->pBt->mutex) );
  assert( sqlite4PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

  if( rc==SQLITE_OK ){

    u8 *pOut = &pSpace[4];
    u8 *pCell = pPage->aOvfl[0].pCell;
    u16 szCell = cellSizePtr(pPage, pCell);
    u8 *pStop;

    assert( sqlite4PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    assemblePage(pNew, 1, &pCell, &szCell);

    /* If this is an auto-vacuum database, update the pointer map
    ** with entries for the new page, and any pointer from the 
    ** cell on the page to an overflow page. If either of these
    ** operations fails, the return code is set, but the contents
    ** of the parent page are still manipulated by thh code below.
    ** That is Ok, at this point the parent page is guaranteed to
    ** be marked as dirty. Returning an error code will cause a
    ** rollback, undoing any changes made to the parent page.
    */
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
      if( szCell>pNew->minLocal ){
        ptrmapPutOvflPtr(pNew, pCell, &rc);
      }
    }
  
    /* Create a divider cell to insert into pParent. The divider cell
    ** consists of a 4-byte page number (the page number of pPage) and
    ** a variable length key value (which must be the same value as the
    ** largest key on pPage).
    **
    ** To find the largest key value on pPage, first find the right-most 
    ** cell on pPage. The first two fields of this cell are the 
    ** record-length (a variable length integer at most 32-bits in size)
    ** and the key value (a variable length integer, may have any value).
    ** The first of the while(...) loops below skips over the record-length
    ** field. The second while(...) loop copies the key value from the
    ** cell on pPage into the pSpace buffer.
    */
    pCell = findCell(pPage, pPage->nCell-1);
    pStop = &pCell[9];
    while( (*(pCell++)&0x80) && pCell<pStop );
    pStop = &pCell[9];
    while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );

    /* Insert the new divider cell into pParent. */
    insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
               0, pPage->pgno, &rc);

    /* Set the right-child pointer of pParent to point to the new page. */
    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  
    /* Release the reference to the new page. */
    releasePage(pNew);
  }

  return rc;
}
#endif /* SQLITE_OMIT_QUICKBALANCE */

#if 0
/*
** This function does not contribute anything to the operation of SQLite.
** it is sometimes activated temporarily while debugging code responsible 
** for setting pointer-map entries.
*/
static int ptrmapCheckPages(MemPage **apPage, int nPage){
  int i, j;
  for(i=0; i<nPage; i++){
    Pgno n;
    u8 e;
    MemPage *pPage = apPage[i];
    BtShared *pBt = pPage->pBt;
    assert( pPage->isInit );

    for(j=0; j<pPage->nCell; j++){
      CellInfo info;
      u8 *z;
     
      z = findCell(pPage, j);
      btreeParseCellPtr(pPage, z, &info);
      if( info.iOverflow ){
        Pgno ovfl = get4byte(&z[info.iOverflow]);
        ptrmapGet(pBt, ovfl, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
      }
      if( !pPage->leaf ){
        Pgno child = get4byte(z);
        ptrmapGet(pBt, child, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_BTREE );
      }
    }
    if( !pPage->leaf ){
      Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
      ptrmapGet(pBt, child, &e, &n);
      assert( n==pPage->pgno && e==PTRMAP_BTREE );
    }
  }
  return 1;
}
#endif

/*
** This function is used to copy the contents of the b-tree node stored 
** on page pFrom to page pTo. If page pFrom was not a leaf page, then
** the pointer-map entries for each child page are updated so that the
** parent page stored in the pointer map is page pTo. If pFrom contained
** any cells with overflow page pointers, then the corresponding pointer
** map entries are also updated so that the parent page is page pTo.
**
** If pFrom is currently carrying any overflow cells (entries in the
** MemPage.aOvfl[] array), they are not copied to pTo. 
**
** Before returning, page pTo is reinitialized using btreeInitPage().
**
** The performance of this function is not critical. It is only used by 
** the balance_shallower() and balance_deeper() procedures, neither of
** which are called often under normal circumstances.
*/
static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
  if( (*pRC)==SQLITE_OK ){
    BtShared * const pBt = pFrom->pBt;
    u8 * const aFrom = pFrom->aData;
    u8 * const aTo = pTo->aData;
    int const iFromHdr = pFrom->hdrOffset;
    int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
    int rc;
    int iData;
  
  
    assert( pFrom->isInit );
    assert( pFrom->nFree>=iToHdr );
    assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
  
    /* Copy the b-tree node content from page pFrom to page pTo. */
    iData = get2byte(&aFrom[iFromHdr+5]);
    memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
    memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
  
    /* Reinitialize page pTo so that the contents of the MemPage structure
    ** match the new data. The initialization of pTo can actually fail under
    ** fairly obscure circumstances, even though it is a copy of initialized 
    ** page pFrom.
    */
    pTo->isInit = 0;
    rc = btreeInitPage(pTo);
    if( rc!=SQLITE_OK ){
      *pRC = rc;
      return;
    }
  
    /* If this is an auto-vacuum database, update the pointer-map entries
    ** for any b-tree or overflow pages that pTo now contains the pointers to.
    */
    if( ISAUTOVACUUM ){
      *pRC = setChildPtrmaps(pTo);
    }
  }
}

/*
** This routine redistributes cells on the iParentIdx'th child of pParent
** (hereafter "the page") and up to 2 siblings so that all pages have about the
** same amount of free space. Usually a single sibling on either side of the
** page are used in the balancing, though both siblings might come from one
** side if the page is the first or last child of its parent. If the page 
** has fewer than 2 siblings (something which can only happen if the page
** is a root page or a child of a root page) then all available siblings
** participate in the balancing.
**
** The number of siblings of the page might be increased or decreased by 
** one or two in an effort to keep pages nearly full but not over full. 
**
** Note that when this routine is called, some of the cells on the page
** might not actually be stored in MemPage.aData[]. This can happen
** if the page is overfull. This routine ensures that all cells allocated
** to the page and its siblings fit into MemPage.aData[] before returning.
**
** In the course of balancing the page and its siblings, cells may be
** inserted into or removed from the parent page (pParent). Doing so
** may cause the parent page to become overfull or underfull. If this
** happens, it is the responsibility of the caller to invoke the correct
** balancing routine to fix this problem (see the balance() routine). 
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
**
** The third argument to this function, aOvflSpace, is a pointer to a
** buffer big enough to hold one page. If while inserting cells into the parent
** page (pParent) the parent page becomes overfull, this buffer is
** used to store the parent's overflow cells. Because this function inserts
** a maximum of four divider cells into the parent page, and the maximum
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot                      /* True if pParent is a root-page */
){
  BtShared *pBt;               /* The whole database */
  int nCell = 0;               /* Number of cells in apCell[] */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nNew = 0;                /* Number of pages in apNew[] */
  int nOld;                    /* Number of pages in apOld[] */
  int i, j, k;                 /* Loop counters */
  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  int rc = SQLITE_OK;          /* The return code */
  u16 leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
  int szScratch;               /* Size of scratch memory requested */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  u8 *pRight;                  /* Location in parent of right-sibling pointer */
  u8 *apDiv[NB-1];             /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  int szNew[NB+2];             /* Combined size of cells place on i-th page */
  u8 **apCell = 0;             /* All cells begin balanced */
  u16 *szCell;                 /* Local size of all cells in apCell[] */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */

  pBt = pParent->pBt;
  assert( sqlite4_mutex_held(pBt->mutex) );
  assert( sqlite4PagerIswriteable(pParent->pDbPage) );

#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif

  /* At this point pParent may have at most one overflow cell. And if
  ** this overflow cell is present, it must be the cell with 
  ** index iParentIdx. This scenario comes about when this function
  ** is called (indirectly) from sqlite4BtreeDelete().
  */
  assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
  assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );

  if( !aOvflSpace ){
    return SQLITE_NOMEM;
  }

  /* Find the sibling pages to balance. Also locate the cells in pParent 
  ** that divide the siblings. An attempt is made to find NN siblings on 
  ** either side of pPage. More siblings are taken from one side, however, 
  ** if there are fewer than NN siblings on the other side. If pParent
  ** has NB or fewer children then all children of pParent are taken.  
  **
  ** This loop also drops the divider cells from the parent page. This
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
    nOld = i+1;
  }else{
    nOld = 3;
    if( iParentIdx==0 ){                 
      nxDiv = 0;
    }else if( iParentIdx==i ){
      nxDiv = i-2;
    }else{
      nxDiv = iParentIdx-1;
    }
    i = 2;
  }
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
    rc = getAndInitPage(pBt, pgno, &apOld[i]);
    if( rc ){
      memset(apOld, 0, (i+1)*sizeof(MemPage*));
      goto balance_cleanup;
    }
    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
    if( (i--)==0 ) break;

    if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
      apDiv[i] = pParent->aOvfl[0].pCell;
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);
      pParent->nOverflow = 0;
    }else{
      apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
      pgno = get4byte(apDiv[i]);
      szNew[i] = cellSizePtr(pParent, apDiv[i]);

      /* Drop the cell from the parent page. apDiv[i] still points to
      ** the cell within the parent, even though it has been dropped.
      ** This is safe because dropping a cell only overwrites the first
      ** four bytes of it, and this function does not need the first
      ** four bytes of the divider cell. So the pointer is safe to use
      ** later on.  
      **
      ** But not if we are in secure-delete mode. In secure-delete mode,
      ** the dropCell() routine will overwrite the entire cell with zeroes.
      ** In this case, temporarily copy the cell into the aOvflSpace[]
      ** buffer. It will be copied out again as soon as the aSpace[] buffer
      ** is allocated.  */
      if( pBt->btsFlags & BTS_SECURE_DELETE ){
        int iOff;

        iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
        if( (iOff+szNew[i])>(int)pBt->usableSize ){
          rc = SQLITE_CORRUPT_BKPT;
          memset(apOld, 0, (i+1)*sizeof(MemPage*));
          goto balance_cleanup;
        }else{
          memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
          apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
        }
      }
      dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
    }
  }

  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 3)&~3;

  /*
  ** Allocate space for memory structures
  */
  k = pBt->pageSize + ROUND8(sizeof(MemPage));
  szScratch =
       nMaxCells*sizeof(u8*)                       /* apCell */
     + nMaxCells*sizeof(u16)                       /* szCell */
     + pBt->pageSize                               /* aSpace1 */
     + k*nOld;                                     /* Page copies (apCopy) */
  apCell = sqlite4ScratchMalloc( szScratch ); 
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[] and remove the the divider Cells
  ** from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
  **
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  leafCorrection = apOld[0]->leaf*4;
  leafData = apOld[0]->hasData;
  for(i=0; i<nOld; i++){
    int limit;
    
    /* Before doing anything else, take a copy of the i'th original sibling
    ** The rest of this function will use data from the copies rather
    ** that the original pages since the original pages will be in the
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;
    if( pOld->nOverflow>0 ){
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findOverflowCell(pOld, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }else{
      u8 *aData = pOld->aData;
      u16 maskPage = pOld->maskPage;
      u16 cellOffset = pOld->cellOffset;
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }       
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
      assert( sz<=pBt->maxLocal+23 );
      assert( iSpace1 <= (int)pBt->pageSize );
      memcpy(pTemp, apDiv[i], sz);
      apCell[nCell] = pTemp+leafCorrection;
      assert( leafCorrection==0 || leafCorrection==4 );
      szCell[nCell] = szCell[nCell] - leafCorrection;
      if( !pOld->leaf ){
        assert( leafCorrection==0 );
        assert( pOld->hdrOffset==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(apCell[nCell], &pOld->aData[8], 4);
      }else{
        assert( leafCorrection==4 );
        if( szCell[nCell]<4 ){
          /* Do not allow any cells smaller than 4 bytes. */
          szCell[nCell] = 4;
        }
      }
      nCell++;
    }
  }

  /*
  ** Figure out the number of pages needed to hold all nCell cells.
  ** Store this number in "k".  Also compute szNew[] which is the total
  ** size of all cells on the i-th page and cntNew[] which is the index
  ** in apCell[] of the cell that divides page i from page i+1.  
  ** cntNew[k] should equal nCell.
  **
  ** Values computed by this block:
  **
  **           k: The total number of sibling pages
  **    szNew[i]: Spaced used on the i-th sibling page.
  **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
  **              the right of the i-th sibling page.
  ** usableSpace: Number of bytes of space available on each sibling.
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(subtotal=k=i=0; i<nCell; i++){
    assert( i<nMaxCells );
    subtotal += szCell[i] + 2;
    if( subtotal > usableSpace ){
      szNew[k] = subtotal - szCell[i];
      cntNew[k] = i;
      if( leafData ){ i--; }
      subtotal = 0;
      k++;
      if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
    }
  }
  szNew[k] = subtotal;
  cntNew[k] = nCell;
  k++;

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side.  The left siblings are always nearly full, while the
  ** right-most sibling might be nearly empty.  This block of code attempts
  ** to adjust the packing of siblings to get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
    int szLeft = szNew[i-1]; /* Size of sibling on the left */
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    assert( d<nMaxCells );
    assert( r<nMaxCells );
    while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
      szRight += szCell[d] + 2;
      szLeft -= szCell[r] + 2;
      cntNew[i-1]--;
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
  }

  /* Either we found one or more cells (cntnew[0])>0) or pPage is
  ** a virtual root page.  A virtual root page is when the real root
  ** page is page 1 and we are the only child of that page.
  **
  ** UPDATE:  The assert() below is not necessarily true if the database
  ** file is corrupt.  The corruption will be detected and reported later
  ** in this procedure so there is no need to act upon it now.
  */
#if 0
  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
#endif

  TRACE(("BALANCE: old: %d %d %d  ",
    apOld[0]->pgno, 
    nOld>=2 ? apOld[1]->pgno : 0,
    nOld>=3 ? apOld[2]->pgno : 0
  ));

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  if( apOld[0]->pgno<=1 ){
    rc = SQLITE_CORRUPT_BKPT;
    goto balance_cleanup;
  }
  pageFlags = apOld[0]->aData[0];
  for(i=0; i<k; i++){
    MemPage *pNew;
    if( i<nOld ){
      pNew = apNew[i] = apOld[i];
      apOld[i] = 0;
      rc = sqlite4PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
      if( rc ) goto balance_cleanup;
      apNew[i] = pNew;
      nNew++;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
    }
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    freePage(apOld[i], &rc);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in accending order.  This helps to
  ** keep entries in the disk file in order so that a scan
  ** of the table is a linear scan through the file.  That
  ** in turn helps the operating system to deliver pages
  ** from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since
  ** n is never more than NB (a small constant), that should
  ** not be a problem.
  **
  ** When NB==3, this one optimization makes the database
  ** about 25% faster for large insertions and deletions.
  */
  for(i=0; i<k-1; i++){
    int minV = apNew[i]->pgno;
    int minI = i;
    for(j=i+1; j<k; j++){
      if( apNew[j]->pgno<(unsigned)minV ){
        minI = j;
        minV = apNew[j]->pgno;
      }
    }
    if( minI>i ){
      MemPage *pT;
      pT = apNew[i];
      apNew[i] = apNew[minI];
      apNew[minI] = pT;
    }
  }
  TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
    apNew[0]->pgno, szNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
    nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
    nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
    nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));

  assert( sqlite4PagerIswriteable(pParent->pDbPage) );
  put4byte(pRight, apNew[nNew-1]->pgno);

  /*
  ** Evenly distribute the data in apCell[] across the new pages.
  ** Insert divider cells into pParent as necessary.
  */
  j = 0;
  for(i=0; i<nNew; i++){
    /* Assemble the new sibling page. */
    MemPage *pNew = apNew[i];
    assert( j<nMaxCells );
    zeroPage(pNew, pageFlags);
    assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
    assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
    assert( pNew->nOverflow==0 );

    j = cntNew[i];

    /* If the sibling page assembled above was not the right-most sibling,
    ** insert a divider cell into the parent page.
    */
    assert( i<nNew-1 || j==nCell );
    if( j<nCell ){
      u8 *pCell;
      u8 *pTemp;
      int sz;

      assert( j<nMaxCells );
      pCell = apCell[j];
      sz = szCell[j] + leafCorrection;
      pTemp = &aOvflSpace[iOvflSpace];
      if( !pNew->leaf ){
        memcpy(&pNew->aData[8], pCell, 4);
      }else if( leafData ){
        /* If the tree is a leaf-data tree, and the siblings are leaves, 
        ** then there is no divider cell in apCell[]. Instead, the divider 
        ** cell consists of the integer key for the right-most cell of 
        ** the sibling-page assembled above only.
        */
        CellInfo info;
        j--;
        btreeParseCellPtr(pNew, apCell[j], &info);
        pCell = pTemp;
        sz = 4 + putVarint(&pCell[4], info.nKey);
        pTemp = 0;
      }else{
        pCell -= 4;
        /* Obscure case for non-leaf-data trees: If the cell at pCell was
        ** previously stored on a leaf node, and its reported size was 4
        ** bytes, then it may actually be smaller than this 
        ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
        ** any cell). But it is important to pass the correct size to 
        ** insertCell(), so reparse the cell now.
        **
        ** Note that this can never happen in an SQLite data file, as all
        ** cells are at least 4 bytes. It only happens in b-trees used
        ** to evaluate "IN (SELECT ...)" and similar clauses.
        */
        if( szCell[j]==4 ){
          assert(leafCorrection==4);
          sz = cellSizePtr(pParent, pCell);
        }
      }
      iOvflSpace += sz;
      assert( sz<=pBt->maxLocal+23 );
      assert( iOvflSpace <= (int)pBt->pageSize );
      insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
      if( rc!=SQLITE_OK ) goto balance_cleanup;
      assert( sqlite4PagerIswriteable(pParent->pDbPage) );

      j++;
      nxDiv++;
    }
  }
  assert( j==nCell );
  assert( nOld>0 );
  assert( nNew>0 );
  if( (pageFlags & PTF_LEAF)==0 ){
    u8 *zChild = &apCopy[nOld-1]->aData[8];
    memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
  }

  if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
    /* The root page of the b-tree now contains no cells. The only sibling
    ** page is the right-child of the parent. Copy the contents of the
    ** child page into the parent, decreasing the overall height of the
    ** b-tree structure by one. This is described as the "balance-shallower"
    ** sub-algorithm in some documentation.
    **
    ** If this is an auto-vacuum database, the call to copyNodeContent() 
    ** sets all pointer-map entries corresponding to database image pages 
    ** for which the pointer is stored within the content being copied.
    **
    ** The second assert below verifies that the child page is defragmented
    ** (it must be, as it was just reconstructed using assemblePage()). This
    ** is important if the parent page happens to be page 1 of the database
    ** image.  */
    assert( nNew==1 );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 
    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);
  }else if( ISAUTOVACUUM ){
    /* Fix the pointer-map entries for all the cells that were shifted around. 
    ** There are several different types of pointer-map entries that need to
    ** be dealt with by this routine. Some of these have been set already, but
    ** many have not. The following is a summary:
    **
    **   1) The entries associated with new sibling pages that were not
    **      siblings when this function was called. These have already
    **      been set. We don't need to worry about old siblings that were
    **      moved to the free-list - the freePage() code has taken care
    **      of those.
    **
    **   2) The pointer-map entries associated with the first overflow
    **      page in any overflow chains used by new divider cells. These 
    **      have also already been taken care of by the insertCell() code.
    **
    **   3) If the sibling pages are not leaves, then the child pages of
    **      cells stored on the sibling pages may need to be updated.
    **
    **   4) If the sibling pages are not internal intkey nodes, then any
    **      overflow pages used by these cells may need to be updated
    **      (internal intkey nodes never contain pointers to overflow pages).
    **
    **   5) If the sibling pages are not leaves, then the pointer-map
    **      entries for the right-child pages of each sibling may need
    **      to be updated.
    **
    ** Cases 1 and 2 are dealt with above by other code. The next
    ** block deals with cases 3 and 4 and the one after that, case 5. Since
    ** setting a pointer map entry is a relatively expensive operation, this
    ** code only sets pointer map entries for child or overflow pages that have
    ** actually moved between pages.  */
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aOvfl[0].idx;
        }
        isDivider = !leafData;  
      }

      assert(nOverflow>0 || iOverflow<i );
      assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
      assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
      if( i==iOverflow ){
        isDivider = 1;
        if( (--nOverflow)>0 ){
          iOverflow++;
        }
      }

      if( i==cntNew[k] ){
        /* Cell i is the cell immediately following the last cell on new
        ** sibling page k. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i is a divider cell.  */
        pNew = apNew[++k];
        if( !leafData ) continue;
      }
      assert( j<nOld );
      assert( k<nNew );

      /* If the cell was originally divider cell (and is not now) or
      ** an overflow cell, or if the cell was located on a different sibling
      ** page before the balancing, then the pointer map entries associated
      ** with any child or overflow pages need to be updated.  */
      if( isDivider || pOld->pgno!=pNew->pgno ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( szCell[i]>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, apCell[i], &rc);
        }
      }
    }

    if( !leafCorrection ){
      for(i=0; i<nNew; i++){
        u32 key = get4byte(&apNew[i]->aData[8]);
        ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
      }
    }

#if 0
    /* The ptrmapCheckPages() contains assert() statements that verify that
    ** all pointer map pages are set correctly. This is helpful while 
    ** debugging. This is usually disabled because a corrupt database may
    ** cause an assert() statement to fail.  */
    ptrmapCheckPages(apNew, nNew);
    ptrmapCheckPages(&pParent, 1);
#endif
  }

  assert( pParent->isInit );
  TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
          nOld, nNew, nCell));

  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite4ScratchFree(apCell);
  for(i=0; i<nOld; i++){
    releasePage(apOld[i]);
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }

  return rc;
}


/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root
** page, including overflow cells, are copied into the child. The root
** page is then overwritten to make it an empty page with the right-child 
** pointer pointing to the new page.
**
** Before returning, all pointer-map entries corresponding to pages 
** that the new child-page now contains pointers to are updated. The
** entry corresponding to the new right-child pointer of the root
** page is also updated.
**
** If successful, *ppChild is set to contain a reference to the child 
** page and SQLITE_OK is returned. In this case the caller is required
** to call releasePage() on *ppChild exactly once. If an error occurs,
** an error code is returned and *ppChild is set to 0.
*/
static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
  int rc;                        /* Return value from subprocedures */
  MemPage *pChild = 0;           /* Pointer to a new child page */
  Pgno pgnoChild = 0;            /* Page number of the new child page */
  BtShared *pBt = pRoot->pBt;    /* The BTree */

  assert( pRoot->nOverflow>0 );
  assert( sqlite4_mutex_held(pBt->mutex) );

  /* Make pRoot, the root page of the b-tree, writable. Allocate a new 
  ** page that will become the new right-child of pPage. Copy the contents
  ** of the node stored on pRoot into the new child page.
  */
  rc = sqlite4PagerWrite(pRoot->pDbPage);
  if( rc==SQLITE_OK ){
    rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
    copyNodeContent(pRoot, pChild, &rc);
    if( ISAUTOVACUUM ){
      ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
    }
  }
  if( rc ){
    *ppChild = 0;
    releasePage(pChild);
    return rc;
  }
  assert( sqlite4PagerIswriteable(pChild->pDbPage) );
  assert( sqlite4PagerIswriteable(pRoot->pDbPage) );
  assert( pChild->nCell==pRoot->nCell );

  TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));

  /* Copy the overflow cells from pRoot to pChild */
  memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
  pChild->nOverflow = pRoot->nOverflow;

  /* Zero the contents of pRoot. Then install pChild as the right-child. */
  zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
  put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);

  *ppChild = pChild;
  return SQLITE_OK;
}

/*
** The page that pCur currently points to has just been modified in
** some way. This function figures out if this modification means the
** tree needs to be balanced, and if so calls the appropriate balancing 
** routine. Balancing routines are:
**
**   balance_quick()
**   balance_deeper()
**   balance_nonroot()
*/
static int balance(BtCursor *pCur){
  int rc = SQLITE_OK;
  const int nMin = pCur->pBt->usableSize * 2 / 3;
  u8 aBalanceQuickSpace[13];
  u8 *pFree = 0;

  TESTONLY( int balance_quick_called = 0 );
  TESTONLY( int balance_deeper_called = 0 );

  do {
    int iPage = pCur->iPage;
    MemPage *pPage = pCur->apPage[iPage];

    if( iPage==0 ){
      if( pPage->nOverflow ){
        /* The root page of the b-tree is overfull. In this case call the
        ** balance_deeper() function to create a new child for the root-page
        ** and copy the current contents of the root-page to it. The
        ** next iteration of the do-loop will balance the child page.
        */ 
        assert( (balance_deeper_called++)==0 );
        rc = balance_deeper(pPage, &pCur->apPage[1]);
        if( rc==SQLITE_OK ){
          pCur->iPage = 1;
          pCur->aiIdx[0] = 0;
          pCur->aiIdx[1] = 0;
          assert( pCur->apPage[1]->nOverflow );
        }
      }else{
        break;
      }
    }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
      break;
    }else{
      MemPage * const pParent = pCur->apPage[iPage-1];
      int const iIdx = pCur->aiIdx[iPage-1];

      rc = sqlite4PagerWrite(pParent->pDbPage);
      if( rc==SQLITE_OK ){
#ifndef SQLITE_OMIT_QUICKBALANCE
        if( pPage->hasData
         && pPage->nOverflow==1
         && pPage->aOvfl[0].idx==pPage->nCell
         && pParent->pgno!=1
         && pParent->nCell==iIdx
        ){
          /* Call balance_quick() to create a new sibling of pPage on which
          ** to store the overflow cell. balance_quick() inserts a new cell
          ** into pParent, which may cause pParent overflow. If this
          ** happens, the next interation of the do-loop will balance pParent 
          ** use either balance_nonroot() or balance_deeper(). Until this
          ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
          ** buffer. 
          **
          ** The purpose of the following assert() is to check that only a
          ** single call to balance_quick() is made for each call to this
          ** function. If this were not verified, a subtle bug involving reuse
          ** of the aBalanceQuickSpace[] might sneak in.
          */
          assert( (balance_quick_called++)==0 );
          rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
        }else
#endif
        {
          /* In this case, call balance_nonroot() to redistribute cells
          ** between pPage and up to 2 of its sibling pages. This involves
          ** modifying the contents of pParent, which may cause pParent to
          ** become overfull or underfull. The next iteration of the do-loop
          ** will balance the parent page to correct this.
          ** 
          ** If the parent page becomes overfull, the overflow cell or cells
          ** are stored in the pSpace buffer allocated immediately below. 
          ** A subsequent iteration of the do-loop will deal with this by
          ** calling balance_nonroot() (balance_deeper() may be called first,
          ** but it doesn't deal with overflow cells - just moves them to a
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite4PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite4PageFree(pFree);
          }

          /* The pSpace buffer will be freed after the next call to
          ** balance_nonroot(), or just before this function returns, whichever
          ** comes first. */
          pFree = pSpace;
        }
      }

      pPage->nOverflow = 0;

      /* The next iteration of the do-loop balances the parent page. */
      releasePage(pPage);
      pCur->iPage--;
    }
  }while( rc==SQLITE_OK );

  if( pFree ){
    sqlite4PageFree(pFree);
  }
  return rc;
}


/*
** Insert a new record into the BTree.  The key is given by (pKey,nKey)
** and the data is given by (pData,nData).  The cursor is used only to
** define what table the record should be inserted into.  The cursor
** is left pointing at a random location.
**
** For an INTKEY table, only the nKey value of the key is used.  pKey is
** ignored.  For a ZERODATA table, the pData and nData are both ignored.
**
** If the seekResult parameter is non-zero, then a successful call to
** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
** been performed. seekResult is the search result returned (a negative
** number if pCur points at an entry that is smaller than (pKey, nKey), or
** a positive value if pCur points at an etry that is larger than 
** (pKey, nKey)). 
**
** If the seekResult parameter is non-zero, then the caller guarantees that
** cursor pCur is pointing at the existing copy of a row that is to be
** overwritten.  If the seekResult parameter is 0, then cursor pCur may
** point to any entry or to no entry at all and so this function has to seek
** the cursor before the new key can be inserted.
*/
int sqlite4BtreeInsert(
  BtCursor *pCur,                /* Insert data into the table of this cursor */
  const void *pKey, i64 nKey,    /* The key of the new record */
  const void *pData, int nData,  /* The data of the new record */
  int nZero,                     /* Number of extra 0 bytes to append to data */
  int appendBias,                /* True if this is likely an append */
  int seekResult                 /* Result of prior MovetoUnpacked() call */
){
  int rc;
  int loc = seekResult;          /* -1: before desired location  +1: after */
  int szNew = 0;
  int idx;
  MemPage *pPage;
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;
  unsigned char *oldCell;
  unsigned char *newCell = 0;

  if( pCur->eState==CURSOR_FAULT ){
    assert( pCur->skipNext!=SQLITE_OK );
    return pCur->skipNext;
  }

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
              && (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );

  /* Assert that the caller has been consistent. If this cursor was opened
  ** expecting an index b-tree, then the caller should be inserting blob
  ** keys with no associated data. If the cursor was opened expecting an
  ** intkey table, the caller should be inserting integer keys with a
  ** blob of associated data.  */
  assert( (pKey==0)==(pCur->pKeyInfo==0) );

  /* If this is an insert into a table b-tree, invalidate any incrblob 
  ** cursors open on the row being replaced (assuming this is a replace
  ** operation - if it is not, the following is a no-op).  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, nKey, 0);
  }

  /* Save the positions of any other cursors open on this table.
  **
  ** In some cases, the call to btreeMoveto() below is a no-op. For
  ** example, when inserting data into a table with auto-generated integer
  ** keys, the VDBE layer invokes sqlite4BtreeLast() to figure out the 
  ** integer key to use. It then calls this function to actually insert the 
  ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
  ** that the cursor is already where it needs to be and returns without
  ** doing any work. To avoid thwarting these optimizations, it is important
  ** not to clear the cursor here.
  */
  rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
  if( rc ) return rc;
  if( !loc ){
    rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
    if( rc ) return rc;
  }
  assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );

  pPage = pCur->apPage[pCur->iPage];
  assert( pPage->intKey || nKey>=0 );
  assert( pPage->leaf || !pPage->intKey );

  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
          pCur->pgnoRoot, nKey, nData, pPage->pgno,
          loc==0 ? "overwrite" : "new entry"));
  assert( pPage->isInit );
  allocateTempSpace(pBt);
  newCell = pBt->pTmpSpace;
  if( newCell==0 ) return SQLITE_NOMEM;
  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  if( rc ) goto end_insert;
  assert( szNew==cellSizePtr(pPage, newCell) );
  assert( szNew <= MX_CELL_SIZE(pBt) );
  idx = pCur->aiIdx[pCur->iPage];
  if( loc==0 ){
    u16 szOld;
    assert( idx<pPage->nCell );
    rc = sqlite4PagerWrite(pPage->pDbPage);
    if( rc ){
      goto end_insert;
    }
    oldCell = findCell(pPage, idx);
    if( !pPage->leaf ){
      memcpy(newCell, oldCell, 4);
    }
    szOld = cellSizePtr(pPage, oldCell);
    rc = clearCell(pPage, oldCell);
    dropCell(pPage, idx, szOld, &rc);
    if( rc ) goto end_insert;
  }else if( loc<0 && pPage->nCell>0 ){
    assert( pPage->leaf );
    idx = ++pCur->aiIdx[pCur->iPage];
  }else{
    assert( pPage->leaf );
  }
  insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
  assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );

  /* If no error has occured and pPage has an overflow cell, call balance() 
  ** to redistribute the cells within the tree. Since balance() may move
  ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
  ** variables.
  **
  ** Previous versions of SQLite called moveToRoot() to move the cursor
  ** back to the root page as balance() used to invalidate the contents
  ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
  ** set the cursor state to "invalid". This makes common insert operations
  ** slightly faster.
  **
  ** There is a subtle but important optimization here too. When inserting
  ** multiple records into an intkey b-tree using a single cursor (as can
  ** happen while processing an "INSERT INTO ... SELECT" statement), it
  ** is advantageous to leave the cursor pointing to the last entry in
  ** the b-tree if possible. If the cursor is left pointing to the last
  ** entry in the table, and the next row inserted has an integer key
  ** larger than the largest existing key, it is possible to insert the
  ** row without seeking the cursor. This can be a big performance boost.
  */
  pCur->info.nSize = 0;
  pCur->validNKey = 0;
  if( rc==SQLITE_OK && pPage->nOverflow ){
    rc = balance(pCur);

    /* Must make sure nOverflow is reset to zero even if the balance()
    ** fails. Internal data structure corruption will result otherwise. 
    ** Also, set the cursor state to invalid. This stops saveCursorPosition()
    ** from trying to save the current position of the cursor.  */
    pCur->apPage[pCur->iPage]->nOverflow = 0;
    pCur->eState = CURSOR_INVALID;
  }
  assert( pCur->apPage[pCur->iPage]->nOverflow==0 );

end_insert:
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.  The cursor
** is left pointing at a arbitrary location.
*/
int sqlite4BtreeDelete(BtCursor *pCur){
  Btree *p = pCur->pBtree;
  BtShared *pBt = p->pBt;              
  int rc;                              /* Return code */
  MemPage *pPage;                      /* Page to delete cell from */
  unsigned char *pCell;                /* Pointer to cell to delete */
  int iCellIdx;                        /* Index of cell to delete */
  int iCellDepth;                      /* Depth of node containing pCell */ 

  assert( cursorHoldsMutex(pCur) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
  assert( pCur->wrFlag );
  assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
  assert( !hasReadConflicts(p, pCur->pgnoRoot) );

  if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) 
   || NEVER(pCur->eState!=CURSOR_VALID)
  ){
    return SQLITE_ERROR;  /* Something has gone awry. */
  }

  /* If this is a delete operation to remove a row from a table b-tree,
  ** invalidate any incrblob cursors open on the row being deleted.  */
  if( pCur->pKeyInfo==0 ){
    invalidateIncrblobCursors(p, pCur->info.nKey, 0);
  }

  iCellDepth = pCur->iPage;
  iCellIdx = pCur->aiIdx[iCellDepth];
  pPage = pCur->apPage[iCellDepth];
  pCell = findCell(pPage, iCellIdx);

  /* If the page containing the entry to delete is not a leaf page, move
  ** the cursor to the largest entry in the tree that is smaller than
  ** the entry being deleted. This cell will replace the cell being deleted
  ** from the internal node. The 'previous' entry is used for this instead
  ** of the 'next' entry, as the previous entry is always a part of the
  ** sub-tree headed by the child page of the cell being deleted. This makes
  ** balancing the tree following the delete operation easier.  */
  if( !pPage->leaf ){
    int notUsed;
    rc = sqlite4BtreePrevious(pCur, &notUsed);
    if( rc ) return rc;
  }

  /* Save the positions of any other cursors open on this table before
  ** making any modifications. Make the page containing the entry to be 
  ** deleted writable. Then free any overflow pages associated with the 
  ** entry and finally remove the cell itself from within the page.  
  */
  rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
  if( rc ) return rc;
  rc = sqlite4PagerWrite(pPage->pDbPage);
  if( rc ) return rc;
  rc = clearCell(pPage, pCell);
  dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
  if( rc ) return rc;

  /* If the cell deleted was not located on a leaf page, then the cursor
  ** is currently pointing to the largest entry in the sub-tree headed
  ** by the child-page of the cell that was just deleted from an internal
  ** node. The cell from the leaf node needs to be moved to the internal
  ** node to replace the deleted cell.  */
  if( !pPage->leaf ){
    MemPage *pLeaf = pCur->apPage[pCur->iPage];
    int nCell;
    Pgno n = pCur->apPage[iCellDepth+1]->pgno;
    unsigned char *pTmp;

    pCell = findCell(pLeaf, pLeaf->nCell-1);
    nCell = cellSizePtr(pLeaf, pCell);
    assert( MX_CELL_SIZE(pBt) >= nCell );

    allocateTempSpace(pBt);
    pTmp = pBt->pTmpSpace;

    rc = sqlite4PagerWrite(pLeaf->pDbPage);
    insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
    dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
    if( rc ) return rc;
  }

  /* Balance the tree. If the entry deleted was located on a leaf page,
  ** then the cursor still points to that page. In this case the first
  ** call to balance() repairs the tree, and the if(...) condition is
  ** never true.
  **
  ** Otherwise, if the entry deleted was on an internal node page, then
  ** pCur is pointing to the leaf page from which a cell was removed to
  ** replace the cell deleted from the internal node. This is slightly
  ** tricky as the leaf node may be underfull, and the internal node may
  ** be either under or overfull. In this case run the balancing algorithm
  ** on the leaf node first. If the balance proceeds far enough up the
  ** tree that we can be sure that any problem in the internal node has
  ** been corrected, so be it. Otherwise, after balancing the leaf node,
  ** walk the cursor up the tree to the internal node and balance it as 
  ** well.  */
  rc = balance(pCur);
  if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
    while( pCur->iPage>iCellDepth ){
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    moveToRoot(pCur);
  }
  return rc;
}

/*
** Create a new BTree table.  Write into *piTable the page
** number for the root page of the new table.
**
** The type of type is determined by the flags parameter.  Only the
** following values of flags are currently in use.  Other values for
** flags might not work:
**
**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
**     BTREE_ZERODATA                  Used for SQL indices
*/
static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
  BtShared *pBt = p->pBt;
  MemPage *pRoot;
  Pgno pgnoRoot;
  int rc;
  int ptfFlags;          /* Page-type flage for the root page of new table */

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( pBt->inTransaction==TRANS_WRITE );
  assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );

#ifdef SQLITE_OMIT_AUTOVACUUM
  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  if( rc ){
    return rc;
  }
#else
  if( pBt->autoVacuum ){
    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
    MemPage *pPageMove; /* The page to move to. */

    /* Creating a new table may probably require moving an existing database
    ** to make room for the new tables root page. In case this page turns
    ** out to be an overflow page, delete all overflow page-map caches
    ** held by open cursors.
    */
    invalidateAllOverflowCache(pBt);

    /* Read the value of meta[3] from the database to determine where the
    ** root page of the new table should go. meta[3] is the largest root-page
    ** created so far, so the new root-page is (meta[3]+1).
    */
    sqlite4BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
    pgnoRoot++;

    /* The new root-page may not be allocated on a pointer-map page, or the
    ** PENDING_BYTE page.
    */
    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
      pgnoRoot++;
    }
    assert( pgnoRoot>=3 );

    /* Allocate a page. The page that currently resides at pgnoRoot will
    ** be moved to the allocated page (unless the allocated page happens
    ** to reside at pgnoRoot).
    */
    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
    if( rc!=SQLITE_OK ){
      return rc;
    }

    if( pgnoMove!=pgnoRoot ){
      /* pgnoRoot is the page that will be used for the root-page of
      ** the new table (assuming an error did not occur). But we were
      ** allocated pgnoMove. If required (i.e. if it was not allocated
      ** by extending the file), the current page at position pgnoMove
      ** is already journaled.
      */
      u8 eType = 0;
      Pgno iPtrPage = 0;

      releasePage(pPageMove);

      /* Move the page currently at pgnoRoot to pgnoMove. */
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
      if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
        rc = SQLITE_CORRUPT_BKPT;
      }
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
      assert( eType!=PTRMAP_ROOTPAGE );
      assert( eType!=PTRMAP_FREEPAGE );
      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
      releasePage(pRoot);

      /* Obtain the page at pgnoRoot */
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      rc = sqlite4PagerWrite(pRoot->pDbPage);
      if( rc!=SQLITE_OK ){
        releasePage(pRoot);
        return rc;
      }
    }else{
      pRoot = pPageMove;
    } 

    /* Update the pointer-map and meta-data with the new root-page number. */
    ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
    if( rc ){
      releasePage(pRoot);
      return rc;
    }

    /* When the new root page was allocated, page 1 was made writable in
    ** order either to increase the database filesize, or to decrement the
    ** freelist count.  Hence, the sqlite4BtreeUpdateMeta() call cannot fail.
    */
    assert( sqlite4PagerIswriteable(pBt->pPage1->pDbPage) );
    rc = sqlite4BtreeUpdateMeta(p, 4, pgnoRoot);
    if( NEVER(rc) ){
      releasePage(pRoot);
      return rc;
    }

  }else{
    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
    if( rc ) return rc;
  }
#endif
  assert( sqlite4PagerIswriteable(pRoot->pDbPage) );
  if( createTabFlags & BTREE_INTKEY ){
    ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
  }else{
    ptfFlags = PTF_ZERODATA | PTF_LEAF;
  }
  zeroPage(pRoot, ptfFlags);
  sqlite4PagerUnref(pRoot->pDbPage);
  assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
  *piTable = (int)pgnoRoot;
  return SQLITE_OK;
}
int sqlite4BtreeCreateTable(Btree *p, int *piTable, int flags){
  int rc;
  sqlite4BtreeEnter(p);
  rc = btreeCreateTable(p, piTable, flags);
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Erase the given database page and all its children.  Return
** the page to the freelist.
*/
static int clearDatabasePage(
  BtShared *pBt,           /* The BTree that contains the table */
  Pgno pgno,               /* Page number to clear */
  int freePageFlag,        /* Deallocate page if true */
  int *pnChange            /* Add number of Cells freed to this counter */
){
  MemPage *pPage;
  int rc;
  unsigned char *pCell;
  int i;

  assert( sqlite4_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage);
  if( rc ) return rc;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
    rc = clearCell(pPage, pCell);
    if( rc ) goto cleardatabasepage_out;
  }
  if( !pPage->leaf ){
    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
    if( rc ) goto cleardatabasepage_out;
  }else if( pnChange ){
    assert( pPage->intKey );
    *pnChange += pPage->nCell;
  }
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite4PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  }

cleardatabasepage_out:
  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,
** the root page is empty, but still exists.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** read cursors on the table.  Open write cursors are moved to the
** root of the table.
**
** If pnChange is not NULL, then table iTable must be an intkey table. The
** integer value pointed to by pnChange is incremented by the number of
** entries in the table.
*/
int sqlite4BtreeClearTable(Btree *p, int iTable, int *pnChange){
  int rc;
  BtShared *pBt = p->pBt;
  sqlite4BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );

  /* Invalidate all incrblob cursors open on table iTable (assuming iTable
  ** is the root of a table b-tree - if it is not, the following call is
  ** a no-op).  */
  invalidateIncrblobCursors(p, 0, 1);

  rc = saveAllCursors(pBt, (Pgno)iTable, 0);
  if( SQLITE_OK==rc ){
    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
  }
  sqlite4BtreeLeave(p);
  return rc;
}

/*
** Erase all information in a table and add the root of the table to
** the freelist.  Except, the root of the principle table (the one on
** page 1) is never added to the freelist.
**
** This routine will fail with SQLITE_LOCKED if there are any open
** cursors on the table.
**
** If AUTOVACUUM is enabled and the page at iTable is not the last
** root page in the database file, then the last root page 
** in the database file is moved into the slot formerly occupied by
** iTable and that last slot formerly occupied by the last root page
** is added to the freelist instead of iTable.  In this say, all
** root pages are kept at the beginning of the database file, which
** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
** page number that used to be the last root page in the file before
** the move.  If no page gets moved, *piMoved is set to 0.
** The last root page is recorded in meta[3] and the value of
** meta[3] is updated by this procedure.
*/
static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
  int rc;
  MemPage *pPage = 0;
  BtShared *pBt = p->pBt;

  assert( sqlite4BtreeHoldsMutex(p) );
  assert( p->inTrans==TRANS_WRITE );

  /* It is illegal to drop a table if any cursors are open on the
  ** database. This is because in auto-vacuum mode the backend may
  ** need to move another root-page to fill a gap left by the deleted
  ** root page. If an open cursor was using this page a problem would 
  ** occur.
  **
  ** This error is caught long before control reaches this point.
  */
  if( NEVER(pBt->pCursor) ){
    sqlite4ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
    return SQLITE_LOCKED_SHAREDCACHE;
  }

  rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  if( rc ) return rc;
  rc = sqlite4BtreeClearTable(p, iTable, 0);
  if( rc ){
    releasePage(pPage);
    return rc;
  }

  *piMoved = 0;

  if( iTable>1 ){
#ifdef SQLITE_OMIT_AUTOVACUUM
    freePage(pPage, &rc);
    releasePage(pPage);
#else
    if( pBt->autoVacuum ){
      Pgno maxRootPgno;
      sqlite4BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);

      if( iTable==maxRootPgno ){
        /* If the table being dropped is the table with the largest root-page
        ** number in the database, put the root page on the free list. 
        */
        freePage(pPage, &rc);
        releasePage(pPage);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }else{
        /* The table being dropped does not have the largest root-page
        ** number in the database. So move the page that does into the 
        ** gap left by the deleted root-page.
        */
        MemPage *pMove;
        releasePage(pPage);
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        pMove = 0;
        rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
        freePage(pMove, &rc);
        releasePage(pMove);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        *piMoved = maxRootPgno;
      }

      /* Set the new 'max-root-page' value in the database header. This
      ** is the old value less one, less one more if that happens to
      ** be a root-page number, less one again if that is the
      ** PENDING_BYTE_PAGE.
      */
      maxRootPgno--;
      while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
             || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
        maxRootPgno--;
      }
      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );

      rc = sqlite4BtreeUpdateMeta(p, 4, maxRootPgno);
    }else{
      freePage(pPage, &rc);
      releasePage(pPage);
    }
#endif
  }else{
    /* If sqlite4BtreeDropTable was called on page 1.
    ** This really never should happen except in a corrupt
    ** database. 
    */
    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
    releasePage(pPage);
  }
  return rc;  
}
int sqlite4BtreeDropTable(Btree *p, int iTable, int *piMoved){
  int rc;
  sqlite4BtreeEnter(p);
  rc = btreeDropTable(p, iTable, piMoved);
  sqlite4BtreeLeave(p);
  return rc;
}


/*
** This function may only be called if the b-tree connection already
** has a read or write transaction open on the database.
**
** Read the meta-information out of a database file.  Meta[0]
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
*/
void sqlite4BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  BtShared *pBt = p->pBt;

  sqlite4BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE );
  assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
  assert( pBt->pPage1 );
  assert( idx>=0 && idx<=15 );

  *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);

  /* If auto-vacuum is disabled in this build and this is an auto-vacuum
  ** database, mark the database as read-only.  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
    pBt->btsFlags |= BTS_READ_ONLY;
  }
#endif

  sqlite4BtreeLeave(p);
}

/*
** Write meta-information back into the database.  Meta[0] is
** read-only and may not be written.
*/
int sqlite4BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  BtShared *pBt = p->pBt;
  unsigned char *pP1;
  int rc;
  assert( idx>=1 && idx<=15 );
  sqlite4BtreeEnter(p);
  assert( p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1!=0 );
  pP1 = pBt->pPage1->aData;
  rc = sqlite4PagerWrite(pBt->pPage1->pDbPage);
  if( rc==SQLITE_OK ){
    put4byte(&pP1[36 + idx*4], iMeta);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( idx==BTREE_INCR_VACUUM ){
      assert( pBt->autoVacuum || iMeta==0 );
      assert( iMeta==0 || iMeta==1 );
      pBt->incrVacuum = (u8)iMeta;
    }
#endif
  }
  sqlite4BtreeLeave(p);
  return rc;
}

#ifndef SQLITE_OMIT_BTREECOUNT
/*
** The first argument, pCur, is a cursor opened on some b-tree. Count the
** number of entries in the b-tree and write the result to *pnEntry.
**
** SQLITE_OK is returned if the operation is successfully executed. 
** Otherwise, if an error is encountered (i.e. an IO error or database
** corruption) an SQLite error code is returned.
*/
int sqlite4BtreeCount(BtCursor *pCur, i64 *pnEntry){
  i64 nEntry = 0;                      /* Value to return in *pnEntry */
  int rc;                              /* Return code */

  if( pCur->pgnoRoot==0 ){
    *pnEntry = 0;
    return SQLITE_OK;
  }
  rc = moveToRoot(pCur);

  /* Unless an error occurs, the following loop runs one iteration for each
  ** page in the B-Tree structure (not including overflow pages). 
  */
  while( rc==SQLITE_OK ){
    int iIdx;                          /* Index of child node in parent */
    MemPage *pPage;                    /* Current page of the b-tree */

    /* If this is a leaf page or the tree is not an int-key tree, then 
    ** this page contains countable entries. Increment the entry counter
    ** accordingly.
    */
    pPage = pCur->apPage[pCur->iPage];
    if( pPage->leaf || !pPage->intKey ){
      nEntry += pPage->nCell;
    }

    /* pPage is a leaf node. This loop navigates the cursor so that it 
    ** points to the first interior cell that it points to the parent of
    ** the next page in the tree that has not yet been visited. The
    ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
    ** of the page, or to the number of cells in the page if the next page
    ** to visit is the right-child of its parent.
    **
    ** If all pages in the tree have been visited, return SQLITE_OK to the
    ** caller.
    */
    if( pPage->leaf ){
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return SQLITE_OK;
        }
        moveToParent(pCur);
      }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );

      pCur->aiIdx[pCur->iPage]++;
      pPage = pCur->apPage[pCur->iPage];
    }

    /* Descend to the child node of the cell that the cursor currently 
    ** points at. This is the right-child if (iIdx==pPage->nCell).
    */
    iIdx = pCur->aiIdx[pCur->iPage];
    if( iIdx==pPage->nCell ){
      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
    }else{
      rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
    }
  }

  /* An error has occurred. Return an error code. */
  return rc;
}
#endif

/*
** Return the pager associated with a BTree.  This routine is used for
** testing and debugging only.
*/
Pager *sqlite4BtreePager(Btree *p){
  return p->pBt->pPager;
}

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(
  IntegrityCk *pCheck,
  char *zMsg1,
  const char *zFormat,
  ...
){
  va_list ap;
  if( !pCheck->mxErr ) return;
  pCheck->mxErr--;
  pCheck->nErr++;
  va_start(ap, zFormat);
  if( pCheck->errMsg.nChar ){
    sqlite4StrAccumAppend(&pCheck->errMsg, "\n", 1);
  }
  if( zMsg1 ){
    sqlite4StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  }
  sqlite4VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  va_end(ap);
  if( pCheck->errMsg.mallocFailed ){
    pCheck->mallocFailed = 1;
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Add 1 to the reference count for page iPage.  If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
  if( iPage==0 ) return 1;
  if( iPage>pCheck->nPage ){
    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
    return 1;
  }
  if( pCheck->anRef[iPage]==1 ){
    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
    return 1;
  }
  return  (pCheck->anRef[iPage]++)>1;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Check that the entry in the pointer-map for page iChild maps to 
** page iParent, pointer type ptrType. If not, append an error message
** to pCheck.
*/
static void checkPtrmap(
  IntegrityCk *pCheck,   /* Integrity check context */
  Pgno iChild,           /* Child page number */
  u8 eType,              /* Expected pointer map type */
  Pgno iParent,          /* Expected pointer map parent page number */
  char *zContext         /* Context description (used for error msg) */
){
  int rc;
  u8 ePtrmapType;
  Pgno iPtrmapParent;

  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
    checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
    return;
  }

  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
    checkAppendMsg(pCheck, zContext, 
      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  }
}
#endif

/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
  IntegrityCk *pCheck,  /* Integrity checking context */
  int isFreeList,       /* True for a freelist.  False for overflow page list */
  int iPage,            /* Page number for first page in the list */
  int N,                /* Expected number of pages in the list */
  char *zContext        /* Context for error messages */
){
  int i;
  int expected = N;
  int iFirst = iPage;
  while( N-- > 0 && pCheck->mxErr ){
    DbPage *pOvflPage;
    unsigned char *pOvflData;
    if( iPage<1 ){
      checkAppendMsg(pCheck, zContext,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage, zContext) ) break;
    if( sqlite4PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
      checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite4PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pCheck->pBt->autoVacuum ){
        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
      }
#endif
      if( n>(int)pCheck->pBt->usableSize/4-2 ){
        checkAppendMsg(pCheck, zContext,
           "freelist leaf count too big on page %d", iPage);
        N--;
      }else{
        for(i=0; i<n; i++){
          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
          if( pCheck->pBt->autoVacuum ){
            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
          }
#endif
          checkRef(pCheck, iFreePage, zContext);
        }
        N -= n;
      }
    }
#ifndef SQLITE_OMIT_AUTOVACUUM
    else{
      /* If this database supports auto-vacuum and iPage is not the last
      ** page in this overflow list, check that the pointer-map entry for
      ** the following page matches iPage.
      */
      if( pCheck->pBt->autoVacuum && N>0 ){
        i = get4byte(pOvflData);
        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
      }
    }
#endif
    iPage = get4byte(pOvflData);
    sqlite4PagerUnref(pOvflPage);
  }
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** Do various sanity checks on a single page of a tree.  Return
** the tree depth.  Root pages return 0.  Parents of root pages
** return 1, and so forth.
** 
** These checks are done:
**
**      1.  Make sure that cells and freeblocks do not overlap
**          but combine to completely cover the page.
**  NO  2.  Make sure cell keys are in order.
**  NO  3.  Make sure no key is less than or equal to zLowerBound.
**  NO  4.  Make sure no key is greater than or equal to zUpperBound.
**      5.  Check the integrity of overflow pages.
**      6.  Recursively call checkTreePage on all children.
**      7.  Verify that the depth of all children is the same.
**      8.  Make sure this page is at least 33% full or else it is
**          the root of the tree.
*/
static int checkTreePage(
  IntegrityCk *pCheck,  /* Context for the sanity check */
  int iPage,            /* Page number of the page to check */
  char *zParentContext, /* Parent context */
  i64 *pnParentMinKey, 
  i64 *pnParentMaxKey
){
  MemPage *pPage;
  int i, rc, depth, d2, pgno, cnt;
  int hdr, cellStart;
  int nCell;
  u8 *data;
  BtShared *pBt;
  int usableSize;
  char zContext[100];
  char *hit = 0;
  i64 nMinKey = 0;
  i64 nMaxKey = 0;

  sqlite4_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);

  /* Check that the page exists
  */
  pBt = pCheck->pBt;
  usableSize = pBt->usableSize;
  if( iPage==0 ) return 0;
  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
    checkAppendMsg(pCheck, zContext,
       "unable to get the page. error code=%d", rc);
    return 0;
  }

  /* Clear MemPage.isInit to make sure the corruption detection code in
  ** btreeInitPage() is executed.  */
  pPage->isInit = 0;
  if( (rc = btreeInitPage(pPage))!=0 ){
    assert( rc==SQLITE_CORRUPT );  /* The only possible error from InitPage */
    checkAppendMsg(pCheck, zContext, 
                   "btreeInitPage() returns error code %d", rc);
    releasePage(pPage);
    return 0;
  }

  /* Check out all the cells.
  */
  depth = 0;
  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
    u8 *pCell;
    u32 sz;
    CellInfo info;

    /* Check payload overflow pages
    */
    sqlite4_snprintf(sizeof(zContext), zContext,
             "On tree page %d cell %d: ", iPage, i);
    pCell = findCell(pPage,i);
    btreeParseCellPtr(pPage, pCell, &info);
    sz = info.nData;
    if( !pPage->intKey ) sz += (int)info.nKey;
    /* For intKey pages, check that the keys are in order.
    */
    else if( i==0 ) nMinKey = nMaxKey = info.nKey;
    else{
      if( info.nKey <= nMaxKey ){
        checkAppendMsg(pCheck, zContext, 
            "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
      }
      nMaxKey = info.nKey;
    }
    assert( sz==info.nPayload );
    if( (sz>info.nLocal) 
     && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
    ){
      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
    }

    /* Check sanity of left child page.
    */
    if( !pPage->leaf ){
      pgno = get4byte(pCell);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
      }
#endif
      d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
      if( i>0 && d2!=depth ){
        checkAppendMsg(pCheck, zContext, "Child page depth differs");
      }
      depth = d2;
    }
  }

  if( !pPage->leaf ){
    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
    sqlite4_snprintf(sizeof(zContext), zContext, 
                     "On page %d at right child: ", iPage);
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum ){
      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
    }
#endif
    checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
  }
 
  /* For intKey leaf pages, check that the min/max keys are in order
  ** with any left/parent/right pages.
  */
  if( pPage->leaf && pPage->intKey ){
    /* if we are a left child page */
    if( pnParentMinKey ){
      /* if we are the left most child page */
      if( !pnParentMaxKey ){
        if( nMaxKey > *pnParentMinKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (max larger than parent min of %lld)",
              nMaxKey, *pnParentMinKey);
        }
      }else{
        if( nMinKey <= *pnParentMinKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (min less than parent min of %lld)",
              nMinKey, *pnParentMinKey);
        }
        if( nMaxKey > *pnParentMaxKey ){
          checkAppendMsg(pCheck, zContext, 
              "Rowid %lld out of order (max larger than parent max of %lld)",
              nMaxKey, *pnParentMaxKey);
        }
        *pnParentMinKey = nMaxKey;
      }
    /* else if we're a right child page */
    } else if( pnParentMaxKey ){
      if( nMinKey <= *pnParentMaxKey ){
        checkAppendMsg(pCheck, zContext, 
            "Rowid %lld out of order (min less than parent max of %lld)",
            nMinKey, *pnParentMaxKey);
      }
    }
  }

  /* Check for complete coverage of the page
  */
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  hit = sqlite4PageMalloc( pBt->pageSize );
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);
    nCell = get2byte(&data[hdr+3]);
    cellStart = hdr + 12 - 4*pPage->leaf;
    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
      if( (int)(pc+size-1)>=usableSize ){
        checkAppendMsg(pCheck, 0, 
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
      for(j=i+size-1; j>=i; j--) hit[j]++;
      j = get2byte(&data[i]);
      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck, 0,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck, 0, 
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite4PageFree(hit);
  releasePage(pPage);
  return depth+1;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/*
** This routine does a complete check of the given BTree file.  aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table.  nRoot is the number of entries in aRoot.
**
** A read-only or read-write transaction must be opened before calling
** this function.
**
** Write the number of error seen in *pnErr.  Except for some memory
** allocation errors,  an error message held in memory obtained from
** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
** returned.  If a memory allocation error occurs, NULL is returned.
*/
char *sqlite4BtreeIntegrityCheck(
  Btree *p,     /* The btree to be checked */
  int *aRoot,   /* An array of root pages numbers for individual trees */
  int nRoot,    /* Number of entries in aRoot[] */
  int mxErr,    /* Stop reporting errors after this many */
  int *pnErr    /* Write number of errors seen to this variable */
){
  Pgno i;
  int nRef;
  IntegrityCk sCheck;
  BtShared *pBt = p->pBt;
  char zErr[100];

  sqlite4BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
  nRef = sqlite4PagerRefcount(pBt->pPager);
  sCheck.pBt = pBt;
  sCheck.pPager = pBt->pPager;
  sCheck.nPage = btreePagecount(sCheck.pBt);
  sCheck.mxErr = mxErr;
  sCheck.nErr = 0;
  sCheck.mallocFailed = 0;
  *pnErr = 0;
  if( sCheck.nPage==0 ){
    sqlite4BtreeLeave(p);
    return 0;
  }
  sCheck.anRef = sqlite4Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  if( !sCheck.anRef ){
    *pnErr = 1;
    sqlite4BtreeLeave(p);
    return 0;
  }
  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  i = PENDING_BYTE_PAGE(pBt);
  if( i<=sCheck.nPage ){
    sCheck.anRef[i] = 1;
  }
  sqlite4StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  sCheck.errMsg.useMalloc = 2;

  /* Check the integrity of the freelist
  */
  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");

  /* Check all the tables.
  */
  for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
    if( aRoot[i]==0 ) continue;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( pBt->autoVacuum && aRoot[i]>1 ){
      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
    }
#endif
    checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
  }

  /* Make sure every page in the file is referenced
  */
  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
#ifdef SQLITE_OMIT_AUTOVACUUM
    if( sCheck.anRef[i]==0 ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
#else
    /* If the database supports auto-vacuum, make sure no tables contain
    ** references to pointer-map pages.
    */
    if( sCheck.anRef[i]==0 && 
       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
    }
    if( sCheck.anRef[i]!=0 && 
       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
    }
#endif
  }

  /* Make sure this analysis did not leave any unref() pages.
  ** This is an internal consistency check; an integrity check
  ** of the integrity check.
  */
  if( NEVER(nRef != sqlite4PagerRefcount(pBt->pPager)) ){
    checkAppendMsg(&sCheck, 0, 
      "Outstanding page count goes from %d to %d during this analysis",
      nRef, sqlite4PagerRefcount(pBt->pPager)
    );
  }

  /* Clean  up and report errors.
  */
  sqlite4BtreeLeave(p);
  sqlite4_free(sCheck.anRef);
  if( sCheck.mallocFailed ){
    sqlite4StrAccumReset(&sCheck.errMsg);
    *pnErr = sCheck.nErr+1;
    return 0;
  }
  *pnErr = sCheck.nErr;
  if( sCheck.nErr==0 ) sqlite4StrAccumReset(&sCheck.errMsg);
  return sqlite4StrAccumFinish(&sCheck.errMsg);
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/*
** Return the full pathname of the underlying database file.
**
** The pager filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite4BtreeGetFilename(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite4PagerFilename(p->pBt->pPager);
}

/*
** Return the pathname of the journal file for this database. The return
** value of this routine is the same regardless of whether the journal file
** has been created or not.
**
** The pager journal filename is invariant as long as the pager is
** open so it is safe to access without the BtShared mutex.
*/
const char *sqlite4BtreeGetJournalname(Btree *p){
  assert( p->pBt->pPager!=0 );
  return sqlite4PagerJournalname(p->pBt->pPager);
}

/*
** Return non-zero if a transaction is active.
*/
int sqlite4BtreeIsInTrans(Btree *p){
  assert( p==0 || sqlite4_mutex_held(p->db->mutex) );
  return (p && (p->inTrans==TRANS_WRITE));
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on the Btree passed as the first argument.
**
** Return SQLITE_LOCKED if this or any other connection has an open 
** transaction on the shared-cache the argument Btree is connected to.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite4BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;
  if( p ){
    BtShared *pBt = p->pBt;
    sqlite4BtreeEnter(p);
    if( pBt->inTransaction!=TRANS_NONE ){
      rc = SQLITE_LOCKED;
    }else{
      rc = sqlite4PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
    }
    sqlite4BtreeLeave(p);
  }
  return rc;
}
#endif

/*
** Return non-zero if a read (or write) transaction is active.
*/
int sqlite4BtreeIsInReadTrans(Btree *p){
  assert( p );
  assert( sqlite4_mutex_held(p->db->mutex) );
  return p->inTrans!=TRANS_NONE;
}

int sqlite4BtreeIsInBackup(Btree *p){
  assert( p );
  assert( sqlite4_mutex_held(p->db->mutex) );
  return p->nBackup!=0;
}

/*
** This function returns a pointer to a blob of memory associated with
** a single shared-btree. The memory is used by client code for its own
** purposes (for example, to store a high-level schema associated with 
** the shared-btree). The btree layer manages reference counting issues.
**
** The first time this is called on a shared-btree, nBytes bytes of memory
** are allocated, zeroed, and returned to the caller. For each subsequent 
** call the nBytes parameter is ignored and a pointer to the same blob
** of memory returned. 
**
** If the nBytes parameter is 0 and the blob of memory has not yet been
** allocated, a null pointer is returned. If the blob has already been
** allocated, it is returned as normal.
**
** Just before the shared-btree is closed, the function passed as the 
** xFree argument when the memory allocation was made is invoked on the 
** blob of allocated memory. The xFree function should not call sqlite4_free()
** on the memory, the btree layer does that.
*/
void *sqlite4BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  BtShared *pBt = p->pBt;
  sqlite4BtreeEnter(p);
  if( !pBt->pSchema && nBytes ){
    pBt->pSchema = sqlite4DbMallocZero(0, nBytes);
    pBt->xFreeSchema = xFree;
  }
  sqlite4BtreeLeave(p);
  return pBt->pSchema;
}

/*
** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared 
** btree as the argument handle holds an exclusive lock on the 
** sqlite_master table. Otherwise SQLITE_OK.
*/
int sqlite4BtreeSchemaLocked(Btree *p){
  int rc;
  assert( sqlite4_mutex_held(p->db->mutex) );
  sqlite4BtreeEnter(p);
  rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
  assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
  sqlite4BtreeLeave(p);
  return rc;
}


#ifndef SQLITE_OMIT_SHARED_CACHE
/*
** Obtain a lock on the table whose root page is iTab.  The
** lock is a write lock if isWritelock is true or a read lock
** if it is false.
*/
int sqlite4BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  int rc = SQLITE_OK;
  assert( p->inTrans!=TRANS_NONE );
  if( p->sharable ){
    u8 lockType = READ_LOCK + isWriteLock;
    assert( READ_LOCK+1==WRITE_LOCK );
    assert( isWriteLock==0 || isWriteLock==1 );

    sqlite4BtreeEnter(p);
    rc = querySharedCacheTableLock(p, iTab, lockType);
    if( rc==SQLITE_OK ){
      rc = setSharedCacheTableLock(p, iTab, lockType);
    }
    sqlite4BtreeLeave(p);
  }
  return rc;
}
#endif

#ifndef SQLITE_OMIT_INCRBLOB
/*
** Argument pCsr must be a cursor opened for writing on an 
** INTKEY table currently pointing at a valid table entry. 
** This function modifies the data stored as part of that entry.
**
** Only the data content may only be modified, it is not possible to 
** change the length of the data stored. If this function is called with
** parameters that attempt to write past the end of the existing data,
** no modifications are made and SQLITE_CORRUPT is returned.
*/
int sqlite4BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  int rc;
  assert( cursorHoldsMutex(pCsr) );
  assert( sqlite4_mutex_held(pCsr->pBtree->db->mutex) );
  assert( pCsr->isIncrblobHandle );

  rc = restoreCursorPosition(pCsr);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  if( pCsr->eState!=CURSOR_VALID ){
    return SQLITE_ABORT;
  }

  /* Check some assumptions: 
  **   (a) the cursor is open for writing,
  **   (b) there is a read/write transaction open,
  **   (c) the connection holds a write-lock on the table (if required),
  **   (d) there are no conflicting read-locks, and
  **   (e) the cursor points at a valid row of an intKey table.
  */
  if( !pCsr->wrFlag ){
    return SQLITE_READONLY;
  }
  assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
              && pCsr->pBt->inTransaction==TRANS_WRITE );
  assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
  assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
  assert( pCsr->apPage[pCsr->iPage]->intKey );

  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
}

/* 
** Set a flag on this cursor to cache the locations of pages from the 
** overflow list for the current row. This is used by cursors opened
** for incremental blob IO only.
**
** This function sets a flag only. The actual page location cache
** (stored in BtCursor.aOverflow[]) is allocated and used by function
** accessPayload() (the worker function for sqlite4BtreeData() and
** sqlite4BtreePutData()).
*/
void sqlite4BtreeCacheOverflow(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( sqlite4_mutex_held(pCur->pBtree->db->mutex) );
  invalidateOverflowCache(pCur);
  pCur->isIncrblobHandle = 1;
}
#endif

/*
** Set both the "read version" (single byte at byte offset 18) and 
** "write version" (single byte at byte offset 19) fields in the database
** header to iVersion.
*/
int sqlite4BtreeSetVersion(Btree *pBtree, int iVersion){
  BtShared *pBt = pBtree->pBt;
  int rc;                         /* Return code */
 
  assert( iVersion==1 || iVersion==2 );

  /* If setting the version fields to 1, do not automatically open the
  ** WAL connection, even if the version fields are currently set to 2.
  */
  pBt->btsFlags &= ~BTS_NO_WAL;
  if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;

  rc = sqlite4BtreeBeginTrans(pBtree, 0);
  if( rc==SQLITE_OK ){
    u8 *aData = pBt->pPage1->aData;
    if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
      rc = sqlite4BtreeBeginTrans(pBtree, 2);
      if( rc==SQLITE_OK ){
        rc = sqlite4PagerWrite(pBt->pPage1->pDbPage);
        if( rc==SQLITE_OK ){
          aData[18] = (u8)iVersion;
          aData[19] = (u8)iVersion;
        }
      }
    }
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted src/btree.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite B-Tree file
** subsystem.  See comments in the source code for a detailed description
** of what each interface routine does.
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
#define SQLITE_N_BTREE_META 10

/*
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
*/
#ifndef SQLITE_DEFAULT_AUTOVACUUM
  #define SQLITE_DEFAULT_AUTOVACUUM 0
#endif

#define BTREE_AUTOVACUUM_NONE 0        /* Do not do auto-vacuum */
#define BTREE_AUTOVACUUM_FULL 1        /* Do full auto-vacuum */
#define BTREE_AUTOVACUUM_INCR 2        /* Incremental vacuum */

/*
** Forward declarations of structure
*/
typedef struct Btree Btree;
typedef struct BtCursor BtCursor;
typedef struct BtShared BtShared;


int sqlite4BtreeOpen(
  sqlite4_vfs *pVfs,       /* VFS to use with this b-tree */
  const char *zFilename,   /* Name of database file to open */
  sqlite4 *db,             /* Associated database connection */
  Btree **ppBtree,         /* Return open Btree* here */
  int flags,               /* Flags */
  int vfsFlags             /* Flags passed through to VFS open */
);

/* The flags parameter to sqlite4BtreeOpen can be the bitwise or of the
** following values.
**
** NOTE:  These values must match the corresponding PAGER_ values in
** pager.h.
*/
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

int sqlite4BtreeClose(Btree*);
int sqlite4BtreeSetCacheSize(Btree*,int);
int sqlite4BtreeSetSafetyLevel(Btree*,int,int,int);
int sqlite4BtreeSyncDisabled(Btree*);
int sqlite4BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
int sqlite4BtreeGetPageSize(Btree*);
int sqlite4BtreeMaxPageCount(Btree*,int);
u32 sqlite4BtreeLastPage(Btree*);
int sqlite4BtreeSecureDelete(Btree*,int);
int sqlite4BtreeGetReserve(Btree*);
int sqlite4BtreeSetAutoVacuum(Btree *, int);
int sqlite4BtreeGetAutoVacuum(Btree *);
int sqlite4BtreeBeginTrans(Btree*,int);
int sqlite4BtreeCommitPhaseOne(Btree*, const char *zMaster);
int sqlite4BtreeCommitPhaseTwo(Btree*, int);
int sqlite4BtreeCommit(Btree*);
int sqlite4BtreeRollback(Btree*);
int sqlite4BtreeBeginStmt(Btree*,int);
int sqlite4BtreeCreateTable(Btree*, int*, int flags);
int sqlite4BtreeIsInTrans(Btree*);
int sqlite4BtreeIsInReadTrans(Btree*);
int sqlite4BtreeIsInBackup(Btree*);
void *sqlite4BtreeSchema(Btree *, int, void(*)(void *));
int sqlite4BtreeSchemaLocked(Btree *pBtree);
int sqlite4BtreeLockTable(Btree *pBtree, int iTab, u8 isWriteLock);
int sqlite4BtreeSavepoint(Btree *, int, int);

const char *sqlite4BtreeGetFilename(Btree *);
const char *sqlite4BtreeGetJournalname(Btree *);
int sqlite4BtreeCopyFile(Btree *, Btree *);

int sqlite4BtreeIncrVacuum(Btree *);

/* The flags parameter to sqlite4BtreeCreateTable can be the bitwise OR
** of the flags shown below.
**
** Every SQLite table must have either BTREE_INTKEY or BTREE_BLOBKEY set.
** With BTREE_INTKEY, the table key is a 64-bit integer and arbitrary data
** is stored in the leaves.  (BTREE_INTKEY is used for SQL tables.)  With
** BTREE_BLOBKEY, the key is an arbitrary BLOB and no content is stored
** anywhere - the key is the content.  (BTREE_BLOBKEY is used for SQL
** indices.)
*/
#define BTREE_INTKEY     1    /* Table has only 64-bit signed integer keys */
#define BTREE_BLOBKEY    2    /* Table has keys only - no data */

int sqlite4BtreeDropTable(Btree*, int, int*);
int sqlite4BtreeClearTable(Btree*, int, int*);
void sqlite4BtreeTripAllCursors(Btree*, int);

void sqlite4BtreeGetMeta(Btree *pBtree, int idx, u32 *pValue);
int sqlite4BtreeUpdateMeta(Btree*, int idx, u32 value);

/*
** The second parameter to sqlite4BtreeGetMeta or sqlite4BtreeUpdateMeta
** should be one of the following values. The integer values are assigned 
** to constants so that the offset of the corresponding field in an
** SQLite database header may be found using the following formula:
**
**   offset = 36 + (idx * 4)
**
** For example, the free-page-count field is located at byte offset 36 of
** the database file header. The incr-vacuum-flag field is located at
** byte offset 64 (== 36+4*7).
*/
#define BTREE_FREE_PAGE_COUNT     0
#define BTREE_SCHEMA_VERSION      1
#define BTREE_FILE_FORMAT         2
#define BTREE_DEFAULT_CACHE_SIZE  3
#define BTREE_LARGEST_ROOT_PAGE   4
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7

int sqlite4BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
int sqlite4BtreeCursorSize(void);
void sqlite4BtreeCursorZero(BtCursor*);

int sqlite4BtreeCloseCursor(BtCursor*);
int sqlite4BtreeMovetoUnpacked(
  BtCursor*,
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
  int *pRes
);
int sqlite4BtreeCursorHasMoved(BtCursor*, int*);
int sqlite4BtreeDelete(BtCursor*);
int sqlite4BtreeInsert(BtCursor*, const void *pKey, i64 nKey,
                                  const void *pData, int nData,
                                  int nZero, int bias, int seekResult);
int sqlite4BtreeFirst(BtCursor*, int *pRes);
int sqlite4BtreeLast(BtCursor*, int *pRes);
int sqlite4BtreeNext(BtCursor*, int *pRes);
int sqlite4BtreeEof(BtCursor*);
int sqlite4BtreePrevious(BtCursor*, int *pRes);
int sqlite4BtreeKeySize(BtCursor*, i64 *pSize);
int sqlite4BtreeKey(BtCursor*, u32 offset, u32 amt, void*);
const void *sqlite4BtreeKeyFetch(BtCursor*, int *pAmt);
const void *sqlite4BtreeDataFetch(BtCursor*, int *pAmt);
int sqlite4BtreeDataSize(BtCursor*, u32 *pSize);
int sqlite4BtreeData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite4BtreeSetCachedRowid(BtCursor*, sqlite4_int64);
sqlite4_int64 sqlite4BtreeGetCachedRowid(BtCursor*);

char *sqlite4BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
struct Pager *sqlite4BtreePager(Btree*);

int sqlite4BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
void sqlite4BtreeCacheOverflow(BtCursor *);
void sqlite4BtreeClearCursor(BtCursor *);

int sqlite4BtreeSetVersion(Btree *pBt, int iVersion);

#ifndef NDEBUG
int sqlite4BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
int sqlite4BtreeCount(BtCursor *, i64 *);
#endif

#ifdef SQLITE_TEST
int sqlite4BtreeCursorInfo(BtCursor*, int*, int);
void sqlite4BtreeCursorList(Btree*);
#endif

#ifndef SQLITE_OMIT_WAL
  int sqlite4BtreeCheckpoint(Btree*, int, int *, int *);
#endif

/*
** If we are not using shared cache, then there is no need to
** use mutexes to access the BtShared structures.  So make the
** Enter and Leave procedures no-ops.
*/
#ifndef SQLITE_OMIT_SHARED_CACHE
  void sqlite4BtreeEnter(Btree*);
  void sqlite4BtreeEnterAll(sqlite4*);
#else
# define sqlite4BtreeEnter(X) 
# define sqlite4BtreeEnterAll(X)
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE
  int sqlite4BtreeSharable(Btree*);
  void sqlite4BtreeLeave(Btree*);
  void sqlite4BtreeEnterCursor(BtCursor*);
  void sqlite4BtreeLeaveCursor(BtCursor*);
  void sqlite4BtreeLeaveAll(sqlite4*);
#ifndef NDEBUG
  /* These routines are used inside assert() statements only. */
  int sqlite4BtreeHoldsMutex(Btree*);
  int sqlite4BtreeHoldsAllMutexes(sqlite4*);
  int sqlite4SchemaMutexHeld(sqlite4*,int,Schema*);
#endif
#else

# define sqlite4BtreeSharable(X) 0
# define sqlite4BtreeLeave(X)
# define sqlite4BtreeEnterCursor(X)
# define sqlite4BtreeLeaveCursor(X)
# define sqlite4BtreeLeaveAll(X)

# define sqlite4BtreeHoldsMutex(X) 1
# define sqlite4BtreeHoldsAllMutexes(X) 1
# define sqlite4SchemaMutexHeld(X,Y,Z) 1
#endif


#endif /* _BTREE_H_ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
































































































































































































































































































































































































































































































Deleted src/btreeInt.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
**   ----------------------------------------------------------------
**   |  Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
**   ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0).  All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1).  All of the keys
** on Ptr(N) and its subpages have values greater than Key(N-1).  And
** so forth.
**
** Finding a particular key requires reading O(log(M)) pages from the 
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate 
** BTrees.  Each BTree is identified by the index of its root page.  The
** key and data for any entry are combined to form the "payload".  A
** fixed amount of payload can be carried directly on the database
** page.  If the payload is larger than the preset amount then surplus
** bytes are stored on overflow pages.  The payload for an entry
** and the preceding pointer are combined to form a "Cell".  Each 
** page has a small header which contains the Ptr(N) pointer and other
** information such as the size of key and data.
**
** FORMAT DETAILS
**
** The file is divided into pages.  The first page is called page 1,
** the second is page 2, and so forth.  A page number of zero indicates
** "no such page".  The page size can be any power of 2 between 512 and 65536.
** Each page can be either a btree page, a freelist page, an overflow
** page, or a pointer-map page.
**
** The first page is always a btree page.  The first 100 bytes of the first
** page contain a special header (the "file header") that describes the file.
** The format of the file header is as follows:
**
**   OFFSET   SIZE    DESCRIPTION
**      0      16     Header string: "SQLite format 4\000"
**     16       2     Page size in bytes.  
**     18       1     File format write version
**     19       1     File format read version
**     20       1     Bytes of unused space at the end of each page
**     21       1     Max embedded payload fraction
**     22       1     Min embedded payload fraction
**     23       1     Min leaf payload fraction
**     24       4     File change counter
**     28       4     Reserved for future use
**     32       4     First freelist page
**     36       4     Number of freelist pages in the file
**     40      60     15 4-byte meta values passed to higher layers
**
**     40       4     Schema cookie
**     44       4     File format of schema layer
**     48       4     Size of page cache
**     52       4     Largest root-page (auto/incr_vacuum)
**     56       4     1=UTF-8 2=UTF16le 3=UTF16be
**     60       4     User version
**     64       4     Incremental vacuum mode
**     68       4     unused
**     72       4     unused
**     76       4     unused
**
** All of the integer values are big-endian (most significant byte first).
**
** The file change counter is incremented when the database is changed
** This counter allows other processes to know when the file has changed
** and thus when they need to flush their cache.
**
** The max embedded payload fraction is the amount of the total usable
** space in a page that can be consumed by a single cell for standard
** B-tree (non-LEAFDATA) tables.  A value of 255 means 100%.  The default
** is to limit the maximum cell size so that at least 4 cells will fit
** on one page.  Thus the default max embedded payload fraction is 64.
**
** If the payload for a cell is larger than the max payload, then extra
** payload is spilled to overflow pages.  Once an overflow page is allocated,
** as many bytes as possible are moved into the overflow pages without letting
** the cell size drop below the min embedded payload fraction.
**
** The min leaf payload fraction is like the min embedded payload fraction
** except that it applies to leaf nodes in a LEAFDATA tree.  The maximum
** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
** not specified in the header.
**
** Each btree pages is divided into three sections:  The header, the
** cell pointer array, and the cell content area.  Page 1 also has a 100-byte
** file header that occurs before the page header.
**
**      |----------------|
**      | file header    |   100 bytes.  Page 1 only.
**      |----------------|
**      | page header    |   8 bytes for leaves.  12 bytes for interior nodes
**      |----------------|
**      | cell pointer   |   |  2 bytes per cell.  Sorted order.
**      | array          |   |  Grows downward
**      |                |   v
**      |----------------|
**      | unallocated    |
**      | space          |
**      |----------------|   ^  Grows upwards
**      | cell content   |   |  Arbitrary order interspersed with freeblocks.
**      | area           |   |  and free space fragments.
**      |----------------|
**
** The page headers looks like this:
**
**   OFFSET   SIZE     DESCRIPTION
**      0       1      Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
**      1       2      byte offset to the first freeblock
**      3       2      number of cells on this page
**      5       2      first byte of the cell content area
**      7       1      number of fragmented free bytes
**      8       4      Right child (the Ptr(N) value).  Omitted on leaves.
**
** The flags define the format of this btree page.  The leaf flag means that
** this page has no children.  The zerodata flag means that this page carries
** only keys and no data.  The intkey flag means that the key is a integer
** which is stored in the key size entry of the cell header rather than in
** the payload area.
**
** The cell pointer array begins on the first byte after the page header.
** The cell pointer array contains zero or more 2-byte numbers which are
** offsets from the beginning of the page to the cell content in the cell
** content area.  The cell pointers occur in sorted order.  The system strives
** to keep free space after the last cell pointer so that new cells can
** be easily added without having to defragment the page.
**
** Cell content is stored at the very end of the page and grows toward the
** beginning of the page.
**
** Unused space within the cell content area is collected into a linked list of
** freeblocks.  Each freeblock is at least 4 bytes in size.  The byte offset
** to the first freeblock is given in the header.  Freeblocks occur in
** increasing order.  Because a freeblock must be at least 4 bytes in size,
** any group of 3 or fewer unused bytes in the cell content area cannot
** exist on the freeblock chain.  A group of 3 or fewer free bytes is called
** a fragment.  The total number of bytes in all fragments is recorded.
** in the page header at offset 7.
**
**    SIZE    DESCRIPTION
**      2     Byte offset of the next freeblock
**      2     Bytes in this freeblock
**
** Cells are of variable length.  Cells are stored in the cell content area at
** the end of the page.  Pointers to the cells are in the cell pointer array
** that immediately follows the page header.  Cells is not necessarily
** contiguous or in order, but cell pointers are contiguous and in order.
**
** Cell content makes use of variable length integers.  A variable
** length integer is 1 to 9 bytes where the lower 7 bits of each 
** byte are used.  The integer consists of all bytes that have bit 8 set and
** the first byte with bit 8 clear.  The most significant byte of the integer
** appears first.  A variable-length integer may not be more than 9 bytes long.
** As a special case, all 8 bytes of the 9th byte are used as data.  This
** allows a 64-bit integer to be encoded in 9 bytes.
**
**    0x00                      becomes  0x00000000
**    0x7f                      becomes  0x0000007f
**    0x81 0x00                 becomes  0x00000080
**    0x82 0x00                 becomes  0x00000100
**    0x80 0x7f                 becomes  0x0000007f
**    0x8a 0x91 0xd1 0xac 0x78  becomes  0x12345678
**    0x81 0x81 0x81 0x81 0x01  becomes  0x10204081
**
** Variable length integers are used for rowids and to hold the number of
** bytes of key and data in a btree cell.
**
** The content of a cell looks like this:
**
**    SIZE    DESCRIPTION
**      4     Page number of the left child. Omitted if leaf flag is set.
**     var    Number of bytes of data. Omitted if the zerodata flag is set.
**     var    Number of bytes of key. Or the key itself if intkey flag is set.
**      *     Payload
**      4     First page of the overflow chain.  Omitted if no overflow
**
** Overflow pages form a linked list.  Each page except the last is completely
** filled with data (pagesize - 4 bytes).  The last page can have as little
** as 1 byte of data.
**
**    SIZE    DESCRIPTION
**      4     Page number of next overflow page
**      *     Data
**
** Freelist pages come in two subtypes: trunk pages and leaf pages.  The
** file header points to the first in a linked list of trunk page.  Each trunk
** page points to multiple leaf pages.  The content of a leaf page is
** unspecified.  A trunk page looks like this:
**
**    SIZE    DESCRIPTION
**      4     Page number of next trunk page
**      4     Number of leaf pointers on this page
**      *     zero or more pages numbers of leaves
*/
#include "sqliteInt.h"


/* The following value is the maximum cell size assuming a maximum page
** size give above.
*/
#define MX_CELL_SIZE(pBt)  ((int)(pBt->pageSize-8))

/* The maximum number of cells on a single page of the database.  This
** assumes a minimum cell size of 6 bytes  (4 bytes for the cell itself
** plus 2 bytes for the index to the cell in the page header).  Such
** small cells will be rare, but they are possible.
*/
#define MX_CELL(pBt) ((pBt->pageSize-8)/6)

/* Forward declarations */
typedef struct MemPage MemPage;
typedef struct BtLock BtLock;

/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
**
** You can change this value at compile-time by specifying a
** -DSQLITE_FILE_HEADER="..." on the compiler command-line.  The
** header must be exactly 16 bytes including the zero-terminator so
** the string itself should be 15 characters long.  If you change
** the header, then your custom library will not be able to read 
** databases generated by the standard tools and the standard tools
** will not be able to read databases created by your custom library.
*/
#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
#  define SQLITE_FILE_HEADER "SQLite format 4"
#endif

/*
** Page type flags.  An ORed combination of these flags appear as the
** first byte of on-disk image of every BTree page.
*/
#define PTF_INTKEY    0x01
#define PTF_ZERODATA  0x02
#define PTF_LEAFDATA  0x04
#define PTF_LEAF      0x08

/*
** As each page of the file is loaded into memory, an instance of the following
** structure is appended and initialized to zero.  This structure stores
** information about the page that is decoded from the raw file page.
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
**
** Access to all fields of this structure is controlled by the mutex
** stored in MemPage.pBt->mutex.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if intkey flag is set */
  u8 leaf;             /* True if leaf flag is set */
  u8 hasData;          /* True if this page stores data */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  u16 maskPage;        /* Mask for page offset */
  struct _OvflCell {   /* Cells that will not fit on aData[] */
    u8 *pCell;          /* Pointers to the body of the overflow cell */
    u16 idx;            /* Insert this cell before idx-th non-overflow cell */
  } aOvfl[5];
  BtShared *pBt;       /* Pointer to BtShared that this page is part of */
  u8 *aData;           /* Pointer to disk image of the page data */
  u8 *aDataEnd;        /* One byte past the end of usable data */
  u8 *aCellIdx;        /* The cell index area */
  DbPage *pDbPage;     /* Pager page handle */
  Pgno pgno;           /* Page number for this page */
};

/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end.  EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE sizeof(MemPage)

/*
** A linked list of the following structures is stored at BtShared.pLock.
** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor 
** is opened on the table with root page BtShared.iTable. Locks are removed
** from this list when a transaction is committed or rolled back, or when
** a btree handle is closed.
*/
struct BtLock {
  Btree *pBtree;        /* Btree handle holding this lock */
  Pgno iTable;          /* Root page of table */
  u8 eLock;             /* READ_LOCK or WRITE_LOCK */
  BtLock *pNext;        /* Next in BtShared.pLock list */
};

/* Candidate values for BtLock.eLock */
#define READ_LOCK     1
#define WRITE_LOCK    2

/* A Btree handle
**
** A database connection contains a pointer to an instance of
** this object for every database file that it has open.  This structure
** is opaque to the database connection.  The database connection cannot
** see the internals of this structure and only deals with pointers to
** this structure.
**
** For some database files, the same underlying database cache might be 
** shared between multiple connections.  In that case, each connection
** has it own instance of this object.  But each instance of this object
** points to the same BtShared object.  The database cache and the
** schema associated with the database file are all contained within
** the BtShared object.
**
** All fields in this structure are accessed under sqlite4.mutex.
** The pBt pointer itself may not be changed while there exists cursors 
** in the referenced BtShared that point back to this Btree since those
** cursors have to go through this Btree to find their BtShared and
** they often do so without holding sqlite4.mutex.
*/
struct Btree {
  sqlite4 *db;       /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with another db */
  u8 locked;         /* True if db currently has pBt locked */
  int wantToLock;    /* Number of nested calls to sqlite4BtreeEnter() */
  int nBackup;       /* Number of backup operations reading this btree */
  Btree *pNext;      /* List of other sharable Btrees from the same db */
  Btree *pPrev;      /* Back pointer of the same list */
#ifndef SQLITE_OMIT_SHARED_CACHE
  BtLock lock;       /* Object used to lock page 1 */
#endif
};

/*
** Btree.inTrans may take one of the following values.
**
** If the shared-data extension is enabled, there may be multiple users
** of the Btree structure. At most one of these may open a write transaction,
** but any number may have active read transactions.
*/
#define TRANS_NONE  0
#define TRANS_READ  1
#define TRANS_WRITE 2

/*
** An instance of this object represents a single database file.
** 
** A single database file can be in use at the same time by two
** or more database connections.  When two or more connections are
** sharing the same database file, each connection has it own
** private Btree object for the file and each of those Btrees points
** to this one BtShared object.  BtShared.nRef is the number of
** connections currently sharing this database file.
**
** Fields in this structure are accessed under the BtShared.mutex
** mutex, except for nRef and pNext which are accessed under the
** global SQLITE_MUTEX_STATIC_MASTER mutex.  The pPager field
** may not be modified once it is initially set as long as nRef>0.
** The pSchema field may be set once under BtShared.mutex and
** thereafter is unchanged as long as nRef>0.
**
** isPending:
**
**   If a BtShared client fails to obtain a write-lock on a database
**   table (because there exists one or more read-locks on the table),
**   the shared-cache enters 'pending-lock' state and isPending is
**   set to true.
**
**   The shared-cache leaves the 'pending lock' state when either of
**   the following occur:
**
**     1) The current writer (BtShared.pWriter) concludes its transaction, OR
**     2) The number of locks held by other connections drops to zero.
**
**   while in the 'pending-lock' state, no connection may start a new
**   transaction.
**
**   This feature is included to help prevent writer-starvation.
*/
struct BtShared {
  Pager *pPager;        /* The page cache */
  sqlite4 *db;          /* Database connection currently using this Btree */
  BtCursor *pCursor;    /* A list of all open cursors */
  MemPage *pPage1;      /* First page of the database */
  u8 openFlags;         /* Flags to sqlite4BtreeOpen() */
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
#endif
  u8 inTransaction;     /* Transaction state */
  u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
  u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
  u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
  u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
  u32 pageSize;         /* Total number of bytes on a page */
  u32 usableSize;       /* Number of usable bytes on each page */
  int nTransaction;     /* Number of open transactions (read + write) */
  u32 nPage;            /* Number of pages in the database */
  void *pSchema;        /* Pointer to space allocated by sqlite4BtreeSchema() */
  void (*xFreeSchema)(void*);  /* Destructor for BtShared.pSchema */
  sqlite4_mutex *mutex; /* Non-recursive mutex required to access this object */
  Bitvec *pHasContent;  /* Set of pages moved to free-list this transaction */
#ifndef SQLITE_OMIT_SHARED_CACHE
  int nRef;             /* Number of references to this structure */
  BtShared *pNext;      /* Next on a list of sharable BtShared structs */
  BtLock *pLock;        /* List of locks held on this shared-btree struct */
  Btree *pWriter;       /* Btree with currently open write transaction */
#endif
  u8 *pTmpSpace;        /* BtShared.pageSize bytes of space for tmp use */
};

/*
** Allowed values for BtShared.btsFlags
*/
#define BTS_READ_ONLY        0x0001   /* Underlying file is readonly */
#define BTS_PAGESIZE_FIXED   0x0002   /* Page size can no longer be changed */
#define BTS_SECURE_DELETE    0x0004   /* PRAGMA secure_delete is enabled */
#define BTS_INITIALLY_EMPTY  0x0008   /* Database was empty at trans start */
#define BTS_NO_WAL           0x0010   /* Do not open write-ahead-log files */
#define BTS_EXCLUSIVE        0x0020   /* pWriter has an exclusive lock */
#define BTS_PENDING          0x0040   /* Waiting for read-locks to clear */

/*
** An instance of the following structure is used to hold information
** about a cell.  The parseCellPtr() function fills in this structure
** based on information extract from the raw disk page.
*/
typedef struct CellInfo CellInfo;
struct CellInfo {
  i64 nKey;      /* The key for INTKEY tables, or number of bytes in key */
  u8 *pCell;     /* Pointer to the start of cell content */
  u32 nData;     /* Number of bytes of data */
  u32 nPayload;  /* Total amount of payload */
  u16 nHeader;   /* Size of the cell content header in bytes */
  u16 nLocal;    /* Amount of payload held locally */
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
** this will be declared corrupt. This value is calculated based on a
** maximum database size of 2^31 pages a minimum fanout of 2 for a
** root-node and 3 for all other internal nodes.
**
** If a tree that appears to be taller than this is encountered, it is
** assumed that the database is corrupt.
*/
#define BTCURSOR_MAX_DEPTH 20

/*
** A cursor is a pointer to a particular entry within a particular
** b-tree within a database file.
**
** The entry is identified by its MemPage and the index in
** MemPage.aCell[] of the entry.
**
** A single database file can be shared by two more database connections,
** but cursors cannot be shared.  Each cursor is associated with a
** particular database connection identified BtCursor.pBtree.db.
**
** Fields in this structure are accessed under the BtShared.mutex
** found at self->pBt->mutex. 
*/
struct BtCursor {
  Btree *pBtree;            /* The Btree to which this cursor belongs */
  BtShared *pBt;            /* The BtShared this cursor points to */
  BtCursor *pNext, *pPrev;  /* Forms a linked list of all cursors */
  struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
  Pgno pgnoRoot;            /* The root page of this tree */
  sqlite4_int64 cachedRowid; /* Next rowid cache.  0 means not valid */
  CellInfo info;            /* A parse of the cell we are pointing at */
  i64 nKey;        /* Size of pKey, or last integer key */
  void *pKey;      /* Saved key that was cursor's last known position */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive */
  u8 wrFlag;                /* True if writable */
  u8 atLast;                /* Cursor pointing to the last entry */
  u8 validNKey;             /* True if info.nKey is valid */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_INCRBLOB
  Pgno *aOverflow;          /* Cache of overflow page locations */
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
#endif
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Potential values for BtCursor.eState.
**
** CURSOR_VALID:
**   Cursor points to a valid entry. getPayload() etc. may be called.
**
** CURSOR_INVALID:
**   Cursor does not point to a valid entry. This can happen (for example) 
**   because the table is empty or because BtreeCursorFirst() has not been
**   called.
**
** CURSOR_REQUIRESEEK:
**   The table that this cursor was opened on still exists, but has been 
**   modified since the cursor was last used. The cursor position is saved
**   in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in 
**   this state, restoreCursorPosition() can be called to attempt to
**   seek the cursor to the saved position.
**
** CURSOR_FAULT:
**   A unrecoverable error (an I/O error or a malloc failure) has occurred
**   on a different connection that shares the BtShared cache with this
**   cursor.  The error has left the cache in an inconsistent state.
**   Do nothing else with this cursor.  Any attempt to use the cursor
**   should return the error code stored in BtCursor.skip
*/
#define CURSOR_INVALID           0
#define CURSOR_VALID             1
#define CURSOR_REQUIRESEEK       2
#define CURSOR_FAULT             3

/* 
** The database page the PENDING_BYTE occupies. This page is never used.
*/
# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)

/*
** These macros define the location of the pointer-map entry for a 
** database page. The first argument to each is the number of usable
** bytes on each page of the database (often 1024). The second is the
** page number to look up in the pointer map.
**
** PTRMAP_PAGENO returns the database page number of the pointer-map
** page that stores the required pointer. PTRMAP_PTROFFSET returns
** the offset of the requested map entry.
**
** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
** this test.
*/
#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))

/*
** The pointer map is a lookup table that identifies the parent page for
** each child page in the database file.  The parent page is the page that
** contains a pointer to the child.  Every page in the database contains
** 0 or 1 parent pages.  (In this context 'database page' refers
** to any page that is not part of the pointer map itself.)  Each pointer map
** entry consists of a single byte 'type' and a 4 byte parent page number.
** The PTRMAP_XXX identifiers below are the valid types.
**
** The purpose of the pointer map is to facility moving pages from one
** position in the file to another as part of autovacuum.  When a page
** is moved, the pointer in its parent must be updated to point to the
** new location.  The pointer map is used to locate the parent page quickly.
**
** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
**                  used in this case.
**
** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number 
**                  is not used in this case.
**
** PTRMAP_OVERFLOW1: The database page is the first page in a list of 
**                   overflow pages. The page number identifies the page that
**                   contains the cell with a pointer to this overflow page.
**
** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
**                   overflow pages. The page-number identifies the previous
**                   page in the overflow page list.
**
** PTRMAP_BTREE: The database page is a non-root btree page. The page number
**               identifies the parent page in the btree.
*/
#define PTRMAP_ROOTPAGE 1
#define PTRMAP_FREEPAGE 2
#define PTRMAP_OVERFLOW1 3
#define PTRMAP_OVERFLOW2 4
#define PTRMAP_BTREE 5

/* A bunch of assert() statements to check the transaction state variables
** of handle p (type Btree*) are internally consistent.
*/
#define btreeIntegrity(p) \
  assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
  assert( p->pBt->inTransaction>=p->inTrans ); 


/*
** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
** if the database supports auto-vacuum or not. Because it is used
** within an expression that is an argument to another macro 
** (sqliteMallocRaw), it is not possible to use conditional compilation.
** So, this macro is defined instead.
*/
#ifndef SQLITE_OMIT_AUTOVACUUM
#define ISAUTOVACUUM (pBt->autoVacuum)
#else
#define ISAUTOVACUUM 0
#endif


/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
  BtShared *pBt;    /* The tree being checked out */
  Pager *pPager;    /* The associated pager.  Also accessible by pBt->pPager */
  Pgno nPage;       /* Number of pages in the database */
  int *anRef;       /* Number of times each page is referenced */
  int mxErr;        /* Stop accumulating errors when this reaches zero */
  int nErr;         /* Number of messages written to zErrMsg so far */
  int mallocFailed; /* A memory allocation error has occurred */
  StrAccum errMsg;  /* Accumulate the error message text here */
};

/*
** Routines to read or write a two- and four-byte big-endian integer values.
*/
#define get2byte(x)   ((x)[0]<<8 | (x)[1])
#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
#define get4byte sqlite4Get4byte
#define put4byte sqlite4Put4byte
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/build.c.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    */
    if( pParse->cookieGoto>0 ){
      yDbMask mask;
      int iDb;
      sqlite4VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;
        sqlite4VdbeUsesBtree(v, iDb);
        sqlite4VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        if( db->init.busy==0 ){
          assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
          sqlite4VdbeAddOp3(v, OP_VerifyCookie,
                            iDb, pParse->cookieValue[iDb],
                            db->aDb[iDb].pSchema->iGeneration);
        }
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      {







<


<







149
150
151
152
153
154
155

156
157

158
159
160
161
162
163
164
    */
    if( pParse->cookieGoto>0 ){
      yDbMask mask;
      int iDb;
      sqlite4VdbeJumpHere(v, pParse->cookieGoto-1);
      for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
        if( (mask & pParse->cookieMask)==0 ) continue;

        sqlite4VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
        if( db->init.busy==0 ){

          sqlite4VdbeAddOp3(v, OP_VerifyCookie,
                            iDb, pParse->cookieValue[iDb],
                            db->aDb[iDb].pSchema->iGeneration);
        }
      }
#ifndef SQLITE_OMIT_VIRTUALTABLE
      {
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
Table *sqlite4FindTable(sqlite4 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  int nName;
  assert( zName!=0 );
  nName = sqlite4Strlen30(zName);
  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite4BtreeHoldsAllMutexes(db) );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite4StrICmp(zDatabase, db->aDb[j].zName) ) continue;
    assert( sqlite4SchemaMutexHeld(db, j, 0) );
    p = sqlite4HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
    if( p ) break;
  }
  return p;
}

/*







<



<







265
266
267
268
269
270
271

272
273
274

275
276
277
278
279
280
281
Table *sqlite4FindTable(sqlite4 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  int nName;
  assert( zName!=0 );
  nName = sqlite4Strlen30(zName);
  /* All mutexes are required for schema access.  Make sure we hold them. */

  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
    if( zDatabase!=0 && sqlite4StrICmp(zDatabase, db->aDb[j].zName) ) continue;

    p = sqlite4HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
    if( p ) break;
  }
  return p;
}

/*
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
** using the ATTACH command.
*/
Index *sqlite4FindIndex(sqlite4 *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  int nName = sqlite4Strlen30(zName);
  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDb!=0 || sqlite4BtreeHoldsAllMutexes(db) );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    Schema *pSchema = db->aDb[j].pSchema;
    assert( pSchema );
    if( zDb && sqlite4StrICmp(zDb, db->aDb[j].zName) ) continue;
    assert( sqlite4SchemaMutexHeld(db, j, 0) );
    p = sqlite4HashFind(&pSchema->idxHash, zName, nName);
    if( p ) break;
  }
  return p;
}

/*







<





<







328
329
330
331
332
333
334

335
336
337
338
339

340
341
342
343
344
345
346
** using the ATTACH command.
*/
Index *sqlite4FindIndex(sqlite4 *db, const char *zName, const char *zDb){
  Index *p = 0;
  int i;
  int nName = sqlite4Strlen30(zName);
  /* All mutexes are required for schema access.  Make sure we hold them. */

  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    Schema *pSchema = db->aDb[j].pSchema;
    assert( pSchema );
    if( zDb && sqlite4StrICmp(zDb, db->aDb[j].zName) ) continue;

    p = sqlite4HashFind(&pSchema->idxHash, zName, nName);
    if( p ) break;
  }
  return p;
}

/*
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
** with the index.
*/
void sqlite4UnlinkAndDeleteIndex(sqlite4 *db, int iDb, const char *zIdxName){
  Index *pIndex;
  int len;
  Hash *pHash;

  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  pHash = &db->aDb[iDb].pSchema->idxHash;
  len = sqlite4Strlen30(zIdxName);
  pIndex = sqlite4HashInsert(pHash, zIdxName, len, 0);
  if( ALWAYS(pIndex) ){
    if( pIndex->pTable->pIndex==pIndex ){
      pIndex->pTable->pIndex = pIndex->pNext;
    }else{







<







361
362
363
364
365
366
367

368
369
370
371
372
373
374
** with the index.
*/
void sqlite4UnlinkAndDeleteIndex(sqlite4 *db, int iDb, const char *zIdxName){
  Index *pIndex;
  int len;
  Hash *pHash;


  pHash = &db->aDb[iDb].pSchema->idxHash;
  len = sqlite4Strlen30(zIdxName);
  pIndex = sqlite4HashInsert(pHash, zIdxName, len, 0);
  if( ALWAYS(pIndex) ){
    if( pIndex->pTable->pIndex==pIndex ){
      pIndex->pTable->pIndex = pIndex->pNext;
    }else{
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
void sqlite4ResetInternalSchema(sqlite4 *db, int iDb){
  int i, j;
  assert( iDb<db->nDb );

  if( iDb>=0 ){
    /* Case 1:  Reset the single schema identified by iDb */
    Db *pDb = &db->aDb[iDb];
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    assert( pDb->pSchema!=0 );
    sqlite4SchemaClear(pDb->pSchema);

    /* If any database other than TEMP is reset, then also reset TEMP
    ** since TEMP might be holding triggers that reference tables in the
    ** other database.
    */
    if( iDb!=1 ){
      pDb = &db->aDb[1];
      assert( pDb->pSchema!=0 );
      sqlite4SchemaClear(pDb->pSchema);
    }
    return;
  }
  /* Case 2 (from here to the end): Reset all schemas for all attached
  ** databases. */
  assert( iDb<0 );
  sqlite4BtreeEnterAll(db);
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      sqlite4SchemaClear(pDb->pSchema);
    }
  }
  db->flags &= ~SQLITE_InternChanges;
  sqlite4VtabUnlockList(db);
  sqlite4BtreeLeaveAll(db);

  /* If one or more of the auxiliary database files has been closed,
  ** then remove them from the auxiliary database list.  We take the
  ** opportunity to do this here since we have just deleted all of the
  ** schema hash tables and therefore do not have to make any changes
  ** to any of those tables.
  */
  for(i=j=2; i<db->nDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pBt==0 ){
      sqlite4DbFree(db, pDb->zName);
      pDb->zName = 0;
      continue;
    }
    if( j<i ){
      db->aDb[j] = db->aDb[i];
    }







<

















<








<









|







400
401
402
403
404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

424
425
426
427
428
429
430
431

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
void sqlite4ResetInternalSchema(sqlite4 *db, int iDb){
  int i, j;
  assert( iDb<db->nDb );

  if( iDb>=0 ){
    /* Case 1:  Reset the single schema identified by iDb */
    Db *pDb = &db->aDb[iDb];

    assert( pDb->pSchema!=0 );
    sqlite4SchemaClear(pDb->pSchema);

    /* If any database other than TEMP is reset, then also reset TEMP
    ** since TEMP might be holding triggers that reference tables in the
    ** other database.
    */
    if( iDb!=1 ){
      pDb = &db->aDb[1];
      assert( pDb->pSchema!=0 );
      sqlite4SchemaClear(pDb->pSchema);
    }
    return;
  }
  /* Case 2 (from here to the end): Reset all schemas for all attached
  ** databases. */
  assert( iDb<0 );

  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      sqlite4SchemaClear(pDb->pSchema);
    }
  }
  db->flags &= ~SQLITE_InternChanges;
  sqlite4VtabUnlockList(db);


  /* If one or more of the auxiliary database files has been closed,
  ** then remove them from the auxiliary database list.  We take the
  ** opportunity to do this here since we have just deleted all of the
  ** schema hash tables and therefore do not have to make any changes
  ** to any of those tables.
  */
  for(i=j=2; i<db->nDb; i++){
    struct Db *pDb = &db->aDb[i];
    if( pDb->pKV==0 ){
      sqlite4DbFree(db, pDb->zName);
      pDb->zName = 0;
      continue;
    }
    if( j<i ){
      db->aDb[j] = db->aDb[i];
    }
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    pNext = pIndex->pNext;
    assert( pIndex->pSchema==pTable->pSchema );
    if( !db || db->pnBytesFreed==0 ){
      char *zName = pIndex->zName; 
      TESTONLY ( Index *pOld = ) sqlite4HashInsert(
	  &pIndex->pSchema->idxHash, zName, sqlite4Strlen30(zName), 0
      );
      assert( db==0 || sqlite4SchemaMutexHeld(db, 0, pIndex->pSchema) );
      assert( pOld==pIndex || pOld==0 );
    }
    freeIndex(db, pIndex);
  }

  /* Delete any foreign keys attached to this table. */
  sqlite4FkDelete(db, pTable);







<







507
508
509
510
511
512
513

514
515
516
517
518
519
520
    pNext = pIndex->pNext;
    assert( pIndex->pSchema==pTable->pSchema );
    if( !db || db->pnBytesFreed==0 ){
      char *zName = pIndex->zName; 
      TESTONLY ( Index *pOld = ) sqlite4HashInsert(
	  &pIndex->pSchema->idxHash, zName, sqlite4Strlen30(zName), 0
      );

      assert( pOld==pIndex || pOld==0 );
    }
    freeIndex(db, pIndex);
  }

  /* Delete any foreign keys attached to this table. */
  sqlite4FkDelete(db, pTable);
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
void sqlite4UnlinkAndDeleteTable(sqlite4 *db, int iDb, const char *zTabName){
  Table *p;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName );
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
  pDb = &db->aDb[iDb];
  p = sqlite4HashInsert(&pDb->pSchema->tblHash, zTabName,
                        sqlite4Strlen30(zTabName),0);
  sqlite4DeleteTable(db, p);
  db->flags |= SQLITE_InternChanges;
}







<







541
542
543
544
545
546
547

548
549
550
551
552
553
554
void sqlite4UnlinkAndDeleteTable(sqlite4 *db, int iDb, const char *zTabName){
  Table *p;
  Db *pDb;

  assert( db!=0 );
  assert( iDb>=0 && iDb<db->nDb );
  assert( zTabName );

  testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
  pDb = &db->aDb[iDb];
  p = sqlite4HashInsert(&pDb->pSchema->tblHash, zTabName,
                        sqlite4Strlen30(zTabName),0);
  sqlite4DeleteTable(db, p);
  db->flags |= SQLITE_InternChanges;
}
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897



898
899
900
901
902
903
904

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    pTable->pSchema->pSeqTab = pTable;
  }
#endif

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
  ** indices to be created and the table record must come before the 
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite4GetVdbe(pParse))!=0 ){
    int j1;
    int fileFormat;
    int reg1, reg2, reg3;
    sqlite4BeginWriteOperation(pParse, 0, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite4VdbeAddOp0(v, OP_VBegin);
    }
#endif

    /* If the file format and encoding in the database have not been set, 
    ** set them now.
    */
    reg1 = pParse->regRowid = ++pParse->nMem;
    reg2 = pParse->regRoot = ++pParse->nMem;
    reg3 = ++pParse->nMem;
    sqlite4VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
    sqlite4VdbeUsesBtree(v, iDb);
    j1 = sqlite4VdbeAddOp1(v, OP_If, reg3);
    fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
                  1 : SQLITE_MAX_FILE_FORMAT;
    sqlite4VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
    sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
    sqlite4VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
    sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
    sqlite4VdbeJumpHere(v, j1);

    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite4EndTable().
    **
    ** The rowid for the new entry is left in register pParse->regRowid.
    ** The root page number of the new table is left in reg pParse->regRoot.
    ** The rowid and root page number values are needed by the code that
    ** sqlite4EndTable will generate.
    */



#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    if( isView || isVirtual ){
      sqlite4VdbeAddOp2(v, OP_Integer, 0, reg2);
    }else
#endif
    {
      sqlite4VdbeAddOp2(v, OP_CreateTable, iDb, reg2);







<













<
<









<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<










>
>
>







828
829
830
831
832
833
834

835
836
837
838
839
840
841
842
843
844
845
846
847


848
849
850
851
852
853
854
855
856
















857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

  /* If this is the magic sqlite_sequence table used by autoincrement,
  ** then record a pointer to this table in the main database structure
  ** so that INSERT can find the table easily.
  */
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){

    pTable->pSchema->pSeqTab = pTable;
  }
#endif

  /* Begin generating the code that will insert the table record into
  ** the SQLITE_MASTER table.  Note in particular that we must go ahead
  ** and allocate the record number for the table entry now.  Before any
  ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
  ** indices to be created and the table record must come before the 
  ** indices.  Hence, the record number for the table must be allocated
  ** now.
  */
  if( !db->init.busy && (v = sqlite4GetVdbe(pParse))!=0 ){


    int reg1, reg2, reg3;
    sqlite4BeginWriteOperation(pParse, 0, iDb);

#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( isVirtual ){
      sqlite4VdbeAddOp0(v, OP_VBegin);
    }
#endif


















    /* This just creates a place-holder record in the sqlite_master table.
    ** The record created does not contain anything yet.  It will be replaced
    ** by the real entry in code generated at sqlite4EndTable().
    **
    ** The rowid for the new entry is left in register pParse->regRowid.
    ** The root page number of the new table is left in reg pParse->regRoot.
    ** The rowid and root page number values are needed by the code that
    ** sqlite4EndTable will generate.
    */
    reg1 = pParse->regRowid = ++pParse->nMem;
    reg2 = pParse->regRoot = ++pParse->nMem;
    reg3 = ++pParse->nMem;
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
    if( isView || isVirtual ){
      sqlite4VdbeAddOp2(v, OP_Integer, 0, reg2);
    }else
#endif
    {
      sqlite4VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite4ChangeCookie(Parse *pParse, int iDb){
  int r1 = sqlite4GetTempReg(pParse);
  sqlite4 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  sqlite4VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
  sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
  sqlite4ReleaseTempReg(pParse, r1);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.







<

|







1273
1274
1275
1276
1277
1278
1279

1280
1281
1282
1283
1284
1285
1286
1287
1288
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32.  So we're safe enough.
*/
void sqlite4ChangeCookie(Parse *pParse, int iDb){
  int r1 = sqlite4GetTempReg(pParse);
  sqlite4 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;

  sqlite4VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
  sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
  sqlite4ReleaseTempReg(pParse, r1);
}

/*
** Measure the number of characters needed to output the given
** identifier.  The number returned includes any quotes used
** but does not include the null terminator.
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->tabFlags & TF_Autoincrement ){
      Db *pDb = &db->aDb[iDb];
      assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
      if( pDb->pSchema->pSeqTab==0 ){
        sqlite4NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite4VdbeAddParseSchemaOp(v, iDb,
               sqlite4MPrintf(db, "tbl_name='%q'", p->zName));
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;
    Schema *pSchema = p->pSchema;
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    pOld = sqlite4HashInsert(&pSchema->tblHash, p->zName,
                             sqlite4Strlen30(p->zName),p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      db->mallocFailed = 1;
      return;
    }







<




















<







1575
1576
1577
1578
1579
1580
1581

1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601

1602
1603
1604
1605
1606
1607
1608

#ifndef SQLITE_OMIT_AUTOINCREMENT
    /* Check to see if we need to create an sqlite_sequence table for
    ** keeping track of autoincrement keys.
    */
    if( p->tabFlags & TF_Autoincrement ){
      Db *pDb = &db->aDb[iDb];

      if( pDb->pSchema->pSeqTab==0 ){
        sqlite4NestedParse(pParse,
          "CREATE TABLE %Q.sqlite_sequence(name,seq)",
          pDb->zName
        );
      }
    }
#endif

    /* Reparse everything to update our internal data structures */
    sqlite4VdbeAddParseSchemaOp(v, iDb,
               sqlite4MPrintf(db, "tbl_name='%q'", p->zName));
  }


  /* Add the table to the in-memory representation of the database.
  */
  if( db->init.busy ){
    Table *pOld;
    Schema *pSchema = p->pSchema;

    pOld = sqlite4HashInsert(&pSchema->tblHash, p->zName,
                             sqlite4Strlen30(p->zName),p);
    if( pOld ){
      assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
      db->mallocFailed = 1;
      return;
    }
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite4DeleteTable(db, pSelTab);
      assert( sqlite4SchemaMutexHeld(db, 0, pTable->pSchema) );
      pTable->pSchema->flags |= DB_UnresetViews;
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite4SelectDelete(db, pSel);
  } else {
    nErr++;
  }
#endif /* SQLITE_OMIT_VIEW */
  return nErr;  
}
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite4 *db, int idx){
  HashElem *i;
  assert( sqlite4SchemaMutexHeld(db, idx, 0) );
  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteDeleteColumnNames(db, pTab);
      pTab->aCol = 0;
      pTab->nCol = 0;







<




















<







1779
1780
1781
1782
1783
1784
1785

1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805

1806
1807
1808
1809
1810
1811
1812
    if( pSelTab ){
      assert( pTable->aCol==0 );
      pTable->nCol = pSelTab->nCol;
      pTable->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite4DeleteTable(db, pSelTab);

      pTable->pSchema->flags |= DB_UnresetViews;
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite4SelectDelete(db, pSel);
  } else {
    nErr++;
  }
#endif /* SQLITE_OMIT_VIEW */
  return nErr;  
}
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifndef SQLITE_OMIT_VIEW
/*
** Clear the column names from every VIEW in database idx.
*/
static void sqliteViewResetAll(sqlite4 *db, int idx){
  HashElem *i;

  if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    if( pTab->pSelect ){
      sqliteDeleteColumnNames(db, pTab);
      pTab->aCol = 0;
      pTab->nCol = 0;
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
      z += n+1;
    }
  }
  pFKey->isDeferred = 0;
  pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
  pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */

  assert( sqlite4SchemaMutexHeld(db, 0, p->pSchema) );
  pNextTo = (FKey *)sqlite4HashInsert(&p->pSchema->fkeyHash, 
      pFKey->zTo, sqlite4Strlen30(pFKey->zTo), (void *)pFKey
  );
  if( pNextTo==pFKey ){
    db->mallocFailed = 1;
    goto fk_end;
  }







<







2145
2146
2147
2148
2149
2150
2151

2152
2153
2154
2155
2156
2157
2158
      z += n+1;
    }
  }
  pFKey->isDeferred = 0;
  pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
  pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */


  pNextTo = (FKey *)sqlite4HashInsert(&p->pSchema->fkeyHash, 
      pFKey->zTo, sqlite4Strlen30(pFKey->zTo), (void *)pFKey
  );
  if( pNextTo==pFKey ){
    db->mallocFailed = 1;
    goto fk_end;
  }
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
** created.  The register specified by memRootPage contains the
** root page number of the index.  If memRootPage is negative, then
** the index already exists and must be cleared before being refilled and
** the root page number of the index is taken from pIndex->tnum.
*/
static void sqlite4RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
#ifdef SQLITE_OMIT_MERGE_SORT







|
|







2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
** created.  The register specified by memRootPage contains the
** root page number of the index.  If memRootPage is negative, then
** the index already exists and must be cleared before being refilled and
** the root page number of the index is taken from pIndex->tnum.
*/
static void sqlite4RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  Table *pTab = pIndex->pTable;  /* The table that is indexed */
  int iTab = pParse->nTab++;     /* Cursor used for pTab */
  int iIdx = pParse->nTab++;     /* Cursor used for pIndex */
  int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
  int addr1;                     /* Address of top of loop */
  int addr2;                     /* Address to jump to for next iteration */
  int tnum;                      /* Root page of index */
  Vdbe *v;                       /* Generate code into this virtual machine */
  KeyInfo *pKey;                 /* KeyInfo for index */
#ifdef SQLITE_OMIT_MERGE_SORT
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{
    sortOrderMask = 0;    /* Ignore DESC */







<







2551
2552
2553
2554
2555
2556
2557

2558
2559
2560
2561
2562
2563
2564
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;


  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
    sortOrderMask = -1;   /* Honor DESC */
  }else{
    sortOrderMask = 0;    /* Ignore DESC */
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( db->init.busy ){
    Index *p;
    assert( sqlite4SchemaMutexHeld(db, 0, pIndex->pSchema) );
    p = sqlite4HashInsert(&pIndex->pSchema->idxHash, 
                          pIndex->zName, sqlite4Strlen30(pIndex->zName),
                          pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      db->mallocFailed = 1;
      goto exit_create_index;







<







2680
2681
2682
2683
2684
2685
2686

2687
2688
2689
2690
2691
2692
2693
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
  */
  if( db->init.busy ){
    Index *p;

    p = sqlite4HashInsert(&pIndex->pSchema->idxHash, 
                          pIndex->zName, sqlite4Strlen30(pIndex->zName),
                          pIndex);
    if( p ){
      assert( p==pIndex );  /* Malloc must have failed */
      db->mallocFailed = 1;
      goto exit_create_index;
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
  sqlite4 *db;
  Vdbe *v;
  int i;

  assert( pParse!=0 );
  db = pParse->db;
  assert( db!=0 );
/*  if( db->aDb[0].pBt==0 ) return; */
  if( sqlite4AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
    return;
  }
  v = sqlite4GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite4VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite4VdbeUsesBtree(v, i);
    }
  }
  sqlite4VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}

/*
** Commit a transaction







<








|







3284
3285
3286
3287
3288
3289
3290

3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
  sqlite4 *db;
  Vdbe *v;
  int i;

  assert( pParse!=0 );
  db = pParse->db;
  assert( db!=0 );

  if( sqlite4AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
    return;
  }
  v = sqlite4GetVdbe(pParse);
  if( !v ) return;
  if( type!=TK_DEFERRED ){
    for(i=0; i<db->nDb; i++){
      sqlite4VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
      sqlite4VdbeUsesStorage(v, i);
    }
  }
  sqlite4VdbeAddOp2(v, OP_AutoCommit, 0, 0);
}

/*
** Commit a transaction
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410

3411
3412

3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432

/*
** Make sure the TEMP database is open and available for use.  Return
** the number of errors.  Leave any error messages in the pParse structure.
*/
int sqlite4OpenTempDatabase(Parse *pParse){
  sqlite4 *db = pParse->db;
  if( db->aDb[1].pBt==0 && !pParse->explain ){
    int rc;
    Btree *pBt;
    static const int flags = 
          SQLITE_OPEN_READWRITE |
          SQLITE_OPEN_CREATE |
          SQLITE_OPEN_EXCLUSIVE |
          SQLITE_OPEN_DELETEONCLOSE |
          SQLITE_OPEN_TEMP_DB;


    rc = sqlite4BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);

    if( rc!=SQLITE_OK ){
      sqlite4ErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }
    sqlite4KVStoreOpen(":memory", &db->aDb[1].pKV);
    db->aDb[1].pBt = pBt;
    assert( db->aDb[1].pSchema );
    if( SQLITE_NOMEM==sqlite4BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
      db->mallocFailed = 1;
      return 1;
    }
  }
  return 0;
}

/*
** Generate VDBE code that will verify the schema cookie and start
** a read-transaction for all named database files.







|

|






>

|
>






<
<

<
<
<
<







3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383


3384




3385
3386
3387
3388
3389
3390
3391

/*
** Make sure the TEMP database is open and available for use.  Return
** the number of errors.  Leave any error messages in the pParse structure.
*/
int sqlite4OpenTempDatabase(Parse *pParse){
  sqlite4 *db = pParse->db;
  if( db->aDb[1].pKV==0 && !pParse->explain ){
    int rc;
#if 0
    static const int flags = 
          SQLITE_OPEN_READWRITE |
          SQLITE_OPEN_CREATE |
          SQLITE_OPEN_EXCLUSIVE |
          SQLITE_OPEN_DELETEONCLOSE |
          SQLITE_OPEN_TEMP_DB;
#endif

    rc = sqlite4KVStoreOpen(db, "temp", ":memory:", &db->aDb[1].pKV,
                            SQLITE_KVOPEN_TEMPORARY);
    if( rc!=SQLITE_OK ){
      sqlite4ErrorMsg(pParse, "unable to open a temporary database "
        "file for storing temporary tables");
      pParse->rc = rc;
      return 1;
    }


    assert( db->aDb[1].pSchema );




  }
  return 0;
}

/*
** Generate VDBE code that will verify the schema cookie and start
** a read-transaction for all named database files.
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
    pToplevel->cookieGoto = sqlite4VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){
    sqlite4 *db = pToplevel->db;
    yDbMask mask;

    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pBt!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    mask = ((yDbMask)1)<<iDb;
    if( (pToplevel->cookieMask & mask)==0 ){
      pToplevel->cookieMask |= mask;
      pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite4OpenTempDatabase(pToplevel);
      }
    }
  }
}

/*
** If argument zDb is NULL, then call sqlite4CodeVerifySchema() for each 
** attached database. Otherwise, invoke it for the database named zDb only.
*/
void sqlite4CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
  sqlite4 *db = pParse->db;
  int i;
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pBt && (!zDb || 0==sqlite4StrICmp(zDb, pDb->zName)) ){
      sqlite4CodeVerifySchema(pParse, i);
    }
  }
}

/*
** Generate VDBE code that prepares for doing an operation that







|

<




















|







3417
3418
3419
3420
3421
3422
3423
3424
3425

3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
    pToplevel->cookieGoto = sqlite4VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  }
  if( iDb>=0 ){
    sqlite4 *db = pToplevel->db;
    yDbMask mask;

    assert( iDb<db->nDb );
    assert( db->aDb[iDb].pKV!=0 || iDb==1 );
    assert( iDb<SQLITE_MAX_ATTACHED+2 );

    mask = ((yDbMask)1)<<iDb;
    if( (pToplevel->cookieMask & mask)==0 ){
      pToplevel->cookieMask |= mask;
      pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
      if( !OMIT_TEMPDB && iDb==1 ){
        sqlite4OpenTempDatabase(pToplevel);
      }
    }
  }
}

/*
** If argument zDb is NULL, then call sqlite4CodeVerifySchema() for each 
** attached database. Otherwise, invoke it for the database named zDb only.
*/
void sqlite4CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
  sqlite4 *db = pParse->db;
  int i;
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pKV && (!zDb || 0==sqlite4StrICmp(zDb, pDb->zName)) ){
      sqlite4CodeVerifySchema(pParse, i);
    }
  }
}

/*
** Generate VDBE code that prepares for doing an operation that
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
static void reindexDatabases(Parse *pParse, char const *zColl){
  Db *pDb;                    /* A single database */
  int iDb;                    /* The database index number */
  sqlite4 *db = pParse->db;   /* The database connection */
  HashElem *k;                /* For looping over tables in pDb */
  Table *pTab;                /* A table in the database */

  assert( sqlite4BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
    assert( pDb!=0 );
    for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
      pTab = (Table*)sqliteHashData(k);
      reindexTable(pParse, pTab, zColl);
    }
  }







<







3561
3562
3563
3564
3565
3566
3567

3568
3569
3570
3571
3572
3573
3574
static void reindexDatabases(Parse *pParse, char const *zColl){
  Db *pDb;                    /* A single database */
  int iDb;                    /* The database index number */
  sqlite4 *db = pParse->db;   /* The database connection */
  HashElem *k;                /* For looping over tables in pDb */
  Table *pTab;                /* A table in the database */


  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
    assert( pDb!=0 );
    for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
      pTab = (Table*)sqliteHashData(k);
      reindexTable(pParse, pTab, zColl);
    }
  }

Changes to src/callback.c.

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
** Free all resources held by the schema structure. The void* argument points
** at a Schema struct. This function does not call sqlite4DbFree(db, ) on the 
** pointer itself, it just cleans up subsidiary resources (i.e. the contents
** of the schema hash tables).
**
** The Schema.cache_size variable is not cleared.
*/
void sqlite4SchemaClear(void *p){
  Hash temp1;
  Hash temp2;
  HashElem *pElem;
  Schema *pSchema = (Schema *)p;

  temp1 = pSchema->tblHash;
  temp2 = pSchema->trigHash;
  sqlite4HashInit(&pSchema->trigHash);
  sqlite4HashClear(&pSchema->idxHash);
  for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
    sqlite4DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));







|



<







401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
** Free all resources held by the schema structure. The void* argument points
** at a Schema struct. This function does not call sqlite4DbFree(db, ) on the 
** pointer itself, it just cleans up subsidiary resources (i.e. the contents
** of the schema hash tables).
**
** The Schema.cache_size variable is not cleared.
*/
void sqlite4SchemaClear(Schema *pSchema){
  Hash temp1;
  Hash temp2;
  HashElem *pElem;


  temp1 = pSchema->tblHash;
  temp2 = pSchema->trigHash;
  sqlite4HashInit(&pSchema->trigHash);
  sqlite4HashClear(&pSchema->idxHash);
  for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
    sqlite4DeleteTrigger(0, (Trigger*)sqliteHashData(pElem));
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  }
}

/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/
Schema *sqlite4SchemaGet(sqlite4 *db, Btree *pBt){
  Schema * p;
  if( pBt ){
    p = (Schema *)sqlite4BtreeSchema(pBt, sizeof(Schema), sqlite4SchemaClear);
  }else{
    p = (Schema *)sqlite4DbMallocZero(0, sizeof(Schema));
  }
  if( !p ){
    db->mallocFailed = 1;
  }else if ( 0==p->file_format ){
    sqlite4HashInit(&p->tblHash);
    sqlite4HashInit(&p->idxHash);
    sqlite4HashInit(&p->trigHash);
    sqlite4HashInit(&p->fkeyHash);
    p->enc = SQLITE_UTF8;
  }
  return p;
}







|

<
<
<
|
<











432
433
434
435
436
437
438
439
440



441

442
443
444
445
446
447
448
449
450
451
452
  }
}

/*
** Find and return the schema associated with a BTree.  Create
** a new one if necessary.
*/
Schema *sqlite4SchemaGet(sqlite4 *db){
  Schema * p;



  p = (Schema *)sqlite4DbMallocZero(0, sizeof(Schema));

  if( !p ){
    db->mallocFailed = 1;
  }else if ( 0==p->file_format ){
    sqlite4HashInit(&p->tblHash);
    sqlite4HashInit(&p->idxHash);
    sqlite4HashInit(&p->trigHash);
    sqlite4HashInit(&p->fkeyHash);
    p->enc = SQLITE_UTF8;
  }
  return p;
}

Changes to src/ctime.c.

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#endif
#ifdef SQLITE_OMIT_FOREIGN_KEY
  "OMIT_FOREIGN_KEY",
#endif
#ifdef SQLITE_OMIT_GET_TABLE
  "OMIT_GET_TABLE",
#endif
#ifdef SQLITE_OMIT_INCRBLOB
  "OMIT_INCRBLOB",
#endif
#ifdef SQLITE_OMIT_INTEGRITY_CHECK
  "OMIT_INTEGRITY_CHECK",
#endif
#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
  "OMIT_LIKE_OPTIMIZATION",
#endif
#ifdef SQLITE_OMIT_LOAD_EXTENSION







<
<
<







235
236
237
238
239
240
241



242
243
244
245
246
247
248
#endif
#ifdef SQLITE_OMIT_FOREIGN_KEY
  "OMIT_FOREIGN_KEY",
#endif
#ifdef SQLITE_OMIT_GET_TABLE
  "OMIT_GET_TABLE",
#endif



#ifdef SQLITE_OMIT_INTEGRITY_CHECK
  "OMIT_INTEGRITY_CHECK",
#endif
#ifdef SQLITE_OMIT_LIKE_OPTIMIZATION
  "OMIT_LIKE_OPTIMIZATION",
#endif
#ifdef SQLITE_OMIT_LOAD_EXTENSION

Changes to src/expr.c.

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite4VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
      if( rMayHaveNull==0 ) sqlite4VdbeChangeP5(v, BTREE_UNORDERED);
      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary







<







1648
1649
1650
1651
1652
1653
1654

1655
1656
1657
1658
1659
1660
1661
      ** SELECT... statement are columns, then numeric affinity is used
      ** if either column has NUMERIC or INTEGER affinity. If neither
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
      ** is used.
      */
      pExpr->iTable = pParse->nTab++;
      addr = sqlite4VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);

      memset(&keyInfo, 0, sizeof(keyInfo));
      keyInfo.nField = 1;

      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* Case 1:     expr IN (SELECT ...)
        **
        ** Generate code to write the results of the select into the temporary

Changes to src/fkey.c.

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
** hash table.
*/
void sqlite4FkDelete(sqlite4 *db, Table *pTab){
  FKey *pFKey;                    /* Iterator variable */
  FKey *pNext;                    /* Copy of pFKey->pNextFrom */

  assert( db==0 || sqlite4SchemaMutexHeld(db, 0, pTab->pSchema) );
  for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){

    /* Remove the FK from the fkeyHash hash table. */
    if( !db || db->pnBytesFreed==0 ){
      if( pFKey->pPrevTo ){
        pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
      }else{







<







1180
1181
1182
1183
1184
1185
1186

1187
1188
1189
1190
1191
1192
1193
** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
** hash table.
*/
void sqlite4FkDelete(sqlite4 *db, Table *pTab){
  FKey *pFKey;                    /* Iterator variable */
  FKey *pNext;                    /* Copy of pFKey->pNextFrom */


  for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){

    /* Remove the FK from the fkeyHash hash table. */
    if( !db || db->pnBytesFreed==0 ){
      if( pFKey->pPrevTo ){
        pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
      }else{

Changes to src/func.c.

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    /* IMP: R-64894-50321 The string "?000" is returned if the argument
    ** is NULL or contains no ASCII alphabetic characters. */
    sqlite4_result_text(context, "?000", 4, SQLITE_STATIC);
  }
}
#endif /* SQLITE_SOUNDEX */

#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite4_context *context, int argc, sqlite4_value **argv){
  const char *zFile = (const char *)sqlite4_value_text(argv[0]);
  const char *zProc;
  sqlite4 *db = sqlite4_context_db_handle(context);







|







1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    /* IMP: R-64894-50321 The string "?000" is returned if the argument
    ** is NULL or contains no ASCII alphabetic characters. */
    sqlite4_result_text(context, "?000", 4, SQLITE_STATIC);
  }
}
#endif /* SQLITE_SOUNDEX */

#if 0 /*ndef SQLITE_OMIT_LOAD_EXTENSION*/
/*
** A function that loads a shared-library extension then returns NULL.
*/
static void loadExt(sqlite4_context *context, int argc, sqlite4_value **argv){
  const char *zFile = (const char *)sqlite4_value_text(argv[0]);
  const char *zProc;
  sqlite4 *db = sqlite4_context_db_handle(context);
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    FUNCTION(changes,            0, 0, 0, changes          ),
    FUNCTION(total_changes,      0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX
    FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
  #endif
  #ifndef SQLITE_OMIT_LOAD_EXTENSION
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */







|







1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
    FUNCTION(changes,            0, 0, 0, changes          ),
    FUNCTION(total_changes,      0, 0, 0, total_changes    ),
    FUNCTION(replace,            3, 0, 0, replaceFunc      ),
    FUNCTION(zeroblob,           1, 0, 0, zeroblobFunc     ),
  #ifdef SQLITE_SOUNDEX
    FUNCTION(soundex,            1, 0, 0, soundexFunc      ),
  #endif
  #if 0 /*ndef SQLITE_OMIT_LOAD_EXTENSION*/
    FUNCTION(load_extension,     1, 0, 0, loadExt          ),
    FUNCTION(load_extension,     2, 0, 0, loadExt          ),
  #endif
    AGGREGATE(sum,               1, 0, 0, sumStep,         sumFinalize    ),
    AGGREGATE(total,             1, 0, 0, sumStep,         totalFinalize    ),
    AGGREGATE(avg,               1, 0, 0, sumStep,         avgFinalize    ),
 /* AGGREGATE(count,             0, 0, 0, countStep,       countFinalize  ), */

Changes to src/insert.c.

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  assert( pParse->pTriggerTab==0 );
  assert( pParse==sqlite4ParseToplevel(pParse) );

  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){
    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;
    assert( sqlite4SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite4OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    sqlite4VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
    addr = sqlite4VdbeCurrentAddr(v);
    sqlite4VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
    sqlite4VdbeAddOp2(v, OP_Rewind, 0, addr+9);
    sqlite4VdbeAddOp3(v, OP_Column, 0, 0, memId);
    sqlite4VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);







<







233
234
235
236
237
238
239

240
241
242
243
244
245
246
  assert( pParse->pTriggerTab==0 );
  assert( pParse==sqlite4ParseToplevel(pParse) );

  assert( v );   /* We failed long ago if this is not so */
  for(p = pParse->pAinc; p; p = p->pNext){
    pDb = &db->aDb[p->iDb];
    memId = p->regCtr;

    sqlite4OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
    sqlite4VdbeAddOp3(v, OP_Null, 0, memId, memId+1);
    addr = sqlite4VdbeCurrentAddr(v);
    sqlite4VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
    sqlite4VdbeAddOp2(v, OP_Rewind, 0, addr+9);
    sqlite4VdbeAddOp3(v, OP_Column, 0, 0, memId);
    sqlite4VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
  for(p = pParse->pAinc; p; p = p->pNext){
    Db *pDb = &db->aDb[p->iDb];
    int j1, j2, j3, j4, j5;
    int iRec;
    int memId = p->regCtr;

    iRec = sqlite4GetTempReg(pParse);
    assert( sqlite4SchemaMutexHeld(db, 0, pDb->pSchema) );
    sqlite4OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    j1 = sqlite4VdbeAddOp1(v, OP_NotNull, memId+1);
    j2 = sqlite4VdbeAddOp0(v, OP_Rewind);
    j3 = sqlite4VdbeAddOp3(v, OP_Column, 0, 0, iRec);
    j4 = sqlite4VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
    sqlite4VdbeAddOp2(v, OP_Next, 0, j3);
    sqlite4VdbeJumpHere(v, j2);







<







284
285
286
287
288
289
290

291
292
293
294
295
296
297
  for(p = pParse->pAinc; p; p = p->pNext){
    Db *pDb = &db->aDb[p->iDb];
    int j1, j2, j3, j4, j5;
    int iRec;
    int memId = p->regCtr;

    iRec = sqlite4GetTempReg(pParse);

    sqlite4OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
    j1 = sqlite4VdbeAddOp1(v, OP_NotNull, memId+1);
    j2 = sqlite4VdbeAddOp0(v, OP_Rewind);
    j3 = sqlite4VdbeAddOp3(v, OP_Column, 0, 0, iRec);
    j4 = sqlite4VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
    sqlite4VdbeAddOp2(v, OP_Next, 0, j3);
    sqlite4VdbeJumpHere(v, j2);

Deleted src/journal.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
** 2007 August 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements a special kind of sqlite4_file object used
** by SQLite to create journal files if the atomic-write optimization
** is enabled.
**
** The distinctive characteristic of this sqlite4_file is that the
** actual on disk file is created lazily. When the file is created,
** the caller specifies a buffer size for an in-memory buffer to
** be used to service read() and write() requests. The actual file
** on disk is not created or populated until either:
**
**   1) The in-memory representation grows too large for the allocated 
**      buffer, or
**   2) The sqlite4JournalCreate() function is called.
*/
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
#include "sqliteInt.h"


/*
** A JournalFile object is a subclass of sqlite4_file used by
** as an open file handle for journal files.
*/
struct JournalFile {
  sqlite4_io_methods *pMethod;    /* I/O methods on journal files */
  int nBuf;                       /* Size of zBuf[] in bytes */
  char *zBuf;                     /* Space to buffer journal writes */
  int iSize;                      /* Amount of zBuf[] currently used */
  int flags;                      /* xOpen flags */
  sqlite4_vfs *pVfs;              /* The "real" underlying VFS */
  sqlite4_file *pReal;            /* The "real" underlying file descriptor */
  const char *zJournal;           /* Name of the journal file */
};
typedef struct JournalFile JournalFile;

/*
** If it does not already exists, create and populate the on-disk file 
** for JournalFile p.
*/
static int createFile(JournalFile *p){
  int rc = SQLITE_OK;
  if( !p->pReal ){
    sqlite4_file *pReal = (sqlite4_file *)&p[1];
    rc = sqlite4OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0);
    if( rc==SQLITE_OK ){
      p->pReal = pReal;
      if( p->iSize>0 ){
        assert(p->iSize<=p->nBuf);
        rc = sqlite4OsWrite(p->pReal, p->zBuf, p->iSize, 0);
      }
    }
  }
  return rc;
}

/*
** Close the file.
*/
static int jrnlClose(sqlite4_file *pJfd){
  JournalFile *p = (JournalFile *)pJfd;
  if( p->pReal ){
    sqlite4OsClose(p->pReal);
  }
  sqlite4_free(p->zBuf);
  return SQLITE_OK;
}

/*
** Read data from the file.
*/
static int jrnlRead(
  sqlite4_file *pJfd,    /* The journal file from which to read */
  void *zBuf,            /* Put the results here */
  int iAmt,              /* Number of bytes to read */
  sqlite_int64 iOfst     /* Begin reading at this offset */
){
  int rc = SQLITE_OK;
  JournalFile *p = (JournalFile *)pJfd;
  if( p->pReal ){
    rc = sqlite4OsRead(p->pReal, zBuf, iAmt, iOfst);
  }else if( (iAmt+iOfst)>p->iSize ){
    rc = SQLITE_IOERR_SHORT_READ;
  }else{
    memcpy(zBuf, &p->zBuf[iOfst], iAmt);
  }
  return rc;
}

/*
** Write data to the file.
*/
static int jrnlWrite(
  sqlite4_file *pJfd,    /* The journal file into which to write */
  const void *zBuf,      /* Take data to be written from here */
  int iAmt,              /* Number of bytes to write */
  sqlite_int64 iOfst     /* Begin writing at this offset into the file */
){
  int rc = SQLITE_OK;
  JournalFile *p = (JournalFile *)pJfd;
  if( !p->pReal && (iOfst+iAmt)>p->nBuf ){
    rc = createFile(p);
  }
  if( rc==SQLITE_OK ){
    if( p->pReal ){
      rc = sqlite4OsWrite(p->pReal, zBuf, iAmt, iOfst);
    }else{
      memcpy(&p->zBuf[iOfst], zBuf, iAmt);
      if( p->iSize<(iOfst+iAmt) ){
        p->iSize = (iOfst+iAmt);
      }
    }
  }
  return rc;
}

/*
** Truncate the file.
*/
static int jrnlTruncate(sqlite4_file *pJfd, sqlite_int64 size){
  int rc = SQLITE_OK;
  JournalFile *p = (JournalFile *)pJfd;
  if( p->pReal ){
    rc = sqlite4OsTruncate(p->pReal, size);
  }else if( size<p->iSize ){
    p->iSize = size;
  }
  return rc;
}

/*
** Sync the file.
*/
static int jrnlSync(sqlite4_file *pJfd, int flags){
  int rc;
  JournalFile *p = (JournalFile *)pJfd;
  if( p->pReal ){
    rc = sqlite4OsSync(p->pReal, flags);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Query the size of the file in bytes.
*/
static int jrnlFileSize(sqlite4_file *pJfd, sqlite_int64 *pSize){
  int rc = SQLITE_OK;
  JournalFile *p = (JournalFile *)pJfd;
  if( p->pReal ){
    rc = sqlite4OsFileSize(p->pReal, pSize);
  }else{
    *pSize = (sqlite_int64) p->iSize;
  }
  return rc;
}

/*
** Table of methods for JournalFile sqlite4_file object.
*/
static struct sqlite4_io_methods JournalFileMethods = {
  1,             /* iVersion */
  jrnlClose,     /* xClose */
  jrnlRead,      /* xRead */
  jrnlWrite,     /* xWrite */
  jrnlTruncate,  /* xTruncate */
  jrnlSync,      /* xSync */
  jrnlFileSize,  /* xFileSize */
  0,             /* xLock */
  0,             /* xUnlock */
  0,             /* xCheckReservedLock */
  0,             /* xFileControl */
  0,             /* xSectorSize */
  0,             /* xDeviceCharacteristics */
  0,             /* xShmMap */
  0,             /* xShmLock */
  0,             /* xShmBarrier */
  0              /* xShmUnmap */
};

/* 
** Open a journal file.
*/
int sqlite4JournalOpen(
  sqlite4_vfs *pVfs,         /* The VFS to use for actual file I/O */
  const char *zName,         /* Name of the journal file */
  sqlite4_file *pJfd,        /* Preallocated, blank file handle */
  int flags,                 /* Opening flags */
  int nBuf                   /* Bytes buffered before opening the file */
){
  JournalFile *p = (JournalFile *)pJfd;
  memset(p, 0, sqlite4JournalSize(pVfs));
  if( nBuf>0 ){
    p->zBuf = sqlite4MallocZero(nBuf);
    if( !p->zBuf ){
      return SQLITE_NOMEM;
    }
  }else{
    return sqlite4OsOpen(pVfs, zName, pJfd, flags, 0);
  }
  p->pMethod = &JournalFileMethods;
  p->nBuf = nBuf;
  p->flags = flags;
  p->zJournal = zName;
  p->pVfs = pVfs;
  return SQLITE_OK;
}

/*
** If the argument p points to a JournalFile structure, and the underlying
** file has not yet been created, create it now.
*/
int sqlite4JournalCreate(sqlite4_file *p){
  if( p->pMethods!=&JournalFileMethods ){
    return SQLITE_OK;
  }
  return createFile((JournalFile *)p);
}

/* 
** Return the number of bytes required to store a JournalFile that uses vfs
** pVfs to create the underlying on-disk files.
*/
int sqlite4JournalSize(sqlite4_vfs *pVfs){
  return (pVfs->szOsFile+sizeof(JournalFile));
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




























































































































































































































































































































































































































































































Changes to src/kvmem.c.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
** A complete in-memory Key/Value tree together with its
** transaction logs is an instance of the following object.
*/
struct KVMem {
  KVStore base;         /* Base class, must be first */
  KVMemNode *pRoot;     /* Root of the tree of content */
  int nTrans;           /* Number of nested option transactions */
  KVMemChng **apLog;    /* Array of transaction logs */
  int nCursor;          /* Number of outstanding cursors */
  int iMagicKVMemBase;  /* Magic number of sanity */
};
#define SQLITE_KVMEMBASE_MAGIC  0xbfcd47d0

/*







|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
** A complete in-memory Key/Value tree together with its
** transaction logs is an instance of the following object.
*/
struct KVMem {
  KVStore base;         /* Base class, must be first */
  KVMemNode *pRoot;     /* Root of the tree of content */
  unsigned openFlags;   /* Flags used at open */
  KVMemChng **apLog;    /* Array of transaction logs */
  int nCursor;          /* Number of outstanding cursors */
  int iMagicKVMemBase;  /* Magic number of sanity */
};
#define SQLITE_KVMEMBASE_MAGIC  0xbfcd47d0

/*
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
}

/*
** Create a new change record
*/
static KVMemChng *kvmemNewChng(KVMem *p, KVMemNode *pNode){
  KVMemChng *pChng;
  assert( p->nTrans>=2 );
  pChng = sqlite4_malloc( sizeof(*pChng) );
  if( pChng ){
    pChng->pNext = p->apLog[p->nTrans-2];
    p->apLog[p->nTrans-2] = pChng;
    pChng->pNode = pNode;
    pChng->oldTrans = pNode->mxTrans;
    pNode->mxTrans = p->nTrans;
    pChng->pData = pNode->pData;
    pNode->pData = 0;
  }
  return pChng;
}

/* Create a new node.
*/
static KVMemNode *kvmemNewNode(
  KVMem *p,
  const KVByteArray *aKey,
  KVSize nKey
){
  KVMemNode *pNode;
  KVMemChng *pChng;
  assert( p->nTrans>=2 );
  pNode = sqlite4_malloc( sizeof(*pNode)+nKey-2 );
  if( pNode ){
    memset(pNode, 0, sizeof(*p));
    memcpy(pNode->aKey, aKey, nKey);
    pNode->nKey = nKey;
    pNode->nRef = 1;
    pChng = kvmemNewChng(p, pNode);
    if( pChng==0 ){
      sqlite4_free(pNode);
      pNode = 0;







|


|
|


|















|


|







298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
}

/*
** Create a new change record
*/
static KVMemChng *kvmemNewChng(KVMem *p, KVMemNode *pNode){
  KVMemChng *pChng;
  assert( p->base.iTransLevel>=2 );
  pChng = sqlite4_malloc( sizeof(*pChng) );
  if( pChng ){
    pChng->pNext = p->apLog[p->base.iTransLevel-2];
    p->apLog[p->base.iTransLevel-2] = pChng;
    pChng->pNode = pNode;
    pChng->oldTrans = pNode->mxTrans;
    pNode->mxTrans = p->base.iTransLevel;
    pChng->pData = pNode->pData;
    pNode->pData = 0;
  }
  return pChng;
}

/* Create a new node.
*/
static KVMemNode *kvmemNewNode(
  KVMem *p,
  const KVByteArray *aKey,
  KVSize nKey
){
  KVMemNode *pNode;
  KVMemChng *pChng;
  assert( p->base.iTransLevel>=2 );
  pNode = sqlite4_malloc( sizeof(*pNode)+nKey-2 );
  if( pNode ){
    memset(pNode, 0, sizeof(*pNode));
    memcpy(pNode->aKey, aKey, nKey);
    pNode->nKey = nKey;
    pNode->nRef = 1;
    pChng = kvmemNewChng(p, pNode);
    if( pChng==0 ){
      sqlite4_free(pNode);
      pNode = 0;
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426




427
428
429
430
431



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491










492
493
494
495
496
497
498
** the transaction level will be equal to iLevel.  The transaction level
** must be at least 1 to read and at least 2 to write.
*/
static int kvmemBegin(KVStore *pKVStore, int iLevel){
  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>0 );
  assert( iLevel==2 || iLevel==p->nTrans+1 );
  if( iLevel>=2 ){
    KVMemChng **apNewLog;
    apNewLog = sqlite4_realloc(p->apLog, sizeof(apNewLog[0])*(iLevel-1) );
    if( apNewLog==0 ) return SQLITE_NOMEM;
    p->apLog = apNewLog;
    p->apLog[iLevel-2] = 0;
  }
  p->nTrans = iLevel;
  return SQLITE_OK;
}

/*
** Commit a transaction or subtransaction.
**
** Make permanent all changes back through the most recent xBegin 
** with the iLevel+1.  If iLevel==0 then make all changes permanent.
** The argument iLevel will always be less than the current transaction
** level when this routine is called.




**
** After this routine returns successfully, the transaction level will be 
** equal to iLevel.
*/
static int kvmemCommit(KVStore *pKVStore, int iLevel){



  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>=0 );
  assert( iLevel<p->nTrans );
  while( p->nTrans>iLevel && p->nTrans>1 ){
    KVMemChng *pChng, *pNext;
    for(pChng=p->apLog[p->nTrans-2]; pChng; pChng=pNext){
      KVMemNode *pNode = pChng->pNode;
      if( pNode->pData ){
        pNode->mxTrans = pChng->oldTrans;
      }else{
        kvmemRemoveNode(p, pNode);
      }
      kvmemDataUnref(pChng->pData);
      pNext = pChng->pNext;
      sqlite4_free(pChng);
    }
    p->apLog[p->nTrans-2] = 0;
    p->nTrans--;
  }
  p->nTrans = iLevel;
  return SQLITE_OK;
}

/*
** Rollback a transaction or subtransaction.
**
** Revert all uncommitted changes back through the most recent xBegin or 
** xCommit with the same iLevel.  If iLevel==0 then back out all uncommited
** changes.
**
** After this routine returns successfully, the transaction level will be
** equal to iLevel.
*/
static int kvmemRollback(KVStore *pKVStore, int iLevel){
  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>=0 );
  assert( iLevel<p->nTrans );
  while( p->nTrans>iLevel && p->nTrans>1 ){
    KVMemChng *pChng, *pNext;
    for(pChng=p->apLog[p->nTrans-2]; pChng; pChng=pNext){
      KVMemNode *pNode = pChng->pNode;
      if( pChng->pData ){
        kvmemDataUnref(pNode->pData);
        pNode->pData = pChng->pData;
        pNode->mxTrans = pChng->oldTrans;
      }else{
        kvmemRemoveNode(p, pNode);
      }
      pNext = pChng->pNext;
      sqlite4_free(pChng);
    }
    p->apLog[p->nTrans-2] = 0;
    p->nTrans--;
  }
  p->nTrans = iLevel;
  return SQLITE_OK;
}












/*
** Implementation of the xReplace(X, aKey, nKey, aData, nData) method.
**
** Insert or replace the entry with the key aKey[0..nKey-1].  The data for
** the new entry is aData[0..nData-1].  Return SQLITE_OK on success or an
** error code if the insert fails.







|







|










>
>
>
>




|
>
>
>



|
|

|










|
|

|

















|
|

|











|
|

|



>
>
>
>
>
>
>
>
>
>







401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
** the transaction level will be equal to iLevel.  The transaction level
** must be at least 1 to read and at least 2 to write.
*/
static int kvmemBegin(KVStore *pKVStore, int iLevel){
  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>0 );
  assert( iLevel==2 || iLevel==p->base.iTransLevel+1 );
  if( iLevel>=2 ){
    KVMemChng **apNewLog;
    apNewLog = sqlite4_realloc(p->apLog, sizeof(apNewLog[0])*(iLevel-1) );
    if( apNewLog==0 ) return SQLITE_NOMEM;
    p->apLog = apNewLog;
    p->apLog[iLevel-2] = 0;
  }
  p->base.iTransLevel = iLevel;
  return SQLITE_OK;
}

/*
** Commit a transaction or subtransaction.
**
** Make permanent all changes back through the most recent xBegin 
** with the iLevel+1.  If iLevel==0 then make all changes permanent.
** The argument iLevel will always be less than the current transaction
** level when this routine is called.
**
** Commit is divided into two phases.  A rollback is still possible after
** phase one completes.  In this implementation, phase one is a no-op since
** phase two cannot fail.
**
** After this routine returns successfully, the transaction level will be 
** equal to iLevel.
*/
static int kvmemCommitPhaseOne(KVStore *pKVStore, int iLevel){
  return SQLITE_OK;
}
static int kvmemCommitPhaseTwo(KVStore *pKVStore, int iLevel){
  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>=0 );
  assert( iLevel<p->base.iTransLevel );
  while( p->base.iTransLevel>iLevel && p->base.iTransLevel>1 ){
    KVMemChng *pChng, *pNext;
    for(pChng=p->apLog[p->base.iTransLevel-2]; pChng; pChng=pNext){
      KVMemNode *pNode = pChng->pNode;
      if( pNode->pData ){
        pNode->mxTrans = pChng->oldTrans;
      }else{
        kvmemRemoveNode(p, pNode);
      }
      kvmemDataUnref(pChng->pData);
      pNext = pChng->pNext;
      sqlite4_free(pChng);
    }
    p->apLog[p->base.iTransLevel-2] = 0;
    p->base.iTransLevel--;
  }
  p->base.iTransLevel = iLevel;
  return SQLITE_OK;
}

/*
** Rollback a transaction or subtransaction.
**
** Revert all uncommitted changes back through the most recent xBegin or 
** xCommit with the same iLevel.  If iLevel==0 then back out all uncommited
** changes.
**
** After this routine returns successfully, the transaction level will be
** equal to iLevel.
*/
static int kvmemRollback(KVStore *pKVStore, int iLevel){
  KVMem *p = (KVMem*)pKVStore;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( iLevel>=0 );
  assert( iLevel<p->base.iTransLevel );
  while( p->base.iTransLevel>iLevel && p->base.iTransLevel>1 ){
    KVMemChng *pChng, *pNext;
    for(pChng=p->apLog[p->base.iTransLevel-2]; pChng; pChng=pNext){
      KVMemNode *pNode = pChng->pNode;
      if( pChng->pData ){
        kvmemDataUnref(pNode->pData);
        pNode->pData = pChng->pData;
        pNode->mxTrans = pChng->oldTrans;
      }else{
        kvmemRemoveNode(p, pNode);
      }
      pNext = pChng->pNext;
      sqlite4_free(pChng);
    }
    p->apLog[p->base.iTransLevel-2] = 0;
    p->base.iTransLevel--;
  }
  p->base.iTransLevel = iLevel;
  return SQLITE_OK;
}

/*
** Revert a transaction back to what it was when it started.
*/
static int kvmemRevert(KVStore *pKVStore, int iLevel){
  int rc = kvmemRollback(pKVStore, iLevel-1);
  if( rc==SQLITE_OK ){
    rc = kvmemBegin(pKVStore, iLevel);
  }
  return rc;
}

/*
** Implementation of the xReplace(X, aKey, nKey, aData, nData) method.
**
** Insert or replace the entry with the key aKey[0..nKey-1].  The data for
** the new entry is aData[0..nData-1].  Return SQLITE_OK on success or an
** error code if the insert fails.
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
  const KVByteArray *aData, KVSize nData
){
  KVMem *p = (KVMem*)pKVStore;
  KVMemNode *pNew, *pNode;
  KVMemData *pData;
  KVMemChng *pChng;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->nTrans>=2 );
  pData = kvmemDataNew(aData, nData);
  if( pData==0 ) return SQLITE_NOMEM;
  if( p->pRoot==0 ){
    pNode = pNew = kvmemNewNode(p, aKey, nKey);
    if( pNew==0 ) goto KVMemReplace_nomem;
    pNew->pUp = 0;
  }else{







|







526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
  const KVByteArray *aData, KVSize nData
){
  KVMem *p = (KVMem*)pKVStore;
  KVMemNode *pNew, *pNode;
  KVMemData *pData;
  KVMemChng *pChng;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->base.iTransLevel>=2 );
  pData = kvmemDataNew(aData, nData);
  if( pData==0 ) return SQLITE_NOMEM;
  if( p->pRoot==0 ){
    pNode = pNew = kvmemNewNode(p, aKey, nKey);
    if( pNew==0 ) goto KVMemReplace_nomem;
    pNew->pUp = 0;
  }else{
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        }else{
          pNode->pAfter = pNew = kvmemNewNode(p, aKey, nKey);
          if( pNew==0 ) goto KVMemReplace_nomem;
          pNew->pUp = pNode;
          break;
        }
      }else{
        if( pNode->mxTrans==p->nTrans ){
          kvmemDataUnref(pNode->pData);
        }else{
          pChng = kvmemNewChng(p, pNode);
          if( pChng==0 ) goto KVMemReplace_nomem;
        }
        pNode->pData = pData;
        return SQLITE_OK;







|







556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        }else{
          pNode->pAfter = pNew = kvmemNewNode(p, aKey, nKey);
          if( pNew==0 ) goto KVMemReplace_nomem;
          pNew->pUp = pNode;
          break;
        }
      }else{
        if( pNode->mxTrans==p->base.iTransLevel ){
          kvmemDataUnref(pNode->pData);
        }else{
          pChng = kvmemNewChng(p, pNode);
          if( pChng==0 ) goto KVMemReplace_nomem;
        }
        pNode->pData = pData;
        return SQLITE_OK;
622
623
624
625
626
627
628

629

630
631
632
633
634
635
636
637
638




639



640










641
642
643
644
645
646

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
  KVCursor *pKVCursor, 
  const KVByteArray *aKey,
  KVSize nKey,
  int direction
){
  KVMemCursor *pCur;
  KVMemNode *pNode;

  int c;


  kvmemReset(pKVCursor);
  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );

  pNode = pCur->pOwner->pRoot;
  while( pNode ){
    c = kvmemKeyCompare(aKey, nKey, pNode->aKey, pNode->nKey);
    if( c==0




     || (c<0 && pNode->pBefore==0 && direction>0)



     || (c>0 && pNode->pAfter==0 && direction<0)










    ){
      pCur->pNode = kvmemNodeRef(pNode);
      pCur->pData = kvmemDataRef(pNode->pData);
      return c==0 ? SQLITE_OK : SQLITE_INEXACT;
    }
    pNode = (c<0) ? pNode->pBefore : pNode->pAfter;

  }
  return SQLITE_NOTFOUND;
}

/*
** Delete the entry that the cursor is pointing to.
**
** Though the entry is "deleted", it still continues to exist as a
** phantom.  Subsequent xNext or xPrev calls will work, as will
** calls to xKey and xData, thought the result from xKey and xData
** are undefined.
*/
static int kvmemDelete(KVCursor *pKVCursor){
  KVMemCursor *pCur;
  KVMemNode *pNode;
  KVMemChng *pChng;
  KVMem *p;

  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );
  p = pCur->pOwner;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->nTrans>=2 );
  pNode = pCur->pNode;
  if( pNode==0 ) return SQLITE_OK;
  if( pNode->pData==0 ) return SQLITE_OK;
  if( pNode->mxTrans<p->nTrans ){
    pChng = kvmemNewChng(p, pNode);
    if( pChng==0 ) return SQLITE_NOMEM;
  }else{
    kvmemDataUnref(pNode->pData);
    pNode->pData = 0;
  }
  return SQLITE_OK;







>

>








|
>
>
>
>
|
>
>
>
|
>
>
>
>
>
>
>
>
>
>
|
|
|
<
|
|
>

|




















|



|







639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
  KVCursor *pKVCursor, 
  const KVByteArray *aKey,
  KVSize nKey,
  int direction
){
  KVMemCursor *pCur;
  KVMemNode *pNode;
  KVMemNode *pBest = 0;
  int c;
  int rc = SQLITE_NOTFOUND;

  kvmemReset(pKVCursor);
  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );

  pNode = pCur->pOwner->pRoot;
  while( pNode ){
    c = kvmemKeyCompare(aKey, nKey, pNode->aKey, pNode->nKey);
    if( c==0 ){
      pBest = pNode;
      rc = SQLITE_OK;
      pNode = 0;
    }else if( c>0 ){
      if( direction<0 ){
        pBest = pNode;
        rc = SQLITE_INEXACT;
      }
      pNode = pNode->pAfter;
    }else{
      if( direction>0 ){
        pBest = pNode;
        rc = SQLITE_INEXACT;
      }
      pNode = pNode->pBefore;
    }
  }
  kvmemNodeUnref(pCur->pNode);
  kvmemDataUnref(pCur->pData);
  if( pBest ){
    pCur->pNode = kvmemNodeRef(pBest);
    pCur->pData = kvmemDataRef(pBest->pData);

  }else{
    pCur->pNode = 0;
    pCur->pData = 0;
  }
  return rc;
}

/*
** Delete the entry that the cursor is pointing to.
**
** Though the entry is "deleted", it still continues to exist as a
** phantom.  Subsequent xNext or xPrev calls will work, as will
** calls to xKey and xData, thought the result from xKey and xData
** are undefined.
*/
static int kvmemDelete(KVCursor *pKVCursor){
  KVMemCursor *pCur;
  KVMemNode *pNode;
  KVMemChng *pChng;
  KVMem *p;

  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );
  p = pCur->pOwner;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->base.iTransLevel>=2 );
  pNode = pCur->pNode;
  if( pNode==0 ) return SQLITE_OK;
  if( pNode->pData==0 ) return SQLITE_OK;
  if( pNode->mxTrans<p->base.iTransLevel ){
    pChng = kvmemNewChng(p, pNode);
    if( pChng==0 ) return SQLITE_NOMEM;
  }else{
    kvmemDataUnref(pNode->pData);
    pNode->pData = 0;
  }
  return SQLITE_OK;
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
  do{
    pNode = kvmemNext(pNode);
  }while( pNode && pNode->pData==0 );
  if( pNode ){
    pCur->pNode = kvmemNodeRef(pNode);
    pCur->pData = kvmemDataRef(pNode->pData);
  }
  return pNode ? SQLITE_OK : SQLITE_DONE;
}

/*
** Move a cursor to the previous non-deleted node.
*/
static int kvmemPrevEntry(KVCursor *pKVCursor){
  KVMemCursor *pCur;
  KVMemNode *pNode;

  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );
  pNode = pCur->pNode;
  kvmemReset(pKVCursor);
  do{
    pNode = kvmemPrev(pNode);
  }while( pNode && pNode->pData==0 );
  if( pNode ){
    pCur->pNode = kvmemNodeRef(pNode);
    pCur->pData = kvmemDataRef(pNode->pData);
  }
  return pNode ? SQLITE_OK : SQLITE_DONE;
}

/*
** Return the key of the node the cursor is pointing to.
*/
static int kvmemKey(
  KVCursor *pKVCursor,         /* The cursor whose key is desired */







|




















|







730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
  do{
    pNode = kvmemNext(pNode);
  }while( pNode && pNode->pData==0 );
  if( pNode ){
    pCur->pNode = kvmemNodeRef(pNode);
    pCur->pData = kvmemDataRef(pNode->pData);
  }
  return pNode ? SQLITE_OK : SQLITE_NOTFOUND;
}

/*
** Move a cursor to the previous non-deleted node.
*/
static int kvmemPrevEntry(KVCursor *pKVCursor){
  KVMemCursor *pCur;
  KVMemNode *pNode;

  pCur = (KVMemCursor*)pKVCursor;
  assert( pCur->iMagicKVMemCur==SQLITE_KVMEMCUR_MAGIC );
  pNode = pCur->pNode;
  kvmemReset(pKVCursor);
  do{
    pNode = kvmemPrev(pNode);
  }while( pNode && pNode->pData==0 );
  if( pNode ){
    pCur->pNode = kvmemNodeRef(pNode);
    pCur->pData = kvmemDataRef(pNode->pData);
  }
  return pNode ? SQLITE_OK : SQLITE_NOTFOUND;
}

/*
** Return the key of the node the cursor is pointing to.
*/
static int kvmemKey(
  KVCursor *pKVCursor,         /* The cursor whose key is desired */
776
777
778
779
780
781
782

783


784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

805

806
807
808
809
810
811
812
813
814
815
816
817

818
819
820
** Destructor for the entire in-memory storage tree.
*/
static int kvmemClose(KVStore *pKVStore){
  KVMem *p = (KVMem*)pKVStore;
  if( p==0 ) return SQLITE_OK;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->nCursor==0 );

  if( p->nTrans ) kvmemCommit(pKVStore, 0);


  sqlite4_free(p->apLog);
  kvmemClearTree(p->pRoot);
  memset(p, 0, sizeof(*p));
  sqlite4_free(p);
  return SQLITE_OK;
}

/* Virtual methods for the in-memory storage engine */
static const KVStoreMethods kvmemMethods = {
  kvmemReplace,
  kvmemOpenCursor,
  kvmemSeek,
  kvmemNextEntry,
  kvmemPrevEntry,
  kvmemDelete,
  kvmemKey,
  kvmemData,
  kvmemReset,
  kvmemCloseCursor,
  kvmemBegin,
  kvmemCommit,

  kvmemRollback,

  kvmemClose
};

/*
** Create a new in-memory storage engine and return a pointer to it.
*/
int sqlite4KVStoreOpenMem(KVStore **ppKVStore){
  KVMem *pNew = sqlite4_malloc( sizeof(*pNew) );
  if( pNew==0 ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(*pNew));
  pNew->base.pStoreVfunc = &kvmemMethods;
  pNew->iMagicKVMemBase = SQLITE_KVMEMBASE_MAGIC;

  *ppKVStore = (KVStore*)pNew;
  return SQLITE_OK;
}







>
|
>
>




















|
>

>






|





>



812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
** Destructor for the entire in-memory storage tree.
*/
static int kvmemClose(KVStore *pKVStore){
  KVMem *p = (KVMem*)pKVStore;
  if( p==0 ) return SQLITE_OK;
  assert( p->iMagicKVMemBase==SQLITE_KVMEMBASE_MAGIC );
  assert( p->nCursor==0 );
  if( p->base.iTransLevel ){
    kvmemCommitPhaseOne(pKVStore, 0);
    kvmemCommitPhaseTwo(pKVStore, 0);
  }
  sqlite4_free(p->apLog);
  kvmemClearTree(p->pRoot);
  memset(p, 0, sizeof(*p));
  sqlite4_free(p);
  return SQLITE_OK;
}

/* Virtual methods for the in-memory storage engine */
static const KVStoreMethods kvmemMethods = {
  kvmemReplace,
  kvmemOpenCursor,
  kvmemSeek,
  kvmemNextEntry,
  kvmemPrevEntry,
  kvmemDelete,
  kvmemKey,
  kvmemData,
  kvmemReset,
  kvmemCloseCursor,
  kvmemBegin,
  kvmemCommitPhaseOne,
  kvmemCommitPhaseTwo,
  kvmemRollback,
  kvmemRevert,
  kvmemClose
};

/*
** Create a new in-memory storage engine and return a pointer to it.
*/
int sqlite4KVStoreOpenMem(KVStore **ppKVStore, unsigned openFlags){
  KVMem *pNew = sqlite4_malloc( sizeof(*pNew) );
  if( pNew==0 ) return SQLITE_NOMEM;
  memset(pNew, 0, sizeof(*pNew));
  pNew->base.pStoreVfunc = &kvmemMethods;
  pNew->iMagicKVMemBase = SQLITE_KVMEMBASE_MAGIC;
  pNew->openFlags = openFlags;
  *ppKVStore = (KVStore*)pNew;
  return SQLITE_OK;
}

Changes to src/legacy.c.

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    nCol = sqlite4_column_count(pStmt);

    while( 1 ){
      int i;
      rc = sqlite4_step(pStmt);

      /* Invoke the callback function if required */
      if( xCallback && (SQLITE_ROW==rc || 
          (SQLITE_DONE==rc && !callbackIsInit
                           && db->flags&SQLITE_NullCallback)) ){
        if( !callbackIsInit ){
          azCols = sqlite4DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
          if( azCols==0 ){
            goto exec_out;
          }
          for(i=0; i<nCol; i++){
            azCols[i] = (char *)sqlite4_column_name(pStmt, i);







|
<
<







66
67
68
69
70
71
72
73


74
75
76
77
78
79
80
    nCol = sqlite4_column_count(pStmt);

    while( 1 ){
      int i;
      rc = sqlite4_step(pStmt);

      /* Invoke the callback function if required */
      if( xCallback && SQLITE_ROW==rc ){


        if( !callbackIsInit ){
          azCols = sqlite4DbMallocZero(db, 2*nCol*sizeof(const char*) + 1);
          if( azCols==0 ){
            goto exec_out;
          }
          for(i=0; i<nCol; i++){
            azCols[i] = (char *)sqlite4_column_name(pStmt, i);

Deleted src/loadext.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
** 2006 June 7
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used to dynamically load extensions into
** the SQLite library.
*/

#ifndef SQLITE_CORE
  #define SQLITE_CORE 1  /* Disable the API redefinition in sqlite4ext.h */
#endif
#include "sqlite4ext.h"
#include "sqliteInt.h"
#include <string.h>

#ifndef SQLITE_OMIT_LOAD_EXTENSION

/*
** Some API routines are omitted when various features are
** excluded from a build of SQLite.  Substitute a NULL pointer
** for any missing APIs.
*/
#ifndef SQLITE_ENABLE_COLUMN_METADATA
# define sqlite4_column_database_name   0
# define sqlite4_column_database_name16 0
# define sqlite4_column_table_name      0
# define sqlite4_column_table_name16    0
# define sqlite4_column_origin_name     0
# define sqlite4_column_origin_name16   0
# define sqlite4_table_column_metadata  0
#endif

#ifdef SQLITE_OMIT_AUTHORIZATION
# define sqlite4_set_authorizer         0
#endif

#ifdef SQLITE_OMIT_UTF16
# define sqlite4_bind_text16            0
# define sqlite4_collation_needed16     0
# define sqlite4_column_decltype16      0
# define sqlite4_column_name16          0
# define sqlite4_column_text16          0
# define sqlite4_complete16             0
# define sqlite4_create_function16      0
# define sqlite4_errmsg16               0
# define sqlite4_open16                 0
# define sqlite4_prepare16              0
# define sqlite4_prepare16_v2           0
# define sqlite4_result_error16         0
# define sqlite4_result_text16          0
# define sqlite4_result_text16be        0
# define sqlite4_result_text16le        0
# define sqlite4_value_text16           0
# define sqlite4_value_text16be         0
# define sqlite4_value_text16le         0
# define sqlite4_column_database_name16 0
# define sqlite4_column_table_name16    0
# define sqlite4_column_origin_name16   0
#endif

#ifdef SQLITE_OMIT_COMPLETE
# define sqlite4_complete 0
# define sqlite4_complete16 0
#endif

#ifdef SQLITE_OMIT_DECLTYPE
# define sqlite4_column_decltype16      0
# define sqlite4_column_decltype        0
#endif

#ifdef SQLITE_OMIT_PROGRESS_CALLBACK
# define sqlite4_progress_handler 0
#endif

#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite4_create_module 0
# define sqlite4_create_module_v2 0
# define sqlite4_declare_vtab 0
# define sqlite4_vtab_config 0
# define sqlite4_vtab_on_conflict 0
#endif

#ifdef SQLITE_OMIT_SHARED_CACHE
# define sqlite4_enable_shared_cache 0
#endif

#ifdef SQLITE_OMIT_TRACE
# define sqlite4_profile       0
# define sqlite4_trace         0
#endif

#ifdef SQLITE_OMIT_GET_TABLE
# define sqlite4_free_table    0
# define sqlite4_get_table     0
#endif

#ifdef SQLITE_OMIT_INCRBLOB
#define sqlite4_bind_zeroblob  0
#define sqlite4_blob_bytes     0
#define sqlite4_blob_close     0
#define sqlite4_blob_open      0
#define sqlite4_blob_read      0
#define sqlite4_blob_write     0
#define sqlite4_blob_reopen    0
#endif

/*
** The following structure contains pointers to all SQLite API routines.
** A pointer to this structure is passed into extensions when they are
** loaded so that the extension can make calls back into the SQLite
** library.
**
** When adding new APIs, add them to the bottom of this structure
** in order to preserve backwards compatibility.
**
** Extensions that use newer APIs should first call the
** sqlite4_libversion_number() to make sure that the API they
** intend to use is supported by the library.  Extensions should
** also check to make sure that the pointer to the function is
** not NULL before calling it.
*/
static const sqlite4_api_routines sqlite4Apis = {
  sqlite4_aggregate_context,
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_aggregate_count,
#else
  0,
#endif
  sqlite4_bind_blob,
  sqlite4_bind_double,
  sqlite4_bind_int,
  sqlite4_bind_int64,
  sqlite4_bind_null,
  sqlite4_bind_parameter_count,
  sqlite4_bind_parameter_index,
  sqlite4_bind_parameter_name,
  sqlite4_bind_text,
  sqlite4_bind_text16,
  sqlite4_bind_value,
  sqlite4_busy_handler,
  sqlite4_busy_timeout,
  sqlite4_changes,
  sqlite4_close,
  sqlite4_collation_needed,
  sqlite4_collation_needed16,
  sqlite4_column_blob,
  sqlite4_column_bytes,
  sqlite4_column_bytes16,
  sqlite4_column_count,
  sqlite4_column_database_name,
  sqlite4_column_database_name16,
  sqlite4_column_decltype,
  sqlite4_column_decltype16,
  sqlite4_column_double,
  sqlite4_column_int,
  sqlite4_column_int64,
  sqlite4_column_name,
  sqlite4_column_name16,
  sqlite4_column_origin_name,
  sqlite4_column_origin_name16,
  sqlite4_column_table_name,
  sqlite4_column_table_name16,
  sqlite4_column_text,
  sqlite4_column_text16,
  sqlite4_column_type,
  sqlite4_column_value,
  sqlite4_commit_hook,
  sqlite4_complete,
  sqlite4_complete16,
  sqlite4_create_collation,
  sqlite4_create_function,
  sqlite4_create_function16,
  sqlite4_create_module,
  sqlite4_data_count,
  sqlite4_db_handle,
  sqlite4_declare_vtab,
  sqlite4_enable_shared_cache,
  sqlite4_errcode,
  sqlite4_errmsg,
  sqlite4_errmsg16,
  sqlite4_exec,
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_expired,
#else
  0,
#endif
  sqlite4_finalize,
  sqlite4_free,
  sqlite4_free_table,
  sqlite4_get_autocommit,
  sqlite4_get_auxdata,
  sqlite4_get_table,
  0,     /* Was sqlite4_global_recover(), but that function is deprecated */
  sqlite4_interrupt,
  sqlite4_last_insert_rowid,
  sqlite4_libversion,
  sqlite4_libversion_number,
  sqlite4_malloc,
  sqlite4_mprintf,
  sqlite4_open,
  sqlite4_open16,
  sqlite4_prepare,
  sqlite4_prepare16,
  sqlite4_profile,
  sqlite4_progress_handler,
  sqlite4_realloc,
  sqlite4_reset,
  sqlite4_result_blob,
  sqlite4_result_double,
  sqlite4_result_error,
  sqlite4_result_error16,
  sqlite4_result_int,
  sqlite4_result_int64,
  sqlite4_result_null,
  sqlite4_result_text,
  sqlite4_result_text16,
  sqlite4_result_text16be,
  sqlite4_result_text16le,
  sqlite4_result_value,
  sqlite4_rollback_hook,
  sqlite4_set_authorizer,
  sqlite4_set_auxdata,
  sqlite4_snprintf,
  sqlite4_step,
  sqlite4_table_column_metadata,
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_thread_cleanup,
#else
  0,
#endif
  sqlite4_total_changes,
  sqlite4_trace,
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_transfer_bindings,
#else
  0,
#endif
  sqlite4_update_hook,
  sqlite4_user_data,
  sqlite4_value_blob,
  sqlite4_value_bytes,
  sqlite4_value_bytes16,
  sqlite4_value_double,
  sqlite4_value_int,
  sqlite4_value_int64,
  sqlite4_value_numeric_type,
  sqlite4_value_text,
  sqlite4_value_text16,
  sqlite4_value_text16be,
  sqlite4_value_text16le,
  sqlite4_value_type,
  sqlite4_vmprintf,
  /*
  ** The original API set ends here.  All extensions can call any
  ** of the APIs above provided that the pointer is not NULL.  But
  ** before calling APIs that follow, extension should check the
  ** sqlite4_libversion_number() to make sure they are dealing with
  ** a library that is new enough to support that API.
  *************************************************************************
  */
  sqlite4_overload_function,

  /*
  ** Added after 3.3.13
  */
  sqlite4_prepare_v2,
  sqlite4_prepare16_v2,
  sqlite4_clear_bindings,

  /*
  ** Added for 3.4.1
  */
  sqlite4_create_module_v2,

  /*
  ** Added for 3.5.0
  */
  sqlite4_bind_zeroblob,
  sqlite4_blob_bytes,
  sqlite4_blob_close,
  sqlite4_blob_open,
  sqlite4_blob_read,
  sqlite4_blob_write,
  sqlite4_file_control,
  sqlite4_memory_highwater,
  sqlite4_memory_used,
#ifdef SQLITE_MUTEX_OMIT
  0, 
  0, 
  0,
  0,
  0,
#else
  sqlite4_mutex_alloc,
  sqlite4_mutex_enter,
  sqlite4_mutex_free,
  sqlite4_mutex_leave,
  sqlite4_mutex_try,
#endif
  sqlite4_open_v2,
  sqlite4_release_memory,
  sqlite4_result_error_nomem,
  sqlite4_result_error_toobig,
  sqlite4_sleep,
  sqlite4_soft_heap_limit,
  sqlite4_vfs_find,
  sqlite4_vfs_register,
  sqlite4_vfs_unregister,

  /*
  ** Added for 3.5.8
  */
  sqlite4_threadsafe,
  sqlite4_result_zeroblob,
  sqlite4_result_error_code,
  sqlite4_test_control,
  sqlite4_randomness,
  sqlite4_context_db_handle,

  /*
  ** Added for 3.6.0
  */
  sqlite4_extended_result_codes,
  sqlite4_limit,
  sqlite4_next_stmt,
  sqlite4_sql,
  sqlite4_status,

  /*
  ** Added for 3.7.4
  */
  sqlite4_backup_finish,
  sqlite4_backup_init,
  sqlite4_backup_pagecount,
  sqlite4_backup_remaining,
  sqlite4_backup_step,
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
  sqlite4_compileoption_get,
  sqlite4_compileoption_used,
#else
  0,
  0,
#endif
  sqlite4_create_function_v2,
  sqlite4_db_config,
  sqlite4_db_mutex,
  sqlite4_db_status,
  sqlite4_extended_errcode,
  sqlite4_log,
  sqlite4_soft_heap_limit64,
  sqlite4_sourceid,
  sqlite4_stmt_status,
  sqlite4_strnicmp,
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
  sqlite4_unlock_notify,
#else
  0,
#endif
#ifndef SQLITE_OMIT_WAL
  sqlite4_wal_autocheckpoint,
  sqlite4_wal_checkpoint,
  sqlite4_wal_hook,
#else
  0,
  0,
  0,
#endif
  sqlite4_blob_reopen,
  sqlite4_vtab_config,
  sqlite4_vtab_on_conflict,
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite4_extension_init) is used.  Use
** of the default name is recommended.
**
** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong.
**
** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with 
** error message text.  The calling function should free this memory
** by calling sqlite4DbFree(db, ).
*/
static int sqlite4LoadExtension(
  sqlite4 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite4_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  sqlite4_vfs *pVfs = db->pVfs;
  void *handle;
  int (*xInit)(sqlite4*,char**,const sqlite4_api_routines*);
  char *zErrmsg = 0;
  void **aHandle;
  int nMsg = 300 + sqlite4Strlen30(zFile);

  if( pzErrMsg ) *pzErrMsg = 0;

  /* Ticket #1863.  To avoid a creating security problems for older
  ** applications that relink against newer versions of SQLite, the
  ** ability to run load_extension is turned off by default.  One
  ** must call sqlite4_enable_load_extension() to turn on extension
  ** loading.  Otherwise you get the following error.
  */
  if( (db->flags & SQLITE_LoadExtension)==0 ){
    if( pzErrMsg ){
      *pzErrMsg = sqlite4_mprintf("not authorized");
    }
    return SQLITE_ERROR;
  }

  if( zProc==0 ){
    zProc = "sqlite4_extension_init";
  }

  handle = sqlite4OsDlOpen(pVfs, zFile);
  if( handle==0 ){
    if( pzErrMsg ){
      *pzErrMsg = zErrmsg = sqlite4_malloc(nMsg);
      if( zErrmsg ){
        sqlite4_snprintf(nMsg, zErrmsg, 
            "unable to open shared library [%s]", zFile);
        sqlite4OsDlError(pVfs, nMsg-1, zErrmsg);
      }
    }
    return SQLITE_ERROR;
  }
  xInit = (int(*)(sqlite4*,char**,const sqlite4_api_routines*))
                   sqlite4OsDlSym(pVfs, handle, zProc);
  if( xInit==0 ){
    if( pzErrMsg ){
      nMsg += sqlite4Strlen30(zProc);
      *pzErrMsg = zErrmsg = sqlite4_malloc(nMsg);
      if( zErrmsg ){
        sqlite4_snprintf(nMsg, zErrmsg,
            "no entry point [%s] in shared library [%s]", zProc,zFile);
        sqlite4OsDlError(pVfs, nMsg-1, zErrmsg);
      }
      sqlite4OsDlClose(pVfs, handle);
    }
    return SQLITE_ERROR;
  }else if( xInit(db, &zErrmsg, &sqlite4Apis) ){
    if( pzErrMsg ){
      *pzErrMsg = sqlite4_mprintf("error during initialization: %s", zErrmsg);
    }
    sqlite4_free(zErrmsg);
    sqlite4OsDlClose(pVfs, handle);
    return SQLITE_ERROR;
  }

  /* Append the new shared library handle to the db->aExtension array. */
  aHandle = sqlite4DbMallocZero(db, sizeof(handle)*(db->nExtension+1));
  if( aHandle==0 ){
    return SQLITE_NOMEM;
  }
  if( db->nExtension>0 ){
    memcpy(aHandle, db->aExtension, sizeof(handle)*db->nExtension);
  }
  sqlite4DbFree(db, db->aExtension);
  db->aExtension = aHandle;

  db->aExtension[db->nExtension++] = handle;
  return SQLITE_OK;
}
int sqlite4_load_extension(
  sqlite4 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite4_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  int rc;
  sqlite4_mutex_enter(db->mutex);
  rc = sqlite4LoadExtension(db, zFile, zProc, pzErrMsg);
  rc = sqlite4ApiExit(db, rc);
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** Call this routine when the database connection is closing in order
** to clean up loaded extensions
*/
void sqlite4CloseExtensions(sqlite4 *db){
  int i;
  assert( sqlite4_mutex_held(db->mutex) );
  for(i=0; i<db->nExtension; i++){
    sqlite4OsDlClose(db->pVfs, db->aExtension[i]);
  }
  sqlite4DbFree(db, db->aExtension);
}

/*
** Enable or disable extension loading.  Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
int sqlite4_enable_load_extension(sqlite4 *db, int onoff){
  sqlite4_mutex_enter(db->mutex);
  if( onoff ){
    db->flags |= SQLITE_LoadExtension;
  }else{
    db->flags &= ~SQLITE_LoadExtension;
  }
  sqlite4_mutex_leave(db->mutex);
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_LOAD_EXTENSION */

/*
** The auto-extension code added regardless of whether or not extension
** loading is supported.  We need a dummy sqlite4Apis pointer for that
** code if regular extension loading is not available.  This is that
** dummy pointer.
*/
#ifdef SQLITE_OMIT_LOAD_EXTENSION
static const sqlite4_api_routines sqlite4Apis = { 0 };
#endif


/*
** The following object holds the list of automatically loaded
** extensions.
**
** This list is shared across threads.  The SQLITE_MUTEX_STATIC_MASTER
** mutex must be held while accessing this list.
*/
typedef struct sqlite4AutoExtList sqlite4AutoExtList;
static SQLITE_WSD struct sqlite4AutoExtList {
  int nExt;              /* Number of entries in aExt[] */          
  void (**aExt)(void);   /* Pointers to the extension init functions */
} sqlite4Autoext = { 0, 0 };

/* The "wsdAutoext" macro will resolve to the autoextension
** state vector.  If writable static data is unsupported on the target,
** we have to locate the state vector at run-time.  In the more common
** case where writable static data is supported, wsdStat can refer directly
** to the "sqlite4Autoext" state vector declared above.
*/
#ifdef SQLITE_OMIT_WSD
# define wsdAutoextInit \
  sqlite4AutoExtList *x = &GLOBAL(sqlite4AutoExtList,sqlite4Autoext)
# define wsdAutoext x[0]
#else
# define wsdAutoextInit
# define wsdAutoext sqlite4Autoext
#endif


/*
** Register a statically linked extension that is automatically
** loaded by every new database connection.
*/
int sqlite4_auto_extension(void (*xInit)(void)){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite4_initialize();
  if( rc ){
    return rc;
  }else
#endif
  {
    int i;
#if SQLITE_THREADSAFE
    sqlite4_mutex *mutex = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
    wsdAutoextInit;
    sqlite4_mutex_enter(mutex);
    for(i=0; i<wsdAutoext.nExt; i++){
      if( wsdAutoext.aExt[i]==xInit ) break;
    }
    if( i==wsdAutoext.nExt ){
      int nByte = (wsdAutoext.nExt+1)*sizeof(wsdAutoext.aExt[0]);
      void (**aNew)(void);
      aNew = sqlite4_realloc(wsdAutoext.aExt, nByte);
      if( aNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        wsdAutoext.aExt = aNew;
        wsdAutoext.aExt[wsdAutoext.nExt] = xInit;
        wsdAutoext.nExt++;
      }
    }
    sqlite4_mutex_leave(mutex);
    assert( (rc&0xff)==rc );
    return rc;
  }
}

/*
** Reset the automatic extension loading mechanism.
*/
void sqlite4_reset_auto_extension(void){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite4_initialize()==SQLITE_OK )
#endif
  {
#if SQLITE_THREADSAFE
    sqlite4_mutex *mutex = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
    wsdAutoextInit;
    sqlite4_mutex_enter(mutex);
    sqlite4_free(wsdAutoext.aExt);
    wsdAutoext.aExt = 0;
    wsdAutoext.nExt = 0;
    sqlite4_mutex_leave(mutex);
  }
}

/*
** Load all automatic extensions.
**
** If anything goes wrong, set an error in the database connection.
*/
void sqlite4AutoLoadExtensions(sqlite4 *db){
  int i;
  int go = 1;
  int rc;
  int (*xInit)(sqlite4*,char**,const sqlite4_api_routines*);

  wsdAutoextInit;
  if( wsdAutoext.nExt==0 ){
    /* Common case: early out without every having to acquire a mutex */
    return;
  }
  for(i=0; go; i++){
    char *zErrmsg;
#if SQLITE_THREADSAFE
    sqlite4_mutex *mutex = sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
    sqlite4_mutex_enter(mutex);
    if( i>=wsdAutoext.nExt ){
      xInit = 0;
      go = 0;
    }else{
      xInit = (int(*)(sqlite4*,char**,const sqlite4_api_routines*))
              wsdAutoext.aExt[i];
    }
    sqlite4_mutex_leave(mutex);
    zErrmsg = 0;
    if( xInit && (rc = xInit(db, &zErrmsg, &sqlite4Apis))!=0 ){
      sqlite4Error(db, rc,
            "automatic extension loading failed: %s", zErrmsg);
      go = 0;
    }
    sqlite4_free(zErrmsg);
  }
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/main.c.

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
  }

  /* Do the rest of the initialization under the recursive mutex so
  ** that we will be able to handle recursive calls into
  ** sqlite4_initialize().  The recursive calls normally come through
  ** sqlite4_os_init() when it invokes sqlite4_vfs_register(), but other
  ** recursive calls might also be possible.
  **
  ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls
  ** to the xInit method, so the xInit method need not be threadsafe.
  **
  ** The following mutex is what serializes access to the appdef pcache xInit
  ** methods.  The sqlite4_pcache_methods.xInit() all is embedded in the
  ** call to sqlite4PcacheInitialize().
  */
  sqlite4_mutex_enter(sqlite4GlobalConfig.pInitMutex);
  if( sqlite4GlobalConfig.isInit==0 && sqlite4GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite4GlobalFunctions);
    sqlite4GlobalConfig.inProgress = 1;
    memset(pHash, 0, sizeof(sqlite4GlobalFunctions));
    sqlite4RegisterGlobalFunctions();
    if( sqlite4GlobalConfig.isPCacheInit==0 ){
      rc = sqlite4PcacheInitialize();
    }
    if( rc==SQLITE_OK ){
      sqlite4GlobalConfig.isPCacheInit = 1;
      rc = sqlite4OsInit();
    }
    if( rc==SQLITE_OK ){
      sqlite4PCacheBufferSetup( sqlite4GlobalConfig.pPage, 
          sqlite4GlobalConfig.szPage, sqlite4GlobalConfig.nPage);
      sqlite4GlobalConfig.isInit = 1;
    }
    sqlite4GlobalConfig.inProgress = 0;
  }
  sqlite4_mutex_leave(sqlite4GlobalConfig.pInitMutex);

  /* Go back under the static mutex and clean up the recursive
  ** mutex to prevent a resource leak.
  */







<
<
<
<
<
<
<







<
<
<
<
<
|
<
<
<
<
<
<







169
170
171
172
173
174
175







176
177
178
179
180
181
182





183






184
185
186
187
188
189
190
  }

  /* Do the rest of the initialization under the recursive mutex so
  ** that we will be able to handle recursive calls into
  ** sqlite4_initialize().  The recursive calls normally come through
  ** sqlite4_os_init() when it invokes sqlite4_vfs_register(), but other
  ** recursive calls might also be possible.







  */
  sqlite4_mutex_enter(sqlite4GlobalConfig.pInitMutex);
  if( sqlite4GlobalConfig.isInit==0 && sqlite4GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite4GlobalFunctions);
    sqlite4GlobalConfig.inProgress = 1;
    memset(pHash, 0, sizeof(sqlite4GlobalFunctions));
    sqlite4RegisterGlobalFunctions();





    rc = sqlite4OsInit();






    sqlite4GlobalConfig.inProgress = 0;
  }
  sqlite4_mutex_leave(sqlite4GlobalConfig.pInitMutex);

  /* Go back under the static mutex and clean up the recursive
  ** mutex to prevent a resource leak.
  */
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
int sqlite4_shutdown(void){
  if( sqlite4GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
    void SQLITE_EXTRA_SHUTDOWN(void);
    SQLITE_EXTRA_SHUTDOWN();
#endif
    sqlite4_os_end();
    sqlite4_reset_auto_extension();
    sqlite4GlobalConfig.isInit = 0;
  }
  if( sqlite4GlobalConfig.isPCacheInit ){
    sqlite4PcacheShutdown();
    sqlite4GlobalConfig.isPCacheInit = 0;
  }
  if( sqlite4GlobalConfig.isMallocInit ){
    sqlite4MallocEnd();
    sqlite4GlobalConfig.isMallocInit = 0;
  }
  if( sqlite4GlobalConfig.isMutexInit ){
    sqlite4MutexEnd();
    sqlite4GlobalConfig.isMutexInit = 0;







|


<
<
<
<







240
241
242
243
244
245
246
247
248
249




250
251
252
253
254
255
256
int sqlite4_shutdown(void){
  if( sqlite4GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
    void SQLITE_EXTRA_SHUTDOWN(void);
    SQLITE_EXTRA_SHUTDOWN();
#endif
    sqlite4_os_end();
    /* sqlite4_reset_auto_extension(); */
    sqlite4GlobalConfig.isInit = 0;
  }




  if( sqlite4GlobalConfig.isMallocInit ){
    sqlite4MallocEnd();
    sqlite4GlobalConfig.isMallocInit = 0;
  }
  if( sqlite4GlobalConfig.isMutexInit ){
    sqlite4MutexEnd();
    sqlite4GlobalConfig.isMutexInit = 0;
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    case SQLITE_CONFIG_SCRATCH: {
      /* Designate a buffer for scratch memory space */
      sqlite4GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite4GlobalConfig.szScratch = va_arg(ap, int);
      sqlite4GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* Designate a buffer for page cache memory space */
      sqlite4GlobalConfig.pPage = va_arg(ap, void*);
      sqlite4GlobalConfig.szPage = va_arg(ap, int);
      sqlite4GlobalConfig.nPage = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_PCACHE: {
      /* no-op */
      break;
    }
    case SQLITE_CONFIG_GETPCACHE: {
      /* now an error */
      rc = SQLITE_ERROR;
      break;
    }

    case SQLITE_CONFIG_PCACHE2: {
      /* Specify an alternative page cache implementation */
      sqlite4GlobalConfig.pcache2 = *va_arg(ap, sqlite4_pcache_methods2*);
      break;
    }
    case SQLITE_CONFIG_GETPCACHE2: {
      if( sqlite4GlobalConfig.pcache2.xInit==0 ){
        sqlite4PCacheSetDefault();
      }
      *va_arg(ap, sqlite4_pcache_methods2*) = sqlite4GlobalConfig.pcache2;
      break;
    }

#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* Designate a buffer for heap memory space */
      sqlite4GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite4GlobalConfig.nHeap = va_arg(ap, int);
      sqlite4GlobalConfig.mnReq = va_arg(ap, int);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







334
335
336
337
338
339
340






























341
342
343
344
345
346
347
    case SQLITE_CONFIG_SCRATCH: {
      /* Designate a buffer for scratch memory space */
      sqlite4GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite4GlobalConfig.szScratch = va_arg(ap, int);
      sqlite4GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }































#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* Designate a buffer for heap memory space */
      sqlite4GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite4GlobalConfig.nHeap = va_arg(ap, int);
      sqlite4GlobalConfig.mnReq = va_arg(ap, int);
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
int sqlite4_db_release_memory(sqlite4 *db){
  int i;
  sqlite4_mutex_enter(db->mutex);
  sqlite4BtreeEnterAll(db);
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      Pager *pPager = sqlite4BtreePager(pBt);
      sqlite4PagerShrink(pPager);
    }
  }
  sqlite4BtreeLeaveAll(db);
  sqlite4_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Configuration settings for an individual database connection
*/







<

<
<
<
<
<
<
<
<
<







483
484
485
486
487
488
489

490









491
492
493
494
495
496
497
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
int sqlite4_db_release_memory(sqlite4 *db){

  sqlite4_mutex_enter(db->mutex);









  sqlite4_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Configuration settings for an individual database connection
*/
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
    sqlite4Error(db, SQLITE_BUSY, 
        "unable to close due to unfinalised statements");
    sqlite4_mutex_leave(db->mutex);
    return SQLITE_BUSY;
  }
  assert( sqlite4SafetyCheckSickOrOk(db) );

  for(j=0; j<db->nDb; j++){
    Btree *pBt = db->aDb[j].pBt;
    if( pBt && sqlite4BtreeIsInBackup(pBt) ){
      sqlite4Error(db, SQLITE_BUSY, 
          "unable to close due to unfinished backup operation");
      sqlite4_mutex_leave(db->mutex);
      return SQLITE_BUSY;
    }
  }

  /* Free any outstanding Savepoint structures. */
  sqlite4CloseSavepoints(db);

  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pBt ){
      sqlite4BtreeClose(pDb->pBt);
      pDb->pBt = 0;
      sqlite4KVStoreClose(pDb->pKV);
      pDb->pKV = 0;
      if( j!=1 ){
        pDb->pSchema = 0;
      }
    }
  }







<
<
<
<
<
<
<
<
<
<





|
<
<







690
691
692
693
694
695
696










697
698
699
700
701
702


703
704
705
706
707
708
709
    sqlite4Error(db, SQLITE_BUSY, 
        "unable to close due to unfinalised statements");
    sqlite4_mutex_leave(db->mutex);
    return SQLITE_BUSY;
  }
  assert( sqlite4SafetyCheckSickOrOk(db) );











  /* Free any outstanding Savepoint structures. */
  sqlite4CloseSavepoints(db);

  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
    if( pDb->pKV ){


      sqlite4KVStoreClose(pDb->pKV);
      pDb->pKV = 0;
      if( j!=1 ){
        pDb->pSchema = 0;
      }
    }
  }
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
  sqlite4HashClear(&db->aModule);
#endif

  sqlite4Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
  if( db->pErr ){
    sqlite4ValueFree(db->pErr);
  }
  sqlite4CloseExtensions(db);

  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite4BtreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 
  ** structure?
  */
  sqlite4DbFree(db, db->aDb[1].pSchema);
  sqlite4_mutex_leave(db->mutex);
  db->magic = SQLITE_MAGIC_CLOSED;







<




|







750
751
752
753
754
755
756

757
758
759
760
761
762
763
764
765
766
767
768
  sqlite4HashClear(&db->aModule);
#endif

  sqlite4Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */
  if( db->pErr ){
    sqlite4ValueFree(db->pErr);
  }


  db->magic = SQLITE_MAGIC_ERROR;

  /* The temp-database schema is allocated differently from the other schema
  ** objects (using sqliteMalloc() directly, instead of sqlite4BTreeSchema()).
  ** So it needs to be freed here. Todo: Why not roll the temp schema into
  ** the same sqliteMalloc() as the one that allocates the database 
  ** structure?
  */
  sqlite4DbFree(db, db->aDb[1].pSchema);
  sqlite4_mutex_leave(db->mutex);
  db->magic = SQLITE_MAGIC_CLOSED;
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
*/
void sqlite4RollbackAll(sqlite4 *db){
  int i;
  int inTrans = 0;
  assert( sqlite4_mutex_held(db->mutex) );
  sqlite4BeginBenignMalloc();
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt ){
      if( sqlite4BtreeIsInTrans(db->aDb[i].pBt) ){
        inTrans = 1;
      }
      sqlite4BtreeRollback(db->aDb[i].pBt);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite4VtabRollback(db);
  sqlite4EndBenignMalloc();

  if( db->flags&SQLITE_InternChanges ){







|
|


|







780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
*/
void sqlite4RollbackAll(sqlite4 *db){
  int i;
  int inTrans = 0;
  assert( sqlite4_mutex_held(db->mutex) );
  sqlite4BeginBenignMalloc();
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pKV ){
      if( db->aDb[i].pKV->iTransLevel ){
        inTrans = 1;
      }
      sqlite4KVStoreRollback(db->aDb[i].pKV, 0);
      db->aDb[i].inTrans = 0;
    }
  }
  sqlite4VtabRollback(db);
  sqlite4EndBenignMalloc();

  if( db->flags&SQLITE_InternChanges ){
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
int sqlite4_wal_checkpoint(sqlite4 *db, const char *zDb){
  return sqlite4_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on database iDb. This is a no-op if database iDb is
** not currently open in WAL mode.
**
** If a transaction is open on the database being checkpointed, this 
** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 
** an error occurs while running the checkpoint, an SQLite error code is 
** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK.
**
** The mutex on database handle db should be held by the caller. The mutex
** associated with the specific b-tree being checkpointed is taken by
** this function while the checkpoint is running.
**
** If iDb is passed SQLITE_MAX_ATTACHED, then all attached databases are
** checkpointed. If an error is encountered it is returned immediately -
** no attempt is made to checkpoint any remaining databases.
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
int sqlite4Checkpoint(sqlite4 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterate through attached dbs */
  int bBusy = 0;                  /* True if SQLITE_BUSY has been encountered */

  assert( sqlite4_mutex_held(db->mutex) );
  assert( !pnLog || *pnLog==-1 );
  assert( !pnCkpt || *pnCkpt==-1 );

  for(i=0; i<db->nDb && rc==SQLITE_OK; i++){
    if( i==iDb || iDb==SQLITE_MAX_ATTACHED ){
      rc = sqlite4BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt);
      pnLog = 0;
      pnCkpt = 0;
      if( rc==SQLITE_BUSY ){
        bBusy = 1;
        rc = SQLITE_OK;
      }
    }
  }

  return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc;
}
#endif /* SQLITE_OMIT_WAL */

/*
** This function returns true if main-memory should be used instead of
** a temporary file for transient pager files and statement journals.
** The value returned depends on the value of db->temp_store (runtime
** parameter) and the compile time value of SQLITE_TEMP_STORE. The
** following table describes the relationship between these two values
** and this functions return value.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1401
1402
1403
1404
1405
1406
1407













































1408
1409
1410
1411
1412
1413
1414
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
int sqlite4_wal_checkpoint(sqlite4 *db, const char *zDb){
  return sqlite4_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
}














































/*
** This function returns true if main-memory should be used instead of
** a temporary file for transient pager files and statement journals.
** The value returned depends on the value of db->temp_store (runtime
** parameter) and the compile time value of SQLITE_TEMP_STORE. The
** following table describes the relationship between these two values
** and this functions return value.
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
*/
static int createCollation(
  sqlite4* db,
  const char *zName, 
  u8 enc,
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  int(*xMakeKey)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  CollSeq *pColl;
  int enc2;
  int nName = sqlite4Strlen30(zName);
  
  assert( sqlite4_mutex_held(db->mutex) );







|







1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
*/
static int createCollation(
  sqlite4* db,
  const char *zName, 
  u8 enc,
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  int(*xMakeKey)(void*,const void*,int,const void*,int),
  void(*xDel)(void*)
){
  CollSeq *pColl;
  int enc2;
  int nName = sqlite4Strlen30(zName);
  
  assert( sqlite4_mutex_held(db->mutex) );
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
  sqlite4 **ppDb,        /* OUT: Returned database handle */
  unsigned int flags,    /* Operational flags */
  const char *zVfs       /* Name of the VFS to use */
){
  sqlite4 *db;                    /* Store allocated handle here */
  int rc;                         /* Return code */
  int isThreadsafe;               /* True for threadsafe connections */
  char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
  char *zErrMsg = 0;              /* Error message from sqlite4ParseUri() */

  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite4_initialize();
  if( rc ) return rc;
#endif







|







1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
  sqlite4 **ppDb,        /* OUT: Returned database handle */
  unsigned int flags,    /* Operational flags */
  const char *zVfs       /* Name of the VFS to use */
){
  sqlite4 *db;                    /* Store allocated handle here */
  int rc;                         /* Return code */
  int isThreadsafe;               /* True for threadsafe connections */
  char *zOpen = 0;                /* Filename passed to StorageOpen() */
  char *zErrMsg = 0;              /* Error message from sqlite4ParseUri() */

  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite4_initialize();
  if( rc ) return rc;
#endif
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
  db->aDb = db->aDbStatic;

  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->nextPagesize = 0;
  db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS







|







2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
  db->aDb = db->aDbStatic;

  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->nextPagesize = 0;
  db->flags |=  SQLITE_AutoIndex | SQLITE_EnableTrigger
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite4Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite4_free(zErrMsg);
    goto opendb_out;
  }

  /* Open the backend database driver */
  rc = sqlite4BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0,
                        flags | SQLITE_OPEN_MAIN_DB);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_IOERR_NOMEM ){
      rc = SQLITE_NOMEM;
    }
    sqlite4Error(db, rc, 0);
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite4SchemaGet(db, db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite4SchemaGet(db, 0);
  sqlite4KVStoreOpen(zOpen, &db->aDb[0].pKV);

  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
  db->aDb[1].zName = "temp";
  db->aDb[1].safety_level = 1;

  db->magic = SQLITE_MAGIC_OPEN;
  if( db->mallocFailed ){
    goto opendb_out;
  }

  /* Register all built-in functions, but do not attempt to read the
  ** database schema yet. This is delayed until the first time the database
  ** is accessed.
  */
  sqlite4Error(db, SQLITE_OK, 0);
  sqlite4RegisterBuiltinFunctions(db);

  /* Load automatic extensions - extensions that have been registered
  ** using the sqlite4_automatic_extension() API.
  */
  rc = sqlite4_errcode(db);
  if( rc==SQLITE_OK ){
    sqlite4AutoLoadExtensions(db);
    rc = sqlite4_errcode(db);
    if( rc!=SQLITE_OK ){
      goto opendb_out;
    }
  }

#ifdef SQLITE_ENABLE_FTS1







|
<







|
|
<





<

<


















|







2089
2090
2091
2092
2093
2094
2095
2096

2097
2098
2099
2100
2101
2102
2103
2104
2105

2106
2107
2108
2109
2110

2111

2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite4Error(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite4_free(zErrMsg);
    goto opendb_out;
  }

  /* Open the backend database driver */
  rc = sqlite4KVStoreOpen(db, "main", zOpen, &db->aDb[0].pKV, 0);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_IOERR_NOMEM ){
      rc = SQLITE_NOMEM;
    }
    sqlite4Error(db, rc, 0);
    goto opendb_out;
  }
  db->aDb[0].pSchema = sqlite4SchemaGet(db);
  db->aDb[1].pSchema = sqlite4SchemaGet(db);


  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";

  db->aDb[1].zName = "temp";


  db->magic = SQLITE_MAGIC_OPEN;
  if( db->mallocFailed ){
    goto opendb_out;
  }

  /* Register all built-in functions, but do not attempt to read the
  ** database schema yet. This is delayed until the first time the database
  ** is accessed.
  */
  sqlite4Error(db, SQLITE_OK, 0);
  sqlite4RegisterBuiltinFunctions(db);

  /* Load automatic extensions - extensions that have been registered
  ** using the sqlite4_automatic_extension() API.
  */
  rc = sqlite4_errcode(db);
  if( rc==SQLITE_OK ){
    /* sqlite4AutoLoadExtensions(db); */
    rc = sqlite4_errcode(db);
    if( rc!=SQLITE_OK ){
      goto opendb_out;
    }
  }

#ifdef SQLITE_ENABLE_FTS1
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
  if( !db->mallocFailed && rc==SQLITE_OK){
    rc = sqlite4RtreeInit(db);
  }
#endif

  sqlite4Error(db, rc, 0);

  /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking
  ** mode.  -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking
  ** mode.  Doing nothing at all also makes NORMAL the default.
  */
#ifdef SQLITE_DEFAULT_LOCKING_MODE
  db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE;
  sqlite4PagerLockingMode(sqlite4BtreePager(db->aDb[0].pBt),
                          SQLITE_DEFAULT_LOCKING_MODE);
#endif

  /* Enable the lookaside-malloc subsystem */
  setupLookaside(db, 0, sqlite4GlobalConfig.szLookaside,
                        sqlite4GlobalConfig.nLookaside);

  sqlite4_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);

opendb_out:







<
<
<
<
<
<
<
<
<
<







2164
2165
2166
2167
2168
2169
2170










2171
2172
2173
2174
2175
2176
2177
  if( !db->mallocFailed && rc==SQLITE_OK){
    rc = sqlite4RtreeInit(db);
  }
#endif

  sqlite4Error(db, rc, 0);











  /* Enable the lookaside-malloc subsystem */
  setupLookaside(db, 0, sqlite4GlobalConfig.szLookaside,
                        sqlite4GlobalConfig.nLookaside);

  sqlite4_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);

opendb_out:
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
  sqlite4_log(SQLITE_CANTOPEN, 
              "cannot open file at line %d of [%.10s]",
              lineno, 20+sqlite4_sourceid());
  return SQLITE_CANTOPEN;
}


#ifndef SQLITE_OMIT_DEPRECATED
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op.  It is retained for historical compatibility.
*/
void sqlite4_thread_cleanup(void){
}
#endif

/*
** Return meta information about a specific column of a database table.
** See comment in sqlite4.h (sqlite.h.in) for details.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
int sqlite4_table_column_metadata(
  sqlite4 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
){
  int rc;
  char *zErrMsg = 0;
  Table *pTab = 0;
  Column *pCol = 0;
  int iCol;

  char const *zDataType = 0;
  char const *zCollSeq = 0;
  int notnull = 0;
  int primarykey = 0;
  int autoinc = 0;

  /* Ensure the database schema has been loaded */
  sqlite4_mutex_enter(db->mutex);
  sqlite4BtreeEnterAll(db);
  rc = sqlite4Init(db, &zErrMsg);
  if( SQLITE_OK!=rc ){
    goto error_out;
  }

  /* Locate the table in question */
  pTab = sqlite4FindTable(db, zTableName, zDbName);
  if( !pTab || pTab->pSelect ){
    pTab = 0;
    goto error_out;
  }

  /* Find the column for which info is requested */
  if( sqlite4IsRowid(zColumnName) ){
    iCol = pTab->iPKey;
    if( iCol>=0 ){
      pCol = &pTab->aCol[iCol];
    }
  }else{
    for(iCol=0; iCol<pTab->nCol; iCol++){
      pCol = &pTab->aCol[iCol];
      if( 0==sqlite4StrICmp(pCol->zName, zColumnName) ){
        break;
      }
    }
    if( iCol==pTab->nCol ){
      pTab = 0;
      goto error_out;
    }
  }

  /* The following block stores the meta information that will be returned
  ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
  ** and autoinc. At this point there are two possibilities:
  ** 
  **     1. The specified column name was rowid", "oid" or "_rowid_" 
  **        and there is no explicitly declared IPK column. 
  **
  **     2. The table is not a view and the column name identified an 
  **        explicitly declared column. Copy meta information from *pCol.
  */ 
  if( pCol ){
    zDataType = pCol->zType;
    zCollSeq = pCol->zColl;
    notnull = pCol->notNull!=0;
    primarykey  = pCol->isPrimKey!=0;
    autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = "BINARY";
  }

error_out:
  sqlite4BtreeLeaveAll(db);

  /* Whether the function call succeeded or failed, set the output parameters
  ** to whatever their local counterparts contain. If an error did occur,
  ** this has the effect of zeroing all output parameters.
  */
  if( pzDataType ) *pzDataType = zDataType;
  if( pzCollSeq ) *pzCollSeq = zCollSeq;
  if( pNotNull ) *pNotNull = notnull;
  if( pPrimaryKey ) *pPrimaryKey = primarykey;
  if( pAutoinc ) *pAutoinc = autoinc;

  if( SQLITE_OK==rc && !pTab ){
    sqlite4DbFree(db, zErrMsg);
    zErrMsg = sqlite4MPrintf(db, "no such table column: %s.%s", zTableName,
        zColumnName);
    rc = SQLITE_ERROR;
  }
  sqlite4Error(db, rc, (zErrMsg?"%s":0), zErrMsg);
  sqlite4DbFree(db, zErrMsg);
  rc = sqlite4ApiExit(db, rc);
  sqlite4_mutex_leave(db->mutex);
  return rc;
}
#endif

/*
** Sleep for a little while.  Return the amount of time slept.
*/
int sqlite4_sleep(int ms){
  sqlite4_vfs *pVfs;
  int rc;
  pVfs = sqlite4_vfs_find(0);







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2358
2359
2360
2361
2362
2363
2364





























































































































2365
2366
2367
2368
2369
2370
2371
  sqlite4_log(SQLITE_CANTOPEN, 
              "cannot open file at line %d of [%.10s]",
              lineno, 20+sqlite4_sourceid());
  return SQLITE_CANTOPEN;
}































































































































/*
** Sleep for a little while.  Return the amount of time slept.
*/
int sqlite4_sleep(int ms){
  sqlite4_vfs *pVfs;
  int rc;
  pVfs = sqlite4_vfs_find(0);
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
int sqlite4_extended_result_codes(sqlite4 *db, int onoff){
  sqlite4_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite4_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Invoke the xFileControl method on a particular database.
*/
int sqlite4_file_control(sqlite4 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  int iDb;
  sqlite4_mutex_enter(db->mutex);
  if( zDbName==0 ){
    iDb = 0;
  }else{
    for(iDb=0; iDb<db->nDb; iDb++){
      if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break;
    }
  }
  if( iDb<db->nDb ){
    Btree *pBtree = db->aDb[iDb].pBt;
    if( pBtree ){
      Pager *pPager;
      sqlite4_file *fd;
      sqlite4BtreeEnter(pBtree);
      pPager = sqlite4BtreePager(pBtree);
      assert( pPager!=0 );
      fd = sqlite4PagerFile(pPager);
      assert( fd!=0 );
      if( op==SQLITE_FCNTL_FILE_POINTER ){
        *(sqlite4_file**)pArg = fd;
        rc = SQLITE_OK;
      }else if( fd->pMethods ){
        rc = sqlite4OsFileControl(fd, op, pArg);
      }else{
        rc = SQLITE_NOTFOUND;
      }
      sqlite4BtreeLeave(pBtree);
    }
  }
  sqlite4_mutex_leave(db->mutex);
  return rc;   
}

/*
** Interface to the testing logic.
*/
int sqlite4_test_control(int op, ...){
  int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2384
2385
2386
2387
2388
2389
2390






































2391
2392
2393
2394
2395
2396
2397
int sqlite4_extended_result_codes(sqlite4 *db, int onoff){
  sqlite4_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite4_mutex_leave(db->mutex);
  return SQLITE_OK;
}








































/*
** Interface to the testing logic.
*/
int sqlite4_test_control(int op, ...){
  int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
    */
    case SQLITE_TESTCTRL_ALWAYS: {
      int x = va_arg(ap,int);
      rc = ALWAYS(x);
      break;
    }

    /*   sqlite4_test_control(SQLITE_TESTCTRL_RESERVE, sqlite4 *db, int N)
    **
    ** Set the nReserve size to N for the main database on the database
    ** connection db.
    */
    case SQLITE_TESTCTRL_RESERVE: {
      sqlite4 *db = va_arg(ap, sqlite4*);
      int x = va_arg(ap,int);
      sqlite4_mutex_enter(db->mutex);
      sqlite4BtreeSetPageSize(db->aDb[0].pBt, 0, x, 0);
      sqlite4_mutex_leave(db->mutex);
      break;
    }

    /*  sqlite4_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite4 *db, int N)
    **
    ** Enable or disable various optimizations for testing purposes.  The 
    ** argument N is a bitmask of optimizations to be disabled.  For normal
    ** operation N should be 0.  The idea is that a test program (like the
    ** SQL Logic Test or SLT test module) can run the same SQL multiple times
    ** with various optimizations disabled to verify that the same answer







<
<
<
<
<
<
<
<
<
<
<
<
<
<







2529
2530
2531
2532
2533
2534
2535














2536
2537
2538
2539
2540
2541
2542
    */
    case SQLITE_TESTCTRL_ALWAYS: {
      int x = va_arg(ap,int);
      rc = ALWAYS(x);
      break;
    }















    /*  sqlite4_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite4 *db, int N)
    **
    ** Enable or disable various optimizations for testing purposes.  The 
    ** argument N is a bitmask of optimizations to be disabled.  For normal
    ** operation N should be 0.  The idea is that a test program (like the
    ** SQL Logic Test or SLT test module) can run the same SQL multiple times
    ** with various optimizations disabled to verify that the same answer
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
  const char *z = sqlite4_uri_parameter(zFilename, zParam);
  sqlite4_int64 v;
  if( z && sqlite4Atoi64(z, &v, sqlite4Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}

/*
** Return the filename of the database associated with a database
** connection.
*/
const char *sqlite4_db_filename(sqlite4 *db, const char *zDbName){
  int i;
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt && sqlite4StrICmp(zDbName, db->aDb[i].zName)==0 ){
      return sqlite4BtreeGetFilename(db->aDb[i].pBt);
    }
  }
  return 0;
}







<
<
<
<
<
<
<
<
<
<
<
<
<
<
2658
2659
2660
2661
2662
2663
2664














  const char *z = sqlite4_uri_parameter(zFilename, zParam);
  sqlite4_int64 v;
  if( z && sqlite4Atoi64(z, &v, sqlite4Strlen30(z), SQLITE_UTF8)==SQLITE_OK ){
    bDflt = v;
  }
  return bDflt;
}














Deleted src/memjournal.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
** 2008 October 7
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to implement an in-memory rollback journal.
** The in-memory rollback journal is used to journal transactions for
** ":memory:" databases and when the journal_mode=MEMORY pragma is used.
*/
#include "sqliteInt.h"

/* Forward references to internal structures */
typedef struct MemJournal MemJournal;
typedef struct FilePoint FilePoint;
typedef struct FileChunk FileChunk;

/* Space to hold the rollback journal is allocated in increments of
** this many bytes.
**
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** The rollback journal is composed of a linked list of these structures.
*/
struct FileChunk {
  FileChunk *pNext;               /* Next chunk in the journal */
  u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
};

/*
** An instance of this object serves as a cursor into the rollback journal.
** The cursor can be either for reading or writing.
*/
struct FilePoint {
  sqlite4_int64 iOffset;          /* Offset from the beginning of the file */
  FileChunk *pChunk;              /* Specific chunk into which cursor points */
};

/*
** This subclass is a subclass of sqlite4_file.  Each open memory-journal
** is an instance of this class.
*/
struct MemJournal {
  sqlite4_io_methods *pMethod;    /* Parent class. MUST BE FIRST */
  FileChunk *pFirst;              /* Head of in-memory chunk-list */
  FilePoint endpoint;             /* Pointer to the end of the file */
  FilePoint readpoint;            /* Pointer to the end of the last xRead() */
};

/*
** Read data from the in-memory journal file.  This is the implementation
** of the sqlite4_vfs.xRead method.
*/
static int memjrnlRead(
  sqlite4_file *pJfd,    /* The journal file from which to read */
  void *zBuf,            /* Put the results here */
  int iAmt,              /* Number of bytes to read */
  sqlite_int64 iOfst     /* Begin reading at this offset */
){
  MemJournal *p = (MemJournal *)pJfd;
  u8 *zOut = zBuf;
  int nRead = iAmt;
  int iChunkOffset;
  FileChunk *pChunk;

  /* SQLite never tries to read past the end of a rollback journal file */
  assert( iOfst+iAmt<=p->endpoint.iOffset );

  if( p->readpoint.iOffset!=iOfst || iOfst==0 ){
    sqlite4_int64 iOff = 0;
    for(pChunk=p->pFirst; 
        ALWAYS(pChunk) && (iOff+JOURNAL_CHUNKSIZE)<=iOfst;
        pChunk=pChunk->pNext
    ){
      iOff += JOURNAL_CHUNKSIZE;
    }
  }else{
    pChunk = p->readpoint.pChunk;
  }

  iChunkOffset = (int)(iOfst%JOURNAL_CHUNKSIZE);
  do {
    int iSpace = JOURNAL_CHUNKSIZE - iChunkOffset;
    int nCopy = MIN(nRead, (JOURNAL_CHUNKSIZE - iChunkOffset));
    memcpy(zOut, &pChunk->zChunk[iChunkOffset], nCopy);
    zOut += nCopy;
    nRead -= iSpace;
    iChunkOffset = 0;
  } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 );
  p->readpoint.iOffset = iOfst+iAmt;
  p->readpoint.pChunk = pChunk;

  return SQLITE_OK;
}

/*
** Write data to the file.
*/
static int memjrnlWrite(
  sqlite4_file *pJfd,    /* The journal file into which to write */
  const void *zBuf,      /* Take data to be written from here */
  int iAmt,              /* Number of bytes to write */
  sqlite_int64 iOfst     /* Begin writing at this offset into the file */
){
  MemJournal *p = (MemJournal *)pJfd;
  int nWrite = iAmt;
  u8 *zWrite = (u8 *)zBuf;

  /* An in-memory journal file should only ever be appended to. Random
  ** access writes are not required by sqlite.
  */
  assert( iOfst==p->endpoint.iOffset );
  UNUSED_PARAMETER(iOfst);

  while( nWrite>0 ){
    FileChunk *pChunk = p->endpoint.pChunk;
    int iChunkOffset = (int)(p->endpoint.iOffset%JOURNAL_CHUNKSIZE);
    int iSpace = MIN(nWrite, JOURNAL_CHUNKSIZE - iChunkOffset);

    if( iChunkOffset==0 ){
      /* New chunk is required to extend the file. */
      FileChunk *pNew = sqlite4_malloc(sizeof(FileChunk));
      if( !pNew ){
        return SQLITE_IOERR_NOMEM;
      }
      pNew->pNext = 0;
      if( pChunk ){
        assert( p->pFirst );
        pChunk->pNext = pNew;
      }else{
        assert( !p->pFirst );
        p->pFirst = pNew;
      }
      p->endpoint.pChunk = pNew;
    }

    memcpy(&p->endpoint.pChunk->zChunk[iChunkOffset], zWrite, iSpace);
    zWrite += iSpace;
    nWrite -= iSpace;
    p->endpoint.iOffset += iSpace;
  }

  return SQLITE_OK;
}

/*
** Truncate the file.
*/
static int memjrnlTruncate(sqlite4_file *pJfd, sqlite_int64 size){
  MemJournal *p = (MemJournal *)pJfd;
  FileChunk *pChunk;
  assert(size==0);
  UNUSED_PARAMETER(size);
  pChunk = p->pFirst;
  while( pChunk ){
    FileChunk *pTmp = pChunk;
    pChunk = pChunk->pNext;
    sqlite4_free(pTmp);
  }
  sqlite4MemJournalOpen(pJfd);
  return SQLITE_OK;
}

/*
** Close the file.
*/
static int memjrnlClose(sqlite4_file *pJfd){
  memjrnlTruncate(pJfd, 0);
  return SQLITE_OK;
}


/*
** Sync the file.
**
** Syncing an in-memory journal is a no-op.  And, in fact, this routine
** is never called in a working implementation.  This implementation
** exists purely as a contingency, in case some malfunction in some other
** part of SQLite causes Sync to be called by mistake.
*/
static int memjrnlSync(sqlite4_file *NotUsed, int NotUsed2){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  return SQLITE_OK;
}

/*
** Query the size of the file in bytes.
*/
static int memjrnlFileSize(sqlite4_file *pJfd, sqlite_int64 *pSize){
  MemJournal *p = (MemJournal *)pJfd;
  *pSize = (sqlite_int64) p->endpoint.iOffset;
  return SQLITE_OK;
}

/*
** Table of methods for MemJournal sqlite4_file object.
*/
static const struct sqlite4_io_methods MemJournalMethods = {
  1,                /* iVersion */
  memjrnlClose,     /* xClose */
  memjrnlRead,      /* xRead */
  memjrnlWrite,     /* xWrite */
  memjrnlTruncate,  /* xTruncate */
  memjrnlSync,      /* xSync */
  memjrnlFileSize,  /* xFileSize */
  0,                /* xLock */
  0,                /* xUnlock */
  0,                /* xCheckReservedLock */
  0,                /* xFileControl */
  0,                /* xSectorSize */
  0,                /* xDeviceCharacteristics */
  0,                /* xShmMap */
  0,                /* xShmLock */
  0,                /* xShmBarrier */
  0                 /* xShmUnlock */
};

/* 
** Open a journal file.
*/
void sqlite4MemJournalOpen(sqlite4_file *pJfd){
  MemJournal *p = (MemJournal *)pJfd;
  assert( EIGHT_BYTE_ALIGNMENT(p) );
  memset(p, 0, sqlite4MemJournalSize());
  p->pMethod = (sqlite4_io_methods*)&MemJournalMethods;
}

/*
** Return true if the file-handle passed as an argument is 
** an in-memory journal 
*/
int sqlite4IsMemJournal(sqlite4_file *pJfd){
  return pJfd->pMethods==&MemJournalMethods;
}

/* 
** Return the number of bytes required to store a MemJournal file descriptor.
*/
int sqlite4MemJournalSize(void){
  return sizeof(MemJournal);
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






































































































































































































































































































































































































































































































































Deleted src/notify.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
** 2009 March 3
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of the sqlite4_unlock_notify()
** API method and its associated functionality.
*/
#include "sqliteInt.h"
#include "btreeInt.h"

/* Omit this entire file if SQLITE_ENABLE_UNLOCK_NOTIFY is not defined. */
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY

/*
** Public interfaces:
**
**   sqlite4ConnectionBlocked()
**   sqlite4ConnectionUnlocked()
**   sqlite4ConnectionClosed()
**   sqlite4_unlock_notify()
*/

#define assertMutexHeld() \
  assert( sqlite4_mutex_held(sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) )

/*
** Head of a linked list of all sqlite4 objects created by this process
** for which either sqlite4.pBlockingConnection or sqlite4.pUnlockConnection
** is not NULL. This variable may only accessed while the STATIC_MASTER
** mutex is held.
*/
static sqlite4 *SQLITE_WSD sqlite4BlockedList = 0;

#ifndef NDEBUG
/*
** This function is a complex assert() that verifies the following 
** properties of the blocked connections list:
**
**   1) Each entry in the list has a non-NULL value for either 
**      pUnlockConnection or pBlockingConnection, or both.
**
**   2) All entries in the list that share a common value for 
**      xUnlockNotify are grouped together.
**
**   3) If the argument db is not NULL, then none of the entries in the
**      blocked connections list have pUnlockConnection or pBlockingConnection
**      set to db. This is used when closing connection db.
*/
static void checkListProperties(sqlite4 *db){
  sqlite4 *p;
  for(p=sqlite4BlockedList; p; p=p->pNextBlocked){
    int seen = 0;
    sqlite4 *p2;

    /* Verify property (1) */
    assert( p->pUnlockConnection || p->pBlockingConnection );

    /* Verify property (2) */
    for(p2=sqlite4BlockedList; p2!=p; p2=p2->pNextBlocked){
      if( p2->xUnlockNotify==p->xUnlockNotify ) seen = 1;
      assert( p2->xUnlockNotify==p->xUnlockNotify || !seen );
      assert( db==0 || p->pUnlockConnection!=db );
      assert( db==0 || p->pBlockingConnection!=db );
    }
  }
}
#else
# define checkListProperties(x)
#endif

/*
** Remove connection db from the blocked connections list. If connection
** db is not currently a part of the list, this function is a no-op.
*/
static void removeFromBlockedList(sqlite4 *db){
  sqlite4 **pp;
  assertMutexHeld();
  for(pp=&sqlite4BlockedList; *pp; pp = &(*pp)->pNextBlocked){
    if( *pp==db ){
      *pp = (*pp)->pNextBlocked;
      break;
    }
  }
}

/*
** Add connection db to the blocked connections list. It is assumed
** that it is not already a part of the list.
*/
static void addToBlockedList(sqlite4 *db){
  sqlite4 **pp;
  assertMutexHeld();
  for(
    pp=&sqlite4BlockedList; 
    *pp && (*pp)->xUnlockNotify!=db->xUnlockNotify; 
    pp=&(*pp)->pNextBlocked
  );
  db->pNextBlocked = *pp;
  *pp = db;
}

/*
** Obtain the STATIC_MASTER mutex.
*/
static void enterMutex(void){
  sqlite4_mutex_enter(sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
  checkListProperties(0);
}

/*
** Release the STATIC_MASTER mutex.
*/
static void leaveMutex(void){
  assertMutexHeld();
  checkListProperties(0);
  sqlite4_mutex_leave(sqlite4MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}

/*
** Register an unlock-notify callback.
**
** This is called after connection "db" has attempted some operation
** but has received an SQLITE_LOCKED error because another connection
** (call it pOther) in the same process was busy using the same shared
** cache.  pOther is found by looking at db->pBlockingConnection.
**
** If there is no blocking connection, the callback is invoked immediately,
** before this routine returns.
**
** If pOther is already blocked on db, then report SQLITE_LOCKED, to indicate
** a deadlock.
**
** Otherwise, make arrangements to invoke xNotify when pOther drops
** its locks.
**
** Each call to this routine overrides any prior callbacks registered
** on the same "db".  If xNotify==0 then any prior callbacks are immediately
** cancelled.
*/
int sqlite4_unlock_notify(
  sqlite4 *db,
  void (*xNotify)(void **, int),
  void *pArg
){
  int rc = SQLITE_OK;

  sqlite4_mutex_enter(db->mutex);
  enterMutex();

  if( xNotify==0 ){
    removeFromBlockedList(db);
    db->pBlockingConnection = 0;
    db->pUnlockConnection = 0;
    db->xUnlockNotify = 0;
    db->pUnlockArg = 0;
  }else if( 0==db->pBlockingConnection ){
    /* The blocking transaction has been concluded. Or there never was a 
    ** blocking transaction. In either case, invoke the notify callback
    ** immediately. 
    */
    xNotify(&pArg, 1);
  }else{
    sqlite4 *p;

    for(p=db->pBlockingConnection; p && p!=db; p=p->pUnlockConnection){}
    if( p ){
      rc = SQLITE_LOCKED;              /* Deadlock detected. */
    }else{
      db->pUnlockConnection = db->pBlockingConnection;
      db->xUnlockNotify = xNotify;
      db->pUnlockArg = pArg;
      removeFromBlockedList(db);
      addToBlockedList(db);
    }
  }

  leaveMutex();
  assert( !db->mallocFailed );
  sqlite4Error(db, rc, (rc?"database is deadlocked":0));
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** This function is called while stepping or preparing a statement 
** associated with connection db. The operation will return SQLITE_LOCKED
** to the user because it requires a lock that will not be available
** until connection pBlocker concludes its current transaction.
*/
void sqlite4ConnectionBlocked(sqlite4 *db, sqlite4 *pBlocker){
  enterMutex();
  if( db->pBlockingConnection==0 && db->pUnlockConnection==0 ){
    addToBlockedList(db);
  }
  db->pBlockingConnection = pBlocker;
  leaveMutex();
}

/*
** This function is called when
** the transaction opened by database db has just finished. Locks held 
** by database connection db have been released.
**
** This function loops through each entry in the blocked connections
** list and does the following:
**
**   1) If the sqlite4.pBlockingConnection member of a list entry is
**      set to db, then set pBlockingConnection=0.
**
**   2) If the sqlite4.pUnlockConnection member of a list entry is
**      set to db, then invoke the configured unlock-notify callback and
**      set pUnlockConnection=0.
**
**   3) If the two steps above mean that pBlockingConnection==0 and
**      pUnlockConnection==0, remove the entry from the blocked connections
**      list.
*/
void sqlite4ConnectionUnlocked(sqlite4 *db){
  void (*xUnlockNotify)(void **, int) = 0; /* Unlock-notify cb to invoke */
  int nArg = 0;                            /* Number of entries in aArg[] */
  sqlite4 **pp;                            /* Iterator variable */
  void **aArg;               /* Arguments to the unlock callback */
  void **aDyn = 0;           /* Dynamically allocated space for aArg[] */
  void *aStatic[16];         /* Starter space for aArg[].  No malloc required */

  aArg = aStatic;
  enterMutex();         /* Enter STATIC_MASTER mutex */

  /* This loop runs once for each entry in the blocked-connections list. */
  for(pp=&sqlite4BlockedList; *pp; /* no-op */ ){
    sqlite4 *p = *pp;

    /* Step 1. */
    if( p->pBlockingConnection==db ){
      p->pBlockingConnection = 0;
    }

    /* Step 2. */
    if( p->pUnlockConnection==db ){
      assert( p->xUnlockNotify );
      if( p->xUnlockNotify!=xUnlockNotify && nArg!=0 ){
        xUnlockNotify(aArg, nArg);
        nArg = 0;
      }

      sqlite4BeginBenignMalloc();
      assert( aArg==aDyn || (aDyn==0 && aArg==aStatic) );
      assert( nArg<=(int)ArraySize(aStatic) || aArg==aDyn );
      if( (!aDyn && nArg==(int)ArraySize(aStatic))
       || (aDyn && nArg==(int)(sqlite4MallocSize(aDyn)/sizeof(void*)))
      ){
        /* The aArg[] array needs to grow. */
        void **pNew = (void **)sqlite4Malloc(nArg*sizeof(void *)*2);
        if( pNew ){
          memcpy(pNew, aArg, nArg*sizeof(void *));
          sqlite4_free(aDyn);
          aDyn = aArg = pNew;
        }else{
          /* This occurs when the array of context pointers that need to
          ** be passed to the unlock-notify callback is larger than the
          ** aStatic[] array allocated on the stack and the attempt to 
          ** allocate a larger array from the heap has failed.
          **
          ** This is a difficult situation to handle. Returning an error
          ** code to the caller is insufficient, as even if an error code
          ** is returned the transaction on connection db will still be
          ** closed and the unlock-notify callbacks on blocked connections
          ** will go unissued. This might cause the application to wait
          ** indefinitely for an unlock-notify callback that will never 
          ** arrive.
          **
          ** Instead, invoke the unlock-notify callback with the context
          ** array already accumulated. We can then clear the array and
          ** begin accumulating any further context pointers without 
          ** requiring any dynamic allocation. This is sub-optimal because
          ** it means that instead of one callback with a large array of
          ** context pointers the application will receive two or more
          ** callbacks with smaller arrays of context pointers, which will
          ** reduce the applications ability to prioritize multiple 
          ** connections. But it is the best that can be done under the
          ** circumstances.
          */
          xUnlockNotify(aArg, nArg);
          nArg = 0;
        }
      }
      sqlite4EndBenignMalloc();

      aArg[nArg++] = p->pUnlockArg;
      xUnlockNotify = p->xUnlockNotify;
      p->pUnlockConnection = 0;
      p->xUnlockNotify = 0;
      p->pUnlockArg = 0;
    }

    /* Step 3. */
    if( p->pBlockingConnection==0 && p->pUnlockConnection==0 ){
      /* Remove connection p from the blocked connections list. */
      *pp = p->pNextBlocked;
      p->pNextBlocked = 0;
    }else{
      pp = &p->pNextBlocked;
    }
  }

  if( nArg!=0 ){
    xUnlockNotify(aArg, nArg);
  }
  sqlite4_free(aDyn);
  leaveMutex();         /* Leave STATIC_MASTER mutex */
}

/*
** This is called when the database connection passed as an argument is 
** being closed. The connection is removed from the blocked list.
*/
void sqlite4ConnectionClosed(sqlite4 *db){
  sqlite4ConnectionUnlocked(db);
  enterMutex();
  removeFromBlockedList(db);
  checkListProperties(db);
  leaveMutex();
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































































































































































































































































































































































































































































































































































































































































Changes to src/os.c.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
#include "sqliteInt.h"
#undef _SQLITE_OS_C_

/*
** The default SQLite sqlite4_vfs implementations do not allocate
** memory (actually, os_unix.c allocates a small amount of memory
** from within OsOpen()), but some third-party implementations may.
** So we test the effects of a malloc() failing and the sqlite4OsXXX()
** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
**
** The following functions are instrumented for malloc() failure 
** testing:
**
**     sqlite4OsRead()
**     sqlite4OsWrite()
**     sqlite4OsSync()
**     sqlite4OsFileSize()
**     sqlite4OsLock()
**     sqlite4OsCheckReservedLock()
**     sqlite4OsFileControl()
**     sqlite4OsShmMap()
**     sqlite4OsOpen()
**     sqlite4OsDelete()
**     sqlite4OsAccess()
**     sqlite4OsFullPathname()
**
*/
#if defined(SQLITE_TEST)
int sqlite4_memdebug_vfs_oom_test = 1;
  #define DO_OS_MALLOC_TEST(x)                                       \
  if (sqlite4_memdebug_vfs_oom_test && (!x || !sqlite4IsMemJournal(x))) {  \
    void *pTstAlloc = sqlite4Malloc(10);                             \
    if (!pTstAlloc) return SQLITE_IOERR_NOMEM;                       \
    sqlite4_free(pTstAlloc);                                         \
  }
#else
  #define DO_OS_MALLOC_TEST(x)
#endif

/*
** The following routines are convenience wrappers around methods
** of the sqlite4_file object.  This is mostly just syntactic sugar. All
** of this would be completely automatic if SQLite were coded using
** C++ instead of plain old C.
*/
int sqlite4OsClose(sqlite4_file *pId){
  int rc = SQLITE_OK;
  if( pId->pMethods ){
    rc = pId->pMethods->xClose(pId);
    pId->pMethods = 0;
  }
  return rc;
}
int sqlite4OsRead(sqlite4_file *id, void *pBuf, int amt, i64 offset){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xRead(id, pBuf, amt, offset);
}
int sqlite4OsWrite(sqlite4_file *id, const void *pBuf, int amt, i64 offset){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xWrite(id, pBuf, amt, offset);
}
int sqlite4OsTruncate(sqlite4_file *id, i64 size){
  return id->pMethods->xTruncate(id, size);
}
int sqlite4OsSync(sqlite4_file *id, int flags){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xSync(id, flags);
}
int sqlite4OsFileSize(sqlite4_file *id, i64 *pSize){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xFileSize(id, pSize);
}
int sqlite4OsLock(sqlite4_file *id, int lockType){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xLock(id, lockType);
}
int sqlite4OsUnlock(sqlite4_file *id, int lockType){
  return id->pMethods->xUnlock(id, lockType);
}
int sqlite4OsCheckReservedLock(sqlite4_file *id, int *pResOut){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xCheckReservedLock(id, pResOut);
}

/*
** Use sqlite4OsFileControl() when we are doing something that might fail
** and we need to know about the failures.  Use sqlite4OsFileControlHint()
** when simply tossing information over the wall to the VFS and we do not
** really care if the VFS receives and understands the information since it
** is only a hint and can be safely ignored.  The sqlite4OsFileControlHint()
** routine has no return value since the return value would be meaningless.
*/
int sqlite4OsFileControl(sqlite4_file *id, int op, void *pArg){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xFileControl(id, op, pArg);
}
void sqlite4OsFileControlHint(sqlite4_file *id, int op, void *pArg){
  (void)id->pMethods->xFileControl(id, op, pArg);
}

int sqlite4OsSectorSize(sqlite4_file *id){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<















<



<






<



<



<






<












<







13
14
15
16
17
18
19




































20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

38
39
40
41
42
43

44
45
46

47
48
49

50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
** This file contains OS interface code that is common to all
** architectures.
*/
#define _SQLITE_OS_C_ 1
#include "sqliteInt.h"
#undef _SQLITE_OS_C_





































/*
** The following routines are convenience wrappers around methods
** of the sqlite4_file object.  This is mostly just syntactic sugar. All
** of this would be completely automatic if SQLite were coded using
** C++ instead of plain old C.
*/
int sqlite4OsClose(sqlite4_file *pId){
  int rc = SQLITE_OK;
  if( pId->pMethods ){
    rc = pId->pMethods->xClose(pId);
    pId->pMethods = 0;
  }
  return rc;
}
int sqlite4OsRead(sqlite4_file *id, void *pBuf, int amt, i64 offset){

  return id->pMethods->xRead(id, pBuf, amt, offset);
}
int sqlite4OsWrite(sqlite4_file *id, const void *pBuf, int amt, i64 offset){

  return id->pMethods->xWrite(id, pBuf, amt, offset);
}
int sqlite4OsTruncate(sqlite4_file *id, i64 size){
  return id->pMethods->xTruncate(id, size);
}
int sqlite4OsSync(sqlite4_file *id, int flags){

  return id->pMethods->xSync(id, flags);
}
int sqlite4OsFileSize(sqlite4_file *id, i64 *pSize){

  return id->pMethods->xFileSize(id, pSize);
}
int sqlite4OsLock(sqlite4_file *id, int lockType){

  return id->pMethods->xLock(id, lockType);
}
int sqlite4OsUnlock(sqlite4_file *id, int lockType){
  return id->pMethods->xUnlock(id, lockType);
}
int sqlite4OsCheckReservedLock(sqlite4_file *id, int *pResOut){

  return id->pMethods->xCheckReservedLock(id, pResOut);
}

/*
** Use sqlite4OsFileControl() when we are doing something that might fail
** and we need to know about the failures.  Use sqlite4OsFileControlHint()
** when simply tossing information over the wall to the VFS and we do not
** really care if the VFS receives and understands the information since it
** is only a hint and can be safely ignored.  The sqlite4OsFileControlHint()
** routine has no return value since the return value would be meaningless.
*/
int sqlite4OsFileControl(sqlite4_file *id, int op, void *pArg){

  return id->pMethods->xFileControl(id, op, pArg);
}
void sqlite4OsFileControlHint(sqlite4_file *id, int op, void *pArg){
  (void)id->pMethods->xFileControl(id, op, pArg);
}

int sqlite4OsSectorSize(sqlite4_file *id){
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
int sqlite4OsShmMap(
  sqlite4_file *id,               /* Database file handle */
  int iPage,
  int pgsz,
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Pointer to mapping */
){
  DO_OS_MALLOC_TEST(id);
  return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
}

/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
int sqlite4OsOpen(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  sqlite4_file *pFile, 
  int flags, 
  int *pFlagsOut
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
int sqlite4OsDelete(sqlite4_vfs *pVfs, const char *zPath, int dirSync){
  DO_OS_MALLOC_TEST(0);
  assert( dirSync==0 || dirSync==1 );
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
int sqlite4OsAccess(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  int flags, 
  int *pResOut
){
  DO_OS_MALLOC_TEST(0);
  return pVfs->xAccess(pVfs, zPath, flags, pResOut);
}
int sqlite4OsFullPathname(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  int nPathOut, 
  char *zPathOut
){
  DO_OS_MALLOC_TEST(0);
  zPathOut[0] = 0;
  return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
void *sqlite4OsDlOpen(sqlite4_vfs *pVfs, const char *zPath){
  return pVfs->xDlOpen(pVfs, zPath);
}







<















<









<









<








<







90
91
92
93
94
95
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
int sqlite4OsShmMap(
  sqlite4_file *id,               /* Database file handle */
  int iPage,
  int pgsz,
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Pointer to mapping */
){

  return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
}

/*
** The next group of routines are convenience wrappers around the
** VFS methods.
*/
int sqlite4OsOpen(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  sqlite4_file *pFile, 
  int flags, 
  int *pFlagsOut
){
  int rc;

  /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
int sqlite4OsDelete(sqlite4_vfs *pVfs, const char *zPath, int dirSync){

  assert( dirSync==0 || dirSync==1 );
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
int sqlite4OsAccess(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  int flags, 
  int *pResOut
){

  return pVfs->xAccess(pVfs, zPath, flags, pResOut);
}
int sqlite4OsFullPathname(
  sqlite4_vfs *pVfs, 
  const char *zPath, 
  int nPathOut, 
  char *zPathOut
){

  zPathOut[0] = 0;
  return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
void *sqlite4OsDlOpen(sqlite4_vfs *pVfs, const char *zPath){
  return pVfs->xDlOpen(pVfs, zPath);
}

Deleted src/pager.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This is the implementation of the page cache subsystem or "pager".
** 
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"


/******************* NOTES ON THE DESIGN OF THE PAGER ************************
**
** This comment block describes invariants that hold when using a rollback
** journal.  These invariants do not apply for journal_mode=WAL,
** journal_mode=MEMORY, or journal_mode=OFF.
**
** Within this comment block, a page is deemed to have been synced
** automatically as soon as it is written when PRAGMA synchronous=OFF.
** Otherwise, the page is not synced until the xSync method of the VFS
** is called successfully on the file containing the page.
**
** Definition:  A page of the database file is said to be "overwriteable" if
** one or more of the following are true about the page:
** 
**     (a)  The original content of the page as it was at the beginning of
**          the transaction has been written into the rollback journal and
**          synced.
** 
**     (b)  The page was a freelist leaf page at the start of the transaction.
** 
**     (c)  The page number is greater than the largest page that existed in
**          the database file at the start of the transaction.
** 
** (1) A page of the database file is never overwritten unless one of the
**     following are true:
** 
**     (a) The page and all other pages on the same sector are overwriteable.
** 
**     (b) The atomic page write optimization is enabled, and the entire
**         transaction other than the update of the transaction sequence
**         number consists of a single page change.
** 
** (2) The content of a page written into the rollback journal exactly matches
**     both the content in the database when the rollback journal was written
**     and the content in the database at the beginning of the current
**     transaction.
** 
** (3) Writes to the database file are an integer multiple of the page size
**     in length and are aligned on a page boundary.
** 
** (4) Reads from the database file are either aligned on a page boundary and
**     an integer multiple of the page size in length or are taken from the
**     first 100 bytes of the database file.
** 
** (5) All writes to the database file are synced prior to the rollback journal
**     being deleted, truncated, or zeroed.
** 
** (6) If a master journal file is used, then all writes to the database file
**     are synced prior to the master journal being deleted.
** 
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries.  Note in particular the the content of freelist leaf
** pages can be changed arbitarily without effecting the logical equivalence
** of the database.
** 
** (7) At any time, if any subset, including the empty set and the total set,
**     of the unsynced changes to a rollback journal are removed and the 
**     journal is rolled back, the resulting database file will be logical
**     equivalent to the database file at the beginning of the transaction.
** 
** (8) When a transaction is rolled back, the xTruncate method of the VFS
**     is called to restore the database file to the same size it was at
**     the beginning of the transaction.  (In some VFSes, the xTruncate
**     method is a no-op, but that does not change the fact the SQLite will
**     invoke it.)
** 
** (9) Whenever the database file is modified, at least one bit in the range
**     of bytes from 24 through 39 inclusive will be changed prior to releasing
**     the EXCLUSIVE lock, thus signaling other connections on the same
**     database to flush their caches.
**
** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
**      than one billion transactions.
**
** (11) A database file is well-formed at the beginning and at the conclusion
**      of every transaction.
**
** (12) An EXCLUSIVE lock is held on the database file when writing to
**      the database file.
**
** (13) A SHARED lock is held on the database file while reading any
**      content out of the database file.
**
******************************************************************************/

/*
** Macros for troubleshooting.  Normally turned off
*/
#if 0
int sqlite4PagerTrace=1;  /* True to enable tracing */
#define sqlite4DebugPrintf printf
#define PAGERTRACE(X)     if( sqlite4PagerTrace ){ sqlite4DebugPrintf X; }
#else
#define PAGERTRACE(X)
#endif

/*
** The following two macros are used within the PAGERTRACE() macros above
** to print out file-descriptors. 
**
** PAGERID() takes a pointer to a Pager struct as its argument. The
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite4_file
** struct as its argument.
*/
#define PAGERID(p) ((int)(p->fd))
#define FILEHANDLEID(fd) ((int)fd)

/*
** The Pager.eState variable stores the current 'state' of a pager. A
** pager may be in any one of the seven states shown in the following
** state diagram.
**
**                            OPEN <------+------+
**                              |         |      |
**                              V         |      |
**               +---------> READER-------+      |
**               |              |                |
**               |              V                |
**               |<-------WRITER_LOCKED------> ERROR
**               |              |                ^  
**               |              V                |
**               |<------WRITER_CACHEMOD-------->|
**               |              |                |
**               |              V                |
**               |<-------WRITER_DBMOD---------->|
**               |              |                |
**               |              V                |
**               +<------WRITER_FINISHED-------->+
**
**
** List of state transitions and the C [function] that performs each:
** 
**   OPEN              -> READER              [sqlite4PagerSharedLock]
**   READER            -> OPEN                [pager_unlock]
**
**   READER            -> WRITER_LOCKED       [sqlite4PagerBegin]
**   WRITER_LOCKED     -> WRITER_CACHEMOD     [pager_open_journal]
**   WRITER_CACHEMOD   -> WRITER_DBMOD        [syncJournal]
**   WRITER_DBMOD      -> WRITER_FINISHED     [sqlite4PagerCommitPhaseOne]
**   WRITER_***        -> READER              [pager_end_transaction]
**
**   WRITER_***        -> ERROR               [pager_error]
**   ERROR             -> OPEN                [pager_unlock]
** 
**
**  OPEN:
**
**    The pager starts up in this state. Nothing is guaranteed in this
**    state - the file may or may not be locked and the database size is
**    unknown. The database may not be read or written.
**
**    * No read or write transaction is active.
**    * Any lock, or no lock at all, may be held on the database file.
**    * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
**
**  READER:
**
**    In this state all the requirements for reading the database in 
**    rollback (non-WAL) mode are met. Unless the pager is (or recently
**    was) in exclusive-locking mode, a user-level read transaction is 
**    open. The database size is known in this state.
**
**    A connection running with locking_mode=normal enters this state when
**    it opens a read-transaction on the database and returns to state
**    OPEN after the read-transaction is completed. However a connection
**    running in locking_mode=exclusive (including temp databases) remains in
**    this state even after the read-transaction is closed. The only way
**    a locking_mode=exclusive connection can transition from READER to OPEN
**    is via the ERROR state (see below).
** 
**    * A read transaction may be active (but a write-transaction cannot).
**    * A SHARED or greater lock is held on the database file.
**    * The dbSize variable may be trusted (even if a user-level read 
**      transaction is not active). The dbOrigSize and dbFileSize variables
**      may not be trusted at this point.
**    * If the database is a WAL database, then the WAL connection is open.
**    * Even if a read-transaction is not open, it is guaranteed that 
**      there is no hot-journal in the file-system.
**
**  WRITER_LOCKED:
**
**    The pager moves to this state from READER when a write-transaction
**    is first opened on the database. In WRITER_LOCKED state, all locks 
**    required to start a write-transaction are held, but no actual 
**    modifications to the cache or database have taken place.
**
**    In rollback mode, a RESERVED or (if the transaction was opened with 
**    BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
**    moving to this state, but the journal file is not written to or opened 
**    to in this state. If the transaction is committed or rolled back while 
**    in WRITER_LOCKED state, all that is required is to unlock the database 
**    file.
**
**    IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
**    If the connection is running with locking_mode=exclusive, an attempt
**    is made to obtain an EXCLUSIVE lock on the database file.
**
**    * A write transaction is active.
**    * If the connection is open in rollback-mode, a RESERVED or greater 
**      lock is held on the database file.
**    * If the connection is open in WAL-mode, a WAL write transaction
**      is open (i.e. sqlite4WalBeginWriteTransaction() has been successfully
**      called).
**    * The dbSize, dbOrigSize and dbFileSize variables are all valid.
**    * The contents of the pager cache have not been modified.
**    * The journal file may or may not be open.
**    * Nothing (not even the first header) has been written to the journal.
**
**  WRITER_CACHEMOD:
**
**    A pager moves from WRITER_LOCKED state to this state when a page is
**    first modified by the upper layer. In rollback mode the journal file
**    is opened (if it is not already open) and a header written to the
**    start of it. The database file on disk has not been modified.
**
**    * A write transaction is active.
**    * A RESERVED or greater lock is held on the database file.
**    * The journal file is open and the first header has been written 
**      to it, but the header has not been synced to disk.
**    * The contents of the page cache have been modified.
**
**  WRITER_DBMOD:
**
**    The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
**    when it modifies the contents of the database file. WAL connections
**    never enter this state (since they do not modify the database file,
**    just the log file).
**
**    * A write transaction is active.
**    * An EXCLUSIVE or greater lock is held on the database file.
**    * The journal file is open and the first header has been written 
**      and synced to disk.
**    * The contents of the page cache have been modified (and possibly
**      written to disk).
**
**  WRITER_FINISHED:
**
**    It is not possible for a WAL connection to enter this state.
**
**    A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
**    state after the entire transaction has been successfully written into the
**    database file. In this state the transaction may be committed simply
**    by finalizing the journal file. Once in WRITER_FINISHED state, it is 
**    not possible to modify the database further. At this point, the upper 
**    layer must either commit or rollback the transaction.
**
**    * A write transaction is active.
**    * An EXCLUSIVE or greater lock is held on the database file.
**    * All writing and syncing of journal and database data has finished.
**      If no error occured, all that remains is to finalize the journal to
**      commit the transaction. If an error did occur, the caller will need
**      to rollback the transaction. 
**
**  ERROR:
**
**    The ERROR state is entered when an IO or disk-full error (including
**    SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 
**    difficult to be sure that the in-memory pager state (cache contents, 
**    db size etc.) are consistent with the contents of the file-system.
**
**    Temporary pager files may enter the ERROR state, but in-memory pagers
**    cannot.
**
**    For example, if an IO error occurs while performing a rollback, 
**    the contents of the page-cache may be left in an inconsistent state.
**    At this point it would be dangerous to change back to READER state
**    (as usually happens after a rollback). Any subsequent readers might
**    report database corruption (due to the inconsistent cache), and if
**    they upgrade to writers, they may inadvertently corrupt the database
**    file. To avoid this hazard, the pager switches into the ERROR state
**    instead of READER following such an error.
**
**    Once it has entered the ERROR state, any attempt to use the pager
**    to read or write data returns an error. Eventually, once all 
**    outstanding transactions have been abandoned, the pager is able to
**    transition back to OPEN state, discarding the contents of the 
**    page-cache and any other in-memory state at the same time. Everything
**    is reloaded from disk (and, if necessary, hot-journal rollback peformed)
**    when a read-transaction is next opened on the pager (transitioning
**    the pager into READER state). At that point the system has recovered 
**    from the error.
**
**    Specifically, the pager jumps into the ERROR state if:
**
**      1. An error occurs while attempting a rollback. This happens in
**         function sqlite4PagerRollback().
**
**      2. An error occurs while attempting to finalize a journal file
**         following a commit in function sqlite4PagerCommitPhaseTwo().
**
**      3. An error occurs while attempting to write to the journal or
**         database file in function pagerStress() in order to free up
**         memory.
**
**    In other cases, the error is returned to the b-tree layer. The b-tree
**    layer then attempts a rollback operation. If the error condition 
**    persists, the pager enters the ERROR state via condition (1) above.
**
**    Condition (3) is necessary because it can be triggered by a read-only
**    statement executed within a transaction. In this case, if the error
**    code were simply returned to the user, the b-tree layer would not
**    automatically attempt a rollback, as it assumes that an error in a
**    read-only statement cannot leave the pager in an internally inconsistent 
**    state.
**
**    * The Pager.errCode variable is set to something other than SQLITE_OK.
**    * There are one or more outstanding references to pages (after the
**      last reference is dropped the pager should move back to OPEN state).
**    * The pager is not an in-memory pager.
**    
**
** Notes:
**
**   * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
**     connection is open in WAL mode. A WAL connection is always in one
**     of the first four states.
**
**   * Normally, a connection open in exclusive mode is never in PAGER_OPEN
**     state. There are two exceptions: immediately after exclusive-mode has
**     been turned on (and before any read or write transactions are 
**     executed), and when the pager is leaving the "error state".
**
**   * See also: assert_pager_state().
*/
#define PAGER_OPEN                  0
#define PAGER_READER                1
#define PAGER_WRITER_LOCKED         2
#define PAGER_WRITER_CACHEMOD       3
#define PAGER_WRITER_DBMOD          4
#define PAGER_WRITER_FINISHED       5
#define PAGER_ERROR                 6

/*
** The Pager.eLock variable is almost always set to one of the 
** following locking-states, according to the lock currently held on
** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
** This variable is kept up to date as locks are taken and released by
** the pagerLockDb() and pagerUnlockDb() wrappers.
**
** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
** the operation was successful. In these circumstances pagerLockDb() and
** pagerUnlockDb() take a conservative approach - eLock is always updated
** when unlocking the file, and only updated when locking the file if the
** VFS call is successful. This way, the Pager.eLock variable may be set
** to a less exclusive (lower) value than the lock that is actually held
** at the system level, but it is never set to a more exclusive value.
**
** This is usually safe. If an xUnlock fails or appears to fail, there may 
** be a few redundant xLock() calls or a lock may be held for longer than
** required, but nothing really goes wrong.
**
** The exception is when the database file is unlocked as the pager moves
** from ERROR to OPEN state. At this point there may be a hot-journal file 
** in the file-system that needs to be rolled back (as part of a OPEN->SHARED
** transition, by the same pager or any other). If the call to xUnlock()
** fails at this point and the pager is left holding an EXCLUSIVE lock, this
** can confuse the call to xCheckReservedLock() call made later as part
** of hot-journal detection.
**
** xCheckReservedLock() is defined as returning true "if there is a RESERVED 
** lock held by this process or any others". So xCheckReservedLock may 
** return true because the caller itself is holding an EXCLUSIVE lock (but
** doesn't know it because of a previous error in xUnlock). If this happens
** a hot-journal may be mistaken for a journal being created by an active
** transaction in another process, causing SQLite to read from the database
** without rolling it back.
**
** To work around this, if a call to xUnlock() fails when unlocking the
** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
** is only changed back to a real locking state after a successful call
** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 
** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
** lock on the database file before attempting to roll it back. See function
** PagerSharedLock() for more detail.
**
** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 
** PAGER_OPEN state.
*/
#define UNKNOWN_LOCK                (EXCLUSIVE_LOCK+1)

/*
** A macro used for invoking the codec if there is one
*/
#ifdef SQLITE_HAS_CODEC
# define CODEC1(P,D,N,X,E) \
    if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
# define CODEC2(P,D,N,X,E,O) \
    if( P->xCodec==0 ){ O=(char*)D; }else \
    if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
#else
# define CODEC1(P,D,N,X,E)   /* NO-OP */
# define CODEC2(P,D,N,X,E,O) O=(char*)D
#endif

/*
** The maximum allowed sector size. 64KiB. If the xSectorsize() method 
** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
** This could conceivably cause corruption following a power failure on
** such a system. This is currently an undocumented limit.
*/
#define MAX_SECTOR_SIZE 0x10000

/*
** An instance of the following structure is allocated for each active
** savepoint and statement transaction in the system. All such structures
** are stored in the Pager.aSavepoint[] array, which is allocated and
** resized using sqlite4Realloc().
**
** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
** set to 0. If a journal-header is written into the main journal while
** the savepoint is active, then iHdrOffset is set to the byte offset 
** immediately following the last journal record written into the main
** journal before the journal-header. This is required during savepoint
** rollback (see pagerPlaybackSavepoint()).
*/
typedef struct PagerSavepoint PagerSavepoint;
struct PagerSavepoint {
  i64 iOffset;                 /* Starting offset in main journal */
  i64 iHdrOffset;              /* See above */
  Bitvec *pInSavepoint;        /* Set of pages in this savepoint */
  Pgno nOrig;                  /* Original number of pages in file */
  Pgno iSubRec;                /* Index of first record in sub-journal */
};

/*
** A open page cache is an instance of struct Pager. A description of
** some of the more important member variables follows:
**
** eState
**
**   The current 'state' of the pager object. See the comment and state
**   diagram above for a description of the pager state.
**
** eLock
**
**   For a real on-disk database, the current lock held on the database file -
**   NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
**
**   For a temporary or in-memory database (neither of which require any
**   locks), this variable is always set to EXCLUSIVE_LOCK. Since such
**   databases always have Pager.exclusiveMode==1, this tricks the pager
**   logic into thinking that it already has all the locks it will ever
**   need (and no reason to release them).
**
**   In some (obscure) circumstances, this variable may also be set to
**   UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
**   details.
**
** changeCountDone
**
**   This boolean variable is used to make sure that the change-counter 
**   (the 4-byte header field at byte offset 24 of the database file) is 
**   not updated more often than necessary. 
**
**   It is set to true when the change-counter field is updated, which 
**   can only happen if an exclusive lock is held on the database file.
**   It is cleared (set to false) whenever an exclusive lock is 
**   relinquished on the database file. Each time a transaction is committed,
**   The changeCountDone flag is inspected. If it is true, the work of
**   updating the change-counter is omitted for the current transaction.
**
**   This mechanism means that when running in exclusive mode, a connection 
**   need only update the change-counter once, for the first transaction
**   committed.
**
** setMaster
**
**   When PagerCommitPhaseOne() is called to commit a transaction, it may
**   (or may not) specify a master-journal name to be written into the 
**   journal file before it is synced to disk.
**
**   Whether or not a journal file contains a master-journal pointer affects 
**   the way in which the journal file is finalized after the transaction is 
**   committed or rolled back when running in "journal_mode=PERSIST" mode.
**   If a journal file does not contain a master-journal pointer, it is
**   finalized by overwriting the first journal header with zeroes. If
**   it does contain a master-journal pointer the journal file is finalized 
**   by truncating it to zero bytes, just as if the connection were 
**   running in "journal_mode=truncate" mode.
**
**   Journal files that contain master journal pointers cannot be finalized
**   simply by overwriting the first journal-header with zeroes, as the
**   master journal pointer could interfere with hot-journal rollback of any
**   subsequently interrupted transaction that reuses the journal file.
**
**   The flag is cleared as soon as the journal file is finalized (either
**   by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
**   journal file from being successfully finalized, the setMaster flag
**   is cleared anyway (and the pager will move to ERROR state).
**
** doNotSpill, doNotSyncSpill
**
**   These two boolean variables control the behaviour of cache-spills
**   (calls made by the pcache module to the pagerStress() routine to
**   write cached data to the file-system in order to free up memory).
**
**   When doNotSpill is non-zero, writing to the database from pagerStress()
**   is disabled altogether. This is done in a very obscure case that
**   comes up during savepoint rollback that requires the pcache module
**   to allocate a new page to prevent the journal file from being written
**   while it is being traversed by code in pager_playback().
** 
**   If doNotSyncSpill is non-zero, writing to the database from pagerStress()
**   is permitted, but syncing the journal file is not. This flag is set
**   by sqlite4PagerWrite() when the file-system sector-size is larger than
**   the database page-size in order to prevent a journal sync from happening 
**   in between the journalling of two pages on the same sector. 
**
** subjInMemory
**
**   This is a boolean variable. If true, then any required sub-journal
**   is opened as an in-memory journal file. If false, then in-memory
**   sub-journals are only used for in-memory pager files.
**
**   This variable is updated by the upper layer each time a new 
**   write-transaction is opened.
**
** dbSize, dbOrigSize, dbFileSize
**
**   Variable dbSize is set to the number of pages in the database file.
**   It is valid in PAGER_READER and higher states (all states except for
**   OPEN and ERROR). 
**
**   dbSize is set based on the size of the database file, which may be 
**   larger than the size of the database (the value stored at offset
**   28 of the database header by the btree). If the size of the file
**   is not an integer multiple of the page-size, the value stored in
**   dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
**   Except, any file that is greater than 0 bytes in size is considered
**   to have at least one page. (i.e. a 1KB file with 2K page-size leads
**   to dbSize==1).
**
**   During a write-transaction, if pages with page-numbers greater than
**   dbSize are modified in the cache, dbSize is updated accordingly.
**   Similarly, if the database is truncated using PagerTruncateImage(), 
**   dbSize is updated.
**
**   Variables dbOrigSize and dbFileSize are valid in states 
**   PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
**   variable at the start of the transaction. It is used during rollback,
**   and to determine whether or not pages need to be journalled before
**   being modified.
**
**   Throughout a write-transaction, dbFileSize contains the size of
**   the file on disk in pages. It is set to a copy of dbSize when the
**   write-transaction is first opened, and updated when VFS calls are made
**   to write or truncate the database file on disk. 
**
**   The only reason the dbFileSize variable is required is to suppress 
**   unnecessary calls to xTruncate() after committing a transaction. If, 
**   when a transaction is committed, the dbFileSize variable indicates 
**   that the database file is larger than the database image (Pager.dbSize), 
**   pager_truncate() is called. The pager_truncate() call uses xFilesize()
**   to measure the database file on disk, and then truncates it if required.
**   dbFileSize is not used when rolling back a transaction. In this case
**   pager_truncate() is called unconditionally (which means there may be
**   a call to xFilesize() that is not strictly required). In either case,
**   pager_truncate() may cause the file to become smaller or larger.
**
** dbHintSize
**
**   The dbHintSize variable is used to limit the number of calls made to
**   the VFS xFileControl(FCNTL_SIZE_HINT) method. 
**
**   dbHintSize is set to a copy of the dbSize variable when a
**   write-transaction is opened (at the same time as dbFileSize and
**   dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
**   dbHintSize is increased to the number of pages that correspond to the
**   size-hint passed to the method call. See pager_write_pagelist() for 
**   details.
**
** errCode
**
**   The Pager.errCode variable is only ever used in PAGER_ERROR state. It
**   is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 
**   is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 
**   sub-codes.
*/
struct Pager {
  sqlite4_vfs *pVfs;          /* OS functions to use for IO */
  u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
  u8 journalMode;             /* One of the PAGER_JOURNALMODE_* values */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 ckptSyncFlags;           /* SYNC_NORMAL or SYNC_FULL for checkpoint */
  u8 syncFlags;               /* SYNC_NORMAL or SYNC_FULL otherwise */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 memDb;                   /* True to inhibit all file I/O */

  /**************************************************************************
  ** The following block contains those class members that change during
  ** routine opertion.  Class members not in this block are either fixed
  ** when the pager is first created or else only change when there is a
  ** significant mode change (such as changing the page_size, locking_mode,
  ** or the journal_mode).  From another view, these class members describe
  ** the "state" of the pager, while other class members describe the
  ** "configuration" of the pager.
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 doNotSyncSpill;          /* Do not do a spill that requires jrnl sync */
  u8 subjInMemory;            /* True to use in-memory sub-journals */
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
  u32 nSubRec;                /* Number of records written to sub-journal */
  Bitvec *pInJournal;         /* One bit for each page in the database file */
  sqlite4_file *fd;           /* File descriptor for database */
  sqlite4_file *jfd;          /* File descriptor for main journal */
  sqlite4_file *sjfd;         /* File descriptor for sub-journal */
  i64 journalOff;             /* Current write offset in the journal file */
  i64 journalHdr;             /* Byte offset to previous journal header */
  sqlite4_backup *pBackup;    /* Pointer to list of ongoing backup processes */
  PagerSavepoint *aSavepoint; /* Array of active savepoints */
  int nSavepoint;             /* Number of elements in aSavepoint[] */
  char dbFileVers[16];        /* Changes whenever database file changes */
  /*
  ** End of the routinely-changing class members
  ***************************************************************************/

  u16 nExtra;                 /* Add this many bytes to each in-memory page */
  i16 nReserve;               /* Number of unused bytes at end of each page */
  u32 vfsFlags;               /* Flags for sqlite4_vfs.xOpen() */
  u32 sectorSize;             /* Assumed sector size during rollback */
  int pageSize;               /* Number of bytes in a page */
  Pgno mxPgno;                /* Maximum allowed size of the database */
  i64 journalSizeLimit;       /* Size limit for persistent journal files */
  char *zFilename;            /* Name of the database file */
  char *zJournal;             /* Name of the journal file */
  int (*xBusyHandler)(void*); /* Function to call when busy */
  void *pBusyHandlerArg;      /* Context argument for xBusyHandler */
  int nHit, nMiss;            /* Total cache hits and misses */
#ifdef SQLITE_TEST
  int nRead, nWrite;          /* Database pages read/written */
#endif
  void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
#ifdef SQLITE_HAS_CODEC
  void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
  void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
  void (*xCodecFree)(void*);             /* Destructor for the codec */
  void *pCodec;               /* First argument to xCodec... methods */
#endif
  char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
  PCache *pPCache;            /* Pointer to page cache object */
};

/*
** The following global variables hold counters used for
** testing purposes only.  These variables do not exist in
** a non-testing build.  These variables are not thread-safe.
*/
#ifdef SQLITE_TEST
int sqlite4_pager_readdb_count = 0;    /* Number of full pages read from DB */
int sqlite4_pager_writedb_count = 0;   /* Number of full pages written to DB */
int sqlite4_pager_writej_count = 0;    /* Number of pages written to journal */
# define PAGER_INCR(v)  v++
#else
# define PAGER_INCR(v)
#endif



/*
** Journal files begin with the following magic string.  The data
** was obtained from /dev/random.  It is used only as a sanity check.
**
** Since version 2.8.0, the journal format contains additional sanity
** checking information.  If the power fails while the journal is being
** written, semi-random garbage data might appear in the journal
** file after power is restored.  If an attempt is then made
** to roll the journal back, the database could be corrupted.  The additional
** sanity checking data is an attempt to discover the garbage in the
** journal and ignore it.
**
** The sanity checking information for the new journal format consists
** of a 32-bit checksum on each page of data.  The checksum covers both
** the page number and the pPager->pageSize bytes of data for the page.
** This cksum is initialized to a 32-bit random value that appears in the
** journal file right after the header.  The random initializer is important,
** because garbage data that appears at the end of a journal is likely
** data that was once in other files that have now been deleted.  If the
** garbage data came from an obsolete journal file, the checksums might
** be correct.  But by initializing the checksum to random value which
** is different for every journal, we minimize that risk.
*/
static const unsigned char aJournalMagic[] = {
  0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
};

/*
** The size of the of each page record in the journal is given by
** the following macro.
*/
#define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)

/*
** The journal header size for this pager. This is usually the same 
** size as a single disk sector. See also setSectorSize().
*/
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)

/*
** The macro MEMDB is true if we are dealing with an in-memory database.
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
** the value of MEMDB will be a constant and the compiler will optimize
** out code that would never execute.
*/
#ifdef SQLITE_OMIT_MEMORYDB
# define MEMDB 0
#else
# define MEMDB pPager->memDb
#endif

/*
** The maximum legal page number is (2^31 - 1).
*/
#define PAGER_MAX_PGNO 2147483647

/*
** The argument to this macro is a file descriptor (type sqlite4_file*).
** Return 0 if it is not open, or non-zero (but not 1) if it is.
**
** This is so that expressions can be written as:
**
**   if( isOpen(pPager->jfd) ){ ...
**
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods)

/*
** Return true if this pager uses a write-ahead log instead of the usual
** rollback journal. Otherwise false.
*/
#define pagerUseWal(x) 0
#define pagerRollbackWal(x) 0
#define pagerWalFrames(v,w,x,y) 0
#define pagerOpenWalIfPresent(z) SQLITE_OK
#define pagerBeginReadTransaction(z) SQLITE_OK

#ifndef NDEBUG 
/*
** Usage:
**
**   assert( assert_pager_state(pPager) );
**
** This function runs many asserts to try to find inconsistencies in
** the internal state of the Pager object.
*/
static int assert_pager_state(Pager *p){
  Pager *pPager = p;

  /* State must be valid. */
  assert( p->eState==PAGER_OPEN
       || p->eState==PAGER_READER
       || p->eState==PAGER_WRITER_LOCKED
       || p->eState==PAGER_WRITER_CACHEMOD
       || p->eState==PAGER_WRITER_DBMOD
       || p->eState==PAGER_WRITER_FINISHED
       || p->eState==PAGER_ERROR
  );

  /* Regardless of the current state, a temp-file connection always behaves
  ** as if it has an exclusive lock on the database file. It never updates
  ** the change-counter field, so the changeCountDone flag is always set.
  */
  assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
  assert( p->tempFile==0 || pPager->changeCountDone );

  /* If the useJournal flag is clear, the journal-mode must be "OFF". 
  ** And if the journal-mode is "OFF", the journal file must not be open.
  */
  assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
  assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );

  /* Check that MEMDB implies noSync. And an in-memory journal. Since 
  ** this means an in-memory pager performs no IO at all, it cannot encounter 
  ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 
  ** a journal file. (although the in-memory journal implementation may 
  ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 
  ** is therefore not possible for an in-memory pager to enter the ERROR 
  ** state.
  */
  if( MEMDB ){
    assert( p->noSync );
    assert( p->journalMode==PAGER_JOURNALMODE_OFF 
         || p->journalMode==PAGER_JOURNALMODE_MEMORY 
    );
    assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
    assert( pagerUseWal(p)==0 );
  }

  /* If changeCountDone is set, a RESERVED lock or greater must be held
  ** on the file.
  */
  assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
  assert( p->eLock!=PENDING_LOCK );

  switch( p->eState ){
    case PAGER_OPEN:
      assert( !MEMDB );
      assert( pPager->errCode==SQLITE_OK );
      assert( sqlite4PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
      break;

    case PAGER_READER:
      assert( pPager->errCode==SQLITE_OK );
      assert( p->eLock!=UNKNOWN_LOCK );
      assert( p->eLock>=SHARED_LOCK );
      break;

    case PAGER_WRITER_LOCKED:
      assert( p->eLock!=UNKNOWN_LOCK );
      assert( pPager->errCode==SQLITE_OK );
      if( !pagerUseWal(pPager) ){
        assert( p->eLock>=RESERVED_LOCK );
      }
      assert( pPager->dbSize==pPager->dbOrigSize );
      assert( pPager->dbOrigSize==pPager->dbFileSize );
      assert( pPager->dbOrigSize==pPager->dbHintSize );
      assert( pPager->setMaster==0 );
      break;

    case PAGER_WRITER_CACHEMOD:
      assert( p->eLock!=UNKNOWN_LOCK );
      assert( pPager->errCode==SQLITE_OK );
      if( !pagerUseWal(pPager) ){
        /* It is possible that if journal_mode=wal here that neither the
        ** journal file nor the WAL file are open. This happens during
        ** a rollback transaction that switches from journal_mode=off
        ** to journal_mode=wal.
        */
        assert( p->eLock>=RESERVED_LOCK );
        assert( isOpen(p->jfd) 
             || p->journalMode==PAGER_JOURNALMODE_OFF 
             || p->journalMode==PAGER_JOURNALMODE_WAL 
        );
      }
      assert( pPager->dbOrigSize==pPager->dbFileSize );
      assert( pPager->dbOrigSize==pPager->dbHintSize );
      break;

    case PAGER_WRITER_DBMOD:
      assert( p->eLock==EXCLUSIVE_LOCK );
      assert( pPager->errCode==SQLITE_OK );
      assert( !pagerUseWal(pPager) );
      assert( p->eLock>=EXCLUSIVE_LOCK );
      assert( isOpen(p->jfd) 
           || p->journalMode==PAGER_JOURNALMODE_OFF 
           || p->journalMode==PAGER_JOURNALMODE_WAL 
      );
      assert( pPager->dbOrigSize<=pPager->dbHintSize );
      break;

    case PAGER_WRITER_FINISHED:
      assert( p->eLock==EXCLUSIVE_LOCK );
      assert( pPager->errCode==SQLITE_OK );
      assert( !pagerUseWal(pPager) );
      assert( isOpen(p->jfd) 
           || p->journalMode==PAGER_JOURNALMODE_OFF 
           || p->journalMode==PAGER_JOURNALMODE_WAL 
      );
      break;

    case PAGER_ERROR:
      /* There must be at least one outstanding reference to the pager if
      ** in ERROR state. Otherwise the pager should have already dropped
      ** back to OPEN state.
      */
      assert( pPager->errCode!=SQLITE_OK );
      assert( sqlite4PcacheRefCount(pPager->pPCache)>0 );
      break;
  }

  return 1;
}
#endif /* ifndef NDEBUG */

#ifdef SQLITE_DEBUG 
/*
** Return a pointer to a human readable string in a static buffer
** containing the state of the Pager object passed as an argument. This
** is intended to be used within debuggers. For example, as an alternative
** to "print *pPager" in gdb:
**
** (gdb) printf "%s", print_pager_state(pPager)
*/
static char *print_pager_state(Pager *p){
  static char zRet[1024];

  sqlite4_snprintf(1024, zRet,
      "Filename:      %s\n"
      "State:         %s errCode=%d\n"
      "Lock:          %s\n"
      "Locking mode:  locking_mode=%s\n"
      "Journal mode:  journal_mode=%s\n"
      "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
      "Journal:       journalOff=%lld journalHdr=%lld\n"
      "Size:          dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
      , p->zFilename
      , p->eState==PAGER_OPEN            ? "OPEN" :
        p->eState==PAGER_READER          ? "READER" :
        p->eState==PAGER_WRITER_LOCKED   ? "WRITER_LOCKED" :
        p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
        p->eState==PAGER_WRITER_DBMOD    ? "WRITER_DBMOD" :
        p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
        p->eState==PAGER_ERROR           ? "ERROR" : "?error?"
      , (int)p->errCode
      , p->eLock==NO_LOCK         ? "NO_LOCK" :
        p->eLock==RESERVED_LOCK   ? "RESERVED" :
        p->eLock==EXCLUSIVE_LOCK  ? "EXCLUSIVE" :
        p->eLock==SHARED_LOCK     ? "SHARED" :
        p->eLock==UNKNOWN_LOCK    ? "UNKNOWN" : "?error?"
      , p->exclusiveMode ? "exclusive" : "normal"
      , p->journalMode==PAGER_JOURNALMODE_MEMORY   ? "memory" :
        p->journalMode==PAGER_JOURNALMODE_OFF      ? "off" :
        p->journalMode==PAGER_JOURNALMODE_DELETE   ? "delete" :
        p->journalMode==PAGER_JOURNALMODE_PERSIST  ? "persist" :
        p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
        p->journalMode==PAGER_JOURNALMODE_WAL      ? "wal" : "?error?"
      , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
      , p->journalOff, p->journalHdr
      , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
  );

  return zRet;
}
#endif

/*
** Return true if it is necessary to write page *pPg into the sub-journal.
** A page needs to be written into the sub-journal if there exists one
** or more open savepoints for which:
**
**   * The page-number is less than or equal to PagerSavepoint.nOrig, and
**   * The bit corresponding to the page-number is not set in
**     PagerSavepoint.pInSavepoint.
*/
static int subjRequiresPage(PgHdr *pPg){
  Pgno pgno = pPg->pgno;
  Pager *pPager = pPg->pPager;
  int i;
  for(i=0; i<pPager->nSavepoint; i++){
    PagerSavepoint *p = &pPager->aSavepoint[i];
    if( p->nOrig>=pgno && 0==sqlite4BitvecTest(p->pInSavepoint, pgno) ){
      return 1;
    }
  }
  return 0;
}

/*
** Return true if the page is already in the journal file.
*/
static int pageInJournal(PgHdr *pPg){
  return sqlite4BitvecTest(pPg->pPager->pInJournal, pPg->pgno);
}

/*
** Read a 32-bit integer from the given file descriptor.  Store the integer
** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
** error code is something goes wrong.
**
** All values are stored on disk as big-endian.
*/
static int read32bits(sqlite4_file *fd, i64 offset, u32 *pRes){
  unsigned char ac[4];
  int rc = sqlite4OsRead(fd, ac, sizeof(ac), offset);
  if( rc==SQLITE_OK ){
    *pRes = sqlite4Get4byte(ac);
  }
  return rc;
}

/*
** Write a 32-bit integer into a string buffer in big-endian byte order.
*/
#define put32bits(A,B)  sqlite4Put4byte((u8*)A,B)


/*
** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
** on success or an error code is something goes wrong.
*/
static int write32bits(sqlite4_file *fd, i64 offset, u32 val){
  char ac[4];
  put32bits(ac, val);
  return sqlite4OsWrite(fd, ac, 4, offset);
}

/*
** Unlock the database file to level eLock, which must be either NO_LOCK
** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
**
** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
** called, do not modify it. See the comment above the #define of 
** UNKNOWN_LOCK for an explanation of this.
*/
static int pagerUnlockDb(Pager *pPager, int eLock){
  int rc = SQLITE_OK;

  assert( !pPager->exclusiveMode || pPager->eLock==eLock );
  assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
  assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
  if( isOpen(pPager->fd) ){
    assert( pPager->eLock>=eLock );
    rc = sqlite4OsUnlock(pPager->fd, eLock);
    if( pPager->eLock!=UNKNOWN_LOCK ){
      pPager->eLock = (u8)eLock;
    }
    IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
  }
  return rc;
}

/*
** Lock the database file to level eLock, which must be either SHARED_LOCK,
** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
** Pager.eLock variable to the new locking state. 
**
** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 
** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 
** See the comment above the #define of UNKNOWN_LOCK for an explanation 
** of this.
*/
static int pagerLockDb(Pager *pPager, int eLock){
  int rc = SQLITE_OK;

  assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
  if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
    rc = sqlite4OsLock(pPager->fd, eLock);
    if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
      pPager->eLock = (u8)eLock;
      IOTRACE(("LOCK %p %d\n", pPager, eLock))
    }
  }
  return rc;
}

/*
** This function determines whether or not the atomic-write optimization
** can be used with this pager. The optimization can be used if:
**
**  (a) the value returned by OsDeviceCharacteristics() indicates that
**      a database page may be written atomically, and
**  (b) the value returned by OsSectorSize() is less than or equal
**      to the page size.
**
** The optimization is also always enabled for temporary files. It is
** an error to call this function if pPager is opened on an in-memory
** database.
**
** If the optimization cannot be used, 0 is returned. If it can be used,
** then the value returned is the size of the journal file when it
** contains rollback data for exactly one page.
*/
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
static int jrnlBufferSize(Pager *pPager){
  assert( !MEMDB );
  if( !pPager->tempFile ){
    int dc;                           /* Device characteristics */
    int nSector;                      /* Sector size */
    int szPage;                       /* Page size */

    assert( isOpen(pPager->fd) );
    dc = sqlite4OsDeviceCharacteristics(pPager->fd);
    nSector = pPager->sectorSize;
    szPage = pPager->pageSize;

    assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
    assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
    if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
      return 0;
    }
  }

  return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
}
#endif

/*
** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
** on the cache using a hash function.  This is used for testing
** and debugging only.
*/
#ifdef SQLITE_CHECK_PAGES
/*
** Return a 32-bit hash of the page data for pPage.
*/
static u32 pager_datahash(int nByte, unsigned char *pData){
  u32 hash = 0;
  int i;
  for(i=0; i<nByte; i++){
    hash = (hash*1039) + pData[i];
  }
  return hash;
}
static u32 pager_pagehash(PgHdr *pPage){
  return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
}
static void pager_set_pagehash(PgHdr *pPage){
  pPage->pageHash = pager_pagehash(pPage);
}

/*
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
** is defined, and NDEBUG is not defined, an assert() statement checks
** that the page is either dirty or still matches the calculated page-hash.
*/
#define CHECK_PAGE(x) checkPage(x)
static void checkPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( pPager->eState!=PAGER_ERROR );
  assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
}

#else
#define pager_datahash(X,Y)  0
#define pager_pagehash(X)  0
#define pager_set_pagehash(X)
#define CHECK_PAGE(x)
#endif  /* SQLITE_CHECK_PAGES */

/*
** When this is called the journal file for pager pPager must be open.
** This function attempts to read a master journal file name from the 
** end of the file and, if successful, copies it into memory supplied 
** by the caller. See comments above writeMasterJournal() for the format
** used to store a master journal file name at the end of a journal file.
**
** zMaster must point to a buffer of at least nMaster bytes allocated by
** the caller. This should be sqlite4_vfs.mxPathname+1 (to ensure there is
** enough space to write the master journal name). If the master journal
** name in the journal is longer than nMaster bytes (including a
** nul-terminator), then this is handled as if no master journal name
** were present in the journal.
**
** If a master journal file name is present at the end of the journal
** file, then it is copied into the buffer pointed to by zMaster. A
** nul-terminator byte is appended to the buffer following the master
** journal file name.
**
** If it is determined that no master journal file name is present 
** zMaster[0] is set to 0 and SQLITE_OK returned.
**
** If an error occurs while reading from the journal file, an SQLite
** error code is returned.
*/
static int readMasterJournal(sqlite4_file *pJrnl, char *zMaster, u32 nMaster){
  int rc;                    /* Return code */
  u32 len;                   /* Length in bytes of master journal name */
  i64 szJ;                   /* Total size in bytes of journal file pJrnl */
  u32 cksum;                 /* MJ checksum value read from journal */
  u32 u;                     /* Unsigned loop counter */
  unsigned char aMagic[8];   /* A buffer to hold the magic header */
  zMaster[0] = '\0';

  if( SQLITE_OK!=(rc = sqlite4OsFileSize(pJrnl, &szJ))
   || szJ<16
   || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
   || len>=nMaster 
   || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
   || SQLITE_OK!=(rc = sqlite4OsRead(pJrnl, aMagic, 8, szJ-8))
   || memcmp(aMagic, aJournalMagic, 8)
   || SQLITE_OK!=(rc = sqlite4OsRead(pJrnl, zMaster, len, szJ-16-len))
  ){
    return rc;
  }

  /* See if the checksum matches the master journal name */
  for(u=0; u<len; u++){
    cksum -= zMaster[u];
  }
  if( cksum ){
    /* If the checksum doesn't add up, then one or more of the disk sectors
    ** containing the master journal filename is corrupted. This means
    ** definitely roll back, so just return SQLITE_OK and report a (nul)
    ** master-journal filename.
    */
    len = 0;
  }
  zMaster[len] = '\0';
   
  return SQLITE_OK;
}

/*
** Return the offset of the sector boundary at or immediately 
** following the value in pPager->journalOff, assuming a sector 
** size of pPager->sectorSize bytes.
**
** i.e for a sector size of 512:
**
**   Pager.journalOff          Return value
**   ---------------------------------------
**   0                         0
**   512                       512
**   100                       512
**   2000                      2048
** 
*/
static i64 journalHdrOffset(Pager *pPager){
  i64 offset = 0;
  i64 c = pPager->journalOff;
  if( c ){
    offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
  }
  assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
  assert( offset>=c );
  assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
  return offset;
}

/*
** The journal file must be open when this function is called.
**
** This function is a no-op if the journal file has not been written to
** within the current transaction (i.e. if Pager.journalOff==0).
**
** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
** zero the 28-byte header at the start of the journal file. In either case, 
** if the pager is not in no-sync mode, sync the journal file immediately 
** after writing or truncating it.
**
** If Pager.journalSizeLimit is set to a positive, non-zero value, and
** following the truncation or zeroing described above the size of the 
** journal file in bytes is larger than this value, then truncate the
** journal file to Pager.journalSizeLimit bytes. The journal file does
** not need to be synced following this operation.
**
** If an IO error occurs, abandon processing and return the IO error code.
** Otherwise, return SQLITE_OK.
*/
static int zeroJournalHdr(Pager *pPager, int doTruncate){
  int rc = SQLITE_OK;                               /* Return code */
  assert( isOpen(pPager->jfd) );
  if( pPager->journalOff ){
    const i64 iLimit = pPager->journalSizeLimit;    /* Local cache of jsl */

    IOTRACE(("JZEROHDR %p\n", pPager))
    if( doTruncate || iLimit==0 ){
      rc = sqlite4OsTruncate(pPager->jfd, 0);
    }else{
      static const char zeroHdr[28] = {0};
      rc = sqlite4OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
    }
    if( rc==SQLITE_OK && !pPager->noSync ){
      rc = sqlite4OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
    }

    /* At this point the transaction is committed but the write lock 
    ** is still held on the file. If there is a size limit configured for 
    ** the persistent journal and the journal file currently consumes more
    ** space than that limit allows for, truncate it now. There is no need
    ** to sync the file following this operation.
    */
    if( rc==SQLITE_OK && iLimit>0 ){
      i64 sz;
      rc = sqlite4OsFileSize(pPager->jfd, &sz);
      if( rc==SQLITE_OK && sz>iLimit ){
        rc = sqlite4OsTruncate(pPager->jfd, iLimit);
      }
    }
  }
  return rc;
}

/*
** The journal file must be open when this routine is called. A journal
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
** current location.
**
** The format for the journal header is as follows:
** - 8 bytes: Magic identifying journal format.
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
** - 4 bytes: Random number used for page hash.
** - 4 bytes: Initial database page count.
** - 4 bytes: Sector size used by the process that wrote this journal.
** - 4 bytes: Database page size.
** 
** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
*/
static int writeJournalHdr(Pager *pPager){
  int rc = SQLITE_OK;                 /* Return code */
  char *zHeader = pPager->pTmpSpace;  /* Temporary space used to build header */
  u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
  u32 nWrite;                         /* Bytes of header sector written */
  int ii;                             /* Loop counter */

  assert( isOpen(pPager->jfd) );      /* Journal file must be open. */

  if( nHeader>JOURNAL_HDR_SZ(pPager) ){
    nHeader = JOURNAL_HDR_SZ(pPager);
  }

  /* If there are active savepoints and any of them were created 
  ** since the most recent journal header was written, update the 
  ** PagerSavepoint.iHdrOffset fields now.
  */
  for(ii=0; ii<pPager->nSavepoint; ii++){
    if( pPager->aSavepoint[ii].iHdrOffset==0 ){
      pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
    }
  }

  pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);

  /* 
  ** Write the nRec Field - the number of page records that follow this
  ** journal header. Normally, zero is written to this value at this time.
  ** After the records are added to the journal (and the journal synced, 
  ** if in full-sync mode), the zero is overwritten with the true number
  ** of records (see syncJournal()).
  **
  ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
  ** reading the journal this value tells SQLite to assume that the
  ** rest of the journal file contains valid page records. This assumption
  ** is dangerous, as if a failure occurred whilst writing to the journal
  ** file it may contain some garbage data. There are two scenarios
  ** where this risk can be ignored:
  **
  **   * When the pager is in no-sync mode. Corruption can follow a
  **     power failure in this case anyway.
  **
  **   * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
  **     that garbage data is never appended to the journal file.
  */
  assert( isOpen(pPager->fd) || pPager->noSync );
  if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
   || (sqlite4OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 
  ){
    memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
    put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
  }else{
    memset(zHeader, 0, sizeof(aJournalMagic)+4);
  }

  /* The random check-hash initialiser */ 
  sqlite4_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
  put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
  /* The initial database size */
  put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
  /* The assumed sector size for this process */
  put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);

  /* The page size */
  put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);

  /* Initializing the tail of the buffer is not necessary.  Everything
  ** works find if the following memset() is omitted.  But initializing
  ** the memory prevents valgrind from complaining, so we are willing to
  ** take the performance hit.
  */
  memset(&zHeader[sizeof(aJournalMagic)+20], 0,
         nHeader-(sizeof(aJournalMagic)+20));

  /* In theory, it is only necessary to write the 28 bytes that the 
  ** journal header consumes to the journal file here. Then increment the 
  ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 
  ** record is written to the following sector (leaving a gap in the file
  ** that will be implicitly filled in by the OS).
  **
  ** However it has been discovered that on some systems this pattern can 
  ** be significantly slower than contiguously writing data to the file,
  ** even if that means explicitly writing data to the block of 
  ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
  ** is done. 
  **
  ** The loop is required here in case the sector-size is larger than the 
  ** database page size. Since the zHeader buffer is only Pager.pageSize
  ** bytes in size, more than one call to sqlite4OsWrite() may be required
  ** to populate the entire journal header sector.
  */ 
  for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
    IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
    rc = sqlite4OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
    assert( pPager->journalHdr <= pPager->journalOff );
    pPager->journalOff += nHeader;
  }

  return rc;
}

/*
** The journal file must be open when this is called. A journal header file
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
** file. The current location in the journal file is given by
** pPager->journalOff. See comments above function writeJournalHdr() for
** a description of the journal header format.
**
** If the header is read successfully, *pNRec is set to the number of
** page records following this header and *pDbSize is set to the size of the
** database before the transaction began, in pages. Also, pPager->cksumInit
** is set to the value read from the journal header. SQLITE_OK is returned
** in this case.
**
** If the journal header file appears to be corrupted, SQLITE_DONE is
** returned and *pNRec and *PDbSize are undefined.  If JOURNAL_HDR_SZ bytes
** cannot be read from the journal file an error code is returned.
*/
static int readJournalHdr(
  Pager *pPager,               /* Pager object */
  int isHot,
  i64 journalSize,             /* Size of the open journal file in bytes */
  u32 *pNRec,                  /* OUT: Value read from the nRec field */
  u32 *pDbSize                 /* OUT: Value of original database size field */
){
  int rc;                      /* Return code */
  unsigned char aMagic[8];     /* A buffer to hold the magic header */
  i64 iHdrOff;                 /* Offset of journal header being read */

  assert( isOpen(pPager->jfd) );      /* Journal file must be open. */

  /* Advance Pager.journalOff to the start of the next sector. If the
  ** journal file is too small for there to be a header stored at this
  ** point, return SQLITE_DONE.
  */
  pPager->journalOff = journalHdrOffset(pPager);
  if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
    return SQLITE_DONE;
  }
  iHdrOff = pPager->journalOff;

  /* Read in the first 8 bytes of the journal header. If they do not match
  ** the  magic string found at the start of each journal header, return
  ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
  ** proceed.
  */
  if( isHot || iHdrOff!=pPager->journalHdr ){
    rc = sqlite4OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
    if( rc ){
      return rc;
    }
    if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
      return SQLITE_DONE;
    }
  }

  /* Read the first three 32-bit fields of the journal header: The nRec
  ** field, the checksum-initializer and the database size at the start
  ** of the transaction. Return an error code if anything goes wrong.
  */
  if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
   || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
   || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
  ){
    return rc;
  }

  if( pPager->journalOff==0 ){
    u32 iPageSize;               /* Page-size field of journal header */
    u32 iSectorSize;             /* Sector-size field of journal header */

    /* Read the page-size and sector-size journal header fields. */
    if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
     || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
    ){
      return rc;
    }

    /* Versions of SQLite prior to 3.5.8 set the page-size field of the
    ** journal header to zero. In this case, assume that the Pager.pageSize
    ** variable is already set to the correct page size.
    */
    if( iPageSize==0 ){
      iPageSize = pPager->pageSize;
    }

    /* Check that the values read from the page-size and sector-size fields
    ** are within range. To be 'in range', both values need to be a power
    ** of two greater than or equal to 512 or 32, and not greater than their 
    ** respective compile time maximum limits.
    */
    if( iPageSize<512                  || iSectorSize<32
     || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
     || ((iPageSize-1)&iPageSize)!=0   || ((iSectorSize-1)&iSectorSize)!=0 
    ){
      /* If the either the page-size or sector-size in the journal-header is 
      ** invalid, then the process that wrote the journal-header must have 
      ** crashed before the header was synced. In this case stop reading 
      ** the journal file here.
      */
      return SQLITE_DONE;
    }

    /* Update the page-size to match the value read from the journal. 
    ** Use a testcase() macro to make sure that malloc failure within 
    ** PagerSetPagesize() is tested.
    */
    rc = sqlite4PagerSetPagesize(pPager, &iPageSize, -1);
    testcase( rc!=SQLITE_OK );

    /* Update the assumed sector-size to match the value used by 
    ** the process that created this journal. If this journal was
    ** created by a process other than this one, then this routine
    ** is being called from within pager_playback(). The local value
    ** of Pager.sectorSize is restored at the end of that routine.
    */
    pPager->sectorSize = iSectorSize;
  }

  pPager->journalOff += JOURNAL_HDR_SZ(pPager);
  return rc;
}


/*
** Write the supplied master journal name into the journal file for pager
** pPager at the current location. The master journal name must be the last
** thing written to a journal file. If the pager is in full-sync mode, the
** journal file descriptor is advanced to the next sector boundary before
** anything is written. The format is:
**
**   + 4 bytes: PAGER_MJ_PGNO.
**   + N bytes: Master journal filename in utf-8.
**   + 4 bytes: N (length of master journal name in bytes, no nul-terminator).
**   + 4 bytes: Master journal name checksum.
**   + 8 bytes: aJournalMagic[].
**
** The master journal page checksum is the sum of the bytes in the master
** journal name, where each byte is interpreted as a signed 8-bit integer.
**
** If zMaster is a NULL pointer (occurs for a single database transaction), 
** this call is a no-op.
*/
static int writeMasterJournal(Pager *pPager, const char *zMaster){
  int rc;                          /* Return code */
  int nMaster;                     /* Length of string zMaster */
  i64 iHdrOff;                     /* Offset of header in journal file */
  i64 jrnlSize;                    /* Size of journal file on disk */
  u32 cksum = 0;                   /* Checksum of string zMaster */

  assert( pPager->setMaster==0 );
  assert( !pagerUseWal(pPager) );

  if( !zMaster 
   || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 
   || pPager->journalMode==PAGER_JOURNALMODE_OFF 
  ){
    return SQLITE_OK;
  }
  pPager->setMaster = 1;
  assert( isOpen(pPager->jfd) );
  assert( pPager->journalHdr <= pPager->journalOff );

  /* Calculate the length in bytes and the checksum of zMaster */
  for(nMaster=0; zMaster[nMaster]; nMaster++){
    cksum += zMaster[nMaster];
  }

  /* If in full-sync mode, advance to the next disk sector before writing
  ** the master journal name. This is in case the previous page written to
  ** the journal has already been synced.
  */
  if( pPager->fullSync ){
    pPager->journalOff = journalHdrOffset(pPager);
  }
  iHdrOff = pPager->journalOff;

  /* Write the master journal data to the end of the journal file. If
  ** an error occurs, return the error code to the caller.
  */
  if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
   || (0 != (rc = sqlite4OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
   || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
   || (0 != (rc = sqlite4OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8)))
  ){
    return rc;
  }
  pPager->journalOff += (nMaster+20);

  /* If the pager is in peristent-journal mode, then the physical 
  ** journal-file may extend past the end of the master-journal name
  ** and 8 bytes of magic data just written to the file. This is 
  ** dangerous because the code to rollback a hot-journal file
  ** will not be able to find the master-journal name to determine 
  ** whether or not the journal is hot. 
  **
  ** Easiest thing to do in this scenario is to truncate the journal 
  ** file to the required size.
  */ 
  if( SQLITE_OK==(rc = sqlite4OsFileSize(pPager->jfd, &jrnlSize))
   && jrnlSize>pPager->journalOff
  ){
    rc = sqlite4OsTruncate(pPager->jfd, pPager->journalOff);
  }
  return rc;
}

/*
** Find a page in the hash table given its page number. Return
** a pointer to the page or NULL if the requested page is not 
** already in memory.
*/
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
  PgHdr *p;                         /* Return value */

  /* It is not possible for a call to PcacheFetch() with createFlag==0 to
  ** fail, since no attempt to allocate dynamic memory will be made.
  */
  (void)sqlite4PcacheFetch(pPager->pPCache, pgno, 0, &p);
  return p;
}

/*
** Discard the entire contents of the in-memory page-cache.
*/
static void pager_reset(Pager *pPager){
  sqlite4BackupRestart(pPager->pBackup);
  sqlite4PcacheClear(pPager->pPCache);
}

/*
** Free all structures in the Pager.aSavepoint[] array and set both
** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
** if it is open and the pager is not in exclusive mode.
*/
static void releaseAllSavepoints(Pager *pPager){
  int ii;               /* Iterator for looping through Pager.aSavepoint */
  for(ii=0; ii<pPager->nSavepoint; ii++){
    sqlite4BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
  }
  if( !pPager->exclusiveMode || sqlite4IsMemJournal(pPager->sjfd) ){
    sqlite4OsClose(pPager->sjfd);
  }
  sqlite4_free(pPager->aSavepoint);
  pPager->aSavepoint = 0;
  pPager->nSavepoint = 0;
  pPager->nSubRec = 0;
}

/*
** Set the bit number pgno in the PagerSavepoint.pInSavepoint 
** bitvecs of all open savepoints. Return SQLITE_OK if successful
** or SQLITE_NOMEM if a malloc failure occurs.
*/
static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
  int ii;                   /* Loop counter */
  int rc = SQLITE_OK;       /* Result code */

  for(ii=0; ii<pPager->nSavepoint; ii++){
    PagerSavepoint *p = &pPager->aSavepoint[ii];
    if( pgno<=p->nOrig ){
      rc |= sqlite4BitvecSet(p->pInSavepoint, pgno);
      testcase( rc==SQLITE_NOMEM );
      assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
    }
  }
  return rc;
}

/*
** This function is a no-op if the pager is in exclusive mode and not
** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
** state.
**
** If the pager is not in exclusive-access mode, the database file is
** completely unlocked. If the file is unlocked and the file-system does
** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
** closed (if it is open).
**
** If the pager is in ERROR state when this function is called, the 
** contents of the pager cache are discarded before switching back to 
** the OPEN state. Regardless of whether the pager is in exclusive-mode
** or not, any journal file left in the file-system will be treated
** as a hot-journal and rolled back the next time a read-transaction
** is opened (by this or by any other connection).
*/
static void pager_unlock(Pager *pPager){

  assert( pPager->eState==PAGER_READER 
       || pPager->eState==PAGER_OPEN 
       || pPager->eState==PAGER_ERROR 
  );

  sqlite4BitvecDestroy(pPager->pInJournal);
  pPager->pInJournal = 0;
  releaseAllSavepoints(pPager);

  if( !pPager->exclusiveMode ){
    int rc;                       /* Error code returned by pagerUnlockDb() */
    int iDc = isOpen(pPager->fd)?sqlite4OsDeviceCharacteristics(pPager->fd):0;

    /* If the operating system support deletion of open files, then
    ** close the journal file when dropping the database lock.  Otherwise
    ** another connection with journal_mode=delete might delete the file
    ** out from under us.
    */
    assert( (PAGER_JOURNALMODE_MEMORY   & 5)!=1 );
    assert( (PAGER_JOURNALMODE_OFF      & 5)!=1 );
    assert( (PAGER_JOURNALMODE_WAL      & 5)!=1 );
    assert( (PAGER_JOURNALMODE_DELETE   & 5)!=1 );
    assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
    assert( (PAGER_JOURNALMODE_PERSIST  & 5)==1 );
    if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
     || 1!=(pPager->journalMode & 5)
    ){
      sqlite4OsClose(pPager->jfd);
    }

    /* If the pager is in the ERROR state and the call to unlock the database
    ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
    ** above the #define for UNKNOWN_LOCK for an explanation of why this
    ** is necessary.
    */
    rc = pagerUnlockDb(pPager, NO_LOCK);
    if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
      pPager->eLock = UNKNOWN_LOCK;
    }

    /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
    ** without clearing the error code. This is intentional - the error
    ** code is cleared and the cache reset in the block below.
    */
    assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
    pPager->changeCountDone = 0;
    pPager->eState = PAGER_OPEN;
  }

  /* If Pager.errCode is set, the contents of the pager cache cannot be
  ** trusted. Now that there are no outstanding references to the pager,
  ** it can safely move back to PAGER_OPEN state. This happens in both
  ** normal and exclusive-locking mode.
  */
  if( pPager->errCode ){
    assert( !MEMDB );
    pager_reset(pPager);
    pPager->changeCountDone = pPager->tempFile;
    pPager->eState = PAGER_OPEN;
    pPager->errCode = SQLITE_OK;
  }

  pPager->journalOff = 0;
  pPager->journalHdr = 0;
  pPager->setMaster = 0;
}

/*
** This function is called whenever an IOERR or FULL error that requires
** the pager to transition into the ERROR state may ahve occurred.
** The first argument is a pointer to the pager structure, the second 
** the error-code about to be returned by a pager API function. The 
** value returned is a copy of the second argument to this function. 
**
** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
** IOERR sub-codes, the pager enters the ERROR state and the error code
** is stored in Pager.errCode. While the pager remains in the ERROR state,
** all major API calls on the Pager will immediately return Pager.errCode.
**
** The ERROR state indicates that the contents of the pager-cache 
** cannot be trusted. This state can be cleared by completely discarding 
** the contents of the pager-cache. If a transaction was active when
** the persistent error occurred, then the rollback journal may need
** to be replayed to restore the contents of the database file (as if
** it were a hot-journal).
*/
static int pager_error(Pager *pPager, int rc){
  int rc2 = rc & 0xff;
  assert( rc==SQLITE_OK || !MEMDB );
  assert(
       pPager->errCode==SQLITE_FULL ||
       pPager->errCode==SQLITE_OK ||
       (pPager->errCode & 0xff)==SQLITE_IOERR
  );
  if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
    pPager->errCode = rc;
    pPager->eState = PAGER_ERROR;
  }
  return rc;
}

/*
** This routine ends a transaction. A transaction is usually ended by 
** either a COMMIT or a ROLLBACK operation. This routine may be called 
** after rollback of a hot-journal, or if an error occurs while opening
** the journal file or writing the very first journal-header of a
** database transaction.
** 
** This routine is never called in PAGER_ERROR state. If it is called
** in PAGER_NONE or PAGER_SHARED state and the lock held is less
** exclusive than a RESERVED lock, it is a no-op.
**
** Otherwise, any active savepoints are released.
**
** If the journal file is open, then it is "finalized". Once a journal 
** file has been finalized it is not possible to use it to roll back a 
** transaction. Nor will it be considered to be a hot-journal by this
** or any other database connection. Exactly how a journal is finalized
** depends on whether or not the pager is running in exclusive mode and
** the current journal-mode (Pager.journalMode value), as follows:
**
**   journalMode==MEMORY
**     Journal file descriptor is simply closed. This destroys an 
**     in-memory journal.
**
**   journalMode==TRUNCATE
**     Journal file is truncated to zero bytes in size.
**
**   journalMode==PERSIST
**     The first 28 bytes of the journal file are zeroed. This invalidates
**     the first journal header in the file, and hence the entire journal
**     file. An invalid journal file cannot be rolled back.
**
**   journalMode==DELETE
**     The journal file is closed and deleted using sqlite4OsDelete().
**
**     If the pager is running in exclusive mode, this method of finalizing
**     the journal file is never used. Instead, if the journalMode is
**     DELETE and the pager is in exclusive mode, the method described under
**     journalMode==PERSIST is used instead.
**
** After the journal is finalized, the pager moves to PAGER_READER state.
** If running in non-exclusive rollback mode, the lock on the file is 
** downgraded to a SHARED_LOCK.
**
** SQLITE_OK is returned if no error occurs. If an error occurs during
** any of the IO operations to finalize the journal file or unlock the
** database then the IO error code is returned to the user. If the 
** operation to finalize the journal file fails, then the code still
** tries to unlock the database file if not in exclusive mode. If the
** unlock operation fails as well, then the first error code related
** to the first error encountered (the journal finalization one) is
** returned.
*/
static int pager_end_transaction(Pager *pPager, int hasMaster){
  int rc = SQLITE_OK;      /* Error code from journal finalization operation */
  int rc2 = SQLITE_OK;     /* Error code from db file unlock operation */

  /* Do nothing if the pager does not have an open write transaction
  ** or at least a RESERVED lock. This function may be called when there
  ** is no write-transaction active but a RESERVED or greater lock is
  ** held under two circumstances:
  **
  **   1. After a successful hot-journal rollback, it is called with
  **      eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
  **
  **   2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 
  **      lock switches back to locking_mode=normal and then executes a
  **      read-transaction, this function is called with eState==PAGER_READER 
  **      and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
  */
  assert( assert_pager_state(pPager) );
  assert( pPager->eState!=PAGER_ERROR );
  if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
    return SQLITE_OK;
  }

  releaseAllSavepoints(pPager);
  assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
  if( isOpen(pPager->jfd) ){
    assert( !pagerUseWal(pPager) );

    /* Finalize the journal file. */
    if( sqlite4IsMemJournal(pPager->jfd) ){
      assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY );
      sqlite4OsClose(pPager->jfd);
    }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
      if( pPager->journalOff==0 ){
        rc = SQLITE_OK;
      }else{
        rc = sqlite4OsTruncate(pPager->jfd, 0);
      }
      pPager->journalOff = 0;
    }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
      || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
    ){
      rc = zeroJournalHdr(pPager, hasMaster);
      pPager->journalOff = 0;
    }else{
      /* This branch may be executed with Pager.journalMode==MEMORY if
      ** a hot-journal was just rolled back. In this case the journal
      ** file should be closed and deleted. If this connection writes to
      ** the database file, it will do so using an in-memory journal. 
      */
      assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 
           || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 
           || pPager->journalMode==PAGER_JOURNALMODE_WAL 
      );
      sqlite4OsClose(pPager->jfd);
      if( !pPager->tempFile ){
        rc = sqlite4OsDelete(pPager->pVfs, pPager->zJournal, 0);
      }
    }
  }

#ifdef SQLITE_CHECK_PAGES
  sqlite4PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
  if( pPager->dbSize==0 && sqlite4PcacheRefCount(pPager->pPCache)>0 ){
    PgHdr *p = pager_lookup(pPager, 1);
    if( p ){
      p->pageHash = 0;
      sqlite4PagerUnref(p);
    }
  }
#endif

  sqlite4BitvecDestroy(pPager->pInJournal);
  pPager->pInJournal = 0;
  pPager->nRec = 0;
  sqlite4PcacheCleanAll(pPager->pPCache);
  sqlite4PcacheTruncate(pPager->pPCache, pPager->dbSize);

  if( !pPager->exclusiveMode ){
    rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
    pPager->changeCountDone = 0;
  }
  pPager->eState = PAGER_READER;
  pPager->setMaster = 0;

  return (rc==SQLITE_OK?rc2:rc);
}

/*
** Execute a rollback if a transaction is active and unlock the 
** database file. 
**
** If the pager has already entered the ERROR state, do not attempt 
** the rollback at this time. Instead, pager_unlock() is called. The
** call to pager_unlock() will discard all in-memory pages, unlock
** the database file and move the pager back to OPEN state. If this 
** means that there is a hot-journal left in the file-system, the next 
** connection to obtain a shared lock on the pager (which may be this one) 
** will roll it back.
**
** If the pager has not already entered the ERROR state, but an IO or
** malloc error occurs during a rollback, then this will itself cause 
** the pager to enter the ERROR state. Which will be cleared by the
** call to pager_unlock(), as described above.
*/
static void pagerUnlockAndRollback(Pager *pPager){
  if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
    assert( assert_pager_state(pPager) );
    if( pPager->eState>=PAGER_WRITER_LOCKED ){
      sqlite4BeginBenignMalloc();
      sqlite4PagerRollback(pPager);
      sqlite4EndBenignMalloc();
    }else if( !pPager->exclusiveMode ){
      assert( pPager->eState==PAGER_READER );
      pager_end_transaction(pPager, 0);
    }
  }
  pager_unlock(pPager);
}

/*
** Parameter aData must point to a buffer of pPager->pageSize bytes
** of data. Compute and return a checksum based ont the contents of the 
** page of data and the current value of pPager->cksumInit.
**
** This is not a real checksum. It is really just the sum of the 
** random initial value (pPager->cksumInit) and every 200th byte
** of the page data, starting with byte offset (pPager->pageSize%200).
** Each byte is interpreted as an 8-bit unsigned integer.
**
** Changing the formula used to compute this checksum results in an
** incompatible journal file format.
**
** If journal corruption occurs due to a power failure, the most likely 
** scenario is that one end or the other of the record will be changed. 
** It is much less likely that the two ends of the journal record will be
** correct and the middle be corrupt.  Thus, this "checksum" scheme,
** though fast and simple, catches the mostly likely kind of corruption.
*/
static u32 pager_cksum(Pager *pPager, const u8 *aData){
  u32 cksum = pPager->cksumInit;         /* Checksum value to return */
  int i = pPager->pageSize-200;          /* Loop counter */
  while( i>0 ){
    cksum += aData[i];
    i -= 200;
  }
  return cksum;
}

/*
** Report the current page size and number of reserved bytes back
** to the codec.
*/
#ifdef SQLITE_HAS_CODEC
static void pagerReportSize(Pager *pPager){
  if( pPager->xCodecSizeChng ){
    pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
                           (int)pPager->nReserve);
  }
}
#else
# define pagerReportSize(X)     /* No-op if we do not support a codec */
#endif

/*
** Read a single page from either the journal file (if isMainJrnl==1) or
** from the sub-journal (if isMainJrnl==0) and playback that page.
** The page begins at offset *pOffset into the file. The *pOffset
** value is increased to the start of the next page in the journal.
**
** The main rollback journal uses checksums - the statement journal does 
** not.
**
** If the page number of the page record read from the (sub-)journal file
** is greater than the current value of Pager.dbSize, then playback is
** skipped and SQLITE_OK is returned.
**
** If pDone is not NULL, then it is a record of pages that have already
** been played back.  If the page at *pOffset has already been played back
** (if the corresponding pDone bit is set) then skip the playback.
** Make sure the pDone bit corresponding to the *pOffset page is set
** prior to returning.
**
** If the page record is successfully read from the (sub-)journal file
** and played back, then SQLITE_OK is returned. If an IO error occurs
** while reading the record from the (sub-)journal file or while writing
** to the database file, then the IO error code is returned. If data
** is successfully read from the (sub-)journal file but appears to be
** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
** two circumstances:
** 
**   * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or
**   * If the record is being rolled back from the main journal file
**     and the checksum field does not match the record content.
**
** Neither of these two scenarios are possible during a savepoint rollback.
**
** If this is a savepoint rollback, then memory may have to be dynamically
** allocated by this function. If this is the case and an allocation fails,
** SQLITE_NOMEM is returned.
*/
static int pager_playback_one_page(
  Pager *pPager,                /* The pager being played back */
  i64 *pOffset,                 /* Offset of record to playback */
  Bitvec *pDone,                /* Bitvec of pages already played back */
  int isMainJrnl,               /* 1 -> main journal. 0 -> sub-journal. */
  int isSavepnt                 /* True for a savepoint rollback */
){
  int rc;
  PgHdr *pPg;                   /* An existing page in the cache */
  Pgno pgno;                    /* The page number of a page in journal */
  u32 cksum;                    /* Checksum used for sanity checking */
  char *aData;                  /* Temporary storage for the page */
  sqlite4_file *jfd;            /* The file descriptor for the journal file */
  int isSynced;                 /* True if journal page is synced */

  assert( (isMainJrnl&~1)==0 );      /* isMainJrnl is 0 or 1 */
  assert( (isSavepnt&~1)==0 );       /* isSavepnt is 0 or 1 */
  assert( isMainJrnl || pDone );     /* pDone always used on sub-journals */
  assert( isSavepnt || pDone==0 );   /* pDone never used on non-savepoint */

  aData = pPager->pTmpSpace;
  assert( aData );         /* Temp storage must have already been allocated */
  assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );

  /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 
  ** or savepoint rollback done at the request of the caller) or this is
  ** a hot-journal rollback. If it is a hot-journal rollback, the pager
  ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
  ** only reads from the main journal, not the sub-journal.
  */
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD
       || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
  );
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );

  /* Read the page number and page data from the journal or sub-journal
  ** file. Return an error code to the caller if an IO error occurs.
  */
  jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
  rc = read32bits(jfd, *pOffset, &pgno);
  if( rc!=SQLITE_OK ) return rc;
  rc = sqlite4OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
  if( rc!=SQLITE_OK ) return rc;
  *pOffset += pPager->pageSize + 4 + isMainJrnl*4;

  /* Sanity checking on the page.  This is more important that I originally
  ** thought.  If a power failure occurs while the journal is being written,
  ** it could cause invalid data to be written into the journal.  We need to
  ** detect this invalid data (with high probability) and ignore it.
  */
  if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
    assert( !isSavepnt );
    return SQLITE_DONE;
  }
  if( pgno>(Pgno)pPager->dbSize || sqlite4BitvecTest(pDone, pgno) ){
    return SQLITE_OK;
  }
  if( isMainJrnl ){
    rc = read32bits(jfd, (*pOffset)-4, &cksum);
    if( rc ) return rc;
    if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
      return SQLITE_DONE;
    }
  }

  /* If this page has already been played by before during the current
  ** rollback, then don't bother to play it back again.
  */
  if( pDone && (rc = sqlite4BitvecSet(pDone, pgno))!=SQLITE_OK ){
    return rc;
  }

  /* When playing back page 1, restore the nReserve setting
  */
  if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
    pPager->nReserve = ((u8*)aData)[20];
    pagerReportSize(pPager);
  }

  /* If the pager is in CACHEMOD state, then there must be a copy of this
  ** page in the pager cache. In this case just update the pager cache,
  ** not the database file. The page is left marked dirty in this case.
  **
  ** An exception to the above rule: If the database is in no-sync mode
  ** and a page is moved during an incremental vacuum then the page may
  ** not be in the pager cache. Later: if a malloc() or IO error occurs
  ** during a Movepage() call, then the page may not be in the cache
  ** either. So the condition described in the above paragraph is not
  ** assert()able.
  **
  ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
  ** pager cache if it exists and the main file. The page is then marked 
  ** not dirty. Since this code is only executed in PAGER_OPEN state for
  ** a hot-journal rollback, it is guaranteed that the page-cache is empty
  ** if the pager is in OPEN state.
  **
  ** Ticket #1171:  The statement journal might contain page content that is
  ** different from the page content at the start of the transaction.
  ** This occurs when a page is changed prior to the start of a statement
  ** then changed again within the statement.  When rolling back such a
  ** statement we must not write to the original database unless we know
  ** for certain that original page contents are synced into the main rollback
  ** journal.  Otherwise, a power loss might leave modified data in the
  ** database file without an entry in the rollback journal that can
  ** restore the database to its original form.  Two conditions must be
  ** met before writing to the database files. (1) the database must be
  ** locked.  (2) we know that the original page content is fully synced
  ** in the main journal either because the page is not in cache or else
  ** the page is marked as needSync==0.
  **
  ** 2008-04-14:  When attempting to vacuum a corrupt database file, it
  ** is possible to fail a statement on a database that does not yet exist.
  ** Do not attempt to write if database file has never been opened.
  */
  if( pagerUseWal(pPager) ){
    pPg = 0;
  }else{
    pPg = pager_lookup(pPager, pgno);
  }
  assert( pPg || !MEMDB );
  assert( pPager->eState!=PAGER_OPEN || pPg==0 );
  PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
           PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
           (isMainJrnl?"main-journal":"sub-journal")
  ));
  if( isMainJrnl ){
    isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
  }else{
    isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
  }
  if( isOpen(pPager->fd)
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
   && isSynced
  ){
    i64 ofst = (pgno-1)*(i64)pPager->pageSize;
    testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
    assert( !pagerUseWal(pPager) );
    rc = sqlite4OsWrite(pPager->fd, (u8*)aData, pPager->pageSize, ofst);
    if( pgno>pPager->dbFileSize ){
      pPager->dbFileSize = pgno;
    }
    if( pPager->pBackup ){
      CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM);
      sqlite4BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
      CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData);
    }
  }else if( !isMainJrnl && pPg==0 ){
    /* If this is a rollback of a savepoint and data was not written to
    ** the database and the page is not in-memory, there is a potential
    ** problem. When the page is next fetched by the b-tree layer, it 
    ** will be read from the database file, which may or may not be 
    ** current. 
    **
    ** There are a couple of different ways this can happen. All are quite
    ** obscure. When running in synchronous mode, this can only happen 
    ** if the page is on the free-list at the start of the transaction, then
    ** populated, then moved using sqlite4PagerMovepage().
    **
    ** The solution is to add an in-memory page to the cache containing
    ** the data just read from the sub-journal. Mark the page as dirty 
    ** and if the pager requires a journal-sync, then mark the page as 
    ** requiring a journal-sync before it is written.
    */
    assert( isSavepnt );
    assert( pPager->doNotSpill==0 );
    pPager->doNotSpill++;
    rc = sqlite4PagerAcquire(pPager, pgno, &pPg, 1);
    assert( pPager->doNotSpill==1 );
    pPager->doNotSpill--;
    if( rc!=SQLITE_OK ) return rc;
    pPg->flags &= ~PGHDR_NEED_READ;
    sqlite4PcacheMakeDirty(pPg);
  }
  if( pPg ){
    /* No page should ever be explicitly rolled back that is in use, except
    ** for page 1 which is held in use in order to keep the lock on the
    ** database active. However such a page may be rolled back as a result
    ** of an internal error resulting in an automatic call to
    ** sqlite4PagerRollback().
    */
    void *pData;
    pData = pPg->pData;
    memcpy(pData, (u8*)aData, pPager->pageSize);
    pPager->xReiniter(pPg);
    if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){
      /* If the contents of this page were just restored from the main 
      ** journal file, then its content must be as they were when the 
      ** transaction was first opened. In this case we can mark the page
      ** as clean, since there will be no need to write it out to the
      ** database.
      **
      ** There is one exception to this rule. If the page is being rolled
      ** back as part of a savepoint (or statement) rollback from an 
      ** unsynced portion of the main journal file, then it is not safe
      ** to mark the page as clean. This is because marking the page as
      ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is
      ** already in the journal file (recorded in Pager.pInJournal) and
      ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to
      ** again within this transaction, it will be marked as dirty but
      ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially
      ** be written out into the database file before its journal file
      ** segment is synced. If a crash occurs during or following this,
      ** database corruption may ensue.
      */
      assert( !pagerUseWal(pPager) );
      sqlite4PcacheMakeClean(pPg);
    }
    pager_set_pagehash(pPg);

    /* If this was page 1, then restore the value of Pager.dbFileVers.
    ** Do this before any decoding. */
    if( pgno==1 ){
      memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
    }

    /* Decode the page just read from disk */
    CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM);
    sqlite4PcacheRelease(pPg);
  }
  return rc;
}

/*
** Parameter zMaster is the name of a master journal file. A single journal
** file that referred to the master journal file has just been rolled back.
** This routine checks if it is possible to delete the master journal file,
** and does so if it is.
**
** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 
** available for use within this function.
**
** When a master journal file is created, it is populated with the names 
** of all of its child journals, one after another, formatted as utf-8 
** encoded text. The end of each child journal file is marked with a 
** nul-terminator byte (0x00). i.e. the entire contents of a master journal
** file for a transaction involving two databases might be:
**
**   "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
**
** A master journal file may only be deleted once all of its child 
** journals have been rolled back.
**
** This function reads the contents of the master-journal file into 
** memory and loops through each of the child journal names. For
** each child journal, it checks if:
**
**   * if the child journal exists, and if so
**   * if the child journal contains a reference to master journal 
**     file zMaster
**
** If a child journal can be found that matches both of the criteria
** above, this function returns without doing anything. Otherwise, if
** no such child journal can be found, file zMaster is deleted from
** the file-system using sqlite4OsDelete().
**
** If an IO error within this function, an error code is returned. This
** function allocates memory by calling sqlite4Malloc(). If an allocation
** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 
** occur, SQLITE_OK is returned.
**
** TODO: This function allocates a single block of memory to load
** the entire contents of the master journal file. This could be
** a couple of kilobytes or so - potentially larger than the page 
** size.
*/
static int pager_delmaster(Pager *pPager, const char *zMaster){
  sqlite4_vfs *pVfs = pPager->pVfs;
  int rc;                   /* Return code */
  sqlite4_file *pMaster;    /* Malloc'd master-journal file descriptor */
  sqlite4_file *pJournal;   /* Malloc'd child-journal file descriptor */
  char *zMasterJournal = 0; /* Contents of master journal file */
  i64 nMasterJournal;       /* Size of master journal file */
  char *zJournal;           /* Pointer to one journal within MJ file */
  char *zMasterPtr;         /* Space to hold MJ filename from a journal file */
  int nMasterPtr;           /* Amount of space allocated to zMasterPtr[] */

  /* Allocate space for both the pJournal and pMaster file descriptors.
  ** If successful, open the master journal file for reading.
  */
  pMaster = (sqlite4_file *)sqlite4MallocZero(pVfs->szOsFile * 2);
  pJournal = (sqlite4_file *)(((u8 *)pMaster) + pVfs->szOsFile);
  if( !pMaster ){
    rc = SQLITE_NOMEM;
  }else{
    const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
    rc = sqlite4OsOpen(pVfs, zMaster, pMaster, flags, 0);
  }
  if( rc!=SQLITE_OK ) goto delmaster_out;

  /* Load the entire master journal file into space obtained from
  ** sqlite4_malloc() and pointed to by zMasterJournal.   Also obtain
  ** sufficient space (in zMasterPtr) to hold the names of master
  ** journal files extracted from regular rollback-journals.
  */
  rc = sqlite4OsFileSize(pMaster, &nMasterJournal);
  if( rc!=SQLITE_OK ) goto delmaster_out;
  nMasterPtr = pVfs->mxPathname+1;
  zMasterJournal = sqlite4Malloc((int)nMasterJournal + nMasterPtr + 1);
  if( !zMasterJournal ){
    rc = SQLITE_NOMEM;
    goto delmaster_out;
  }
  zMasterPtr = &zMasterJournal[nMasterJournal+1];
  rc = sqlite4OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
  if( rc!=SQLITE_OK ) goto delmaster_out;
  zMasterJournal[nMasterJournal] = 0;

  zJournal = zMasterJournal;
  while( (zJournal-zMasterJournal)<nMasterJournal ){
    int exists;
    rc = sqlite4OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
    if( rc!=SQLITE_OK ){
      goto delmaster_out;
    }
    if( exists ){
      /* One of the journals pointed to by the master journal exists.
      ** Open it and check if it points at the master journal. If
      ** so, return without deleting the master journal file.
      */
      int c;
      int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
      rc = sqlite4OsOpen(pVfs, zJournal, pJournal, flags, 0);
      if( rc!=SQLITE_OK ){
        goto delmaster_out;
      }

      rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
      sqlite4OsClose(pJournal);
      if( rc!=SQLITE_OK ){
        goto delmaster_out;
      }

      c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
      if( c ){
        /* We have a match. Do not delete the master journal file. */
        goto delmaster_out;
      }
    }
    zJournal += (sqlite4Strlen30(zJournal)+1);
  }
 
  sqlite4OsClose(pMaster);
  rc = sqlite4OsDelete(pVfs, zMaster, 0);

delmaster_out:
  sqlite4_free(zMasterJournal);
  if( pMaster ){
    sqlite4OsClose(pMaster);
    assert( !isOpen(pJournal) );
    sqlite4_free(pMaster);
  }
  return rc;
}


/*
** This function is used to change the actual size of the database 
** file in the file-system. This only happens when committing a transaction,
** or rolling back a transaction (including rolling back a hot-journal).
**
** If the main database file is not open, or the pager is not in either
** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 
** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 
** If the file on disk is currently larger than nPage pages, then use the VFS
** xTruncate() method to truncate it.
**
** Or, it might might be the case that the file on disk is smaller than 
** nPage pages. Some operating system implementations can get confused if 
** you try to truncate a file to some size that is larger than it 
** currently is, so detect this case and write a single zero byte to 
** the end of the new file instead.
**
** If successful, return SQLITE_OK. If an IO error occurs while modifying
** the database file, return the error code to the caller.
*/
static int pager_truncate(Pager *pPager, Pgno nPage){
  int rc = SQLITE_OK;
  assert( pPager->eState!=PAGER_ERROR );
  assert( pPager->eState!=PAGER_READER );
  
  if( isOpen(pPager->fd) 
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 
  ){
    i64 currentSize, newSize;
    int szPage = pPager->pageSize;
    assert( pPager->eLock==EXCLUSIVE_LOCK );
    /* TODO: Is it safe to use Pager.dbFileSize here? */
    rc = sqlite4OsFileSize(pPager->fd, &currentSize);
    newSize = szPage*(i64)nPage;
    if( rc==SQLITE_OK && currentSize!=newSize ){
      if( currentSize>newSize ){
        rc = sqlite4OsTruncate(pPager->fd, newSize);
      }else if( (currentSize+szPage)<=newSize ){
        char *pTmp = pPager->pTmpSpace;
        memset(pTmp, 0, szPage);
        testcase( (newSize-szPage) == currentSize );
        testcase( (newSize-szPage) >  currentSize );
        rc = sqlite4OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
      }
      if( rc==SQLITE_OK ){
        pPager->dbFileSize = nPage;
      }
    }
  }
  return rc;
}

/*
** Set the value of the Pager.sectorSize variable for the given
** pager based on the value returned by the xSectorSize method
** of the open database file. The sector size will be used used 
** to determine the size and alignment of journal header and 
** master journal pointers within created journal files.
**
** For temporary files the effective sector size is always 512 bytes.
**
** Otherwise, for non-temporary files, the effective sector size is
** the value returned by the xSectorSize() method rounded up to 32 if
** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
** is greater than MAX_SECTOR_SIZE.
**
** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set
** the effective sector size to its minimum value (512).  The purpose of
** pPager->sectorSize is to define the "blast radius" of bytes that
** might change if a crash occurs while writing to a single byte in
** that range.  But with POWERSAFE_OVERWRITE, the blast radius is zero
** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector
** size.  For backwards compatibility of the rollback journal file format,
** we cannot reduce the effective sector size below 512.
*/
static void setSectorSize(Pager *pPager){
  assert( isOpen(pPager->fd) || pPager->tempFile );

  if( pPager->tempFile
   || (sqlite4OsDeviceCharacteristics(pPager->fd) & 
              SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0
  ){
    /* Sector size doesn't matter for temporary files. Also, the file
    ** may not have been opened yet, in which case the OsSectorSize()
    ** call will segfault. */
    pPager->sectorSize = 512;
  }else{
    pPager->sectorSize = sqlite4OsSectorSize(pPager->fd);
    if( pPager->sectorSize<32 ){
      pPager->sectorSize = 512;
    }
    if( pPager->sectorSize>MAX_SECTOR_SIZE ){
      assert( MAX_SECTOR_SIZE>=512 );
      pPager->sectorSize = MAX_SECTOR_SIZE;
    }
  }
}

/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.  
**
** The journal file format is as follows: 
**
**  (1)  8 byte prefix.  A copy of aJournalMagic[].
**  (2)  4 byte big-endian integer which is the number of valid page records
**       in the journal.  If this value is 0xffffffff, then compute the
**       number of page records from the journal size.
**  (3)  4 byte big-endian integer which is the initial value for the 
**       sanity checksum.
**  (4)  4 byte integer which is the number of pages to truncate the
**       database to during a rollback.
**  (5)  4 byte big-endian integer which is the sector size.  The header
**       is this many bytes in size.
**  (6)  4 byte big-endian integer which is the page size.
**  (7)  zero padding out to the next sector size.
**  (8)  Zero or more pages instances, each as follows:
**        +  4 byte page number.
**        +  pPager->pageSize bytes of data.
**        +  4 byte checksum
**
** When we speak of the journal header, we mean the first 7 items above.
** Each entry in the journal is an instance of the 8th item.
**
** Call the value from the second bullet "nRec".  nRec is the number of
** valid page entries in the journal.  In most cases, you can compute the
** value of nRec from the size of the journal file.  But if a power
** failure occurred while the journal was being written, it could be the
** case that the size of the journal file had already been increased but
** the extra entries had not yet made it safely to disk.  In such a case,
** the value of nRec computed from the file size would be too large.  For
** that reason, we always use the nRec value in the header.
**
** If the nRec value is 0xffffffff it means that nRec should be computed
** from the file size.  This value is used when the user selects the
** no-sync option for the journal.  A power failure could lead to corruption
** in this case.  But for things like temporary table (which will be
** deleted when the power is restored) we don't care.  
**
** If the file opened as the journal file is not a well-formed
** journal file then all pages up to the first corrupted page are rolled
** back (or no pages if the journal header is corrupted). The journal file
** is then deleted and SQLITE_OK returned, just as if no corruption had
** been encountered.
**
** If an I/O or malloc() error occurs, the journal-file is not deleted
** and an error code is returned.
**
** The isHot parameter indicates that we are trying to rollback a journal
** that might be a hot journal.  Or, it could be that the journal is 
** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
** If the journal really is hot, reset the pager cache prior rolling
** back any content.  If the journal is merely persistent, no reset is
** needed.
*/
static int pager_playback(Pager *pPager, int isHot){
  sqlite4_vfs *pVfs = pPager->pVfs;
  i64 szJ;                 /* Size of the journal file in bytes */
  u32 nRec;                /* Number of Records in the journal */
  u32 u;                   /* Unsigned loop counter */
  Pgno mxPg = 0;           /* Size of the original file in pages */
  int rc;                  /* Result code of a subroutine */
  int res = 1;             /* Value returned by sqlite4OsAccess() */
  char *zMaster = 0;       /* Name of master journal file if any */
  int needPagerReset;      /* True to reset page prior to first page rollback */

  /* Figure out how many records are in the journal.  Abort early if
  ** the journal is empty.
  */
  assert( isOpen(pPager->jfd) );
  rc = sqlite4OsFileSize(pPager->jfd, &szJ);
  if( rc!=SQLITE_OK ){
    goto end_playback;
  }

  /* Read the master journal name from the journal, if it is present.
  ** If a master journal file name is specified, but the file is not
  ** present on disk, then the journal is not hot and does not need to be
  ** played back.
  **
  ** TODO: Technically the following is an error because it assumes that
  ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
  ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
  **  mxPathname is 512, which is the same as the minimum allowable value
  ** for pageSize.
  */
  zMaster = pPager->pTmpSpace;
  rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
  if( rc==SQLITE_OK && zMaster[0] ){
    rc = sqlite4OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
  }
  zMaster = 0;
  if( rc!=SQLITE_OK || !res ){
    goto end_playback;
  }
  pPager->journalOff = 0;
  needPagerReset = isHot;

  /* This loop terminates either when a readJournalHdr() or 
  ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 
  ** occurs. 
  */
  while( 1 ){
    /* Read the next journal header from the journal file.  If there are
    ** not enough bytes left in the journal file for a complete header, or
    ** it is corrupted, then a process must have failed while writing it.
    ** This indicates nothing more needs to be rolled back.
    */
    rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
    if( rc!=SQLITE_OK ){ 
      if( rc==SQLITE_DONE ){
        rc = SQLITE_OK;
      }
      goto end_playback;
    }

    /* If nRec is 0xffffffff, then this journal was created by a process
    ** working in no-sync mode. This means that the rest of the journal
    ** file consists of pages, there are no more journal headers. Compute
    ** the value of nRec based on this assumption.
    */
    if( nRec==0xffffffff ){
      assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
      nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
    }

    /* If nRec is 0 and this rollback is of a transaction created by this
    ** process and if this is the final header in the journal, then it means
    ** that this part of the journal was being filled but has not yet been
    ** synced to disk.  Compute the number of pages based on the remaining
    ** size of the file.
    **
    ** The third term of the test was added to fix ticket #2565.
    ** When rolling back a hot journal, nRec==0 always means that the next
    ** chunk of the journal contains zero pages to be rolled back.  But
    ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
    ** the journal, it means that the journal might contain additional
    ** pages that need to be rolled back and that the number of pages 
    ** should be computed based on the journal file size.
    */
    if( nRec==0 && !isHot &&
        pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
      nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
    }

    /* If this is the first header read from the journal, truncate the
    ** database file back to its original size.
    */
    if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
      rc = pager_truncate(pPager, mxPg);
      if( rc!=SQLITE_OK ){
        goto end_playback;
      }
      pPager->dbSize = mxPg;
    }

    /* Copy original pages out of the journal and back into the 
    ** database file and/or page cache.
    */
    for(u=0; u<nRec; u++){
      if( needPagerReset ){
        pager_reset(pPager);
        needPagerReset = 0;
      }
      rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
      if( rc!=SQLITE_OK ){
        if( rc==SQLITE_DONE ){
          pPager->journalOff = szJ;
          break;
        }else if( rc==SQLITE_IOERR_SHORT_READ ){
          /* If the journal has been truncated, simply stop reading and
          ** processing the journal. This might happen if the journal was
          ** not completely written and synced prior to a crash.  In that
          ** case, the database should have never been written in the
          ** first place so it is OK to simply abandon the rollback. */
          rc = SQLITE_OK;
          goto end_playback;
        }else{
          /* If we are unable to rollback, quit and return the error
          ** code.  This will cause the pager to enter the error state
          ** so that no further harm will be done.  Perhaps the next
          ** process to come along will be able to rollback the database.
          */
          goto end_playback;
        }
      }
    }
  }
  /*NOTREACHED*/
  assert( 0 );

end_playback:
  /* Following a rollback, the database file should be back in its original
  ** state prior to the start of the transaction, so invoke the
  ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
  ** assertion that the transaction counter was modified.
  */
#ifdef SQLITE_DEBUG
  if( pPager->fd->pMethods ){
    sqlite4OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0);
  }
#endif

  /* If this playback is happening automatically as a result of an IO or 
  ** malloc error that occurred after the change-counter was updated but 
  ** before the transaction was committed, then the change-counter 
  ** modification may just have been reverted. If this happens in exclusive 
  ** mode, then subsequent transactions performed by the connection will not
  ** update the change-counter at all. This may lead to cache inconsistency
  ** problems for other processes at some point in the future. So, just
  ** in case this has happened, clear the changeCountDone flag now.
  */
  pPager->changeCountDone = pPager->tempFile;

  if( rc==SQLITE_OK ){
    zMaster = pPager->pTmpSpace;
    rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
    testcase( rc!=SQLITE_OK );
  }
  if( rc==SQLITE_OK
   && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
  ){
    rc = sqlite4PagerSync(pPager);
  }
  if( rc==SQLITE_OK ){
    rc = pager_end_transaction(pPager, zMaster[0]!='\0');
    testcase( rc!=SQLITE_OK );
  }
  if( rc==SQLITE_OK && zMaster[0] && res ){
    /* If there was a master journal and this routine will return success,
    ** see if it is possible to delete the master journal.
    */
    rc = pager_delmaster(pPager, zMaster);
    testcase( rc!=SQLITE_OK );
  }

  /* The Pager.sectorSize variable may have been updated while rolling
  ** back a journal created by a process with a different sector size
  ** value. Reset it to the correct value for this process.
  */
  setSectorSize(pPager);
  return rc;
}


/*
** Read the content for page pPg out of the database file and into 
** pPg->pData. A shared lock or greater must be held on the database
** file before this function is called.
**
** If page 1 is read, then the value of Pager.dbFileVers[] is set to
** the value read from the database file.
**
** If an IO error occurs, then the IO error is returned to the caller.
** Otherwise, SQLITE_OK is returned.
*/
static int readDbPage(PgHdr *pPg){
  Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
  Pgno pgno = pPg->pgno;       /* Page number to read */
  int rc = SQLITE_OK;          /* Return code */
  int isInWal = 0;             /* True if page is in log file */
  int pgsz = pPager->pageSize; /* Number of bytes to read */

  assert( pPager->eState>=PAGER_READER && !MEMDB );
  assert( isOpen(pPager->fd) );

  if( NEVER(!isOpen(pPager->fd)) ){
    assert( pPager->tempFile );
    memset(pPg->pData, 0, pPager->pageSize);
    return SQLITE_OK;
  }

  if( rc==SQLITE_OK && !isInWal ){
    i64 iOffset = (pgno-1)*(i64)pPager->pageSize;
    rc = sqlite4OsRead(pPager->fd, pPg->pData, pgsz, iOffset);
    if( rc==SQLITE_IOERR_SHORT_READ ){
      rc = SQLITE_OK;
    }
  }

  if( pgno==1 ){
    if( rc ){
      /* If the read is unsuccessful, set the dbFileVers[] to something
      ** that will never be a valid file version.  dbFileVers[] is a copy
      ** of bytes 24..39 of the database.  Bytes 28..31 should always be
      ** zero or the size of the database in page. Bytes 32..35 and 35..39
      ** should be page numbers which are never 0xffffffff.  So filling
      ** pPager->dbFileVers[] with all 0xff bytes should suffice.
      **
      ** For an encrypted database, the situation is more complex:  bytes
      ** 24..39 of the database are white noise.  But the probability of
      ** white noising equaling 16 bytes of 0xff is vanishingly small so
      ** we should still be ok.
      */
      memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
    }else{
      u8 *dbFileVers = &((u8*)pPg->pData)[24];
      memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
    }
  }
  CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM);

  PAGER_INCR(sqlite4_pager_readdb_count);
  PAGER_INCR(pPager->nRead);
  IOTRACE(("PGIN %p %d\n", pPager, pgno));
  PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
               PAGERID(pPager), pgno, pager_pagehash(pPg)));

  return rc;
}

/*
** Update the value of the change-counter at offsets 24 and 92 in
** the header and the sqlite version number at offset 96.
**
** This is an unconditional update.  See also the pager_incr_changecounter()
** routine which only updates the change-counter if the update is actually
** needed, as determined by the pPager->changeCountDone state variable.
*/
static void pager_write_changecounter(PgHdr *pPg){
  u32 change_counter;

  /* Increment the value just read and write it back to byte 24. */
  change_counter = sqlite4Get4byte((u8*)pPg->pPager->dbFileVers)+1;
  put32bits(((char*)pPg->pData)+24, change_counter);

  /* Also store the SQLite version number in bytes 96..99 and in
  ** bytes 92..95 store the change counter for which the version number
  ** is valid. */
  put32bits(((char*)pPg->pData)+92, change_counter);
  put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
}

/*
** This function is called as part of the transition from PAGER_OPEN
** to PAGER_READER state to determine the size of the database file
** in pages (assuming the page size currently stored in Pager.pageSize).
**
** If no error occurs, SQLITE_OK is returned and the size of the database
** in pages is stored in *pnPage. Otherwise, an error code (perhaps
** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
*/
static int pagerPagecount(Pager *pPager, Pgno *pnPage){
  Pgno nPage = 0;                   /* Value to return via *pnPage */

  /* If the database size was not available from the WAL sub-system,
  ** determine it based on the size of the database file. If the size
  ** of the database file is not an integer multiple of the page-size,
  ** round down to the nearest page. Except, any file larger than 0
  ** bytes in size is considered to contain at least one page.
  */
  if( nPage==0 ){
    i64 n = 0;                    /* Size of db file in bytes */
    assert( isOpen(pPager->fd) || pPager->tempFile );
    if( isOpen(pPager->fd) ){
      int rc = sqlite4OsFileSize(pPager->fd, &n);
      if( rc!=SQLITE_OK ){
        return rc;
      }
    }
    nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize);
  }

  /* If the current number of pages in the file is greater than the
  ** configured maximum pager number, increase the allowed limit so
  ** that the file can be read.
  */
  if( nPage>pPager->mxPgno ){
    pPager->mxPgno = (Pgno)nPage;
  }

  *pnPage = nPage;
  return SQLITE_OK;
}


/*
** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
** the entire master journal file. The case pSavepoint==NULL occurs when 
** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 
** savepoint.
**
** When pSavepoint is not NULL (meaning a non-transaction savepoint is 
** being rolled back), then the rollback consists of up to three stages,
** performed in the order specified:
**
**   * Pages are played back from the main journal starting at byte
**     offset PagerSavepoint.iOffset and continuing to 
**     PagerSavepoint.iHdrOffset, or to the end of the main journal
**     file if PagerSavepoint.iHdrOffset is zero.
**
**   * If PagerSavepoint.iHdrOffset is not zero, then pages are played
**     back starting from the journal header immediately following 
**     PagerSavepoint.iHdrOffset to the end of the main journal file.
**
**   * Pages are then played back from the sub-journal file, starting
**     with the PagerSavepoint.iSubRec and continuing to the end of
**     the journal file.
**
** Throughout the rollback process, each time a page is rolled back, the
** corresponding bit is set in a bitvec structure (variable pDone in the
** implementation below). This is used to ensure that a page is only
** rolled back the first time it is encountered in either journal.
**
** If pSavepoint is NULL, then pages are only played back from the main
** journal file. There is no need for a bitvec in this case.
**
** In either case, before playback commences the Pager.dbSize variable
** is reset to the value that it held at the start of the savepoint 
** (or transaction). No page with a page-number greater than this value
** is played back. If one is encountered it is simply skipped.
*/
static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
  i64 szJ;                 /* Effective size of the main journal */
  i64 iHdrOff;             /* End of first segment of main-journal records */
  int rc = SQLITE_OK;      /* Return code */
  Bitvec *pDone = 0;       /* Bitvec to ensure pages played back only once */

  assert( pPager->eState!=PAGER_ERROR );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );

  /* Allocate a bitvec to use to store the set of pages rolled back */
  if( pSavepoint ){
    pDone = sqlite4BitvecCreate(pSavepoint->nOrig);
    if( !pDone ){
      return SQLITE_NOMEM;
    }
  }

  /* Set the database size back to the value it was before the savepoint 
  ** being reverted was opened.
  */
  pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
  pPager->changeCountDone = pPager->tempFile;

  if( !pSavepoint && pagerUseWal(pPager) ){
    return pagerRollbackWal(pPager);
  }

  /* Use pPager->journalOff as the effective size of the main rollback
  ** journal.  The actual file might be larger than this in
  ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST.  But anything
  ** past pPager->journalOff is off-limits to us.
  */
  szJ = pPager->journalOff;
  assert( pagerUseWal(pPager)==0 || szJ==0 );

  /* Begin by rolling back records from the main journal starting at
  ** PagerSavepoint.iOffset and continuing to the next journal header.
  ** There might be records in the main journal that have a page number
  ** greater than the current database size (pPager->dbSize) but those
  ** will be skipped automatically.  Pages are added to pDone as they
  ** are played back.
  */
  if( pSavepoint && !pagerUseWal(pPager) ){
    iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
    pPager->journalOff = pSavepoint->iOffset;
    while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
      rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
    }
    assert( rc!=SQLITE_DONE );
  }else{
    pPager->journalOff = 0;
  }

  /* Continue rolling back records out of the main journal starting at
  ** the first journal header seen and continuing until the effective end
  ** of the main journal file.  Continue to skip out-of-range pages and
  ** continue adding pages rolled back to pDone.
  */
  while( rc==SQLITE_OK && pPager->journalOff<szJ ){
    u32 ii;            /* Loop counter */
    u32 nJRec = 0;     /* Number of Journal Records */
    u32 dummy;
    rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
    assert( rc!=SQLITE_DONE );

    /*
    ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
    ** test is related to ticket #2565.  See the discussion in the
    ** pager_playback() function for additional information.
    */
    if( nJRec==0 
     && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
    ){
      nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
    }
    for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
      rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
    }
    assert( rc!=SQLITE_DONE );
  }
  assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );

  /* Finally,  rollback pages from the sub-journal.  Page that were
  ** previously rolled back out of the main journal (and are hence in pDone)
  ** will be skipped.  Out-of-range pages are also skipped.
  */
  if( pSavepoint ){
    u32 ii;            /* Loop counter */
    i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize);

    for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
      assert( offset==(i64)ii*(4+pPager->pageSize) );
      rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
    }
    assert( rc!=SQLITE_DONE );
  }

  sqlite4BitvecDestroy(pDone);
  if( rc==SQLITE_OK ){
    pPager->journalOff = szJ;
  }

  return rc;
}

/*
** Change the maximum number of in-memory pages that are allowed.
*/
void sqlite4PagerSetCachesize(Pager *pPager, int mxPage){
  sqlite4PcacheSetCachesize(pPager->pPCache, mxPage);
}

/*
** Free as much memory as possible from the pager.
*/
void sqlite4PagerShrink(Pager *pPager){
  sqlite4PcacheShrink(pPager->pPCache);
}

/*
** Adjust the robustness of the database to damage due to OS crashes
** or power failures by changing the number of syncs()s when writing
** the rollback journal.  There are three levels:
**
**    OFF       sqlite4OsSync() is never called.  This is the default
**              for temporary and transient files.
**
**    NORMAL    The journal is synced once before writes begin on the
**              database.  This is normally adequate protection, but
**              it is theoretically possible, though very unlikely,
**              that an inopertune power failure could leave the journal
**              in a state which would cause damage to the database
**              when it is rolled back.
**
**    FULL      The journal is synced twice before writes begin on the
**              database (with some additional information - the nRec field
**              of the journal header - being written in between the two
**              syncs).  If we assume that writing a
**              single disk sector is atomic, then this mode provides
**              assurance that the journal will not be corrupted to the
**              point of causing damage to the database during rollback.
**
** The above is for a rollback-journal mode.  For WAL mode, OFF continues
** to mean that no syncs ever occur.  NORMAL means that the WAL is synced
** prior to the start of checkpoint and that the database file is synced
** at the conclusion of the checkpoint if the entire content of the WAL
** was written back into the database.  But no sync operations occur for
** an ordinary commit in NORMAL mode with WAL.  FULL means that the WAL
** file is synced following each commit operation, in addition to the
** syncs associated with NORMAL.
**
** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL.  The
** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
** using fcntl(F_FULLFSYNC).  SQLITE_SYNC_NORMAL means to do an
** ordinary fsync() call.  There is no difference between SQLITE_SYNC_FULL
** and SQLITE_SYNC_NORMAL on platforms other than MacOSX.  But the
** synchronous=FULL versus synchronous=NORMAL setting determines when
** the xSync primitive is called and is relevant to all platforms.
**
** Numeric values associated with these states are OFF==1, NORMAL=2,
** and FULL=3.
*/
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
void sqlite4PagerSetSafetyLevel(
  Pager *pPager,        /* The pager to set safety level for */
  int level,            /* PRAGMA synchronous.  1=OFF, 2=NORMAL, 3=FULL */  
  int bFullFsync,       /* PRAGMA fullfsync */
  int bCkptFullFsync    /* PRAGMA checkpoint_fullfsync */
){
  assert( level>=1 && level<=3 );
  pPager->noSync =  (level==1 || pPager->tempFile) ?1:0;
  pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0;
  if( pPager->noSync ){
    pPager->syncFlags = 0;
    pPager->ckptSyncFlags = 0;
  }else if( bFullFsync ){
    pPager->syncFlags = SQLITE_SYNC_FULL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else if( bCkptFullFsync ){
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
  }else{
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
}
#endif

/*
** The following global variable is incremented whenever the library
** attempts to open a temporary file.  This information is used for
** testing and analysis only.  
*/
#ifdef SQLITE_TEST
int sqlite4_opentemp_count = 0;
#endif

/*
** Open a temporary file.
**
** Write the file descriptor into *pFile. Return SQLITE_OK on success 
** or some other error code if we fail. The OS will automatically 
** delete the temporary file when it is closed.
**
** The flags passed to the VFS layer xOpen() call are those specified
** by parameter vfsFlags ORed with the following:
**
**     SQLITE_OPEN_READWRITE
**     SQLITE_OPEN_CREATE
**     SQLITE_OPEN_EXCLUSIVE
**     SQLITE_OPEN_DELETEONCLOSE
*/
static int pagerOpentemp(
  Pager *pPager,        /* The pager object */
  sqlite4_file *pFile,  /* Write the file descriptor here */
  int vfsFlags          /* Flags passed through to the VFS */
){
  int rc;               /* Return code */

#ifdef SQLITE_TEST
  sqlite4_opentemp_count++;  /* Used for testing and analysis only */
#endif

  vfsFlags |=  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
            SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
  rc = sqlite4OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
  assert( rc!=SQLITE_OK || isOpen(pFile) );
  return rc;
}

/*
** Set the busy handler function.
**
** The pager invokes the busy-handler if sqlite4OsLock() returns 
** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 
** lock. It does *not* invoke the busy handler when upgrading from
** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
** (which occurs during hot-journal rollback). Summary:
**
**   Transition                        | Invokes xBusyHandler
**   --------------------------------------------------------
**   NO_LOCK       -> SHARED_LOCK      | Yes
**   SHARED_LOCK   -> RESERVED_LOCK    | No
**   SHARED_LOCK   -> EXCLUSIVE_LOCK   | No
**   RESERVED_LOCK -> EXCLUSIVE_LOCK   | Yes
**
** If the busy-handler callback returns non-zero, the lock is 
** retried. If it returns zero, then the SQLITE_BUSY error is
** returned to the caller of the pager API function.
*/
void sqlite4PagerSetBusyhandler(
  Pager *pPager,                       /* Pager object */
  int (*xBusyHandler)(void *),         /* Pointer to busy-handler function */
  void *pBusyHandlerArg                /* Argument to pass to xBusyHandler */
){  
  pPager->xBusyHandler = xBusyHandler;
  pPager->pBusyHandlerArg = pBusyHandlerArg;
}

/*
** Change the page size used by the Pager object. The new page size 
** is passed in *pPageSize.
**
** If the pager is in the error state when this function is called, it
** is a no-op. The value returned is the error state error code (i.e. 
** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
**
** Otherwise, if all of the following are true:
**
**   * the new page size (value of *pPageSize) is valid (a power 
**     of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
**
**   * there are no outstanding page references, and
**
**   * the database is either not an in-memory database or it is
**     an in-memory database that currently consists of zero pages.
**
** then the pager object page size is set to *pPageSize.
**
** If the page size is changed, then this function uses sqlite4PagerMalloc() 
** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 
** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 
** In all other cases, SQLITE_OK is returned.
**
** If the page size is not changed, either because one of the enumerated
** conditions above is not true, the pager was in error state when this
** function was called, or because the memory allocation attempt failed, 
** then *pPageSize is set to the old, retained page size before returning.
*/
int sqlite4PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
  int rc = SQLITE_OK;

  /* It is not possible to do a full assert_pager_state() here, as this
  ** function may be called from within PagerOpen(), before the state
  ** of the Pager object is internally consistent.
  **
  ** At one point this function returned an error if the pager was in 
  ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
  ** there is at least one outstanding page reference, this function
  ** is a no-op for that case anyhow.
  */

  u32 pageSize = *pPageSize;
  assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
  if( (pPager->memDb==0 || pPager->dbSize==0)
   && sqlite4PcacheRefCount(pPager->pPCache)==0 
   && pageSize && pageSize!=(u32)pPager->pageSize 
  ){
    char *pNew = NULL;             /* New temp space */
    i64 nByte = 0;

    if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
      rc = sqlite4OsFileSize(pPager->fd, &nByte);
    }
    if( rc==SQLITE_OK ){
      pNew = (char *)sqlite4PageMalloc(pageSize);
      if( !pNew ) rc = SQLITE_NOMEM;
    }

    if( rc==SQLITE_OK ){
      pager_reset(pPager);
      pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
      pPager->pageSize = pageSize;
      sqlite4PageFree(pPager->pTmpSpace);
      pPager->pTmpSpace = pNew;
      sqlite4PcacheSetPageSize(pPager->pPCache, pageSize);
    }
  }

  *pPageSize = pPager->pageSize;
  if( rc==SQLITE_OK ){
    if( nReserve<0 ) nReserve = pPager->nReserve;
    assert( nReserve>=0 && nReserve<1000 );
    pPager->nReserve = (i16)nReserve;
    pagerReportSize(pPager);
  }
  return rc;
}

/*
** Return a pointer to the "temporary page" buffer held internally
** by the pager.  This is a buffer that is big enough to hold the
** entire content of a database page.  This buffer is used internally
** during rollback and will be overwritten whenever a rollback
** occurs.  But other modules are free to use it too, as long as
** no rollbacks are happening.
*/
void *sqlite4PagerTempSpace(Pager *pPager){
  return pPager->pTmpSpace;
}

/*
** Attempt to set the maximum database page count if mxPage is positive. 
** Make no changes if mxPage is zero or negative.  And never reduce the
** maximum page count below the current size of the database.
**
** Regardless of mxPage, return the current maximum page count.
*/
int sqlite4PagerMaxPageCount(Pager *pPager, int mxPage){
  if( mxPage>0 ){
    pPager->mxPgno = mxPage;
  }
  assert( pPager->eState!=PAGER_OPEN );      /* Called only by OP_MaxPgcnt */
  assert( pPager->mxPgno>=pPager->dbSize );  /* OP_MaxPgcnt enforces this */
  return pPager->mxPgno;
}

/*
** The following set of routines are used to disable the simulated
** I/O error mechanism.  These routines are used to avoid simulated
** errors in places where we do not care about errors.
**
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
** and generate no code.
*/
#ifdef SQLITE_TEST
extern int sqlite4_io_error_pending;
extern int sqlite4_io_error_hit;
static int saved_cnt;
void disable_simulated_io_errors(void){
  saved_cnt = sqlite4_io_error_pending;
  sqlite4_io_error_pending = -1;
}
void enable_simulated_io_errors(void){
  sqlite4_io_error_pending = saved_cnt;
}
#else
# define disable_simulated_io_errors()
# define enable_simulated_io_errors()
#endif

/*
** Read the first N bytes from the beginning of the file into memory
** that pDest points to. 
**
** If the pager was opened on a transient file (zFilename==""), or
** opened on a file less than N bytes in size, the output buffer is
** zeroed and SQLITE_OK returned. The rationale for this is that this 
** function is used to read database headers, and a new transient or
** zero sized database has a header than consists entirely of zeroes.
**
** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
** the error code is returned to the caller and the contents of the
** output buffer undefined.
*/
int sqlite4PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
  int rc = SQLITE_OK;
  memset(pDest, 0, N);
  assert( isOpen(pPager->fd) || pPager->tempFile );

  /* This routine is only called by btree immediately after creating
  ** the Pager object.  There has not been an opportunity to transition
  ** to WAL mode yet.
  */
  assert( !pagerUseWal(pPager) );

  if( isOpen(pPager->fd) ){
    IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
    rc = sqlite4OsRead(pPager->fd, pDest, N, 0);
    if( rc==SQLITE_IOERR_SHORT_READ ){
      rc = SQLITE_OK;
    }
  }
  return rc;
}

/*
** This function may only be called when a read-transaction is open on
** the pager. It returns the total number of pages in the database.
**
** However, if the file is between 1 and <page-size> bytes in size, then 
** this is considered a 1 page file.
*/
void sqlite4PagerPagecount(Pager *pPager, int *pnPage){
  assert( pPager->eState>=PAGER_READER );
  assert( pPager->eState!=PAGER_WRITER_FINISHED );
  *pnPage = (int)pPager->dbSize;
}


/*
** Try to obtain a lock of type locktype on the database file. If
** a similar or greater lock is already held, this function is a no-op
** (returning SQLITE_OK immediately).
**
** Otherwise, attempt to obtain the lock using sqlite4OsLock(). Invoke 
** the busy callback if the lock is currently not available. Repeat 
** until the busy callback returns false or until the attempt to 
** obtain the lock succeeds.
**
** Return SQLITE_OK on success and an error code if we cannot obtain
** the lock. If the lock is obtained successfully, set the Pager.state 
** variable to locktype before returning.
*/
static int pager_wait_on_lock(Pager *pPager, int locktype){
  int rc;                              /* Return code */

  /* Check that this is either a no-op (because the requested lock is 
  ** already held, or one of the transistions that the busy-handler
  ** may be invoked during, according to the comment above
  ** sqlite4PagerSetBusyhandler().
  */
  assert( (pPager->eLock>=locktype)
       || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
       || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
  );

  do {
    rc = pagerLockDb(pPager, locktype);
  }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
  return rc;
}

/*
** Function assertTruncateConstraint(pPager) checks that one of the 
** following is true for all dirty pages currently in the page-cache:
**
**   a) The page number is less than or equal to the size of the 
**      current database image, in pages, OR
**
**   b) if the page content were written at this time, it would not
**      be necessary to write the current content out to the sub-journal
**      (as determined by function subjRequiresPage()).
**
** If the condition asserted by this function were not true, and the
** dirty page were to be discarded from the cache via the pagerStress()
** routine, pagerStress() would not write the current page content to
** the database file. If a savepoint transaction were rolled back after
** this happened, the correct behaviour would be to restore the current
** content of the page. However, since this content is not present in either
** the database file or the portion of the rollback journal and 
** sub-journal rolled back the content could not be restored and the
** database image would become corrupt. It is therefore fortunate that 
** this circumstance cannot arise.
*/
#if defined(SQLITE_DEBUG)
static void assertTruncateConstraintCb(PgHdr *pPg){
  assert( pPg->flags&PGHDR_DIRTY );
  assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );
}
static void assertTruncateConstraint(Pager *pPager){
  sqlite4PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
}
#else
# define assertTruncateConstraint(pPager)
#endif

/*
** Truncate the in-memory database file image to nPage pages. This 
** function does not actually modify the database file on disk. It 
** just sets the internal state of the pager object so that the 
** truncation will be done when the current transaction is committed.
*/
void sqlite4PagerTruncateImage(Pager *pPager, Pgno nPage){
  assert( pPager->dbSize>=nPage );
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  pPager->dbSize = nPage;
  assertTruncateConstraint(pPager);
}


/*
** This function is called before attempting a hot-journal rollback. It
** syncs the journal file to disk, then sets pPager->journalHdr to the
** size of the journal file so that the pager_playback() routine knows
** that the entire journal file has been synced.
**
** Syncing a hot-journal to disk before attempting to roll it back ensures 
** that if a power-failure occurs during the rollback, the process that
** attempts rollback following system recovery sees the same journal
** content as this process.
**
** If everything goes as planned, SQLITE_OK is returned. Otherwise, 
** an SQLite error code.
*/
static int pagerSyncHotJournal(Pager *pPager){
  int rc = SQLITE_OK;
  if( !pPager->noSync ){
    rc = sqlite4OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite4OsFileSize(pPager->jfd, &pPager->journalHdr);
  }
  return rc;
}

/*
** Shutdown the page cache.  Free all memory and close all files.
**
** If a transaction was in progress when this routine is called, that
** transaction is rolled back.  All outstanding pages are invalidated
** and their memory is freed.  Any attempt to use a page associated
** with this page cache after this function returns will likely
** result in a coredump.
**
** This function always succeeds. If a transaction is active an attempt
** is made to roll it back. If an error occurs during the rollback 
** a hot journal may be left in the filesystem but no error is returned
** to the caller.
*/
int sqlite4PagerClose(Pager *pPager){
  u8 *pTmp = (u8 *)pPager->pTmpSpace;

  assert( assert_pager_state(pPager) );
  disable_simulated_io_errors();
  sqlite4BeginBenignMalloc();
  /* pPager->errCode = 0; */
  pPager->exclusiveMode = 0;
  pager_reset(pPager);
  if( MEMDB ){
    pager_unlock(pPager);
  }else{
    /* If it is open, sync the journal file before calling UnlockAndRollback.
    ** If this is not done, then an unsynced portion of the open journal 
    ** file may be played back into the database. If a power failure occurs 
    ** while this is happening, the database could become corrupt.
    **
    ** If an error occurs while trying to sync the journal, shift the pager
    ** into the ERROR state. This causes UnlockAndRollback to unlock the
    ** database and close the journal file without attempting to roll it
    ** back or finalize it. The next database user will have to do hot-journal
    ** rollback before accessing the database file.
    */
    if( isOpen(pPager->jfd) ){
      pager_error(pPager, pagerSyncHotJournal(pPager));
    }
    pagerUnlockAndRollback(pPager);
  }
  sqlite4EndBenignMalloc();
  enable_simulated_io_errors();
  PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
  IOTRACE(("CLOSE %p\n", pPager))
  sqlite4OsClose(pPager->jfd);
  sqlite4OsClose(pPager->fd);
  sqlite4PageFree(pTmp);
  sqlite4PcacheClose(pPager->pPCache);

#ifdef SQLITE_HAS_CODEC
  if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
#endif

  assert( !pPager->aSavepoint && !pPager->pInJournal );
  assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );

  sqlite4_free(pPager);
  return SQLITE_OK;
}

#if !defined(NDEBUG) || defined(SQLITE_TEST)
/*
** Return the page number for page pPg.
*/
Pgno sqlite4PagerPagenumber(DbPage *pPg){
  return pPg->pgno;
}
#endif

/*
** Increment the reference count for page pPg.
*/
void sqlite4PagerRef(DbPage *pPg){
  sqlite4PcacheRef(pPg);
}

/*
** Sync the journal. In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
** disk and can be restored in the event of a hot-journal rollback.
**
** If the Pager.noSync flag is set, then this function is a no-op.
** Otherwise, the actions required depend on the journal-mode and the 
** device characteristics of the the file-system, as follows:
**
**   * If the journal file is an in-memory journal file, no action need
**     be taken.
**
**   * Otherwise, if the device does not support the SAFE_APPEND property,
**     then the nRec field of the most recently written journal header
**     is updated to contain the number of journal records that have
**     been written following it. If the pager is operating in full-sync
**     mode, then the journal file is synced before this field is updated.
**
**   * If the device does not support the SEQUENTIAL property, then 
**     journal file is synced.
**
** Or, in pseudo-code:
**
**   if( NOT <in-memory journal> ){
**     if( NOT SAFE_APPEND ){
**       if( <full-sync mode> ) xSync(<journal file>);
**       <update nRec field>
**     } 
**     if( NOT SEQUENTIAL ) xSync(<journal file>);
**   }
**
** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 
** page currently held in memory before returning SQLITE_OK. If an IO
** error is encountered, then the IO error code is returned to the caller.
*/
static int syncJournal(Pager *pPager, int newHdr){
  int rc;                         /* Return code */

  assert( pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );
  assert( !pagerUseWal(pPager) );

  rc = sqlite4PagerExclusiveLock(pPager);
  if( rc!=SQLITE_OK ) return rc;

  if( !pPager->noSync ){
    assert( !pPager->tempFile );
    if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
      const int iDc = sqlite4OsDeviceCharacteristics(pPager->fd);
      assert( isOpen(pPager->jfd) );

      if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
        /* This block deals with an obscure problem. If the last connection
        ** that wrote to this database was operating in persistent-journal
        ** mode, then the journal file may at this point actually be larger
        ** than Pager.journalOff bytes. If the next thing in the journal
        ** file happens to be a journal-header (written as part of the
        ** previous connection's transaction), and a crash or power-failure 
        ** occurs after nRec is updated but before this connection writes 
        ** anything else to the journal file (or commits/rolls back its 
        ** transaction), then SQLite may become confused when doing the 
        ** hot-journal rollback following recovery. It may roll back all
        ** of this connections data, then proceed to rolling back the old,
        ** out-of-date data that follows it. Database corruption.
        **
        ** To work around this, if the journal file does appear to contain
        ** a valid header following Pager.journalOff, then write a 0x00
        ** byte to the start of it to prevent it from being recognized.
        **
        ** Variable iNextHdrOffset is set to the offset at which this
        ** problematic header will occur, if it exists. aMagic is used 
        ** as a temporary buffer to inspect the first couple of bytes of
        ** the potential journal header.
        */
        i64 iNextHdrOffset;
        u8 aMagic[8];
        u8 zHeader[sizeof(aJournalMagic)+4];

        memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
        put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);

        iNextHdrOffset = journalHdrOffset(pPager);
        rc = sqlite4OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
        if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
          static const u8 zerobyte = 0;
          rc = sqlite4OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
        }
        if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
          return rc;
        }

        /* Write the nRec value into the journal file header. If in
        ** full-synchronous mode, sync the journal first. This ensures that
        ** all data has really hit the disk before nRec is updated to mark
        ** it as a candidate for rollback.
        **
        ** This is not required if the persistent media supports the
        ** SAFE_APPEND property. Because in this case it is not possible 
        ** for garbage data to be appended to the file, the nRec field
        ** is populated with 0xFFFFFFFF when the journal header is written
        ** and never needs to be updated.
        */
        if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
          PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
          IOTRACE(("JSYNC %p\n", pPager))
          rc = sqlite4OsSync(pPager->jfd, pPager->syncFlags);
          if( rc!=SQLITE_OK ) return rc;
        }
        IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
        rc = sqlite4OsWrite(
            pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
        );
        if( rc!=SQLITE_OK ) return rc;
      }
      if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
        PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
        IOTRACE(("JSYNC %p\n", pPager))
        rc = sqlite4OsSync(pPager->jfd, pPager->syncFlags| 
          (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
        );
        if( rc!=SQLITE_OK ) return rc;
      }

      pPager->journalHdr = pPager->journalOff;
      if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
        pPager->nRec = 0;
        rc = writeJournalHdr(pPager);
        if( rc!=SQLITE_OK ) return rc;
      }
    }else{
      pPager->journalHdr = pPager->journalOff;
    }
  }

  /* Unless the pager is in noSync mode, the journal file was just 
  ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 
  ** all pages.
  */
  sqlite4PcacheClearSyncFlags(pPager->pPCache);
  pPager->eState = PAGER_WRITER_DBMOD;
  assert( assert_pager_state(pPager) );
  return SQLITE_OK;
}

/*
** The argument is the first in a linked list of dirty pages connected
** by the PgHdr.pDirty pointer. This function writes each one of the
** in-memory pages in the list to the database file. The argument may
** be NULL, representing an empty list. In this case this function is
** a no-op.
**
** The pager must hold at least a RESERVED lock when this function
** is called. Before writing anything to the database file, this lock
** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
** SQLITE_BUSY is returned and no data is written to the database file.
** 
** If the pager is a temp-file pager and the actual file-system file
** is not yet open, it is created and opened before any data is 
** written out.
**
** Once the lock has been upgraded and, if necessary, the file opened,
** the pages are written out to the database file in list order. Writing
** a page is skipped if it meets either of the following criteria:
**
**   * The page number is greater than Pager.dbSize, or
**   * The PGHDR_DONT_WRITE flag is set on the page.
**
** If writing out a page causes the database file to grow, Pager.dbFileSize
** is updated accordingly. If page 1 is written out, then the value cached
** in Pager.dbFileVers[] is updated to match the new value stored in
** the database file.
**
** If everything is successful, SQLITE_OK is returned. If an IO error 
** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
** be obtained, SQLITE_BUSY is returned.
*/
static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
  int rc = SQLITE_OK;                  /* Return code */

  /* This function is only called for rollback pagers in WRITER_DBMOD state. */
  assert( !pagerUseWal(pPager) );
  assert( pPager->eState==PAGER_WRITER_DBMOD );
  assert( pPager->eLock==EXCLUSIVE_LOCK );

  /* If the file is a temp-file has not yet been opened, open it now. It
  ** is not possible for rc to be other than SQLITE_OK if this branch
  ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
  */
  if( !isOpen(pPager->fd) ){
    assert( pPager->tempFile && rc==SQLITE_OK );
    rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
  }

  /* Before the first write, give the VFS a hint of what the final
  ** file size will be.
  */
  assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
  if( rc==SQLITE_OK && pPager->dbSize>pPager->dbHintSize ){
    sqlite4_int64 szFile = pPager->pageSize * (sqlite4_int64)pPager->dbSize;
    sqlite4OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
    pPager->dbHintSize = pPager->dbSize;
  }

  while( rc==SQLITE_OK && pList ){
    Pgno pgno = pList->pgno;

    /* If there are dirty pages in the page cache with page numbers greater
    ** than Pager.dbSize, this means sqlite4PagerTruncateImage() was called to
    ** make the file smaller (presumably by auto-vacuum code). Do not write
    ** any such pages to the file.
    **
    ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
    ** set (set by sqlite4PagerDontWrite()).
    */
    if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
      i64 offset = (pgno-1)*(i64)pPager->pageSize;   /* Offset to write */
      char *pData;                                   /* Data to write */    

      assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
      if( pList->pgno==1 ) pager_write_changecounter(pList);

      /* Encode the database */
      CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData);

      /* Write out the page data. */
      rc = sqlite4OsWrite(pPager->fd, pData, pPager->pageSize, offset);

      /* If page 1 was just written, update Pager.dbFileVers to match
      ** the value now stored in the database file. If writing this 
      ** page caused the database file to grow, update dbFileSize. 
      */
      if( pgno==1 ){
        memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
      }
      if( pgno>pPager->dbFileSize ){
        pPager->dbFileSize = pgno;
      }

      /* Update any backup objects copying the contents of this pager. */
      sqlite4BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);

      PAGERTRACE(("STORE %d page %d hash(%08x)\n",
                   PAGERID(pPager), pgno, pager_pagehash(pList)));
      IOTRACE(("PGOUT %p %d\n", pPager, pgno));
      PAGER_INCR(sqlite4_pager_writedb_count);
      PAGER_INCR(pPager->nWrite);
    }else{
      PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
    }
    pager_set_pagehash(pList);
    pList = pList->pDirty;
  }

  return rc;
}

/*
** Ensure that the sub-journal file is open. If it is already open, this 
** function is a no-op.
**
** SQLITE_OK is returned if everything goes according to plan. An 
** SQLITE_IOERR_XXX error code is returned if a call to sqlite4OsOpen() 
** fails.
*/
static int openSubJournal(Pager *pPager){
  int rc = SQLITE_OK;
  if( !isOpen(pPager->sjfd) ){
    if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
      sqlite4MemJournalOpen(pPager->sjfd);
    }else{
      rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL);
    }
  }
  return rc;
}

/*
** Append a record of the current state of page pPg to the sub-journal. 
** It is the callers responsibility to use subjRequiresPage() to check 
** that it is really required before calling this function.
**
** If successful, set the bit corresponding to pPg->pgno in the bitvecs
** for all open savepoints before returning.
**
** This function returns SQLITE_OK if everything is successful, an IO
** error code if the attempt to write to the sub-journal fails, or 
** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
** bitvec.
*/
static int subjournalPage(PgHdr *pPg){
  int rc = SQLITE_OK;
  Pager *pPager = pPg->pPager;
  if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){

    /* Open the sub-journal, if it has not already been opened */
    assert( pPager->useJournal );
    assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
    assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
    assert( pagerUseWal(pPager) 
         || pageInJournal(pPg) 
         || pPg->pgno>pPager->dbOrigSize 
    );
    rc = openSubJournal(pPager);

    /* If the sub-journal was opened successfully (or was already open),
    ** write the journal record into the file.  */
    if( rc==SQLITE_OK ){
      void *pData = pPg->pData;
      i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
      char *pData2;
  
      CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
      PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
      rc = write32bits(pPager->sjfd, offset, pPg->pgno);
      if( rc==SQLITE_OK ){
        rc = sqlite4OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
      }
    }
  }
  if( rc==SQLITE_OK ){
    pPager->nSubRec++;
    assert( pPager->nSavepoint>0 );
    rc = addToSavepointBitvecs(pPager, pPg->pgno);
  }
  return rc;
}

/*
** This function is called by the pcache layer when it has reached some
** soft memory limit. The first argument is a pointer to a Pager object
** (cast as a void*). The pager is always 'purgeable' (not an in-memory
** database). The second argument is a reference to a page that is 
** currently dirty but has no outstanding references. The page
** is always associated with the Pager object passed as the first 
** argument.
**
** The job of this function is to make pPg clean by writing its contents
** out to the database file, if possible. This may involve syncing the
** journal file. 
**
** If successful, sqlite4PcacheMakeClean() is called on the page and
** SQLITE_OK returned. If an IO error occurs while trying to make the
** page clean, the IO error code is returned. If the page cannot be
** made clean for some other reason, but no error occurs, then SQLITE_OK
** is returned by sqlite4PcacheMakeClean() is not called.
*/
static int pagerStress(void *p, PgHdr *pPg){
  Pager *pPager = (Pager *)p;
  int rc = SQLITE_OK;

  assert( pPg->pPager==pPager );
  assert( pPg->flags&PGHDR_DIRTY );

  /* The doNotSyncSpill flag is set during times when doing a sync of
  ** journal (and adding a new header) is not allowed.  This occurs
  ** during calls to sqlite4PagerWrite() while trying to journal multiple
  ** pages belonging to the same sector.
  **
  ** The doNotSpill flag inhibits all cache spilling regardless of whether
  ** or not a sync is required.  This is set during a rollback.
  **
  ** Spilling is also prohibited when in an error state since that could
  ** lead to database corruption.   In the current implementaton it 
  ** is impossible for sqlite4PcacheFetch() to be called with createFlag==1
  ** while in the error state, hence it is impossible for this routine to
  ** be called in the error state.  Nevertheless, we include a NEVER()
  ** test for the error state as a safeguard against future changes.
  */
  if( NEVER(pPager->errCode) ) return SQLITE_OK;
  if( pPager->doNotSpill ) return SQLITE_OK;
  if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){
    return SQLITE_OK;
  }

  pPg->pDirty = 0;
  if( pagerUseWal(pPager) ){
    /* Write a single frame for this page to the log. */
    if( subjRequiresPage(pPg) ){ 
      rc = subjournalPage(pPg); 
    }
    if( rc==SQLITE_OK ){
      rc = pagerWalFrames(pPager, pPg, 0, 0);
    }
  }else{
  
    /* Sync the journal file if required. */
    if( pPg->flags&PGHDR_NEED_SYNC 
     || pPager->eState==PAGER_WRITER_CACHEMOD
    ){
      rc = syncJournal(pPager, 1);
    }
  
    /* If the page number of this page is larger than the current size of
    ** the database image, it may need to be written to the sub-journal.
    ** This is because the call to pager_write_pagelist() below will not
    ** actually write data to the file in this case.
    **
    ** Consider the following sequence of events:
    **
    **   BEGIN;
    **     <journal page X>
    **     <modify page X>
    **     SAVEPOINT sp;
    **       <shrink database file to Y pages>
    **       pagerStress(page X)
    **     ROLLBACK TO sp;
    **
    ** If (X>Y), then when pagerStress is called page X will not be written
    ** out to the database file, but will be dropped from the cache. Then,
    ** following the "ROLLBACK TO sp" statement, reading page X will read
    ** data from the database file. This will be the copy of page X as it
    ** was when the transaction started, not as it was when "SAVEPOINT sp"
    ** was executed.
    **
    ** The solution is to write the current data for page X into the 
    ** sub-journal file now (if it is not already there), so that it will
    ** be restored to its current value when the "ROLLBACK TO sp" is 
    ** executed.
    */
    if( NEVER(
        rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg)
    ) ){
      rc = subjournalPage(pPg);
    }
  
    /* Write the contents of the page out to the database file. */
    if( rc==SQLITE_OK ){
      assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
      rc = pager_write_pagelist(pPager, pPg);
    }
  }

  /* Mark the page as clean. */
  if( rc==SQLITE_OK ){
    PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
    sqlite4PcacheMakeClean(pPg);
  }

  return pager_error(pPager, rc); 
}


/*
** Allocate and initialize a new Pager object and put a pointer to it
** in *ppPager. The pager should eventually be freed by passing it
** to sqlite4PagerClose().
**
** The zFilename argument is the path to the database file to open.
** If zFilename is NULL then a randomly-named temporary file is created
** and used as the file to be cached. Temporary files are be deleted
** automatically when they are closed. If zFilename is ":memory:" then 
** all information is held in cache. It is never written to disk. 
** This can be used to implement an in-memory database.
**
** The nExtra parameter specifies the number of bytes of space allocated
** along with each page reference. This space is available to the user
** via the sqlite4PagerGetExtra() API.
**
** The flags argument is used to specify properties that affect the
** operation of the pager. It should be passed some bitwise combination
** of the PAGER_* flags.
**
** The vfsFlags parameter is a bitmask to pass to the flags parameter
** of the xOpen() method of the supplied VFS when opening files. 
**
** If the pager object is allocated and the specified file opened 
** successfully, SQLITE_OK is returned and *ppPager set to point to
** the new pager object. If an error occurs, *ppPager is set to NULL
** and error code returned. This function may return SQLITE_NOMEM
** (sqlite4Malloc() is used to allocate memory), SQLITE_CANTOPEN or 
** various SQLITE_IO_XXX errors.
*/
int sqlite4PagerOpen(
  sqlite4_vfs *pVfs,       /* The virtual file system to use */
  Pager **ppPager,         /* OUT: Return the Pager structure here */
  const char *zFilename,   /* Name of the database file to open */
  int nExtra,              /* Extra bytes append to each in-memory page */
  int flags,               /* flags controlling this file */
  int vfsFlags,            /* flags passed through to sqlite4_vfs.xOpen() */
  void (*xReinit)(DbPage*) /* Function to reinitialize pages */
){
  u8 *pPtr;
  Pager *pPager = 0;       /* Pager object to allocate and return */
  int rc = SQLITE_OK;      /* Return code */
  int tempFile = 0;        /* True for temp files (incl. in-memory files) */
  int memDb = 0;           /* True if this is an in-memory file */
  int readOnly = 0;        /* True if this is a read-only file */
  int journalFileSize;     /* Bytes to allocate for each journal fd */
  char *zPathname = 0;     /* Full path to database file */
  int nPathname = 0;       /* Number of bytes in zPathname */
  int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
  int pcacheSize = sqlite4PcacheSize();       /* Bytes to allocate for PCache */
  u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;  /* Default page size */
  const char *zUri = 0;    /* URI args to copy */
  int nUri = 0;            /* Number of bytes of URI args at *zUri */

  /* Figure out how much space is required for each journal file-handle
  ** (there are two of them, the main journal and the sub-journal). This
  ** is the maximum space required for an in-memory journal file handle 
  ** and a regular journal file-handle. Note that a "regular journal-handle"
  ** may be a wrapper capable of caching the first portion of the journal
  ** file in memory to implement the atomic-write optimization (see 
  ** source file journal.c).
  */
  if( sqlite4JournalSize(pVfs)>sqlite4MemJournalSize() ){
    journalFileSize = ROUND8(sqlite4JournalSize(pVfs));
  }else{
    journalFileSize = ROUND8(sqlite4MemJournalSize());
  }

  /* Set the output variable to NULL in case an error occurs. */
  *ppPager = 0;

#ifndef SQLITE_OMIT_MEMORYDB
  if( flags & PAGER_MEMORY ){
    memDb = 1;
    zFilename = 0;
  }
#endif

  /* Compute and store the full pathname in an allocated buffer pointed
  ** to by zPathname, length nPathname. Or, if this is a temporary file,
  ** leave both nPathname and zPathname set to 0.
  */
  if( zFilename && zFilename[0] ){
    const char *z;
    nPathname = pVfs->mxPathname+1;
    zPathname = sqlite4Malloc(nPathname*2);
    if( zPathname==0 ){
      return SQLITE_NOMEM;
    }
    zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
    rc = sqlite4OsFullPathname(pVfs, zFilename, nPathname, zPathname);
    nPathname = sqlite4Strlen30(zPathname);
    z = zUri = &zFilename[sqlite4Strlen30(zFilename)+1];
    while( *z ){
      z += sqlite4Strlen30(z)+1;
      z += sqlite4Strlen30(z)+1;
    }
    nUri = (int)(&z[1] - zUri);
    assert( nUri>=0 );
    if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
      /* This branch is taken when the journal path required by
      ** the database being opened will be more than pVfs->mxPathname
      ** bytes in length. This means the database cannot be opened,
      ** as it will not be possible to open the journal file or even
      ** check for a hot-journal before reading.
      */
      rc = SQLITE_CANTOPEN_BKPT;
    }
    if( rc!=SQLITE_OK ){
      sqlite4_free(zPathname);
      return rc;
    }
  }

  /* Allocate memory for the Pager structure, PCache object, the
  ** three file descriptors, the database file name and the journal 
  ** file name. The layout in memory is as follows:
  **
  **     Pager object                    (sizeof(Pager) bytes)
  **     PCache object                   (sqlite4PcacheSize() bytes)
  **     Database file handle            (pVfs->szOsFile bytes)
  **     Sub-journal file handle         (journalFileSize bytes)
  **     Main journal file handle        (journalFileSize bytes)
  **     Database file name              (nPathname+1 bytes)
  **     Journal file name               (nPathname+8+1 bytes)
  */
  pPtr = (u8 *)sqlite4MallocZero(
    ROUND8(sizeof(*pPager)) +      /* Pager structure */
    ROUND8(pcacheSize) +           /* PCache object */
    ROUND8(pVfs->szOsFile) +       /* The main db file */
    journalFileSize * 2 +          /* The two journal files */ 
    nPathname + 1 + nUri +         /* zFilename */
    nPathname + 8 + 2              /* zJournal */
  );
  assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
  if( !pPtr ){
    sqlite4_free(zPathname);
    return SQLITE_NOMEM;
  }
  pPager =              (Pager*)(pPtr);
  pPager->pPCache =    (PCache*)(pPtr += ROUND8(sizeof(*pPager)));
  pPager->fd =   (sqlite4_file*)(pPtr += ROUND8(pcacheSize));
  pPager->sjfd = (sqlite4_file*)(pPtr += ROUND8(pVfs->szOsFile));
  pPager->jfd =  (sqlite4_file*)(pPtr += journalFileSize);
  pPager->zFilename =    (char*)(pPtr += journalFileSize);
  assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );

  /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
  if( zPathname ){
    assert( nPathname>0 );
    pPager->zJournal =   (char*)(pPtr += nPathname + 1 + nUri);
    memcpy(pPager->zFilename, zPathname, nPathname);
    memcpy(&pPager->zFilename[nPathname+1], zUri, nUri);
    memcpy(pPager->zJournal, zPathname, nPathname);
    memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+1);
    sqlite4FileSuffix3(pPager->zFilename, pPager->zJournal);
    sqlite4_free(zPathname);
  }
  pPager->pVfs = pVfs;
  pPager->vfsFlags = vfsFlags;

  /* Open the pager file.
  */
  if( zFilename && zFilename[0] ){
    int fout = 0;                    /* VFS flags returned by xOpen() */
    rc = sqlite4OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
    assert( !memDb );
    readOnly = (fout&SQLITE_OPEN_READONLY);

    /* If the file was successfully opened for read/write access,
    ** choose a default page size in case we have to create the
    ** database file. The default page size is the maximum of:
    **
    **    + SQLITE_DEFAULT_PAGE_SIZE,
    **    + The value returned by sqlite4OsSectorSize()
    **    + The largest page size that can be written atomically.
    */
    if( rc==SQLITE_OK && !readOnly ){
      setSectorSize(pPager);
      assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
      if( szPageDflt<pPager->sectorSize ){
        if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
          szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
        }else{
          szPageDflt = (u32)pPager->sectorSize;
        }
      }
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
      {
        int iDc = sqlite4OsDeviceCharacteristics(pPager->fd);
        int ii;
        assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
        assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
        assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
        for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
          if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
            szPageDflt = ii;
          }
        }
      }
#endif
    }
  }else{
    /* If a temporary file is requested, it is not opened immediately.
    ** In this case we accept the default page size and delay actually
    ** opening the file until the first call to OsWrite().
    **
    ** This branch is also run for an in-memory database. An in-memory
    ** database is the same as a temp-file that is never written out to
    ** disk and uses an in-memory rollback journal.
    */ 
    tempFile = 1;
    pPager->eState = PAGER_READER;
    pPager->eLock = EXCLUSIVE_LOCK;
    readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
  }

  /* The following call to PagerSetPagesize() serves to set the value of 
  ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
  */
  if( rc==SQLITE_OK ){
    assert( pPager->memDb==0 );
    rc = sqlite4PagerSetPagesize(pPager, &szPageDflt, -1);
    testcase( rc!=SQLITE_OK );
  }

  /* If an error occurred in either of the blocks above, free the 
  ** Pager structure and close the file.
  */
  if( rc!=SQLITE_OK ){
    assert( !pPager->pTmpSpace );
    sqlite4OsClose(pPager->fd);
    sqlite4_free(pPager);
    return rc;
  }

  /* Initialize the PCache object. */
  assert( nExtra<1000 );
  nExtra = ROUND8(nExtra);
  sqlite4PcacheOpen(szPageDflt, nExtra, !memDb,
                    !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);

  PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
  IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))

  pPager->useJournal = (u8)useJournal;
  /* pPager->stmtOpen = 0; */
  /* pPager->stmtInUse = 0; */
  /* pPager->nRef = 0; */
  /* pPager->stmtSize = 0; */
  /* pPager->stmtJSize = 0; */
  /* pPager->nPage = 0; */
  pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
  /* pPager->state = PAGER_UNLOCK; */
#if 0
  assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
#endif
  /* pPager->errMask = 0; */
  pPager->tempFile = (u8)tempFile;
  assert( tempFile==PAGER_LOCKINGMODE_NORMAL 
          || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
  assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
  pPager->exclusiveMode = (u8)tempFile; 
  pPager->changeCountDone = pPager->tempFile;
  pPager->memDb = (u8)memDb;
  pPager->readOnly = (u8)readOnly;
  assert( useJournal || pPager->tempFile );
  pPager->noSync = pPager->tempFile;
  if( pPager->noSync ){
    assert( pPager->fullSync==0 );
    assert( pPager->syncFlags==0 );
    assert( pPager->ckptSyncFlags==0 );
  }else{
    pPager->fullSync = 1;
    pPager->syncFlags = SQLITE_SYNC_NORMAL;
    pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
  }
  /* pPager->pFirst = 0; */
  /* pPager->pFirstSynced = 0; */
  /* pPager->pLast = 0; */
  pPager->nExtra = (u16)nExtra;
  pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
  assert( isOpen(pPager->fd) || tempFile );
  setSectorSize(pPager);
  if( !useJournal ){
    pPager->journalMode = PAGER_JOURNALMODE_OFF;
  }else if( memDb ){
    pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
  }
  /* pPager->xBusyHandler = 0; */
  /* pPager->pBusyHandlerArg = 0; */
  pPager->xReiniter = xReinit;
  /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */

  *ppPager = pPager;
  return SQLITE_OK;
}



/*
** This function is called after transitioning from PAGER_UNLOCK to
** PAGER_SHARED state. It tests if there is a hot journal present in
** the file-system for the given pager. A hot journal is one that 
** needs to be played back. According to this function, a hot-journal
** file exists if the following criteria are met:
**
**   * The journal file exists in the file system, and
**   * No process holds a RESERVED or greater lock on the database file, and
**   * The database file itself is greater than 0 bytes in size, and
**   * The first byte of the journal file exists and is not 0x00.
**
** If the current size of the database file is 0 but a journal file
** exists, that is probably an old journal left over from a prior
** database with the same name. In this case the journal file is
** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
** is returned.
**
** This routine does not check if there is a master journal filename
** at the end of the file. If there is, and that master journal file
** does not exist, then the journal file is not really hot. In this
** case this routine will return a false-positive. The pager_playback()
** routine will discover that the journal file is not really hot and 
** will not roll it back. 
**
** If a hot-journal file is found to exist, *pExists is set to 1 and 
** SQLITE_OK returned. If no hot-journal file is present, *pExists is
** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
** to determine whether or not a hot-journal file exists, the IO error
** code is returned and the value of *pExists is undefined.
*/
static int hasHotJournal(Pager *pPager, int *pExists){
  sqlite4_vfs * const pVfs = pPager->pVfs;
  int rc = SQLITE_OK;           /* Return code */
  int exists = 1;               /* True if a journal file is present */
  int jrnlOpen = !!isOpen(pPager->jfd);

  assert( pPager->useJournal );
  assert( isOpen(pPager->fd) );
  assert( pPager->eState==PAGER_OPEN );

  assert( jrnlOpen==0 || ( sqlite4OsDeviceCharacteristics(pPager->jfd) &
    SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
  ));

  *pExists = 0;
  if( !jrnlOpen ){
    rc = sqlite4OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
  }
  if( rc==SQLITE_OK && exists ){
    int locked = 0;             /* True if some process holds a RESERVED lock */

    /* Race condition here:  Another process might have been holding the
    ** the RESERVED lock and have a journal open at the sqlite4OsAccess() 
    ** call above, but then delete the journal and drop the lock before
    ** we get to the following sqlite4OsCheckReservedLock() call.  If that
    ** is the case, this routine might think there is a hot journal when
    ** in fact there is none.  This results in a false-positive which will
    ** be dealt with by the playback routine.  Ticket #3883.
    */
    rc = sqlite4OsCheckReservedLock(pPager->fd, &locked);
    if( rc==SQLITE_OK && !locked ){
      Pgno nPage;                 /* Number of pages in database file */

      /* Check the size of the database file. If it consists of 0 pages,
      ** then delete the journal file. See the header comment above for 
      ** the reasoning here.  Delete the obsolete journal file under
      ** a RESERVED lock to avoid race conditions and to avoid violating
      ** [H33020].
      */
      rc = pagerPagecount(pPager, &nPage);
      if( rc==SQLITE_OK ){
        if( nPage==0 ){
          sqlite4BeginBenignMalloc();
          if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
            sqlite4OsDelete(pVfs, pPager->zJournal, 0);
            if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
          }
          sqlite4EndBenignMalloc();
        }else{
          /* The journal file exists and no other connection has a reserved
          ** or greater lock on the database file. Now check that there is
          ** at least one non-zero bytes at the start of the journal file.
          ** If there is, then we consider this journal to be hot. If not, 
          ** it can be ignored.
          */
          if( !jrnlOpen ){
            int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
            rc = sqlite4OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
          }
          if( rc==SQLITE_OK ){
            u8 first = 0;
            rc = sqlite4OsRead(pPager->jfd, (void *)&first, 1, 0);
            if( rc==SQLITE_IOERR_SHORT_READ ){
              rc = SQLITE_OK;
            }
            if( !jrnlOpen ){
              sqlite4OsClose(pPager->jfd);
            }
            *pExists = (first!=0);
          }else if( rc==SQLITE_CANTOPEN ){
            /* If we cannot open the rollback journal file in order to see if
            ** its has a zero header, that might be due to an I/O error, or
            ** it might be due to the race condition described above and in
            ** ticket #3883.  Either way, assume that the journal is hot.
            ** This might be a false positive.  But if it is, then the
            ** automatic journal playback and recovery mechanism will deal
            ** with it under an EXCLUSIVE lock where we do not need to
            ** worry so much with race conditions.
            */
            *pExists = 1;
            rc = SQLITE_OK;
          }
        }
      }
    }
  }

  return rc;
}

/*
** This function is called to obtain a shared lock on the database file.
** It is illegal to call sqlite4PagerAcquire() until after this function
** has been successfully called. If a shared-lock is already held when
** this function is called, it is a no-op.
**
** The following operations are also performed by this function.
**
**   1) If the pager is currently in PAGER_OPEN state (no lock held
**      on the database file), then an attempt is made to obtain a
**      SHARED lock on the database file. Immediately after obtaining
**      the SHARED lock, the file-system is checked for a hot-journal,
**      which is played back if present. Following any hot-journal 
**      rollback, the contents of the cache are validated by checking
**      the 'change-counter' field of the database file header and
**      discarded if they are found to be invalid.
**
**   2) If the pager is running in exclusive-mode, and there are currently
**      no outstanding references to any pages, and is in the error state,
**      then an attempt is made to clear the error state by discarding
**      the contents of the page cache and rolling back any open journal
**      file.
**
** If everything is successful, SQLITE_OK is returned. If an IO error 
** occurs while locking the database, checking for a hot-journal file or 
** rolling back a journal file, the IO error code is returned.
*/
int sqlite4PagerSharedLock(Pager *pPager){
  int rc = SQLITE_OK;                /* Return code */

  /* This routine is only called from b-tree and only when there are no
  ** outstanding pages. This implies that the pager state should either
  ** be OPEN or READER. READER is only possible if the pager is or was in 
  ** exclusive access mode.
  */
  assert( sqlite4PcacheRefCount(pPager->pPCache)==0 );
  assert( assert_pager_state(pPager) );
  assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
  if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; }

  if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
    int bHotJournal = 1;          /* True if there exists a hot journal-file */

    assert( !MEMDB );

    rc = pager_wait_on_lock(pPager, SHARED_LOCK);
    if( rc!=SQLITE_OK ){
      assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
      goto failed;
    }

    /* If a journal file exists, and there is no RESERVED lock on the
    ** database file, then it either needs to be played back or deleted.
    */
    if( pPager->eLock<=SHARED_LOCK ){
      rc = hasHotJournal(pPager, &bHotJournal);
    }
    if( rc!=SQLITE_OK ){
      goto failed;
    }
    if( bHotJournal ){
      /* Get an EXCLUSIVE lock on the database file. At this point it is
      ** important that a RESERVED lock is not obtained on the way to the
      ** EXCLUSIVE lock. If it were, another process might open the
      ** database file, detect the RESERVED lock, and conclude that the
      ** database is safe to read while this process is still rolling the 
      ** hot-journal back.
      ** 
      ** Because the intermediate RESERVED lock is not requested, any
      ** other process attempting to access the database file will get to 
      ** this point in the code and fail to obtain its own EXCLUSIVE lock 
      ** on the database file.
      **
      ** Unless the pager is in locking_mode=exclusive mode, the lock is
      ** downgraded to SHARED_LOCK before this function returns.
      */
      rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
      if( rc!=SQLITE_OK ){
        goto failed;
      }
 
      /* If it is not already open and the file exists on disk, open the 
      ** journal for read/write access. Write access is required because 
      ** in exclusive-access mode the file descriptor will be kept open 
      ** and possibly used for a transaction later on. Also, write-access 
      ** is usually required to finalize the journal in journal_mode=persist 
      ** mode (and also for journal_mode=truncate on some systems).
      **
      ** If the journal does not exist, it usually means that some 
      ** other connection managed to get in and roll it back before 
      ** this connection obtained the exclusive lock above. Or, it 
      ** may mean that the pager was in the error-state when this
      ** function was called and the journal file does not exist.
      */
      if( !isOpen(pPager->jfd) ){
        sqlite4_vfs * const pVfs = pPager->pVfs;
        int bExists;              /* True if journal file exists */
        rc = sqlite4OsAccess(
            pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
        if( rc==SQLITE_OK && bExists ){
          int fout = 0;
          int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
          assert( !pPager->tempFile );
          rc = sqlite4OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
          assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
          if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
            rc = SQLITE_CANTOPEN_BKPT;
            sqlite4OsClose(pPager->jfd);
          }
        }
      }
 
      /* Playback and delete the journal.  Drop the database write
      ** lock and reacquire the read lock. Purge the cache before
      ** playing back the hot-journal so that we don't end up with
      ** an inconsistent cache.  Sync the hot journal before playing
      ** it back since the process that crashed and left the hot journal
      ** probably did not sync it and we are required to always sync
      ** the journal before playing it back.
      */
      if( isOpen(pPager->jfd) ){
        assert( rc==SQLITE_OK );
        rc = pagerSyncHotJournal(pPager);
        if( rc==SQLITE_OK ){
          rc = pager_playback(pPager, 1);
          pPager->eState = PAGER_OPEN;
        }
      }else if( !pPager->exclusiveMode ){
        pagerUnlockDb(pPager, SHARED_LOCK);
      }

      if( rc!=SQLITE_OK ){
        /* This branch is taken if an error occurs while trying to open
        ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
        ** pager_unlock() routine will be called before returning to unlock
        ** the file. If the unlock attempt fails, then Pager.eLock must be
        ** set to UNKNOWN_LOCK (see the comment above the #define for 
        ** UNKNOWN_LOCK above for an explanation). 
        **
        ** In order to get pager_unlock() to do this, set Pager.eState to
        ** PAGER_ERROR now. This is not actually counted as a transition
        ** to ERROR state in the state diagram at the top of this file,
        ** since we know that the same call to pager_unlock() will very
        ** shortly transition the pager object to the OPEN state. Calling
        ** assert_pager_state() would fail now, as it should not be possible
        ** to be in ERROR state when there are zero outstanding page 
        ** references.
        */
        pager_error(pPager, rc);
        goto failed;
      }

      assert( pPager->eState==PAGER_OPEN );
      assert( (pPager->eLock==SHARED_LOCK)
           || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
      );
    }

    if( !pPager->tempFile 
     && (pPager->pBackup || sqlite4PcachePagecount(pPager->pPCache)>0) 
    ){
      /* The shared-lock has just been acquired on the database file
      ** and there are already pages in the cache (from a previous
      ** read or write transaction).  Check to see if the database
      ** has been modified.  If the database has changed, flush the
      ** cache.
      **
      ** Database changes is detected by looking at 15 bytes beginning
      ** at offset 24 into the file.  The first 4 of these 16 bytes are
      ** a 32-bit counter that is incremented with each change.  The
      ** other bytes change randomly with each file change when
      ** a codec is in use.
      ** 
      ** There is a vanishingly small chance that a change will not be 
      ** detected.  The chance of an undetected change is so small that
      ** it can be neglected.
      */
      Pgno nPage = 0;
      char dbFileVers[sizeof(pPager->dbFileVers)];

      rc = pagerPagecount(pPager, &nPage);
      if( rc ) goto failed;

      if( nPage>0 ){
        IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
        rc = sqlite4OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
        if( rc!=SQLITE_OK ){
          goto failed;
        }
      }else{
        memset(dbFileVers, 0, sizeof(dbFileVers));
      }

      if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
        pager_reset(pPager);
      }
    }
  }

  if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
    rc = pagerPagecount(pPager, &pPager->dbSize);
  }

 failed:
  if( rc!=SQLITE_OK ){
    assert( !MEMDB );
    pager_unlock(pPager);
    assert( pPager->eState==PAGER_OPEN );
  }else{
    pPager->eState = PAGER_READER;
  }
  return rc;
}

/*
** If the reference count has reached zero, rollback any active
** transaction and unlock the pager.
**
** Except, in locking_mode=EXCLUSIVE when there is nothing to in
** the rollback journal, the unlock is not performed and there is
** nothing to rollback, so this routine is a no-op.
*/ 
static void pagerUnlockIfUnused(Pager *pPager){
  if( (sqlite4PcacheRefCount(pPager->pPCache)==0) ){
    pagerUnlockAndRollback(pPager);
  }
}

/*
** Acquire a reference to page number pgno in pager pPager (a page
** reference has type DbPage*). If the requested reference is 
** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
**
** If the requested page is already in the cache, it is returned. 
** Otherwise, a new page object is allocated and populated with data
** read from the database file. In some cases, the pcache module may
** choose not to allocate a new page object and may reuse an existing
** object with no outstanding references.
**
** The extra data appended to a page is always initialized to zeros the 
** first time a page is loaded into memory. If the page requested is 
** already in the cache when this function is called, then the extra
** data is left as it was when the page object was last used.
**
** If the database image is smaller than the requested page or if a 
** non-zero value is passed as the noContent parameter and the 
** requested page is not already stored in the cache, then no 
** actual disk read occurs. In this case the memory image of the 
** page is initialized to all zeros. 
**
** If noContent is true, it means that we do not care about the contents
** of the page. This occurs in two seperate scenarios:
**
**   a) When reading a free-list leaf page from the database, and
**
**   b) When a savepoint is being rolled back and we need to load
**      a new page into the cache to be filled with the data read
**      from the savepoint journal.
**
** If noContent is true, then the data returned is zeroed instead of
** being read from the database. Additionally, the bits corresponding
** to pgno in Pager.pInJournal (bitvec of pages already written to the
** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
** savepoints are set. This means if the page is made writable at any
** point in the future, using a call to sqlite4PagerWrite(), its contents
** will not be journaled. This saves IO.
**
** The acquisition might fail for several reasons.  In all cases,
** an appropriate error code is returned and *ppPage is set to NULL.
**
** See also sqlite4PagerLookup().  Both this routine and Lookup() attempt
** to find a page in the in-memory cache first.  If the page is not already
** in memory, this routine goes to disk to read it in whereas Lookup()
** just returns 0.  This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
int sqlite4PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int noContent       /* Do not bother reading content from disk if true */
){
  int rc;
  PgHdr *pPg;

  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );

  if( pgno==0 ){
    return SQLITE_CORRUPT_BKPT;
  }

  /* If the pager is in the error state, return an error immediately. 
  ** Otherwise, request the page from the PCache layer. */
  if( pPager->errCode!=SQLITE_OK ){
    rc = pPager->errCode;
  }else{
    rc = sqlite4PcacheFetch(pPager->pPCache, pgno, 1, ppPage);
  }

  if( rc!=SQLITE_OK ){
    /* Either the call to sqlite4PcacheFetch() returned an error or the
    ** pager was already in the error-state when this function was called.
    ** Set pPg to 0 and jump to the exception handler.  */
    pPg = 0;
    goto pager_acquire_err;
  }
  assert( (*ppPage)->pgno==pgno );
  assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 );

  if( (*ppPage)->pPager && !noContent ){
    /* In this case the pcache already contains an initialized copy of
    ** the page. Return without further ado.  */
    assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
    pPager->nHit++;
    return SQLITE_OK;

  }else{
    /* The pager cache has created a new page. Its content needs to 
    ** be initialized.  */

    pPg = *ppPage;
    pPg->pPager = pPager;

    /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
    ** number greater than this, or the unused locking-page, is requested. */
    if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto pager_acquire_err;
    }

    if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){
      if( pgno>pPager->mxPgno ){
        rc = SQLITE_FULL;
        goto pager_acquire_err;
      }
      if( noContent ){
        /* Failure to set the bits in the InJournal bit-vectors is benign.
        ** It merely means that we might do some extra work to journal a 
        ** page that does not need to be journaled.  Nevertheless, be sure 
        ** to test the case where a malloc error occurs while trying to set 
        ** a bit in a bit vector.
        */
        sqlite4BeginBenignMalloc();
        if( pgno<=pPager->dbOrigSize ){
          TESTONLY( rc = ) sqlite4BitvecSet(pPager->pInJournal, pgno);
          testcase( rc==SQLITE_NOMEM );
        }
        TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
        testcase( rc==SQLITE_NOMEM );
        sqlite4EndBenignMalloc();
      }
      memset(pPg->pData, 0, pPager->pageSize);
      IOTRACE(("ZERO %p %d\n", pPager, pgno));
    }else{
      assert( pPg->pPager==pPager );
      pPager->nMiss++;
      rc = readDbPage(pPg);
      if( rc!=SQLITE_OK ){
        goto pager_acquire_err;
      }
    }
    pager_set_pagehash(pPg);
  }

  return SQLITE_OK;

pager_acquire_err:
  assert( rc!=SQLITE_OK );
  if( pPg ){
    sqlite4PcacheDrop(pPg);
  }
  pagerUnlockIfUnused(pPager);

  *ppPage = 0;
  return rc;
}

/*
** Acquire a page if it is already in the in-memory cache.  Do
** not read the page from disk.  Return a pointer to the page,
** or 0 if the page is not in cache. 
**
** See also sqlite4PagerGet().  The difference between this routine
** and sqlite4PagerGet() is that _get() will go to the disk and read
** in the page if the page is not already in cache.  This routine
** returns NULL if the page is not in cache or if a disk I/O error 
** has ever happened.
*/
DbPage *sqlite4PagerLookup(Pager *pPager, Pgno pgno){
  PgHdr *pPg = 0;
  assert( pPager!=0 );
  assert( pgno!=0 );
  assert( pPager->pPCache!=0 );
  assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR );
  sqlite4PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
  return pPg;
}

/*
** Release a page reference.
**
** If the number of references to the page drop to zero, then the
** page is added to the LRU list.  When all references to all pages
** are released, a rollback occurs and the lock on the database is
** removed.
*/
void sqlite4PagerUnref(DbPage *pPg){
  if( pPg ){
    Pager *pPager = pPg->pPager;
    sqlite4PcacheRelease(pPg);
    pagerUnlockIfUnused(pPager);
  }
}

/*
** This function is called at the start of every write transaction.
** There must already be a RESERVED or EXCLUSIVE lock on the database 
** file when this routine is called.
**
** Open the journal file for pager pPager and write a journal header
** to the start of it. If there are active savepoints, open the sub-journal
** as well. This function is only used when the journal file is being 
** opened to write a rollback log for a transaction. It is not used 
** when opening a hot journal file to roll it back.
**
** If the journal file is already open (as it may be in exclusive mode),
** then this function just writes a journal header to the start of the
** already open file. 
**
** Whether or not the journal file is opened by this function, the
** Pager.pInJournal bitvec structure is allocated.
**
** Return SQLITE_OK if everything is successful. Otherwise, return 
** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 
** an IO error code if opening or writing the journal file fails.
*/
static int pager_open_journal(Pager *pPager){
  int rc = SQLITE_OK;                        /* Return code */
  sqlite4_vfs * const pVfs = pPager->pVfs;   /* Local cache of vfs pointer */

  assert( pPager->eState==PAGER_WRITER_LOCKED );
  assert( assert_pager_state(pPager) );
  assert( pPager->pInJournal==0 );
  
  /* If already in the error state, this function is a no-op.  But on
  ** the other hand, this routine is never called if we are already in
  ** an error state. */
  if( NEVER(pPager->errCode) ) return pPager->errCode;

  if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
    pPager->pInJournal = sqlite4BitvecCreate(pPager->dbSize);
    if( pPager->pInJournal==0 ){
      return SQLITE_NOMEM;
    }
  
    /* Open the journal file if it is not already open. */
    if( !isOpen(pPager->jfd) ){
      if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
        sqlite4MemJournalOpen(pPager->jfd);
      }else{
        const int flags =                   /* VFS flags to open journal file */
          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
          (pPager->tempFile ? 
            (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL):
            (SQLITE_OPEN_MAIN_JOURNAL)
          );
  #ifdef SQLITE_ENABLE_ATOMIC_WRITE
        rc = sqlite4JournalOpen(
            pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
        );
  #else
        rc = sqlite4OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
  #endif
      }
      assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
    }
  
  
    /* Write the first journal header to the journal file and open 
    ** the sub-journal if necessary.
    */
    if( rc==SQLITE_OK ){
      /* TODO: Check if all of these are really required. */
      pPager->nRec = 0;
      pPager->journalOff = 0;
      pPager->setMaster = 0;
      pPager->journalHdr = 0;
      rc = writeJournalHdr(pPager);
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite4BitvecDestroy(pPager->pInJournal);
    pPager->pInJournal = 0;
  }else{
    assert( pPager->eState==PAGER_WRITER_LOCKED );
    pPager->eState = PAGER_WRITER_CACHEMOD;
  }

  return rc;
}

/*
** Begin a write-transaction on the specified pager object. If a 
** write-transaction has already been opened, this function is a no-op.
**
** If the exFlag argument is false, then acquire at least a RESERVED
** lock on the database file. If exFlag is true, then acquire at least
** an EXCLUSIVE lock. If such a lock is already held, no locking 
** functions need be called.
**
** If the subjInMemory argument is non-zero, then any sub-journal opened
** within this transaction will be opened as an in-memory file. This
** has no effect if the sub-journal is already opened (as it may be when
** running in exclusive mode) or if the transaction does not require a
** sub-journal. If the subjInMemory argument is zero, then any required
** sub-journal is implemented in-memory if pPager is an in-memory database, 
** or using a temporary file otherwise.
*/
int sqlite4PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
  int rc = SQLITE_OK;

  if( pPager->errCode ) return pPager->errCode;
  assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
  pPager->subjInMemory = (u8)subjInMemory;

  if( ALWAYS(pPager->eState==PAGER_READER) ){
    assert( pPager->pInJournal==0 );

    if( pagerUseWal(pPager) ){
      /* If the pager is configured to use locking_mode=exclusive, and an
      ** exclusive lock on the database is not already held, obtain it now.
      */
      if( pPager->exclusiveMode ){
        rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
        if( rc!=SQLITE_OK ){
          return rc;
        }
      }
    }else{
      /* Obtain a RESERVED lock on the database file. If the exFlag parameter
      ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
      ** busy-handler callback can be used when upgrading to the EXCLUSIVE
      ** lock, but not when obtaining the RESERVED lock.
      */
      rc = pagerLockDb(pPager, RESERVED_LOCK);
      if( rc==SQLITE_OK && exFlag ){
        rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
      }
    }

    if( rc==SQLITE_OK ){
      /* Change to WRITER_LOCKED state.
      **
      ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
      ** when it has an open transaction, but never to DBMOD or FINISHED.
      ** This is because in those states the code to roll back savepoint 
      ** transactions may copy data from the sub-journal into the database 
      ** file as well as into the page cache. Which would be incorrect in 
      ** WAL mode.
      */
      pPager->eState = PAGER_WRITER_LOCKED;
      pPager->dbHintSize = pPager->dbSize;
      pPager->dbFileSize = pPager->dbSize;
      pPager->dbOrigSize = pPager->dbSize;
      pPager->journalOff = 0;
    }

    assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
    assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
    assert( assert_pager_state(pPager) );
  }

  PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
  return rc;
}

/*
** Mark a single data page as writeable. The page is written into the 
** main journal or sub-journal as required. If the page is written into
** one of the journals, the corresponding bit is set in the 
** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
** of any open savepoints as appropriate.
*/
static int pager_write(PgHdr *pPg){
  void *pData = pPg->pData;
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;

  /* This routine is not called unless a write-transaction has already 
  ** been started. The journal file may or may not be open at this point.
  ** It is never called in the ERROR state.
  */
  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );

  /* If an error has been previously detected, report the same error
  ** again. This should not happen, but the check provides robustness. */
  if( NEVER(pPager->errCode) )  return pPager->errCode;

  /* Higher-level routines never call this function if database is not
  ** writable.  But check anyway, just for robustness. */
  if( NEVER(pPager->readOnly) ) return SQLITE_PERM;

  CHECK_PAGE(pPg);

  /* The journal file needs to be opened. Higher level routines have already
  ** obtained the necessary locks to begin the write-transaction, but the
  ** rollback journal might not yet be open. Open it now if this is the case.
  **
  ** This is done before calling sqlite4PcacheMakeDirty() on the page. 
  ** Otherwise, if it were done after calling sqlite4PcacheMakeDirty(), then
  ** an error might occur and the pager would end up in WRITER_LOCKED state
  ** with pages marked as dirty in the cache.
  */
  if( pPager->eState==PAGER_WRITER_LOCKED ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
  assert( assert_pager_state(pPager) );

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  sqlite4PcacheMakeDirty(pPg);
  if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){
    assert( !pagerUseWal(pPager) );
  }else{
  
    /* The transaction journal now exists and we have a RESERVED or an
    ** EXCLUSIVE lock on the main database file.  Write the current page to
    ** the transaction journal if it is not there already.
    */
    if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){
      assert( pagerUseWal(pPager)==0 );
      if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){
        u32 cksum;
        char *pData2;
        i64 iOff = pPager->journalOff;

        /* We should never write to the journal file the page that
        ** contains the database locks.  The following assert verifies
        ** that we do not. */
        assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );

        assert( pPager->journalHdr<=pPager->journalOff );
        CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2);
        cksum = pager_cksum(pPager, (u8*)pData2);

        /* Even if an IO or diskfull error occurs while journalling the
        ** page in the block above, set the need-sync flag for the page.
        ** Otherwise, when the transaction is rolled back, the logic in
        ** playback_one_page() will think that the page needs to be restored
        ** in the database file. And if an IO error occurs while doing so,
        ** then corruption may follow.
        */
        pPg->flags |= PGHDR_NEED_SYNC;

        rc = write32bits(pPager->jfd, iOff, pPg->pgno);
        if( rc!=SQLITE_OK ) return rc;
        rc = sqlite4OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
        if( rc!=SQLITE_OK ) return rc;
        rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
        if( rc!=SQLITE_OK ) return rc;

        IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 
                 pPager->journalOff, pPager->pageSize));
        PAGER_INCR(sqlite4_pager_writej_count);
        PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
             PAGERID(pPager), pPg->pgno, 
             ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));

        pPager->journalOff += 8 + pPager->pageSize;
        pPager->nRec++;
        assert( pPager->pInJournal!=0 );
        rc = sqlite4BitvecSet(pPager->pInJournal, pPg->pgno);
        testcase( rc==SQLITE_NOMEM );
        assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
        rc |= addToSavepointBitvecs(pPager, pPg->pgno);
        if( rc!=SQLITE_OK ){
          assert( rc==SQLITE_NOMEM );
          return rc;
        }
      }else{
        if( pPager->eState!=PAGER_WRITER_DBMOD ){
          pPg->flags |= PGHDR_NEED_SYNC;
        }
        PAGERTRACE(("APPEND %d page %d needSync=%d\n",
                PAGERID(pPager), pPg->pgno,
               ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
      }
    }
  
    /* If the statement journal is open and the page is not in it,
    ** then write the current page to the statement journal.  Note that
    ** the statement journal format differs from the standard journal format
    ** in that it omits the checksums and the header.
    */
    if( subjRequiresPage(pPg) ){
      rc = subjournalPage(pPg);
    }
  }

  /* Update the database size and return.
  */
  if( pPager->dbSize<pPg->pgno ){
    pPager->dbSize = pPg->pgno;
  }
  return rc;
}

/*
** Mark a data page as writeable. This routine must be called before 
** making changes to a page. The caller must check the return value 
** of this function and be careful not to change any page data unless 
** this routine returns SQLITE_OK.
**
** The difference between this function and pager_write() is that this
** function also deals with the special case where 2 or more pages
** fit on a single disk sector. In this case all co-resident pages
** must have been written to the journal file before returning.
**
** If an error occurs, SQLITE_NOMEM or an IO error code is returned
** as appropriate. Otherwise, SQLITE_OK.
*/
int sqlite4PagerWrite(DbPage *pDbPage){
  int rc = SQLITE_OK;

  PgHdr *pPg = pDbPage;
  Pager *pPager = pPg->pPager;
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);

  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPager) );

  if( nPagePerSector>1 ){
    Pgno nPageCount;          /* Total number of pages in database file */
    Pgno pg1;                 /* First page of the sector pPg is located on. */
    int nPage = 0;            /* Number of pages starting at pg1 to journal */
    int ii;                   /* Loop counter */
    int needSync = 0;         /* True if any page has PGHDR_NEED_SYNC */

    /* Set the doNotSyncSpill flag to 1. This is because we cannot allow
    ** a journal header to be written between the pages journaled by
    ** this function.
    */
    assert( !MEMDB );
    assert( pPager->doNotSyncSpill==0 );
    pPager->doNotSyncSpill++;

    /* This trick assumes that both the page-size and sector-size are
    ** an integer power of 2. It sets variable pg1 to the identifier
    ** of the first page of the sector pPg is located on.
    */
    pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;

    nPageCount = pPager->dbSize;
    if( pPg->pgno>nPageCount ){
      nPage = (pPg->pgno - pg1)+1;
    }else if( (pg1+nPagePerSector-1)>nPageCount ){
      nPage = nPageCount+1-pg1;
    }else{
      nPage = nPagePerSector;
    }
    assert(nPage>0);
    assert(pg1<=pPg->pgno);
    assert((pg1+nPage)>pPg->pgno);

    for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
      Pgno pg = pg1+ii;
      PgHdr *pPage;
      if( pg==pPg->pgno || !sqlite4BitvecTest(pPager->pInJournal, pg) ){
        if( pg!=PAGER_MJ_PGNO(pPager) ){
          rc = sqlite4PagerGet(pPager, pg, &pPage);
          if( rc==SQLITE_OK ){
            rc = pager_write(pPage);
            if( pPage->flags&PGHDR_NEED_SYNC ){
              needSync = 1;
            }
            sqlite4PagerUnref(pPage);
          }
        }
      }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
        if( pPage->flags&PGHDR_NEED_SYNC ){
          needSync = 1;
        }
        sqlite4PagerUnref(pPage);
      }
    }

    /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 
    ** starting at pg1, then it needs to be set for all of them. Because
    ** writing to any of these nPage pages may damage the others, the
    ** journal file must contain sync()ed copies of all of them
    ** before any of them can be written out to the database file.
    */
    if( rc==SQLITE_OK && needSync ){
      assert( !MEMDB );
      for(ii=0; ii<nPage; ii++){
        PgHdr *pPage = pager_lookup(pPager, pg1+ii);
        if( pPage ){
          pPage->flags |= PGHDR_NEED_SYNC;
          sqlite4PagerUnref(pPage);
        }
      }
    }

    assert( pPager->doNotSyncSpill==1 );
    pPager->doNotSyncSpill--;
  }else{
    rc = pager_write(pDbPage);
  }
  return rc;
}

/*
** Return TRUE if the page given in the argument was previously passed
** to sqlite4PagerWrite().  In other words, return TRUE if it is ok
** to change the content of the page.
*/
#ifndef NDEBUG
int sqlite4PagerIswriteable(DbPage *pPg){
  return pPg->flags&PGHDR_DIRTY;
}
#endif

/*
** A call to this routine tells the pager that it is not necessary to
** write the information on page pPg back to the disk, even though
** that page might be marked as dirty.  This happens, for example, when
** the page has been added as a leaf of the freelist and so its
** content no longer matters.
**
** The overlying software layer calls this routine when all of the data
** on the given page is unused. The pager marks the page as clean so
** that it does not get written to disk.
**
** Tests show that this optimization can quadruple the speed of large 
** DELETE operations.
*/
void sqlite4PagerDontWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
    PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
    IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
    pPg->flags |= PGHDR_DONT_WRITE;
    pager_set_pagehash(pPg);
  }
}

/*
** This routine is called to increment the value of the database file 
** change-counter, stored as a 4-byte big-endian integer starting at 
** byte offset 24 of the pager file.  The secondary change counter at
** 92 is also updated, as is the SQLite version number at offset 96.
**
** But this only happens if the pPager->changeCountDone flag is false.
** To avoid excess churning of page 1, the update only happens once.
** See also the pager_write_changecounter() routine that does an 
** unconditional update of the change counters.
**
** If the isDirectMode flag is zero, then this is done by calling 
** sqlite4PagerWrite() on page 1, then modifying the contents of the
** page data. In this case the file will be updated when the current
** transaction is committed.
**
** The isDirectMode flag may only be non-zero if the library was compiled
** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
** if isDirect is non-zero, then the database file is updated directly
** by writing an updated version of page 1 using a call to the 
** sqlite4OsWrite() function.
*/
static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
  int rc = SQLITE_OK;

  assert( pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );

  /* Declare and initialize constant integer 'isDirect'. If the
  ** atomic-write optimization is enabled in this build, then isDirect
  ** is initialized to the value passed as the isDirectMode parameter
  ** to this function. Otherwise, it is always set to zero.
  **
  ** The idea is that if the atomic-write optimization is not
  ** enabled at compile time, the compiler can omit the tests of
  ** 'isDirect' below, as well as the block enclosed in the
  ** "if( isDirect )" condition.
  */
#ifndef SQLITE_ENABLE_ATOMIC_WRITE
# define DIRECT_MODE 0
  assert( isDirectMode==0 );
  UNUSED_PARAMETER(isDirectMode);
#else
# define DIRECT_MODE isDirectMode
#endif

  if( !pPager->changeCountDone && pPager->dbSize>0 ){
    PgHdr *pPgHdr;                /* Reference to page 1 */

    assert( !pPager->tempFile && isOpen(pPager->fd) );

    /* Open page 1 of the file for writing. */
    rc = sqlite4PagerGet(pPager, 1, &pPgHdr);
    assert( pPgHdr==0 || rc==SQLITE_OK );

    /* If page one was fetched successfully, and this function is not
    ** operating in direct-mode, make page 1 writable.  When not in 
    ** direct mode, page 1 is always held in cache and hence the PagerGet()
    ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
    */
    if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
      rc = sqlite4PagerWrite(pPgHdr);
    }

    if( rc==SQLITE_OK ){
      /* Actually do the update of the change counter */
      pager_write_changecounter(pPgHdr);

      /* If running in direct mode, write the contents of page 1 to the file. */
      if( DIRECT_MODE ){
        const void *zBuf;
        assert( pPager->dbFileSize>0 );
        CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf);
        if( rc==SQLITE_OK ){
          rc = sqlite4OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
        }
        if( rc==SQLITE_OK ){
          pPager->changeCountDone = 1;
        }
      }else{
        pPager->changeCountDone = 1;
      }
    }

    /* Release the page reference. */
    sqlite4PagerUnref(pPgHdr);
  }
  return rc;
}

/*
** Sync the database file to disk. This is a no-op for in-memory databases
** or pages with the Pager.noSync flag set.
**
** If successful, or if called on a pager for which it is a no-op, this
** function returns SQLITE_OK. Otherwise, an IO error code is returned.
*/
int sqlite4PagerSync(Pager *pPager){
  int rc = SQLITE_OK;
  if( !pPager->noSync ){
    assert( !MEMDB );
    rc = sqlite4OsSync(pPager->fd, pPager->syncFlags);
  }else if( isOpen(pPager->fd) ){
    assert( !MEMDB );
    rc = sqlite4OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, 0);
    if( rc==SQLITE_NOTFOUND ){
      rc = SQLITE_OK;
    }
  }
  return rc;
}

/*
** This function may only be called while a write-transaction is active in
** rollback. If the connection is in WAL mode, this call is a no-op. 
** Otherwise, if the connection does not already have an EXCLUSIVE lock on 
** the database file, an attempt is made to obtain one.
**
** If the EXCLUSIVE lock is already held or the attempt to obtain it is
** successful, or the connection is in WAL mode, SQLITE_OK is returned.
** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 
** returned.
*/
int sqlite4PagerExclusiveLock(Pager *pPager){
  int rc = SQLITE_OK;
  assert( pPager->eState==PAGER_WRITER_CACHEMOD 
       || pPager->eState==PAGER_WRITER_DBMOD 
       || pPager->eState==PAGER_WRITER_LOCKED 
  );
  assert( assert_pager_state(pPager) );
  if( 0==pagerUseWal(pPager) ){
    rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
  }
  return rc;
}

/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual
** journal file. zMaster may be NULL, which is interpreted as no master
** journal (a single database transaction).
**
** This routine ensures that:
**
**   * The database file change-counter is updated,
**   * the journal is synced (unless the atomic-write optimization is used),
**   * all dirty pages are written to the database file, 
**   * the database file is truncated (if required), and
**   * the database file synced. 
**
** The only thing that remains to commit the transaction is to finalize 
** (delete, truncate or zero the first part of) the journal file (or 
** delete the master journal file if specified).
**
** Note that if zMaster==NULL, this does not overwrite a previous value
** passed to an sqlite4PagerCommitPhaseOne() call.
**
** If the final parameter - noSync - is true, then the database file itself
** is not synced. The caller must call sqlite4PagerSync() directly to
** sync the database file before calling CommitPhaseTwo() to delete the
** journal file in this case.
*/
int sqlite4PagerCommitPhaseOne(
  Pager *pPager,                  /* Pager object */
  const char *zMaster,            /* If not NULL, the master journal name */
  int noSync                      /* True to omit the xSync on the db file */
){
  int rc = SQLITE_OK;             /* Return code */

  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
       || pPager->eState==PAGER_ERROR
  );
  assert( assert_pager_state(pPager) );

  /* If a prior error occurred, report that error again. */
  if( NEVER(pPager->errCode) ) return pPager->errCode;

  PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", 
      pPager->zFilename, zMaster, pPager->dbSize));

  /* If no database changes have been made, return early. */
  if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;

  if( MEMDB ){
    /* If this is an in-memory db, or no pages have been written to, or this
    ** function has already been called, it is mostly a no-op.  However, any
    ** backup in progress needs to be restarted.
    */
    sqlite4BackupRestart(pPager->pBackup);
  }else{
    if( pagerUseWal(pPager) ){
      PgHdr *pList = sqlite4PcacheDirtyList(pPager->pPCache);
      PgHdr *pPageOne = 0;
      if( pList==0 ){
        /* Must have at least one page for the WAL commit flag.
        ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
        rc = sqlite4PagerGet(pPager, 1, &pPageOne);
        pList = pPageOne;
        pList->pDirty = 0;
      }
      assert( rc==SQLITE_OK );
      if( ALWAYS(pList) ){
        rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
      }
      sqlite4PagerUnref(pPageOne);
      if( rc==SQLITE_OK ){
        sqlite4PcacheCleanAll(pPager->pPCache);
      }
    }else{
      /* The following block updates the change-counter. Exactly how it
      ** does this depends on whether or not the atomic-update optimization
      ** was enabled at compile time, and if this transaction meets the 
      ** runtime criteria to use the operation: 
      **
      **    * The file-system supports the atomic-write property for
      **      blocks of size page-size, and 
      **    * This commit is not part of a multi-file transaction, and
      **    * Exactly one page has been modified and store in the journal file.
      **
      ** If the optimization was not enabled at compile time, then the
      ** pager_incr_changecounter() function is called to update the change
      ** counter in 'indirect-mode'. If the optimization is compiled in but
      ** is not applicable to this transaction, call sqlite4JournalCreate()
      ** to make sure the journal file has actually been created, then call
      ** pager_incr_changecounter() to update the change-counter in indirect
      ** mode. 
      **
      ** Otherwise, if the optimization is both enabled and applicable,
      ** then call pager_incr_changecounter() to update the change-counter
      ** in 'direct' mode. In this case the journal file will never be
      ** created for this transaction.
      */
  #ifdef SQLITE_ENABLE_ATOMIC_WRITE
      PgHdr *pPg;
      assert( isOpen(pPager->jfd) 
           || pPager->journalMode==PAGER_JOURNALMODE_OFF 
           || pPager->journalMode==PAGER_JOURNALMODE_WAL 
      );
      if( !zMaster && isOpen(pPager->jfd) 
       && pPager->journalOff==jrnlBufferSize(pPager) 
       && pPager->dbSize>=pPager->dbOrigSize
       && (0==(pPg = sqlite4PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
      ){
        /* Update the db file change counter via the direct-write method. The 
        ** following call will modify the in-memory representation of page 1 
        ** to include the updated change counter and then write page 1 
        ** directly to the database file. Because of the atomic-write 
        ** property of the host file-system, this is safe.
        */
        rc = pager_incr_changecounter(pPager, 1);
      }else{
        rc = sqlite4JournalCreate(pPager->jfd);
        if( rc==SQLITE_OK ){
          rc = pager_incr_changecounter(pPager, 0);
        }
      }
  #else
      rc = pager_incr_changecounter(pPager, 0);
  #endif
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  
      /* If this transaction has made the database smaller, then all pages
      ** being discarded by the truncation must be written to the journal
      ** file. This can only happen in auto-vacuum mode.
      **
      ** Before reading the pages with page numbers larger than the 
      ** current value of Pager.dbSize, set dbSize back to the value
      ** that it took at the start of the transaction. Otherwise, the
      ** calls to sqlite4PagerGet() return zeroed pages instead of 
      ** reading data from the database file.
      */
  #ifndef SQLITE_OMIT_AUTOVACUUM
      if( pPager->dbSize<pPager->dbOrigSize 
       && pPager->journalMode!=PAGER_JOURNALMODE_OFF
      ){
        Pgno i;                                   /* Iterator variable */
        const Pgno iSkip = PAGER_MJ_PGNO(pPager); /* Pending lock page */
        const Pgno dbSize = pPager->dbSize;       /* Database image size */ 
        pPager->dbSize = pPager->dbOrigSize;
        for( i=dbSize+1; i<=pPager->dbOrigSize; i++ ){
          if( !sqlite4BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
            PgHdr *pPage;             /* Page to journal */
            rc = sqlite4PagerGet(pPager, i, &pPage);
            if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
            rc = sqlite4PagerWrite(pPage);
            sqlite4PagerUnref(pPage);
            if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
          }
        }
        pPager->dbSize = dbSize;
      } 
  #endif
  
      /* Write the master journal name into the journal file. If a master 
      ** journal file name has already been written to the journal file, 
      ** or if zMaster is NULL (no master journal), then this call is a no-op.
      */
      rc = writeMasterJournal(pPager, zMaster);
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  
      /* Sync the journal file and write all dirty pages to the database.
      ** If the atomic-update optimization is being used, this sync will not 
      ** create the journal file or perform any real IO.
      **
      ** Because the change-counter page was just modified, unless the
      ** atomic-update optimization is used it is almost certain that the
      ** journal requires a sync here. However, in locking_mode=exclusive
      ** on a system under memory pressure it is just possible that this is 
      ** not the case. In this case it is likely enough that the redundant
      ** xSync() call will be changed to a no-op by the OS anyhow. 
      */
      rc = syncJournal(pPager, 0);
      if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
  
      rc = pager_write_pagelist(pPager,sqlite4PcacheDirtyList(pPager->pPCache));
      if( rc!=SQLITE_OK ){
        assert( rc!=SQLITE_IOERR_BLOCKED );
        goto commit_phase_one_exit;
      }
      sqlite4PcacheCleanAll(pPager->pPCache);
  
      /* If the file on disk is not the same size as the database image,
      ** then use pager_truncate to grow or shrink the file here.
      */
      if( pPager->dbSize!=pPager->dbFileSize ){
        Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
        assert( pPager->eState==PAGER_WRITER_DBMOD );
        rc = pager_truncate(pPager, nNew);
        if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
      }
  
      /* Finally, sync the database file. */
      if( !noSync ){
        rc = sqlite4PagerSync(pPager);
      }
      IOTRACE(("DBSYNC %p\n", pPager))
    }
  }

commit_phase_one_exit:
  if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
    pPager->eState = PAGER_WRITER_FINISHED;
  }
  return rc;
}


/*
** When this function is called, the database file has been completely
** updated to reflect the changes made by the current transaction and
** synced to disk. The journal file still exists in the file-system 
** though, and if a failure occurs at this point it will eventually
** be used as a hot-journal and the current transaction rolled back.
**
** This function finalizes the journal file, either by deleting, 
** truncating or partially zeroing it, so that it cannot be used 
** for hot-journal rollback. Once this is done the transaction is
** irrevocably committed.
**
** If an error occurs, an IO error code is returned and the pager
** moves into the error state. Otherwise, SQLITE_OK is returned.
*/
int sqlite4PagerCommitPhaseTwo(Pager *pPager){
  int rc = SQLITE_OK;                  /* Return code */

  /* This routine should not be called if a prior error has occurred.
  ** But if (due to a coding error elsewhere in the system) it does get
  ** called, just return the same error code without doing anything. */
  if( NEVER(pPager->errCode) ) return pPager->errCode;

  assert( pPager->eState==PAGER_WRITER_LOCKED
       || pPager->eState==PAGER_WRITER_FINISHED
       || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
  );
  assert( assert_pager_state(pPager) );

  /* An optimization. If the database was not actually modified during
  ** this transaction, the pager is running in exclusive-mode and is
  ** using persistent journals, then this function is a no-op.
  **
  ** The start of the journal file currently contains a single journal 
  ** header with the nRec field set to 0. If such a journal is used as
  ** a hot-journal during hot-journal rollback, 0 changes will be made
  ** to the database file. So there is no need to zero the journal 
  ** header. Since the pager is in exclusive mode, there is no need
  ** to drop any locks either.
  */
  if( pPager->eState==PAGER_WRITER_LOCKED 
   && pPager->exclusiveMode 
   && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
  ){
    assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
    pPager->eState = PAGER_READER;
    return SQLITE_OK;
  }

  PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
  rc = pager_end_transaction(pPager, pPager->setMaster);
  return pager_error(pPager, rc);
}

/*
** If a write transaction is open, then all changes made within the 
** transaction are reverted and the current write-transaction is closed.
** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
** state if an error occurs.
**
** If the pager is already in PAGER_ERROR state when this function is called,
** it returns Pager.errCode immediately. No work is performed in this case.
**
** Otherwise, in rollback mode, this function performs two functions:
**
**   1) It rolls back the journal file, restoring all database file and 
**      in-memory cache pages to the state they were in when the transaction
**      was opened, and
**
**   2) It finalizes the journal file, so that it is not used for hot
**      rollback at any point in the future.
**
** Finalization of the journal file (task 2) is only performed if the 
** rollback is successful.
**
** In WAL mode, all cache-entries containing data modified within the
** current transaction are either expelled from the cache or reverted to
** their pre-transaction state by re-reading data from the database or
** WAL files. The WAL transaction is then closed.
*/
int sqlite4PagerRollback(Pager *pPager){
  int rc = SQLITE_OK;                  /* Return code */
  PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));

  /* PagerRollback() is a no-op if called in READER or OPEN state. If
  ** the pager is already in the ERROR state, the rollback is not 
  ** attempted here. Instead, the error code is returned to the caller.
  */
  assert( assert_pager_state(pPager) );
  if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
  if( pPager->eState<=PAGER_READER ) return SQLITE_OK;

  if( pagerUseWal(pPager) ){
    int rc2;
    rc = sqlite4PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
    rc2 = pager_end_transaction(pPager, pPager->setMaster);
    if( rc==SQLITE_OK ) rc = rc2;
  }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
    int eState = pPager->eState;
    rc = pager_end_transaction(pPager, 0);
    if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
      /* This can happen using journal_mode=off. Move the pager to the error 
      ** state to indicate that the contents of the cache may not be trusted.
      ** Any active readers will get SQLITE_ABORT.
      */
      pPager->errCode = SQLITE_ABORT;
      pPager->eState = PAGER_ERROR;
      return rc;
    }
  }else{
    rc = pager_playback(pPager, 0);
  }

  assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
  assert( rc==SQLITE_OK || rc==SQLITE_FULL
          || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR );

  /* If an error occurs during a ROLLBACK, we can no longer trust the pager
  ** cache. So call pager_error() on the way out to make any error persistent.
  */
  return pager_error(pPager, rc);
}

/*
** Return TRUE if the database file is opened read-only.  Return FALSE
** if the database is (in theory) writable.
*/
u8 sqlite4PagerIsreadonly(Pager *pPager){
  return pPager->readOnly;
}

/*
** Return the number of references to the pager.
*/
int sqlite4PagerRefcount(Pager *pPager){
  return sqlite4PcacheRefCount(pPager->pPCache);
}

/*
** Return the approximate number of bytes of memory currently
** used by the pager and its associated cache.
*/
int sqlite4PagerMemUsed(Pager *pPager){
  int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
                                     + 5*sizeof(void*);
  return perPageSize*sqlite4PcachePagecount(pPager->pPCache)
           + sqlite4MallocSize(pPager)
           + pPager->pageSize;
}

/*
** Return the number of references to the specified page.
*/
int sqlite4PagerPageRefcount(DbPage *pPage){
  return sqlite4PcachePageRefcount(pPage);
}

#ifdef SQLITE_TEST
/*
** This routine is used for testing and analysis only.
*/
int *sqlite4PagerStats(Pager *pPager){
  static int a[11];
  a[0] = sqlite4PcacheRefCount(pPager->pPCache);
  a[1] = sqlite4PcachePagecount(pPager->pPCache);
  a[2] = sqlite4PcacheGetCachesize(pPager->pPCache);
  a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
  a[4] = pPager->eState;
  a[5] = pPager->errCode;
  a[6] = pPager->nHit;
  a[7] = pPager->nMiss;
  a[8] = 0;  /* Used to be pPager->nOvfl */
  a[9] = pPager->nRead;
  a[10] = pPager->nWrite;
  return a;
}
#endif

/*
** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or
** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the
** current cache hit or miss count, according to the value of eStat. If the 
** reset parameter is non-zero, the cache hit or miss count is zeroed before 
** returning.
*/
void sqlite4PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){
  int *piStat;

  assert( eStat==SQLITE_DBSTATUS_CACHE_HIT
       || eStat==SQLITE_DBSTATUS_CACHE_MISS
  );
  if( eStat==SQLITE_DBSTATUS_CACHE_HIT ){
    piStat = &pPager->nHit;
  }else{
    piStat = &pPager->nMiss;
  }

  *pnVal += *piStat;
  if( reset ){
    *piStat = 0;
  }
}

/*
** Return true if this is an in-memory pager.
*/
int sqlite4PagerIsMemdb(Pager *pPager){
  return MEMDB;
}

/*
** Check that there are at least nSavepoint savepoints open. If there are
** currently less than nSavepoints open, then open one or more savepoints
** to make up the difference. If the number of savepoints is already
** equal to nSavepoint, then this function is a no-op.
**
** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 
** occurs while opening the sub-journal file, then an IO error code is
** returned. Otherwise, SQLITE_OK.
*/
int sqlite4PagerOpenSavepoint(Pager *pPager, int nSavepoint){
  int rc = SQLITE_OK;                       /* Return code */
  int nCurrent = pPager->nSavepoint;        /* Current number of savepoints */

  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( assert_pager_state(pPager) );

  if( nSavepoint>nCurrent && pPager->useJournal ){
    int ii;                                 /* Iterator variable */
    PagerSavepoint *aNew;                   /* New Pager.aSavepoint array */

    /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
    ** if the allocation fails. Otherwise, zero the new portion in case a 
    ** malloc failure occurs while populating it in the for(...) loop below.
    */
    aNew = (PagerSavepoint *)sqlite4Realloc(
        pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
    );
    if( !aNew ){
      return SQLITE_NOMEM;
    }
    memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
    pPager->aSavepoint = aNew;

    /* Populate the PagerSavepoint structures just allocated. */
    for(ii=nCurrent; ii<nSavepoint; ii++){
      aNew[ii].nOrig = pPager->dbSize;
      if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
        aNew[ii].iOffset = pPager->journalOff;
      }else{
        aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
      }
      aNew[ii].iSubRec = pPager->nSubRec;
      aNew[ii].pInSavepoint = sqlite4BitvecCreate(pPager->dbSize);
      if( !aNew[ii].pInSavepoint ){
        return SQLITE_NOMEM;
      }
      pPager->nSavepoint = ii+1;
    }
    assert( pPager->nSavepoint==nSavepoint );
    assertTruncateConstraint(pPager);
  }

  return rc;
}

/*
** This function is called to rollback or release (commit) a savepoint.
** The savepoint to release or rollback need not be the most recently 
** created savepoint.
**
** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
** that have occurred since the specified savepoint was created.
**
** The savepoint to rollback or release is identified by parameter 
** iSavepoint. A value of 0 means to operate on the outermost savepoint
** (the first created). A value of (Pager.nSavepoint-1) means operate
** on the most recently created savepoint. If iSavepoint is greater than
** (Pager.nSavepoint-1), then this function is a no-op.
**
** If a negative value is passed to this function, then the current
** transaction is rolled back. This is different to calling 
** sqlite4PagerRollback() because this function does not terminate
** the transaction or unlock the database, it just restores the 
** contents of the database to its original state. 
**
** In any case, all savepoints with an index greater than iSavepoint 
** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
** then savepoint iSavepoint is also destroyed.
**
** This function may return SQLITE_NOMEM if a memory allocation fails,
** or an IO error code if an IO error occurs while rolling back a 
** savepoint. If no errors occur, SQLITE_OK is returned.
*/ 
int sqlite4PagerSavepoint(Pager *pPager, int op, int iSavepoint){
  int rc = pPager->errCode;       /* Return code */

  assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
  assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );

  if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
    int ii;            /* Iterator variable */
    int nNew;          /* Number of remaining savepoints after this op. */

    /* Figure out how many savepoints will still be active after this
    ** operation. Store this value in nNew. Then free resources associated 
    ** with any savepoints that are destroyed by this operation.
    */
    nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
    for(ii=nNew; ii<pPager->nSavepoint; ii++){
      sqlite4BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
    }
    pPager->nSavepoint = nNew;

    /* If this is a release of the outermost savepoint, truncate 
    ** the sub-journal to zero bytes in size. */
    if( op==SAVEPOINT_RELEASE ){
      if( nNew==0 && isOpen(pPager->sjfd) ){
        /* Only truncate if it is an in-memory sub-journal. */
        if( sqlite4IsMemJournal(pPager->sjfd) ){
          rc = sqlite4OsTruncate(pPager->sjfd, 0);
          assert( rc==SQLITE_OK );
        }
        pPager->nSubRec = 0;
      }
    }
    /* Else this is a rollback operation, playback the specified savepoint.
    ** If this is a temp-file, it is possible that the journal file has
    ** not yet been opened. In this case there have been no changes to
    ** the database file, so the playback operation can be skipped.
    */
    else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
      PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
      rc = pagerPlaybackSavepoint(pPager, pSavepoint);
      assert(rc!=SQLITE_DONE);
    }
  }

  return rc;
}

/*
** Return the full pathname of the database file.
*/
const char *sqlite4PagerFilename(Pager *pPager){
  return pPager->zFilename;
}

/*
** Return the VFS structure for the pager.
*/
const sqlite4_vfs *sqlite4PagerVfs(Pager *pPager){
  return pPager->pVfs;
}

/*
** Return the file handle for the database file associated
** with the pager.  This might return NULL if the file has
** not yet been opened.
*/
sqlite4_file *sqlite4PagerFile(Pager *pPager){
  return pPager->fd;
}

/*
** Return the full pathname of the journal file.
*/
const char *sqlite4PagerJournalname(Pager *pPager){
  return pPager->zJournal;
}

/*
** Return true if fsync() calls are disabled for this pager.  Return FALSE
** if fsync()s are executed normally.
*/
int sqlite4PagerNosync(Pager *pPager){
  return pPager->noSync;
}

#ifdef SQLITE_HAS_CODEC
/*
** Set or retrieve the codec for this pager
*/
void sqlite4PagerSetCodec(
  Pager *pPager,
  void *(*xCodec)(void*,void*,Pgno,int),
  void (*xCodecSizeChng)(void*,int,int),
  void (*xCodecFree)(void*),
  void *pCodec
){
  if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
  pPager->xCodec = pPager->memDb ? 0 : xCodec;
  pPager->xCodecSizeChng = xCodecSizeChng;
  pPager->xCodecFree = xCodecFree;
  pPager->pCodec = pCodec;
  pagerReportSize(pPager);
}
void *sqlite4PagerGetCodec(Pager *pPager){
  return pPager->pCodec;
}
#endif

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Move the page pPg to location pgno in the file.
**
** There must be no references to the page previously located at
** pgno (which we call pPgOld) though that page is allowed to be
** in cache.  If the page previously located at pgno is not already
** in the rollback journal, it is not put there by by this routine.
**
** References to the page pPg remain valid. Updating any
** meta-data associated with pPg (i.e. data stored in the nExtra bytes
** allocated along with the page) is the responsibility of the caller.
**
** A transaction must be active when this routine is called. It used to be
** required that a statement transaction was not active, but this restriction
** has been removed (CREATE INDEX needs to move a page when a statement
** transaction is active).
**
** If the fourth argument, isCommit, is non-zero, then this page is being
** moved as part of a database reorganization just before the transaction 
** is being committed. In this case, it is guaranteed that the database page 
** pPg refers to will not be written to again within this transaction.
**
** This function may return SQLITE_NOMEM or an IO error code if an error
** occurs. Otherwise, it returns SQLITE_OK.
*/
int sqlite4PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
  PgHdr *pPgOld;               /* The page being overwritten. */
  Pgno needSyncPgno = 0;       /* Old value of pPg->pgno, if sync is required */
  int rc;                      /* Return code */
  Pgno origPgno;               /* The original page number */

  assert( pPg->nRef>0 );
  assert( pPager->eState==PAGER_WRITER_CACHEMOD
       || pPager->eState==PAGER_WRITER_DBMOD
  );
  assert( assert_pager_state(pPager) );

  /* In order to be able to rollback, an in-memory database must journal
  ** the page we are moving from.
  */
  if( MEMDB ){
    rc = sqlite4PagerWrite(pPg);
    if( rc ) return rc;
  }

  /* If the page being moved is dirty and has not been saved by the latest
  ** savepoint, then save the current contents of the page into the 
  ** sub-journal now. This is required to handle the following scenario:
  **
  **   BEGIN;
  **     <journal page X, then modify it in memory>
  **     SAVEPOINT one;
  **       <Move page X to location Y>
  **     ROLLBACK TO one;
  **
  ** If page X were not written to the sub-journal here, it would not
  ** be possible to restore its contents when the "ROLLBACK TO one"
  ** statement were is processed.
  **
  ** subjournalPage() may need to allocate space to store pPg->pgno into
  ** one or more savepoint bitvecs. This is the reason this function
  ** may return SQLITE_NOMEM.
  */
  if( pPg->flags&PGHDR_DIRTY
   && subjRequiresPage(pPg)
   && SQLITE_OK!=(rc = subjournalPage(pPg))
  ){
    return rc;
  }

  PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 
      PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
  IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))

  /* If the journal needs to be sync()ed before page pPg->pgno can
  ** be written to, store pPg->pgno in local variable needSyncPgno.
  **
  ** If the isCommit flag is set, there is no need to remember that
  ** the journal needs to be sync()ed before database page pPg->pgno 
  ** can be written to. The caller has already promised not to write to it.
  */
  if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
    needSyncPgno = pPg->pgno;
    assert( pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize );
    assert( pPg->flags&PGHDR_DIRTY );
  }

  /* If the cache contains a page with page-number pgno, remove it
  ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 
  ** page pgno before the 'move' operation, it needs to be retained 
  ** for the page moved there.
  */
  pPg->flags &= ~PGHDR_NEED_SYNC;
  pPgOld = pager_lookup(pPager, pgno);
  assert( !pPgOld || pPgOld->nRef==1 );
  if( pPgOld ){
    pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
    if( MEMDB ){
      /* Do not discard pages from an in-memory database since we might
      ** need to rollback later.  Just move the page out of the way. */
      sqlite4PcacheMove(pPgOld, pPager->dbSize+1);
    }else{
      sqlite4PcacheDrop(pPgOld);
    }
  }

  origPgno = pPg->pgno;
  sqlite4PcacheMove(pPg, pgno);
  sqlite4PcacheMakeDirty(pPg);

  /* For an in-memory database, make sure the original page continues
  ** to exist, in case the transaction needs to roll back.  Use pPgOld
  ** as the original page since it has already been allocated.
  */
  if( MEMDB ){
    assert( pPgOld );
    sqlite4PcacheMove(pPgOld, origPgno);
    sqlite4PagerUnref(pPgOld);
  }

  if( needSyncPgno ){
    /* If needSyncPgno is non-zero, then the journal file needs to be 
    ** sync()ed before any data is written to database file page needSyncPgno.
    ** Currently, no such page exists in the page-cache and the 
    ** "is journaled" bitvec flag has been set. This needs to be remedied by
    ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
    ** flag.
    **
    ** If the attempt to load the page into the page-cache fails, (due
    ** to a malloc() or IO failure), clear the bit in the pInJournal[]
    ** array. Otherwise, if the page is loaded and written again in
    ** this transaction, it may be written to the database file before
    ** it is synced into the journal file. This way, it may end up in
    ** the journal file twice, but that is not a problem.
    */
    PgHdr *pPgHdr;
    rc = sqlite4PagerGet(pPager, needSyncPgno, &pPgHdr);
    if( rc!=SQLITE_OK ){
      if( needSyncPgno<=pPager->dbOrigSize ){
        assert( pPager->pTmpSpace!=0 );
        sqlite4BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
      }
      return rc;
    }
    pPgHdr->flags |= PGHDR_NEED_SYNC;
    sqlite4PcacheMakeDirty(pPgHdr);
    sqlite4PagerUnref(pPgHdr);
  }

  return SQLITE_OK;
}
#endif

/*
** Return a pointer to the data for the specified page.
*/
void *sqlite4PagerGetData(DbPage *pPg){
  assert( pPg->nRef>0 || pPg->pPager->memDb );
  return pPg->pData;
}

/*
** Return a pointer to the Pager.nExtra bytes of "extra" space 
** allocated along with the specified page.
*/
void *sqlite4PagerGetExtra(DbPage *pPg){
  return pPg->pExtra;
}

/*
** Get/set the locking-mode for this pager. Parameter eMode must be one
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
** the locking-mode is set to the value specified.
**
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
** locking-mode.
*/
int sqlite4PagerLockingMode(Pager *pPager, int eMode){
  assert( eMode==PAGER_LOCKINGMODE_QUERY
            || eMode==PAGER_LOCKINGMODE_NORMAL
            || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
  assert( PAGER_LOCKINGMODE_QUERY<0 );
  assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
  if( eMode>=0 && !pPager->tempFile ){
    pPager->exclusiveMode = (u8)eMode;
  }
  return (int)pPager->exclusiveMode;
}

/*
** Set the journal-mode for this pager. Parameter eMode must be one of:
**
**    PAGER_JOURNALMODE_DELETE
**    PAGER_JOURNALMODE_TRUNCATE
**    PAGER_JOURNALMODE_PERSIST
**    PAGER_JOURNALMODE_OFF
**    PAGER_JOURNALMODE_MEMORY
**    PAGER_JOURNALMODE_WAL
**
** The journalmode is set to the value specified if the change is allowed.
** The change may be disallowed for the following reasons:
**
**   *  An in-memory database can only have its journal_mode set to _OFF
**      or _MEMORY.
**
**   *  Temporary databases cannot have _WAL journalmode.
**
** The returned indicate the current (possibly updated) journal-mode.
*/
int sqlite4PagerSetJournalMode(Pager *pPager, int eMode){
  u8 eOld = pPager->journalMode;    /* Prior journalmode */

#ifdef SQLITE_DEBUG
  /* The print_pager_state() routine is intended to be used by the debugger
  ** only.  We invoke it once here to suppress a compiler warning. */
  print_pager_state(pPager);
#endif


  /* The eMode parameter is always valid */
  assert(      eMode==PAGER_JOURNALMODE_DELETE
            || eMode==PAGER_JOURNALMODE_TRUNCATE
            || eMode==PAGER_JOURNALMODE_PERSIST
            || eMode==PAGER_JOURNALMODE_OFF 
            || eMode==PAGER_JOURNALMODE_WAL 
            || eMode==PAGER_JOURNALMODE_MEMORY );

  /* This routine is only called from the OP_JournalMode opcode, and
  ** the logic there will never allow a temporary file to be changed
  ** to WAL mode.
  */
  assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );

  /* Do allow the journalmode of an in-memory database to be set to
  ** anything other than MEMORY or OFF
  */
  if( MEMDB ){
    assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
    if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
      eMode = eOld;
    }
  }

  if( eMode!=eOld ){

    /* Change the journal mode. */
    assert( pPager->eState!=PAGER_ERROR );
    pPager->journalMode = (u8)eMode;

    /* When transistioning from TRUNCATE or PERSIST to any other journal
    ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
    ** delete the journal file.
    */
    assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
    assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
    assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
    assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
    assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
    assert( (PAGER_JOURNALMODE_WAL & 5)==5 );

    assert( isOpen(pPager->fd) || pPager->exclusiveMode );
    if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){

      /* In this case we would like to delete the journal file. If it is
      ** not possible, then that is not a problem. Deleting the journal file
      ** here is an optimization only.
      **
      ** Before deleting the journal file, obtain a RESERVED lock on the
      ** database file. This ensures that the journal file is not deleted
      ** while it is in use by some other client.
      */
      sqlite4OsClose(pPager->jfd);
      if( pPager->eLock>=RESERVED_LOCK ){
        sqlite4OsDelete(pPager->pVfs, pPager->zJournal, 0);
      }else{
        int rc = SQLITE_OK;
        int state = pPager->eState;
        assert( state==PAGER_OPEN || state==PAGER_READER );
        if( state==PAGER_OPEN ){
          rc = sqlite4PagerSharedLock(pPager);
        }
        if( pPager->eState==PAGER_READER ){
          assert( rc==SQLITE_OK );
          rc = pagerLockDb(pPager, RESERVED_LOCK);
        }
        if( rc==SQLITE_OK ){
          sqlite4OsDelete(pPager->pVfs, pPager->zJournal, 0);
        }
        if( rc==SQLITE_OK && state==PAGER_READER ){
          pagerUnlockDb(pPager, SHARED_LOCK);
        }else if( state==PAGER_OPEN ){
          pager_unlock(pPager);
        }
        assert( state==pPager->eState );
      }
    }
  }

  /* Return the new journal mode */
  return (int)pPager->journalMode;
}

/*
** Return the current journal mode.
*/
int sqlite4PagerGetJournalMode(Pager *pPager){
  return (int)pPager->journalMode;
}

/*
** Return TRUE if the pager is in a state where it is OK to change the
** journalmode.  Journalmode changes can only happen when the database
** is unmodified.
*/
int sqlite4PagerOkToChangeJournalMode(Pager *pPager){
  assert( assert_pager_state(pPager) );
  if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
  if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
  return 1;
}

/*
** Get/set the size-limit used for persistent journal files.
**
** Setting the size limit to -1 means no limit is enforced.
** An attempt to set a limit smaller than -1 is a no-op.
*/
i64 sqlite4PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
  if( iLimit>=-1 ){
    pPager->journalSizeLimit = iLimit;
  }
  return pPager->journalSizeLimit;
}

/*
** Return a pointer to the pPager->pBackup variable. The backup module
** in backup.c maintains the content of this variable. This module
** uses it opaquely as an argument to sqlite4BackupRestart() and
** sqlite4BackupUpdate() only.
*/
sqlite4_backup **sqlite4PagerBackupPtr(Pager *pPager){
  return &pPager->pBackup;
}


#endif /* SQLITE_OMIT_DISKIO */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted src/pager.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem.  The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
*/

#ifndef _PAGER_H_
#define _PAGER_H_

/*
** Default maximum size for persistent journal files. A negative 
** value means no limit. This value may be overridden using the 
** sqlite4PagerJournalSizeLimit() API. See also "PRAGMA journal_size_limit".
*/
#ifndef SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
  #define SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT -1
#endif

/*
** The type used to represent a page number.  The first page in a file
** is called page 1.  0 is used to represent "not a page".
*/
typedef u32 Pgno;

/*
** Each open file is managed by a separate instance of the "Pager" structure.
*/
typedef struct Pager Pager;

/*
** Handle type for pages.
*/
typedef struct PgHdr DbPage;

/*
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
** reserved for working around a windows/posix incompatibility). It is
** used in the journal to signify that the remainder of the journal file 
** is devoted to storing a master journal name - there are no more pages to
** roll back. See comments for function writeMasterJournal() in pager.c 
** for details.
*/
#define PAGER_MJ_PGNO(x) ((Pgno)((PENDING_BYTE/((x)->pageSize))+1))

/*
** Allowed values for the flags parameter to sqlite4PagerOpen().
**
** NOTE: These values must match the corresponding BTREE_ values in btree.h.
*/
#define PAGER_OMIT_JOURNAL  0x0001    /* Do not use a rollback journal */
#define PAGER_MEMORY        0x0002    /* In-memory database */

/*
** Valid values for the second argument to sqlite4PagerLockingMode().
*/
#define PAGER_LOCKINGMODE_QUERY      -1
#define PAGER_LOCKINGMODE_NORMAL      0
#define PAGER_LOCKINGMODE_EXCLUSIVE   1

/*
** Numeric constants that encode the journalmode.  
*/
#define PAGER_JOURNALMODE_QUERY     (-1)  /* Query the value of journalmode */
#define PAGER_JOURNALMODE_DELETE      0   /* Commit by deleting journal file */
#define PAGER_JOURNALMODE_PERSIST     1   /* Commit by zeroing journal header */
#define PAGER_JOURNALMODE_OFF         2   /* Journal omitted.  */
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** The remainder of this file contains the declarations of the functions
** that make up the Pager sub-system API. See source code comments for 
** a detailed description of each routine.
*/

/* Open and close a Pager connection. */ 
int sqlite4PagerOpen(
  sqlite4_vfs*,
  Pager **ppPager,
  const char*,
  int,
  int,
  int,
  void(*)(DbPage*)
);
int sqlite4PagerClose(Pager *pPager);
int sqlite4PagerReadFileheader(Pager*, int, unsigned char*);

/* Functions used to configure a Pager object. */
void sqlite4PagerSetBusyhandler(Pager*, int(*)(void *), void *);
int sqlite4PagerSetPagesize(Pager*, u32*, int);
int sqlite4PagerMaxPageCount(Pager*, int);
void sqlite4PagerSetCachesize(Pager*, int);
void sqlite4PagerShrink(Pager*);
void sqlite4PagerSetSafetyLevel(Pager*,int,int,int);
int sqlite4PagerLockingMode(Pager *, int);
int sqlite4PagerSetJournalMode(Pager *, int);
int sqlite4PagerGetJournalMode(Pager*);
int sqlite4PagerOkToChangeJournalMode(Pager*);
i64 sqlite4PagerJournalSizeLimit(Pager *, i64);
sqlite4_backup **sqlite4PagerBackupPtr(Pager*);

/* Functions used to obtain and release page references. */ 
int sqlite4PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
#define sqlite4PagerGet(A,B,C) sqlite4PagerAcquire(A,B,C,0)
DbPage *sqlite4PagerLookup(Pager *pPager, Pgno pgno);
void sqlite4PagerRef(DbPage*);
void sqlite4PagerUnref(DbPage*);

/* Operations on page references. */
int sqlite4PagerWrite(DbPage*);
void sqlite4PagerDontWrite(DbPage*);
int sqlite4PagerMovepage(Pager*,DbPage*,Pgno,int);
int sqlite4PagerPageRefcount(DbPage*);
void *sqlite4PagerGetData(DbPage *); 
void *sqlite4PagerGetExtra(DbPage *); 

/* Functions used to manage pager transactions and savepoints. */
void sqlite4PagerPagecount(Pager*, int*);
int sqlite4PagerBegin(Pager*, int exFlag, int);
int sqlite4PagerCommitPhaseOne(Pager*,const char *zMaster, int);
int sqlite4PagerExclusiveLock(Pager*);
int sqlite4PagerSync(Pager *pPager);
int sqlite4PagerCommitPhaseTwo(Pager*);
int sqlite4PagerRollback(Pager*);
int sqlite4PagerOpenSavepoint(Pager *pPager, int n);
int sqlite4PagerSavepoint(Pager *pPager, int op, int iSavepoint);
int sqlite4PagerSharedLock(Pager *pPager);

int sqlite4PagerCheckpoint(Pager *pPager, int, int*, int*);
int sqlite4PagerWalSupported(Pager *pPager);
int sqlite4PagerWalCallback(Pager *pPager);
int sqlite4PagerOpenWal(Pager *pPager, int *pisOpen);
int sqlite4PagerCloseWal(Pager *pPager);

/* Functions used to query pager state and configuration. */
u8 sqlite4PagerIsreadonly(Pager*);
int sqlite4PagerRefcount(Pager*);
int sqlite4PagerMemUsed(Pager*);
const char *sqlite4PagerFilename(Pager*);
const sqlite4_vfs *sqlite4PagerVfs(Pager*);
sqlite4_file *sqlite4PagerFile(Pager*);
const char *sqlite4PagerJournalname(Pager*);
int sqlite4PagerNosync(Pager*);
void *sqlite4PagerTempSpace(Pager*);
int sqlite4PagerIsMemdb(Pager*);
void sqlite4PagerCacheStat(Pager *, int, int, int *);
void sqlite4PagerClearCache(Pager *);

/* Functions used to truncate the database file. */
void sqlite4PagerTruncateImage(Pager*,Pgno);

/* Functions to support testing and debugging. */
#if !defined(NDEBUG) || defined(SQLITE_TEST)
  Pgno sqlite4PagerPagenumber(DbPage*);
  int sqlite4PagerIswriteable(DbPage*);
#endif
#ifdef SQLITE_TEST
  int *sqlite4PagerStats(Pager*);
  void sqlite4PagerRefdump(Pager*);
  void disable_simulated_io_errors(void);
  void enable_simulated_io_errors(void);
#else
# define disable_simulated_io_errors()
# define enable_simulated_io_errors()
#endif

#endif /* _PAGER_H_ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






































































































































































































































































































































































Deleted src/pcache.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/*
** 2008 August 05
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file implements that page cache.
*/
#include "sqliteInt.h"

/*
** A complete page cache is an instance of this structure.
*/
struct PCache {
  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
  PgHdr *pSynced;                     /* Last synced page in dirty page list */
  int nRef;                           /* Number of referenced pages */
  int szCache;                        /* Configured cache size */
  int szPage;                         /* Size of every page in this cache */
  int szExtra;                        /* Size of extra space for each page */
  int bPurgeable;                     /* True if pages are on backing store */
  int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
  void *pStress;                      /* Argument to xStress */
  sqlite4_pcache *pCache;             /* Pluggable cache module */
  PgHdr *pPage1;                      /* Reference to page 1 */
};

/*
** Some of the assert() macros in this code are too expensive to run
** even during normal debugging.  Use them only rarely on long-running
** tests.  Enable the expensive asserts using the
** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
*/
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
# define expensive_assert(X)  assert(X)
#else
# define expensive_assert(X)
#endif

/********************************** Linked List Management ********************/

#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
/*
** Check that the pCache->pSynced variable is set correctly. If it
** is not, either fail an assert or return zero. Otherwise, return
** non-zero. This is only used in debugging builds, as follows:
**
**   expensive_assert( pcacheCheckSynced(pCache) );
*/
static int pcacheCheckSynced(PCache *pCache){
  PgHdr *p;
  for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pDirtyPrev){
    assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
  }
  return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
}
#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */

/*
** Remove page pPage from the list of dirty pages.
*/
static void pcacheRemoveFromDirtyList(PgHdr *pPage){
  PCache *p = pPage->pCache;

  assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
  assert( pPage->pDirtyPrev || pPage==p->pDirty );

  /* Update the PCache1.pSynced variable if necessary. */
  if( p->pSynced==pPage ){
    PgHdr *pSynced = pPage->pDirtyPrev;
    while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
      pSynced = pSynced->pDirtyPrev;
    }
    p->pSynced = pSynced;
  }

  if( pPage->pDirtyNext ){
    pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
  }else{
    assert( pPage==p->pDirtyTail );
    p->pDirtyTail = pPage->pDirtyPrev;
  }
  if( pPage->pDirtyPrev ){
    pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
  }else{
    assert( pPage==p->pDirty );
    p->pDirty = pPage->pDirtyNext;
  }
  pPage->pDirtyNext = 0;
  pPage->pDirtyPrev = 0;

  expensive_assert( pcacheCheckSynced(p) );
}

/*
** Add page pPage to the head of the dirty list (PCache1.pDirty is set to
** pPage).
*/
static void pcacheAddToDirtyList(PgHdr *pPage){
  PCache *p = pPage->pCache;

  assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );

  pPage->pDirtyNext = p->pDirty;
  if( pPage->pDirtyNext ){
    assert( pPage->pDirtyNext->pDirtyPrev==0 );
    pPage->pDirtyNext->pDirtyPrev = pPage;
  }
  p->pDirty = pPage;
  if( !p->pDirtyTail ){
    p->pDirtyTail = pPage;
  }
  if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
    p->pSynced = pPage;
  }
  expensive_assert( pcacheCheckSynced(p) );
}

/*
** Wrapper around the pluggable caches xUnpin method. If the cache is
** being used for an in-memory database, this function is a no-op.
*/
static void pcacheUnpin(PgHdr *p){
  PCache *pCache = p->pCache;
  if( pCache->bPurgeable ){
    if( p->pgno==1 ){
      pCache->pPage1 = 0;
    }
    sqlite4GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 0);
  }
}

/*************************************************** General Interfaces ******
**
** Initialize and shutdown the page cache subsystem. Neither of these 
** functions are threadsafe.
*/
int sqlite4PcacheInitialize(void){
  if( sqlite4GlobalConfig.pcache2.xInit==0 ){
    /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
    ** built-in default page cache is used instead of the application defined
    ** page cache. */
    sqlite4PCacheSetDefault();
  }
  return sqlite4GlobalConfig.pcache2.xInit(sqlite4GlobalConfig.pcache2.pArg);
}
void sqlite4PcacheShutdown(void){
  if( sqlite4GlobalConfig.pcache2.xShutdown ){
    /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
    sqlite4GlobalConfig.pcache2.xShutdown(sqlite4GlobalConfig.pcache2.pArg);
  }
}

/*
** Return the size in bytes of a PCache object.
*/
int sqlite4PcacheSize(void){ return sizeof(PCache); }

/*
** Create a new PCache object. Storage space to hold the object
** has already been allocated and is passed in as the p pointer. 
** The caller discovers how much space needs to be allocated by 
** calling sqlite4PcacheSize().
*/
void sqlite4PcacheOpen(
  int szPage,                  /* Size of every page */
  int szExtra,                 /* Extra space associated with each page */
  int bPurgeable,              /* True if pages are on backing store */
  int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
  void *pStress,               /* Argument to xStress */
  PCache *p                    /* Preallocated space for the PCache */
){
  memset(p, 0, sizeof(PCache));
  p->szPage = szPage;
  p->szExtra = szExtra;
  p->bPurgeable = bPurgeable;
  p->xStress = xStress;
  p->pStress = pStress;
  p->szCache = 100;
}

/*
** Change the page size for PCache object. The caller must ensure that there
** are no outstanding page references when this function is called.
*/
void sqlite4PcacheSetPageSize(PCache *pCache, int szPage){
  assert( pCache->nRef==0 && pCache->pDirty==0 );
  if( pCache->pCache ){
    sqlite4GlobalConfig.pcache2.xDestroy(pCache->pCache);
    pCache->pCache = 0;
    pCache->pPage1 = 0;
  }
  pCache->szPage = szPage;
}

/*
** Compute the number of pages of cache requested.
*/
static int numberOfCachePages(PCache *p){
  if( p->szCache>=0 ){
    return p->szCache;
  }else{
    return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
  }
}

/*
** Try to obtain a page from the cache.
*/
int sqlite4PcacheFetch(
  PCache *pCache,       /* Obtain the page from this cache */
  Pgno pgno,            /* Page number to obtain */
  int createFlag,       /* If true, create page if it does not exist already */
  PgHdr **ppPage        /* Write the page here */
){
  sqlite4_pcache_page *pPage = 0;
  PgHdr *pPgHdr = 0;
  int eCreate;

  assert( pCache!=0 );
  assert( createFlag==1 || createFlag==0 );
  assert( pgno>0 );

  /* If the pluggable cache (sqlite4_pcache*) has not been allocated,
  ** allocate it now.
  */
  if( !pCache->pCache && createFlag ){
    sqlite4_pcache *p;
    p = sqlite4GlobalConfig.pcache2.xCreate(
        pCache->szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable
    );
    if( !p ){
      return SQLITE_NOMEM;
    }
    sqlite4GlobalConfig.pcache2.xCachesize(p, numberOfCachePages(pCache));
    pCache->pCache = p;
  }

  eCreate = createFlag * (1 + (!pCache->bPurgeable || !pCache->pDirty));
  if( pCache->pCache ){
    pPage = sqlite4GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
  }

  if( !pPage && eCreate==1 ){
    PgHdr *pPg;

    /* Find a dirty page to write-out and recycle. First try to find a 
    ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
    ** cleared), but if that is not possible settle for any other 
    ** unreferenced dirty page.
    */
    expensive_assert( pcacheCheckSynced(pCache) );
    for(pPg=pCache->pSynced; 
        pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
        pPg=pPg->pDirtyPrev
    );
    pCache->pSynced = pPg;
    if( !pPg ){
      for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
    }
    if( pPg ){
      int rc;
#ifdef SQLITE_LOG_CACHE_SPILL
      sqlite4_log(SQLITE_FULL, 
                  "spill page %d making room for %d - cache used: %d/%d",
                  pPg->pgno, pgno,
                  sqlite4GlobalConfig.pcache.xPagecount(pCache->pCache),
                  numberOfCachePages(pCache));
#endif
      rc = pCache->xStress(pCache->pStress, pPg);
      if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
        return rc;
      }
    }

    pPage = sqlite4GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
  }

  if( pPage ){
    pPgHdr = (PgHdr *)pPage->pExtra;

    if( !pPgHdr->pPage ){
      memset(pPgHdr, 0, sizeof(PgHdr));
      pPgHdr->pPage = pPage;
      pPgHdr->pData = pPage->pBuf;
      pPgHdr->pExtra = (void *)&pPgHdr[1];
      memset(pPgHdr->pExtra, 0, pCache->szExtra);
      pPgHdr->pCache = pCache;
      pPgHdr->pgno = pgno;
    }
    assert( pPgHdr->pCache==pCache );
    assert( pPgHdr->pgno==pgno );
    assert( pPgHdr->pData==pPage->pBuf );
    assert( pPgHdr->pExtra==(void *)&pPgHdr[1] );

    if( 0==pPgHdr->nRef ){
      pCache->nRef++;
    }
    pPgHdr->nRef++;
    if( pgno==1 ){
      pCache->pPage1 = pPgHdr;
    }
  }
  *ppPage = pPgHdr;
  return (pPgHdr==0 && eCreate) ? SQLITE_NOMEM : SQLITE_OK;
}

/*
** Decrement the reference count on a page. If the page is clean and the
** reference count drops to 0, then it is made elible for recycling.
*/
void sqlite4PcacheRelease(PgHdr *p){
  assert( p->nRef>0 );
  p->nRef--;
  if( p->nRef==0 ){
    PCache *pCache = p->pCache;
    pCache->nRef--;
    if( (p->flags&PGHDR_DIRTY)==0 ){
      pcacheUnpin(p);
    }else{
      /* Move the page to the head of the dirty list. */
      pcacheRemoveFromDirtyList(p);
      pcacheAddToDirtyList(p);
    }
  }
}

/*
** Increase the reference count of a supplied page by 1.
*/
void sqlite4PcacheRef(PgHdr *p){
  assert(p->nRef>0);
  p->nRef++;
}

/*
** Drop a page from the cache. There must be exactly one reference to the
** page. This function deletes that reference, so after it returns the
** page pointed to by p is invalid.
*/
void sqlite4PcacheDrop(PgHdr *p){
  PCache *pCache;
  assert( p->nRef==1 );
  if( p->flags&PGHDR_DIRTY ){
    pcacheRemoveFromDirtyList(p);
  }
  pCache = p->pCache;
  pCache->nRef--;
  if( p->pgno==1 ){
    pCache->pPage1 = 0;
  }
  sqlite4GlobalConfig.pcache2.xUnpin(pCache->pCache, p->pPage, 1);
}

/*
** Make sure the page is marked as dirty. If it isn't dirty already,
** make it so.
*/
void sqlite4PcacheMakeDirty(PgHdr *p){
  p->flags &= ~PGHDR_DONT_WRITE;
  assert( p->nRef>0 );
  if( 0==(p->flags & PGHDR_DIRTY) ){
    p->flags |= PGHDR_DIRTY;
    pcacheAddToDirtyList( p);
  }
}

/*
** Make sure the page is marked as clean. If it isn't clean already,
** make it so.
*/
void sqlite4PcacheMakeClean(PgHdr *p){
  if( (p->flags & PGHDR_DIRTY) ){
    pcacheRemoveFromDirtyList(p);
    p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC);
    if( p->nRef==0 ){
      pcacheUnpin(p);
    }
  }
}

/*
** Make every page in the cache clean.
*/
void sqlite4PcacheCleanAll(PCache *pCache){
  PgHdr *p;
  while( (p = pCache->pDirty)!=0 ){
    sqlite4PcacheMakeClean(p);
  }
}

/*
** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
*/
void sqlite4PcacheClearSyncFlags(PCache *pCache){
  PgHdr *p;
  for(p=pCache->pDirty; p; p=p->pDirtyNext){
    p->flags &= ~PGHDR_NEED_SYNC;
  }
  pCache->pSynced = pCache->pDirtyTail;
}

/*
** Change the page number of page p to newPgno. 
*/
void sqlite4PcacheMove(PgHdr *p, Pgno newPgno){
  PCache *pCache = p->pCache;
  assert( p->nRef>0 );
  assert( newPgno>0 );
  sqlite4GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
  p->pgno = newPgno;
  if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
    pcacheRemoveFromDirtyList(p);
    pcacheAddToDirtyList(p);
  }
}

/*
** Drop every cache entry whose page number is greater than "pgno". The
** caller must ensure that there are no outstanding references to any pages
** other than page 1 with a page number greater than pgno.
**
** If there is a reference to page 1 and the pgno parameter passed to this
** function is 0, then the data area associated with page 1 is zeroed, but
** the page object is not dropped.
*/
void sqlite4PcacheTruncate(PCache *pCache, Pgno pgno){
  if( pCache->pCache ){
    PgHdr *p;
    PgHdr *pNext;
    for(p=pCache->pDirty; p; p=pNext){
      pNext = p->pDirtyNext;
      /* This routine never gets call with a positive pgno except right
      ** after sqlite4PcacheCleanAll().  So if there are dirty pages,
      ** it must be that pgno==0.
      */
      assert( p->pgno>0 );
      if( ALWAYS(p->pgno>pgno) ){
        assert( p->flags&PGHDR_DIRTY );
        sqlite4PcacheMakeClean(p);
      }
    }
    if( pgno==0 && pCache->pPage1 ){
      memset(pCache->pPage1->pData, 0, pCache->szPage);
      pgno = 1;
    }
    sqlite4GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
  }
}

/*
** Close a cache.
*/
void sqlite4PcacheClose(PCache *pCache){
  if( pCache->pCache ){
    sqlite4GlobalConfig.pcache2.xDestroy(pCache->pCache);
  }
}

/* 
** Discard the contents of the cache.
*/
void sqlite4PcacheClear(PCache *pCache){
  sqlite4PcacheTruncate(pCache, 0);
}

/*
** Merge two lists of pages connected by pDirty and in pgno order.
** Do not both fixing the pDirtyPrev pointers.
*/
static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
  PgHdr result, *pTail;
  pTail = &result;
  while( pA && pB ){
    if( pA->pgno<pB->pgno ){
      pTail->pDirty = pA;
      pTail = pA;
      pA = pA->pDirty;
    }else{
      pTail->pDirty = pB;
      pTail = pB;
      pB = pB->pDirty;
    }
  }
  if( pA ){
    pTail->pDirty = pA;
  }else if( pB ){
    pTail->pDirty = pB;
  }else{
    pTail->pDirty = 0;
  }
  return result.pDirty;
}

/*
** Sort the list of pages in accending order by pgno.  Pages are
** connected by pDirty pointers.  The pDirtyPrev pointers are
** corrupted by this sort.
**
** Since there cannot be more than 2^31 distinct pages in a database,
** there cannot be more than 31 buckets required by the merge sorter.
** One extra bucket is added to catch overflow in case something
** ever changes to make the previous sentence incorrect.
*/
#define N_SORT_BUCKET  32
static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
  PgHdr *a[N_SORT_BUCKET], *p;
  int i;
  memset(a, 0, sizeof(a));
  while( pIn ){
    p = pIn;
    pIn = p->pDirty;
    p->pDirty = 0;
    for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
      if( a[i]==0 ){
        a[i] = p;
        break;
      }else{
        p = pcacheMergeDirtyList(a[i], p);
        a[i] = 0;
      }
    }
    if( NEVER(i==N_SORT_BUCKET-1) ){
      /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
      ** the input list.  But that is impossible.
      */
      a[i] = pcacheMergeDirtyList(a[i], p);
    }
  }
  p = a[0];
  for(i=1; i<N_SORT_BUCKET; i++){
    p = pcacheMergeDirtyList(p, a[i]);
  }
  return p;
}

/*
** Return a list of all dirty pages in the cache, sorted by page number.
*/
PgHdr *sqlite4PcacheDirtyList(PCache *pCache){
  PgHdr *p;
  for(p=pCache->pDirty; p; p=p->pDirtyNext){
    p->pDirty = p->pDirtyNext;
  }
  return pcacheSortDirtyList(pCache->pDirty);
}

/* 
** Return the total number of referenced pages held by the cache.
*/
int sqlite4PcacheRefCount(PCache *pCache){
  return pCache->nRef;
}

/*
** Return the number of references to the page supplied as an argument.
*/
int sqlite4PcachePageRefcount(PgHdr *p){
  return p->nRef;
}

/* 
** Return the total number of pages in the cache.
*/
int sqlite4PcachePagecount(PCache *pCache){
  int nPage = 0;
  if( pCache->pCache ){
    nPage = sqlite4GlobalConfig.pcache2.xPagecount(pCache->pCache);
  }
  return nPage;
}

#ifdef SQLITE_TEST
/*
** Get the suggested cache-size value.
*/
int sqlite4PcacheGetCachesize(PCache *pCache){
  return numberOfCachePages(pCache);
}
#endif

/*
** Set the suggested cache-size value.
*/
void sqlite4PcacheSetCachesize(PCache *pCache, int mxPage){
  pCache->szCache = mxPage;
  if( pCache->pCache ){
    sqlite4GlobalConfig.pcache2.xCachesize(pCache->pCache,
                                           numberOfCachePages(pCache));
  }
}

/*
** Free up as much memory as possible from the page cache.
*/
void sqlite4PcacheShrink(PCache *pCache){
  if( pCache->pCache ){
    sqlite4GlobalConfig.pcache2.xShrink(pCache->pCache);
  }
}

#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
void sqlite4PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
  PgHdr *pDirty;
  for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
    xIter(pDirty);
  }
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted src/pcache.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/*
** 2008 August 05
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem. 
*/

#ifndef _PCACHE_H_

typedef struct PgHdr PgHdr;
typedef struct PCache PCache;

/*
** Every page in the cache is controlled by an instance of the following
** structure.
*/
struct PgHdr {
  sqlite4_pcache_page *pPage;    /* Pcache object page handle */
  void *pData;                   /* Page data */
  void *pExtra;                  /* Extra content */
  PgHdr *pDirty;                 /* Transient list of dirty pages */
  Pgno pgno;                     /* Page number for this page */
  Pager *pPager;                 /* The pager this page is part of */
#ifdef SQLITE_CHECK_PAGES
  u32 pageHash;                  /* Hash of page content */
#endif
  u16 flags;                     /* PGHDR flags defined below */

  /**********************************************************************
  ** Elements above are public.  All that follows is private to pcache.c
  ** and should not be accessed by other modules.
  */
  i16 nRef;                      /* Number of users of this page */
  PCache *pCache;                /* Cache that owns this page */

  PgHdr *pDirtyNext;             /* Next element in list of dirty pages */
  PgHdr *pDirtyPrev;             /* Previous element in list of dirty pages */
};

/* Bit values for PgHdr.flags */
#define PGHDR_DIRTY             0x002  /* Page has changed */
#define PGHDR_NEED_SYNC         0x004  /* Fsync the rollback journal before
                                       ** writing this page to the database */
#define PGHDR_NEED_READ         0x008  /* Content is unread */
#define PGHDR_REUSE_UNLIKELY    0x010  /* A hint that reuse is unlikely */
#define PGHDR_DONT_WRITE        0x020  /* Do not write content to disk */

/* Initialize and shutdown the page cache subsystem */
int sqlite4PcacheInitialize(void);
void sqlite4PcacheShutdown(void);

/* Page cache buffer management:
** These routines implement SQLITE_CONFIG_PAGECACHE.
*/
void sqlite4PCacheBufferSetup(void *, int sz, int n);

/* Create a new pager cache.
** Under memory stress, invoke xStress to try to make pages clean.
** Only clean and unpinned pages can be reclaimed.
*/
void sqlite4PcacheOpen(
  int szPage,                    /* Size of every page */
  int szExtra,                   /* Extra space associated with each page */
  int bPurgeable,                /* True if pages are on backing store */
  int (*xStress)(void*, PgHdr*), /* Call to try to make pages clean */
  void *pStress,                 /* Argument to xStress */
  PCache *pToInit                /* Preallocated space for the PCache */
);

/* Modify the page-size after the cache has been created. */
void sqlite4PcacheSetPageSize(PCache *, int);

/* Return the size in bytes of a PCache object.  Used to preallocate
** storage space.
*/
int sqlite4PcacheSize(void);

/* One release per successful fetch.  Page is pinned until released.
** Reference counted. 
*/
int sqlite4PcacheFetch(PCache*, Pgno, int createFlag, PgHdr**);
void sqlite4PcacheRelease(PgHdr*);

void sqlite4PcacheDrop(PgHdr*);         /* Remove page from cache */
void sqlite4PcacheMakeDirty(PgHdr*);    /* Make sure page is marked dirty */
void sqlite4PcacheMakeClean(PgHdr*);    /* Mark a single page as clean */
void sqlite4PcacheCleanAll(PCache*);    /* Mark all dirty list pages as clean */

/* Change a page number.  Used by incr-vacuum. */
void sqlite4PcacheMove(PgHdr*, Pgno);

/* Remove all pages with pgno>x.  Reset the cache if x==0 */
void sqlite4PcacheTruncate(PCache*, Pgno x);

/* Get a list of all dirty pages in the cache, sorted by page number */
PgHdr *sqlite4PcacheDirtyList(PCache*);

/* Reset and close the cache object */
void sqlite4PcacheClose(PCache*);

/* Clear flags from pages of the page cache */
void sqlite4PcacheClearSyncFlags(PCache *);

/* Discard the contents of the cache */
void sqlite4PcacheClear(PCache*);

/* Return the total number of outstanding page references */
int sqlite4PcacheRefCount(PCache*);

/* Increment the reference count of an existing page */
void sqlite4PcacheRef(PgHdr*);

int sqlite4PcachePageRefcount(PgHdr*);

/* Return the total number of pages stored in the cache */
int sqlite4PcachePagecount(PCache*);

#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/* Iterate through all dirty pages currently stored in the cache. This
** interface is only available if SQLITE_CHECK_PAGES is defined when the 
** library is built.
*/
void sqlite4PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *));
#endif

/* Set and get the suggested cache-size for the specified pager-cache.
**
** If no global maximum is configured, then the system attempts to limit
** the total number of pages cached by purgeable pager-caches to the sum
** of the suggested cache-sizes.
*/
void sqlite4PcacheSetCachesize(PCache *, int);
#ifdef SQLITE_TEST
int sqlite4PcacheGetCachesize(PCache *);
#endif

/* Free up as much memory as possible from the page cache */
void sqlite4PcacheShrink(PCache*);

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/* Try to return memory used by the pcache module to the main memory heap */
int sqlite4PcacheReleaseMemory(int);
#endif

#ifdef SQLITE_TEST
void sqlite4PcacheStats(int*,int*,int*,int*);
#endif

void sqlite4PCacheSetDefault(void);

#endif /* _PCACHE_H_ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






























































































































































































































































































































Deleted src/pcache1.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
/*
** 2008 November 05
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements the default page cache implementation (the
** sqlite4_pcache interface). It also contains part of the implementation
** of the SQLITE_CONFIG_PAGECACHE and sqlite4_release_memory() features.
** If the default page cache implementation is overriden, then neither of
** these two features are available.
*/

#include "sqliteInt.h"

typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;

/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
** of one or more PCaches that are able to recycle each others unpinned
** pages when they are under memory pressure.  A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
**   (1)  Every PCache is the sole member of its own PGroup.  There is
**        one PGroup per PCache.
**
**   (2)  There is a single global PGroup that all PCaches are a member
**        of.
**
** Mode 1 uses more memory (since PCache instances are not able to rob
** unused pages from other PCaches) but it also operates without a mutex,
** and is therefore often faster.  Mode 2 requires a mutex in order to be
** threadsafe, but recycles pages more efficiently.
**
** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
** PGroup which is the pcache1.grp global variable and its mutex is
** SQLITE_MUTEX_STATIC_LRU.
*/
struct PGroup {
  sqlite4_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
  unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
  unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
  unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
  unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
  PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
};

/* Each page cache is an instance of the following object.  Every
** open database file (including each in-memory database and each
** temporary or transient database) has a single page cache which
** is an instance of this object.
**
** Pointers to structures of this type are cast and returned as 
** opaque sqlite4_pcache* handles.
*/
struct PCache1 {
  /* Cache configuration parameters. Page size (szPage) and the purgeable
  ** flag (bPurgeable) are set when the cache is created. nMax may be 
  ** modified at any time by a call to the pcache1Cachesize() method.
  ** The PGroup mutex must be held when accessing nMax.
  */
  PGroup *pGroup;                     /* PGroup this cache belongs to */
  int szPage;                         /* Size of allocated pages in bytes */
  int szExtra;                        /* Size of extra space in bytes */
  int bPurgeable;                     /* True if cache is purgeable */
  unsigned int nMin;                  /* Minimum number of pages reserved */
  unsigned int nMax;                  /* Configured "cache_size" value */
  unsigned int n90pct;                /* nMax*9/10 */

  /* Hash table of all pages. The following variables may only be accessed
  ** when the accessor is holding the PGroup mutex.
  */
  unsigned int nRecyclable;           /* Number of pages in the LRU list */
  unsigned int nPage;                 /* Total number of pages in apHash */
  unsigned int nHash;                 /* Number of slots in apHash[] */
  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */

  unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
};

/*
** Each cache entry is represented by an instance of the following 
** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
** in memory.
*/
struct PgHdr1 {
  sqlite4_pcache_page page;
  unsigned int iKey;             /* Key value (page number) */
  PgHdr1 *pNext;                 /* Next in hash table chain */
  PCache1 *pCache;               /* Cache that currently owns this page */
  PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
  PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
};

/*
** Free slots in the allocator used to divide up the buffer provided using
** the SQLITE_CONFIG_PAGECACHE mechanism.
*/
struct PgFreeslot {
  PgFreeslot *pNext;  /* Next free slot */
};

/*
** Global data used by this cache.
*/
static SQLITE_WSD struct PCacheGlobal {
  PGroup grp;                    /* The global PGroup for mode (2) */

  /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
  ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
  ** fixed at sqlite4_initialize() time and do not require mutex protection.
  ** The nFreeSlot and pFree values do require mutex protection.
  */
  int isInit;                    /* True if initialized */
  int szSlot;                    /* Size of each free slot */
  int nSlot;                     /* The number of pcache slots */
  int nReserve;                  /* Try to keep nFreeSlot above this */
  void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
  /* Above requires no mutex.  Use mutex below for variable that follow. */
  sqlite4_mutex *mutex;          /* Mutex for accessing the following: */
  int nFreeSlot;                 /* Number of unused pcache slots */
  PgFreeslot *pFree;             /* Free page blocks */
  /* The following value requires a mutex to change.  We skip the mutex on
  ** reading because (1) most platforms read a 32-bit integer atomically and
  ** (2) even if an incorrect value is read, no great harm is done since this
  ** is really just an optimization. */
  int bUnderPressure;            /* True if low on PAGECACHE memory */
} pcache1_g;

/*
** All code in this file should access the global structure above via the
** alias "pcache1". This ensures that the WSD emulation is used when
** compiling for systems that do not support real WSD.
*/
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))

/*
** Macros to enter and leave the PCache LRU mutex.
*/
#define pcache1EnterMutex(X) sqlite4_mutex_enter((X)->mutex)
#define pcache1LeaveMutex(X) sqlite4_mutex_leave((X)->mutex)

/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/

/*
** This function is called during initialization if a static buffer is 
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite4_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**
** This routine is called from sqlite4_initialize() and so it is guaranteed
** to be serialized already.  There is no need for further mutexing.
*/
void sqlite4PCacheBufferSetup(void *pBuf, int sz, int n){
  if( pcache1.isInit ){
    PgFreeslot *p;
    sz = ROUNDDOWN8(sz);
    pcache1.szSlot = sz;
    pcache1.nSlot = pcache1.nFreeSlot = n;
    pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
    pcache1.pStart = pBuf;
    pcache1.pFree = 0;
    pcache1.bUnderPressure = 0;
    while( n-- ){
      p = (PgFreeslot*)pBuf;
      p->pNext = pcache1.pFree;
      pcache1.pFree = p;
      pBuf = (void*)&((char*)pBuf)[sz];
    }
    pcache1.pEnd = pBuf;
  }
}

/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite4_config(SQLITE_CONFIG_PAGECACHE) option. If no 
** such buffer exists or there is no space left in it, this function falls 
** back to sqlite4Malloc().
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite4_mutex_notheld(pcache1.grp.mutex) );
  sqlite4StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
  if( nByte<=pcache1.szSlot ){
    sqlite4_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite4StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite4_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite4Malloc instead.
    */
    p = sqlite4Malloc(nByte);
    if( p ){
      int sz = sqlite4MallocSize(p);
      sqlite4_mutex_enter(pcache1.mutex);
      sqlite4StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite4_mutex_leave(pcache1.mutex);
    }
    sqlite4MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite4_mutex_enter(pcache1.mutex);
    sqlite4StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite4_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite4MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite4MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite4MallocSize(p);
    sqlite4_mutex_enter(pcache1.mutex);
    sqlite4StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
    sqlite4_mutex_leave(pcache1.mutex);
    sqlite4_free(p);
  }
  return nFreed;
}

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    return pcache1.szSlot;
  }else{
    int iSize;
    assert( sqlite4MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite4MemdebugSetType(p, MEMTYPE_HEAP);
    iSize = sqlite4MallocSize(p);
    sqlite4MemdebugSetType(p, MEMTYPE_PCACHE);
    return iSize;
  }
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */

/*
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
  PgHdr1 *p = 0;
  void *pPg;

  /* The group mutex must be released before pcache1Alloc() is called. This
  ** is because it may call sqlite4_release_memory(), which assumes that 
  ** this mutex is not held. */
  assert( sqlite4_mutex_held(pCache->pGroup->mutex) );
  pcache1LeaveMutex(pCache->pGroup);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
  pPg = pcache1Alloc(pCache->szPage);
  p = sqlite4Malloc(sizeof(PgHdr1) + pCache->szExtra);
  if( !pPg || !p ){
    pcache1Free(pPg);
    sqlite4_free(p);
    pPg = 0;
  }
#else
  pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
  p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
#endif
  pcache1EnterMutex(pCache->pGroup);

  if( pPg ){
    p->page.pBuf = pPg;
    p->page.pExtra = &p[1];
    if( pCache->bPurgeable ){
      pCache->pGroup->nCurrentPage++;
    }
    return p;
  }
  return 0;
}

/*
** Free a page object allocated by pcache1AllocPage().
**
** The pointer is allowed to be NULL, which is prudent.  But it turns out
** that the current implementation happens to never call this routine
** with a NULL pointer, so we mark the NULL test with ALWAYS().
*/
static void pcache1FreePage(PgHdr1 *p){
  if( ALWAYS(p) ){
    PCache1 *pCache = p->pCache;
    assert( sqlite4_mutex_held(p->pCache->pGroup->mutex) );
    pcache1Free(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
    sqlite4_free(p);
#endif
    if( pCache->bPurgeable ){
      pCache->pGroup->nCurrentPage--;
    }
  }
}

/*
** Malloc function used by SQLite to obtain space from the buffer configured
** using sqlite4_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
** exists, this function falls back to sqlite4Malloc().
*/
void *sqlite4PageMalloc(int sz){
  return pcache1Alloc(sz);
}

/*
** Free an allocated buffer obtained from sqlite4PageMalloc().
*/
void sqlite4PageFree(void *p){
  pcache1Free(p);
}


/*
** Return true if it desirable to avoid allocating a new page cache
** entry.
**
** If memory was allocated specifically to the page cache using
** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
** it is desirable to avoid allocating a new page cache entry because
** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
** for all page cache needs and we should not need to spill the
** allocation onto the heap.
**
** Or, the heap is used for all page cache memory but the heap is
** under memory pressure, then again it is desirable to avoid
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
  if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
    return pcache1.bUnderPressure;
  }else{
    return sqlite4HeapNearlyFull();
  }
}

/******************************************************************************/
/******** General Implementation Functions ************************************/

/*
** This function is used to resize the hash table used by the cache passed
** as the first argument.
**
** The PCache mutex must be held when this function is called.
*/
static int pcache1ResizeHash(PCache1 *p){
  PgHdr1 **apNew;
  unsigned int nNew;
  unsigned int i;

  assert( sqlite4_mutex_held(p->pGroup->mutex) );

  nNew = p->nHash*2;
  if( nNew<256 ){
    nNew = 256;
  }

  pcache1LeaveMutex(p->pGroup);
  if( p->nHash ){ sqlite4BeginBenignMalloc(); }
  apNew = (PgHdr1 **)sqlite4_malloc(sizeof(PgHdr1 *)*nNew);
  if( p->nHash ){ sqlite4EndBenignMalloc(); }
  pcache1EnterMutex(p->pGroup);
  if( apNew ){
    memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
    for(i=0; i<p->nHash; i++){
      PgHdr1 *pPage;
      PgHdr1 *pNext = p->apHash[i];
      while( (pPage = pNext)!=0 ){
        unsigned int h = pPage->iKey % nNew;
        pNext = pPage->pNext;
        pPage->pNext = apNew[h];
        apNew[h] = pPage;
      }
    }
    sqlite4_free(p->apHash);
    p->apHash = apNew;
    p->nHash = nNew;
  }

  return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
}

/*
** This function is used internally to remove the page pPage from the 
** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
** LRU list, then this function is a no-op.
**
** The PGroup mutex must be held when this function is called.
**
** If pPage is NULL then this routine is a no-op.
*/
static void pcache1PinPage(PgHdr1 *pPage){
  PCache1 *pCache;
  PGroup *pGroup;

  if( pPage==0 ) return;
  pCache = pPage->pCache;
  pGroup = pCache->pGroup;
  assert( sqlite4_mutex_held(pGroup->mutex) );
  if( pPage->pLruNext || pPage==pGroup->pLruTail ){
    if( pPage->pLruPrev ){
      pPage->pLruPrev->pLruNext = pPage->pLruNext;
    }
    if( pPage->pLruNext ){
      pPage->pLruNext->pLruPrev = pPage->pLruPrev;
    }
    if( pGroup->pLruHead==pPage ){
      pGroup->pLruHead = pPage->pLruNext;
    }
    if( pGroup->pLruTail==pPage ){
      pGroup->pLruTail = pPage->pLruPrev;
    }
    pPage->pLruNext = 0;
    pPage->pLruPrev = 0;
    pPage->pCache->nRecyclable--;
  }
}


/*
** Remove the page supplied as an argument from the hash table 
** (PCache1.apHash structure) that it is currently stored in.
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage){
  unsigned int h;
  PCache1 *pCache = pPage->pCache;
  PgHdr1 **pp;

  assert( sqlite4_mutex_held(pCache->pGroup->mutex) );
  h = pPage->iKey % pCache->nHash;
  for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
  *pp = (*pp)->pNext;

  pCache->nPage--;
}

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PGroup *pGroup){
  assert( sqlite4_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;
    assert( p->pCache->pGroup==pGroup );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p);
    pcache1FreePage(p);
  }
}

/*
** Discard all pages from cache pCache with a page number (key value) 
** greater than or equal to iLimit. Any pinned pages that meet this 
** criteria are unpinned before they are discarded.
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
  PCache1 *pCache,             /* The cache to truncate */
  unsigned int iLimit          /* Drop pages with this pgno or larger */
){
  TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
  unsigned int h;
  assert( sqlite4_mutex_held(pCache->pGroup->mutex) );
  for(h=0; h<pCache->nHash; h++){
    PgHdr1 **pp = &pCache->apHash[h]; 
    PgHdr1 *pPage;
    while( (pPage = *pp)!=0 ){
      if( pPage->iKey>=iLimit ){
        pCache->nPage--;
        *pp = pPage->pNext;
        pcache1PinPage(pPage);
        pcache1FreePage(pPage);
      }else{
        pp = &pPage->pNext;
        TESTONLY( nPage++; )
      }
    }
  }
  assert( pCache->nPage==nPage );
}

/******************************************************************************/
/******** sqlite4_pcache Methods **********************************************/

/*
** Implementation of the sqlite4_pcache.xInit method.
*/
static int pcache1Init(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  assert( pcache1.isInit==0 );
  memset(&pcache1, 0, sizeof(pcache1));
  if( sqlite4GlobalConfig.bCoreMutex ){
    pcache1.grp.mutex = sqlite4_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
    pcache1.mutex = sqlite4_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
  }
  pcache1.grp.mxPinned = 10;
  pcache1.isInit = 1;
  return SQLITE_OK;
}

/*
** Implementation of the sqlite4_pcache.xShutdown method.
** Note that the static mutex allocated in xInit does 
** not need to be freed.
*/
static void pcache1Shutdown(void *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  assert( pcache1.isInit!=0 );
  memset(&pcache1, 0, sizeof(pcache1));
}

/*
** Implementation of the sqlite4_pcache.xCreate method.
**
** Allocate a new cache.
*/
static sqlite4_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
  PCache1 *pCache;      /* The newly created page cache */
  PGroup *pGroup;       /* The group the new page cache will belong to */
  int sz;               /* Bytes of memory required to allocate the new cache */

  /*
  ** The seperateCache variable is true if each PCache has its own private
  ** PGroup.  In other words, separateCache is true for mode (1) where no
  ** mutexing is required.
  **
  **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
  **
  **   *  Always use a unified cache in single-threaded applications
  **
  **   *  Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
  **      use separate caches (mode-1)
  */
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
  const int separateCache = 0;
#else
  int separateCache = sqlite4GlobalConfig.bCoreMutex>0;
#endif

  assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
  assert( szExtra < 300 );

  sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
  pCache = (PCache1 *)sqlite4_malloc(sz);
  if( pCache ){
    memset(pCache, 0, sz);
    if( separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }
    pCache->pGroup = pGroup;
    pCache->szPage = szPage;
    pCache->szExtra = szExtra;
    pCache->bPurgeable = (bPurgeable ? 1 : 0);
    if( bPurgeable ){
      pCache->nMin = 10;
      pcache1EnterMutex(pGroup);
      pGroup->nMinPage += pCache->nMin;
      pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
      pcache1LeaveMutex(pGroup);
    }
  }
  return (sqlite4_pcache *)pCache;
}

/*
** Implementation of the sqlite4_pcache.xCachesize method. 
**
** Configure the cache_size limit for a cache.
*/
static void pcache1Cachesize(sqlite4_pcache *p, int nMax){
  PCache1 *pCache = (PCache1 *)p;
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    pcache1EnterMutex(pGroup);
    pGroup->nMaxPage += (nMax - pCache->nMax);
    pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
    pCache->nMax = nMax;
    pCache->n90pct = pCache->nMax*9/10;
    pcache1EnforceMaxPage(pGroup);
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite4_pcache.xShrink method. 
**
** Free up as much memory as possible.
*/
static void pcache1Shrink(sqlite4_pcache *p){
  PCache1 *pCache = (PCache1*)p;
  if( pCache->bPurgeable ){
    PGroup *pGroup = pCache->pGroup;
    int savedMaxPage;
    pcache1EnterMutex(pGroup);
    savedMaxPage = pGroup->nMaxPage;
    pGroup->nMaxPage = 0;
    pcache1EnforceMaxPage(pGroup);
    pGroup->nMaxPage = savedMaxPage;
    pcache1LeaveMutex(pGroup);
  }
}

/*
** Implementation of the sqlite4_pcache.xPagecount method. 
*/
static int pcache1Pagecount(sqlite4_pcache *p){
  int n;
  PCache1 *pCache = (PCache1*)p;
  pcache1EnterMutex(pCache->pGroup);
  n = pCache->nPage;
  pcache1LeaveMutex(pCache->pGroup);
  return n;
}

/*
** Implementation of the sqlite4_pcache.xFetch method. 
**
** Fetch a page by key value.
**
** Whether or not a new page may be allocated by this function depends on
** the value of the createFlag argument.  0 means do not allocate a new
** page.  1 means allocate a new page if space is easily available.  2 
** means to try really hard to allocate a new page.
**
** For a non-purgeable cache (a cache used as the storage for an in-memory
** database) there is really no difference between createFlag 1 and 2.  So
** the calling function (pcache.c) will never have a createFlag of 1 on
** a non-purgeable cache.
**
** There are three different approaches to obtaining space for a page,
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
**
**   1. Regardless of the value of createFlag, the cache is searched for a 
**      copy of the requested page. If one is found, it is returned.
**
**   2. If createFlag==0 and the page is not already in the cache, NULL is
**      returned.
**
**   3. If createFlag is 1, and the page is not already in the cache, then
**      return NULL (do not allocate a new page) if any of the following
**      conditions are true:
**
**       (a) the number of pages pinned by the cache is greater than
**           PCache1.nMax, or
**
**       (b) the number of pages pinned by the cache is greater than
**           the sum of nMax for all purgeable caches, less the sum of 
**           nMin for all other purgeable caches, or
**
**   4. If none of the first three conditions apply and the cache is marked
**      as purgeable, and if one of the following is true:
**
**       (a) The number of pages allocated for the cache is already 
**           PCache1.nMax, or
**
**       (b) The number of pages allocated for all purgeable caches is
**           already equal to or greater than the sum of nMax for all
**           purgeable caches,
**
**       (c) The system is under memory pressure and wants to avoid
**           unnecessary pages cache entry allocations
**
**      then attempt to recycle a page from the LRU list. If it is the right
**      size, return the recycled buffer. Otherwise, free the buffer and
**      proceed to step 5. 
**
**   5. Otherwise, allocate and return a new page buffer.
*/
static sqlite4_pcache_page *pcache1Fetch(
  sqlite4_pcache *p, 
  unsigned int iKey, 
  int createFlag
){
  unsigned int nPinned;
  PCache1 *pCache = (PCache1 *)p;
  PGroup *pGroup;
  PgHdr1 *pPage = 0;

  assert( pCache->bPurgeable || createFlag!=1 );
  assert( pCache->bPurgeable || pCache->nMin==0 );
  assert( pCache->bPurgeable==0 || pCache->nMin==10 );
  assert( pCache->nMin==0 || pCache->bPurgeable );
  pcache1EnterMutex(pGroup = pCache->pGroup);

  /* Step 1: Search the hash table for an existing entry. */
  if( pCache->nHash>0 ){
    unsigned int h = iKey % pCache->nHash;
    for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
  }

  /* Step 2: Abort if no existing page is found and createFlag is 0 */
  if( pPage || createFlag==0 ){
    pcache1PinPage(pPage);
    goto fetch_out;
  }

  /* The pGroup local variable will normally be initialized by the
  ** pcache1EnterMutex() macro above.  But if SQLITE_MUTEX_OMIT is defined,
  ** then pcache1EnterMutex() is a no-op, so we have to initialize the
  ** local variable here.  Delaying the initialization of pGroup is an
  ** optimization:  The common case is to exit the module before reaching
  ** this point.
  */
#ifdef SQLITE_MUTEX_OMIT
  pGroup = pCache->pGroup;
#endif

  /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
  assert( pCache->nPage >= pCache->nRecyclable );
  nPinned = pCache->nPage - pCache->nRecyclable;
  assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
  assert( pCache->n90pct == pCache->nMax*9/10 );
  if( createFlag==1 && (
        nPinned>=pGroup->mxPinned
     || nPinned>=pCache->n90pct
     || pcache1UnderMemoryPressure(pCache)
  )){
    goto fetch_out;
  }

  if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
    goto fetch_out;
  }

  /* Step 4. Try to recycle a page. */
  if( pCache->bPurgeable && pGroup->pLruTail && (
         (pCache->nPage+1>=pCache->nMax)
      || pGroup->nCurrentPage>=pGroup->nMaxPage
      || pcache1UnderMemoryPressure(pCache)
  )){
    PCache1 *pOther;
    pPage = pGroup->pLruTail;
    pcache1RemoveFromHash(pPage);
    pcache1PinPage(pPage);
    pOther = pPage->pCache;

    /* We want to verify that szPage and szExtra are the same for pOther
    ** and pCache.  Assert that we can verify this by comparing sums. */
    assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
    assert( pCache->szExtra<512 );
    assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
    assert( pOther->szExtra<512 );

    if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
      pcache1FreePage(pPage);
      pPage = 0;
    }else{
      pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
    }
  }

  /* Step 5. If a usable page buffer has still not been found, 
  ** attempt to allocate a new one. 
  */
  if( !pPage ){
    if( createFlag==1 ) sqlite4BeginBenignMalloc();
    pPage = pcache1AllocPage(pCache);
    if( createFlag==1 ) sqlite4EndBenignMalloc();
  }

  if( pPage ){
    unsigned int h = iKey % pCache->nHash;
    pCache->nPage++;
    pPage->iKey = iKey;
    pPage->pNext = pCache->apHash[h];
    pPage->pCache = pCache;
    pPage->pLruPrev = 0;
    pPage->pLruNext = 0;
    *(void **)pPage->page.pExtra = 0;
    pCache->apHash[h] = pPage;
  }

fetch_out:
  if( pPage && iKey>pCache->iMaxKey ){
    pCache->iMaxKey = iKey;
  }
  pcache1LeaveMutex(pGroup);
  return &pPage->page;
}


/*
** Implementation of the sqlite4_pcache.xUnpin method.
**
** Mark a page as unpinned (eligible for asynchronous recycling).
*/
static void pcache1Unpin(
  sqlite4_pcache *p, 
  sqlite4_pcache_page *pPg, 
  int reuseUnlikely
){
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = (PgHdr1 *)pPg;
  PGroup *pGroup = pCache->pGroup;
 
  assert( pPage->pCache==pCache );
  pcache1EnterMutex(pGroup);

  /* It is an error to call this function if the page is already 
  ** part of the PGroup LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
  assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );

  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
    pcache1RemoveFromHash(pPage);
    pcache1FreePage(pPage);
  }else{
    /* Add the page to the PGroup LRU list. */
    if( pGroup->pLruHead ){
      pGroup->pLruHead->pLruPrev = pPage;
      pPage->pLruNext = pGroup->pLruHead;
      pGroup->pLruHead = pPage;
    }else{
      pGroup->pLruTail = pPage;
      pGroup->pLruHead = pPage;
    }
    pCache->nRecyclable++;
  }

  pcache1LeaveMutex(pCache->pGroup);
}

/*
** Implementation of the sqlite4_pcache.xRekey method. 
*/
static void pcache1Rekey(
  sqlite4_pcache *p,
  sqlite4_pcache_page *pPg,
  unsigned int iOld,
  unsigned int iNew
){
  PCache1 *pCache = (PCache1 *)p;
  PgHdr1 *pPage = (PgHdr1 *)pPg;
  PgHdr1 **pp;
  unsigned int h; 
  assert( pPage->iKey==iOld );
  assert( pPage->pCache==pCache );

  pcache1EnterMutex(pCache->pGroup);

  h = iOld%pCache->nHash;
  pp = &pCache->apHash[h];
  while( (*pp)!=pPage ){
    pp = &(*pp)->pNext;
  }
  *pp = pPage->pNext;

  h = iNew%pCache->nHash;
  pPage->iKey = iNew;
  pPage->pNext = pCache->apHash[h];
  pCache->apHash[h] = pPage;
  if( iNew>pCache->iMaxKey ){
    pCache->iMaxKey = iNew;
  }

  pcache1LeaveMutex(pCache->pGroup);
}

/*
** Implementation of the sqlite4_pcache.xTruncate method. 
**
** Discard all unpinned pages in the cache with a page number equal to
** or greater than parameter iLimit. Any pinned pages with a page number
** equal to or greater than iLimit are implicitly unpinned.
*/
static void pcache1Truncate(sqlite4_pcache *p, unsigned int iLimit){
  PCache1 *pCache = (PCache1 *)p;
  pcache1EnterMutex(pCache->pGroup);
  if( iLimit<=pCache->iMaxKey ){
    pcache1TruncateUnsafe(pCache, iLimit);
    pCache->iMaxKey = iLimit-1;
  }
  pcache1LeaveMutex(pCache->pGroup);
}

/*
** Implementation of the sqlite4_pcache.xDestroy method. 
**
** Destroy a cache allocated using pcache1Create().
*/
static void pcache1Destroy(sqlite4_pcache *p){
  PCache1 *pCache = (PCache1 *)p;
  PGroup *pGroup = pCache->pGroup;
  assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
  pcache1EnterMutex(pGroup);
  pcache1TruncateUnsafe(pCache, 0);
  assert( pGroup->nMaxPage >= pCache->nMax );
  pGroup->nMaxPage -= pCache->nMax;
  assert( pGroup->nMinPage >= pCache->nMin );
  pGroup->nMinPage -= pCache->nMin;
  pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
  pcache1EnforceMaxPage(pGroup);
  pcache1LeaveMutex(pGroup);
  sqlite4_free(pCache->apHash);
  sqlite4_free(pCache);
}

/*
** This function is called during initialization (sqlite4_initialize()) to
** install the default pluggable cache module, assuming the user has not
** already provided an alternative.
*/
void sqlite4PCacheSetDefault(void){
  static const sqlite4_pcache_methods2 defaultMethods = {
    1,                       /* iVersion */
    0,                       /* pArg */
    pcache1Init,             /* xInit */
    pcache1Shutdown,         /* xShutdown */
    pcache1Create,           /* xCreate */
    pcache1Cachesize,        /* xCachesize */
    pcache1Pagecount,        /* xPagecount */
    pcache1Fetch,            /* xFetch */
    pcache1Unpin,            /* xUnpin */
    pcache1Rekey,            /* xRekey */
    pcache1Truncate,         /* xTruncate */
    pcache1Destroy,          /* xDestroy */
    pcache1Shrink            /* xShrink */
  };
  sqlite4_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite4_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. The return value is the total number 
** of bytes of memory released.
*/
int sqlite4PcacheReleaseMemory(int nReq){
  int nFree = 0;
  assert( sqlite4_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite4_mutex_notheld(pcache1.mutex) );
  if( pcache1.pStart==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite4MemSize(p);
#endif
      pcache1PinPage(p);
      pcache1RemoveFromHash(p);
      pcache1FreePage(p);
    }
    pcache1LeaveMutex(&pcache1.grp);
  }
  return nFree;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */

#ifdef SQLITE_TEST
/*
** This function is used by test procedures to inspect the internal state
** of the global cache.
*/
void sqlite4PcacheStats(
  int *pnCurrent,      /* OUT: Total number of pages cached */
  int *pnMax,          /* OUT: Global maximum cache size */
  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
){
  PgHdr1 *p;
  int nRecyclable = 0;
  for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
    nRecyclable++;
  }
  *pnCurrent = pcache1.grp.nCurrentPage;
  *pnMax = (int)pcache1.grp.nMaxPage;
  *pnMin = (int)pcache1.grp.nMinPage;
  *pnRecyclable = nRecyclable;
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/pragma.c.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.
**
** Note that the values returned are one less that the values that
** should be passed into sqlite4BtreeSetSafetyLevel().  The is done
** to support legacy SQL code.  The safety level used to be boolean
** and older scripts may have used numbers 0 for OFF and 1 for ON.
*/
static u8 getSafetyLevel(const char *z){
                             /* 123456789 123456789 */
  static const char zText[] = "onoffalseyestruefull";
  static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16};
  static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4};
  static const u8 iValue[] =  {1, 0, 0, 0, 1, 1, 2};
  int i, n;
  if( sqlite4Isdigit(*z) ){
    return (u8)sqlite4Atoi(z);
  }
  n = sqlite4Strlen30(z);
  for(i=0; i<ArraySize(iLength); i++){
    if( iLength[i]==n && sqlite4StrNICmp(&zText[iOffset[i]],z,n)==0 ){
      return iValue[i];
    }
  }
  return 1;
}

/*
** Interpret the given string as a boolean value.
*/
u8 sqlite4GetBoolean(const char *z){
  return getSafetyLevel(z)&1;
}

/* The sqlite4GetBoolean() function is used by other modules but the
** remainder of this file is specific to PRAGMA processing.  So omit
** the rest of the file if PRAGMAs are omitted from the build.
*/
#if !defined(SQLITE_OMIT_PRAGMA)

/*
** Interpret the given string as a locking mode value.
*/
static int getLockingMode(const char *z){
  if( z ){
    if( 0==sqlite4StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
    if( 0==sqlite4StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
  }
  return PAGER_LOCKINGMODE_QUERY;
}

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** Interpret the given string as a temp db location. Return 1 for file
** backed temporary databases, 2 for the Red-Black tree in memory database
** and 0 to use the compile-time default.
*/
static int getTempStore(const char *z){
  if( z[0]>='0' && z[0]<='2' ){
    return z[0] - '0';
  }else if( sqlite4StrICmp(z, "file")==0 ){
    return 1;
  }else if( sqlite4StrICmp(z, "memory")==0 ){
    return 2;
  }else{
    return 0;
  }
}
#endif /* SQLITE_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** Invalidate temp storage, either when the temp storage is changed
** from default, or when 'file' and the temp_store_directory has changed
*/
static int invalidateTempStorage(Parse *pParse){
  sqlite4 *db = pParse->db;
  if( db->aDb[1].pBt!=0 ){
    if( !db->autoCommit || sqlite4BtreeIsInReadTrans(db->aDb[1].pBt) ){
      sqlite4ErrorMsg(pParse, "temporary storage cannot be changed "
        "from within a transaction");
      return SQLITE_ERROR;
    }
    sqlite4BtreeClose(db->aDb[1].pBt);
    db->aDb[1].pBt = 0;
    sqlite4KVStoreClose(db->aDb[1].pKV);
    db->aDb[1].pKV = 0;
    sqlite4ResetInternalSchema(db, -1);
  }
  return SQLITE_OK;
}
#endif /* SQLITE_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/*
** If the TEMP database is open, close it and mark the database schema
** as needing reloading.  This must be done when using the SQLITE_TEMP_STORE
** or DEFAULT_TEMP_STORE pragmas.
*/
static int changeTempStorage(Parse *pParse, const char *zStorageType){
  int ts = getTempStore(zStorageType);
  sqlite4 *db = pParse->db;
  if( db->temp_store==ts ) return SQLITE_OK;
  if( invalidateTempStorage( pParse ) != SQLITE_OK ){
    return SQLITE_ERROR;
  }
  db->temp_store = (u8)ts;
  return SQLITE_OK;
}
#endif /* SQLITE_PAGER_PRAGMAS */

/*
** Generate code to return a single integer value.
*/
static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){
  Vdbe *v = sqlite4GetVdbe(pParse);
  int mem = ++pParse->nMem;
  i64 *pI64 = sqlite4DbMallocRaw(pParse->db, sizeof(value));







|
<
<
<
<
<
<
<

|
|
|
|
|
|













<
<
<
<
<
<
<






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







10
11
12
13
14
15
16
17







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37







38
39
40
41
42
43







































































44
45
46
47
48
49
50
**
*************************************************************************
** This file contains code used to implement the PRAGMA command.
*/
#include "sqliteInt.h"

/*
** Interpret the given string as a boolean value.







*/
u8 sqlite4GetBoolean(const char *z){
                             /* 123456789 12345 */
  static const char zText[] = "onoffalseyestrue";
  static const u8 iOffset[] = {0, 1, 2, 4, 9, 12};
  static const u8 iLength[] = {2, 2, 3, 5, 3, 4};
  static const u8 iValue[] =  {1, 0, 0, 0, 1, 1};
  int i, n;
  if( sqlite4Isdigit(*z) ){
    return (u8)sqlite4Atoi(z);
  }
  n = sqlite4Strlen30(z);
  for(i=0; i<ArraySize(iLength); i++){
    if( iLength[i]==n && sqlite4StrNICmp(&zText[iOffset[i]],z,n)==0 ){
      return iValue[i];
    }
  }
  return 1;
}








/* The sqlite4GetBoolean() function is used by other modules but the
** remainder of this file is specific to PRAGMA processing.  So omit
** the rest of the file if PRAGMAs are omitted from the build.
*/
#if !defined(SQLITE_OMIT_PRAGMA)








































































/*
** Generate code to return a single integer value.
*/
static void returnSingleInt(Parse *pParse, const char *zLabel, i64 value){
  Vdbe *v = sqlite4GetVdbe(pParse);
  int mem = ++pParse->nMem;
  i64 *pI64 = sqlite4DbMallocRaw(pParse->db, sizeof(value));
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170



171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
** Also, implement the pragma.
*/
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
  static const struct sPragmaType {
    const char *zName;  /* Name of the pragma */
    int mask;           /* Mask for the db->flags value */
  } aPragma[] = {
    { "full_column_names",        SQLITE_FullColNames  },
    { "short_column_names",       SQLITE_ShortColNames },
    { "count_changes",            SQLITE_CountRows     },
    { "empty_result_callbacks",   SQLITE_NullCallback  },
    { "legacy_file_format",       SQLITE_LegacyFileFmt },
    { "fullfsync",                SQLITE_FullFSync     },
    { "checkpoint_fullfsync",     SQLITE_CkptFullFSync },
    { "reverse_unordered_selects", SQLITE_ReverseOrder  },
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    { "automatic_index",          SQLITE_AutoIndex     },
#endif
#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },



#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },

    /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted
    ** flag if there are any active statements. */
    { "read_uncommitted",         SQLITE_ReadUncommitted },
    { "recursive_triggers",       SQLITE_RecTriggers },

    /* This flag may only be set if both foreign-key and trigger support
    ** are present in the build.  */
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
    { "foreign_keys",             SQLITE_ForeignKeys },
#endif
  };
  int i;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite4StrICmp(zLeft, p->zName)==0 ){
      sqlite4 *db = pParse->db;
      Vdbe *v;
      v = sqlite4GetVdbe(pParse);
      assert( v!=0 );  /* Already allocated by sqlite4Pragma() */







<
<
<
<
<
<
<

<
<
<




>
>
>







<
<
<
<
<






|







64
65
66
67
68
69
70







71



72
73
74
75
76
77
78
79
80
81
82
83
84
85





86
87
88
89
90
91
92
93
94
95
96
97
98
99
** Also, implement the pragma.
*/
static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
  static const struct sPragmaType {
    const char *zName;  /* Name of the pragma */
    int mask;           /* Mask for the db->flags value */
  } aPragma[] = {







    { "reverse_unordered_selects", SQLITE_ReverseOrder  },



#ifdef SQLITE_DEBUG
    { "sql_trace",                SQLITE_SqlTrace      },
    { "vdbe_listing",             SQLITE_VdbeListing   },
    { "vdbe_trace",               SQLITE_VdbeTrace     },
    { "kv_trace",                 SQLITE_KvTrace       },
    { "trace",                    SQLITE_SqlTrace | SQLITE_VdbeListing |
                                  SQLITE_VdbeTrace | SQLITE_KvTrace },
#endif
#ifndef SQLITE_OMIT_CHECK
    { "ignore_check_constraints", SQLITE_IgnoreChecks  },
#endif
    /* The following is VERY experimental */
    { "writable_schema",          SQLITE_WriteSchema|SQLITE_RecoveryMode },






    /* This flag may only be set if both foreign-key and trigger support
    ** are present in the build.  */
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
    { "foreign_keys",             SQLITE_ForeignKeys },
#endif
  };
  int i, j;
  const struct sPragmaType *p;
  for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){
    if( sqlite4StrICmp(zLeft, p->zName)==0 ){
      sqlite4 *db = pParse->db;
      Vdbe *v;
      v = sqlite4GetVdbe(pParse);
      assert( v!=0 );  /* Already allocated by sqlite4Pragma() */
213
214
215
216
217
218
219





220
221
222
223
224
225
226

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite4VdbeAddOp2(v, OP_Expire, 0, 0);
        }





      }

      return 1;
    }
  }
  return 0;
}







>
>
>
>
>







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

          /* Many of the flag-pragmas modify the code generated by the SQL 
          ** compiler (eg. count_changes). So add an opcode to expire all
          ** compiled SQL statements after modifying a pragma value.
          */
          sqlite4VdbeAddOp2(v, OP_Expire, 0, 0);
        }
        for(j=0; j<db->nDb; j++){
          if( db->aDb[j].pKV ){
            db->aDb[j].pKV->fTrace = (db->flags & SQLITE_KvTrace)!=0;
          }
        }
      }

      return 1;
    }
  }
  return 0;
}
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                      assert( action==OE_None ); break;
  }
  return zName;
}
#endif


/*
** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
** defined in pager.h. This function returns the associated lowercase
** journal-mode name.
*/
const char *sqlite4JournalModename(int eMode){
  static char * const azModeName[] = {
    "delete", "persist", "off", "truncate", "memory"
  };
  assert( PAGER_JOURNALMODE_DELETE==0 );
  assert( PAGER_JOURNALMODE_PERSIST==1 );
  assert( PAGER_JOURNALMODE_OFF==2 );
  assert( PAGER_JOURNALMODE_TRUNCATE==3 );
  assert( PAGER_JOURNALMODE_MEMORY==4 );
  assert( PAGER_JOURNALMODE_WAL==5 );
  assert( eMode>=0 && eMode<=ArraySize(azModeName) );

  if( eMode==ArraySize(azModeName) ) return 0;
  return azModeName[eMode];
}

/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







149
150
151
152
153
154
155





















156
157
158
159
160
161
162
                      assert( action==OE_None ); break;
  }
  return zName;
}
#endif























/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

  assert( pId2 );
  zDb = pId2->n>0 ? pDb->zName : 0;
  if( sqlite4AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }
 
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
  ** Older versions of SQLite would set the default cache size to a
  ** negative number to indicate synchronous=OFF.  These days, synchronous
  ** is always on by default regardless of the sign of the default cache
  ** size.  But continue to take the absolute value of the default cache
  ** size of historical compatibility.
  */
  if( sqlite4StrICmp(zLeft,"default_cache_size")==0 ){
    static const VdbeOpList getCacheSize[] = {
      { OP_Transaction, 0, 0,        0},                         /* 0 */
      { OP_ReadCookie,  0, 1,        BTREE_DEFAULT_CACHE_SIZE},  /* 1 */
      { OP_IfPos,       1, 7,        0},
      { OP_Integer,     0, 2,        0},
      { OP_Subtract,    1, 2,        1},
      { OP_IfPos,       1, 7,        0},
      { OP_Integer,     0, 1,        0},                         /* 6 */
      { OP_ResultRow,   1, 1,        0},
    };
    int addr;
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    sqlite4VdbeUsesBtree(v, iDb);
    if( !zRight ){
      sqlite4VdbeSetNumCols(v, 1);
      sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", SQLITE_STATIC);
      pParse->nMem += 2;
      addr = sqlite4VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
      sqlite4VdbeChangeP1(v, addr, iDb);
      sqlite4VdbeChangeP1(v, addr+1, iDb);
      sqlite4VdbeChangeP1(v, addr+6, SQLITE_DEFAULT_CACHE_SIZE);
    }else{
      int size = sqlite4AbsInt32(sqlite4Atoi(zRight));
      sqlite4BeginWriteOperation(pParse, 0, iDb);
      sqlite4VdbeAddOp2(v, OP_Integer, size, 1);
      sqlite4VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, 1);
      assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
      pDb->pSchema->cache_size = size;
      sqlite4BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  /*
  **  PRAGMA [database.]page_size
  **  PRAGMA [database.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  if( sqlite4StrICmp(zLeft,"page_size")==0 ){
    Btree *pBt = pDb->pBt;
    assert( pBt!=0 );
    if( !zRight ){
      int size = ALWAYS(pBt) ? sqlite4BtreeGetPageSize(pBt) : 0;
      returnSingleInt(pParse, "page_size", size);
    }else{
      /* Malloc may fail when setting the page-size, as there is an internal
      ** buffer that the pager module resizes using sqlite4_realloc().
      */
      db->nextPagesize = sqlite4Atoi(zRight);
      if( SQLITE_NOMEM==sqlite4BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
        db->mallocFailed = 1;
      }
    }
  }else

  /*
  **  PRAGMA [database.]secure_delete
  **  PRAGMA [database.]secure_delete=ON/OFF
  **
  ** The first form reports the current setting for the
  ** secure_delete flag.  The second form changes the secure_delete
  ** flag setting and reports thenew value.
  */
  if( sqlite4StrICmp(zLeft,"secure_delete")==0 ){
    Btree *pBt = pDb->pBt;
    int b = -1;
    assert( pBt!=0 );
    if( zRight ){
      b = sqlite4GetBoolean(zRight);
    }
    if( pId2->n==0 && b>=0 ){
      int ii;
      for(ii=0; ii<db->nDb; ii++){
        sqlite4BtreeSecureDelete(db->aDb[ii].pBt, b);
      }
    }
    b = sqlite4BtreeSecureDelete(pBt, b);
    returnSingleInt(pParse, "secure_delete", b);
  }else

  /*
  **  PRAGMA [database.]locking_mode
  **  PRAGMA [database.]locking_mode = (normal|exclusive)
  */
  if( sqlite4StrICmp(zLeft,"locking_mode")==0 ){
    const char *zRet = "normal";
    int eMode = getLockingMode(zRight);

    if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
      /* Simple "PRAGMA locking_mode;" statement. This is a query for
      ** the current default locking mode (which may be different to
      ** the locking-mode of the main database).
      */
      eMode = db->dfltLockMode;
    }else{
      Pager *pPager;
      if( pId2->n==0 ){
        /* This indicates that no database name was specified as part
        ** of the PRAGMA command. In this case the locking-mode must be
        ** set on all attached databases, as well as the main db file.
        **
        ** Also, the sqlite4.dfltLockMode variable is set so that
        ** any subsequently attached databases also use the specified
        ** locking mode.
        */
        int ii;
        assert(pDb==&db->aDb[0]);
        for(ii=2; ii<db->nDb; ii++){
          pPager = sqlite4BtreePager(db->aDb[ii].pBt);
          sqlite4PagerLockingMode(pPager, eMode);
        }
        db->dfltLockMode = (u8)eMode;
      }
      pPager = sqlite4BtreePager(pDb->pBt);
      eMode = sqlite4PagerLockingMode(pPager, eMode);
    }

    assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE);
    if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
      zRet = "exclusive";
    }
    sqlite4VdbeSetNumCols(v, 1);
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", SQLITE_STATIC);
    sqlite4VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0);
    sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 1);
  }else

  /*
  **  PRAGMA [database.]journal_mode
  **  PRAGMA [database.]journal_mode =
  **                      (delete|persist|off|truncate|memory|wal|off)
  */
  if( sqlite4StrICmp(zLeft,"journal_mode")==0 ){
    int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
    int ii;           /* Loop counter */

    /* Force the schema to be loaded on all databases.  This causes all
    ** database files to be opened and the journal_modes set.  This is
    ** necessary because subsequent processing must know if the databases
    ** are in WAL mode. */
    if( sqlite4ReadSchema(pParse) ){
      goto pragma_out;
    }

    sqlite4VdbeSetNumCols(v, 1);
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", SQLITE_STATIC);

    if( zRight==0 ){
      /* If there is no "=MODE" part of the pragma, do a query for the
      ** current mode */
      eMode = PAGER_JOURNALMODE_QUERY;
    }else{
      const char *zMode;
      int n = sqlite4Strlen30(zRight);
      for(eMode=0; (zMode = sqlite4JournalModename(eMode))!=0; eMode++){
        if( sqlite4StrNICmp(zRight, zMode, n)==0 ) break;
      }
      if( !zMode ){
        /* If the "=MODE" part does not match any known journal mode,
        ** then do a query */
        eMode = PAGER_JOURNALMODE_QUERY;
      }
    }
    if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
      /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
      iDb = 0;
      pId2->n = 1;
    }
    for(ii=db->nDb-1; ii>=0; ii--){
      if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
        sqlite4VdbeUsesBtree(v, ii);
        sqlite4VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
      }
    }
    sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 1);
  }else

  /*
  **  PRAGMA [database.]journal_size_limit
  **  PRAGMA [database.]journal_size_limit=N
  **
  ** Get or set the size limit on rollback journal files.
  */
  if( sqlite4StrICmp(zLeft,"journal_size_limit")==0 ){
    Pager *pPager = sqlite4BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite4Atoi64(zRight, &iLimit, 1000000, SQLITE_UTF8);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite4PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(pParse, "journal_size_limit", iLimit);
  }else

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */


#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size
  **  PRAGMA [database.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size. The second form sets the local
  ** page cache size value.  If N is positive then that is the
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  */
  if( sqlite4StrICmp(zLeft,"cache_size")==0 ){
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){
      returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = sqlite4Atoi(zRight);
      pDb->pSchema->cache_size = size;
      sqlite4BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
  }else

  /*
  **   PRAGMA temp_store
  **   PRAGMA temp_store = "default"|"memory"|"file"
  **
  ** Return or set the local value of the temp_store flag.  Changing
  ** the local value does not make changes to the disk file and the default
  ** value will be restored the next time the database is opened.
  **
  ** Note that it is possible for the library compile-time options to
  ** override this setting
  */
  if( sqlite4StrICmp(zLeft, "temp_store")==0 ){
    if( !zRight ){
      returnSingleInt(pParse, "temp_store", db->temp_store);
    }else{
      changeTempStorage(pParse, zRight);
    }
  }else

  /*
  **   PRAGMA temp_store_directory
  **   PRAGMA temp_store_directory = ""|"directory_name"
  **
  ** Return or set the local value of the temp_store_directory flag.  Changing
  ** the value sets a specific directory to be used for temporary files.
  ** Setting to a null string reverts to the default temporary directory search.
  ** If temporary directory is changed, then invalidateTempStorage.
  **
  */
  if( sqlite4StrICmp(zLeft, "temp_store_directory")==0 ){
    if( !zRight ){
      if( sqlite4_temp_directory ){
        sqlite4VdbeSetNumCols(v, 1);
        sqlite4VdbeSetColName(v, 0, COLNAME_NAME, 
            "temp_store_directory", SQLITE_STATIC);
        sqlite4VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite4_temp_directory, 0);
        sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 1);
      }
    }else{
#ifndef SQLITE_OMIT_WSD
      if( zRight[0] ){
        int rc;
        int res;
        rc = sqlite4OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
        if( rc!=SQLITE_OK || res==0 ){
          sqlite4ErrorMsg(pParse, "not a writable directory");
          goto pragma_out;
        }
      }
      if( SQLITE_TEMP_STORE==0
       || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
       || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
      ){
        invalidateTempStorage(pParse);
      }
      sqlite4_free(sqlite4_temp_directory);
      if( zRight[0] ){
        sqlite4_temp_directory = sqlite4_mprintf("%s", zRight);
      }else{
        sqlite4_temp_directory = 0;
      }
#endif /* SQLITE_OMIT_WSD */
    }
  }else

#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
  /*
   **   PRAGMA [database.]lock_proxy_file
   **   PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path"
   **
   ** Return or set the value of the lock_proxy_file flag.  Changing
   ** the value sets a specific file to be used for database access locks.
   **
   */
  if( sqlite4StrICmp(zLeft, "lock_proxy_file")==0 ){
    if( !zRight ){
      Pager *pPager = sqlite4BtreePager(pDb->pBt);
      char *proxy_file_path = NULL;
      sqlite4_file *pFile = sqlite4PagerFile(pPager);
      sqlite4OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE, 
                           &proxy_file_path);
      
      if( proxy_file_path ){
        sqlite4VdbeSetNumCols(v, 1);
        sqlite4VdbeSetColName(v, 0, COLNAME_NAME, 
                              "lock_proxy_file", SQLITE_STATIC);
        sqlite4VdbeAddOp4(v, OP_String8, 0, 1, 0, proxy_file_path, 0);
        sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 1);
      }
    }else{
      Pager *pPager = sqlite4BtreePager(pDb->pBt);
      sqlite4_file *pFile = sqlite4PagerFile(pPager);
      int res;
      if( zRight[0] ){
        res=sqlite4OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 
                                     zRight);
      } else {
        res=sqlite4OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE, 
                                     NULL);
      }
      if( res!=SQLITE_OK ){
        sqlite4ErrorMsg(pParse, "failed to set lock proxy file");
        goto pragma_out;
      }
    }
  }else
#endif /* SQLITE_ENABLE_LOCKING_STYLE */      
    
  /*
  **   PRAGMA [database.]synchronous
  **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  if( sqlite4StrICmp(zLeft,"synchronous")==0 ){
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    if( !zRight ){
      returnSingleInt(pParse, "synchronous", pDb->safety_level-1);
    }else{
      if( !db->autoCommit ){
        sqlite4ErrorMsg(pParse, 
            "Safety level may not be changed inside a transaction");
      }else{
        pDb->safety_level = getSafetyLevel(zRight)+1;
      }
    }
  }else
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







210
211
212
213
214
215
216















































217














































































































































































































































































































































218
219
220
221
222
223
224

  assert( pId2 );
  zDb = pId2->n>0 ? pDb->zName : 0;
  if( sqlite4AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }
 































































































































































































































































































































































































#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  if( flagPragma(pParse, zLeft, zRight) ){
    /* The flagPragma() subroutine also generates any necessary code
    ** there is nothing more to do here */
  }else
#endif /* SQLITE_OMIT_FLAG_PRAGMAS */
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    sqlite4VdbeSetNumCols(v, 3);
    pParse->nMem = 3;
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
    sqlite4VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
    sqlite4VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pBt==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite4VdbeAddOp2(v, OP_Integer, i, 1);
      sqlite4VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
      sqlite4VdbeAddOp4(v, OP_String8, 0, 3, 0,
           sqlite4BtreeGetFilename(db->aDb[i].pBt), 0);
      sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 3);
    }
  }else

  if( sqlite4StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;







|




|







330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    sqlite4VdbeSetNumCols(v, 3);
    pParse->nMem = 3;
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
    sqlite4VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
    sqlite4VdbeSetColName(v, 2, COLNAME_NAME, "file", SQLITE_STATIC);
    for(i=0; i<db->nDb; i++){
      if( db->aDb[i].pKV==0 ) continue;
      assert( db->aDb[i].zName!=0 );
      sqlite4VdbeAddOp2(v, OP_Integer, i, 1);
      sqlite4VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0);
      sqlite4VdbeAddOp4(v, OP_String8, 0, 3, 0,
                           "filename", 0);
      sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 3);
    }
  }else

  if( sqlite4StrICmp(zLeft, "collation_list")==0 ){
    int i = 0;
    HashElem *p;
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    }
  }else

#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
#endif

#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  /* Pragma "quick_check" is an experimental reduced version of 
  ** integrity_check designed to detect most database corruption
  ** without most of the overhead of a full integrity-check.
  */
  if( sqlite4StrICmp(zLeft, "integrity_check")==0
   || sqlite4StrICmp(zLeft, "quick_check")==0 
  ){
    int i, j, addr, mxErr;

    /* Code that appears at the end of the integrity check.  If no error
    ** messages have been generated, output OK.  Otherwise output the
    ** error message
    */
    static const VdbeOpList endCode[] = {
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_IfNeg,       1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite4Tolower(zLeft[0])=='q');

    /* Initialize the VDBE program */
    if( sqlite4ReadSchema(pParse) ) goto pragma_out;
    pParse->nMem = 6;
    sqlite4VdbeSetNumCols(v, 1);
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);

    /* Set the maximum error count */
    mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
    if( zRight ){
      sqlite4GetInt32(zRight, &mxErr);
      if( mxErr<=0 ){
        mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
      }
    }
    sqlite4VdbeAddOp2(v, OP_Integer, mxErr, 1);  /* reg[1] holds errors left */

    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;

      sqlite4CodeVerifySchema(pParse, i);
      addr = sqlite4VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
      sqlite4VdbeAddOp2(v, OP_Halt, 0, 0);
      sqlite4VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      **
      ** Begin by filling registers 2, 3, ... with the root pages numbers
      ** for all tables and indices in the database.
      */
      assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite4VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
          sqlite4VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt);
          cnt++;
        }
      }

      /* Make sure sufficient number of registers have been allocated */
      if( pParse->nMem < cnt+4 ){
        pParse->nMem = cnt+4;
      }

      /* Do the b-tree integrity checks */
      sqlite4VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1);
      sqlite4VdbeChangeP5(v, (u8)i);
      addr = sqlite4VdbeAddOp1(v, OP_IsNull, 2);
      sqlite4VdbeAddOp4(v, OP_String8, 0, 3, 0,
         sqlite4MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName),
         P4_DYNAMIC);
      sqlite4VdbeAddOp3(v, OP_Move, 2, 4, 1);
      sqlite4VdbeAddOp3(v, OP_Concat, 4, 3, 2);
      sqlite4VdbeAddOp2(v, OP_ResultRow, 2, 1);
      sqlite4VdbeJumpHere(v, addr);

      /* Make sure all the indices are constructed correctly.
      */
      for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        int loopTop;

        if( pTab->pIndex==0 ) continue;
        addr = sqlite4VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        sqlite4VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite4VdbeJumpHere(v, addr);
        sqlite4OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead);
        sqlite4VdbeAddOp2(v, OP_Integer, 0, 2);  /* reg(2) will count entries */
        loopTop = sqlite4VdbeAddOp2(v, OP_Rewind, 1, 0);
        sqlite4VdbeAddOp2(v, OP_AddImm, 2, 1);   /* increment entry count */
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          int jmp2;
          int r1;
          static const VdbeOpList idxErr[] = {
            { OP_AddImm,      1, -1,  0},
            { OP_String8,     0,  3,  0},    /* 1 */
            { OP_Rowid,       1,  4,  0},
            { OP_String8,     0,  5,  0},    /* 3 */
            { OP_String8,     0,  6,  0},    /* 4 */
            { OP_Concat,      4,  3,  3},
            { OP_Concat,      5,  3,  3},
            { OP_Concat,      6,  3,  3},
            { OP_ResultRow,   3,  1,  0},
            { OP_IfPos,       1,  0,  0},    /* 9 */
            { OP_Halt,        0,  0,  0},
          };
          r1 = sqlite4GenerateIndexKey(pParse, pIdx, 1, 3, 0, 0);
          jmp2 = sqlite4VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1);
          addr = sqlite4VdbeAddOpList(v, ArraySize(idxErr), idxErr);
          sqlite4VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC);
          sqlite4VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC);
          sqlite4VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT);
          sqlite4VdbeJumpHere(v, addr+9);
          sqlite4VdbeJumpHere(v, jmp2);
        }
        sqlite4VdbeAddOp2(v, OP_Next, 1, loopTop+1);
        sqlite4VdbeJumpHere(v, loopTop);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          static const VdbeOpList cntIdx[] = {
             { OP_Integer,      0,  3,  0},
             { OP_Rewind,       0,  0,  0},  /* 1 */
             { OP_AddImm,       3,  1,  0},
             { OP_Next,         0,  0,  0},  /* 3 */
             { OP_Eq,           2,  0,  3},  /* 4 */
             { OP_AddImm,       1, -1,  0},
             { OP_String8,      0,  2,  0},  /* 6 */
             { OP_String8,      0,  3,  0},  /* 7 */
             { OP_Concat,       3,  2,  2},
             { OP_ResultRow,    2,  1,  0},
          };
          addr = sqlite4VdbeAddOp1(v, OP_IfPos, 1);
          sqlite4VdbeAddOp2(v, OP_Halt, 0, 0);
          sqlite4VdbeJumpHere(v, addr);
          addr = sqlite4VdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
          sqlite4VdbeChangeP1(v, addr+1, j+2);
          sqlite4VdbeChangeP2(v, addr+1, addr+4);
          sqlite4VdbeChangeP1(v, addr+3, j+2);
          sqlite4VdbeChangeP2(v, addr+3, addr+2);
          sqlite4VdbeJumpHere(v, addr+4);
          sqlite4VdbeChangeP4(v, addr+6, 
                     "wrong # of entries in index ", P4_STATIC);
          sqlite4VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT);
        }
      } 
    }
    addr = sqlite4VdbeAddOpList(v, ArraySize(endCode), endCode);
    sqlite4VdbeChangeP2(v, addr, -mxErr);
    sqlite4VdbeJumpHere(v, addr+1);
    sqlite4VdbeChangeP4(v, addr+2, "ok", P4_STATIC);
  }else
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
  **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
  **
  ** In its first form, this pragma returns the encoding of the main







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







427
428
429
430
431
432
433



































































































































































434
435
436
437
438
439
440
    }
  }else

#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
#endif





































































































































































#ifndef SQLITE_OMIT_UTF16
  /*
  **   PRAGMA encoding
  **   PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
  **
  ** In its first form, this pragma returns the encoding of the main
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
          sqlite4ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
    }
  }else
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  /*
  **   PRAGMA [database.]schema_version
  **   PRAGMA [database.]schema_version = <integer>
  **
  **   PRAGMA [database.]user_version
  **   PRAGMA [database.]user_version = <integer>
  **
  ** The pragma's schema_version and user_version are used to set or get
  ** the value of the schema-version and user-version, respectively. Both
  ** the schema-version and the user-version are 32-bit signed integers
  ** stored in the database header.
  **
  ** The schema-cookie is usually only manipulated internally by SQLite. It
  ** is incremented by SQLite whenever the database schema is modified (by
  ** creating or dropping a table or index). The schema version is used by
  ** SQLite each time a query is executed to ensure that the internal cache
  ** of the schema used when compiling the SQL query matches the schema of
  ** the database against which the compiled query is actually executed.
  ** Subverting this mechanism by using "PRAGMA schema_version" to modify
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  if( sqlite4StrICmp(zLeft, "schema_version")==0 
   || sqlite4StrICmp(zLeft, "user_version")==0 
   || sqlite4StrICmp(zLeft, "freelist_count")==0 
  ){
    int iCookie;   /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */
    sqlite4VdbeUsesBtree(v, iDb);
    switch( zLeft[0] ){
      case 'f': case 'F':
        iCookie = BTREE_FREE_PAGE_COUNT;
        break;
      case 's': case 'S':
        iCookie = BTREE_SCHEMA_VERSION;
        break;
      default:
        iCookie = BTREE_USER_VERSION;
        break;
    }

    if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite4VdbeAddOpList(v, ArraySize(setCookie), setCookie);
      sqlite4VdbeChangeP1(v, addr, iDb);
      sqlite4VdbeChangeP1(v, addr+1, sqlite4Atoi(zRight));
      sqlite4VdbeChangeP1(v, addr+2, iDb);
      sqlite4VdbeChangeP2(v, addr+2, iCookie);
    }else{
      /* Read the specified cookie value */
      static const VdbeOpList readCookie[] = {
        { OP_Transaction,     0,  0,  0},    /* 0 */
        { OP_ReadCookie,      0,  1,  0},    /* 1 */
        { OP_ResultRow,       1,  1,  0}
      };
      int addr = sqlite4VdbeAddOpList(v, ArraySize(readCookie), readCookie);
      sqlite4VdbeChangeP1(v, addr, iDb);
      sqlite4VdbeChangeP1(v, addr+1, iDb);
      sqlite4VdbeChangeP3(v, addr+1, iCookie);
      sqlite4VdbeSetNumCols(v, 1);
      sqlite4VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
    }
  }else
#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */

#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
  /*
  **   PRAGMA compile_options
  **
  ** Return the names of all compile-time options used in this build,
  ** one option per row.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







501
502
503
504
505
506
507








































































508
509
510
511
512
513
514
          sqlite4ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
    }
  }else
#endif /* SQLITE_OMIT_UTF16 */










































































#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
  /*
  **   PRAGMA compile_options
  **
  ** Return the names of all compile-time options used in this build,
  ** one option per row.
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
  ** This pragma attempts to free as much memory as possible from the
  ** current database connection.
  */
  if( sqlite4StrICmp(zLeft, "shrink_memory")==0 ){
    sqlite4_db_release_memory(db);
  }else

#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
  /*
  ** Report the current state of file logs for all databases
  */
  if( sqlite4StrICmp(zLeft, "lock_status")==0 ){
    static const char *const azLockName[] = {
      "unlocked", "shared", "reserved", "pending", "exclusive"
    };
    int i;
    sqlite4VdbeSetNumCols(v, 2);
    pParse->nMem = 2;
    sqlite4VdbeSetColName(v, 0, COLNAME_NAME, "database", SQLITE_STATIC);
    sqlite4VdbeSetColName(v, 1, COLNAME_NAME, "status", SQLITE_STATIC);
    for(i=0; i<db->nDb; i++){
      Btree *pBt;
      Pager *pPager;
      const char *zState = "unknown";
      int j;
      if( db->aDb[i].zName==0 ) continue;
      sqlite4VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC);
      pBt = db->aDb[i].pBt;
      if( pBt==0 || (pPager = sqlite4BtreePager(pBt))==0 ){
        zState = "closed";
      }else if( sqlite4_file_control(db, i ? db->aDb[i].zName : 0, 
                                     SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
         zState = azLockName[j];
      }
      sqlite4VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC);
      sqlite4VdbeAddOp2(v, OP_ResultRow, 1, 2);
    }

  }else
#endif

#ifdef SQLITE_HAS_CODEC
  if( sqlite4StrICmp(zLeft, "key")==0 && zRight ){
    sqlite4_key(db, zRight, sqlite4Strlen30(zRight));
  }else
  if( sqlite4StrICmp(zLeft, "rekey")==0 && zRight ){
    sqlite4_rekey(db, zRight, sqlite4Strlen30(zRight));
  }else
  if( zRight && (sqlite4StrICmp(zLeft, "hexkey")==0 ||
                 sqlite4StrICmp(zLeft, "hexrekey")==0) ){
    int i, h1, h2;
    char zKey[40];
    for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){
      h1 += 9*(1&(h1>>6));
      h2 += 9*(1&(h2>>6));
      zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4);
    }
    if( (zLeft[3] & 0xf)==0xb ){
      sqlite4_key(db, zKey, i/2);
    }else{
      sqlite4_rekey(db, zKey, i/2);
    }
  }else
#endif
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
  if( sqlite4StrICmp(zLeft, "activate_extensions")==0 ){
#ifdef SQLITE_HAS_CODEC
    if( sqlite4StrNICmp(zRight, "see-", 4)==0 ){
      sqlite4_activate_see(&zRight[4]);
    }
#endif
#ifdef SQLITE_ENABLE_CEROD
    if( sqlite4StrNICmp(zRight, "cerod-", 6)==0 ){
      sqlite4_activate_cerod(&zRight[6]);
    }
#endif
  }else
#endif

 
  {/* Empty ELSE clause */}

  /*
  ** Reset the safety level, in case the fullfsync flag or synchronous
  ** setting changed.
  */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  if( db->autoCommit ){
    sqlite4BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level,
               (db->flags&SQLITE_FullFSync)!=0,
               (db->flags&SQLITE_CkptFullFSync)!=0);
  }
#endif
pragma_out:
  sqlite4DbFree(db, zLeft);
  sqlite4DbFree(db, zRight);
}

#endif /* SQLITE_OMIT_PRAGMA */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<






533
534
535
536
537
538
539


























540














































541












542
543
544
545
546
547
  ** This pragma attempts to free as much memory as possible from the
  ** current database connection.
  */
  if( sqlite4StrICmp(zLeft, "shrink_memory")==0 ){
    sqlite4_db_release_memory(db);
  }else



























 














































  {/* Empty ELSE clause */}












pragma_out:
  sqlite4DbFree(db, zLeft);
  sqlite4DbFree(db, zRight);
}

#endif /* SQLITE_OMIT_PRAGMA */

Changes to src/prepare.c.

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite4InitOne(sqlite4 *db, int iDb, char **pzErrMsg){
  int rc;
  int i;
  int size;
  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  int meta[5];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName;
  int openedTransaction = 0;

  /*
  ** The master database table has a structure like this







<
<



|







129
130
131
132
133
134
135


136
137
138
139
140
141
142
143
144
145
146
** database file is given by iDb.  iDb==0 is used for the main
** database.  iDb==1 should never be used.  iDb>=2 is used for
** auxiliary databases.  Return one of the SQLITE_ error codes to
** indicate success or failure.
*/
static int sqlite4InitOne(sqlite4 *db, int iDb, char **pzErrMsg){
  int rc;


  Table *pTab;
  Db *pDb;
  char const *azArg[4];
  unsigned int meta[5];
  InitData initData;
  char const *zMasterSchema;
  char const *zMasterName;
  int openedTransaction = 0;

  /*
  ** The master database table has a structure like this
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite4_mutex_held(db->mutex) );
  assert( iDb==1 || sqlite4BtreeHoldsMutex(db->aDb[iDb].pBt) );

  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;







<







167
168
169
170
171
172
173

174
175
176
177
178
179
180
#else
  #define temp_master_schema 0
#endif

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pSchema );
  assert( sqlite4_mutex_held(db->mutex) );


  /* zMasterSchema and zInitScript are set to point at the master schema
  ** and initialisation script appropriate for the database being
  ** initialised. zMasterName is the name of the master table.
  */
  if( !OMIT_TEMPDB && iDb==1 ){
    zMasterSchema = temp_master_schema;
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  if( ALWAYS(pTab) ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pBt==0 ){
    if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
    }
    return SQLITE_OK;
  }

  /* If there is not already a read-only (or read-write) transaction opened
  ** on the b-tree database, open one now. If a transaction is opened, it 
  ** will be closed before this function returns.  */
  sqlite4BtreeEnter(pDb->pBt);
  if( !sqlite4BtreeIsInReadTrans(pDb->pBt) ){
    rc = sqlite4BtreeBeginTrans(pDb->pBt, 0);
    if( rc!=SQLITE_OK ){
      sqlite4SetString(pzErrMsg, db, "%s", sqlite4ErrStr(rc));
      goto initone_error_out;
    }
    openedTransaction = 1;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   File format of schema layer.
  **    meta[2]   Size of the page cache.
  **    meta[3]   Largest rootpage (auto/incr_vacuum mode)
  **    meta[4]   Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE
  **    meta[5]   User version
  **    meta[6]   Incremental vacuum mode
  **    meta[7]   unused
  **    meta[8]   unused
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  for(i=0; i<ArraySize(meta); i++){
    sqlite4BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]);
  }
  pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1];

  /* If opening a non-empty database, check the text encoding. For the
  ** main database, set sqlite4.enc to the encoding of the main database.
  ** For an attached db, it is an error if the encoding is not the same
  ** as sqlite4.enc.
  */
  if( meta[BTREE_TEXT_ENCODING-1] ){  /* text encoding */
    if( iDb==0 ){
      u8 encoding;
      /* If opening the main database, set ENC(db). */
      encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3;
      if( encoding==0 ) encoding = SQLITE_UTF8;
      ENC(db) = encoding;
      db->pDfltColl = sqlite4FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
    }else{
      /* If opening an attached database, the encoding much match ENC(db) */
      if( meta[BTREE_TEXT_ENCODING-1]!=ENC(db) ){
        sqlite4SetString(pzErrMsg, db, "attached databases must use the same"
            " text encoding as main database");
        rc = SQLITE_ERROR;
        goto initone_error_out;
      }
    }
  }else{
    DbSetProperty(db, iDb, DB_Empty);
  }
  pDb->pSchema->enc = ENC(db);

  if( pDb->pSchema->cache_size==0 ){
#ifndef SQLITE_OMIT_DEPRECATED
    size = sqlite4AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]);
    if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; }
    pDb->pSchema->cache_size = size;
#else
    pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE;
#endif
    sqlite4BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
  }

  /*
  ** file_format==1    Version 3.0.0.
  ** file_format==2    Version 3.1.3.  // ALTER TABLE ADD COLUMN
  ** file_format==3    Version 3.1.4.  // ditto but with non-NULL defaults
  ** file_format==4    Version 3.3.0.  // DESC indices.  Boolean constants
  */
  pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1];
  if( pDb->pSchema->file_format==0 ){
    pDb->pSchema->file_format = 1;
  }
  if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){
    sqlite4SetString(pzErrMsg, db, "unsupported file format");
    rc = SQLITE_ERROR;
    goto initone_error_out;
  }

  /* Ticket #2804:  When we open a database in the newer file format,
  ** clear the legacy_file_format pragma flag so that a VACUUM will
  ** not downgrade the database and thus invalidate any descending
  ** indices that the user might have created.
  */
  if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){
    db->flags &= ~SQLITE_LegacyFileFmt;
  }

  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  {
    char *zSql;
    zSql = sqlite4MPrintf(db, 







|







|

|
<
|











|
|
|
|
|
|







|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244


245































































246
247
248
249
250
251
252
  if( ALWAYS(pTab) ){
    pTab->tabFlags |= TF_Readonly;
  }

  /* Create a cursor to hold the database open
  */
  pDb = &db->aDb[iDb];
  if( pDb->pKV==0 ){
    if( !OMIT_TEMPDB && ALWAYS(iDb==1) ){
      DbSetProperty(db, 1, DB_SchemaLoaded);
    }
    return SQLITE_OK;
  }

  /* If there is not already a read-only (or read-write) transaction opened
  ** on the database, open one now. If a transaction is opened, it 
  ** will be closed before this function returns.  */
  if( pDb->pKV->iTransLevel==0 ){

    rc = sqlite4KVStoreBegin(pDb->pKV, 1);
    if( rc!=SQLITE_OK ){
      sqlite4SetString(pzErrMsg, db, "%s", sqlite4ErrStr(rc));
      goto initone_error_out;
    }
    openedTransaction = 1;
  }

  /* Get the database meta information.
  **
  ** Meta values are as follows:
  **    meta[0]   Schema cookie.  Changes with each schema change.
  **    meta[1]   unused
  **    meta[2]   unused
  **    meta[3]   unused
  **    meta[4]   unused
  **    meta[5]   unused
  **    meta[6]   unused
  **    meta[7]   unused
  **    meta[8]   unused
  **    meta[9]   unused
  **
  ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to
  ** the possible values of meta[4].
  */
  sqlite4KVStoreGetMeta(pDb->pKV, 0, ArraySize(meta), meta);


  pDb->pSchema->schema_cookie = meta[0];
































































  /* Read the schema information out of the schema tables
  */
  assert( db->init.busy );
  {
    char *zSql;
    zSql = sqlite4MPrintf(db, 
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    ** even when its contents have been corrupted.
    */
    DbSetProperty(db, iDb, DB_SchemaLoaded);
    rc = SQLITE_OK;
  }

  /* Jump here for an error that occurs after successfully allocating
  ** curMain and calling sqlite4BtreeEnter(). For an error that occurs
  ** before that point, jump to error_out.
  */
initone_error_out:
  if( openedTransaction ){
    sqlite4BtreeCommit(pDb->pBt);
  }
  sqlite4BtreeLeave(pDb->pBt);

error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}







<
|



|

<







285
286
287
288
289
290
291

292
293
294
295
296
297

298
299
300
301
302
303
304
    ** even when its contents have been corrupted.
    */
    DbSetProperty(db, iDb, DB_SchemaLoaded);
    rc = SQLITE_OK;
  }

  /* Jump here for an error that occurs after successfully allocating

  ** curMain. For an error that occurs before that point, jump to error_out.
  */
initone_error_out:
  if( openedTransaction ){
    sqlite4KVStoreCommit(pDb->pKV, 0);
  }


error_out:
  if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
    db->mallocFailed = 1;
  }
  return rc;
}
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
  int rc;
  int cookie;

  assert( pParse->checkSchema );
  assert( sqlite4_mutex_held(db->mutex) );
  for(iDb=0; iDb<db->nDb; iDb++){
    int openedTransaction = 0;         /* True if a transaction is opened */
    Btree *pBt = db->aDb[iDb].pBt;     /* Btree database to read cookie from */
    if( pBt==0 ) continue;

    /* If there is not already a read-only (or read-write) transaction opened
    ** on the b-tree database, open one now. If a transaction is opened, it 
    ** will be closed immediately after reading the meta-value. */
    if( !sqlite4BtreeIsInReadTrans(pBt) ){
      rc = sqlite4BtreeBeginTrans(pBt, 0);
      if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
        db->mallocFailed = 1;
      }
      if( rc!=SQLITE_OK ) return;
      openedTransaction = 1;
    }

    /* Read the schema cookie from the database. If it does not match the 
    ** value stored as part of the in-memory schema representation,
    ** set Parse.rc to SQLITE_SCHEMA. */
    sqlite4BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie);
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
      sqlite4ResetInternalSchema(db, iDb);
      pParse->rc = SQLITE_SCHEMA;
    }

    /* Close the transaction, if one was opened. */
    if( openedTransaction ){
      sqlite4BtreeCommit(pBt);
    }
  }
}

/*
** Convert a schema pointer into the iDb index that indicates
** which database file in db->aDb[] the schema refers to.







|
|




|
|










|
<







|







380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  int rc;
  int cookie;

  assert( pParse->checkSchema );
  assert( sqlite4_mutex_held(db->mutex) );
  for(iDb=0; iDb<db->nDb; iDb++){
    int openedTransaction = 0;         /* True if a transaction is opened */
    KVStore *pKV = db->aDb[iDb].pKV;   /* Database to read cookie from */
    if( pKV==0 ) continue;

    /* If there is not already a read-only (or read-write) transaction opened
    ** on the b-tree database, open one now. If a transaction is opened, it 
    ** will be closed immediately after reading the meta-value. */
    if( pKV->iTransLevel==0 ){
      rc = sqlite4KVStoreBegin(pKV, 1);
      if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){
        db->mallocFailed = 1;
      }
      if( rc!=SQLITE_OK ) return;
      openedTransaction = 1;
    }

    /* Read the schema cookie from the database. If it does not match the 
    ** value stored as part of the in-memory schema representation,
    ** set Parse.rc to SQLITE_SCHEMA. */
    sqlite4KVStoreGetMeta(pKV, 0, 1, (u32 *)&cookie);

    if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){
      sqlite4ResetInternalSchema(db, iDb);
      pParse->rc = SQLITE_SCHEMA;
    }

    /* Close the transaction, if one was opened. */
    if( openedTransaction ){
      sqlite4KVStoreCommit(pKV, 0);
    }
  }
}

/*
** Convert a schema pointer into the iDb index that indicates
** which database file in db->aDb[] the schema refers to.
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    goto end_prepare;
  }
  pParse->pReprepare = pReprepare;
  assert( ppStmt && *ppStmt==0 );
  assert( !db->mallocFailed );
  assert( sqlite4_mutex_held(db->mutex) );

  /* Check to verify that it is possible to get a read lock on all
  ** database schemas.  The inability to get a read lock indicates that
  ** some other database connection is holding a write-lock, which in
  ** turn means that the other connection has made uncommitted changes
  ** to the schema.
  **
  ** Were we to proceed and prepare the statement against the uncommitted
  ** schema changes and if those schema changes are subsequently rolled
  ** back and different changes are made in their place, then when this
  ** prepared statement goes to run the schema cookie would fail to detect
  ** the schema change.  Disaster would follow.
  **
  ** This thread is currently holding mutexes on all Btrees (because
  ** of the sqlite4BtreeEnterAll() in sqlite4LockAndPrepare()) so it
  ** is not possible for another thread to start a new schema change
  ** while this routine is running.  Hence, we do not need to hold 
  ** locks on the schema, we just need to make sure nobody else is 
  ** holding them.
  **
  ** Note that setting READ_UNCOMMITTED overrides most lock detection,
  ** but it does *not* override schema lock detection, so this all still
  ** works even if READ_UNCOMMITTED is set.
  */
  for(i=0; i<db->nDb; i++) {
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      assert( sqlite4BtreeHoldsMutex(pBt) );
      rc = sqlite4BtreeSchemaLocked(pBt);
      if( rc ){
        const char *zDb = db->aDb[i].zName;
        sqlite4Error(db, rc, "database schema is locked: %s", zDb);
        testcase( db->flags & SQLITE_ReadUncommitted );
        goto end_prepare;
      }
    }
  }

  sqlite4VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = (double)1;
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







471
472
473
474
475
476
477





































478
479
480
481
482
483
484
    goto end_prepare;
  }
  pParse->pReprepare = pReprepare;
  assert( ppStmt && *ppStmt==0 );
  assert( !db->mallocFailed );
  assert( sqlite4_mutex_held(db->mutex) );






































  sqlite4VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = (double)1;
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  int rc;
  assert( ppStmt!=0 );
  *ppStmt = 0;
  if( !sqlite4SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite4_mutex_enter(db->mutex);
  sqlite4BtreeEnterAll(db);
  rc = sqlite4Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  if( rc==SQLITE_SCHEMA ){
    sqlite4_finalize(*ppStmt);
    rc = sqlite4Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  }
  sqlite4BtreeLeaveAll(db);
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** Rerun the compilation of a statement after a schema change.
**







<





<







585
586
587
588
589
590
591

592
593
594
595
596

597
598
599
600
601
602
603
  int rc;
  assert( ppStmt!=0 );
  *ppStmt = 0;
  if( !sqlite4SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite4_mutex_enter(db->mutex);

  rc = sqlite4Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  if( rc==SQLITE_SCHEMA ){
    sqlite4_finalize(*ppStmt);
    rc = sqlite4Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  }

  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** Rerun the compilation of a statement after a schema change.
**

Changes to src/select.c.

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;
  sqlite4 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
  pParse->colNamesSet = 1;
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  sqlite4VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;







<










<
<







1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201


1202
1203
1204
1205
1206
1207
1208
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;
  sqlite4 *db = pParse->db;


#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
  pParse->colNamesSet = 1;


  sqlite4VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }
      if( !shortNames && !fullNames ){
        sqlite4VdbeSetColName(v, i, COLNAME_NAME, 
            sqlite4DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
      }else if( fullNames ){
        char *zName = 0;
        zName = sqlite4MPrintf(db, "%s.%s", pTab->zName, zCol);
        sqlite4VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
      }else{
        sqlite4VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
      }
    }else{
      sqlite4VdbeSetColName(v, i, COLNAME_NAME, 
          sqlite4DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}







<
<
<
<
<
<
<
<
|
<







1219
1220
1221
1222
1223
1224
1225








1226

1227
1228
1229
1230
1231
1232
1233
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }








      sqlite4VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);

    }else{
      sqlite4VdbeSetColName(v, i, COLNAME_NAME, 
          sqlite4DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite4ResultSetOfSelect(Parse *pParse, Select *pSelect){
  Table *pTab;
  sqlite4 *db = pParse->db;
  int savedFlags;

  savedFlags = db->flags;
  db->flags &= ~SQLITE_FullColNames;
  db->flags |= SQLITE_ShortColNames;
  sqlite4SelectPrep(pParse, pSelect, 0);
  if( pParse->nErr ) return 0;
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  db->flags = savedFlags;
  pTab = sqlite4DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  /* The sqlite4ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bEnabled==0 );







<

<
<
<



<







1375
1376
1377
1378
1379
1380
1381

1382



1383
1384
1385

1386
1387
1388
1389
1390
1391
1392
/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite4ResultSetOfSelect(Parse *pParse, Select *pSelect){
  Table *pTab;
  sqlite4 *db = pParse->db;





  sqlite4SelectPrep(pParse, pSelect, 0);
  if( pParse->nErr ) return 0;
  while( pSelect->pPrior ) pSelect = pSelect->pPrior;

  pTab = sqlite4DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  /* The sqlite4ResultSetOfSelect() is only used n contexts where lookaside
  ** is disabled */
  assert( db->lookaside.bEnabled==0 );
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite4VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
    sqlite4VdbeChangeP5(v, BTREE_UNORDERED);
    dest.eDest = SRT_Table;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );







<







1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608
1609
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite4VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);

    dest.eDest = SRT_Table;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;
      assert( pE->op!=TK_DOT || pE->pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */







<
<







3295
3296
3297
3298
3299
3300
3301


3302
3303
3304
3305
3306
3307
3308
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;



    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;
      assert( pE->op!=TK_DOT || pE->pRight!=0 );
      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite4Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite4Expr(db, TK_ID, zTabName);
              pExpr = sqlite4PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( longNames ){
                zColname = sqlite4MPrintf(db, "%s.%s", zTabName, zName);
                zToFree = zColname;
              }
            }else{
              pExpr = pRight;
            }
            pNew = sqlite4ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite4Strlen30(zColname);
            sqlite4ExprListSetName(pParse, pNew, &sColname, 0);







|



<
<
<
<







3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376




3377
3378
3379
3380
3381
3382
3383
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite4Expr(db, TK_ID, zName);
            zColname = zName;
            zToFree = 0;
            if( pTabList->nSrc>1 ){
              Expr *pLeft;
              pLeft = sqlite4Expr(db, TK_ID, zTabName);
              pExpr = sqlite4PExpr(pParse, TK_DOT, pLeft, pRight, 0);




            }else{
              pExpr = pRight;
            }
            pNew = sqlite4ExprListAppend(pParse, pNew, pExpr);
            sColname.z = zColname;
            sColname.n = sqlite4Strlen30(zColname);
            sqlite4ExprListSetName(pParse, pNew, &sColname, 0);
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    addrDistinctIndex = sqlite4VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
    sqlite4VdbeChangeP5(v, BTREE_UNORDERED);
  }else{
    distinct = addrDistinctIndex = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    ExprList *pDist = (isDistinct ? p->pEList : 0);







<







3978
3979
3980
3981
3982
3983
3984

3985
3986
3987
3988
3989
3990
3991
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    addrDistinctIndex = sqlite4VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);

  }else{
    distinct = addrDistinctIndex = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    ExprList *pDist = (isDistinct ? p->pEList : 0);

Changes to src/shell.c.

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Successful lookaside attempts:       %d\n", iHiwtr);
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Lookaside failures due to size:      %d\n", iHiwtr);
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Lookaside failures due to OOM:       %d\n", iHiwtr);
    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_CACHE_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Pager Heap Usage:                    %d bytes\n", iCur);    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_CACHE_HIT, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache hits:                     %d\n", iCur);
    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_CACHE_MISS, &iCur, &iHiwtr, 1);
    fprintf(pArg->out, "Page cache misses:                   %d\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Schema Heap Usage:                   %d bytes\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Statement Heap/Lookaside Usage:      %d bytes\n", iCur); 
  }








<
<
<
<
<
<
<
<







1047
1048
1049
1050
1051
1052
1053








1054
1055
1056
1057
1058
1059
1060
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_HIT, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Successful lookaside attempts:       %d\n", iHiwtr);
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Lookaside failures due to size:      %d\n", iHiwtr);
    sqlite4_db_status(db, SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Lookaside failures due to OOM:       %d\n", iHiwtr);
    iHiwtr = iCur = -1;








    sqlite4_db_status(db, SQLITE_DBSTATUS_SCHEMA_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Schema Heap Usage:                   %d bytes\n", iCur); 
    iHiwtr = iCur = -1;
    sqlite4_db_status(db, SQLITE_DBSTATUS_STMT_USED, &iCur, &iHiwtr, bReset);
    fprintf(pArg->out, "Statement Heap/Lookaside Usage:      %d bytes\n", iCur); 
  }

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
  return rc;
}

/*
** Text of a help message
*/
static char zHelp[] =
  ".backup ?DB? FILE      Backup DB (default \"main\") to FILE\n"
  ".bail ON|OFF           Stop after hitting an error.  Default OFF\n"
  ".databases             List names and files of attached databases\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo ON|OFF           Turn command echo on or off\n"
  ".exit                  Exit this program\n"







<







1347
1348
1349
1350
1351
1352
1353

1354
1355
1356
1357
1358
1359
1360
  return rc;
}

/*
** Text of a help message
*/
static char zHelp[] =

  ".bail ON|OFF           Stop after hitting an error.  Default OFF\n"
  ".databases             List names and files of attached databases\n"
  ".dump ?TABLE? ...      Dump the database in an SQL text format\n"
  "                         If TABLE specified, only dump tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".echo ON|OFF           Turn command echo on or off\n"
  ".exit                  Exit this program\n"
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
  "                         tcl      TCL list elements\n"
  ".nullvalue STRING      Print STRING in place of NULL values\n"
  ".output FILENAME       Send output to FILENAME\n"
  ".output stdout         Send output to the screen\n"
  ".prompt MAIN CONTINUE  Replace the standard prompts\n"
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"
  ".restore ?DB? FILE     Restore content of DB (default \"main\") from FILE\n"
  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"
  ".vfsname ?AUX?         Print the name of the VFS stack\n"
  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;








<










<







1384
1385
1386
1387
1388
1389
1390

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

1401
1402
1403
1404
1405
1406
1407
  "                         tcl      TCL list elements\n"
  ".nullvalue STRING      Print STRING in place of NULL values\n"
  ".output FILENAME       Send output to FILENAME\n"
  ".output stdout         Send output to the screen\n"
  ".prompt MAIN CONTINUE  Replace the standard prompts\n"
  ".quit                  Exit this program\n"
  ".read FILENAME         Execute SQL in FILENAME\n"

  ".schema ?TABLE?        Show the CREATE statements\n"
  "                         If TABLE specified, only show tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".separator STRING      Change separator used by output mode and .import\n"
  ".show                  Show the current values for various settings\n"
  ".stats ON|OFF          Turn stats on or off\n"
  ".tables ?TABLE?        List names of tables\n"
  "                         If TABLE specified, only list tables matching\n"
  "                         LIKE pattern TABLE.\n"
  ".timeout MS            Try opening locked tables for MS milliseconds\n"

  ".width NUM1 NUM2 ...   Set column widths for \"column\" mode\n"
;

static char zTimerHelp[] =
  ".timer ON|OFF          Turn the CPU timer measurement on or off\n"
;

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
          shellstaticFunc, 0, 0);
    }
    if( db==0 || SQLITE_OK!=sqlite4_errcode(db) ){
      fprintf(stderr,"Error: unable to open database \"%s\": %s\n", 
          p->zDbFilename, sqlite4_errmsg(db));
      exit(1);
    }
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    sqlite4_enable_load_extension(p->db, 1);
#endif
  }
}

/*
** Do C-language style dequoting.







|







1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
          shellstaticFunc, 0, 0);
    }
    if( db==0 || SQLITE_OK!=sqlite4_errcode(db) ){
      fprintf(stderr,"Error: unable to open database \"%s\": %s\n", 
          p->zDbFilename, sqlite4_errmsg(db));
      exit(1);
    }
#if 0 /*ndef SQLITE_OMIT_LOAD_EXTENSION*/
    sqlite4_enable_load_extension(p->db, 1);
#endif
  }
}

/*
** Do C-language style dequoting.
1502
1503
1504
1505
1506
1507
1508
1509
1510

1511
1512
1513
1514
1515
1516
1517
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int do_meta_command(char *zLine, struct callback_data *p){
  int i = 1;
  int nArg = 0;
  int n, c;
  int rc = 0;

  char *azArg[50];

  /* Parse the input line into tokens.
  */
  while( zLine[i] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[i]) ){ i++; }
    if( zLine[i]==0 ) break;







<

>







1491
1492
1493
1494
1495
1496
1497

1498
1499
1500
1501
1502
1503
1504
1505
1506
** process that line.
**
** Return 1 on error, 2 to exit, and 0 otherwise.
*/
static int do_meta_command(char *zLine, struct callback_data *p){
  int i = 1;
  int nArg = 0;

  int rc = 0;
  int c, n;
  char *azArg[50];

  /* Parse the input line into tokens.
  */
  while( zLine[i] && nArg<ArraySize(azArg) ){
    while( IsSpace(zLine[i]) ){ i++; }
    if( zLine[i]==0 ) break;
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && !IsSpace(zLine[i]) ){ i++; }
      if( zLine[i] ) zLine[i++] = 0;
      resolve_backslashes(azArg[nArg-1]);
    }
  }

  /* Process the input line.
  */
  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];
  if( c=='b' && n>=3 && strncmp(azArg[0], "backup", n)==0 && nArg>1 && nArg<4){
    const char *zDestFile;
    const char *zDb;
    sqlite4 *pDest;
    sqlite4_backup *pBackup;
    if( nArg==2 ){
      zDestFile = azArg[1];
      zDb = "main";
    }else{
      zDestFile = azArg[2];
      zDb = azArg[1];
    }
    rc = sqlite4_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zDestFile);
      sqlite4_close(pDest);
      return 1;
    }
    open_db(p);
    pBackup = sqlite4_backup_init(pDest, "main", p->db, zDb);
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite4_errmsg(pDest));
      sqlite4_close(pDest);
      return 1;
    }
    while(  (rc = sqlite4_backup_step(pBackup,100))==SQLITE_OK ){}
    sqlite4_backup_finish(pBackup);
    if( rc==SQLITE_DONE ){
      rc = 0;
    }else{
      fprintf(stderr, "Error: %s\n", sqlite4_errmsg(pDest));
      rc = 1;
    }
    sqlite4_close(pDest);
  }else

  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else

  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;
    data.mode = MODE_Column;







|
<



<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<



<







1516
1517
1518
1519
1520
1521
1522
1523

1524
1525
1526











1527
























1528
1529
1530

1531
1532
1533
1534
1535
1536
1537
      azArg[nArg++] = &zLine[i];
      while( zLine[i] && !IsSpace(zLine[i]) ){ i++; }
      if( zLine[i] ) zLine[i++] = 0;
      resolve_backslashes(azArg[nArg-1]);
    }
  }



  if( nArg==0 ) return 0; /* no tokens, no error */
  n = strlen30(azArg[0]);
  c = azArg[0][0];




































  if( c=='b' && n>=3 && strncmp(azArg[0], "bail", n)==0 && nArg>1 && nArg<3 ){
    bail_on_error = booleanValue(azArg[1]);
  }else

  if( c=='d' && n>1 && strncmp(azArg[0], "databases", n)==0 && nArg==1 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 1;
    data.mode = MODE_Column;
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
      }else{
        sqlite4IoTrace = iotracePrintf;
      }
    }
  }else
#endif

#ifndef SQLITE_OMIT_LOAD_EXTENSION
  if( c=='l' && strncmp(azArg[0], "load", n)==0 && nArg>=2 ){
    const char *zFile, *zProc;
    char *zErrMsg = 0;
    zFile = azArg[1];
    zProc = nArg>=3 ? azArg[2] : 0;
    open_db(p);
    rc = sqlite4_load_extension(p->db, zFile, zProc, &zErrMsg);







|







1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
      }else{
        sqlite4IoTrace = iotracePrintf;
      }
    }
  }else
#endif

#if 0 /*ndef SQLITE_OMIT_LOAD_EXTENSION*/
  if( c=='l' && strncmp(azArg[0], "load", n)==0 && nArg>=2 ){
    const char *zFile, *zProc;
    char *zErrMsg = 0;
    zFile = azArg[1];
    zProc = nArg>=3 ? azArg[2] : 0;
    open_db(p);
    rc = sqlite4_load_extension(p->db, zFile, zProc, &zErrMsg);
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
      rc = 1;
    }else{
      rc = process_input(p, alt);
      fclose(alt);
    }
  }else

  if( c=='r' && n>=3 && strncmp(azArg[0], "restore", n)==0 && nArg>1 && nArg<4){
    const char *zSrcFile;
    const char *zDb;
    sqlite4 *pSrc;
    sqlite4_backup *pBackup;
    int nTimeout = 0;

    if( nArg==2 ){
      zSrcFile = azArg[1];
      zDb = "main";
    }else{
      zSrcFile = azArg[2];
      zDb = azArg[1];
    }
    rc = sqlite4_open(zSrcFile, &pSrc);
    if( rc!=SQLITE_OK ){
      fprintf(stderr, "Error: cannot open \"%s\"\n", zSrcFile);
      sqlite4_close(pSrc);
      return 1;
    }
    open_db(p);
    pBackup = sqlite4_backup_init(p->db, zDb, pSrc, "main");
    if( pBackup==0 ){
      fprintf(stderr, "Error: %s\n", sqlite4_errmsg(p->db));
      sqlite4_close(pSrc);
      return 1;
    }
    while( (rc = sqlite4_backup_step(pBackup,100))==SQLITE_OK
          || rc==SQLITE_BUSY  ){
      if( rc==SQLITE_BUSY ){
        if( nTimeout++ >= 3 ) break;
        sqlite4_sleep(100);
      }
    }
    sqlite4_backup_finish(pBackup);
    if( rc==SQLITE_DONE ){
      rc = 0;
    }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){
      fprintf(stderr, "Error: source database is busy\n");
      rc = 1;
    }else{
      fprintf(stderr, "Error: %s\n", sqlite4_errmsg(p->db));
      rc = 1;
    }
    sqlite4_close(pSrc);
  }else

  if( c=='s' && strncmp(azArg[0], "schema", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1965
1966
1967
1968
1969
1970
1971














































1972
1973
1974
1975
1976
1977
1978
      rc = 1;
    }else{
      rc = process_input(p, alt);
      fclose(alt);
    }
  }else
















































  if( c=='s' && strncmp(azArg[0], "schema", n)==0 && nArg<3 ){
    struct callback_data data;
    char *zErrMsg = 0;
    open_db(p);
    memcpy(&data, p, sizeof(data));
    data.showHeader = 0;
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite4_libversion(), sqlite4_sourceid());
  }else

  if( c=='v' && strncmp(azArg[0], "vfsname", n)==0 ){
    const char *zDbName = nArg==2 ? azArg[1] : "main";
    char *zVfsName = 0;
    if( p->db ){
      sqlite4_file_control(p->db, zDbName, SQLITE_FCNTL_VFSNAME, &zVfsName);
      if( zVfsName ){
        printf("%s\n", zVfsName);
        sqlite4_free(zVfsName);
      }
    }
  }else

  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);







<
<
<
<
<
<
<
<
<
<
<
<







2263
2264
2265
2266
2267
2268
2269












2270
2271
2272
2273
2274
2275
2276
  ){
    enableTimer = booleanValue(azArg[1]);
  }else
  
  if( c=='v' && strncmp(azArg[0], "version", n)==0 ){
    printf("SQLite %s %s\n" /*extra-version-info*/,
        sqlite4_libversion(), sqlite4_sourceid());












  }else

  if( c=='w' && strncmp(azArg[0], "width", n)==0 && nArg>1 ){
    int j;
    assert( nArg<=ArraySize(azArg) );
    for(j=1; j<nArg && j<ArraySize(p->colWidth); j++){
      p->colWidth[j-1] = atoi(azArg[j]);

Changes to src/sqlite.h.in.

3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
** using these functions, we are not going to tell you what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_DEPRECATED int sqlite4_aggregate_count(sqlite4_context*);
SQLITE_DEPRECATED int sqlite4_expired(sqlite4_stmt*);
SQLITE_DEPRECATED int sqlite4_transfer_bindings(sqlite4_stmt*, sqlite4_stmt*);
SQLITE_DEPRECATED int sqlite4_global_recover(void);
SQLITE_DEPRECATED void sqlite4_thread_cleanup(void);
SQLITE_DEPRECATED int sqlite4_memory_alarm(void(*)(void*,sqlite4_int64,int),void*,sqlite4_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses







<







3847
3848
3849
3850
3851
3852
3853

3854
3855
3856
3857
3858
3859
3860
** using these functions, we are not going to tell you what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_DEPRECATED int sqlite4_aggregate_count(sqlite4_context*);
SQLITE_DEPRECATED int sqlite4_expired(sqlite4_stmt*);
SQLITE_DEPRECATED int sqlite4_transfer_bindings(sqlite4_stmt*, sqlite4_stmt*);
SQLITE_DEPRECATED int sqlite4_global_recover(void);

SQLITE_DEPRECATED int sqlite4_memory_alarm(void(*)(void*,sqlite4_int64,int),void*,sqlite4_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
*/
void *sqlite4_update_hook(
  sqlite4*, 
  void(*)(void *,int ,char const *,char const *,sqlite4_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache
** KEYWORDS: {shared cache}
**
** ^(This routine enables or disables the sharing of the database cache
** and schema data structures between [database connection | connections]
** to the same database. Sharing is enabled if the argument is true
** and disabled if the argument is false.)^
**
** ^Cache sharing is enabled and disabled for an entire process.
** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
** sharing was enabled or disabled for each thread separately.
**
** ^(The cache sharing mode set by this interface effects all subsequent
** calls to [sqlite4_open()], [sqlite4_open_v2()], and [sqlite4_open16()].
** Existing database connections continue use the sharing mode
** that was in effect at the time they were opened.)^
**
** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.
**
** See Also:  [SQLite Shared-Cache Mode]
*/
int sqlite4_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite4_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4550
4551
4552
4553
4554
4555
4556





























4557
4558
4559
4560
4561
4562
4563
*/
void *sqlite4_update_hook(
  sqlite4*, 
  void(*)(void *,int ,char const *,char const *,sqlite4_int64),
  void*
);






























/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite4_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/

/*
** CAPI3REF: A Handle To An Open BLOB
** KEYWORDS: {BLOB handle} {BLOB handles}
**
** An instance of this object represents an open BLOB on which
** [sqlite4_blob_open | incremental BLOB I/O] can be performed.
** ^Objects of this type are created by [sqlite4_blob_open()]
** and destroyed by [sqlite4_blob_close()].
** ^The [sqlite4_blob_read()] and [sqlite4_blob_write()] interfaces
** can be used to read or write small subsections of the BLOB.
** ^The [sqlite4_blob_bytes()] interface returns the size of the BLOB in bytes.
*/
typedef struct sqlite4_blob sqlite4_blob;

/*
** CAPI3REF: Open A BLOB For Incremental I/O
**
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If it is zero, the BLOB is opened for read access.
** ^It is not possible to open a column that is part of an index or primary 
** key for writing. ^If [foreign key constraints] are enabled, it is 
** not possible to open a column that is part of a [child key] for writing.
**
** ^Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** appears after the AS keyword when the database is connected using [ATTACH].
** ^For the main database file, the database name is "main".
** ^For TEMP tables, the database name is "temp".
**
** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set
** to be a null pointer.)^
** ^This function sets the [database connection] error code and message
** accessible via [sqlite4_errcode()] and [sqlite4_errmsg()] and related
** functions. ^Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite4_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite4_blob_read()] and [sqlite4_blob_write()] for
** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
** ^(Changes written into a BLOB prior to the BLOB expiring are not
** rolled back by the expiration of the BLOB.  Such changes will eventually
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite4_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** ^The [sqlite4_bind_zeroblob()] and [sqlite4_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite4_blob_close()].
*/
int sqlite4_blob_open(
  sqlite4*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite4_int64 iRow,
  int flags,
  sqlite4_blob **ppBlob
);

/*
** CAPI3REF: Move a BLOB Handle to a New Row
**
** ^This function is used to move an existing blob handle so that it points
** to a different row of the same database table. ^The new row is identified
** by the rowid value passed as the second argument. Only the row can be
** changed. ^The database, table and column on which the blob handle is open
** remain the same. Moving an existing blob handle to a new row can be
** faster than closing the existing handle and opening a new one.
**
** ^(The new row must meet the same criteria as for [sqlite4_blob_open()] -
** it must exist and there must be either a blob or text value stored in
** the nominated column.)^ ^If the new row is not present in the table, or if
** it does not contain a blob or text value, or if another error occurs, an
** SQLite error code is returned and the blob handle is considered aborted.
** ^All subsequent calls to [sqlite4_blob_read()], [sqlite4_blob_write()] or
** [sqlite4_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite4_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_EXPERIMENTAL int sqlite4_blob_reopen(sqlite4_blob *, sqlite4_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].
**
** ^Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** ^If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** ^(Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.)^
**
** ^(The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.)^
**
** ^Calling this routine with a null pointer (such as would be returned
** by a failed call to [sqlite4_blob_open()]) is a harmless no-op.
*/
int sqlite4_blob_close(sqlite4_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite4_blob_open()] and which has not
** been closed by [sqlite4_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
*/
int sqlite4_blob_bytes(sqlite4_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^
**
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is read.  ^If N or iOffset is
** less than zero, [SQLITE_ERROR] is returned and no data is read.
** ^The size of the blob (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite4_blob_bytes()] interface.
**
** ^An attempt to read from an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].
**
** ^(On success, sqlite4_blob_read() returns SQLITE_OK.
** Otherwise, an [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite4_blob_open()] and which has not
** been closed by [sqlite4_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite4_blob_write()].
*/
int sqlite4_blob_read(sqlite4_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.
**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite4_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** ^This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  ^If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite4_blob_bytes()] interface.
**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** ^(On success, sqlite4_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite4_blob_open()] and which has not
** been closed by [sqlite4_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite4_blob_read()].
*/
int sqlite4_blob_write(sqlite4_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite4_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
** single default VFS that is appropriate for the host computer.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







5095
5096
5097
5098
5099
5100
5101

















































































































































































































5102
5103
5104
5105
5106
5107
5108
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the
** interface fixed, support it indefinitely, and remove this comment.
*/


















































































































































































































/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite4_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
** single default VFS that is appropriate for the host computer.
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
** prepared to accommodate additional static mutexes.
*/
#define SQLITE_MUTEX_FAST             0
#define SQLITE_MUTEX_RECURSIVE        1
#define SQLITE_MUTEX_STATIC_MASTER    2
#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite4_malloc() */
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite4BtreeOpen() */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite4_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
#define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite4PageMalloc() */

/*
** CAPI3REF: Retrieve the mutex for a database connection







|







5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
** prepared to accommodate additional static mutexes.
*/
#define SQLITE_MUTEX_FAST             0
#define SQLITE_MUTEX_RECURSIVE        1
#define SQLITE_MUTEX_STATIC_MASTER    2
#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite4_malloc() */
#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_OPEN      4  /* NOT USED */
#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite4_random() */
#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
#define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
#define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite4PageMalloc() */

/*
** CAPI3REF: Retrieve the mutex for a database connection
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
  void (*xUnpin)(sqlite4_pcache*, void*, int discard);
  void (*xRekey)(sqlite4_pcache*, void*, unsigned oldKey, unsigned newKey);
  void (*xTruncate)(sqlite4_pcache*, unsigned iLimit);
  void (*xDestroy)(sqlite4_pcache*);
};


/*
** CAPI3REF: Online Backup Object
**
** The sqlite4_backup object records state information about an ongoing
** online backup operation.  ^The sqlite4_backup object is created by
** a call to [sqlite4_backup_init()] and is destroyed by a call to
** [sqlite4_backup_finish()].
**
** See Also: [Using the SQLite Online Backup API]
*/
typedef struct sqlite4_backup sqlite4_backup;

/*
** CAPI3REF: Online Backup API.
**
** The backup API copies the content of one database into another.
** It is useful either for creating backups of databases or
** for copying in-memory databases to or from persistent files. 
**
** See Also: [Using the SQLite Online Backup API]
**
** ^SQLite holds a write transaction open on the destination database file
** for the duration of the backup operation.
** ^The source database is read-locked only while it is being read;
** it is not locked continuously for the entire backup operation.
** ^Thus, the backup may be performed on a live source database without
** preventing other database connections from
** reading or writing to the source database while the backup is underway.
** 
** ^(To perform a backup operation: 
**   <ol>
**     <li><b>sqlite4_backup_init()</b> is called once to initialize the
**         backup, 
**     <li><b>sqlite4_backup_step()</b> is called one or more times to transfer 
**         the data between the two databases, and finally
**     <li><b>sqlite4_backup_finish()</b> is called to release all resources 
**         associated with the backup operation. 
**   </ol>)^
** There should be exactly one call to sqlite4_backup_finish() for each
** successful call to sqlite4_backup_init().
**
** [[sqlite4_backup_init()]] <b>sqlite4_backup_init()</b>
**
** ^The D and N arguments to sqlite4_backup_init(D,N,S,M) are the 
** [database connection] associated with the destination database 
** and the database name, respectively.
** ^The database name is "main" for the main database, "temp" for the
** temporary database, or the name specified after the AS keyword in
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite4_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite4_backup_init(D,N,S,M) will fail with
** an error.
**
** ^If an error occurs within sqlite4_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite4_backup_init()
** can be retrieved using the [sqlite4_errcode()], [sqlite4_errmsg()], and/or
** [sqlite4_errmsg16()] functions.
** ^A successful call to sqlite4_backup_init() returns a pointer to an
** [sqlite4_backup] object.
** ^The [sqlite4_backup] object may be used with the sqlite4_backup_step() and
** sqlite4_backup_finish() functions to perform the specified backup 
** operation.
**
** [[sqlite4_backup_step()]] <b>sqlite4_backup_step()</b>
**
** ^Function sqlite4_backup_step(B,N) will copy up to N pages between 
** the source and destination databases specified by [sqlite4_backup] object B.
** ^If N is negative, all remaining source pages are copied. 
** ^If sqlite4_backup_step(B,N) successfully copies N pages and there
** are still more pages to be copied, then the function returns [SQLITE_OK].
** ^If sqlite4_backup_step(B,N) successfully finishes copying all pages
** from source to destination, then it returns [SQLITE_DONE].
** ^If an error occurs while running sqlite4_backup_step(B,N),
** then an [error code] is returned. ^As well as [SQLITE_OK] and
** [SQLITE_DONE], a call to sqlite4_backup_step() may return [SQLITE_READONLY],
** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
**
** ^(The sqlite4_backup_step() might return [SQLITE_READONLY] if
** <ol>
** <li> the destination database was opened read-only, or
** <li> the destination database is using write-ahead-log journaling
** and the destination and source page sizes differ, or
** <li> the destination database is an in-memory database and the
** destination and source page sizes differ.
** </ol>)^
**
** ^If sqlite4_backup_step() cannot obtain a required file-system lock, then
** the [sqlite4_busy_handler | busy-handler function]
** is invoked (if one is specified). ^If the 
** busy-handler returns non-zero before the lock is available, then 
** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
** sqlite4_backup_step() can be retried later. ^If the source
** [database connection]
** is being used to write to the source database when sqlite4_backup_step()
** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
** case the call to sqlite4_backup_step() can be retried later on. ^(If
** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
** [SQLITE_READONLY] is returned, then 
** there is no point in retrying the call to sqlite4_backup_step(). These 
** errors are considered fatal.)^  The application must accept 
** that the backup operation has failed and pass the backup operation handle 
** to the sqlite4_backup_finish() to release associated resources.
**
** ^The first call to sqlite4_backup_step() obtains an exclusive lock
** on the destination file. ^The exclusive lock is not released until either 
** sqlite4_backup_finish() is called or the backup operation is complete 
** and sqlite4_backup_step() returns [SQLITE_DONE].  ^Every call to
** sqlite4_backup_step() obtains a [shared lock] on the source database that
** lasts for the duration of the sqlite4_backup_step() call.
** ^Because the source database is not locked between calls to
** sqlite4_backup_step(), the source database may be modified mid-way
** through the backup process.  ^If the source database is modified by an
** external process or via a database connection other than the one being
** used by the backup operation, then the backup will be automatically
** restarted by the next call to sqlite4_backup_step(). ^If the source 
** database is modified by the using the same database connection as is used
** by the backup operation, then the backup database is automatically
** updated at the same time.
**
** [[sqlite4_backup_finish()]] <b>sqlite4_backup_finish()</b>
**
** When sqlite4_backup_step() has returned [SQLITE_DONE], or when the 
** application wishes to abandon the backup operation, the application
** should destroy the [sqlite4_backup] by passing it to sqlite4_backup_finish().
** ^The sqlite4_backup_finish() interfaces releases all
** resources associated with the [sqlite4_backup] object. 
** ^If sqlite4_backup_step() has not yet returned [SQLITE_DONE], then any
** active write-transaction on the destination database is rolled back.
** The [sqlite4_backup] object is invalid
** and may not be used following a call to sqlite4_backup_finish().
**
** ^The value returned by sqlite4_backup_finish is [SQLITE_OK] if no
** sqlite4_backup_step() errors occurred, regardless or whether or not
** sqlite4_backup_step() completed.
** ^If an out-of-memory condition or IO error occurred during any prior
** sqlite4_backup_step() call on the same [sqlite4_backup] object, then
** sqlite4_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite4_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite4_backup_finish().
**
** [[sqlite4_backup__remaining()]] [[sqlite4_backup_pagecount()]]
** <b>sqlite4_backup_remaining() and sqlite4_backup_pagecount()</b>
**
** ^Each call to sqlite4_backup_step() sets two values inside
** the [sqlite4_backup] object: the number of pages still to be backed
** up and the total number of pages in the source database file.
** The sqlite4_backup_remaining() and sqlite4_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** ^The values returned by these functions are only updated by
** sqlite4_backup_step(). ^If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file
** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
** from within other threads.
**
** However, the application must guarantee that the destination 
** [database connection] is not passed to any other API (by any thread) after 
** sqlite4_backup_init() is called and before the corresponding call to
** sqlite4_backup_finish().  SQLite does not currently check to see
** if the application incorrectly accesses the destination [database connection]
** and so no error code is reported, but the operations may malfunction
** nevertheless.  Use of the destination database connection while a
** backup is in progress might also also cause a mutex deadlock.
**
** If running in [shared cache mode], the application must
** guarantee that the shared cache used by the destination database
** is not accessed while the backup is running. In practice this means
** that the application must guarantee that the disk file being 
** backed up to is not accessed by any connection within the process,
** not just the specific connection that was passed to sqlite4_backup_init().
**
** The [sqlite4_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite4_backup_step().
** However, the sqlite4_backup_remaining() and sqlite4_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite4_backup_step() it is
** possible that they return invalid values.
*/
sqlite4_backup *sqlite4_backup_init(
  sqlite4 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite4 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
int sqlite4_backup_step(sqlite4_backup *p, int nPage);
int sqlite4_backup_finish(sqlite4_backup *p);
int sqlite4_backup_remaining(sqlite4_backup *p);
int sqlite4_backup_pagecount(sqlite4_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
** [SQLite Shared-Cache Mode] for a description of shared-cache locking. 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







5992
5993
5994
5995
5996
5997
5998













































































































































































































5999
6000
6001
6002
6003
6004
6005
  void (*xUnpin)(sqlite4_pcache*, void*, int discard);
  void (*xRekey)(sqlite4_pcache*, void*, unsigned oldKey, unsigned newKey);
  void (*xTruncate)(sqlite4_pcache*, unsigned iLimit);
  void (*xDestroy)(sqlite4_pcache*);
};















































































































































































































/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
** [SQLite Shared-Cache Mode] for a description of shared-cache locking. 

Deleted src/sqlite4ext.h.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
** 2006 June 7
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the SQLite interface for use by
** shared libraries that want to be imported as extensions into
** an SQLite instance.  Shared libraries that intend to be loaded
** as extensions by SQLite should #include this file instead of 
** sqlite4.h.
*/
#ifndef _SQLITE3EXT_H_
#define _SQLITE3EXT_H_
#include "sqlite4.h"

typedef struct sqlite4_api_routines sqlite4_api_routines;

/*
** The following structure holds pointers to all of the SQLite API
** routines.
**
** WARNING:  In order to maintain backwards compatibility, add new
** interfaces to the end of this structure only.  If you insert new
** interfaces in the middle of this structure, then older different
** versions of SQLite will not be able to load each others' shared
** libraries!
*/
struct sqlite4_api_routines {
  void * (*aggregate_context)(sqlite4_context*,int nBytes);
  int  (*aggregate_count)(sqlite4_context*);
  int  (*bind_blob)(sqlite4_stmt*,int,const void*,int n,void(*)(void*));
  int  (*bind_double)(sqlite4_stmt*,int,double);
  int  (*bind_int)(sqlite4_stmt*,int,int);
  int  (*bind_int64)(sqlite4_stmt*,int,sqlite_int64);
  int  (*bind_null)(sqlite4_stmt*,int);
  int  (*bind_parameter_count)(sqlite4_stmt*);
  int  (*bind_parameter_index)(sqlite4_stmt*,const char*zName);
  const char * (*bind_parameter_name)(sqlite4_stmt*,int);
  int  (*bind_text)(sqlite4_stmt*,int,const char*,int n,void(*)(void*));
  int  (*bind_text16)(sqlite4_stmt*,int,const void*,int,void(*)(void*));
  int  (*bind_value)(sqlite4_stmt*,int,const sqlite4_value*);
  int  (*busy_handler)(sqlite4*,int(*)(void*,int),void*);
  int  (*busy_timeout)(sqlite4*,int ms);
  int  (*changes)(sqlite4*);
  int  (*close)(sqlite4*);
  int  (*collation_needed)(sqlite4*,void*,void(*)(void*,sqlite4*,
                           int eTextRep,const char*));
  int  (*collation_needed16)(sqlite4*,void*,void(*)(void*,sqlite4*,
                             int eTextRep,const void*));
  const void * (*column_blob)(sqlite4_stmt*,int iCol);
  int  (*column_bytes)(sqlite4_stmt*,int iCol);
  int  (*column_bytes16)(sqlite4_stmt*,int iCol);
  int  (*column_count)(sqlite4_stmt*pStmt);
  const char * (*column_database_name)(sqlite4_stmt*,int);
  const void * (*column_database_name16)(sqlite4_stmt*,int);
  const char * (*column_decltype)(sqlite4_stmt*,int i);
  const void * (*column_decltype16)(sqlite4_stmt*,int);
  double  (*column_double)(sqlite4_stmt*,int iCol);
  int  (*column_int)(sqlite4_stmt*,int iCol);
  sqlite_int64  (*column_int64)(sqlite4_stmt*,int iCol);
  const char * (*column_name)(sqlite4_stmt*,int);
  const void * (*column_name16)(sqlite4_stmt*,int);
  const char * (*column_origin_name)(sqlite4_stmt*,int);
  const void * (*column_origin_name16)(sqlite4_stmt*,int);
  const char * (*column_table_name)(sqlite4_stmt*,int);
  const void * (*column_table_name16)(sqlite4_stmt*,int);
  const unsigned char * (*column_text)(sqlite4_stmt*,int iCol);
  const void * (*column_text16)(sqlite4_stmt*,int iCol);
  int  (*column_type)(sqlite4_stmt*,int iCol);
  sqlite4_value* (*column_value)(sqlite4_stmt*,int iCol);
  void * (*commit_hook)(sqlite4*,int(*)(void*),void*);
  int  (*complete)(const char*sql);
  int  (*complete16)(const void*sql);
  int  (*create_collation)(sqlite4*,const char*,int,void*,
                           int(*)(void*,int,const void*,int,const void*),
                           int(*)(void*,int,const void*,int,const void*),
                           void(*)(void*));
  int  (*create_function)(sqlite4*,const char*,int,int,void*,
                          void (*xFunc)(sqlite4_context*,int,sqlite4_value**),
                          void (*xStep)(sqlite4_context*,int,sqlite4_value**),
                          void (*xFinal)(sqlite4_context*));
  int  (*create_function16)(sqlite4*,const void*,int,int,void*,
                            void (*xFunc)(sqlite4_context*,int,sqlite4_value**),
                            void (*xStep)(sqlite4_context*,int,sqlite4_value**),
                            void (*xFinal)(sqlite4_context*));
  int (*create_module)(sqlite4*,const char*,const sqlite4_module*,void*);
  int  (*data_count)(sqlite4_stmt*pStmt);
  sqlite4 * (*db_handle)(sqlite4_stmt*);
  int (*declare_vtab)(sqlite4*,const char*);
  int  (*enable_shared_cache)(int);
  int  (*errcode)(sqlite4*db);
  const char * (*errmsg)(sqlite4*);
  const void * (*errmsg16)(sqlite4*);
  int  (*exec)(sqlite4*,const char*,sqlite4_callback,void*,char**);
  int  (*expired)(sqlite4_stmt*);
  int  (*finalize)(sqlite4_stmt*pStmt);
  void  (*free)(void*);
  void  (*free_table)(char**result);
  int  (*get_autocommit)(sqlite4*);
  void * (*get_auxdata)(sqlite4_context*,int);
  int  (*get_table)(sqlite4*,const char*,char***,int*,int*,char**);
  int  (*global_recover)(void);
  void  (*interruptx)(sqlite4*);
  sqlite_int64  (*last_insert_rowid)(sqlite4*);
  const char * (*libversion)(void);
  int  (*libversion_number)(void);
  void *(*malloc)(int);
  char * (*mprintf)(const char*,...);
  int  (*open)(const char*,sqlite4**);
  int  (*open16)(const void*,sqlite4**);
  int  (*prepare)(sqlite4*,const char*,int,sqlite4_stmt**,const char**);
  int  (*prepare16)(sqlite4*,const void*,int,sqlite4_stmt**,const void**);
  void * (*profile)(sqlite4*,void(*)(void*,const char*,sqlite_uint64),void*);
  void  (*progress_handler)(sqlite4*,int,int(*)(void*),void*);
  void *(*realloc)(void*,int);
  int  (*reset)(sqlite4_stmt*pStmt);
  void  (*result_blob)(sqlite4_context*,const void*,int,void(*)(void*));
  void  (*result_double)(sqlite4_context*,double);
  void  (*result_error)(sqlite4_context*,const char*,int);
  void  (*result_error16)(sqlite4_context*,const void*,int);
  void  (*result_int)(sqlite4_context*,int);
  void  (*result_int64)(sqlite4_context*,sqlite_int64);
  void  (*result_null)(sqlite4_context*);
  void  (*result_text)(sqlite4_context*,const char*,int,void(*)(void*));
  void  (*result_text16)(sqlite4_context*,const void*,int,void(*)(void*));
  void  (*result_text16be)(sqlite4_context*,const void*,int,void(*)(void*));
  void  (*result_text16le)(sqlite4_context*,const void*,int,void(*)(void*));
  void  (*result_value)(sqlite4_context*,sqlite4_value*);
  void * (*rollback_hook)(sqlite4*,void(*)(void*),void*);
  int  (*set_authorizer)(sqlite4*,int(*)(void*,int,const char*,const char*,
                         const char*,const char*),void*);
  void  (*set_auxdata)(sqlite4_context*,int,void*,void (*)(void*));
  char * (*snprintf)(int,char*,const char*,...);
  int  (*step)(sqlite4_stmt*);
  int  (*table_column_metadata)(sqlite4*,const char*,const char*,const char*,
                                char const**,char const**,int*,int*,int*);
  void  (*thread_cleanup)(void);
  int  (*total_changes)(sqlite4*);
  void * (*trace)(sqlite4*,void(*xTrace)(void*,const char*),void*);
  int  (*transfer_bindings)(sqlite4_stmt*,sqlite4_stmt*);
  void * (*update_hook)(sqlite4*,void(*)(void*,int ,char const*,char const*,
                                         sqlite_int64),void*);
  void * (*user_data)(sqlite4_context*);
  const void * (*value_blob)(sqlite4_value*);
  int  (*value_bytes)(sqlite4_value*);
  int  (*value_bytes16)(sqlite4_value*);
  double  (*value_double)(sqlite4_value*);
  int  (*value_int)(sqlite4_value*);
  sqlite_int64  (*value_int64)(sqlite4_value*);
  int  (*value_numeric_type)(sqlite4_value*);
  const unsigned char * (*value_text)(sqlite4_value*);
  const void * (*value_text16)(sqlite4_value*);
  const void * (*value_text16be)(sqlite4_value*);
  const void * (*value_text16le)(sqlite4_value*);
  int  (*value_type)(sqlite4_value*);
  char *(*vmprintf)(const char*,va_list);
  /* Added ??? */
  int (*overload_function)(sqlite4*, const char *zFuncName, int nArg);
  /* Added by 3.3.13 */
  int (*prepare_v2)(sqlite4*,const char*,int,sqlite4_stmt**,const char**);
  int (*prepare16_v2)(sqlite4*,const void*,int,sqlite4_stmt**,const void**);
  int (*clear_bindings)(sqlite4_stmt*);
  /* Added by 3.4.1 */
  int (*create_module_v2)(sqlite4*,const char*,const sqlite4_module*,void*,
                          void (*xDestroy)(void *));
  /* Added by 3.5.0 */
  int (*bind_zeroblob)(sqlite4_stmt*,int,int);
  int (*blob_bytes)(sqlite4_blob*);
  int (*blob_close)(sqlite4_blob*);
  int (*blob_open)(sqlite4*,const char*,const char*,const char*,sqlite4_int64,
                   int,sqlite4_blob**);
  int (*blob_read)(sqlite4_blob*,void*,int,int);
  int (*blob_write)(sqlite4_blob*,const void*,int,int);
  int (*file_control)(sqlite4*,const char*,int,void*);
  sqlite4_int64 (*memory_highwater)(int);
  sqlite4_int64 (*memory_used)(void);
  sqlite4_mutex *(*mutex_alloc)(int);
  void (*mutex_enter)(sqlite4_mutex*);
  void (*mutex_free)(sqlite4_mutex*);
  void (*mutex_leave)(sqlite4_mutex*);
  int (*mutex_try)(sqlite4_mutex*);
  int (*open_v2)(const char*,sqlite4**,int,const char*);
  int (*release_memory)(int);
  void (*result_error_nomem)(sqlite4_context*);
  void (*result_error_toobig)(sqlite4_context*);
  int (*sleep)(int);
  void (*soft_heap_limit)(int);
  sqlite4_vfs *(*vfs_find)(const char*);
  int (*vfs_register)(sqlite4_vfs*,int);
  int (*vfs_unregister)(sqlite4_vfs*);
  int (*xthreadsafe)(void);
  void (*result_zeroblob)(sqlite4_context*,int);
  void (*result_error_code)(sqlite4_context*,int);
  int (*test_control)(int, ...);
  void (*randomness)(int,void*);
  sqlite4 *(*context_db_handle)(sqlite4_context*);
  int (*extended_result_codes)(sqlite4*,int);
  int (*limit)(sqlite4*,int,int);
  sqlite4_stmt *(*next_stmt)(sqlite4*,sqlite4_stmt*);
  const char *(*sql)(sqlite4_stmt*);
  int (*status)(int,int*,int*,int);
  int (*backup_finish)(sqlite4_backup*);
  sqlite4_backup *(*backup_init)(sqlite4*,const char*,sqlite4*,const char*);
  int (*backup_pagecount)(sqlite4_backup*);
  int (*backup_remaining)(sqlite4_backup*);
  int (*backup_step)(sqlite4_backup*,int);
  const char *(*compileoption_get)(int);
  int (*compileoption_used)(const char*);
  int (*create_function_v2)(sqlite4*,const char*,int,int,void*,
                            void (*xFunc)(sqlite4_context*,int,sqlite4_value**),
                            void (*xStep)(sqlite4_context*,int,sqlite4_value**),
                            void (*xFinal)(sqlite4_context*),
                            void(*xDestroy)(void*));
  int (*db_config)(sqlite4*,int,...);
  sqlite4_mutex *(*db_mutex)(sqlite4*);
  int (*db_status)(sqlite4*,int,int*,int*,int);
  int (*extended_errcode)(sqlite4*);
  void (*log)(int,const char*,...);
  sqlite4_int64 (*soft_heap_limit64)(sqlite4_int64);
  const char *(*sourceid)(void);
  int (*stmt_status)(sqlite4_stmt*,int,int);
  int (*strnicmp)(const char*,const char*,int);
  int (*unlock_notify)(sqlite4*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite4*,int);
  int (*wal_checkpoint)(sqlite4*,const char*);
  void *(*wal_hook)(sqlite4*,int(*)(void*,sqlite4*,const char*,int),void*);
  int (*blob_reopen)(sqlite4_blob*,sqlite4_int64);
  int (*vtab_config)(sqlite4*,int op,...);
  int (*vtab_on_conflict)(sqlite4*);
};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite4_api structure.
**
** This header file is also used by the loadext.c source file
** (part of the main SQLite library - not an extension) so that
** it can get access to the sqlite4_api_routines structure
** definition.  But the main library does not want to redefine
** the API.  So the redefinition macros are only valid if the
** SQLITE_CORE macros is undefined.
*/
#ifndef SQLITE_CORE
#define sqlite4_aggregate_context      sqlite4_api->aggregate_context
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite4_aggregate_count        sqlite4_api->aggregate_count
#endif
#define sqlite4_bind_blob              sqlite4_api->bind_blob
#define sqlite4_bind_double            sqlite4_api->bind_double
#define sqlite4_bind_int               sqlite4_api->bind_int
#define sqlite4_bind_int64             sqlite4_api->bind_int64
#define sqlite4_bind_null              sqlite4_api->bind_null
#define sqlite4_bind_parameter_count   sqlite4_api->bind_parameter_count
#define sqlite4_bind_parameter_index   sqlite4_api->bind_parameter_index
#define sqlite4_bind_parameter_name    sqlite4_api->bind_parameter_name
#define sqlite4_bind_text              sqlite4_api->bind_text
#define sqlite4_bind_text16            sqlite4_api->bind_text16
#define sqlite4_bind_value             sqlite4_api->bind_value
#define sqlite4_busy_handler           sqlite4_api->busy_handler
#define sqlite4_busy_timeout           sqlite4_api->busy_timeout
#define sqlite4_changes                sqlite4_api->changes
#define sqlite4_close                  sqlite4_api->close
#define sqlite4_collation_needed       sqlite4_api->collation_needed
#define sqlite4_collation_needed16     sqlite4_api->collation_needed16
#define sqlite4_column_blob            sqlite4_api->column_blob
#define sqlite4_column_bytes           sqlite4_api->column_bytes
#define sqlite4_column_bytes16         sqlite4_api->column_bytes16
#define sqlite4_column_count           sqlite4_api->column_count
#define sqlite4_column_database_name   sqlite4_api->column_database_name
#define sqlite4_column_database_name16 sqlite4_api->column_database_name16
#define sqlite4_column_decltype        sqlite4_api->column_decltype
#define sqlite4_column_decltype16      sqlite4_api->column_decltype16
#define sqlite4_column_double          sqlite4_api->column_double
#define sqlite4_column_int             sqlite4_api->column_int
#define sqlite4_column_int64           sqlite4_api->column_int64
#define sqlite4_column_name            sqlite4_api->column_name
#define sqlite4_column_name16          sqlite4_api->column_name16
#define sqlite4_column_origin_name     sqlite4_api->column_origin_name
#define sqlite4_column_origin_name16   sqlite4_api->column_origin_name16
#define sqlite4_column_table_name      sqlite4_api->column_table_name
#define sqlite4_column_table_name16    sqlite4_api->column_table_name16
#define sqlite4_column_text            sqlite4_api->column_text
#define sqlite4_column_text16          sqlite4_api->column_text16
#define sqlite4_column_type            sqlite4_api->column_type
#define sqlite4_column_value           sqlite4_api->column_value
#define sqlite4_commit_hook            sqlite4_api->commit_hook
#define sqlite4_complete               sqlite4_api->complete
#define sqlite4_complete16             sqlite4_api->complete16
#define sqlite4_create_collation       sqlite4_api->create_collation
#define sqlite4_create_function        sqlite4_api->create_function
#define sqlite4_create_function16      sqlite4_api->create_function16
#define sqlite4_create_module          sqlite4_api->create_module
#define sqlite4_create_module_v2       sqlite4_api->create_module_v2
#define sqlite4_data_count             sqlite4_api->data_count
#define sqlite4_db_handle              sqlite4_api->db_handle
#define sqlite4_declare_vtab           sqlite4_api->declare_vtab
#define sqlite4_enable_shared_cache    sqlite4_api->enable_shared_cache
#define sqlite4_errcode                sqlite4_api->errcode
#define sqlite4_errmsg                 sqlite4_api->errmsg
#define sqlite4_errmsg16               sqlite4_api->errmsg16
#define sqlite4_exec                   sqlite4_api->exec
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite4_expired                sqlite4_api->expired
#endif
#define sqlite4_finalize               sqlite4_api->finalize
#define sqlite4_free                   sqlite4_api->free
#define sqlite4_free_table             sqlite4_api->free_table
#define sqlite4_get_autocommit         sqlite4_api->get_autocommit
#define sqlite4_get_auxdata            sqlite4_api->get_auxdata
#define sqlite4_get_table              sqlite4_api->get_table
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite4_global_recover         sqlite4_api->global_recover
#endif
#define sqlite4_interrupt              sqlite4_api->interruptx
#define sqlite4_last_insert_rowid      sqlite4_api->last_insert_rowid
#define sqlite4_libversion             sqlite4_api->libversion
#define sqlite4_libversion_number      sqlite4_api->libversion_number
#define sqlite4_malloc                 sqlite4_api->malloc
#define sqlite4_mprintf                sqlite4_api->mprintf
#define sqlite4_open                   sqlite4_api->open
#define sqlite4_open16                 sqlite4_api->open16
#define sqlite4_prepare                sqlite4_api->prepare
#define sqlite4_prepare16              sqlite4_api->prepare16
#define sqlite4_prepare_v2             sqlite4_api->prepare_v2
#define sqlite4_prepare16_v2           sqlite4_api->prepare16_v2
#define sqlite4_profile                sqlite4_api->profile
#define sqlite4_progress_handler       sqlite4_api->progress_handler
#define sqlite4_realloc                sqlite4_api->realloc
#define sqlite4_reset                  sqlite4_api->reset
#define sqlite4_result_blob            sqlite4_api->result_blob
#define sqlite4_result_double          sqlite4_api->result_double
#define sqlite4_result_error           sqlite4_api->result_error
#define sqlite4_result_error16         sqlite4_api->result_error16
#define sqlite4_result_int             sqlite4_api->result_int
#define sqlite4_result_int64           sqlite4_api->result_int64
#define sqlite4_result_null            sqlite4_api->result_null
#define sqlite4_result_text            sqlite4_api->result_text
#define sqlite4_result_text16          sqlite4_api->result_text16
#define sqlite4_result_text16be        sqlite4_api->result_text16be
#define sqlite4_result_text16le        sqlite4_api->result_text16le
#define sqlite4_result_value           sqlite4_api->result_value
#define sqlite4_rollback_hook          sqlite4_api->rollback_hook
#define sqlite4_set_authorizer         sqlite4_api->set_authorizer
#define sqlite4_set_auxdata            sqlite4_api->set_auxdata
#define sqlite4_snprintf               sqlite4_api->snprintf
#define sqlite4_step                   sqlite4_api->step
#define sqlite4_table_column_metadata  sqlite4_api->table_column_metadata
#define sqlite4_thread_cleanup         sqlite4_api->thread_cleanup
#define sqlite4_total_changes          sqlite4_api->total_changes
#define sqlite4_trace                  sqlite4_api->trace
#ifndef SQLITE_OMIT_DEPRECATED
#define sqlite4_transfer_bindings      sqlite4_api->transfer_bindings
#endif
#define sqlite4_update_hook            sqlite4_api->update_hook
#define sqlite4_user_data              sqlite4_api->user_data
#define sqlite4_value_blob             sqlite4_api->value_blob
#define sqlite4_value_bytes            sqlite4_api->value_bytes
#define sqlite4_value_bytes16          sqlite4_api->value_bytes16
#define sqlite4_value_double           sqlite4_api->value_double
#define sqlite4_value_int              sqlite4_api->value_int
#define sqlite4_value_int64            sqlite4_api->value_int64
#define sqlite4_value_numeric_type     sqlite4_api->value_numeric_type
#define sqlite4_value_text             sqlite4_api->value_text
#define sqlite4_value_text16           sqlite4_api->value_text16
#define sqlite4_value_text16be         sqlite4_api->value_text16be
#define sqlite4_value_text16le         sqlite4_api->value_text16le
#define sqlite4_value_type             sqlite4_api->value_type
#define sqlite4_vmprintf               sqlite4_api->vmprintf
#define sqlite4_overload_function      sqlite4_api->overload_function
#define sqlite4_prepare_v2             sqlite4_api->prepare_v2
#define sqlite4_prepare16_v2           sqlite4_api->prepare16_v2
#define sqlite4_clear_bindings         sqlite4_api->clear_bindings
#define sqlite4_bind_zeroblob          sqlite4_api->bind_zeroblob
#define sqlite4_blob_bytes             sqlite4_api->blob_bytes
#define sqlite4_blob_close             sqlite4_api->blob_close
#define sqlite4_blob_open              sqlite4_api->blob_open
#define sqlite4_blob_read              sqlite4_api->blob_read
#define sqlite4_blob_write             sqlite4_api->blob_write
#define sqlite4_file_control           sqlite4_api->file_control
#define sqlite4_memory_highwater       sqlite4_api->memory_highwater
#define sqlite4_memory_used            sqlite4_api->memory_used
#define sqlite4_mutex_alloc            sqlite4_api->mutex_alloc
#define sqlite4_mutex_enter            sqlite4_api->mutex_enter
#define sqlite4_mutex_free             sqlite4_api->mutex_free
#define sqlite4_mutex_leave            sqlite4_api->mutex_leave
#define sqlite4_mutex_try              sqlite4_api->mutex_try
#define sqlite4_open_v2                sqlite4_api->open_v2
#define sqlite4_release_memory         sqlite4_api->release_memory
#define sqlite4_result_error_nomem     sqlite4_api->result_error_nomem
#define sqlite4_result_error_toobig    sqlite4_api->result_error_toobig
#define sqlite4_sleep                  sqlite4_api->sleep
#define sqlite4_soft_heap_limit        sqlite4_api->soft_heap_limit
#define sqlite4_vfs_find               sqlite4_api->vfs_find
#define sqlite4_vfs_register           sqlite4_api->vfs_register
#define sqlite4_vfs_unregister         sqlite4_api->vfs_unregister
#define sqlite4_threadsafe             sqlite4_api->xthreadsafe
#define sqlite4_result_zeroblob        sqlite4_api->result_zeroblob
#define sqlite4_result_error_code      sqlite4_api->result_error_code
#define sqlite4_test_control           sqlite4_api->test_control
#define sqlite4_randomness             sqlite4_api->randomness
#define sqlite4_context_db_handle      sqlite4_api->context_db_handle
#define sqlite4_extended_result_codes  sqlite4_api->extended_result_codes
#define sqlite4_limit                  sqlite4_api->limit
#define sqlite4_next_stmt              sqlite4_api->next_stmt
#define sqlite4_sql                    sqlite4_api->sql
#define sqlite4_status                 sqlite4_api->status
#define sqlite4_backup_finish          sqlite4_api->backup_finish
#define sqlite4_backup_init            sqlite4_api->backup_init
#define sqlite4_backup_pagecount       sqlite4_api->backup_pagecount
#define sqlite4_backup_remaining       sqlite4_api->backup_remaining
#define sqlite4_backup_step            sqlite4_api->backup_step
#define sqlite4_compileoption_get      sqlite4_api->compileoption_get
#define sqlite4_compileoption_used     sqlite4_api->compileoption_used
#define sqlite4_create_function_v2     sqlite4_api->create_function_v2
#define sqlite4_db_config              sqlite4_api->db_config
#define sqlite4_db_mutex               sqlite4_api->db_mutex
#define sqlite4_db_status              sqlite4_api->db_status
#define sqlite4_extended_errcode       sqlite4_api->extended_errcode
#define sqlite4_log                    sqlite4_api->log
#define sqlite4_soft_heap_limit64      sqlite4_api->soft_heap_limit64
#define sqlite4_sourceid               sqlite4_api->sourceid
#define sqlite4_stmt_status            sqlite4_api->stmt_status
#define sqlite4_strnicmp               sqlite4_api->strnicmp
#define sqlite4_unlock_notify          sqlite4_api->unlock_notify
#define sqlite4_wal_autocheckpoint     sqlite4_api->wal_autocheckpoint
#define sqlite4_wal_checkpoint         sqlite4_api->wal_checkpoint
#define sqlite4_wal_hook               sqlite4_api->wal_hook
#define sqlite4_blob_reopen            sqlite4_api->blob_reopen
#define sqlite4_vtab_config            sqlite4_api->vtab_config
#define sqlite4_vtab_on_conflict       sqlite4_api->vtab_on_conflict
#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite4_api_routines *sqlite4_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite4_api = v;

#endif /* _SQLITE3EXT_H_ */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/sqliteInt.h.

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
#include "vdbe.h"
#include "pager.h"
#include "pcache.h"
#include "storage.h"

#include "os.h"
#include "mutex.h"


/*
** Each database file to be accessed by the system is an instance
** of the following structure.  There are normally two of these structures
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.
*/
struct Db {
  char *zName;         /* Name of this database */
  Btree *pBt;          /* The B*Tree structure for this database file */
  KVStore *pKV;        /* KV store for the database file */
  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
  u8 safety_level;     /* How aggressive at syncing data to disk */
  Schema *pSchema;     /* Pointer to database schema (possibly shared) */
};

/*
** An instance of the following structure stores a database schema.
**
** Most Schema objects are associated with a Btree.  The exception is
** the Schema for the TEMP databaes (sqlite4.aDb[1]) which is free-standing.
** In shared cache mode, a single Schema object can be shared by multiple
** Btrees that refer to the same underlying BtShared object.
** 
** Schema objects are automatically deallocated when the last Btree that
** references them is destroyed.   The TEMP Schema is manually freed by
** sqlite4_close().
*
** A thread must be holding a mutex on the corresponding Btree in order
** to access Schema content.  This implies that the thread must also be
** holding a mutex on the sqlite4 connection pointer that owns the Btree.
** For a TEMP Schema, only the connection mutex is required.
*/
struct Schema {
  int schema_cookie;   /* Database schema version number for this file */
  int iGeneration;     /* Generation counter.  Incremented with each change */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */







|



<

<
<















<


|






|

<
<

|



|

|







675
676
677
678
679
680
681
682
683
684
685

686


687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712


713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/

#include "vdbe.h"


#include "storage.h"

#include "os.h"
#include "mutex.h"


/*
** Each database file to be accessed by the system is an instance
** of the following structure.  There are normally two of these structures
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
** aDb[1] is the database file used to hold temporary tables.  Additional
** databases may be attached.
*/
struct Db {
  char *zName;         /* Name of this database */

  KVStore *pKV;        /* KV store for the database file */
  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
  u8 chngFlag;         /* True if modified */
  Schema *pSchema;     /* Pointer to database schema (possibly shared) */
};

/*
** An instance of the following structure stores a database schema.
**
** Most Schema objects are associated with a database file.  The exception is
** the Schema for the TEMP databaes (sqlite4.aDb[1]) which is free-standing.


** 
** Schema objects are automatically deallocated when the last database that
** references them is destroyed.   The TEMP Schema is manually freed by
** sqlite4_close().
*
** A thread must be holding a mutex on the corresponding database in order
** to access Schema content.  This implies that the thread must also be
** holding a mutex on the sqlite4 connection pointer that owns the database
** For a TEMP Schema, only the connection mutex is required.
*/
struct Schema {
  int schema_cookie;   /* Database schema version number for this file */
  int iGeneration;     /* Generation counter.  Incremented with each change */
  Hash tblHash;        /* All tables indexed by name */
  Hash idxHash;        /* All (named) indices indexed by name */
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
#define ENC(db) ((db)->aDb[0].pSchema->enc)

/*
** Possible values for the sqlite4.flags.
*/
#define SQLITE_VdbeTrace      0x00000100  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000200  /* Uncommitted Hash table changes */
#define SQLITE_FullColNames   0x00000400  /* Show full column names on SELECT */
#define SQLITE_ShortColNames  0x00000800  /* Show short columns names */
#define SQLITE_CountRows      0x00001000  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */
#define SQLITE_NullCallback   0x00002000  /* Invoke the callback once if the */
                                          /*   result set is empty */
#define SQLITE_SqlTrace       0x00004000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00008000  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00010000  /* OK to update SQLITE_MASTER */
                         /*   0x00020000  Unused */
#define SQLITE_IgnoreChecks   0x00040000  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0080000  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00100000  /* Create new databases in format 1 */
#define SQLITE_FullFSync      0x00200000  /* Use full fsync on the backend */
#define SQLITE_CkptFullFSync  0x00400000  /* Use full fsync for checkpoint */
#define SQLITE_RecoveryMode   0x00800000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x01000000  /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers    0x02000000  /* Enable recursive triggers */
#define SQLITE_ForeignKeys    0x04000000  /* Enforce foreign key constraints  */
#define SQLITE_AutoIndex      0x08000000  /* Enable automatic indexes */
#define SQLITE_PreferBuiltin  0x10000000  /* Preference to built-in funcs */
#define SQLITE_LoadExtension  0x20000000  /* Enable load_extension */
#define SQLITE_EnableTrigger  0x40000000  /* True to enable triggers */

/*
** Bits of the sqlite4.flags field that are used by the
** sqlite4_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
** These must be the low-order bits of the flags field.
*/







<
<



<
<



|



<
<






<







949
950
951
952
953
954
955


956
957
958


959
960
961
962
963
964
965


966
967
968
969
970
971

972
973
974
975
976
977
978
#define ENC(db) ((db)->aDb[0].pSchema->enc)

/*
** Possible values for the sqlite4.flags.
*/
#define SQLITE_VdbeTrace      0x00000100  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000200  /* Uncommitted Hash table changes */


#define SQLITE_CountRows      0x00001000  /* Count rows changed by INSERT, */
                                          /*   DELETE, or UPDATE and return */
                                          /*   the count using a callback. */


#define SQLITE_SqlTrace       0x00004000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x00008000  /* Debug listings of VDBE programs */
#define SQLITE_WriteSchema    0x00010000  /* OK to update SQLITE_MASTER */
#define SQLITE_KvTrace        0x00020000  /* Trace Key/value storage calls */
#define SQLITE_IgnoreChecks   0x00040000  /* Do not enforce check constraints */
#define SQLITE_ReadUncommitted 0x0080000  /* For shared-cache mode */
#define SQLITE_LegacyFileFmt  0x00100000  /* Create new databases in format 1 */


#define SQLITE_RecoveryMode   0x00800000  /* Ignore schema errors */
#define SQLITE_ReverseOrder   0x01000000  /* Reverse unordered SELECTs */
#define SQLITE_RecTriggers    0x02000000  /* Enable recursive triggers */
#define SQLITE_ForeignKeys    0x04000000  /* Enforce foreign key constraints  */
#define SQLITE_AutoIndex      0x08000000  /* Enable automatic indexes */
#define SQLITE_PreferBuiltin  0x10000000  /* Preference to built-in funcs */

#define SQLITE_EnableTrigger  0x40000000  /* True to enable triggers */

/*
** Bits of the sqlite4.flags field that are used by the
** sqlite4_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface.
** These must be the low-order bits of the flags field.
*/
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

1447
1448
1449
1450
1451
1452
1453
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure is passed as the first
** argument to sqlite4VdbeKeyCompare and is used to control the 
** comparison of the two index keys.
*/
struct KeyInfo {
  sqlite4 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Number of entries in aColl[] */

  u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual







|
|
|




|
>







1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
#define OE_SetDflt  8   /* Set the foreign key value to its default */
#define OE_Cascade  9   /* Cascade the changes */

#define OE_Default  99  /* Do whatever the default action is */


/*
** An instance of the following structure describes an index key.  It 
** includes information such as sort order and collating sequence for
** each key, and the number of primary key fields appended to the end.
*/
struct KeyInfo {
  sqlite4 *db;        /* The database connection */
  u8 enc;             /* Text encoding - one of the SQLITE_UTF* values */
  u16 nField;         /* Total number of entries in aColl[] */
  u16 nPK;            /* Number of primary key entries at the end of aColl[] */
  u8 *aSortOrder;     /* Sort order for each column.  May be NULL */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
/*
** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
#define OPFLAG_APPENDBIAS    0x40    /* Bias inserts for appending */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *







|







2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
/*
** Bitfield flags for P5 value in OP_Insert and OP_Delete
*/
#define OPFLAG_NCHANGE       0x01    /* Set to update db->nChange */
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek on insert */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
#define OPFLAG_APPENDBIAS    0x40    /* Bias inserts for appending */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
** the MACRO form does).
*/
int sqlite4PutVarint(unsigned char*, u64);
int sqlite4PutVarint32(unsigned char*, u32);
u8 sqlite4GetVarint(const unsigned char *, u64 *);
u8 sqlite4GetVarint32(const unsigned char *, u32 *);
int sqlite4VarintLen(u64 v);
int sqlite4GetVarint64(const unsigned char*, sqlite4_uint64 *pResult);
int sqlite4PutVarint64(unsigned char*, sqlite4_uint64);

/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macros take advantage this fact to provide a fast encode
** and decode of the integers in a record header.  It is faster for the common







|







2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
** the MACRO form does).
*/
int sqlite4PutVarint(unsigned char*, u64);
int sqlite4PutVarint32(unsigned char*, u32);
u8 sqlite4GetVarint(const unsigned char *, u64 *);
u8 sqlite4GetVarint32(const unsigned char *, u32 *);
int sqlite4VarintLen(u64 v);
int sqlite4GetVarint64(const unsigned char*, int, sqlite4_uint64 *pResult);
int sqlite4PutVarint64(unsigned char*, sqlite4_uint64);

/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macros take advantage this fact to provide a fast encode
** and decode of the integers in a record header.  It is faster for the common
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
int sqlite4FindDb(sqlite4*, Token*);
int sqlite4FindDbName(sqlite4 *, const char *);
int sqlite4AnalysisLoad(sqlite4*,int iDB);
void sqlite4DeleteIndexSamples(sqlite4*,Index*);
void sqlite4DefaultRowEst(Index*);
void sqlite4RegisterLikeFunctions(sqlite4*, int);
int sqlite4IsLikeFunction(sqlite4*,Expr*,int*,char*);
void sqlite4MinimumFileFormat(Parse*, int, int);
void sqlite4SchemaClear(void *);
Schema *sqlite4SchemaGet(sqlite4 *, Btree *);
int sqlite4SchemaToIndex(sqlite4 *db, Schema *);
KeyInfo *sqlite4IndexKeyinfo(Parse *, Index *);
int sqlite4CreateFunc(sqlite4 *, const char *, int, int, void *, 
  void (*)(sqlite4_context*,int,sqlite4_value **),
  void (*)(sqlite4_context*,int,sqlite4_value **), void (*)(sqlite4_context*),
  FuncDestructor *pDestructor
);
int sqlite4ApiExit(sqlite4 *db, int);
int sqlite4OpenTempDatabase(Parse *);

void sqlite4StrAccumInit(StrAccum*, char*, int, int);
void sqlite4StrAccumAppend(StrAccum*,const char*,int);
void sqlite4AppendSpace(StrAccum*,int);
char *sqlite4StrAccumFinish(StrAccum*);
void sqlite4StrAccumReset(StrAccum*);
void sqlite4SelectDestInit(SelectDest*,int,int);
Expr *sqlite4CreateColumnExpr(sqlite4 *, SrcList *, int, int);

void sqlite4BackupRestart(sqlite4_backup *);
void sqlite4BackupUpdate(sqlite4_backup *, Pgno, const u8 *);

/*
** The interface to the LEMON-generated parser
*/
void *sqlite4ParserAlloc(void*(*)(size_t));
void sqlite4ParserFree(void*, void(*)(void*));
void sqlite4Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH







<
|
|


















<
<
<







3060
3061
3062
3063
3064
3065
3066

3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086



3087
3088
3089
3090
3091
3092
3093
int sqlite4FindDb(sqlite4*, Token*);
int sqlite4FindDbName(sqlite4 *, const char *);
int sqlite4AnalysisLoad(sqlite4*,int iDB);
void sqlite4DeleteIndexSamples(sqlite4*,Index*);
void sqlite4DefaultRowEst(Index*);
void sqlite4RegisterLikeFunctions(sqlite4*, int);
int sqlite4IsLikeFunction(sqlite4*,Expr*,int*,char*);

void sqlite4SchemaClear(Schema*);
Schema *sqlite4SchemaGet(sqlite4*);
int sqlite4SchemaToIndex(sqlite4 *db, Schema *);
KeyInfo *sqlite4IndexKeyinfo(Parse *, Index *);
int sqlite4CreateFunc(sqlite4 *, const char *, int, int, void *, 
  void (*)(sqlite4_context*,int,sqlite4_value **),
  void (*)(sqlite4_context*,int,sqlite4_value **), void (*)(sqlite4_context*),
  FuncDestructor *pDestructor
);
int sqlite4ApiExit(sqlite4 *db, int);
int sqlite4OpenTempDatabase(Parse *);

void sqlite4StrAccumInit(StrAccum*, char*, int, int);
void sqlite4StrAccumAppend(StrAccum*,const char*,int);
void sqlite4AppendSpace(StrAccum*,int);
char *sqlite4StrAccumFinish(StrAccum*);
void sqlite4StrAccumReset(StrAccum*);
void sqlite4SelectDestInit(SelectDest*,int,int);
Expr *sqlite4CreateColumnExpr(sqlite4 *, SrcList *, int, int);




/*
** The interface to the LEMON-generated parser
*/
void *sqlite4ParserAlloc(void*(*)(size_t));
void sqlite4ParserFree(void*, void(*)(void*));
void sqlite4Parser(void*, int, Token, Parse*);
#ifdef YYTRACKMAXSTACKDEPTH

Changes to src/status.c.

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    ** Return an approximation for the amount of memory currently used
    ** by all pagers associated with the given database connection.  The
    ** highwater mark is meaningless and is returned as zero.
    */
    case SQLITE_DBSTATUS_CACHE_USED: {
      int totalUsed = 0;
      int i;
      sqlite4BtreeEnterAll(db);
      for(i=0; i<db->nDb; i++){
        Btree *pBt = db->aDb[i].pBt;
        if( pBt ){
          Pager *pPager = sqlite4BtreePager(pBt);
          totalUsed += sqlite4PagerMemUsed(pPager);
        }
      }
      sqlite4BtreeLeaveAll(db);
      *pCurrent = totalUsed;
      *pHighwater = 0;
      break;
    }

    /*
    ** *pCurrent gets an accurate estimate of the amount of memory used
    ** to store the schema for all databases (main, temp, and any ATTACHed
    ** databases.  *pHighwater is set to zero.
    */
    case SQLITE_DBSTATUS_SCHEMA_USED: {
      int i;                      /* Used to iterate through schemas */
      int nByte = 0;              /* Used to accumulate return value */

      sqlite4BtreeEnterAll(db);
      db->pnBytesFreed = &nByte;
      for(i=0; i<db->nDb; i++){
        Schema *pSchema = db->aDb[i].pSchema;
        if( ALWAYS(pSchema!=0) ){
          HashElem *p;

          nByte += sqlite4GlobalConfig.m.xRoundup(sizeof(HashElem)) * (







<
<
<
<
<
<
<
<
<














<







136
137
138
139
140
141
142









143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
    ** Return an approximation for the amount of memory currently used
    ** by all pagers associated with the given database connection.  The
    ** highwater mark is meaningless and is returned as zero.
    */
    case SQLITE_DBSTATUS_CACHE_USED: {
      int totalUsed = 0;
      int i;









      *pCurrent = totalUsed;
      *pHighwater = 0;
      break;
    }

    /*
    ** *pCurrent gets an accurate estimate of the amount of memory used
    ** to store the schema for all databases (main, temp, and any ATTACHed
    ** databases.  *pHighwater is set to zero.
    */
    case SQLITE_DBSTATUS_SCHEMA_USED: {
      int i;                      /* Used to iterate through schemas */
      int nByte = 0;              /* Used to accumulate return value */


      db->pnBytesFreed = &nByte;
      for(i=0; i<db->nDb; i++){
        Schema *pSchema = db->aDb[i].pSchema;
        if( ALWAYS(pSchema!=0) ){
          HashElem *p;

          nByte += sqlite4GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
          }
          for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
            sqlite4DeleteTable(db, (Table *)sqliteHashData(p));
          }
        }
      }
      db->pnBytesFreed = 0;
      sqlite4BtreeLeaveAll(db);

      *pHighwater = 0;
      *pCurrent = nByte;
      break;
    }

    /*







<







176
177
178
179
180
181
182

183
184
185
186
187
188
189
          }
          for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
            sqlite4DeleteTable(db, (Table *)sqliteHashData(p));
          }
        }
      }
      db->pnBytesFreed = 0;


      *pHighwater = 0;
      *pCurrent = nByte;
      break;
    }

    /*
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    ** pagers the database handle is connected to. *pHighwater is always set 
    ** to zero.
    */
    case SQLITE_DBSTATUS_CACHE_HIT:
    case SQLITE_DBSTATUS_CACHE_MISS: {
      int i;
      int nRet = 0;
      assert( SQLITE_DBSTATUS_CACHE_MISS==SQLITE_DBSTATUS_CACHE_HIT+1 );

      for(i=0; i<db->nDb; i++){
        if( db->aDb[i].pBt ){
          Pager *pPager = sqlite4BtreePager(db->aDb[i].pBt);
          sqlite4PagerCacheStat(pPager, op, resetFlag, &nRet);
        }
      }
      *pHighwater = 0;
      *pCurrent = nRet;
      break;
    }

    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite4_mutex_leave(db->mutex);
  return rc;
}







<
<
<
<
<
<
<
<












212
213
214
215
216
217
218








219
220
221
222
223
224
225
226
227
228
229
230
    ** pagers the database handle is connected to. *pHighwater is always set 
    ** to zero.
    */
    case SQLITE_DBSTATUS_CACHE_HIT:
    case SQLITE_DBSTATUS_CACHE_MISS: {
      int i;
      int nRet = 0;








      *pHighwater = 0;
      *pCurrent = nRet;
      break;
    }

    default: {
      rc = SQLITE_ERROR;
    }
  }
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

Changes to src/storage.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14


15
16
17
18


























































19
20
21






22
23
24
25
26
27
28


29
30
31
32
33
34
35
36
37
38
39
/*
** 2012 January 21
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** General wrapper functions around the various KV storage engine
** implementations.


*/
#include "sqliteInt.h"

/*


























































** Open a storage engine via URI
*/
int sqlite4KVStoreOpen(const char *zUri, KVStore **ppKVStore){






  KVStore *pNew = 0;
  int rc;

  rc = sqlite4KVStoreOpenMem(&pNew);
  *ppKVStore = pNew;
  if( pNew ){
    sqlite4_randomness(sizeof(pNew->kvId), &pNew->kvId);


    pNew->fTrace = 0;
    if( pNew->fTrace ){
      printf("KVopen(%s,%d)\n", zUri, pNew->kvId);
    }
  }
  return rc;
}

/* Convert binary data to hex for display in trace messages */
static void binToHex(char *zOut, int mxOut, const KVByteArray *a, KVSize n){
  int i;













|
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


|
>
>
>
>
>
>



|



>
>
|
<
|
<







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
/*
** 2012 January 21
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** General wrapper functions around the various KV storage engine
** implementations.  It also implements tracing of calls to the KV
** engine and some higher-level ensembles of the low-level storage
** calls.
*/
#include "sqliteInt.h"

/*
** Names of error codes used for tracing.
*/
static const char *kvErrName(int e){
  const char *zName;
  switch( e ){
    case SQLITE_OK:                  zName = "OK";                break;
    case SQLITE_ERROR:               zName = "ERROR";             break;
    case SQLITE_INTERNAL:            zName = "INTERNAL";          break;
    case SQLITE_PERM:                zName = "PERM";              break;
    case SQLITE_ABORT:               zName = "ABORT";             break;
    case SQLITE_BUSY:                zName = "BUSY";              break;
    case SQLITE_LOCKED:              zName = "LOCKED";            break;
    case SQLITE_NOMEM:               zName = "NOMEM";             break;
    case SQLITE_READONLY:            zName = "READONLY";          break;
    case SQLITE_INTERRUPT:           zName = "INTERRUPT";         break;
    case SQLITE_IOERR:               zName = "IOERR";             break;
    case SQLITE_CORRUPT:             zName = "CORRUPT";           break;
    case SQLITE_NOTFOUND:            zName = "NOTFOUND";          break;
    case SQLITE_FULL:                zName = "FULL";              break;
    case SQLITE_CANTOPEN:            zName = "CANTOPEN";          break;
    case SQLITE_PROTOCOL:            zName = "PROTOCOL";          break;
    case SQLITE_EMPTY:               zName = "EMPTY";             break;
    case SQLITE_SCHEMA:              zName = "SCHEMA";            break;
    case SQLITE_TOOBIG:              zName = "TOOBIG";            break;
    case SQLITE_CONSTRAINT:          zName = "CONSTRAINT";        break;
    case SQLITE_MISMATCH:            zName = "MISMATCH";          break;
    case SQLITE_MISUSE:              zName = "MISUSE";            break;
    case SQLITE_NOLFS:               zName = "NOLFS";             break;
    case SQLITE_AUTH:                zName = "AUTH";              break;
    case SQLITE_FORMAT:              zName = "FORMAT";            break;
    case SQLITE_RANGE:               zName = "RANGE";             break;
    case SQLITE_NOTADB:              zName = "NOTADB";            break;
    case SQLITE_ROW:                 zName = "ROW";               break;
    case SQLITE_DONE:                zName = "DONE";              break;
    case SQLITE_INEXACT:             zName = "INEXACT";           break;
    default:                         zName = "???";               break;
  }
  return zName;
}

/*
** Do any requested tracing
*/
static void kvTrace(KVStore *p, const char *zFormat, ...){
  if( p->fTrace ){
    va_list ap;
    char *z;

    va_start(ap, zFormat);
    z = sqlite4_vmprintf(zFormat, ap);
    va_end(ap);
    printf("%s.%s\n", p->zKVName, z);
    fflush(stdout);
    sqlite4_free(z);
  }
}

/*
** Open a storage engine via URI
*/
int sqlite4KVStoreOpen(
  sqlite4 *db,             /* The database connection doing the open */
  const char *zName,       /* Symbolic name for this database */
  const char *zUri,        /* URI for this database */
  KVStore **ppKVStore,     /* Write the new KVStore object here */
  unsigned flags           /* Option flags */
){
  KVStore *pNew = 0;
  int rc;

  rc = sqlite4KVStoreOpenMem(&pNew, flags);
  *ppKVStore = pNew;
  if( pNew ){
    sqlite4_randomness(sizeof(pNew->kvId), &pNew->kvId);
    sqlite4_snprintf(sizeof(pNew->zKVName), pNew->zKVName,
                     "%s", zName);
    pNew->fTrace = (db->flags & SQLITE_KvTrace)!=0;

    kvTrace(pNew, "open(%s,%d,0x%04x)", zUri, pNew->kvId, flags);

  }
  return rc;
}

/* Convert binary data to hex for display in trace messages */
static void binToHex(char *zOut, int mxOut, const KVByteArray *a, KVSize n){
  int i;
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


166
167
168
169
170
171
172
173


174









175




176


177








178
179
180
181
182
183
184
185
186
187



188








189

190




191


192
193
194
195
196





197




198









199
























200

















201



































202
203
  KVStore *p,
  const KVByteArray *pKey, KVSize nKey,
  const KVByteArray *pData, KVSize nData
){
  if( p->fTrace ){
    char zKey[52], zData[52];
    binToHex(zKey, sizeof(zKey), pKey, nKey);
    binToHex(zData, sizeof(zKey), pData, nData);
    printf("KV.xReplace(%d,%s,%d,%s,%d)\n",
           p->kvId, zKey, (int)nKey, zData, (int)nData);
  }
  return p->pStoreVfunc->xReplace(p,pKey,nKey,pData,nData);
}
int sqlite4KVStoreOpenCursor(KVStore *p, KVCursor **ppKVCursor){
  KVCursor *pCur;
  int rc;

  rc = p->pStoreVfunc->xOpenCursor(p, &pCur);
  *ppKVCursor = pCur;
  if( pCur ){
    sqlite4_randomness(sizeof(pCur->curId), &pCur->curId);
    pCur->fTrace = p->fTrace;

  }
  if( p->fTrace ){
    printf("KV.xOpenCursor(%d,%d) -> %d\n", p->kvId, pCur?pCur->curId:-1, rc);
  }
  return rc;
}
int sqlite4KVCursorSeek(
  KVCursor *p,
  const KVByteArray *pKey, KVSize nKey,
  int dir
){
  int rc;
  rc = p->pStoreVfunc->xSeek(p,pKey,nKey,dir);
  if( p->fTrace ){
    char zKey[52];
    binToHex(zKey, sizeof(zKey), pKey, nKey);

    printf("KV.xSeek(%d,%s,%d,%d) -> %d\n", p->curId, zKey, (int)nKey,dir,rc);
  }
  return rc;
}
int sqlite4KVCursorNext(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xNext(p);
  if( p->fTrace ){
    printf("KV.xNext(%d) -> %d\n", p->curId, rc);
  }
  return rc;
}
int sqlite4KVCursorPrev(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xPrev(p);
  if( p->fTrace ){
    printf("KV.xPrev(%d) -> %d\n", p->curId, rc);
  }
  return rc;
}
int sqlite4KVCursorDelete(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xDelete(p);
  if( p->fTrace ){
    printf("KV.xDelete(%d) -> %d\n", p->curId, rc);
  }
  return rc;
}
int sqlite4KVCursorReset(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xReset(p);
  if( p->fTrace ){
    printf("KV.xReset(%d) -> %d\n", p->curId, rc);
  }
  return rc;
}
int sqlite4KVCursorKey(KVCursor *p, const KVByteArray **ppKey, KVSize *pnKey){
  int rc;
  rc = p->pStoreVfunc->xKey(p, ppKey, pnKey);
  if( p->fTrace ){
    if( rc==SQLITE_OK ){
      char zKey[52];
      binToHex(zKey, sizeof(zKey), *ppKey, *pnKey);
      printf("KV.xKey(%d,%s,%d)\n", p->curId, zKey, (int)*pnKey);
    }else{
      printf("KV.xKey(%d,<error-%d>)\n", p->curId, rc);
    }
  }
  return rc;
}
int sqlite4KVCursorData(
  KVCursor *p,
  KVSize ofst,
  KVSize n,
  const KVByteArray **ppData,
  KVSize *pnData
){
  int rc;
  rc = p->pStoreVfunc->xData(p, ofst, n, ppData, pnData);
  if( p->fTrace ){
    if( rc==SQLITE_OK ){
      char zData[52];
      binToHex(zData, sizeof(zData), *ppData, *pnData);
      printf("KV.xData(%d,%d,%d,%s,%d)\n",
             p->curId, (int)ofst, (int)n, zData, (int)*pnData);
    }else{
      printf("KV.xData(%d,%d,%d,<error-%d>)\n",
             p->curId, (int)ofst, (int)n, rc);
    }
  }
  return rc;
}
int sqlite4KVCursorClose(KVCursor *p){
  int rc = SQLITE_OK;
  if( p ){


    rc = p->pStoreVfunc->xCloseCursor(p);
    if( p->fTrace ){
      printf("KV.xCloseCursor(%d) -> %d\n", p->curId, rc);
    }
  }
  return rc;
}
int sqlite4KVStoreBegin(KVStore *p, int iLevel){


  int rc = p->pStoreVfunc->xBegin(p, iLevel);









  if( p->fTrace ){




    printf("KV.xBegin(%d,%d) -> %d\n", p->kvId, iLevel, rc);


  }








  return rc;
}
int sqlite4KVStoreCommit(KVStore *p, int iLevel){
  int rc = p->pStoreVfunc->xCommit(p, iLevel);
  if( p->fTrace ){
    printf("KV.xCommit(%d,%d) -> %d\n", p->kvId, iLevel, rc);
  }
  return rc;
}
int sqlite4KVStoreRollback(KVStore *p, int iLevel){



  int rc = p->pStoreVfunc->xRollback(p, iLevel);








  if( p->fTrace ){

    printf("KV.xRollback(%d,%d) -> %d\n", p->kvId, iLevel, rc);




  }


  return rc;
}
int sqlite4KVStoreClose(KVStore *p){
  int rc;
  if( p ){





    if( p->fTrace ){




      printf("KV.xClose(%d)\n", p->kvId);









    }
























    rc = p->pStoreVfunc->xClose(p);

















  }



































  return rc;
}







|
|













>

|
|
<












>
|






<
|
<





<
|
<





<
|
<





<
|
<









|

|

















|


|








>
>

<
|
<




>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>



|
|
|
<



>
>
>
|
>
>
>
>
>
>
>
>
|
>
|
>
>
>
>
|
>
>





>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166
167
168
169
170

171

172
173
174
175
176

177

178
179
180
181
182

183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
  KVStore *p,
  const KVByteArray *pKey, KVSize nKey,
  const KVByteArray *pData, KVSize nData
){
  if( p->fTrace ){
    char zKey[52], zData[52];
    binToHex(zKey, sizeof(zKey), pKey, nKey);
    binToHex(zData, sizeof(zData), pData, nData);
    kvTrace(p, "xReplace(%d,%s,%d,%s,%d)",
           p->kvId, zKey, (int)nKey, zData, (int)nData);
  }
  return p->pStoreVfunc->xReplace(p,pKey,nKey,pData,nData);
}
int sqlite4KVStoreOpenCursor(KVStore *p, KVCursor **ppKVCursor){
  KVCursor *pCur;
  int rc;

  rc = p->pStoreVfunc->xOpenCursor(p, &pCur);
  *ppKVCursor = pCur;
  if( pCur ){
    sqlite4_randomness(sizeof(pCur->curId), &pCur->curId);
    pCur->fTrace = p->fTrace;
    pCur->pStore = p;
  }
  kvTrace(p, "xOpenCursor(%d,%d) -> %s",
          p->kvId, pCur?pCur->curId:-1, kvErrName(rc));

  return rc;
}
int sqlite4KVCursorSeek(
  KVCursor *p,
  const KVByteArray *pKey, KVSize nKey,
  int dir
){
  int rc;
  rc = p->pStoreVfunc->xSeek(p,pKey,nKey,dir);
  if( p->fTrace ){
    char zKey[52];
    binToHex(zKey, sizeof(zKey), pKey, nKey);
    kvTrace(p->pStore, "xSeek(%d,%s,%d,%d) -> %s",
            p->curId, zKey, (int)nKey, dir, kvErrName(rc));
  }
  return rc;
}
int sqlite4KVCursorNext(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xNext(p);

  kvTrace(p->pStore, "xNext(%d) -> %s", p->curId, kvErrName(rc));

  return rc;
}
int sqlite4KVCursorPrev(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xPrev(p);

  kvTrace(p->pStore, "xPrev(%d) -> %s", p->curId, kvErrName(rc));

  return rc;
}
int sqlite4KVCursorDelete(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xDelete(p);

  kvTrace(p->pStore, "xDelete(%d) -> %s", p->curId, kvErrName(rc));

  return rc;
}
int sqlite4KVCursorReset(KVCursor *p){
  int rc;
  rc = p->pStoreVfunc->xReset(p);

  kvTrace(p->pStore, "xReset(%d) -> %s", p->curId, kvErrName(rc));

  return rc;
}
int sqlite4KVCursorKey(KVCursor *p, const KVByteArray **ppKey, KVSize *pnKey){
  int rc;
  rc = p->pStoreVfunc->xKey(p, ppKey, pnKey);
  if( p->fTrace ){
    if( rc==SQLITE_OK ){
      char zKey[52];
      binToHex(zKey, sizeof(zKey), *ppKey, *pnKey);
      kvTrace(p->pStore, "xKey(%d,%s,%d)", p->curId, zKey, (int)*pnKey);
    }else{
      kvTrace(p->pStore, "xKey(%d,<error-%d>)", p->curId, rc);
    }
  }
  return rc;
}
int sqlite4KVCursorData(
  KVCursor *p,
  KVSize ofst,
  KVSize n,
  const KVByteArray **ppData,
  KVSize *pnData
){
  int rc;
  rc = p->pStoreVfunc->xData(p, ofst, n, ppData, pnData);
  if( p->fTrace ){
    if( rc==SQLITE_OK ){
      char zData[52];
      binToHex(zData, sizeof(zData), *ppData, *pnData);
      kvTrace(p->pStore, "xData(%d,%d,%d,%s,%d)",
             p->curId, (int)ofst, (int)n, zData, (int)*pnData);
    }else{
      kvTrace(p->pStore, "xData(%d,%d,%d,<error-%d>)",
             p->curId, (int)ofst, (int)n, rc);
    }
  }
  return rc;
}
int sqlite4KVCursorClose(KVCursor *p){
  int rc = SQLITE_OK;
  if( p ){
    KVStore *pStore = p->pStore;
    int curId = p->curId;
    rc = p->pStoreVfunc->xCloseCursor(p);

    kvTrace(pStore, "xCloseCursor(%d) -> %s", curId, kvErrName(rc));

  }
  return rc;
}
int sqlite4KVStoreBegin(KVStore *p, int iLevel){
  int rc;
  assert( (iLevel==2 && p->iTransLevel==0) || p->iTransLevel+1==iLevel );
  rc = p->pStoreVfunc->xBegin(p, iLevel);
  kvTrace(p, "xBegin(%d,%d) -> %s", p->kvId, iLevel, kvErrName(rc));
  assert( p->iTransLevel==iLevel || rc!=SQLITE_OK );
  return rc;
}
int sqlite4KVStoreCommitPhaseOne(KVStore *p, int iLevel){
  int rc;
  assert( iLevel>=0 );
  assert( iLevel<=p->iTransLevel );
  if( p->iTransLevel==iLevel ) return SQLITE_OK;
  if( p->pStoreVfunc->xCommitPhaseOne ){
    rc = p->pStoreVfunc->xCommitPhaseOne(p, iLevel);
  }else{
    rc = SQLITE_OK;
  }
  kvTrace(p, "xCommitPhaseOne(%d,%d) -> %s", p->kvId, iLevel, kvErrName(rc));
  assert( p->iTransLevel>iLevel );
  return rc;
}
int sqlite4KVStoreCommitPhaseTwo(KVStore *p, int iLevel){
  int rc;
  assert( iLevel>=0 );
  assert( iLevel<=p->iTransLevel );
  if( p->iTransLevel==iLevel ) return SQLITE_OK;
  rc = p->pStoreVfunc->xCommitPhaseTwo(p, iLevel);
  kvTrace(p, "xCommitPhaseTwo(%d,%d) -> %s", p->kvId, iLevel, kvErrName(rc));
  assert( p->iTransLevel==iLevel || rc!=SQLITE_OK );
  return rc;
}
int sqlite4KVStoreCommit(KVStore *p, int iLevel){
  int rc;
  rc = sqlite4KVStoreCommitPhaseOne(p, iLevel);
  if( rc==SQLITE_OK ) rc = sqlite4KVStoreCommitPhaseTwo(p, iLevel);

  return rc;
}
int sqlite4KVStoreRollback(KVStore *p, int iLevel){
  int rc;
  assert( iLevel>=0 );
  assert( iLevel<=p->iTransLevel );
  rc = p->pStoreVfunc->xRollback(p, iLevel);
  kvTrace(p, "xRollback(%d,%d) -> %s", p->kvId, iLevel, kvErrName(rc));
  assert( p->iTransLevel==iLevel || rc!=SQLITE_OK );
  return rc;
}
int sqlite4KVStoreRevert(KVStore *p, int iLevel){
  int rc;
  assert( iLevel>0 );
  assert( iLevel<=p->iTransLevel );
  if( p->pStoreVfunc->xRevert ){
    rc = p->pStoreVfunc->xRevert(p, iLevel);
    kvTrace(p, "xRevert(%d,%d) -> %s", p->kvId, iLevel, kvErrName(rc));
  }else{
    rc = sqlite4KVStoreRollback(p, iLevel-1);
    if( rc==SQLITE_OK ){
      rc = sqlite4KVStoreBegin(p, iLevel);
    }
  }
  assert( p->iTransLevel==iLevel || rc!=SQLITE_OK );
  return rc;
}
int sqlite4KVStoreClose(KVStore *p){
  int rc;
  if( p ){
    kvTrace(p, "xClose(%d)", p->kvId);
    rc = p->pStoreVfunc->xClose(p);
  }
  return rc;
}

/*
** Key for the meta-data
*/
static const KVByteArray metadataKey[] = { 0x00, 0x00 };

/*
** Read nMeta unsigned 32-bit integers of metadata beginning at iStart.
*/
int sqlite4KVStoreGetMeta(KVStore *p, int iStart, int nMeta, unsigned int *a){
  KVCursor *pCur;
  int rc;
  int i, j;
  KVSize nData;
  const KVByteArray *aData;

  rc = sqlite4KVStoreOpenCursor(p, &pCur);
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorSeek(pCur, metadataKey, sizeof(metadataKey), 0);
    if( rc==SQLITE_NOTFOUND ){
      rc = SQLITE_OK;
      nData = 0;
    }else if( rc==SQLITE_OK ){
      rc = sqlite4KVCursorData(pCur, 0, -1, &aData, &nData);
    }
    if( rc==SQLITE_OK ){
      i = 0;
      j = iStart*4;
      while( i<nMeta && j+3<nData ){
        a[i] = (aData[j]<<24) | (aData[j+1]<<16)
                     | (aData[j+2]<<8) | aData[j+3];
        i++;
        j += 4;
      }
      while( i<nMeta ) a[i++] = 0;
    }
    sqlite4KVCursorClose(pCur);
  }
  return rc;
}

/*
** Write nMeta unsigned 32-bit integers beginning with iStart.
*/
int sqlite4KVStorePutMeta(
  sqlite4 *db,            /* Database connection.  Needed to malloc */
  KVStore *p,             /* Write to this database */
  int iStart,             /* Start writing here */
  int nMeta,              /* number of 32-bit integers to be written */
  unsigned int *a         /* The integers to write */
){
  KVCursor *pCur;
  int rc;
  int i, j;
  KVSize nData;
  const KVByteArray *aData;
  KVByteArray *aNew;
  KVSize nNew;

  rc = sqlite4KVStoreOpenCursor(p, &pCur);
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorSeek(pCur, metadataKey, sizeof(metadataKey), 0);
    if( rc==SQLITE_OK ){
      rc = sqlite4KVCursorData(pCur, 0, -1, &aData, &nData);
    }else if( rc==SQLITE_NOTFOUND ){
      nData = 0;
      aData = 0;
      rc = SQLITE_OK;
    }
    if( rc==SQLITE_OK ){
      nNew = iStart+nMeta;
      if( nNew<nData ) nNew = nData;
      aNew = sqlite4DbMallocRaw(db, nNew*sizeof(a[0]) );
      if( aNew==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memcpy(aNew, aData, nData);
        i = 0;
        j = iStart*4;
        while( i<nMeta && j+3<nData ){
          aNew[j] = (a[i]>>24)&0xff;
          aNew[j+1] = (a[i]>>16)&0xff;
          aNew[j+2] = (a[i]>>8)&0xff;
          aNew[j+3] = a[i] & 0xff;
          i++;
          j += 4;
        }
        rc = sqlite4KVStoreReplace(p, metadataKey, sizeof(metadataKey),
                                   aNew, nNew);
        sqlite4DbFree(db, aNew);
      }
    }
    sqlite4KVCursorClose(pCur);
  }
  return rc;
}

Changes to src/storage.h.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40





41
42
43
44
45
46




47
48
49
50
51
52
53
** 
** The xBegin, xCommit, and xRollback methods change the transaction level
** of the store.  The transaction level is a non-negative integer that is
** initialized to zero.  The transaction level must be at least 1 in order
** for content to be read.  The transaction level must be at least 2 for 
** content to be modified.
** 
** The xBegin method increases transaction level.  The increase may only be
** by an amount of 1 unless the transaction level is initially 0 in which case
** it can be increased immediately to 2.  Increasing the transaction level
** to 1 or more makes a "snapshot" of the complete store such that changes
** made by other connections are not visible.  An xBegin call may fail
** with SQLITE_BUSY if the initial transaction level is 0 or 1.
** 
** A read-only store will fail an attempt to increase xBegin above 1.  An
** implementation that does not support nested transactions will fail any
** attempt to increase the transaction level above 2.
** 

** The xCommit method lowers the transaction level to the value given in its
** argument, and makes all the changes made at higher transaction levels
** permanent.





** 
** The xRollback method lowers the transaction level to the value given in
** its argument and reverts or undoes all changes made at higher transaction
** levels.  An xRollback to level N causes the database to revert to the state
** it was in on the most recent xBegin to level N+1.
** 




** 
** The xReplace method replaces the value for an existing entry with the
** given key, or creates a new entry with the given key and value if no
** prior entry exists with the given key.  The key and value pointers passed
** into xReplace will likely be destroyed when the call to xReplace returns
** so the xReplace routine must make its own copy of that information.
** 







|
|









>
|
|
|
>
>
>
>
>






>
>
>
>







20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
** 
** The xBegin, xCommit, and xRollback methods change the transaction level
** of the store.  The transaction level is a non-negative integer that is
** initialized to zero.  The transaction level must be at least 1 in order
** for content to be read.  The transaction level must be at least 2 for 
** content to be modified.
** 
** The xBegin method increases transaction level.  The increase may be no
** more than 1 unless the transaction level is initially 0 in which case
** it can be increased immediately to 2.  Increasing the transaction level
** to 1 or more makes a "snapshot" of the complete store such that changes
** made by other connections are not visible.  An xBegin call may fail
** with SQLITE_BUSY if the initial transaction level is 0 or 1.
** 
** A read-only store will fail an attempt to increase xBegin above 1.  An
** implementation that does not support nested transactions will fail any
** attempt to increase the transaction level above 2.
** 
** The xCommitPhaseOne and xCommitPhaseTwo methods implementat a 2-phase
** commit that lowers the transaction level to the value given in the
** second argument, and makes all the changes made at higher transaction levels
** permanent.  A rollback is still possible following phase one.  If
** possible, errors should be reported during phase one so that a
** multiple-database transaction can still be rolled back if the
** phase one fails on a different database.  Implementations that do not
** support two-phase commit can implement xCommitPhaseOne as a no-op function
** returning SQLITE_OK.
** 
** The xRollback method lowers the transaction level to the value given in
** its argument and reverts or undoes all changes made at higher transaction
** levels.  An xRollback to level N causes the database to revert to the state
** it was in on the most recent xBegin to level N+1.
** 
** The xRevert(N) method causes the state of the database file to go back
** to what it was immediately after the most recent xCommit(N).  Higher-level
** subtransactions are cancelled.  This call is equivalent to xRollback(N-1)
** followed by xBegin(N) but might be more efficient.
** 
** The xReplace method replaces the value for an existing entry with the
** given key, or creates a new entry with the given key and value if no
** prior entry exists with the given key.  The key and value pointers passed
** into xReplace will likely be destroyed when the call to xReplace returns
** so the xReplace routine must make its own copy of that information.
** 
64
65
66
67
68
69
70














71
72
73
74
75
76
77
** pointing to EOF.  If dir is negative, then an exact match is
** found if it is available, otherwise the cursor is positioned at the largest
** entry that is less than the search key or to EOF if the store contains no
** entry less than the search key.  If dir is positive, then an exist match
** is found if it is available, otherwise the cursor is left pointing the
** the smallest entry that is larger than the search key, or to EOF if there
** are no entries larger than the search key.














** 
** The xNext method may only be used following an xSeek with a positive dir,
** or another xNext.  The xPrev method may only be used following an xSeek with
** a negative dir or another xPrev.
** 
** Values returned by xKey and xData are guaranteed to remain stable until
** the next xSeek, xNext, xPrev, xReset, or xCloseCursor on the same cursor.  







>
>
>
>
>
>
>
>
>
>
>
>
>
>







74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
** pointing to EOF.  If dir is negative, then an exact match is
** found if it is available, otherwise the cursor is positioned at the largest
** entry that is less than the search key or to EOF if the store contains no
** entry less than the search key.  If dir is positive, then an exist match
** is found if it is available, otherwise the cursor is left pointing the
** the smallest entry that is larger than the search key, or to EOF if there
** are no entries larger than the search key.
**
** The xSeek return code might be one of the following:
**
**    SQLITE_OK        The cursor is left pointing to any entry that
**                     exactly matchings the probe key.
**
**    SQLITE_INEXACT   The cursor is left pointing to the nearest entry
**                     to the probe it could find, either before or after
**                     the probe, according to the dir argument.
**
**    SQLITE_NOTFOUND  No suitable entry could be found.  Either dir==0 and
**                     there was no exact match, or dir<0 and the probe is
**                     smaller than every entry in the database, or dir>0 and
**                     the probe is larger than every entry in the database.
** 
** The xNext method may only be used following an xSeek with a positive dir,
** or another xNext.  The xPrev method may only be used following an xSeek with
** a negative dir or another xPrev.
** 
** Values returned by xKey and xData are guaranteed to remain stable until
** the next xSeek, xNext, xPrev, xReset, or xCloseCursor on the same cursor.  
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116

117
118
119
120

121
122

123
124
125
126
127
128
129
130
131

132
133
134
135
136





137
138
139






140
141
142
143
144
145
146
typedef struct KVStoreMethods KVStoreMethods;
typedef struct KVCursor KVCursor;
typedef unsigned char KVByteArray;
typedef int KVSize;

/*
** A Key-Value storage engine is defined by an instance of the following
** structure.
*/
struct KVStoreMethods {
  int (*xReplace)(KVStore*, const KVByteArray *pKey, KVSize nKey,
                            const KVByteArray *pData, KVSize nData);
  int (*xOpenCursor)(KVStore*, KVCursor**);
  int (*xSeek)(KVCursor*, const KVByteArray *pKey, KVSize nKey, int dir);
  int (*xNext)(KVCursor*);
  int (*xPrev)(KVCursor*);
  int (*xDelete)(KVCursor*);
  int (*xKey)(KVCursor*, const KVByteArray **ppKey, KVSize *pnKey);
  int (*xData)(KVCursor*, KVSize ofst, KVSize n,
                          const KVByteArray **ppData, KVSize *pnData);
  int (*xReset)(KVCursor*);
  int (*xCloseCursor)(KVCursor*);
  int (*xBegin)(KVStore*, int);
  int (*xCommit)(KVStore*, int);

  int (*xRollback)(KVStore*, int);

  int (*xClose)(KVStore*);
};
struct KVStore {
  const KVStoreMethods *pStoreVfunc;    /* Virtual method table */

  u16 kvId;                             /* Unique ID used for tracing */
  u8 fTrace;                            /* True to enable tracing */

  /* Subclasses will typically append additional fields */
};

/*
** Base class for cursors
*/
struct KVCursor {
  KVStore *pStore;                    /* The owner of this cursor */
  const KVStoreMethods *pStoreVfunc;  /* Methods */

  u16 curId;                          /* Unique ID for tracing */
  u8 fTrace;                          /* True to enable tracing */
  /* Subclasses will typically add additional fields */
};







int sqlite4KVStoreOpenMem(KVStore**);
int sqlite4KVStoreOpen(const char *zUri, KVStore**);






int sqlite4KVStoreReplace(
 KVStore*,
 const KVByteArray *pKey, KVSize nKey,
 const KVByteArray *pData, KVSize nData
);
int sqlite4KVStoreOpenCursor(KVStore *p, KVCursor **ppKVCursor);
int sqlite4KVCursorSeek(







|















|
>

>




>


>









>





>
>
>
>
>

|
|
>
>
>
>
>
>







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
typedef struct KVStoreMethods KVStoreMethods;
typedef struct KVCursor KVCursor;
typedef unsigned char KVByteArray;
typedef int KVSize;

/*
** A Key-Value storage engine is defined by an instance of the following
** structures:
*/
struct KVStoreMethods {
  int (*xReplace)(KVStore*, const KVByteArray *pKey, KVSize nKey,
                            const KVByteArray *pData, KVSize nData);
  int (*xOpenCursor)(KVStore*, KVCursor**);
  int (*xSeek)(KVCursor*, const KVByteArray *pKey, KVSize nKey, int dir);
  int (*xNext)(KVCursor*);
  int (*xPrev)(KVCursor*);
  int (*xDelete)(KVCursor*);
  int (*xKey)(KVCursor*, const KVByteArray **ppKey, KVSize *pnKey);
  int (*xData)(KVCursor*, KVSize ofst, KVSize n,
                          const KVByteArray **ppData, KVSize *pnData);
  int (*xReset)(KVCursor*);
  int (*xCloseCursor)(KVCursor*);
  int (*xBegin)(KVStore*, int);
  int (*xCommitPhaseOne)(KVStore*, int);
  int (*xCommitPhaseTwo)(KVStore*, int);
  int (*xRollback)(KVStore*, int);
  int (*xRevert)(KVStore*, int);
  int (*xClose)(KVStore*);
};
struct KVStore {
  const KVStoreMethods *pStoreVfunc;    /* Virtual method table */
  int iTransLevel;                      /* Current transaction level */
  u16 kvId;                             /* Unique ID used for tracing */
  u8 fTrace;                            /* True to enable tracing */
  char zKVName[12];                     /* Used for debugging */
  /* Subclasses will typically append additional fields */
};

/*
** Base class for cursors
*/
struct KVCursor {
  KVStore *pStore;                    /* The owner of this cursor */
  const KVStoreMethods *pStoreVfunc;  /* Methods */
  int iTransLevel;                    /* Current transaction level */
  u16 curId;                          /* Unique ID for tracing */
  u8 fTrace;                          /* True to enable tracing */
  /* Subclasses will typically add additional fields */
};

/*
** Valid flags for sqlite4KVStorageOpen()
*/
#define SQLITE_KVOPEN_TEMPORARY       0x0001  /* A temporary database */
#define SQLITE_KVOPEN_NO_TRANSACTIONS 0x0002  /* No transactions will be used */

int sqlite4KVStoreOpenMem(KVStore**, unsigned);
int sqlite4KVStoreOpen(
  sqlite4*,
  const char *zLabel, 
  const char *zUri,
  KVStore**,
  unsigned flags
);
int sqlite4KVStoreReplace(
 KVStore*,
 const KVByteArray *pKey, KVSize nKey,
 const KVByteArray *pData, KVSize nData
);
int sqlite4KVStoreOpenCursor(KVStore *p, KVCursor **ppKVCursor);
int sqlite4KVCursorSeek(
158
159
160
161
162
163
164


165
166

167



  KVSize ofst,
  KVSize n,
  const KVByteArray **ppData,
  KVSize *pnData
);
int sqlite4KVCursorClose(KVCursor *p);
int sqlite4KVStoreBegin(KVStore *p, int iLevel);


int sqlite4KVStoreCommit(KVStore *p, int iLevel);
int sqlite4KVStoreRollback(KVStore *p, int iLevel);

int sqlite4KVStoreClose(KVStore *p);










>
>


>

>
>
>
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
  KVSize ofst,
  KVSize n,
  const KVByteArray **ppData,
  KVSize *pnData
);
int sqlite4KVCursorClose(KVCursor *p);
int sqlite4KVStoreBegin(KVStore *p, int iLevel);
int sqlite4KVStoreCommitPhaseOne(KVStore *p, int iLevel);
int sqlite4KVStoreCommitPhaseTwo(KVStore *p, int iLevel);
int sqlite4KVStoreCommit(KVStore *p, int iLevel);
int sqlite4KVStoreRollback(KVStore *p, int iLevel);
int sqlite4KVStoreRevert(KVStore *p, int iLevel);
int sqlite4KVStoreClose(KVStore *p);

int sqlite4KVStoreGetMeta(KVStore *p, int, int, unsigned int*);
int sqlite4KVStorePutMeta(sqlite4*, KVStore *p, int, int, unsigned int*);

Changes to src/tclsqlite.c.

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
  sqlite4_stmt *pStmt;     /* The prepared statement */
  int nSql;                /* chars in zSql[] */
  const char *zSql;        /* Text of the SQL statement */
  int nParm;               /* Size of apParm array */
  Tcl_Obj **apParm;        /* Array of referenced object pointers */
};

typedef struct IncrblobChannel IncrblobChannel;

/*
** There is one instance of this structure for each SQLite database
** that has been opened by the SQLite TCL interface.
**
** If this module is built with SQLITE_TEST defined (to create the SQLite
** testfixture executable), then it may be configured to use either
** sqlite4_prepare_v2() or sqlite4_prepare() to prepare SQL statements.







<
<







98
99
100
101
102
103
104


105
106
107
108
109
110
111
  sqlite4_stmt *pStmt;     /* The prepared statement */
  int nSql;                /* chars in zSql[] */
  const char *zSql;        /* Text of the SQL statement */
  int nParm;               /* Size of apParm array */
  Tcl_Obj **apParm;        /* Array of referenced object pointers */
};



/*
** There is one instance of this structure for each SQLite database
** that has been opened by the SQLite TCL interface.
**
** If this module is built with SQLITE_TEST defined (to create the SQLite
** testfixture executable), then it may be configured to use either
** sqlite4_prepare_v2() or sqlite4_prepare() to prepare SQL statements.
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  SqlCollate *pCollate;      /* List of SQL collation functions */
  int rc;                    /* Return code of most recent sqlite4_exec() */
  Tcl_Obj *pCollateNeeded;   /* Collation needed script */
  SqlPreparedStmt *stmtList; /* List of prepared statements*/
  SqlPreparedStmt *stmtLast; /* Last statement in the list */
  int maxStmt;               /* The next maximum number of stmtList */
  int nStmt;                 /* Number of statements in stmtList */
  IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */
  int nStep, nSort, nIndex;  /* Statistics for most recent operation */
  int nTransaction;          /* Number of nested [transaction] methods */
#ifdef SQLITE_TEST
  int bLegacyPrepare;        /* True to use sqlite4_prepare() */
#endif
};

struct IncrblobChannel {
  sqlite4_blob *pBlob;      /* sqlite4 blob handle */
  SqliteDb *pDb;            /* Associated database connection */
  int iSeek;                /* Current seek offset */
  Tcl_Channel channel;      /* Channel identifier */
  IncrblobChannel *pNext;   /* Linked list of all open incrblob channels */
  IncrblobChannel *pPrev;   /* Linked list of all open incrblob channels */
};

/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
*/
static int strlen30(const char *z){
  const char *z2 = z;
  while( *z2 ){ z2++; }
  return 0x3fffffff & (int)(z2 - z);
}


#ifndef SQLITE_OMIT_INCRBLOB
/*
** Close all incrblob channels opened using database connection pDb.
** This is called when shutting down the database connection.
*/
static void closeIncrblobChannels(SqliteDb *pDb){
  IncrblobChannel *p;
  IncrblobChannel *pNext;

  for(p=pDb->pIncrblob; p; p=pNext){
    pNext = p->pNext;

    /* Note: Calling unregister here call Tcl_Close on the incrblob channel, 
    ** which deletes the IncrblobChannel structure at *p. So do not
    ** call Tcl_Free() here.
    */
    Tcl_UnregisterChannel(pDb->interp, p->channel);
  }
}

/*
** Close an incremental blob channel.
*/
static int incrblobClose(ClientData instanceData, Tcl_Interp *interp){
  IncrblobChannel *p = (IncrblobChannel *)instanceData;
  int rc = sqlite4_blob_close(p->pBlob);
  sqlite4 *db = p->pDb->db;

  /* Remove the channel from the SqliteDb.pIncrblob list. */
  if( p->pNext ){
    p->pNext->pPrev = p->pPrev;
  }
  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }
  if( p->pDb->pIncrblob==p ){
    p->pDb->pIncrblob = p->pNext;
  }

  /* Free the IncrblobChannel structure */
  Tcl_Free((char *)p);

  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite4_errmsg(db), TCL_VOLATILE);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Read data from an incremental blob channel.
*/
static int incrblobInput(
  ClientData instanceData, 
  char *buf, 
  int bufSize,
  int *errorCodePtr
){
  IncrblobChannel *p = (IncrblobChannel *)instanceData;
  int nRead = bufSize;         /* Number of bytes to read */
  int nBlob;                   /* Total size of the blob */
  int rc;                      /* sqlite error code */

  nBlob = sqlite4_blob_bytes(p->pBlob);
  if( (p->iSeek+nRead)>nBlob ){
    nRead = nBlob-p->iSeek;
  }
  if( nRead<=0 ){
    return 0;
  }

  rc = sqlite4_blob_read(p->pBlob, (void *)buf, nRead, p->iSeek);
  if( rc!=SQLITE_OK ){
    *errorCodePtr = rc;
    return -1;
  }

  p->iSeek += nRead;
  return nRead;
}

/*
** Write data to an incremental blob channel.
*/
static int incrblobOutput(
  ClientData instanceData, 
  CONST char *buf, 
  int toWrite,
  int *errorCodePtr
){
  IncrblobChannel *p = (IncrblobChannel *)instanceData;
  int nWrite = toWrite;        /* Number of bytes to write */
  int nBlob;                   /* Total size of the blob */
  int rc;                      /* sqlite error code */

  nBlob = sqlite4_blob_bytes(p->pBlob);
  if( (p->iSeek+nWrite)>nBlob ){
    *errorCodePtr = EINVAL;
    return -1;
  }
  if( nWrite<=0 ){
    return 0;
  }

  rc = sqlite4_blob_write(p->pBlob, (void *)buf, nWrite, p->iSeek);
  if( rc!=SQLITE_OK ){
    *errorCodePtr = EIO;
    return -1;
  }

  p->iSeek += nWrite;
  return nWrite;
}

/*
** Seek an incremental blob channel.
*/
static int incrblobSeek(
  ClientData instanceData, 
  long offset,
  int seekMode,
  int *errorCodePtr
){
  IncrblobChannel *p = (IncrblobChannel *)instanceData;

  switch( seekMode ){
    case SEEK_SET:
      p->iSeek = offset;
      break;
    case SEEK_CUR:
      p->iSeek += offset;
      break;
    case SEEK_END:
      p->iSeek = sqlite4_blob_bytes(p->pBlob) + offset;
      break;

    default: assert(!"Bad seekMode");
  }

  return p->iSeek;
}


static void incrblobWatch(ClientData instanceData, int mode){ 
  /* NO-OP */ 
}
static int incrblobHandle(ClientData instanceData, int dir, ClientData *hPtr){
  return TCL_ERROR;
}

static Tcl_ChannelType IncrblobChannelType = {
  "incrblob",                        /* typeName                             */
  TCL_CHANNEL_VERSION_2,             /* version                              */
  incrblobClose,                     /* closeProc                            */
  incrblobInput,                     /* inputProc                            */
  incrblobOutput,                    /* outputProc                           */
  incrblobSeek,                      /* seekProc                             */
  0,                                 /* setOptionProc                        */
  0,                                 /* getOptionProc                        */
  incrblobWatch,                     /* watchProc (this is a no-op)          */
  incrblobHandle,                    /* getHandleProc (always returns error) */
  0,                                 /* close2Proc                           */
  0,                                 /* blockModeProc                        */
  0,                                 /* flushProc                            */
  0,                                 /* handlerProc                          */
  0,                                 /* wideSeekProc                         */
};

/*
** Create a new incrblob channel.
*/
static int createIncrblobChannel(
  Tcl_Interp *interp, 
  SqliteDb *pDb, 
  const char *zDb,
  const char *zTable, 
  const char *zColumn, 
  sqlite_int64 iRow,
  int isReadonly
){
  IncrblobChannel *p;
  sqlite4 *db = pDb->db;
  sqlite4_blob *pBlob;
  int rc;
  int flags = TCL_READABLE|(isReadonly ? 0 : TCL_WRITABLE);

  /* This variable is used to name the channels: "incrblob_[incr count]" */
  static int count = 0;
  char zChannel[64];

  rc = sqlite4_blob_open(db, zDb, zTable, zColumn, iRow, !isReadonly, &pBlob);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite4_errmsg(pDb->db), TCL_VOLATILE);
    return TCL_ERROR;
  }

  p = (IncrblobChannel *)Tcl_Alloc(sizeof(IncrblobChannel));
  p->iSeek = 0;
  p->pBlob = pBlob;

  sqlite4_snprintf(sizeof(zChannel), zChannel, "incrblob_%d", ++count);
  p->channel = Tcl_CreateChannel(&IncrblobChannelType, zChannel, p, flags);
  Tcl_RegisterChannel(interp, p->channel);

  /* Link the new channel into the SqliteDb.pIncrblob list. */
  p->pNext = pDb->pIncrblob;
  p->pPrev = 0;
  if( p->pNext ){
    p->pNext->pPrev = p;
  }
  pDb->pIncrblob = p;
  p->pDb = pDb;

  Tcl_SetResult(interp, (char *)Tcl_GetChannelName(p->channel), TCL_VOLATILE);
  return TCL_OK;
}
#else  /* else clause for "#ifndef SQLITE_OMIT_INCRBLOB" */
  #define closeIncrblobChannels(pDb)
#endif

/*
** Look at the script prefix in pCmd.  We will be executing this script
** after first appending one or more arguments.  This routine analyzes
** the script to see if it is safe to use Tcl_EvalObjv() on the script
** rather than the more general Tcl_EvalEx().  Tcl_EvalObjv() is much
** faster.







<







<
<
<
<
<
<
<
<
<











<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







131
132
133
134
135
136
137

138
139
140
141
142
143
144









145
146
147
148
149
150
151
152
153
154
155



























































































































































































































156
157
158
159
160
161
162
  SqlCollate *pCollate;      /* List of SQL collation functions */
  int rc;                    /* Return code of most recent sqlite4_exec() */
  Tcl_Obj *pCollateNeeded;   /* Collation needed script */
  SqlPreparedStmt *stmtList; /* List of prepared statements*/
  SqlPreparedStmt *stmtLast; /* Last statement in the list */
  int maxStmt;               /* The next maximum number of stmtList */
  int nStmt;                 /* Number of statements in stmtList */

  int nStep, nSort, nIndex;  /* Statistics for most recent operation */
  int nTransaction;          /* Number of nested [transaction] methods */
#ifdef SQLITE_TEST
  int bLegacyPrepare;        /* True to use sqlite4_prepare() */
#endif
};










/*
** Compute a string length that is limited to what can be stored in
** lower 30 bits of a 32-bit signed integer.
*/
static int strlen30(const char *z){
  const char *z2 = z;
  while( *z2 ){ z2++; }
  return 0x3fffffff & (int)(z2 - z);
}






























































































































































































































/*
** Look at the script prefix in pCmd.  We will be executing this script
** after first appending one or more arguments.  This routine analyzes
** the script to see if it is safe to use Tcl_EvalObjv() on the script
** rather than the more general Tcl_EvalEx().  Tcl_EvalObjv() is much
** faster.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*
** TCL calls this procedure when an sqlite4 database command is
** deleted.
*/
static void DbDeleteCmd(void *db){
  SqliteDb *pDb = (SqliteDb*)db;
  flushStmtCache(pDb);
  closeIncrblobChannels(pDb);
  sqlite4_close(pDb->db);
  while( pDb->pFunc ){
    SqlFunc *pFunc = pDb->pFunc;
    pDb->pFunc = pFunc->pNext;
    Tcl_DecrRefCount(pFunc->pScript);
    Tcl_Free((char*)pFunc);
  }







<







238
239
240
241
242
243
244

245
246
247
248
249
250
251
/*
** TCL calls this procedure when an sqlite4 database command is
** deleted.
*/
static void DbDeleteCmd(void *db){
  SqliteDb *pDb = (SqliteDb*)db;
  flushStmtCache(pDb);

  sqlite4_close(pDb->db);
  while( pDb->pFunc ){
    SqlFunc *pFunc = pDb->pFunc;
    pDb->pFunc = pFunc->pNext;
    Tcl_DecrRefCount(pFunc->pScript);
    Tcl_Free((char*)pFunc);
  }
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
** subroutine to be invoked.
*/
static int DbObjCmd(void *cd, Tcl_Interp *interp, int objc,Tcl_Obj *const*objv){
  SqliteDb *pDb = (SqliteDb*)cd;
  int choice;
  int rc = TCL_OK;
  static const char *DB_strs[] = {
    "authorizer",         "backup",            "busy",
    "cache",              "changes",           "close",
    "collate",            "collation_needed",  "commit_hook",
    "complete",           "copy",              "enable_load_extension",
    "errorcode",          "eval",              "exists",
    "function",           "incrblob",          "interrupt",
    "last_insert_rowid",  "nullvalue",         "onecolumn",
    "profile",            "rekey",
    "restore",            "rollback_hook",     "status",
    "timeout",            "total_changes",     "trace",
    "transaction",        "unlock_notify",     "update_hook",
    "version",            "wal_hook",          0
  };
  enum DB_enum {
    DB_AUTHORIZER,        DB_BACKUP,           DB_BUSY,
    DB_CACHE,             DB_CHANGES,          DB_CLOSE,
    DB_COLLATE,           DB_COLLATION_NEEDED, DB_COMMIT_HOOK,
    DB_COMPLETE,          DB_COPY,             DB_ENABLE_LOAD_EXTENSION,
    DB_ERRORCODE,         DB_EVAL,             DB_EXISTS,
    DB_FUNCTION,          DB_INCRBLOB,         DB_INTERRUPT,
    DB_LAST_INSERT_ROWID, DB_NULLVALUE,        DB_ONECOLUMN,
    DB_PROFILE,           DB_REKEY,
    DB_RESTORE,           DB_ROLLBACK_HOOK,    DB_STATUS,
    DB_TIMEOUT,           DB_TOTAL_CHANGES,    DB_TRACE,
    DB_TRANSACTION,       DB_UNLOCK_NOTIFY,    DB_UPDATE_HOOK,
    DB_VERSION,           DB_WAL_HOOK
  };
  /* don't leave trailing commas on DB_enum, it confuses the AIX xlc compiler */

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "SUBCOMMAND ...");
    return TCL_ERROR;
  }







|
|
|
|
|
<
|
|
|
|
|
|


|
|
|
|
|
<
|
|
|
|
|
|







1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
** subroutine to be invoked.
*/
static int DbObjCmd(void *cd, Tcl_Interp *interp, int objc,Tcl_Obj *const*objv){
  SqliteDb *pDb = (SqliteDb*)cd;
  int choice;
  int rc = TCL_OK;
  static const char *DB_strs[] = {
    "authorizer",         "busy",              "cache",
    "changes",            "close",             "collate",
    "collation_needed",   "commit_hook",       "complete",
    "copy",               "enable_load_extension","errorcode",
    "eval",               "exists",            "function",

    "interrupt",          "last_insert_rowid", "nullvalue",
    "onecolumn",          "profile",           "rekey",
    "rollback_hook",      "status",            "timeout",
    "total_changes",      "trace",             "transaction",
    "unlock_notify",      "update_hook",       "version",
    "wal_hook",           0                    
  };
  enum DB_enum {
    DB_AUTHORIZER,        DB_BUSY,             DB_CACHE,
    DB_CHANGES,           DB_CLOSE,            DB_COLLATE,
    DB_COLLATION_NEEDED,  DB_COMMIT_HOOK,      DB_COMPLETE,
    DB_COPY,              DB_ENABLE_LOAD_EXTENSION,DB_ERRORCODE,
    DB_EVAL,              DB_EXISTS,           DB_FUNCTION,

    DB_INTERRUPT,         DB_LAST_INSERT_ROWID,DB_NULLVALUE,
    DB_ONECOLUMN,         DB_PROFILE,          DB_REKEY,
    DB_ROLLBACK_HOOK,     DB_STATUS,           DB_TIMEOUT,
    DB_TOTAL_CHANGES,     DB_TRACE,            DB_TRANSACTION,
    DB_UNLOCK_NOTIFY,     DB_UPDATE_HOOK,      DB_VERSION,
    DB_WAL_HOOK         
  };
  /* don't leave trailing commas on DB_enum, it confuses the AIX xlc compiler */

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "SUBCOMMAND ...");
    return TCL_ERROR;
  }
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        sqlite4_set_authorizer(pDb->db, 0, 0);
      }
    }
#endif
    break;
  }

  /*    $db backup ?DATABASE? FILENAME
  **
  ** Open or create a database file named FILENAME.  Transfer the
  ** content of local database DATABASE (default: "main") into the
  ** FILENAME database.
  */
  case DB_BACKUP: {
    const char *zDestFile;
    const char *zSrcDb;
    sqlite4 *pDest;
    sqlite4_backup *pBackup;

    if( objc==3 ){
      zSrcDb = "main";
      zDestFile = Tcl_GetString(objv[2]);
    }else if( objc==4 ){
      zSrcDb = Tcl_GetString(objv[2]);
      zDestFile = Tcl_GetString(objv[3]);
    }else{
      Tcl_WrongNumArgs(interp, 2, objv, "?DATABASE? FILENAME");
      return TCL_ERROR;
    }
    rc = sqlite4_open(zDestFile, &pDest);
    if( rc!=SQLITE_OK ){
      Tcl_AppendResult(interp, "cannot open target database: ",
           sqlite4_errmsg(pDest), (char*)0);
      sqlite4_close(pDest);
      return TCL_ERROR;
    }
    pBackup = sqlite4_backup_init(pDest, "main", pDb->db, zSrcDb);
    if( pBackup==0 ){
      Tcl_AppendResult(interp, "backup failed: ",
           sqlite4_errmsg(pDest), (char*)0);
      sqlite4_close(pDest);
      return TCL_ERROR;
    }
    while(  (rc = sqlite4_backup_step(pBackup,100))==SQLITE_OK ){}
    sqlite4_backup_finish(pBackup);
    if( rc==SQLITE_DONE ){
      rc = TCL_OK;
    }else{
      Tcl_AppendResult(interp, "backup failed: ",
           sqlite4_errmsg(pDest), (char*)0);
      rc = TCL_ERROR;
    }
    sqlite4_close(pDest);
    break;
  }

  /*    $db busy ?CALLBACK?
  **
  ** Invoke the given callback if an SQL statement attempts to open
  ** a locked database file.
  */
  case DB_BUSY: {
    if( objc>3 ){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1482
1483
1484
1485
1486
1487
1488

















































1489
1490
1491
1492
1493
1494
1495
        sqlite4_set_authorizer(pDb->db, 0, 0);
      }
    }
#endif
    break;
  }


















































  /*    $db busy ?CALLBACK?
  **
  ** Invoke the given callback if an SQL statement attempts to open
  ** a locked database file.
  */
  case DB_BUSY: {
    if( objc>3 ){
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
  /*
  **    $db enable_load_extension BOOLEAN
  **
  ** Turn the extension loading feature on or off.  It if off by
  ** default.
  */
  case DB_ENABLE_LOAD_EXTENSION: {
#ifndef SQLITE_OMIT_LOAD_EXTENSION
    int onoff;
    if( objc!=3 ){
      Tcl_WrongNumArgs(interp, 2, objv, "BOOLEAN");
      return TCL_ERROR;
    }
    if( Tcl_GetBooleanFromObj(interp, objv[2], &onoff) ){
      return TCL_ERROR;
    }
    sqlite4_enable_load_extension(pDb->db, onoff);
    break;
#else
    Tcl_AppendResult(interp, "extension loading is turned off at compile-time",
                     0);
    return TCL_ERROR;
#endif
  }

  /*
  **    $db errorcode
  **
  ** Return the numeric error code that was returned by the most recent
  ** call to sqlite4_exec().







<
<
<
<
<
<
<
<
<
<
<
<



<







1902
1903
1904
1905
1906
1907
1908












1909
1910
1911

1912
1913
1914
1915
1916
1917
1918
  /*
  **    $db enable_load_extension BOOLEAN
  **
  ** Turn the extension loading feature on or off.  It if off by
  ** default.
  */
  case DB_ENABLE_LOAD_EXTENSION: {












    Tcl_AppendResult(interp, "extension loading is turned off at compile-time",
                     0);
    return TCL_ERROR;

  }

  /*
  **    $db errorcode
  **
  ** Return the numeric error code that was returned by the most recent
  ** call to sqlite4_exec().
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
    if( rc!=SQLITE_OK ){
      rc = TCL_ERROR;
      Tcl_SetResult(interp, (char *)sqlite4_errmsg(pDb->db), TCL_VOLATILE);
    }
    break;
  }

  /*
  **     $db incrblob ?-readonly? ?DB? TABLE COLUMN ROWID
  */
  case DB_INCRBLOB: {
#ifdef SQLITE_OMIT_INCRBLOB
    Tcl_AppendResult(interp, "incrblob not available in this build", 0);
    return TCL_ERROR;
#else
    int isReadonly = 0;
    const char *zDb = "main";
    const char *zTable;
    const char *zColumn;
    sqlite_int64 iRow;

    /* Check for the -readonly option */
    if( objc>3 && strcmp(Tcl_GetString(objv[2]), "-readonly")==0 ){
      isReadonly = 1;
    }

    if( objc!=(5+isReadonly) && objc!=(6+isReadonly) ){
      Tcl_WrongNumArgs(interp, 2, objv, "?-readonly? ?DB? TABLE COLUMN ROWID");
      return TCL_ERROR;
    }

    if( objc==(6+isReadonly) ){
      zDb = Tcl_GetString(objv[2]);
    }
    zTable = Tcl_GetString(objv[objc-3]);
    zColumn = Tcl_GetString(objv[objc-2]);
    rc = Tcl_GetWideIntFromObj(interp, objv[objc-1], &iRow);

    if( rc==TCL_OK ){
      rc = createIncrblobChannel(
          interp, pDb, zDb, zTable, zColumn, iRow, isReadonly
      );
    }
#endif
    break;
  }

  /*
  **     $db interrupt
  **
  ** Interrupt the execution of the inner-most SQL interpreter.  This
  ** causes the SQL statement to return an error of SQLITE_INTERRUPT.
  */
  case DB_INTERRUPT: {







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2055
2056
2057
2058
2059
2060
2061








































2062
2063
2064
2065
2066
2067
2068
    if( rc!=SQLITE_OK ){
      rc = TCL_ERROR;
      Tcl_SetResult(interp, (char *)sqlite4_errmsg(pDb->db), TCL_VOLATILE);
    }
    break;
  }









































  /*
  **     $db interrupt
  **
  ** Interrupt the execution of the inner-most SQL interpreter.  This
  ** causes the SQL statement to return an error of SQLITE_INTERRUPT.
  */
  case DB_INTERRUPT: {
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
      Tcl_AppendResult(interp, sqlite4ErrStr(rc), 0);
      rc = TCL_ERROR;
    }
#endif
    break;
  }

  /*    $db restore ?DATABASE? FILENAME
  **
  ** Open a database file named FILENAME.  Transfer the content 
  ** of FILENAME into the local database DATABASE (default: "main").
  */
  case DB_RESTORE: {
    const char *zSrcFile;
    const char *zDestDb;
    sqlite4 *pSrc;
    sqlite4_backup *pBackup;
    int nTimeout = 0;

    if( objc==3 ){
      zDestDb = "main";
      zSrcFile = Tcl_GetString(objv[2]);
    }else if( objc==4 ){
      zDestDb = Tcl_GetString(objv[2]);
      zSrcFile = Tcl_GetString(objv[3]);
    }else{
      Tcl_WrongNumArgs(interp, 2, objv, "?DATABASE? FILENAME");
      return TCL_ERROR;
    }
    rc = sqlite4_open_v2(zSrcFile, &pSrc, SQLITE_OPEN_READONLY, 0);
    if( rc!=SQLITE_OK ){
      Tcl_AppendResult(interp, "cannot open source database: ",
           sqlite4_errmsg(pSrc), (char*)0);
      sqlite4_close(pSrc);
      return TCL_ERROR;
    }
    pBackup = sqlite4_backup_init(pDb->db, zDestDb, pSrc, "main");
    if( pBackup==0 ){
      Tcl_AppendResult(interp, "restore failed: ",
           sqlite4_errmsg(pDb->db), (char*)0);
      sqlite4_close(pSrc);
      return TCL_ERROR;
    }
    while( (rc = sqlite4_backup_step(pBackup,100))==SQLITE_OK
              || rc==SQLITE_BUSY ){
      if( rc==SQLITE_BUSY ){
        if( nTimeout++ >= 3 ) break;
        sqlite4_sleep(100);
      }
    }
    sqlite4_backup_finish(pBackup);
    if( rc==SQLITE_DONE ){
      rc = TCL_OK;
    }else if( rc==SQLITE_BUSY || rc==SQLITE_LOCKED ){
      Tcl_AppendResult(interp, "restore failed: source database busy",
                       (char*)0);
      rc = TCL_ERROR;
    }else{
      Tcl_AppendResult(interp, "restore failed: ",
           sqlite4_errmsg(pDb->db), (char*)0);
      rc = TCL_ERROR;
    }
    sqlite4_close(pSrc);
    break;
  }

  /*
  **     $db status (step|sort|autoindex)
  **
  ** Display SQLITE_STMTSTATUS_FULLSCAN_STEP or 
  ** SQLITE_STMTSTATUS_SORT for the most recent eval.
  */
  case DB_STATUS: {







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2184
2185
2186
2187
2188
2189
2190



























































2191
2192
2193
2194
2195
2196
2197
      Tcl_AppendResult(interp, sqlite4ErrStr(rc), 0);
      rc = TCL_ERROR;
    }
#endif
    break;
  }




























































  /*
  **     $db status (step|sort|autoindex)
  **
  ** Display SQLITE_STMTSTATUS_FULLSCAN_STEP or 
  ** SQLITE_STMTSTATUS_SORT for the most recent eval.
  */
  case DB_STATUS: {
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
  Md5_Init(interp);
#endif

#ifdef SQLITE_TEST
  {
    extern int Sqliteconfig_Init(Tcl_Interp*);
    extern int Sqlitetest1_Init(Tcl_Interp*);
    extern int Sqlitetest2_Init(Tcl_Interp*);
    extern int Sqlitetest3_Init(Tcl_Interp*);
    extern int Sqlitetest4_Init(Tcl_Interp*);
    extern int Sqlitetest5_Init(Tcl_Interp*);
    extern int Sqlitetest6_Init(Tcl_Interp*);
    extern int Sqlitetest7_Init(Tcl_Interp*);
    extern int Sqlitetest8_Init(Tcl_Interp*);
    extern int Sqlitetest9_Init(Tcl_Interp*);
    extern int Sqlitetest_autoext_Init(Tcl_Interp*);
    extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
    extern int Sqlitetest_func_Init(Tcl_Interp*);
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);
    extern int Sqlitetestsse_Init(Tcl_Interp*);
    extern int Sqlitetesttclvar_Init(Tcl_Interp*);
    extern int SqlitetestThread_Init(Tcl_Interp*);
    extern int SqlitetestOnefile_Init();
    extern int SqlitetestOsinst_Init(Tcl_Interp*);
    extern int Sqlitetestbackup_Init(Tcl_Interp*);
    extern int Sqlitetestintarray_Init(Tcl_Interp*);
    extern int Sqlitetestvfs_Init(Tcl_Interp *);
    extern int Sqlitetestrtree_Init(Tcl_Interp*);
    extern int Sqlitequota_Init(Tcl_Interp*);
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);







<







<












<







3224
3225
3226
3227
3228
3229
3230

3231
3232
3233
3234
3235
3236
3237

3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249

3250
3251
3252
3253
3254
3255
3256
  Md5_Init(interp);
#endif

#ifdef SQLITE_TEST
  {
    extern int Sqliteconfig_Init(Tcl_Interp*);
    extern int Sqlitetest1_Init(Tcl_Interp*);

    extern int Sqlitetest3_Init(Tcl_Interp*);
    extern int Sqlitetest4_Init(Tcl_Interp*);
    extern int Sqlitetest5_Init(Tcl_Interp*);
    extern int Sqlitetest6_Init(Tcl_Interp*);
    extern int Sqlitetest7_Init(Tcl_Interp*);
    extern int Sqlitetest8_Init(Tcl_Interp*);
    extern int Sqlitetest9_Init(Tcl_Interp*);

    extern int Sqlitetest_demovfs_Init(Tcl_Interp *);
    extern int Sqlitetest_func_Init(Tcl_Interp*);
    extern int Sqlitetest_hexio_Init(Tcl_Interp*);
    extern int Sqlitetest_init_Init(Tcl_Interp*);
    extern int Sqlitetest_malloc_Init(Tcl_Interp*);
    extern int Sqlitetest_mutex_Init(Tcl_Interp*);
    extern int Sqlitetestschema_Init(Tcl_Interp*);
    extern int Sqlitetestsse_Init(Tcl_Interp*);
    extern int Sqlitetesttclvar_Init(Tcl_Interp*);
    extern int SqlitetestThread_Init(Tcl_Interp*);
    extern int SqlitetestOnefile_Init();
    extern int SqlitetestOsinst_Init(Tcl_Interp*);

    extern int Sqlitetestintarray_Init(Tcl_Interp*);
    extern int Sqlitetestvfs_Init(Tcl_Interp *);
    extern int Sqlitetestrtree_Init(Tcl_Interp*);
    extern int Sqlitequota_Init(Tcl_Interp*);
    extern int SqliteSuperlock_Init(Tcl_Interp*);
    extern int SqlitetestSyscall_Init(Tcl_Interp*);
    extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);
    Zipvfs_Init(interp);
#endif

    Sqliteconfig_Init(interp);
    Sqlitetest1_Init(interp);
    Sqlitetest2_Init(interp);
    Sqlitetest3_Init(interp);
    Sqlitetest4_Init(interp);
    Sqlitetest5_Init(interp);
    Sqlitetest6_Init(interp);
    Sqlitetest7_Init(interp);
    Sqlitetest8_Init(interp);
    Sqlitetest9_Init(interp);
    Sqlitetest_autoext_Init(interp);
    Sqlitetest_demovfs_Init(interp);
    Sqlitetest_func_Init(interp);
    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);
    Sqlitetesttclvar_Init(interp);
    SqlitetestThread_Init(interp);
    SqlitetestOnefile_Init(interp);
    SqlitetestOsinst_Init(interp);
    Sqlitetestbackup_Init(interp);
    Sqlitetestintarray_Init(interp);
    Sqlitetestvfs_Init(interp);
    Sqlitetestrtree_Init(interp);
    Sqlitequota_Init(interp);
    SqliteSuperlock_Init(interp);
    SqlitetestSyscall_Init(interp);
    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);
    Sqliteteststorage_Init(interp);

#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif







<
<






<

<









<



<
<
<







3264
3265
3266
3267
3268
3269
3270


3271
3272
3273
3274
3275
3276

3277

3278
3279
3280
3281
3282
3283
3284
3285
3286

3287
3288
3289



3290
3291
3292
3293
3294
3295
3296
#ifdef SQLITE_ENABLE_ZIPVFS
    extern int Zipvfs_Init(Tcl_Interp*);
    Zipvfs_Init(interp);
#endif

    Sqliteconfig_Init(interp);
    Sqlitetest1_Init(interp);


    Sqlitetest4_Init(interp);
    Sqlitetest5_Init(interp);
    Sqlitetest6_Init(interp);
    Sqlitetest7_Init(interp);
    Sqlitetest8_Init(interp);
    Sqlitetest9_Init(interp);

    Sqlitetest_demovfs_Init(interp);

    Sqlitetest_hexio_Init(interp);
    Sqlitetest_init_Init(interp);
    Sqlitetest_malloc_Init(interp);
    Sqlitetest_mutex_Init(interp);
    Sqlitetestschema_Init(interp);
    Sqlitetesttclvar_Init(interp);
    SqlitetestThread_Init(interp);
    SqlitetestOnefile_Init(interp);
    SqlitetestOsinst_Init(interp);

    Sqlitetestintarray_Init(interp);
    Sqlitetestvfs_Init(interp);
    Sqlitetestrtree_Init(interp);



    Sqlitetestfuzzer_Init(interp);
    Sqlitetestwholenumber_Init(interp);
    Sqliteteststorage_Init(interp);

#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif

Changes to src/test1.c.

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
  d = (d<<32) + x1;
  memcpy(&r, &d, sizeof(r));
  z = sqlite4_mprintf(argv[1], r);
  Tcl_AppendResult(interp, z, 0);
  sqlite4_free(z);
  return TCL_OK;
}

/*
** Usage: sqlite4_enable_shared_cache ?BOOLEAN?
**
*/
#if !defined(SQLITE_OMIT_SHARED_CACHE)
static int test_enable_shared(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int rc;
  int enable;
  int ret = 0;

  if( objc!=2 && objc!=1 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?BOOLEAN?");
    return TCL_ERROR;
  }
  ret = sqlite4GlobalConfig.sharedCacheEnabled;

  if( objc==2 ){
    if( Tcl_GetBooleanFromObj(interp, objv[1], &enable) ){
      return TCL_ERROR;
    }
    rc = sqlite4_enable_shared_cache(enable);
    if( rc!=SQLITE_OK ){
      Tcl_SetResult(interp, (char *)sqlite4ErrStr(rc), TCL_STATIC);
      return TCL_ERROR;
    }
  }
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(ret));
  return TCL_OK;
}
#endif



/*
** Usage: sqlite4_extended_result_codes   DB    BOOLEAN
**
*/
static int test_extended_result_codes(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1458
1459
1460
1461
1462
1463
1464






































1465
1466
1467
1468
1469
1470
1471
  d = (d<<32) + x1;
  memcpy(&r, &d, sizeof(r));
  z = sqlite4_mprintf(argv[1], r);
  Tcl_AppendResult(interp, z, 0);
  sqlite4_free(z);
  return TCL_OK;
}







































/*
** Usage: sqlite4_extended_result_codes   DB    BOOLEAN
**
*/
static int test_extended_result_codes(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
  Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(autoincrement));
  Tcl_SetObjResult(interp, pRet);

  return TCL_OK;
}
#endif

#ifndef SQLITE_OMIT_INCRBLOB

static int blobHandleFromObj(
  Tcl_Interp *interp, 
  Tcl_Obj *pObj,
  sqlite4_blob **ppBlob
){
  char *z;
  int n;

  z = Tcl_GetStringFromObj(pObj, &n);
  if( n==0 ){
    *ppBlob = 0;
  }else{
    int notUsed;
    Tcl_Channel channel;
    ClientData instanceData;
    
    channel = Tcl_GetChannel(interp, z, &notUsed);
    if( !channel ) return TCL_ERROR;

    Tcl_Flush(channel);
    Tcl_Seek(channel, 0, SEEK_SET);

    instanceData = Tcl_GetChannelInstanceData(channel);
    *ppBlob = *((sqlite4_blob **)instanceData);
  }

  return TCL_OK;
}

/*
** sqlite4_blob_bytes  CHANNEL
*/
static int test_blob_bytes(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_blob *pBlob;
  int nByte;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  nByte = sqlite4_blob_bytes(pBlob);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nByte));

  return TCL_OK;
}

/*
** sqlite4_blob_close  CHANNEL
*/
static int test_blob_close(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_blob *pBlob;
  
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  sqlite4_blob_close(pBlob);

  return TCL_OK;
}

/*
** sqlite4_blob_read  CHANNEL OFFSET N
**
**   This command is used to test the sqlite4_blob_read() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite4_blob_read()
**   to read N bytes from offset OFFSET from the underlying SQLite
**   blob handle.
**
**   On success, a byte-array object containing the read data is 
**   returned. On failure, the interpreter result is set to the
**   text representation of the returned error code (i.e. "SQLITE_NOMEM")
**   and a Tcl exception is thrown.
*/
static int test_blob_read(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_blob *pBlob;
  int nByte;
  int iOffset;
  unsigned char *zBuf = 0;
  int rc;
  
  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET N");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset)
   || TCL_OK!=Tcl_GetIntFromObj(interp, objv[3], &nByte)
  ){ 
    return TCL_ERROR;
  }

  if( nByte>0 ){
    zBuf = (unsigned char *)Tcl_Alloc(nByte);
  }
  rc = sqlite4_blob_read(pBlob, zBuf, nByte, iOffset);
  if( rc==SQLITE_OK ){
    Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(zBuf, nByte));
  }else{
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_VOLATILE);
  }
  Tcl_Free((char *)zBuf);

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

/*
** sqlite4_blob_write CHANNEL OFFSET DATA ?NDATA?
**
**   This command is used to test the sqlite4_blob_write() in ways that
**   the Tcl channel interface does not. The first argument should
**   be the name of a valid channel created by the [incrblob] method
**   of a database handle. This function calls sqlite4_blob_write()
**   to write the DATA byte-array to the underlying SQLite blob handle.
**   at offset OFFSET.
**
**   On success, an empty string is returned. On failure, the interpreter
**   result is set to the text representation of the returned error code 
**   (i.e. "SQLITE_NOMEM") and a Tcl exception is thrown.
*/
static int test_blob_write(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_blob *pBlob;
  int iOffset;
  int rc;

  unsigned char *zBuf;
  int nBuf;
  
  if( objc!=4 && objc!=5 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL OFFSET DATA ?NDATA?");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &iOffset) ){ 
    return TCL_ERROR;
  }

  zBuf = Tcl_GetByteArrayFromObj(objv[3], &nBuf);
  if( objc==5 && Tcl_GetIntFromObj(interp, objv[4], &nBuf) ){
    return TCL_ERROR;
  }
  rc = sqlite4_blob_write(pBlob, zBuf, nBuf, iOffset);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

static int test_blob_reopen(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_WideInt iRowid;
  sqlite4_blob *pBlob;
  int rc;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "CHANNEL ROWID");
    return TCL_ERROR;
  }

  if( blobHandleFromObj(interp, objv[1], &pBlob) ) return TCL_ERROR;
  if( Tcl_GetWideIntFromObj(interp, objv[2], &iRowid) ) return TCL_ERROR;

  rc = sqlite4_blob_reopen(pBlob, iRowid);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_VOLATILE);
  }

  return (rc==SQLITE_OK ? TCL_OK : TCL_ERROR);
}

#endif

/*
** Usage: sqlite4_create_collation DB-HANDLE NAME CMP-PROC DEL-PROC
**
**   This Tcl proc is used for testing the experimental
**   sqlite4_create_collation() interface.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1551
1552
1553
1554
1555
1556
1557














































































































































































































1558
1559
1560
1561
1562
1563
1564
  Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(autoincrement));
  Tcl_SetObjResult(interp, pRet);

  return TCL_OK;
}
#endif
















































































































































































































/*
** Usage: sqlite4_create_collation DB-HANDLE NAME CMP-PROC DEL-PROC
**
**   This Tcl proc is used for testing the experimental
**   sqlite4_create_collation() interface.
*/
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
    Tcl_ResetResult(interp);
    Tcl_AppendResult(interp, sqlite4TestErrorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage: sqlite4_load_extension DB-HANDLE FILE ?PROC?
*/
static int test_load_extension(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_CmdInfo cmdInfo;
  sqlite4 *db;
  int rc;
  char *zDb;
  char *zFile;
  char *zProc = 0;
  char *zErr = 0;

  if( objc!=4 && objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB-HANDLE FILE ?PROC?");
    return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[1]);
  zFile = Tcl_GetString(objv[2]);
  if( objc==4 ){
    zProc = Tcl_GetString(objv[3]);
  }

  /* Extract the C database handle from the Tcl command name */
  if( !Tcl_GetCommandInfo(interp, zDb, &cmdInfo) ){
    Tcl_AppendResult(interp, "command not found: ", zDb, (char*)0);
    return TCL_ERROR;
  }
  db = ((struct SqliteDb*)cmdInfo.objClientData)->db;
  assert(db);

  /* Call the underlying C function. If an error occurs, set rc to 
  ** TCL_ERROR and load any error string into the interpreter. If no 
  ** error occurs, set rc to TCL_OK.
  */
#ifdef SQLITE_OMIT_LOAD_EXTENSION
  rc = SQLITE_ERROR;
  zErr = sqlite4_mprintf("this build omits sqlite4_load_extension()");
#else
  rc = sqlite4_load_extension(db, zFile, zProc, &zErr);
#endif
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, zErr ? zErr : "", TCL_VOLATILE);
    rc = TCL_ERROR;
  }else{
    rc = TCL_OK;
  }
  sqlite4_free(zErr);

  return rc;
}

/*
** Usage: sqlite4_enable_load_extension DB-HANDLE ONOFF
*/
static int test_enable_load(
  ClientData clientData, /* Not used */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  Tcl_CmdInfo cmdInfo;
  sqlite4 *db;
  char *zDb;
  int onoff;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB-HANDLE ONOFF");
    return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[1]);

  /* Extract the C database handle from the Tcl command name */
  if( !Tcl_GetCommandInfo(interp, zDb, &cmdInfo) ){
    Tcl_AppendResult(interp, "command not found: ", zDb, (char*)0);
    return TCL_ERROR;
  }
  db = ((struct SqliteDb*)cmdInfo.objClientData)->db;
  assert(db);

  /* Get the onoff parameter */
  if( Tcl_GetBooleanFromObj(interp, objv[2], &onoff) ){
    return TCL_ERROR;
  }

#ifdef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_AppendResult(interp, "this build omits sqlite4_load_extension()");
  return TCL_ERROR;
#else
  sqlite4_enable_load_extension(db, onoff);
  return TCL_OK;
#endif
}

/*
** Usage:  sqlite_abort
**
** Shutdown the process immediately.  This is not a clean shutdown.
** This command is used to test the recoverability of a database in
** the event of a program crash.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1760
1761
1762
1763
1764
1765
1766

































































































1767
1768
1769
1770
1771
1772
1773
    Tcl_ResetResult(interp);
    Tcl_AppendResult(interp, sqlite4TestErrorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}



































































































/*
** Usage:  sqlite_abort
**
** Shutdown the process immediately.  This is not a clean shutdown.
** This command is used to test the recoverability of a database in
** the event of a program crash.
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " STMT", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  rc = sqlite4_stmt_readonly(pStmt);
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(((Vdbe *)pStmt)->usesStmtJournal));
  return TCL_OK;
}


/*
** Usage:  sqlite4_reset  STMT 
**







|







2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " STMT", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  rc = sqlite4_stmt_readonly(pStmt);
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(((Vdbe *)pStmt)->needSavepoint));
  return TCL_OK;
}


/*
** Usage:  sqlite4_reset  STMT 
**
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  rc = sqlite4_db_release_memory(db);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}

/*
** Usage:  sqlite4_db_filename DB DBNAME
**
** Return the name of a file associated with a database.
*/
static int test_db_filename(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4 *db;
  const char *zDbName;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  zDbName = Tcl_GetString(objv[2]);
  Tcl_AppendResult(interp, sqlite4_db_filename(db, zDbName), (void*)0);
  return TCL_OK;
}

/*
** Usage:  sqlite4_soft_heap_limit ?N?
**
** Query or set the soft heap limit for the current thread.  The
** limit is only changed if the N is present.  The previous limit
** is returned.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4284
4285
4286
4287
4288
4289
4290























4291
4292
4293
4294
4295
4296
4297
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  rc = sqlite4_db_release_memory(db);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}
























/*
** Usage:  sqlite4_soft_heap_limit ?N?
**
** Query or set the soft heap limit for the current thread.  The
** limit is only changed if the N is present.  The previous limit
** is returned.
*/
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
    if( Tcl_GetWideIntFromObj(interp, objv[1], &N) ) return TCL_ERROR;
  }
  amt = sqlite4_soft_heap_limit64(N);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(amt));
  return TCL_OK;
}

/*
** Usage:   sqlite4_thread_cleanup
**
** Call the sqlite4_thread_cleanup API.
*/
static int test_thread_cleanup(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_thread_cleanup();
#endif
  return TCL_OK;
}

/*
** Usage:   sqlite4_pager_refcounts  DB
**
** Return a list of numbers which are the PagerRefcount for all
** pagers on each database connection.
*/
static int test_pager_refcounts(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4 *db;
  int i;
  int v, *a;
  Tcl_Obj *pResult;

  if( objc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  pResult = Tcl_NewObj();
  for(i=0; i<db->nDb; i++){
    if( db->aDb[i].pBt==0 ){
      v = -1;
    }else{
      sqlite4_mutex_enter(db->mutex);
      a = sqlite4PagerStats(sqlite4BtreePager(db->aDb[i].pBt));
      v = a[0];
      sqlite4_mutex_leave(db->mutex);
    }
    Tcl_ListObjAppendElement(0, pResult, Tcl_NewIntObj(v));
  }
  Tcl_SetObjResult(interp, pResult);
  return TCL_OK;
}


/*
** tclcmd:   working_64bit_int
**
** Some TCL builds (ex: cygwin) do not support 64-bit integers.  This
** leads to a number of test failures.  The present command checks the
** TCL build to see whether or not it supports 64-bit integers.  It







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4311
4312
4313
4314
4315
4316
4317
























































4318
4319
4320
4321
4322
4323
4324
    if( Tcl_GetWideIntFromObj(interp, objv[1], &N) ) return TCL_ERROR;
  }
  amt = sqlite4_soft_heap_limit64(N);
  Tcl_SetObjResult(interp, Tcl_NewWideIntObj(amt));
  return TCL_OK;
}


























































/*
** tclcmd:   working_64bit_int
**
** Some TCL builds (ex: cygwin) do not support 64-bit integers.  This
** leads to a number of test failures.  The present command checks the
** TCL build to see whether or not it supports 64-bit integers.  It
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
  for(i=0; i<nVfs; i++){
    sqlite4_vfs_register(apVfs[i], i==0);
  }
  return TCL_OK;
}


/*
** tclcmd:   file_control_test DB
**
** This TCL command runs the sqlite4_file_control interface and
** verifies correct operation of the same.
*/
static int file_control_test(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int iArg = 0;
  sqlite4 *db;
  int rc;

  if( objc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
  rc = sqlite4_file_control(db, 0, 0, &iArg);
  assert( rc==SQLITE_NOTFOUND );
  rc = sqlite4_file_control(db, "notadatabase", SQLITE_FCNTL_LOCKSTATE, &iArg);
  assert( rc==SQLITE_ERROR );
  rc = sqlite4_file_control(db, "main", -1, &iArg);
  assert( rc==SQLITE_NOTFOUND );
  rc = sqlite4_file_control(db, "temp", -1, &iArg);
  assert( rc==SQLITE_NOTFOUND || rc==SQLITE_ERROR );

  return TCL_OK;
}


/*
** tclcmd:   file_control_lasterrno_test DB
**
** This TCL command runs the sqlite4_file_control interface and
** verifies correct operation of the SQLITE_LAST_ERRNO verb.
*/
static int file_control_lasterrno_test(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int iArg = 0;
  sqlite4 *db;
  int rc;

  if( objc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  rc = sqlite4_file_control(db, NULL, SQLITE_LAST_ERRNO, &iArg);
  if( rc ){ 
    Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); 
    return TCL_ERROR; 
  }
  if( iArg!=0 ) {
    Tcl_AppendResult(interp, "Unexpected non-zero errno: ",
                     Tcl_GetStringFromObj(Tcl_NewIntObj(iArg), 0), " ", 0);
    return TCL_ERROR;
  }
  return TCL_OK;  
}

/*
** tclcmd:   file_control_chunksize_test DB DBNAME SIZE
**
** This TCL command runs the sqlite4_file_control interface and
** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and
** SQLITE_SET_LOCKPROXYFILE verbs.
*/
static int file_control_chunksize_test(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int nSize;                      /* New chunk size */
  char *zDb;                      /* Db name ("main", "temp" etc.) */
  sqlite4 *db;                    /* Database handle */
  int rc;                         /* file_control() return code */

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME SIZE");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) 
   || Tcl_GetIntFromObj(interp, objv[3], &nSize)
  ){
   return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[2]);
  if( zDb[0]=='\0' ) zDb = NULL;

  rc = sqlite4_file_control(db, zDb, SQLITE_FCNTL_CHUNK_SIZE, (void *)&nSize);
  if( rc ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** tclcmd:   file_control_sizehint_test DB DBNAME SIZE
**
** This TCL command runs the sqlite4_file_control interface 
** with SQLITE_FCNTL_SIZE_HINT
*/
static int file_control_sizehint_test(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_int64 nSize;            /* Hinted size */
  char *zDb;                      /* Db name ("main", "temp" etc.) */
  sqlite4 *db;                    /* Database handle */
  int rc;                         /* file_control() return code */

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB DBNAME SIZE");
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) 
   || Tcl_GetWideIntFromObj(interp, objv[3], &nSize)
  ){
   return TCL_ERROR;
  }
  zDb = Tcl_GetString(objv[2]);
  if( zDb[0]=='\0' ) zDb = NULL;

  rc = sqlite4_file_control(db, zDb, SQLITE_FCNTL_SIZE_HINT, (void *)&nSize);
  if( rc ){
    Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** tclcmd:   file_control_lockproxy_test DB PWD
**
** This TCL command runs the sqlite4_file_control interface and
** verifies correct operation of the SQLITE_GET_LOCKPROXYFILE and
** SQLITE_SET_LOCKPROXYFILE verbs.
*/
static int file_control_lockproxy_test(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4 *db;
  const char *zPwd;
  int nPwd;
  
  if( objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
                     Tcl_GetStringFromObj(objv[0], 0), " DB PWD", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
   return TCL_ERROR;
  }
  zPwd = Tcl_GetStringFromObj(objv[2], &nPwd);
  
#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
  {
    char *testPath;
    int rc;
    char proxyPath[400];
    
    if( sizeof(proxyPath)<nPwd+20 ){
      Tcl_AppendResult(interp, "PWD too big", (void*)0);
      return TCL_ERROR;
    }
    sprintf(proxyPath, "%s/test.proxy", zPwd);
    rc = sqlite4_file_control(db, NULL, SQLITE_SET_LOCKPROXYFILE, proxyPath);
    if( rc ){
      Tcl_SetObjResult(interp, Tcl_NewIntObj(rc)); 
      return TCL_ERROR;
    }
    rc = sqlite4_file_control(db, NULL, SQLITE_GET_LOCKPROXYFILE, &testPath);
    if( strncmp(proxyPath,testPath,11) ){
      Tcl_AppendResult(interp, "Lock proxy file did not match the "
                               "previously assigned value", 0);
      return TCL_ERROR;
    }
    if( rc ){
      Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
      return TCL_ERROR;
    }
    rc = sqlite4_file_control(db, NULL, SQLITE_SET_LOCKPROXYFILE, proxyPath);
    if( rc ){
      Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
      return TCL_ERROR;
    }
  }
#endif
  return TCL_OK;  
}

/*
** tclcmd:   file_control_win32_av_retry DB  NRETRY  DELAY
**
** This TCL command runs the sqlite4_file_control interface with
** the SQLITE_FCNTL_WIN32_AV_RETRY opcode.
*/
static int file_control_win32_av_retry(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4 *db;
  int rc;
  int a[2];
  char z[100];

  if( objc!=4 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB NRETRY DELAY", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &a[0]) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[3], &a[1]) ) return TCL_ERROR;
  rc = sqlite4_file_control(db, NULL, SQLITE_FCNTL_WIN32_AV_RETRY, (void*)a);
  sqlite4_snprintf(sizeof(z), z, "%d %d %d", rc, a[0], a[1]);
  Tcl_AppendResult(interp, z, (char*)0);
  return TCL_OK;  
}

/*
** tclcmd:   file_control_persist_wal DB PERSIST-FLAG
**
** This TCL command runs the sqlite4_file_control interface with
** the SQLITE_FCNTL_PERSIST_WAL opcode.
*/
static int file_control_persist_wal(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4 *db;
  int rc;
  int bPersist;
  char z[100];

  if( objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB FLAG", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &bPersist) ) return TCL_ERROR;
  rc = sqlite4_file_control(db, NULL, SQLITE_FCNTL_PERSIST_WAL, (void*)&bPersist);
  sqlite4_snprintf(sizeof(z), z, "%d %d", rc, bPersist);
  Tcl_AppendResult(interp, z, (char*)0);
  return TCL_OK;  
}

/*
** tclcmd:   file_control_powersafe_overwrite DB PSOW-FLAG
**
** This TCL command runs the sqlite4_file_control interface with
** the SQLITE_FCNTL_POWERSAFE_OVERWRITE opcode.
*/
static int file_control_powersafe_overwrite(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4 *db;
  int rc;
  int b;
  char z[100];

  if( objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB FLAG", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &b) ) return TCL_ERROR;
  rc = sqlite4_file_control(db,NULL,SQLITE_FCNTL_POWERSAFE_OVERWRITE,(void*)&b);
  sqlite4_snprintf(sizeof(z), z, "%d %d", rc, b);
  Tcl_AppendResult(interp, z, (char*)0);
  return TCL_OK;  
}


/*
** tclcmd:   file_control_vfsname DB ?AUXDB?
**
** Return a string that describes the stack of VFSes.
*/
static int file_control_vfsname(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4 *db;
  const char *zDbName = "main";
  char *zVfsName = 0;

  if( objc!=2 && objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB ?AUXDB?", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  if( objc==3 ){
    zDbName = Tcl_GetString(objv[2]);
  }
  sqlite4_file_control(db, zDbName, SQLITE_FCNTL_VFSNAME,(void*)&zVfsName);
  Tcl_AppendResult(interp, zVfsName, (char*)0);
  sqlite4_free(zVfsName);
  return TCL_OK;  
}


/*
** tclcmd:   sqlite4_vfs_list
**
**   Return a tcl list containing the names of all registered vfs's.
*/
static int vfs_list(







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4513
4514
4515
4516
4517
4518
4519



























































































































































































































































































































































4520
4521
4522
4523
4524
4525
4526
  for(i=0; i<nVfs; i++){
    sqlite4_vfs_register(apVfs[i], i==0);
  }
  return TCL_OK;
}






























































































































































































































































































































































/*
** tclcmd:   sqlite4_vfs_list
**
**   Return a tcl list containing the names of all registered vfs's.
*/
static int vfs_list(
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_test_control(SQLITE_TESTCTRL_PRNG_RESET);
  return TCL_OK;
}

/*
** tclcmd:  pcache_stats
*/
static int test_pcache_stats(
  ClientData clientData, /* Pointer to sqlite4_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  int nMin;
  int nMax;
  int nCurrent;
  int nRecyclable;
  Tcl_Obj *pRet;

  sqlite4PcacheStats(&nCurrent, &nMax, &nMin, &nRecyclable);

  pRet = Tcl_NewObj();
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj("current", -1));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nCurrent));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj("max", -1));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nMax));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj("min", -1));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nMin));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj("recyclable", -1));
  Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nRecyclable));

  Tcl_SetObjResult(interp, pRet);

  return TCL_OK;
}

#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
static void test_unlock_notify_cb(void **aArg, int nArg){
  int ii;
  for(ii=0; ii<nArg; ii++){
    Tcl_EvalEx((Tcl_Interp *)aArg[ii], "unlock_notify", -1, TCL_EVAL_GLOBAL);
  }







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4644
4645
4646
4647
4648
4649
4650































4651
4652
4653
4654
4655
4656
4657
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite4_test_control(SQLITE_TESTCTRL_PRNG_RESET);
  return TCL_OK;
}

































#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
static void test_unlock_notify_cb(void **aArg, int nArg){
  int ii;
  for(ii=0; ii<nArg; ii++){
    Tcl_EvalEx((Tcl_Interp *)aArg[ii], "unlock_notify", -1, TCL_EVAL_GLOBAL);
  }
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
  extern int sqlite4_open_file_count;
  extern int sqlite4_sort_count;
  extern int sqlite4_current_time;
#if SQLITE_OS_UNIX && defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
  extern int sqlite4_hostid_num;
#endif
  extern int sqlite4_max_blobsize;
  extern int sqlite4BtreeSharedCacheReport(void*,
                                          Tcl_Interp*,int,Tcl_Obj*CONST*);
  static struct {
     char *zName;
     Tcl_CmdProc *xProc;
  } aCmd[] = {
     { "db_enter",                      (Tcl_CmdProc*)db_enter               },
     { "db_leave",                      (Tcl_CmdProc*)db_leave               },
     { "sqlite4_mprintf_int",           (Tcl_CmdProc*)sqlite4_mprintf_int    },







<
<







5144
5145
5146
5147
5148
5149
5150


5151
5152
5153
5154
5155
5156
5157
  extern int sqlite4_open_file_count;
  extern int sqlite4_sort_count;
  extern int sqlite4_current_time;
#if SQLITE_OS_UNIX && defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
  extern int sqlite4_hostid_num;
#endif
  extern int sqlite4_max_blobsize;


  static struct {
     char *zName;
     Tcl_CmdProc *xProc;
  } aCmd[] = {
     { "db_enter",                      (Tcl_CmdProc*)db_enter               },
     { "db_leave",                      (Tcl_CmdProc*)db_leave               },
     { "sqlite4_mprintf_int",           (Tcl_CmdProc*)sqlite4_mprintf_int    },
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
     { "sqlite4_next_stmt",             test_next_stmt     ,0 },
     { "sqlite4_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite4_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite4_release_memory",        test_release_memory,     0},
     { "sqlite4_db_release_memory",     test_db_release_memory,  0},
     { "sqlite4_db_filename",           test_db_filename,        0},
     { "sqlite4_soft_heap_limit",       test_soft_heap_limit,    0},
     { "sqlite4_thread_cleanup",        test_thread_cleanup,     0},
     { "sqlite4_pager_refcounts",       test_pager_refcounts,    0},

     { "sqlite4_load_extension",        test_load_extension,     0},
     { "sqlite4_enable_load_extension", test_enable_load,        0},
     { "sqlite4_extended_result_codes", test_extended_result_codes, 0},
     { "sqlite4_limit",                 test_limit,                 0},

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},







<

<
<

<
<







5237
5238
5239
5240
5241
5242
5243

5244


5245


5246
5247
5248
5249
5250
5251
5252
     { "sqlite4_next_stmt",             test_next_stmt     ,0 },
     { "sqlite4_stmt_readonly",         test_stmt_readonly ,0 },
     { "sqlite4_stmt_busy",             test_stmt_busy     ,0 },
     { "uses_stmt_journal",             uses_stmt_journal ,0 },

     { "sqlite4_release_memory",        test_release_memory,     0},
     { "sqlite4_db_release_memory",     test_db_release_memory,  0},

     { "sqlite4_soft_heap_limit",       test_soft_heap_limit,    0},





     { "sqlite4_extended_result_codes", test_extended_result_codes, 0},
     { "sqlite4_limit",                 test_limit,                 0},

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
     { "sqlite4_create_collation",   test_create_collation, 0 },
     { "sqlite4_global_recover",     test_global_recover, 0   },
     { "working_64bit_int",          working_64bit_int,   0   },
     { "vfs_unlink_test",            vfs_unlink_test,     0   },
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },
     { "file_control_test",          file_control_test,   0   },
     { "file_control_lasterrno_test", file_control_lasterrno_test,  0   },
     { "file_control_lockproxy_test", file_control_lockproxy_test,  0   },
     { "file_control_chunksize_test", file_control_chunksize_test,  0   },
     { "file_control_sizehint_test",  file_control_sizehint_test,   0   },
     { "file_control_win32_av_retry", file_control_win32_av_retry,  0   },
     { "file_control_persist_wal",    file_control_persist_wal,     0   },
     { "file_control_powersafe_overwrite",file_control_powersafe_overwrite,0},
     { "file_control_vfsname",        file_control_vfsname,         0   },
     { "sqlite4_vfs_list",           vfs_list,     0   },
     { "sqlite4_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },
     { "add_test_function",       test_function, 0           },
#endif
     { "sqlite4_test_errstr",     test_errstr, 0             },
     { "tcl_variable_type",       tcl_variable_type, 0       },
#ifndef SQLITE_OMIT_SHARED_CACHE
     { "sqlite4_enable_shared_cache", test_enable_shared, 0  },
     { "sqlite4_shared_cache_report", sqlite4BtreeSharedCacheReport, 0},
#endif
     { "sqlite4_libversion_number", test_libversion_number, 0  },
#ifdef SQLITE_ENABLE_COLUMN_METADATA
     { "sqlite4_table_column_metadata", test_table_column_metadata, 0  },
#endif
#ifndef SQLITE_OMIT_INCRBLOB
     { "sqlite4_blob_read",   test_blob_read, 0  },
     { "sqlite4_blob_write",  test_blob_write, 0  },
     { "sqlite4_blob_reopen", test_blob_reopen, 0  },
     { "sqlite4_blob_bytes",  test_blob_bytes, 0  },
     { "sqlite4_blob_close",  test_blob_close, 0  },
#endif
     { "pcache_stats",       test_pcache_stats, 0  },
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
     { "sqlite4_unlock_notify", test_unlock_notify, 0  },
#endif
     { "sqlite4_wal_checkpoint",   test_wal_checkpoint, 0  },
     { "sqlite4_wal_checkpoint_v2",test_wal_checkpoint_v2, 0  },
     { "test_sqlite4_log",         test_sqlite4_log, 0  },
#ifndef SQLITE_OMIT_EXPLAIN
     { "print_explain_query_plan", test_print_eqp, 0  },
#endif
     { "sqlite4_test_control", test_test_control },







<
<
<
<
<
<
<
<
<











<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<







5293
5294
5295
5296
5297
5298
5299









5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310




5311














5312
5313
5314
5315
5316
5317
5318
     { "sqlite4_create_collation",   test_create_collation, 0 },
     { "sqlite4_global_recover",     test_global_recover, 0   },
     { "working_64bit_int",          working_64bit_int,   0   },
     { "vfs_unlink_test",            vfs_unlink_test,     0   },
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },









     { "sqlite4_vfs_list",           vfs_list,     0   },
     { "sqlite4_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },
     { "add_test_function",       test_function, 0           },
#endif
     { "sqlite4_test_errstr",     test_errstr, 0             },
     { "tcl_variable_type",       tcl_variable_type, 0       },




     { "sqlite4_libversion_number", test_libversion_number, 0  },














     { "sqlite4_wal_checkpoint",   test_wal_checkpoint, 0  },
     { "sqlite4_wal_checkpoint_v2",test_wal_checkpoint_v2, 0  },
     { "test_sqlite4_log",         test_sqlite4_log, 0  },
#ifndef SQLITE_OMIT_EXPLAIN
     { "print_explain_query_plan", test_print_eqp, 0  },
#endif
     { "sqlite4_test_control", test_test_control },
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
      (char*)&sqlite4_current_time, TCL_LINK_INT);
#if SQLITE_OS_UNIX && defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
  Tcl_LinkVar(interp, "sqlite_hostid_num", 
      (char*)&sqlite4_hostid_num, TCL_LINK_INT);
#endif
  Tcl_LinkVar(interp, "sqlite4_xferopt_count",
      (char*)&sqlite4_xferopt_count, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite4_pager_readdb_count",
      (char*)&sqlite4_pager_readdb_count, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite4_pager_writedb_count",
      (char*)&sqlite4_pager_writedb_count, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite4_pager_writej_count",
      (char*)&sqlite4_pager_writej_count, TCL_LINK_INT);
#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "unaligned_string_counter",
      (char*)&unaligned_string_counter, TCL_LINK_INT);
#endif
#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "sqlite_last_needed_collation",
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);







<
<
<
<
<
<







5368
5369
5370
5371
5372
5373
5374






5375
5376
5377
5378
5379
5380
5381
      (char*)&sqlite4_current_time, TCL_LINK_INT);
#if SQLITE_OS_UNIX && defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
  Tcl_LinkVar(interp, "sqlite_hostid_num", 
      (char*)&sqlite4_hostid_num, TCL_LINK_INT);
#endif
  Tcl_LinkVar(interp, "sqlite4_xferopt_count",
      (char*)&sqlite4_xferopt_count, TCL_LINK_INT);






#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "unaligned_string_counter",
      (char*)&unaligned_string_counter, TCL_LINK_INT);
#endif
#ifndef SQLITE_OMIT_UTF16
  Tcl_LinkVar(interp, "sqlite_last_needed_collation",
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_addop_trace",
      (char*)&sqlite4VdbeAddopTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite4WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite4OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL
  Tcl_LinkVar(interp, "sqlite_wal_trace",
      (char*)&sqlite4WalTrace, TCL_LINK_INT);
#endif
#endif
#ifndef SQLITE_OMIT_DISKIO
  Tcl_LinkVar(interp, "sqlite_opentemp_count",
      (char*)&sqlite4_opentemp_count, TCL_LINK_INT);
#endif
  Tcl_LinkVar(interp, "sqlite_static_bind_value",
      (char*)&sqlite_static_bind_value, TCL_LINK_STRING);
  Tcl_LinkVar(interp, "sqlite_static_bind_nbyte",
      (char*)&sqlite_static_bind_nbyte, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_temp_directory",
      (char*)&sqlite4_temp_directory, TCL_LINK_STRING);







<
<
<
<
<
<
<
<
<
<







5389
5390
5391
5392
5393
5394
5395










5396
5397
5398
5399
5400
5401
5402
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_addop_trace",
      (char*)&sqlite4VdbeAddopTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite4WhereTrace, TCL_LINK_INT);










#endif
  Tcl_LinkVar(interp, "sqlite_static_bind_value",
      (char*)&sqlite_static_bind_value, TCL_LINK_STRING);
  Tcl_LinkVar(interp, "sqlite_static_bind_nbyte",
      (char*)&sqlite_static_bind_nbyte, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_temp_directory",
      (char*)&sqlite4_temp_directory, TCL_LINK_STRING);

Deleted src/test2.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the pager.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

/*
** Interpret an SQLite error number
*/
static char *errorName(int rc){
  char *zName;
  switch( rc ){
    case SQLITE_OK:         zName = "SQLITE_OK";          break;
    case SQLITE_ERROR:      zName = "SQLITE_ERROR";       break;
    case SQLITE_PERM:       zName = "SQLITE_PERM";        break;
    case SQLITE_ABORT:      zName = "SQLITE_ABORT";       break;
    case SQLITE_BUSY:       zName = "SQLITE_BUSY";        break;
    case SQLITE_NOMEM:      zName = "SQLITE_NOMEM";       break;
    case SQLITE_READONLY:   zName = "SQLITE_READONLY";    break;
    case SQLITE_INTERRUPT:  zName = "SQLITE_INTERRUPT";   break;
    case SQLITE_IOERR:      zName = "SQLITE_IOERR";       break;
    case SQLITE_CORRUPT:    zName = "SQLITE_CORRUPT";     break;
    case SQLITE_FULL:       zName = "SQLITE_FULL";        break;
    case SQLITE_CANTOPEN:   zName = "SQLITE_CANTOPEN";    break;
    case SQLITE_PROTOCOL:   zName = "SQLITE_PROTOCOL";    break;
    case SQLITE_EMPTY:      zName = "SQLITE_EMPTY";       break;
    case SQLITE_SCHEMA:     zName = "SQLITE_SCHEMA";      break;
    case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT";  break;
    case SQLITE_MISMATCH:   zName = "SQLITE_MISMATCH";    break;
    case SQLITE_MISUSE:     zName = "SQLITE_MISUSE";      break;
    case SQLITE_NOLFS:      zName = "SQLITE_NOLFS";       break;
    default:                zName = "SQLITE_Unknown";     break;
  }
  return zName;
}

/*
** Page size and reserved size used for testing.
*/
static int test_pagesize = 1024;

/*
** Dummy page reinitializer
*/
static void pager_test_reiniter(DbPage *pNotUsed){
  return;
}

/*
** Usage:   pager_open FILENAME N-PAGE
**
** Open a new pager
*/
static int pager_open(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  u32 pageSize;
  Pager *pPager;
  int nPage;
  int rc;
  char zBuf[100];
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " FILENAME N-PAGE\"", 0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[2], &nPage) ) return TCL_ERROR;
  rc = sqlite4PagerOpen(sqlite4_vfs_find(0), &pPager, argv[1], 0, 0,
      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MAIN_DB,
      pager_test_reiniter);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4PagerSetCachesize(pPager, nPage);
  pageSize = test_pagesize;
  sqlite4PagerSetPagesize(pPager, &pageSize, -1);
  sqlite4_snprintf(sizeof(zBuf),zBuf,"%p",pPager);
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   pager_close ID
**
** Close the given pager.
*/
static int pager_close(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerClose(pPager);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_rollback ID
**
** Rollback changes
*/
static int pager_rollback(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerRollback(pPager);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_commit ID
**
** Commit all changes
*/
static int pager_commit(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerCommitPhaseOne(pPager, 0, 0);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  rc = sqlite4PagerCommitPhaseTwo(pPager);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_stmt_begin ID
**
** Start a new checkpoint.
*/
static int pager_stmt_begin(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerOpenSavepoint(pPager, 1);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_stmt_rollback ID
**
** Rollback changes to a checkpoint
*/
static int pager_stmt_rollback(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, 0);
  sqlite4PagerSavepoint(pPager, SAVEPOINT_RELEASE, 0);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_stmt_commit ID
**
** Commit changes to a checkpoint
*/
static int pager_stmt_commit(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerSavepoint(pPager, SAVEPOINT_RELEASE, 0);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   pager_stats ID
**
** Return pager statistics.
*/
static int pager_stats(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int i, *a;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  a = sqlite4PagerStats(pPager);
  for(i=0; i<9; i++){
    static char *zName[] = {
      "ref", "page", "max", "size", "state", "err",
      "hit", "miss", "ovfl",
    };
    char zBuf[100];
    Tcl_AppendElement(interp, zName[i]);
    sqlite4_snprintf(sizeof(zBuf),zBuf,"%d",a[i]);
    Tcl_AppendElement(interp, zBuf);
  }
  return TCL_OK;
}

/*
** Usage:   pager_pagecount ID
**
** Return the size of the database file.
*/
static int pager_pagecount(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  char zBuf[100];
  int nPage;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  sqlite4PagerPagecount(pPager, &nPage);
  sqlite4_snprintf(sizeof(zBuf), zBuf, "%d", nPage);
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   page_get ID PGNO
**
** Return a pointer to a page from the database.
*/
static int page_get(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  char zBuf[100];
  DbPage *pPage;
  int pgno;
  int rc;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID PGNO\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  if( Tcl_GetInt(interp, argv[2], &pgno) ) return TCL_ERROR;
  rc = sqlite4PagerSharedLock(pPager);
  if( rc==SQLITE_OK ){
    rc = sqlite4PagerGet(pPager, pgno, &pPage);
  }
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zBuf),zBuf,"%p",pPage);
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   page_lookup ID PGNO
**
** Return a pointer to a page if the page is already in cache.
** If not in cache, return an empty string.
*/
static int page_lookup(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  char zBuf[100];
  DbPage *pPage;
  int pgno;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID PGNO\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  if( Tcl_GetInt(interp, argv[2], &pgno) ) return TCL_ERROR;
  pPage = sqlite4PagerLookup(pPager, pgno);
  if( pPage ){
    sqlite4_snprintf(sizeof(zBuf),zBuf,"%p",pPage);
    Tcl_AppendResult(interp, zBuf, 0);
  }
  return TCL_OK;
}

/*
** Usage:   pager_truncate ID PGNO
*/
static int pager_truncate(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Pager *pPager;
  int pgno;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID PGNO\"", 0);
    return TCL_ERROR;
  }
  pPager = sqlite4TestTextToPtr(argv[1]);
  if( Tcl_GetInt(interp, argv[2], &pgno) ) return TCL_ERROR;
  sqlite4PagerTruncateImage(pPager, pgno);
  return TCL_OK;
}


/*
** Usage:   page_unref PAGE
**
** Drop a pointer to a page.
*/
static int page_unref(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  DbPage *pPage;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " PAGE\"", 0);
    return TCL_ERROR;
  }
  pPage = (DbPage *)sqlite4TestTextToPtr(argv[1]);
  sqlite4PagerUnref(pPage);
  return TCL_OK;
}

/*
** Usage:   page_read PAGE
**
** Return the content of a page
*/
static int page_read(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  char zBuf[100];
  DbPage *pPage;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " PAGE\"", 0);
    return TCL_ERROR;
  }
  pPage = sqlite4TestTextToPtr(argv[1]);
  memcpy(zBuf, sqlite4PagerGetData(pPage), sizeof(zBuf));
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   page_number PAGE
**
** Return the page number for a page.
*/
static int page_number(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  char zBuf[100];
  DbPage *pPage;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " PAGE\"", 0);
    return TCL_ERROR;
  }
  pPage = (DbPage *)sqlite4TestTextToPtr(argv[1]);
  sqlite4_snprintf(sizeof(zBuf), zBuf, "%d", sqlite4PagerPagenumber(pPage));
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   page_write PAGE DATA
**
** Write something into a page.
*/
static int page_write(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  DbPage *pPage;
  char *pData;
  int rc;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " PAGE DATA\"", 0);
    return TCL_ERROR;
  }
  pPage = (DbPage *)sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4PagerWrite(pPage);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  pData = sqlite4PagerGetData(pPage);
  strncpy(pData, argv[2], test_pagesize-1);
  pData[test_pagesize-1] = 0;
  return TCL_OK;
}

#ifndef SQLITE_OMIT_DISKIO
/*
** Usage:   fake_big_file  N  FILENAME
**
** Write a few bytes at the N megabyte point of FILENAME.  This will
** create a large file.  If the file was a valid SQLite database, then
** the next time the database is opened, SQLite will begin allocating
** new pages after N.  If N is 2096 or bigger, this will test the
** ability of SQLite to write to large files.
*/
static int fake_big_file(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  sqlite4_vfs *pVfs;
  sqlite4_file *fd = 0;
  int rc;
  int n;
  i64 offset;
  char *zFile;
  int nFile;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " N-MEGABYTES FILE\"", 0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[1], &n) ) return TCL_ERROR;

  pVfs = sqlite4_vfs_find(0);
  nFile = strlen(argv[2]);
  zFile = sqlite4_malloc( nFile+2 );
  if( zFile==0 ) return TCL_ERROR;
  memcpy(zFile, argv[2], nFile+1);
  zFile[nFile+1] = 0;
  rc = sqlite4OsOpenMalloc(pVfs, zFile, &fd, 
      (SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB), 0
  );
  if( rc ){
    Tcl_AppendResult(interp, "open failed: ", errorName(rc), 0);
    sqlite4_free(zFile);
    return TCL_ERROR;
  }
  offset = n;
  offset *= 1024*1024;
  rc = sqlite4OsWrite(fd, "Hello, World!", 14, offset);
  sqlite4OsCloseFree(fd);
  sqlite4_free(zFile);
  if( rc ){
    Tcl_AppendResult(interp, "write failed: ", errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}
#endif


/*
** test_control_pending_byte  PENDING_BYTE
**
** Set the PENDING_BYTE using the sqlite4_test_control() interface.
*/
static int testPendingByte(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  int pbyte;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
                     " PENDING-BYTE\"", (void*)0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[1], &pbyte) ) return TCL_ERROR;
  rc = sqlite4_test_control(SQLITE_TESTCTRL_PENDING_BYTE, pbyte);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}  

/*
** sqlite4BitvecBuiltinTest SIZE PROGRAM
**
** Invoke the SQLITE_TESTCTRL_BITVEC_TEST operator on test_control.
** See comments on sqlite4BitvecBuiltinTest() for additional information.
*/
static int testBitvecBuiltinTest(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  int sz, rc;
  int nProg = 0;
  int aProg[100];
  const char *z;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
                     " SIZE PROGRAM\"", (void*)0);
  }
  if( Tcl_GetInt(interp, argv[1], &sz) ) return TCL_ERROR;
  z = argv[2];
  while( nProg<99 && *z ){
    while( *z && !sqlite4Isdigit(*z) ){ z++; }
    if( *z==0 ) break;
    aProg[nProg++] = atoi(z);
    while( sqlite4Isdigit(*z) ){ z++; }
  }
  aProg[nProg] = 0;
  rc = sqlite4_test_control(SQLITE_TESTCTRL_BITVEC_TEST, sz, aProg);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return TCL_OK;
}  

/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest2_Init(Tcl_Interp *interp){
  extern int sqlite4_io_error_persist;
  extern int sqlite4_io_error_pending;
  extern int sqlite4_io_error_hit;
  extern int sqlite4_io_error_hardhit;
  extern int sqlite4_diskfull_pending;
  extern int sqlite4_diskfull;
  static struct {
    char *zName;
    Tcl_CmdProc *xProc;
  } aCmd[] = {
    { "pager_open",              (Tcl_CmdProc*)pager_open          },
    { "pager_close",             (Tcl_CmdProc*)pager_close         },
    { "pager_commit",            (Tcl_CmdProc*)pager_commit        },
    { "pager_rollback",          (Tcl_CmdProc*)pager_rollback      },
    { "pager_stmt_begin",        (Tcl_CmdProc*)pager_stmt_begin    },
    { "pager_stmt_commit",       (Tcl_CmdProc*)pager_stmt_commit   },
    { "pager_stmt_rollback",     (Tcl_CmdProc*)pager_stmt_rollback },
    { "pager_stats",             (Tcl_CmdProc*)pager_stats         },
    { "pager_pagecount",         (Tcl_CmdProc*)pager_pagecount     },
    { "page_get",                (Tcl_CmdProc*)page_get            },
    { "page_lookup",             (Tcl_CmdProc*)page_lookup         },
    { "page_unref",              (Tcl_CmdProc*)page_unref          },
    { "page_read",               (Tcl_CmdProc*)page_read           },
    { "page_write",              (Tcl_CmdProc*)page_write          },
    { "page_number",             (Tcl_CmdProc*)page_number         },
    { "pager_truncate",          (Tcl_CmdProc*)pager_truncate      },
#ifndef SQLITE_OMIT_DISKIO
    { "fake_big_file",           (Tcl_CmdProc*)fake_big_file       },
#endif
    { "sqlite4BitvecBuiltinTest",(Tcl_CmdProc*)testBitvecBuiltinTest     },
    { "sqlite4_test_control_pending_byte", (Tcl_CmdProc*)testPendingByte },
  };
  int i;
  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
  Tcl_LinkVar(interp, "sqlite_io_error_pending",
     (char*)&sqlite4_io_error_pending, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_io_error_persist",
     (char*)&sqlite4_io_error_persist, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_io_error_hit",
     (char*)&sqlite4_io_error_hit, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_io_error_hardhit",
     (char*)&sqlite4_io_error_hardhit, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_diskfull_pending",
     (char*)&sqlite4_diskfull_pending, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_diskfull",
     (char*)&sqlite4_diskfull, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WSD
  Tcl_LinkVar(interp, "sqlite_pending_byte",
     (char*)&sqlite4PendingByte, TCL_LINK_INT | TCL_LINK_READ_ONLY);
#endif
  return TCL_OK;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted src/test3.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the btree.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
*/
#include "sqliteInt.h"
#include "btreeInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>

/*
** Interpret an SQLite error number
*/
static char *errorName(int rc){
  char *zName;
  switch( rc ){
    case SQLITE_OK:         zName = "SQLITE_OK";          break;
    case SQLITE_ERROR:      zName = "SQLITE_ERROR";       break;
    case SQLITE_PERM:       zName = "SQLITE_PERM";        break;
    case SQLITE_ABORT:      zName = "SQLITE_ABORT";       break;
    case SQLITE_BUSY:       zName = "SQLITE_BUSY";        break;
    case SQLITE_NOMEM:      zName = "SQLITE_NOMEM";       break;
    case SQLITE_READONLY:   zName = "SQLITE_READONLY";    break;
    case SQLITE_INTERRUPT:  zName = "SQLITE_INTERRUPT";   break;
    case SQLITE_IOERR:      zName = "SQLITE_IOERR";       break;
    case SQLITE_CORRUPT:    zName = "SQLITE_CORRUPT";     break;
    case SQLITE_FULL:       zName = "SQLITE_FULL";        break;
    case SQLITE_CANTOPEN:   zName = "SQLITE_CANTOPEN";    break;
    case SQLITE_PROTOCOL:   zName = "SQLITE_PROTOCOL";    break;
    case SQLITE_EMPTY:      zName = "SQLITE_EMPTY";       break;
    case SQLITE_LOCKED:     zName = "SQLITE_LOCKED";      break;
    default:                zName = "SQLITE_Unknown";     break;
  }
  return zName;
}

/*
** A bogus sqlite4 connection structure for use in the btree
** tests.
*/
static sqlite4 sDb;
static int nRefSqlite3 = 0;

/*
** Usage:   btree_open FILENAME NCACHE
**
** Open a new database
*/
static int btree_open(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int rc, nCache;
  char zBuf[100];
  int n;
  char *zFilename;
  if( argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " FILENAME NCACHE FLAGS\"", 0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[2], &nCache) ) return TCL_ERROR;
  nRefSqlite3++;
  if( nRefSqlite3==1 ){
    sDb.pVfs = sqlite4_vfs_find(0);
    sDb.mutex = sqlite4MutexAlloc(SQLITE_MUTEX_RECURSIVE);
    sqlite4_mutex_enter(sDb.mutex);
  }
  n = strlen(argv[1]);
  zFilename = sqlite4_malloc( n+2 );
  if( zFilename==0 ) return TCL_ERROR;
  memcpy(zFilename, argv[1], n+1);
  zFilename[n+1] = 0;
  rc = sqlite4BtreeOpen(sDb.pVfs, zFilename, &sDb, &pBt, 0, 
     SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MAIN_DB);
  sqlite4_free(zFilename);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4BtreeSetCacheSize(pBt, nCache);
  sqlite4_snprintf(sizeof(zBuf), zBuf,"%p", pBt);
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage:   btree_close ID
**
** Close the given database.
*/
static int btree_close(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
  rc = sqlite4BtreeClose(pBt);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  nRefSqlite3--;
  if( nRefSqlite3==0 ){
    sqlite4_mutex_leave(sDb.mutex);
    sqlite4_mutex_free(sDb.mutex);
    sDb.mutex = 0;
    sDb.pVfs = 0;
  }
  return TCL_OK;
}


/*
** Usage:   btree_begin_transaction ID
**
** Start a new transaction
*/
static int btree_begin_transaction(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int rc;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
  sqlite4BtreeEnter(pBt);
  rc = sqlite4BtreeBeginTrans(pBt, 1);
  sqlite4BtreeLeave(pBt);
  if( rc!=SQLITE_OK ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:   btree_pager_stats ID
**
** Returns pager statistics
*/
static int btree_pager_stats(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int i;
  int *a;

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
 
  /* Normally in this file, with a b-tree handle opened using the 
  ** [btree_open] command it is safe to call sqlite4BtreeEnter() directly.
  ** But this function is sometimes called with a btree handle obtained
  ** from an open SQLite connection (using [btree_from_db]). In this case
  ** we need to obtain the mutex for the controlling SQLite handle before
  ** it is safe to call sqlite4BtreeEnter().
  */
  sqlite4_mutex_enter(pBt->db->mutex);

  sqlite4BtreeEnter(pBt);
  a = sqlite4PagerStats(sqlite4BtreePager(pBt));
  for(i=0; i<11; i++){
    static char *zName[] = {
      "ref", "page", "max", "size", "state", "err",
      "hit", "miss", "ovfl", "read", "write"
    };
    char zBuf[100];
    Tcl_AppendElement(interp, zName[i]);
    sqlite4_snprintf(sizeof(zBuf), zBuf,"%d",a[i]);
    Tcl_AppendElement(interp, zBuf);
  }
  sqlite4BtreeLeave(pBt);

  /* Release the mutex on the SQLite handle that controls this b-tree */
  sqlite4_mutex_leave(pBt->db->mutex);
  return TCL_OK;
}

/*
** Usage:   btree_cursor ID TABLENUM WRITEABLE
**
** Create a new cursor.  Return the ID for the cursor.
*/
static int btree_cursor(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int iTable;
  BtCursor *pCur;
  int rc = SQLITE_OK;
  int wrFlag;
  char zBuf[30];

  if( argc!=4 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID TABLENUM WRITEABLE\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
  if( Tcl_GetInt(interp, argv[2], &iTable) ) return TCL_ERROR;
  if( Tcl_GetBoolean(interp, argv[3], &wrFlag) ) return TCL_ERROR;
  pCur = (BtCursor *)ckalloc(sqlite4BtreeCursorSize());
  memset(pCur, 0, sqlite4BtreeCursorSize());
  sqlite4BtreeEnter(pBt);
#ifndef SQLITE_OMIT_SHARED_CACHE
  rc = sqlite4BtreeLockTable(pBt, iTable, wrFlag);
#endif
  if( rc==SQLITE_OK ){
    rc = sqlite4BtreeCursor(pBt, iTable, wrFlag, 0, pCur);
  }
  sqlite4BtreeLeave(pBt);
  if( rc ){
    ckfree((char *)pCur);
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zBuf), zBuf,"%p", pCur);
  Tcl_AppendResult(interp, zBuf, 0);
  return SQLITE_OK;
}

/*
** Usage:   btree_close_cursor ID
**
** Close a cursor opened using btree_cursor.
*/
static int btree_close_cursor(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  BtCursor *pCur;
  Btree *pBt;
  int rc;

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pCur = sqlite4TestTextToPtr(argv[1]);
  pBt = pCur->pBtree;
  sqlite4BtreeEnter(pBt);
  rc = sqlite4BtreeCloseCursor(pCur);
  sqlite4BtreeLeave(pBt);
  ckfree((char *)pCur);
  if( rc ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  return SQLITE_OK;
}

/*
** Usage:   btree_next ID
**
** Move the cursor to the next entry in the table.  Return 0 on success
** or 1 if the cursor was already on the last entry in the table or if
** the table is empty.
*/
static int btree_next(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  BtCursor *pCur;
  int rc;
  int res = 0;
  char zBuf[100];

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pCur = sqlite4TestTextToPtr(argv[1]);
  sqlite4BtreeEnter(pCur->pBtree);
  rc = sqlite4BtreeNext(pCur, &res);
  sqlite4BtreeLeave(pCur->pBtree);
  if( rc ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zBuf),zBuf,"%d",res);
  Tcl_AppendResult(interp, zBuf, 0);
  return SQLITE_OK;
}

/*
** Usage:   btree_first ID
**
** Move the cursor to the first entry in the table.  Return 0 if the
** cursor was left point to something and 1 if the table is empty.
*/
static int btree_first(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  BtCursor *pCur;
  int rc;
  int res = 0;
  char zBuf[100];

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pCur = sqlite4TestTextToPtr(argv[1]);
  sqlite4BtreeEnter(pCur->pBtree);
  rc = sqlite4BtreeFirst(pCur, &res);
  sqlite4BtreeLeave(pCur->pBtree);
  if( rc ){
    Tcl_AppendResult(interp, errorName(rc), 0);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zBuf),zBuf,"%d",res);
  Tcl_AppendResult(interp, zBuf, 0);
  return SQLITE_OK;
}

/*
** Usage:   btree_eof ID
**
** Return TRUE if the given cursor is not pointing at a valid entry.
** Return FALSE if the cursor does point to a valid entry.
*/
static int btree_eof(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  BtCursor *pCur;
  int rc;
  char zBuf[50];

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pCur = sqlite4TestTextToPtr(argv[1]);
  sqlite4BtreeEnter(pCur->pBtree);
  rc = sqlite4BtreeEof(pCur);
  sqlite4BtreeLeave(pCur->pBtree);
  sqlite4_snprintf(sizeof(zBuf),zBuf, "%d", rc);
  Tcl_AppendResult(interp, zBuf, 0);
  return SQLITE_OK;
}

/*
** Usage:   btree_payload_size ID
**
** Return the number of bytes of payload
*/
static int btree_payload_size(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  BtCursor *pCur;
  int n2;
  u64 n1;
  char zBuf[50];

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pCur = sqlite4TestTextToPtr(argv[1]);
  sqlite4BtreeEnter(pCur->pBtree);

  /* The cursor may be in "require-seek" state. If this is the case, the
  ** call to BtreeDataSize() will fix it. */
  sqlite4BtreeDataSize(pCur, (u32*)&n2);
  if( pCur->apPage[pCur->iPage]->intKey ){
    n1 = 0;
  }else{
    sqlite4BtreeKeySize(pCur, (i64*)&n1);
  }
  sqlite4BtreeLeave(pCur->pBtree);
  sqlite4_snprintf(sizeof(zBuf),zBuf, "%d", (int)(n1+n2));
  Tcl_AppendResult(interp, zBuf, 0);
  return SQLITE_OK;
}

/*
** usage:   varint_test  START  MULTIPLIER  COUNT  INCREMENT
**
** This command tests the putVarint() and getVarint()
** routines, both for accuracy and for speed.
**
** An integer is written using putVarint() and read back with
** getVarint() and varified to be unchanged.  This repeats COUNT
** times.  The first integer is START*MULTIPLIER.  Each iteration
** increases the integer by INCREMENT.
**
** This command returns nothing if it works.  It returns an error message
** if something goes wrong.
*/
static int btree_varint_test(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  u32 start, mult, count, incr;
  u64 in, out;
  int n1, n2, i, j;
  unsigned char zBuf[100];
  if( argc!=5 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " START MULTIPLIER COUNT INCREMENT\"", 0);
    return TCL_ERROR;
  }
  if( Tcl_GetInt(interp, argv[1], (int*)&start) ) return TCL_ERROR;
  if( Tcl_GetInt(interp, argv[2], (int*)&mult) ) return TCL_ERROR;
  if( Tcl_GetInt(interp, argv[3], (int*)&count) ) return TCL_ERROR;
  if( Tcl_GetInt(interp, argv[4], (int*)&incr) ) return TCL_ERROR;
  in = start;
  in *= mult;
  for(i=0; i<count; i++){
    char zErr[200];
    n1 = putVarint(zBuf, in);
    if( n1>9 || n1<1 ){
      sprintf(zErr, "putVarint returned %d - should be between 1 and 9", n1);
      Tcl_AppendResult(interp, zErr, 0);
      return TCL_ERROR;
    }
    n2 = getVarint(zBuf, &out);
    if( n1!=n2 ){
      sprintf(zErr, "putVarint returned %d and getVarint returned %d", n1, n2);
      Tcl_AppendResult(interp, zErr, 0);
      return TCL_ERROR;
    }
    if( in!=out ){
      sprintf(zErr, "Wrote 0x%016llx and got back 0x%016llx", in, out);
      Tcl_AppendResult(interp, zErr, 0);
      return TCL_ERROR;
    }
    if( (in & 0xffffffff)==in ){
      u32 out32;
      n2 = getVarint32(zBuf, out32);
      out = out32;
      if( n1!=n2 ){
        sprintf(zErr, "putVarint returned %d and GetVarint32 returned %d", 
                  n1, n2);
        Tcl_AppendResult(interp, zErr, 0);
        return TCL_ERROR;
      }
      if( in!=out ){
        sprintf(zErr, "Wrote 0x%016llx and got back 0x%016llx from GetVarint32",
            in, out);
        Tcl_AppendResult(interp, zErr, 0);
        return TCL_ERROR;
      }
    }

    /* In order to get realistic timings, run getVarint 19 more times.
    ** This is because getVarint is called about 20 times more often
    ** than putVarint.
    */
    for(j=0; j<19; j++){
      getVarint(zBuf, &out);
    }
    in += incr;
  }
  return TCL_OK;
}

/*
** usage:   btree_from_db  DB-HANDLE
**
** This command returns the btree handle for the main database associated
** with the database-handle passed as the argument. Example usage:
**
** sqlite4 db test.db
** set bt [btree_from_db db]
*/
static int btree_from_db(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  char zBuf[100];
  Tcl_CmdInfo info;
  sqlite4 *db;
  Btree *pBt;
  int iDb = 0;

  if( argc!=2 && argc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " DB-HANDLE ?N?\"", 0);
    return TCL_ERROR;
  }

  if( 1!=Tcl_GetCommandInfo(interp, argv[1], &info) ){
    Tcl_AppendResult(interp, "No such db-handle: \"", argv[1], "\"", 0);
    return TCL_ERROR;
  }
  if( argc==3 ){
    iDb = atoi(argv[2]);
  }

  db = *((sqlite4 **)info.objClientData);
  assert( db );

  pBt = db->aDb[iDb].pBt;
  sqlite4_snprintf(sizeof(zBuf), zBuf, "%p", pBt);
  Tcl_SetResult(interp, zBuf, TCL_VOLATILE);
  return TCL_OK;
}

/*
** Usage:   btree_ismemdb ID
**
** Return true if the B-Tree is in-memory.
*/
static int btree_ismemdb(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  Btree *pBt;
  int res;

  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0],
       " ID\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
  sqlite4_mutex_enter(pBt->db->mutex);
  sqlite4BtreeEnter(pBt);
  res = sqlite4PagerIsMemdb(sqlite4BtreePager(pBt));
  sqlite4BtreeLeave(pBt);
  sqlite4_mutex_leave(pBt->db->mutex);
  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(res));
  return SQLITE_OK;
}

/*
** usage:   btree_set_cache_size ID NCACHE
**
** Set the size of the cache used by btree $ID.
*/
static int btree_set_cache_size(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  const char **argv      /* Text of each argument */
){
  int nCache;
  Btree *pBt;
  
  if( argc!=3 ){
    Tcl_AppendResult(
        interp, "wrong # args: should be \"", argv[0], " BT NCACHE\"", 0);
    return TCL_ERROR;
  }
  pBt = sqlite4TestTextToPtr(argv[1]);
  if( Tcl_GetInt(interp, argv[2], &nCache) ) return TCL_ERROR;

  sqlite4_mutex_enter(pBt->db->mutex);
  sqlite4BtreeEnter(pBt);
  sqlite4BtreeSetCacheSize(pBt, nCache);
  sqlite4BtreeLeave(pBt);
  sqlite4_mutex_leave(pBt->db->mutex);
  return TCL_OK;
}      



/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest3_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_CmdProc *xProc;
  } aCmd[] = {
     { "btree_open",               (Tcl_CmdProc*)btree_open               },
     { "btree_close",              (Tcl_CmdProc*)btree_close              },
     { "btree_begin_transaction",  (Tcl_CmdProc*)btree_begin_transaction  },
     { "btree_pager_stats",        (Tcl_CmdProc*)btree_pager_stats        },
     { "btree_cursor",             (Tcl_CmdProc*)btree_cursor             },
     { "btree_close_cursor",       (Tcl_CmdProc*)btree_close_cursor       },
     { "btree_next",               (Tcl_CmdProc*)btree_next               },
     { "btree_eof",                (Tcl_CmdProc*)btree_eof                },
     { "btree_payload_size",       (Tcl_CmdProc*)btree_payload_size       },
     { "btree_first",              (Tcl_CmdProc*)btree_first              },
     { "btree_varint_test",        (Tcl_CmdProc*)btree_varint_test        },
     { "btree_from_db",            (Tcl_CmdProc*)btree_from_db            },
     { "btree_ismemdb",            (Tcl_CmdProc*)btree_ismemdb            },
     { "btree_set_cache_size",     (Tcl_CmdProc*)btree_set_cache_size     }
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }

  return TCL_OK;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/test4.c.

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    p->db = 0;
  }
  if( p->zErr && p->zErr!=p->zStaticErr ){
    sqlite4_free(p->zErr);
    p->zErr = 0;
  }
  p->completed++;
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_thread_cleanup();
#endif
  return 0;
}

/*
** Get a thread ID which is an upper case letter.  Return the index.
** If the argument is not a valid thread ID put an error message in
** the interpreter and return -1.







<
<
<







90
91
92
93
94
95
96



97
98
99
100
101
102
103
    p->db = 0;
  }
  if( p->zErr && p->zErr!=p->zStaticErr ){
    sqlite4_free(p->zErr);
    p->zErr = 0;
  }
  p->completed++;



  return 0;
}

/*
** Get a thread ID which is an upper case letter.  Return the index.
** If the argument is not a valid thread ID put an error message in
** the interpreter and return -1.

Changes to src/test7.c.

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    p->db = 0;
  }
  if( p->zErr && p->zErr!=p->zStaticErr ){
    sqlite4_free(p->zErr);
    p->zErr = 0;
  }
  p->completed++;
#ifndef SQLITE_OMIT_DEPRECATED
  sqlite4_thread_cleanup();
#endif
  return 0;
}

/*
** Get a thread ID which is an upper case letter.  Return the index.
** If the argument is not a valid thread ID put an error message in
** the interpreter and return -1.







<
<
<







112
113
114
115
116
117
118



119
120
121
122
123
124
125
    p->db = 0;
  }
  if( p->zErr && p->zErr!=p->zStaticErr ){
    sqlite4_free(p->zErr);
    p->zErr = 0;
  }
  p->completed++;



  return 0;
}

/*
** Get a thread ID which is an upper case letter.  Return the index.
** If the argument is not a valid thread ID put an error message in
** the interpreter and return -1.

Deleted src/test_autoext.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
** 2006 August 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Test extension for testing the sqlite4_auto_extension() function.
*/
#include "tcl.h"
#include "sqlite4ext.h"

#ifndef SQLITE_OMIT_LOAD_EXTENSION
static SQLITE_EXTENSION_INIT1

/*
** The sqr() SQL function returns the square of its input value.
*/
static void sqrFunc(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  double r = sqlite4_value_double(argv[0]);
  sqlite4_result_double(context, r*r);
}

/*
** This is the entry point to register the extension for the sqr() function.
*/
static int sqr_init(
  sqlite4 *db, 
  char **pzErrMsg, 
  const sqlite4_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  sqlite4_create_function(db, "sqr", 1, SQLITE_ANY, 0, sqrFunc, 0, 0);
  return 0;
}

/*
** The cube() SQL function returns the cube of its input value.
*/
static void cubeFunc(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  double r = sqlite4_value_double(argv[0]);
  sqlite4_result_double(context, r*r*r);
}

/*
** This is the entry point to register the extension for the cube() function.
*/
static int cube_init(
  sqlite4 *db, 
  char **pzErrMsg, 
  const sqlite4_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  sqlite4_create_function(db, "cube", 1, SQLITE_ANY, 0, cubeFunc, 0, 0);
  return 0;
}

/*
** This is a broken extension entry point
*/
static int broken_init(
  sqlite4 *db, 
  char **pzErrMsg, 
  const sqlite4_api_routines *pApi
){
  char *zErr;
  SQLITE_EXTENSION_INIT2(pApi);
  zErr = sqlite4_mprintf("broken autoext!");
  *pzErrMsg = zErr;
  return 1;
}

/*
** tclcmd:   sqlite4_auto_extension_sqr
**
** Register the "sqr" extension to be loaded automatically.
*/
static int autoExtSqrObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite4_auto_extension((void*)sqr_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite4_auto_extension_cube
**
** Register the "cube" extension to be loaded automatically.
*/
static int autoExtCubeObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite4_auto_extension((void*)cube_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

/*
** tclcmd:   sqlite4_auto_extension_broken
**
** Register the broken extension to be loaded automatically.
*/
static int autoExtBrokenObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int rc = sqlite4_auto_extension((void*)broken_init);
  Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
  return SQLITE_OK;
}

#endif /* SQLITE_OMIT_LOAD_EXTENSION */


/*
** tclcmd:   sqlite4_reset_auto_extension
**
** Reset all auto-extensions
*/
static int resetAutoExtObjCmd(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_reset_auto_extension();
  return SQLITE_OK;
}


/*
** This procedure registers the TCL procs defined in this file.
*/
int Sqlitetest_autoext_Init(Tcl_Interp *interp){
#ifndef SQLITE_OMIT_LOAD_EXTENSION
  Tcl_CreateObjCommand(interp, "sqlite4_auto_extension_sqr",
          autoExtSqrObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite4_auto_extension_cube",
          autoExtCubeObjCmd, 0, 0);
  Tcl_CreateObjCommand(interp, "sqlite4_auto_extension_broken",
          autoExtBrokenObjCmd, 0, 0);
#endif
  Tcl_CreateObjCommand(interp, "sqlite4_reset_auto_extension",
          resetAutoExtObjCmd, 0, 0);
  return TCL_OK;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














































































































































































































































































































































Deleted src/test_backup.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains test logic for the sqlite4_backup() interface.
**
*/

#include "tcl.h"
#include <sqlite4.h>
#include <assert.h>

/* These functions are implemented in test1.c. */
int getDbPointer(Tcl_Interp *, const char *, sqlite4 **);
const char *sqlite4TestErrorName(int);

static int backupTestCmd(
  ClientData clientData, 
  Tcl_Interp *interp, 
  int objc,
  Tcl_Obj *const*objv
){
  enum BackupSubCommandEnum {
    BACKUP_STEP, BACKUP_FINISH, BACKUP_REMAINING, BACKUP_PAGECOUNT
  };
  struct BackupSubCommand {
    const char *zCmd;
    enum BackupSubCommandEnum eCmd;
    int nArg;
    const char *zArg;
  } aSub[] = {
    {"step",      BACKUP_STEP      , 1, "npage" },
    {"finish",    BACKUP_FINISH    , 0, ""      },
    {"remaining", BACKUP_REMAINING , 0, ""      },
    {"pagecount", BACKUP_PAGECOUNT , 0, ""      },
    {0, 0, 0, 0}
  };

  sqlite4_backup *p = (sqlite4_backup *)clientData;
  int iCmd;
  int rc;

  rc = Tcl_GetIndexFromObjStruct(
      interp, objv[1], aSub, sizeof(aSub[0]), "option", 0, &iCmd
  );
  if( rc!=TCL_OK ){
    return rc;
  }
  if( objc!=(2 + aSub[iCmd].nArg) ){
    Tcl_WrongNumArgs(interp, 2, objv, aSub[iCmd].zArg);
    return TCL_ERROR;
  }

  switch( aSub[iCmd].eCmd ){

    case BACKUP_FINISH: {
      const char *zCmdName;
      Tcl_CmdInfo cmdInfo;
      zCmdName = Tcl_GetString(objv[0]);
      Tcl_GetCommandInfo(interp, zCmdName, &cmdInfo);
      cmdInfo.deleteProc = 0;
      Tcl_SetCommandInfo(interp, zCmdName, &cmdInfo);
      Tcl_DeleteCommand(interp, zCmdName);

      rc = sqlite4_backup_finish(p);
      Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
      break;
    }

    case BACKUP_STEP: {
      int nPage;
      if( TCL_OK!=Tcl_GetIntFromObj(interp, objv[2], &nPage) ){
        return TCL_ERROR;
      }
      rc = sqlite4_backup_step(p, nPage);
      Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_STATIC);
      break;
    }

    case BACKUP_REMAINING:
      Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite4_backup_remaining(p)));
      break;

    case BACKUP_PAGECOUNT:
      Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite4_backup_pagecount(p)));
      break;
  }

  return TCL_OK;
}

static void backupTestFinish(ClientData clientData){
  sqlite4_backup *pBackup = (sqlite4_backup *)clientData;
  sqlite4_backup_finish(pBackup);
}

/*
**     sqlite4_backup CMDNAME DESTHANDLE DESTNAME SRCHANDLE SRCNAME
**
*/
static int backupTestInit(
  ClientData clientData, 
  Tcl_Interp *interp, 
  int objc,
  Tcl_Obj *const*objv
){
  sqlite4_backup *pBackup;
  sqlite4 *pDestDb;
  sqlite4 *pSrcDb;
  const char *zDestName;
  const char *zSrcName;
  const char *zCmd;

  if( objc!=6 ){
    Tcl_WrongNumArgs(
      interp, 1, objv, "CMDNAME DESTHANDLE DESTNAME SRCHANDLE SRCNAME"
    );
    return TCL_ERROR;
  }

  zCmd = Tcl_GetString(objv[1]);
  getDbPointer(interp, Tcl_GetString(objv[2]), &pDestDb);
  zDestName = Tcl_GetString(objv[3]);
  getDbPointer(interp, Tcl_GetString(objv[4]), &pSrcDb);
  zSrcName = Tcl_GetString(objv[5]);

  pBackup = sqlite4_backup_init(pDestDb, zDestName, pSrcDb, zSrcName);
  if( !pBackup ){
    Tcl_AppendResult(interp, "sqlite4_backup_init() failed", 0);
    return TCL_ERROR;
  }

  Tcl_CreateObjCommand(interp, zCmd, backupTestCmd, pBackup, backupTestFinish);
  Tcl_SetObjResult(interp, objv[1]);
  return TCL_OK;
}

int Sqlitetestbackup_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "sqlite4_backup", backupTestInit, 0, 0);
  return TCL_OK;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








































































































































































































































































































Deleted src/test_btree.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
** 2007 May 05
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the btree.c module in SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
*/
#include "btreeInt.h"
#include <tcl.h>

/*
** Usage: sqlite4_shared_cache_report
**
** Return a list of file that are shared and the number of
** references to each file.
*/
int sqlite4BtreeSharedCacheReport(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
#ifndef SQLITE_OMIT_SHARED_CACHE
  extern BtShared *sqlite4SharedCacheList;
  BtShared *pBt;
  Tcl_Obj *pRet = Tcl_NewObj();
  for(pBt=GLOBAL(BtShared*,sqlite4SharedCacheList); pBt; pBt=pBt->pNext){
    const char *zFile = sqlite4PagerFilename(pBt->pPager);
    Tcl_ListObjAppendElement(interp, pRet, Tcl_NewStringObj(zFile, -1));
    Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(pBt->nRef));
  }
  Tcl_SetObjResult(interp, pRet);
#endif
  return TCL_OK;
}

/*
** Print debugging information about all cursors to standard output.
*/
void sqlite4BtreeCursorList(Btree *p){
#ifdef SQLITE_DEBUG
  BtCursor *pCur;
  BtShared *pBt = p->pBt;
  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
    MemPage *pPage = pCur->apPage[pCur->iPage];
    char *zMode = pCur->wrFlag ? "rw" : "ro";
    sqlite4DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n",
       pCur, pCur->pgnoRoot, zMode,
       pPage ? pPage->pgno : 0, pCur->aiIdx[pCur->iPage],
       (pCur->eState==CURSOR_VALID) ? "" : " eof"
    );
  }
#endif
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




























































































































Changes to src/test_config.c.

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

#ifdef SQLITE_ENABLE_ICU
  Tcl_SetVar2(interp, "sqlite_options", "icu", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "icu", "0", TCL_GLOBAL_ONLY);
#endif

#ifdef SQLITE_OMIT_INCRBLOB
  Tcl_SetVar2(interp, "sqlite_options", "incrblob", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "incrblob", "1", TCL_GLOBAL_ONLY);
#endif /* SQLITE_OMIT_AUTOVACUUM */

#ifdef SQLITE_OMIT_INTEGRITY_CHECK
  Tcl_SetVar2(interp, "sqlite_options", "integrityck", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "integrityck", "1", TCL_GLOBAL_ONLY);
#endif

#if defined(SQLITE_DEFAULT_FILE_FORMAT) && SQLITE_DEFAULT_FILE_FORMAT==1







<
<
<
<
<
<







315
316
317
318
319
320
321






322
323
324
325
326
327
328

#ifdef SQLITE_ENABLE_ICU
  Tcl_SetVar2(interp, "sqlite_options", "icu", "1", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "icu", "0", TCL_GLOBAL_ONLY);
#endif







#ifdef SQLITE_OMIT_INTEGRITY_CHECK
  Tcl_SetVar2(interp, "sqlite_options", "integrityck", "0", TCL_GLOBAL_ONLY);
#else
  Tcl_SetVar2(interp, "sqlite_options", "integrityck", "1", TCL_GLOBAL_ONLY);
#endif

#if defined(SQLITE_DEFAULT_FILE_FORMAT) && SQLITE_DEFAULT_FILE_FORMAT==1

Deleted src/test_loadext.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
** 2006 June 14
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Test extension for testing the sqlite4_load_extension() function.
*/
#include <string.h>
#include "sqlite4ext.h"
SQLITE_EXTENSION_INIT1

/*
** The half() SQL function returns half of its input value.
*/
static void halfFunc(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  sqlite4_result_double(context, 0.5*sqlite4_value_double(argv[0]));
}

/*
** SQL functions to call the sqlite4_status function and return results.
*/
static void statusFunc(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  int op, mx, cur, resetFlag, rc;
  if( sqlite4_value_type(argv[0])==SQLITE_INTEGER ){
    op = sqlite4_value_int(argv[0]);
  }else if( sqlite4_value_type(argv[0])==SQLITE_TEXT ){
    int i;
    const char *zName;
    static const struct {
      const char *zName;
      int op;
    } aOp[] = {
      { "MEMORY_USED",         SQLITE_STATUS_MEMORY_USED         },
      { "PAGECACHE_USED",      SQLITE_STATUS_PAGECACHE_USED      },
      { "PAGECACHE_OVERFLOW",  SQLITE_STATUS_PAGECACHE_OVERFLOW  },
      { "SCRATCH_USED",        SQLITE_STATUS_SCRATCH_USED        },
      { "SCRATCH_OVERFLOW",    SQLITE_STATUS_SCRATCH_OVERFLOW    },
      { "MALLOC_SIZE",         SQLITE_STATUS_MALLOC_SIZE         },
    };
    int nOp = sizeof(aOp)/sizeof(aOp[0]);
    zName = (const char*)sqlite4_value_text(argv[0]);
    for(i=0; i<nOp; i++){
      if( strcmp(aOp[i].zName, zName)==0 ){
        op = aOp[i].op;
        break;
      }
    }
    if( i>=nOp ){
      char *zMsg = sqlite4_mprintf("unknown status property: %s", zName);
      sqlite4_result_error(context, zMsg, -1);
      sqlite4_free(zMsg);
      return;
    }
  }else{
    sqlite4_result_error(context, "unknown status type", -1);
    return;
  }
  if( argc==2 ){
    resetFlag = sqlite4_value_int(argv[1]);
  }else{
    resetFlag = 0;
  }
  rc = sqlite4_status(op, &cur, &mx, resetFlag);
  if( rc!=SQLITE_OK ){
    char *zMsg = sqlite4_mprintf("sqlite4_status(%d,...) returns %d", op, rc);
    sqlite4_result_error(context, zMsg, -1);
    sqlite4_free(zMsg);
    return;
  } 
  if( argc==2 ){
    sqlite4_result_int(context, mx);
  }else{
    sqlite4_result_int(context, cur);
  }
}

/*
** Extension load function.
*/
int testloadext_init(
  sqlite4 *db, 
  char **pzErrMsg, 
  const sqlite4_api_routines *pApi
){
  int nErr = 0;
  SQLITE_EXTENSION_INIT2(pApi);
  nErr |= sqlite4_create_function(db, "half", 1, SQLITE_ANY, 0, halfFunc, 0, 0);
  nErr |= sqlite4_create_function(db, "sqlite4_status", 1, SQLITE_ANY, 0,
                          statusFunc, 0, 0);
  nErr |= sqlite4_create_function(db, "sqlite4_status", 2, SQLITE_ANY, 0,
                          statusFunc, 0, 0);
  return nErr ? SQLITE_ERROR : SQLITE_OK;
}

/*
** Another extension entry point. This one always fails.
*/
int testbrokenext_init(
  sqlite4 *db, 
  char **pzErrMsg, 
  const sqlite4_api_routines *pApi
){
  char *zErr;
  SQLITE_EXTENSION_INIT2(pApi);
  zErr = sqlite4_mprintf("broken!");
  *pzErrMsg = zErr;
  return 1;
}
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































Changes to src/test_malloc.c.

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
    return TCL_ERROR;
  }
  if( discardChance<0 || discardChance>100 ){
    Tcl_AppendResult(interp, "discard-chance should be between 0 and 100",
                     (char*)0);
    return TCL_ERROR;
  }
  installTestPCache(installFlag, (unsigned)discardChance, (unsigned)prngSeed,
                    (unsigned)highStress);
  return TCL_OK;
}

/*
** Usage:    sqlite4_config_memstatus BOOLEAN
**
** Enable or disable memory status reporting using SQLITE_CONFIG_MEMSTATUS.







<
<







992
993
994
995
996
997
998


999
1000
1001
1002
1003
1004
1005
    return TCL_ERROR;
  }
  if( discardChance<0 || discardChance>100 ){
    Tcl_AppendResult(interp, "discard-chance should be between 0 and 100",
                     (char*)0);
    return TCL_ERROR;
  }


  return TCL_OK;
}

/*
** Usage:    sqlite4_config_memstatus BOOLEAN
**
** Enable or disable memory status reporting using SQLITE_CONFIG_MEMSTATUS.
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
  const sqlite4_mem_methods *sqlite4MemGetMemsys3(void);
  rc = sqlite4_config(SQLITE_CONFIG_MALLOC, sqlite4MemGetMemsys3());
#endif
  Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_VOLATILE);
  return TCL_OK;
}

static int test_vfs_oom_test(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  extern int sqlite4_memdebug_vfs_oom_test;
  if( objc>2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "?INTEGER?");
    return TCL_ERROR;
  }else if( objc==2 ){
    int iNew;
    if( Tcl_GetIntFromObj(interp, objv[1], &iNew) ) return TCL_ERROR;
    sqlite4_memdebug_vfs_oom_test = iNew;
  }
  Tcl_SetObjResult(interp, Tcl_NewIntObj(sqlite4_memdebug_vfs_oom_test));
  return TCL_OK;
}

/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest_malloc_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







1395
1396
1397
1398
1399
1400
1401



















1402
1403
1404
1405
1406
1407
1408
  const sqlite4_mem_methods *sqlite4MemGetMemsys3(void);
  rc = sqlite4_config(SQLITE_CONFIG_MALLOC, sqlite4MemGetMemsys3());
#endif
  Tcl_SetResult(interp, (char *)sqlite4TestErrorName(rc), TCL_VOLATILE);
  return TCL_OK;
}




















/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest_malloc_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
     { "sqlite4_config_lookaside",   test_config_lookaside         ,0 },
     { "sqlite4_config_error",       test_config_error             ,0 },
     { "sqlite4_config_uri",         test_config_uri               ,0 },
     { "sqlite4_db_config_lookaside",test_db_config_lookaside      ,0 },
     { "sqlite4_dump_memsys3",       test_dump_memsys3             ,3 },
     { "sqlite4_dump_memsys5",       test_dump_memsys3             ,5 },
     { "sqlite4_install_memsys3",    test_install_memsys3          ,0 },
     { "sqlite4_memdebug_vfs_oom_test", test_vfs_oom_test          ,0 },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    ClientData c = (ClientData)SQLITE_INT_TO_PTR(aObjCmd[i].clientData);
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, c, 0);
  }
  return TCL_OK;
}
#endif







<









1433
1434
1435
1436
1437
1438
1439

1440
1441
1442
1443
1444
1445
1446
1447
1448
     { "sqlite4_config_lookaside",   test_config_lookaside         ,0 },
     { "sqlite4_config_error",       test_config_error             ,0 },
     { "sqlite4_config_uri",         test_config_uri               ,0 },
     { "sqlite4_db_config_lookaside",test_db_config_lookaside      ,0 },
     { "sqlite4_dump_memsys3",       test_dump_memsys3             ,3 },
     { "sqlite4_dump_memsys5",       test_dump_memsys3             ,5 },
     { "sqlite4_install_memsys3",    test_install_memsys3          ,0 },

  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    ClientData c = (ClientData)SQLITE_INT_TO_PTR(aObjCmd[i].clientData);
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, c, 0);
  }
  return TCL_OK;
}
#endif

Changes to src/test_schema.c.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
  "name,"              /* Column name */                                     \
  "type,"              /* Specified type (i.e. VARCHAR(32)) */               \
  "not_null,"          /* Boolean. True if NOT NULL was specified */         \
  "dflt_value,"        /* Default value for this column */                   \
  "pk"                 /* True if this column is part of the primary key */  \
")"

/* If SQLITE_TEST is defined this code is preprocessed for use as part
** of the sqlite test binary "testfixture". Otherwise it is preprocessed
** to be compiled into an sqlite dynamic extension.
*/
#ifdef SQLITE_TEST
  #include "sqliteInt.h"
  #include "tcl.h"
#else
  #include "sqlite4ext.h"
  SQLITE_EXTENSION_INIT1
#endif

#include <stdlib.h>
#include <string.h>
#include <assert.h>

typedef struct schema_vtab schema_vtab;
typedef struct schema_cursor schema_cursor;







<
<
<
<
<
|
|
<
<
<
<







26
27
28
29
30
31
32





33
34




35
36
37
38
39
40
41
  "name,"              /* Column name */                                     \
  "type,"              /* Specified type (i.e. VARCHAR(32)) */               \
  "not_null,"          /* Boolean. True if NOT NULL was specified */         \
  "dflt_value,"        /* Default value for this column */                   \
  "pk"                 /* True if this column is part of the primary key */  \
")"






#include "sqliteInt.h"
#include "tcl.h"





#include <stdlib.h>
#include <string.h>
#include <assert.h>

typedef struct schema_vtab schema_vtab;
typedef struct schema_cursor schema_cursor;

Deleted src/test_server.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
/*
** 2006 January 07
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains demonstration code.  Nothing in this file gets compiled
** or linked into the SQLite library unless you use a non-standard option:
**
**      -DSQLITE_SERVER=1
**
** The configure script will never generate a Makefile with the option
** above.  You will need to manually modify the Makefile if you want to
** include any of the code from this file in your project.  Or, at your
** option, you may copy and paste the code from this file and
** thereby avoiding a recompile of SQLite.
**
**
** This source file demonstrates how to use SQLite to create an SQL database 
** server thread in a multiple-threaded program.  One or more client threads
** send messages to the server thread and the server thread processes those
** messages in the order received and returns the results to the client.
**
** One might ask:  "Why bother?  Why not just let each thread connect
** to the database directly?"  There are a several of reasons to
** prefer the client/server approach.
**
**    (1)  Some systems (ex: Redhat9) have broken threading implementations
**         that prevent SQLite database connections from being used in
**         a thread different from the one where they were created.  With
**         the client/server approach, all database connections are created
**         and used within the server thread.  Client calls to the database
**         can be made from multiple threads (though not at the same time!)
**
**    (2)  Beginning with SQLite version 3.3.0, when two or more 
**         connections to the same database occur within the same thread,
**         they can optionally share their database cache.  This reduces
**         I/O and memory requirements.  Cache shared is controlled using
**         the sqlite4_enable_shared_cache() API.
**
**    (3)  Database connections on a shared cache use table-level locking
**         instead of file-level locking for improved concurrency.
**
**    (4)  Database connections on a shared cache can by optionally
**         set to READ UNCOMMITTED isolation.  (The default isolation for
**         SQLite is SERIALIZABLE.)  When this occurs, readers will
**         never be blocked by a writer and writers will not be
**         blocked by readers.  There can still only be a single writer
**         at a time, but multiple readers can simultaneously exist with
**         that writer.  This is a huge increase in concurrency.
**
** To summarize the rational for using a client/server approach: prior
** to SQLite version 3.3.0 it probably was not worth the trouble.  But
** with SQLite version 3.3.0 and beyond you can get significant performance
** and concurrency improvements and memory usage reductions by going
** client/server.
**
** Note:  The extra features of version 3.3.0 described by points (2)
** through (4) above are only available if you compile without the
** option -DSQLITE_OMIT_SHARED_CACHE. 
**
** Here is how the client/server approach works:  The database server
** thread is started on this procedure:
**
**       void *sqlite4_server(void *NotUsed);
**
** The sqlite_server procedure runs as long as the g.serverHalt variable
** is false.  A mutex is used to make sure no more than one server runs
** at a time.  The server waits for messages to arrive on a message
** queue and processes the messages in order.
**
** Two convenience routines are provided for starting and stopping the
** server thread:
**
**       void sqlite4_server_start(void);
**       void sqlite4_server_stop(void);
**
** Both of the convenience routines return immediately.  Neither will
** ever give an error.  If a server is already started or already halted,
** then the routines are effectively no-ops.
**
** Clients use the following interfaces:
**
**       sqlite4_client_open
**       sqlite4_client_prepare
**       sqlite4_client_step
**       sqlite4_client_reset
**       sqlite4_client_finalize
**       sqlite4_client_close
**
** These interfaces work exactly like the standard core SQLite interfaces
** having the same names without the "_client_" infix.  Many other SQLite
** interfaces can be used directly without having to send messages to the
** server as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined.
** The following interfaces fall into this second category:
**
**       sqlite4_bind_*
**       sqlite4_changes
**       sqlite4_clear_bindings
**       sqlite4_column_*
**       sqlite4_complete
**       sqlite4_create_collation
**       sqlite4_create_function
**       sqlite4_data_count
**       sqlite4_db_handle
**       sqlite4_errcode
**       sqlite4_errmsg
**       sqlite4_last_insert_rowid
**       sqlite4_total_changes
**       sqlite4_transfer_bindings
**
** A single SQLite connection (an sqlite4* object) or an SQLite statement
** (an sqlite4_stmt* object) should only be passed to a single interface
** function at a time.  The connections and statements can be passed from
** any thread to any of the functions listed in the second group above as
** long as the same connection is not in use by two threads at once and
** as long as SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined.  Additional
** information about the SQLITE_ENABLE_MEMORY_MANAGEMENT constraint is
** below.
**
** The busy handler for all database connections should remain turned
** off.  That means that any lock contention will cause the associated
** sqlite4_client_step() call to return immediately with an SQLITE_BUSY
** error code.  If a busy handler is enabled and lock contention occurs,
** then the entire server thread will block.  This will cause not only
** the requesting client to block but every other database client as
** well.  It is possible to enhance the code below so that lock
** contention will cause the message to be placed back on the top of
** the queue to be tried again later.  But such enhanced processing is
** not included here, in order to keep the example simple.
**
** This example code assumes the use of pthreads.  Pthreads
** implementations are available for windows.  (See, for example
** http://sourceware.org/pthreads-win32/announcement.html.)  Or, you
** can translate the locking and thread synchronization code to use
** windows primitives easily enough.  The details are left as an
** exercise to the reader.
**
**** Restrictions Associated With SQLITE_ENABLE_MEMORY_MANAGEMENT ****
**
** If you compile with SQLITE_ENABLE_MEMORY_MANAGEMENT defined, then
** SQLite includes code that tracks how much memory is being used by
** each thread.  These memory counts can become confused if memory
** is allocated by one thread and then freed by another.  For that
** reason, when SQLITE_ENABLE_MEMORY_MANAGEMENT is used, all operations
** that might allocate or free memory should be performanced in the same
** thread that originally created the database connection.  In that case,
** many of the operations that are listed above as safe to be performed
** in separate threads would need to be sent over to the server to be
** done there.  If SQLITE_ENABLE_MEMORY_MANAGEMENT is defined, then
** the following functions can be used safely from different threads
** without messing up the allocation counts:
**
**       sqlite4_bind_parameter_name
**       sqlite4_bind_parameter_index
**       sqlite4_changes
**       sqlite4_column_blob
**       sqlite4_column_count
**       sqlite4_complete
**       sqlite4_data_count
**       sqlite4_db_handle
**       sqlite4_errcode
**       sqlite4_errmsg
**       sqlite4_last_insert_rowid
**       sqlite4_total_changes
**
** The remaining functions are not thread-safe when memory management
** is enabled.  So one would have to define some new interface routines
** along the following lines:
**
**       sqlite4_client_bind_*
**       sqlite4_client_clear_bindings
**       sqlite4_client_column_*
**       sqlite4_client_create_collation
**       sqlite4_client_create_function
**       sqlite4_client_transfer_bindings
**
** The example code in this file is intended for use with memory
** management turned off.  So the implementation of these additional
** client interfaces is left as an exercise to the reader.
**
** It may seem surprising to the reader that the list of safe functions
** above does not include things like sqlite4_bind_int() or
** sqlite4_column_int().  But those routines might, in fact, allocate
** or deallocate memory.  In the case of sqlite4_bind_int(), if the
** parameter was previously bound to a string that string might need
** to be deallocated before the new integer value is inserted.  In
** the case of sqlite4_column_int(), the value of the column might be
** a UTF-16 string which will need to be converted to UTF-8 then into
** an integer.
*/

/* Include this to get the definition of SQLITE_THREADSAFE, in the
** case that default values are used.
*/
#include "sqliteInt.h"

/*
** Only compile the code in this file on UNIX with a SQLITE_THREADSAFE build
** and only if the SQLITE_SERVER macro is defined.
*/
#if defined(SQLITE_SERVER) && !defined(SQLITE_OMIT_SHARED_CACHE)
#if SQLITE_OS_UNIX && SQLITE_THREADSAFE

/*
** We require only pthreads and the public interface of SQLite.
*/
#include <pthread.h>
#include "sqlite4.h"

/*
** Messages are passed from client to server and back again as 
** instances of the following structure.
*/
typedef struct SqlMessage SqlMessage;
struct SqlMessage {
  int op;                      /* Opcode for the message */
  sqlite4 *pDb;                /* The SQLite connection */
  sqlite4_stmt *pStmt;         /* A specific statement */
  int errCode;                 /* Error code returned */
  const char *zIn;             /* Input filename or SQL statement */
  int nByte;                   /* Size of the zIn parameter for prepare() */
  const char *zOut;            /* Tail of the SQL statement */
  SqlMessage *pNext;           /* Next message in the queue */
  SqlMessage *pPrev;           /* Previous message in the queue */
  pthread_mutex_t clientMutex; /* Hold this mutex to access the message */
  pthread_cond_t clientWakeup; /* Signal to wake up the client */
};

/*
** Legal values for SqlMessage.op
*/
#define MSG_Open       1  /* sqlite4_open(zIn, &pDb) */
#define MSG_Prepare    2  /* sqlite4_prepare(pDb, zIn, nByte, &pStmt, &zOut) */
#define MSG_Step       3  /* sqlite4_step(pStmt) */
#define MSG_Reset      4  /* sqlite4_reset(pStmt) */
#define MSG_Finalize   5  /* sqlite4_finalize(pStmt) */
#define MSG_Close      6  /* sqlite4_close(pDb) */
#define MSG_Done       7  /* Server has finished with this message */


/*
** State information about the server is stored in a static variable
** named "g" as follows:
*/
static struct ServerState {
  pthread_mutex_t queueMutex;   /* Hold this mutex to access the msg queue */
  pthread_mutex_t serverMutex;  /* Held by the server while it is running */
  pthread_cond_t serverWakeup;  /* Signal this condvar to wake up the server */
  volatile int serverHalt;      /* Server halts itself when true */
  SqlMessage *pQueueHead;       /* Head of the message queue */
  SqlMessage *pQueueTail;       /* Tail of the message queue */
} g = {
  PTHREAD_MUTEX_INITIALIZER,
  PTHREAD_MUTEX_INITIALIZER,
  PTHREAD_COND_INITIALIZER,
};

/*
** Send a message to the server.  Block until we get a reply.
**
** The mutex and condition variable in the message are uninitialized
** when this routine is called.  This routine takes care of 
** initializing them and destroying them when it has finished.
*/
static void sendToServer(SqlMessage *pMsg){
  /* Initialize the mutex and condition variable on the message
  */
  pthread_mutex_init(&pMsg->clientMutex, 0);
  pthread_cond_init(&pMsg->clientWakeup, 0);

  /* Add the message to the head of the server's message queue.
  */
  pthread_mutex_lock(&g.queueMutex);
  pMsg->pNext = g.pQueueHead;
  if( g.pQueueHead==0 ){
    g.pQueueTail = pMsg;
  }else{
    g.pQueueHead->pPrev = pMsg;
  }
  pMsg->pPrev = 0;
  g.pQueueHead = pMsg;
  pthread_mutex_unlock(&g.queueMutex);

  /* Signal the server that the new message has be queued, then
  ** block waiting for the server to process the message.
  */
  pthread_mutex_lock(&pMsg->clientMutex);
  pthread_cond_signal(&g.serverWakeup);
  while( pMsg->op!=MSG_Done ){
    pthread_cond_wait(&pMsg->clientWakeup, &pMsg->clientMutex);
  }
  pthread_mutex_unlock(&pMsg->clientMutex);

  /* Destroy the mutex and condition variable of the message.
  */
  pthread_mutex_destroy(&pMsg->clientMutex);
  pthread_cond_destroy(&pMsg->clientWakeup);
}

/*
** The following 6 routines are client-side implementations of the
** core SQLite interfaces:
**
**        sqlite4_open
**        sqlite4_prepare
**        sqlite4_step
**        sqlite4_reset
**        sqlite4_finalize
**        sqlite4_close
**
** Clients should use the following client-side routines instead of 
** the core routines above.
**
**        sqlite4_client_open
**        sqlite4_client_prepare
**        sqlite4_client_step
**        sqlite4_client_reset
**        sqlite4_client_finalize
**        sqlite4_client_close
**
** Each of these routines creates a message for the desired operation,
** sends that message to the server, waits for the server to process
** then message and return a response.
*/
int sqlite4_client_open(const char *zDatabaseName, sqlite4 **ppDb){
  SqlMessage msg;
  msg.op = MSG_Open;
  msg.zIn = zDatabaseName;
  sendToServer(&msg);
  *ppDb = msg.pDb;
  return msg.errCode;
}
int sqlite4_client_prepare(
  sqlite4 *pDb,
  const char *zSql,
  int nByte,
  sqlite4_stmt **ppStmt,
  const char **pzTail
){
  SqlMessage msg;
  msg.op = MSG_Prepare;
  msg.pDb = pDb;
  msg.zIn = zSql;
  msg.nByte = nByte;
  sendToServer(&msg);
  *ppStmt = msg.pStmt;
  if( pzTail ) *pzTail = msg.zOut;
  return msg.errCode;
}
int sqlite4_client_step(sqlite4_stmt *pStmt){
  SqlMessage msg;
  msg.op = MSG_Step;
  msg.pStmt = pStmt;
  sendToServer(&msg);
  return msg.errCode;
}
int sqlite4_client_reset(sqlite4_stmt *pStmt){
  SqlMessage msg;
  msg.op = MSG_Reset;
  msg.pStmt = pStmt;
  sendToServer(&msg);
  return msg.errCode;
}
int sqlite4_client_finalize(sqlite4_stmt *pStmt){
  SqlMessage msg;
  msg.op = MSG_Finalize;
  msg.pStmt = pStmt;
  sendToServer(&msg);
  return msg.errCode;
}
int sqlite4_client_close(sqlite4 *pDb){
  SqlMessage msg;
  msg.op = MSG_Close;
  msg.pDb = pDb;
  sendToServer(&msg);
  return msg.errCode;
}

/*
** This routine implements the server.  To start the server, first
** make sure g.serverHalt is false, then create a new detached thread
** on this procedure.  See the sqlite4_server_start() routine below
** for an example.  This procedure loops until g.serverHalt becomes
** true.
*/
void *sqlite4_server(void *NotUsed){
  if( pthread_mutex_trylock(&g.serverMutex) ){
    return 0;  /* Another server is already running */
  }
  sqlite4_enable_shared_cache(1);
  while( !g.serverHalt ){
    SqlMessage *pMsg;

    /* Remove the last message from the message queue.
    */
    pthread_mutex_lock(&g.queueMutex);
    while( g.pQueueTail==0 && g.serverHalt==0 ){
      pthread_cond_wait(&g.serverWakeup, &g.queueMutex);
    }
    pMsg = g.pQueueTail;
    if( pMsg ){
      if( pMsg->pPrev ){
        pMsg->pPrev->pNext = 0;
      }else{
        g.pQueueHead = 0;
      }
      g.pQueueTail = pMsg->pPrev;
    }
    pthread_mutex_unlock(&g.queueMutex);
    if( pMsg==0 ) break;

    /* Process the message just removed
    */
    pthread_mutex_lock(&pMsg->clientMutex);
    switch( pMsg->op ){
      case MSG_Open: {
        pMsg->errCode = sqlite4_open(pMsg->zIn, &pMsg->pDb);
        break;
      }
      case MSG_Prepare: {
        pMsg->errCode = sqlite4_prepare(pMsg->pDb, pMsg->zIn, pMsg->nByte,
                                        &pMsg->pStmt, &pMsg->zOut);
        break;
      }
      case MSG_Step: {
        pMsg->errCode = sqlite4_step(pMsg->pStmt);
        break;
      }
      case MSG_Reset: {
        pMsg->errCode = sqlite4_reset(pMsg->pStmt);
        break;
      }
      case MSG_Finalize: {
        pMsg->errCode = sqlite4_finalize(pMsg->pStmt);
        break;
      }
      case MSG_Close: {
        pMsg->errCode = sqlite4_close(pMsg->pDb);
        break;
      }
    }

    /* Signal the client that the message has been processed.
    */
    pMsg->op = MSG_Done;
    pthread_mutex_unlock(&pMsg->clientMutex);
    pthread_cond_signal(&pMsg->clientWakeup);
  }
  pthread_mutex_unlock(&g.serverMutex);
  return 0;
}

/*
** Start a server thread if one is not already running.  If there
** is aleady a server thread running, the new thread will quickly
** die and this routine is effectively a no-op.
*/
void sqlite4_server_start(void){
  pthread_t x;
  int rc;
  g.serverHalt = 0;
  rc = pthread_create(&x, 0, sqlite4_server, 0);
  if( rc==0 ){
    pthread_detach(x);
  }
}

/*
** If a server thread is running, then stop it.  If no server is
** running, this routine is effectively a no-op.
**
** This routine waits until the server has actually stopped before
** returning.
*/
void sqlite4_server_stop(void){
  g.serverHalt = 1;
  pthread_cond_broadcast(&g.serverWakeup);
  pthread_mutex_lock(&g.serverMutex);
  pthread_mutex_unlock(&g.serverMutex);
}

#endif /* SQLITE_OS_UNIX && SQLITE_THREADSAFE */
#endif /* defined(SQLITE_SERVER) */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/test_storage.c.

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43


44
45
46
47
48


49
50
51
52
53
54
55
56
*/
static void storageSetTclErrorName(Tcl_Interp *interp, int rc){
  extern const char *sqlite4TestErrorName(int);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite4TestErrorName(rc), -1));
}

/*
** TCLCMD:    storage_open URI
**
** Return a string that identifies the new storage object.
*/
static int test_storage_open(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  KVStore *pNew = 0;
  int rc;


  char zRes[50];
  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 2, objv, "URI");
    return TCL_ERROR;
  }


  rc = sqlite4KVStoreOpen(Tcl_GetString(objv[1]), &pNew);
  if( rc ){
    sqlite4KVStoreClose(pNew);
    storageSetTclErrorName(interp, rc);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zRes),zRes, "%p", pNew);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(zRes,-1));







|











>
>

|
|


>
>
|







25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
*/
static void storageSetTclErrorName(Tcl_Interp *interp, int rc){
  extern const char *sqlite4TestErrorName(int);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite4TestErrorName(rc), -1));
}

/*
** TCLCMD:    storage_open URI FLAGS
**
** Return a string that identifies the new storage object.
*/
static int test_storage_open(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  KVStore *pNew = 0;
  int rc;
  int flags;
  sqlite4 db;
  char zRes[50];
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "URI FLAGS");
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &flags) ) return TCL_ERROR;
  memset(&db, 0, sizeof(db));
  rc = sqlite4KVStoreOpen(&db, "test", Tcl_GetString(objv[1]), &pNew, flags);
  if( rc ){
    sqlite4KVStoreClose(pNew);
    storageSetTclErrorName(interp, rc);
    return TCL_ERROR;
  }
  sqlite4_snprintf(sizeof(zRes),zRes, "%p", pNew);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(zRes,-1));
223
224
225
226
227
228
229
230





231
232
233
234
235
236
237
  int iLevel;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "STORAGE LEVEL");
    return TCL_ERROR;
  }
  p = sqlite4TestTextToPtr(Tcl_GetString(objv[1]));
  if( Tcl_GetIntFromObj(interp, objv[2], &iLevel) ) return TCL_ERROR;
  rc = sqlite4KVStoreCommit(p, iLevel);





  if( rc ){
    storageSetTclErrorName(interp, rc);
    return TCL_ERROR;
  }
  return TCL_OK;
}








|
>
>
>
>
>







227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  int iLevel;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "STORAGE LEVEL");
    return TCL_ERROR;
  }
  p = sqlite4TestTextToPtr(Tcl_GetString(objv[1]));
  if( Tcl_GetIntFromObj(interp, objv[2], &iLevel) ) return TCL_ERROR;
  rc = sqlite4KVStoreCommitPhaseOne(p, iLevel);
  if( rc ){
    storageSetTclErrorName(interp, rc);
    return TCL_ERROR;
  }
  rc = sqlite4KVStoreCommitPhaseTwo(p, iLevel);
  if( rc ){
    storageSetTclErrorName(interp, rc);
    return TCL_ERROR;
  }
  return TCL_OK;
}

Deleted src/test_superlock.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
** 2010 November 19
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Example code for obtaining an exclusive lock on an SQLite database
** file. This method is complicated, but works for both WAL and rollback
** mode database files. The interface to the example code in this file 
** consists of the following two functions:
**
**   sqlite4demo_superlock()
**   sqlite4demo_superunlock()
*/

#include <sqlite4.h>
#include <string.h>               /* memset(), strlen() */
#include <assert.h>               /* assert() */

/*
** A structure to collect a busy-handler callback and argument and a count
** of the number of times it has been invoked.
*/
struct SuperlockBusy {
  int (*xBusy)(void*,int);        /* Pointer to busy-handler function */
  void *pBusyArg;                 /* First arg to pass to xBusy */
  int nBusy;                      /* Number of times xBusy has been invoked */
};
typedef struct SuperlockBusy SuperlockBusy;

/*
** An instance of the following structure is allocated for each active
** superlock. The opaque handle returned by sqlite4demo_superlock() is
** actually a pointer to an instance of this structure.
*/
struct Superlock {
  sqlite4 *db;                    /* Database handle used to lock db */
  int bWal;                       /* True if db is a WAL database */
};
typedef struct Superlock Superlock;

/*
** The pCtx pointer passed to this function is actually a pointer to a
** SuperlockBusy structure. Invoke the busy-handler function encapsulated
** by the structure and return the result.
*/
static int superlockBusyHandler(void *pCtx, int UNUSED){
  SuperlockBusy *pBusy = (SuperlockBusy *)pCtx;
  if( pBusy->xBusy==0 ) return 0;
  return pBusy->xBusy(pBusy->pBusyArg, pBusy->nBusy++);
}

/*
** This function is used to determine if the main database file for 
** connection db is open in WAL mode or not. If no error occurs and the
** database file is in WAL mode, set *pbWal to true and return SQLITE_OK.
** If it is not in WAL mode, set *pbWal to false.
**
** If an error occurs, return an SQLite error code. The value of *pbWal
** is undefined in this case.
*/
static int superlockIsWal(Superlock *pLock){
  int rc;                         /* Return Code */
  sqlite4_stmt *pStmt;            /* Compiled PRAGMA journal_mode statement */

  rc = sqlite4_prepare(pLock->db, "PRAGMA main.journal_mode", -1, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;

  pLock->bWal = 0;
  if( SQLITE_ROW==sqlite4_step(pStmt) ){
    const char *zMode = (const char *)sqlite4_column_text(pStmt, 0);
    if( zMode && strlen(zMode)==3 && sqlite4_strnicmp("wal", zMode, 3)==0 ){
      pLock->bWal = 1;
    }
  }

  return sqlite4_finalize(pStmt);
}

/*
** Obtain an exclusive shm-lock on nByte bytes starting at offset idx
** of the file fd. If the lock cannot be obtained immediately, invoke
** the busy-handler until either it is obtained or the busy-handler
** callback returns 0.
*/
static int superlockShmLock(
  sqlite4_file *fd,               /* Database file handle */
  int idx,                        /* Offset of shm-lock to obtain */
  int nByte,                      /* Number of consective bytes to lock */
  SuperlockBusy *pBusy            /* Busy-handler wrapper object */
){
  int rc;
  int (*xShmLock)(sqlite4_file*, int, int, int) = fd->pMethods->xShmLock;
  do {
    rc = xShmLock(fd, idx, nByte, SQLITE_SHM_LOCK|SQLITE_SHM_EXCLUSIVE);
  }while( rc==SQLITE_BUSY && superlockBusyHandler((void *)pBusy, 0) );
  return rc;
}

/*
** Obtain the extra locks on the database file required for WAL databases.
** Invoke the supplied busy-handler as required.
*/
static int superlockWalLock(
  sqlite4 *db,                    /* Database handle open on WAL database */
  SuperlockBusy *pBusy            /* Busy handler wrapper object */
){
  int rc;                         /* Return code */
  sqlite4_file *fd = 0;           /* Main database file handle */
  void volatile *p = 0;           /* Pointer to first page of shared memory */

  /* Obtain a pointer to the sqlite4_file object open on the main db file. */
  rc = sqlite4_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, (void *)&fd);
  if( rc!=SQLITE_OK ) return rc;

  /* Obtain the "recovery" lock. Normally, this lock is only obtained by
  ** clients running database recovery.  
  */
  rc = superlockShmLock(fd, 2, 1, pBusy);
  if( rc!=SQLITE_OK ) return rc;

  /* Zero the start of the first shared-memory page. This means that any
  ** clients that open read or write transactions from this point on will
  ** have to run recovery before proceeding. Since they need the "recovery"
  ** lock that this process is holding to do that, no new read or write
  ** transactions may now be opened. Nor can a checkpoint be run, for the
  ** same reason.
  */
  rc = fd->pMethods->xShmMap(fd, 0, 32*1024, 1, &p);
  if( rc!=SQLITE_OK ) return rc;
  memset((void *)p, 0, 32);

  /* Obtain exclusive locks on all the "read-lock" slots. Once these locks
  ** are held, it is guaranteed that there are no active reader, writer or 
  ** checkpointer clients.
  */
  rc = superlockShmLock(fd, 3, SQLITE_SHM_NLOCK-3, pBusy);
  return rc;
}

/*
** Release a superlock held on a database file. The argument passed to 
** this function must have been obtained from a successful call to
** sqlite4demo_superlock().
*/
void sqlite4demo_superunlock(void *pLock){
  Superlock *p = (Superlock *)pLock;
  if( p->bWal ){
    int rc;                         /* Return code */
    int flags = SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE;
    sqlite4_file *fd = 0;
    rc = sqlite4_file_control(p->db, "main", SQLITE_FCNTL_FILE_POINTER, (void *)&fd);
    if( rc==SQLITE_OK ){
      fd->pMethods->xShmLock(fd, 2, 1, flags);
      fd->pMethods->xShmLock(fd, 3, SQLITE_SHM_NLOCK-3, flags);
    }
  }
  sqlite4_close(p->db);
  sqlite4_free(p);
}

/*
** Obtain a superlock on the database file identified by zPath, using the
** locking primitives provided by VFS zVfs. If successful, SQLITE_OK is
** returned and output variable *ppLock is populated with an opaque handle
** that may be used with sqlite4demo_superunlock() to release the lock.
**
** If an error occurs, *ppLock is set to 0 and an SQLite error code 
** (e.g. SQLITE_BUSY) is returned.
**
** If a required lock cannot be obtained immediately and the xBusy parameter
** to this function is not NULL, then xBusy is invoked in the same way
** as a busy-handler registered with SQLite (using sqlite4_busy_handler())
** until either the lock can be obtained or the busy-handler function returns
** 0 (indicating "give up").
*/
int sqlite4demo_superlock(
  const char *zPath,              /* Path to database file to lock */
  const char *zVfs,               /* VFS to use to access database file */
  int (*xBusy)(void*,int),        /* Busy handler callback */
  void *pBusyArg,                 /* Context arg for busy handler */
  void **ppLock                   /* OUT: Context to pass to superunlock() */
){
  SuperlockBusy busy = {0, 0, 0}; /* Busy handler wrapper object */
  int rc;                         /* Return code */
  Superlock *pLock;

  pLock = sqlite4_malloc(sizeof(Superlock));
  if( !pLock ) return SQLITE_NOMEM;
  memset(pLock, 0, sizeof(Superlock));

  /* Open a database handle on the file to superlock. */
  rc = sqlite4_open_v2(
      zPath, &pLock->db, SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE, zVfs
  );

  /* Install a busy-handler and execute a BEGIN EXCLUSIVE. If this is not
  ** a WAL database, this is all we need to do.  
  **
  ** A wrapper function is used to invoke the busy-handler instead of
  ** registering the busy-handler function supplied by the user directly
  ** with SQLite. This is because the same busy-handler function may be
  ** invoked directly later on when attempting to obtain the extra locks
  ** required in WAL mode. By using the wrapper, we are able to guarantee
  ** that the "nBusy" integer parameter passed to the users busy-handler
  ** represents the total number of busy-handler invocations made within
  ** this call to sqlite4demo_superlock(), including any made during the
  ** "BEGIN EXCLUSIVE".
  */
  if( rc==SQLITE_OK ){
    busy.xBusy = xBusy;
    busy.pBusyArg = pBusyArg;
    sqlite4_busy_handler(pLock->db, superlockBusyHandler, (void *)&busy);
    rc = sqlite4_exec(pLock->db, "BEGIN EXCLUSIVE", 0, 0, 0);
  }

  /* If the BEGIN EXCLUSIVE was executed successfully and this is a WAL
  ** database, call superlockWalLock() to obtain the extra locks required
  ** to prevent readers, writers and/or checkpointers from accessing the
  ** db while this process is holding the superlock.
  **
  ** Before attempting any WAL locks, commit the transaction started above
  ** to drop the WAL read and write locks currently held. Otherwise, the
  ** new WAL locks may conflict with the old.
  */
  if( rc==SQLITE_OK ){
    if( SQLITE_OK==(rc = superlockIsWal(pLock)) && pLock->bWal ){
      rc = sqlite4_exec(pLock->db, "COMMIT", 0, 0, 0);
      if( rc==SQLITE_OK ){
        rc = superlockWalLock(pLock->db, &busy);
      }
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite4demo_superunlock(pLock);
    *ppLock = 0;
  }else{
    *ppLock = pLock;
  }

  return rc;
}

/*
** End of example code. Everything below here is the test harness.
**************************************************************************
**************************************************************************
*************************************************************************/


#ifdef SQLITE_TEST

#include <tcl.h>

struct InterpAndScript {
  Tcl_Interp *interp;
  Tcl_Obj *pScript;
};
typedef struct InterpAndScript InterpAndScript;

static void superunlock_del(ClientData cd){
  sqlite4demo_superunlock((void *)cd);
}

static int superunlock_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  if( objc!=1 ){
    Tcl_WrongNumArgs(interp, 1, objv, "");
    return TCL_ERROR;
  }
  Tcl_DeleteCommand(interp, Tcl_GetString(objv[0]));
  return TCL_OK;
}

static int superlock_busy(void *pCtx, int nBusy){
  InterpAndScript *p = (InterpAndScript *)pCtx;
  Tcl_Obj *pEval;                 /* Script to evaluate */
  int iVal = 0;                   /* Value to return */

  pEval = Tcl_DuplicateObj(p->pScript);
  Tcl_IncrRefCount(pEval);
  Tcl_ListObjAppendElement(p->interp, pEval, Tcl_NewIntObj(nBusy));
  Tcl_EvalObjEx(p->interp, pEval, TCL_EVAL_GLOBAL);
  Tcl_GetIntFromObj(p->interp, Tcl_GetObjResult(p->interp), &iVal);
  Tcl_DecrRefCount(pEval);

  return iVal;
}

/*
** Tclcmd: sqlite4demo_superlock CMDNAME PATH VFS BUSY-HANDLER-SCRIPT
*/
static int superlock_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  void *pLock;                    /* Lock context */
  char *zPath;
  char *zVfs = 0;
  InterpAndScript busy = {0, 0};
  int (*xBusy)(void*,int) = 0;    /* Busy handler callback */
  int rc;                         /* Return code from sqlite4demo_superlock() */

  if( objc<3 || objc>5 ){
    Tcl_WrongNumArgs(
        interp, 1, objv, "CMDNAME PATH ?VFS? ?BUSY-HANDLER-SCRIPT?");
    return TCL_ERROR;
  }

  zPath = Tcl_GetString(objv[2]);

  if( objc>3 ){
    zVfs = Tcl_GetString(objv[3]);
    if( strlen(zVfs)==0 ) zVfs = 0;
  }
  if( objc>4 ){
    busy.interp = interp;
    busy.pScript = objv[4];
    xBusy = superlock_busy;
  }

  rc = sqlite4demo_superlock(zPath, zVfs, xBusy, &busy, &pLock);
  assert( rc==SQLITE_OK || pLock==0 );
  assert( rc!=SQLITE_OK || pLock!=0 );

  if( rc!=SQLITE_OK ){
    extern const char *sqlite4ErrStr(int);
    Tcl_ResetResult(interp);
    Tcl_AppendResult(interp, sqlite4ErrStr(rc), 0);
    return TCL_ERROR;
  }

  Tcl_CreateObjCommand(
      interp, Tcl_GetString(objv[1]), superunlock_cmd, pLock, superunlock_del
  );
  Tcl_SetObjResult(interp, objv[1]);
  return TCL_OK;
}

int SqliteSuperlock_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "sqlite4demo_superlock", superlock_cmd, 0, 0);
  return TCL_OK;
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








































































































































































































































































































































































































































































































































































































































































































































Deleted src/test_syscall.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
** 2011 March 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** The code in this file implements a Tcl interface used to test error
** handling in the os_unix.c module. Wrapper functions that support fault
** injection are registered as the low-level OS functions using the 
** xSetSystemCall() method of the VFS. The Tcl interface is as follows:
**
**
**   test_syscall install LIST
**     Install wrapper functions for all system calls in argument LIST.
**     LIST must be a list consisting of zero or more of the following
**     literal values:
**
**         open        close      access   getcwd   stat      fstat    
**         ftruncate   fcntl      read     pread    pread64   write
**         pwrite      pwrite64   fchmod   fallocate
**
**   test_syscall uninstall
**     Uninstall all wrapper functions.
**
**   test_syscall fault ?COUNT PERSIST?
**     If [test_syscall fault] is invoked without the two arguments, fault
**     injection is disabled. Otherwise, fault injection is configured to
**     cause a failure on the COUNT'th next call to a system call with a
**     wrapper function installed. A COUNT value of 1 means fail the next
**     system call. 
** 
**     Argument PERSIST is interpreted as a boolean. If true, the all
**     system calls following the initial failure also fail. Otherwise, only
**     the single transient failure is injected.
**
**   test_syscall errno CALL ERRNO
**     Set the value that the global "errno" is set to following a fault
**     in call CALL. Argument CALL must be one of the system call names
**     listed above (under [test_syscall install]). ERRNO is a symbolic
**     name (i.e. "EACCES"). Not all errno codes are supported. Add extra
**     to the aErrno table in function test_syscall_errno() below as 
**     required.
**
**   test_syscall reset ?SYSTEM-CALL?
**     With no argument, this is an alias for the [uninstall] command. However,
**     this command uses a VFS call of the form:
**
**       xSetSystemCall(pVfs, 0, 0);
**
**     To restore the default system calls. The [uninstall] command restores
**     each system call individually by calling (i.e.):
**
**       xSetSystemCall(pVfs, "open", 0);
**
**     With an argument, this command attempts to reset the system call named
**     by the parameter using the same method as [uninstall].
**
**   test_syscall exists SYSTEM-CALL
**     Return true if the named system call exists. Or false otherwise.
**
**   test_syscall list
**     Return a list of all system calls. The list is constructed using
**     the xNextSystemCall() VFS method.
*/

#include "sqlite4.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "sqliteInt.h"
#if SQLITE_OS_UNIX

/* From test1.c */
extern const char *sqlite4TestErrorName(int);

#include <sys/types.h>
#include <errno.h>

static struct TestSyscallGlobal {
  int bPersist;                   /* 1 for persistent errors, 0 for transient */
  int nCount;                     /* Fail after this many more calls */
  int nFail;                      /* Number of failures that have occurred */
} gSyscall = { 0, 0 };

static int ts_open(const char *, int, int);
static int ts_close(int fd);
static int ts_access(const char *zPath, int mode);
static char *ts_getcwd(char *zPath, size_t nPath);
static int ts_stat(const char *zPath, struct stat *p);
static int ts_fstat(int fd, struct stat *p);
static int ts_ftruncate(int fd, off_t n);
static int ts_fcntl(int fd, int cmd, ... );
static int ts_read(int fd, void *aBuf, size_t nBuf);
static int ts_pread(int fd, void *aBuf, size_t nBuf, off_t off);
static int ts_pread64(int fd, void *aBuf, size_t nBuf, off_t off);
static int ts_write(int fd, const void *aBuf, size_t nBuf);
static int ts_pwrite(int fd, const void *aBuf, size_t nBuf, off_t off);
static int ts_pwrite64(int fd, const void *aBuf, size_t nBuf, off_t off);
static int ts_fchmod(int fd, mode_t mode);
static int ts_fallocate(int fd, off_t off, off_t len);


struct TestSyscallArray {
  const char *zName;
  sqlite4_syscall_ptr xTest;
  sqlite4_syscall_ptr xOrig;
  int default_errno;              /* Default value for errno following errors */
  int custom_errno;               /* Current value for errno if error */
} aSyscall[] = {
  /*  0 */ { "open",      (sqlite4_syscall_ptr)ts_open,      0, EACCES, 0 },
  /*  1 */ { "close",     (sqlite4_syscall_ptr)ts_close,     0, 0, 0 },
  /*  2 */ { "access",    (sqlite4_syscall_ptr)ts_access,    0, 0, 0 },
  /*  3 */ { "getcwd",    (sqlite4_syscall_ptr)ts_getcwd,    0, 0, 0 },
  /*  4 */ { "stat",      (sqlite4_syscall_ptr)ts_stat,      0, 0, 0 },
  /*  5 */ { "fstat",     (sqlite4_syscall_ptr)ts_fstat,     0, 0, 0 },
  /*  6 */ { "ftruncate", (sqlite4_syscall_ptr)ts_ftruncate, 0, EIO, 0 },
  /*  7 */ { "fcntl",     (sqlite4_syscall_ptr)ts_fcntl,     0, EACCES, 0 },
  /*  8 */ { "read",      (sqlite4_syscall_ptr)ts_read,      0, 0, 0 },
  /*  9 */ { "pread",     (sqlite4_syscall_ptr)ts_pread,     0, 0, 0 },
  /* 10 */ { "pread64",   (sqlite4_syscall_ptr)ts_pread64,   0, 0, 0 },
  /* 11 */ { "write",     (sqlite4_syscall_ptr)ts_write,     0, 0, 0 },
  /* 12 */ { "pwrite",    (sqlite4_syscall_ptr)ts_pwrite,    0, 0, 0 },
  /* 13 */ { "pwrite64",  (sqlite4_syscall_ptr)ts_pwrite64,  0, 0, 0 },
  /* 14 */ { "fchmod",    (sqlite4_syscall_ptr)ts_fchmod,    0, 0, 0 },
  /* 15 */ { "fallocate", (sqlite4_syscall_ptr)ts_fallocate, 0, 0, 0 },
           { 0, 0, 0, 0, 0 }
};

#define orig_open      ((int(*)(const char *, int, int))aSyscall[0].xOrig)
#define orig_close     ((int(*)(int))aSyscall[1].xOrig)
#define orig_access    ((int(*)(const char*,int))aSyscall[2].xOrig)
#define orig_getcwd    ((char*(*)(char*,size_t))aSyscall[3].xOrig)
#define orig_stat      ((int(*)(const char*,struct stat*))aSyscall[4].xOrig)
#define orig_fstat     ((int(*)(int,struct stat*))aSyscall[5].xOrig)
#define orig_ftruncate ((int(*)(int,off_t))aSyscall[6].xOrig)
#define orig_fcntl     ((int(*)(int,int,...))aSyscall[7].xOrig)
#define orig_read      ((ssize_t(*)(int,void*,size_t))aSyscall[8].xOrig)
#define orig_pread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].xOrig)
#define orig_pread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].xOrig)
#define orig_write     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].xOrig)
#define orig_pwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
                       aSyscall[12].xOrig)
#define orig_pwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                       aSyscall[13].xOrig)
#define orig_fchmod    ((int(*)(int,mode_t))aSyscall[14].xOrig)
#define orig_fallocate ((int(*)(int,off_t,off_t))aSyscall[15].xOrig)

/*
** This function is called exactly once from within each invocation of a
** system call wrapper in this file. It returns 1 if the function should
** fail, or 0 if it should succeed.
*/
static int tsIsFail(void){
  gSyscall.nCount--;
  if( gSyscall.nCount==0 || (gSyscall.nFail && gSyscall.bPersist) ){
    gSyscall.nFail++;
    return 1;
  }
  return 0;
}

/*
** Return the current error-number value for function zFunc. zFunc must be
** the name of a system call in the aSyscall[] table.
**
** Usually, the current error-number is the value that errno should be set
** to if the named system call fails. The exception is "fallocate". See 
** comments above the implementation of ts_fallocate() for details.
*/
static int tsErrno(const char *zFunc){
  int i;
  int nFunc = strlen(zFunc);
  for(i=0; aSyscall[i].zName; i++){
    if( strlen(aSyscall[i].zName)!=nFunc ) continue;
    if( memcmp(aSyscall[i].zName, zFunc, nFunc) ) continue;
    return aSyscall[i].custom_errno;
  }

  assert(0);
  return 0;
}

/*
** A wrapper around tsIsFail(). If tsIsFail() returns non-zero, set the
** value of errno before returning.
*/ 
static int tsIsFailErrno(const char *zFunc){
  if( tsIsFail() ){
    errno = tsErrno(zFunc);
    return 1;
  }
  return 0;
}

/*
** A wrapper around open().
*/
static int ts_open(const char *zFile, int flags, int mode){
  if( tsIsFailErrno("open") ){
    return -1;
  }
  return orig_open(zFile, flags, mode);
}

/*
** A wrapper around close().
*/
static int ts_close(int fd){
  if( tsIsFail() ){
    /* Even if simulating an error, close the original file-descriptor. 
    ** This is to stop the test process from running out of file-descriptors
    ** when running a long test. If a call to close() appears to fail, SQLite
    ** never attempts to use the file-descriptor afterwards (or even to close
    ** it a second time).  */
    orig_close(fd);
    return -1;
  }
  return orig_close(fd);
}

/*
** A wrapper around access().
*/
static int ts_access(const char *zPath, int mode){
  if( tsIsFail() ){
    return -1;
  }
  return orig_access(zPath, mode);
}

/*
** A wrapper around getcwd().
*/
static char *ts_getcwd(char *zPath, size_t nPath){
  if( tsIsFail() ){
    return NULL;
  }
  return orig_getcwd(zPath, nPath);
}

/*
** A wrapper around stat().
*/
static int ts_stat(const char *zPath, struct stat *p){
  if( tsIsFail() ){
    return -1;
  }
  return orig_stat(zPath, p);
}

/*
** A wrapper around fstat().
*/
static int ts_fstat(int fd, struct stat *p){
  if( tsIsFailErrno("fstat") ){
    return -1;
  }
  return orig_fstat(fd, p);
}

/*
** A wrapper around ftruncate().
*/
static int ts_ftruncate(int fd, off_t n){
  if( tsIsFailErrno("ftruncate") ){
    return -1;
  }
  return orig_ftruncate(fd, n);
}

/*
** A wrapper around fcntl().
*/
static int ts_fcntl(int fd, int cmd, ... ){
  va_list ap;
  void *pArg;
  if( tsIsFailErrno("fcntl") ){
    return -1;
  }
  va_start(ap, cmd);
  pArg = va_arg(ap, void *);
  return orig_fcntl(fd, cmd, pArg);
}

/*
** A wrapper around read().
*/
static int ts_read(int fd, void *aBuf, size_t nBuf){
  if( tsIsFailErrno("read") ){
    return -1;
  }
  return orig_read(fd, aBuf, nBuf);
}

/*
** A wrapper around pread().
*/
static int ts_pread(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pread") ){
    return -1;
  }
  return orig_pread(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pread64().
*/
static int ts_pread64(int fd, void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pread64") ){
    return -1;
  }
  return orig_pread64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around write().
*/
static int ts_write(int fd, const void *aBuf, size_t nBuf){
  if( tsIsFailErrno("write") ){
    if( tsErrno("write")==EINTR ) orig_write(fd, aBuf, nBuf/2);
    return -1;
  }
  return orig_write(fd, aBuf, nBuf);
}

/*
** A wrapper around pwrite().
*/
static int ts_pwrite(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pwrite") ){
    return -1;
  }
  return orig_pwrite(fd, aBuf, nBuf, off);
}

/*
** A wrapper around pwrite64().
*/
static int ts_pwrite64(int fd, const void *aBuf, size_t nBuf, off_t off){
  if( tsIsFailErrno("pwrite64") ){
    return -1;
  }
  return orig_pwrite64(fd, aBuf, nBuf, off);
}

/*
** A wrapper around fchmod().
*/
static int ts_fchmod(int fd, mode_t mode){
  if( tsIsFail() ){
    return -1;
  }
  return orig_fchmod(fd, mode);
}

/*
** A wrapper around fallocate().
**
** SQLite assumes that the fallocate() function is compatible with
** posix_fallocate(). According to the Linux man page (2009-09-30):
**
**   posix_fallocate() returns  zero on success, or an error number on
**   failure. Note that errno is not set.
*/
static int ts_fallocate(int fd, off_t off, off_t len){
  if( tsIsFail() ){
    return tsErrno("fallocate");
  }
  return orig_fallocate(fd, off, len);
}

static int test_syscall_install(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_vfs *pVfs; 
  int nElem;
  int i;
  Tcl_Obj **apElem;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "SYSCALL-LIST");
    return TCL_ERROR;
  }
  if( Tcl_ListObjGetElements(interp, objv[2], &nElem, &apElem) ){
    return TCL_ERROR;
  }
  pVfs = sqlite4_vfs_find(0);

  for(i=0; i<nElem; i++){
    int iCall;
    int rc = Tcl_GetIndexFromObjStruct(interp, 
        apElem[i], aSyscall, sizeof(aSyscall[0]), "system-call", 0, &iCall
    );
    if( rc ) return rc;
    if( aSyscall[iCall].xOrig==0 ){
      aSyscall[iCall].xOrig = pVfs->xGetSystemCall(pVfs, aSyscall[iCall].zName);
      pVfs->xSetSystemCall(pVfs, aSyscall[iCall].zName, aSyscall[iCall].xTest);
    }
    aSyscall[iCall].custom_errno = aSyscall[iCall].default_errno;
  }

  return TCL_OK;
}

static int test_syscall_uninstall(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_vfs *pVfs; 
  int i;

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 2, objv, "");
    return TCL_ERROR;
  }

  pVfs = sqlite4_vfs_find(0);
  for(i=0; aSyscall[i].zName; i++){
    if( aSyscall[i].xOrig ){
      pVfs->xSetSystemCall(pVfs, aSyscall[i].zName, 0);
      aSyscall[i].xOrig = 0;
    }
  }
  return TCL_OK;
}

static int test_syscall_reset(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_vfs *pVfs; 
  int i;
  int rc;

  if( objc!=2 && objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "");
    return TCL_ERROR;
  }

  pVfs = sqlite4_vfs_find(0);
  if( objc==2 ){
    rc = pVfs->xSetSystemCall(pVfs, 0, 0);
    for(i=0; aSyscall[i].zName; i++) aSyscall[i].xOrig = 0;
  }else{
    int nFunc;
    char *zFunc = Tcl_GetStringFromObj(objv[2], &nFunc);
    rc = pVfs->xSetSystemCall(pVfs, Tcl_GetString(objv[2]), 0);
    for(i=0; rc==SQLITE_OK && aSyscall[i].zName; i++){
      if( strlen(aSyscall[i].zName)!=nFunc ) continue;
      if( memcmp(aSyscall[i].zName, zFunc, nFunc) ) continue;
      aSyscall[i].xOrig = 0;
    }
  }
  if( rc!=SQLITE_OK ){
    Tcl_SetObjResult(interp, Tcl_NewStringObj(sqlite4TestErrorName(rc), -1));
    return TCL_ERROR;
  }

  Tcl_ResetResult(interp);
  return TCL_OK;
}

static int test_syscall_exists(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_vfs *pVfs; 
  sqlite4_syscall_ptr x;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 2, objv, "");
    return TCL_ERROR;
  }

  pVfs = sqlite4_vfs_find(0);
  x = pVfs->xGetSystemCall(pVfs, Tcl_GetString(objv[2]));

  Tcl_SetObjResult(interp, Tcl_NewBooleanObj(x!=0));
  return TCL_OK;
}

static int test_syscall_fault(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int nCount = 0;
  int bPersist = 0;

  if( objc!=2 && objc!=4 ){
    Tcl_WrongNumArgs(interp, 2, objv, "?COUNT PERSIST?");
    return TCL_ERROR;
  }

  if( objc==4 ){
    if( Tcl_GetIntFromObj(interp, objv[2], &nCount)
     || Tcl_GetBooleanFromObj(interp, objv[3], &bPersist)
    ){
      return TCL_ERROR;
    }
  }

  Tcl_SetObjResult(interp, Tcl_NewIntObj(gSyscall.nFail));
  gSyscall.nCount = nCount;
  gSyscall.bPersist = bPersist;
  gSyscall.nFail = 0;
  return TCL_OK;
}

static int test_syscall_errno(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int iCall;
  int iErrno;
  int rc;

  struct Errno {
    const char *z;
    int i;
  } aErrno[] = {
    { "EACCES",    EACCES },
    { "EINTR",     EINTR },
    { "EIO",       EIO },
    { "EOVERFLOW", EOVERFLOW },
    { "ENOMEM",    ENOMEM },
    { "EAGAIN",    EAGAIN },
    { "ETIMEDOUT", ETIMEDOUT },
    { "EBUSY",     EBUSY },
    { "EPERM",     EPERM },
    { "EDEADLK",   EDEADLK },
    { "ENOLCK",    ENOLCK },
    { 0, 0 }
  };

  if( objc!=4 ){
    Tcl_WrongNumArgs(interp, 2, objv, "SYSCALL ERRNO");
    return TCL_ERROR;
  }

  rc = Tcl_GetIndexFromObjStruct(interp, 
      objv[2], aSyscall, sizeof(aSyscall[0]), "system-call", 0, &iCall
  );
  if( rc!=TCL_OK ) return rc;
  rc = Tcl_GetIndexFromObjStruct(interp, 
      objv[3], aErrno, sizeof(aErrno[0]), "errno", 0, &iErrno
  );
  if( rc!=TCL_OK ) return rc;

  aSyscall[iCall].custom_errno = aErrno[iErrno].i;
  return TCL_OK;
}

static int test_syscall_list(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  const char *zSys;
  sqlite4_vfs *pVfs; 
  Tcl_Obj *pList;

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 2, objv, "");
    return TCL_ERROR;
  }

  pVfs = sqlite4_vfs_find(0);
  pList = Tcl_NewObj();
  Tcl_IncrRefCount(pList);
  for(zSys = pVfs->xNextSystemCall(pVfs, 0); 
      zSys!=0;
      zSys = pVfs->xNextSystemCall(pVfs, zSys)
  ){
    Tcl_ListObjAppendElement(interp, pList, Tcl_NewStringObj(zSys, -1));
  }

  Tcl_SetObjResult(interp, pList);
  Tcl_DecrRefCount(pList);
  return TCL_OK;
}

static int test_syscall_defaultvfs(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite4_vfs *pVfs; 

  if( objc!=2 ){
    Tcl_WrongNumArgs(interp, 2, objv, "");
    return TCL_ERROR;
  }

  pVfs = sqlite4_vfs_find(0);
  Tcl_SetObjResult(interp, Tcl_NewStringObj(pVfs->zName, -1));
  return TCL_OK;
}

static int test_syscall(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "fault",      test_syscall_fault },
    { "install",    test_syscall_install },
    { "uninstall",  test_syscall_uninstall },
    { "reset",      test_syscall_reset },
    { "errno",      test_syscall_errno },
    { "exists",     test_syscall_exists },
    { "list",       test_syscall_list },
    { "defaultvfs", test_syscall_defaultvfs },
    { 0, 0 }
  };
  int iCmd;
  int rc;

  if( objc<2 ){
    Tcl_WrongNumArgs(interp, 1, objv, "SUB-COMMAND ...");
    return TCL_ERROR;
  }
  rc = Tcl_GetIndexFromObjStruct(interp, 
      objv[1], aCmd, sizeof(aCmd[0]), "sub-command", 0, &iCmd
  );
  if( rc!=TCL_OK ) return rc;
  return aCmd[iCmd].xCmd(clientData, interp, objc, objv);
}

int SqlitetestSyscall_Init(Tcl_Interp *interp){
  struct SyscallCmd {
    const char *zName;
    Tcl_ObjCmdProc *xCmd;
  } aCmd[] = {
    { "test_syscall",     test_syscall},
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aCmd[i].zName, aCmd[i].xCmd, 0, 0);
  }
  return TCL_OK;
}
#else
int SqlitetestSyscall_Init(Tcl_Interp *interp){
  return TCL_OK;
}
#endif
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/trigger.c.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

  if( pParse->disableTriggers ){
    return 0;
  }

  if( pTmpSchema!=pTab->pSchema ){
    HashElem *p;
    assert( sqlite4SchemaMutexHeld(pParse->db, 0, pTmpSchema) );
    for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
      Trigger *pTrig = (Trigger *)sqliteHashData(p);
      if( pTrig->pTabSchema==pTab->pSchema
       && 0==sqlite4StrICmp(pTrig->table, pTab->zName) 
      ){
        pTrig->pNext = (pList ? pList : pTab->pTrigger);
        pList = pTrig;







<







50
51
52
53
54
55
56

57
58
59
60
61
62
63

  if( pParse->disableTriggers ){
    return 0;
  }

  if( pTmpSchema!=pTab->pSchema ){
    HashElem *p;

    for(p=sqliteHashFirst(&pTmpSchema->trigHash); p; p=sqliteHashNext(p)){
      Trigger *pTrig = (Trigger *)sqliteHashData(p);
      if( pTrig->pTabSchema==pTab->pSchema
       && 0==sqlite4StrICmp(pTrig->table, pTab->zName) 
      ){
        pTrig->pNext = (pList ? pList : pTab->pTrigger);
        pList = pTrig;
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

  /* Check that the trigger name is not reserved and that no trigger of the
  ** specified name exists */
  zName = sqlite4NameFromToken(db, pName);
  if( !zName || SQLITE_OK!=sqlite4CheckObjectName(pParse, zName) ){
    goto trigger_cleanup;
  }
  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  if( sqlite4HashFind(&(db->aDb[iDb].pSchema->trigHash),
                      zName, sqlite4Strlen30(zName)) ){
    if( !noErr ){
      sqlite4ErrorMsg(pParse, "trigger %T already exists", pName);
    }else{
      assert( !db->init.busy );
      sqlite4CodeVerifySchema(pParse, iDb);







<







174
175
176
177
178
179
180

181
182
183
184
185
186
187

  /* Check that the trigger name is not reserved and that no trigger of the
  ** specified name exists */
  zName = sqlite4NameFromToken(db, pName);
  if( !zName || SQLITE_OK!=sqlite4CheckObjectName(pParse, zName) ){
    goto trigger_cleanup;
  }

  if( sqlite4HashFind(&(db->aDb[iDb].pSchema->trigHash),
                      zName, sqlite4Strlen30(zName)) ){
    if( !noErr ){
      sqlite4ErrorMsg(pParse, "trigger %T already exists", pName);
    }else{
      assert( !db->init.busy );
      sqlite4CodeVerifySchema(pParse, iDb);
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    sqlite4VdbeAddParseSchemaOp(v, iDb,
        sqlite4MPrintf(db, "type='trigger' AND name='%q'", zName));
  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    pTrig = sqlite4HashInsert(pHash, zName, sqlite4Strlen30(zName), pTrig);
    if( pTrig ){
      db->mallocFailed = 1;
    }else if( pLink->pSchema==pLink->pTabSchema ){
      Table *pTab;
      int n = sqlite4Strlen30(pLink->table);
      pTab = sqlite4HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);







<







315
316
317
318
319
320
321

322
323
324
325
326
327
328
    sqlite4VdbeAddParseSchemaOp(v, iDb,
        sqlite4MPrintf(db, "type='trigger' AND name='%q'", zName));
  }

  if( db->init.busy ){
    Trigger *pLink = pTrig;
    Hash *pHash = &db->aDb[iDb].pSchema->trigHash;

    pTrig = sqlite4HashInsert(pHash, zName, sqlite4Strlen30(zName), pTrig);
    if( pTrig ){
      db->mallocFailed = 1;
    }else if( pLink->pSchema==pLink->pTabSchema ){
      Table *pTab;
      int n = sqlite4Strlen30(pLink->table);
      pTab = sqlite4HashFind(&pLink->pTabSchema->tblHash, pLink->table, n);
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    goto drop_trigger_cleanup;
  }

  assert( pName->nSrc==1 );
  zDb = pName->a[0].zDatabase;
  zName = pName->a[0].zName;
  nName = sqlite4Strlen30(zName);
  assert( zDb!=0 || sqlite4BtreeHoldsAllMutexes(db) );
  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqlite4StrICmp(db->aDb[j].zName, zDb) ) continue;
    assert( sqlite4SchemaMutexHeld(db, j, 0) );
    pTrigger = sqlite4HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
    if( pTrigger ) break;
  }
  if( !pTrigger ){
    if( !noErr ){
      sqlite4ErrorMsg(pParse, "no such trigger: %S", pName, 0);
    }else{







<



<







496
497
498
499
500
501
502

503
504
505

506
507
508
509
510
511
512
    goto drop_trigger_cleanup;
  }

  assert( pName->nSrc==1 );
  zDb = pName->a[0].zDatabase;
  zName = pName->a[0].zName;
  nName = sqlite4Strlen30(zName);

  for(i=OMIT_TEMPDB; i<db->nDb; i++){
    int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
    if( zDb && sqlite4StrICmp(db->aDb[j].zName, zDb) ) continue;

    pTrigger = sqlite4HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName);
    if( pTrigger ) break;
  }
  if( !pTrigger ){
    if( !noErr ){
      sqlite4ErrorMsg(pParse, "no such trigger: %S", pName, 0);
    }else{
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite4UnlinkAndDeleteTrigger(sqlite4 *db, int iDb, const char *zName){
  Trigger *pTrigger;
  Hash *pHash;

  assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
  pHash = &(db->aDb[iDb].pSchema->trigHash);
  pTrigger = sqlite4HashInsert(pHash, zName, sqlite4Strlen30(zName), 0);
  if( ALWAYS(pTrigger) ){
    if( pTrigger->pSchema==pTrigger->pTabSchema ){
      Table *pTab = tableOfTrigger(pTrigger);
      Trigger **pp;
      for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));







<







592
593
594
595
596
597
598

599
600
601
602
603
604
605
/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
void sqlite4UnlinkAndDeleteTrigger(sqlite4 *db, int iDb, const char *zName){
  Trigger *pTrigger;
  Hash *pHash;


  pHash = &(db->aDb[iDb].pSchema->trigHash);
  pTrigger = sqlite4HashInsert(pHash, zName, sqlite4Strlen30(zName), 0);
  if( ALWAYS(pTrigger) ){
    if( pTrigger->pSchema==pTrigger->pTabSchema ){
      Table *pTab = tableOfTrigger(pTrigger);
      Trigger **pp;
      for(pp=&pTab->pTrigger; *pp!=pTrigger; pp=&((*pp)->pNext));

Changes to src/update.c.

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
  
  /* Create the ephemeral table into which the update results will
  ** be stored.
  */
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite4VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));
  sqlite4VdbeChangeP5(v, BTREE_UNORDERED);

  /* fill the ephemeral table 
  */
  sqlite4SelectDestInit(&dest, SRT_Table, ephemTab);
  sqlite4Select(pParse, pSelect, &dest);

  /* Generate code to scan the ephemeral table and call VUpdate. */







<







640
641
642
643
644
645
646

647
648
649
650
651
652
653
  
  /* Create the ephemeral table into which the update results will
  ** be stored.
  */
  assert( v );
  ephemTab = pParse->nTab++;
  sqlite4VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0));


  /* fill the ephemeral table 
  */
  sqlite4SelectDestInit(&dest, SRT_Table, ephemTab);
  sqlite4Select(pParse, pSelect, &dest);

  /* Generate code to scan the ephemeral table and call VUpdate. */

Changes to src/varint.c.

92
93
94
95
96
97
98
99
100



101
102




103

104
105
106
107
108

109
110
111

112
113
114
115
116
117
118
**      8      2**56-1      16.8
**      9      2**64-1      19.2
** 
*/
#include "sqliteInt.h"

/*
** Decode the varint in z[].  Write the integer value into *pResult and
** return the number of bytes in the varint.



*/
int sqlite4GetVarint64(const unsigned char *z, sqlite4_uint64 *pResult){




  unsigned int x;

  if( z[0]<=240 ){
    *pResult = z[0];
    return 1;
  }
  if( z[0]<=248 ){

    *pResult = (z[0]-241)*256 + z[1] + 240;
    return 2;
  }

  if( z[0]==249 ){
    *pResult = 2288 + 256*z[1] + z[2];
    return 3;
  }
  if( z[0]==250 ){
    *pResult = (z[1]<<16) + (z[2]<<8) + z[3];
    return 4;







|
|
>
>
>

|
>
>
>
>

>





>



>







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
**      8      2**56-1      16.8
**      9      2**64-1      19.2
** 
*/
#include "sqliteInt.h"

/*
** Decode the varint in the first n bytes z[].  Write the integer value
** into *pResult and return the number of bytes in the varint.
**
** If the decode fails because there are not enough bytes in z[] then
** return 0;
*/
int sqlite4GetVarint64(
  const unsigned char *z,
  int n,
  sqlite4_uint64 *pResult
){
  unsigned int x;
  if( n<1 ) return 0;
  if( z[0]<=240 ){
    *pResult = z[0];
    return 1;
  }
  if( z[0]<=248 ){
    if( n<2 ) return 0;
    *pResult = (z[0]-241)*256 + z[1] + 240;
    return 2;
  }
  if( n<z[0]-246 ) return 0;
  if( z[0]==249 ){
    *pResult = 2288 + 256*z[1] + z[2];
    return 3;
  }
  if( z[0]==250 ){
    *pResult = (z[1]<<16) + (z[2]<<8) + z[3];
    return 4;
240
241
242
243
244
245
246
247
248
249


250
251
252
253
254
255
256
    x = (x<<32) + randInt();
    nbit = randInt()%65;
    if( nbit<64 ){
      x &= (((sqlite4_uint64)1)<<nbit)-1;
    }
    n1 = sqlite4PutVarint64(z, x);
    assert( n1>=1 && n1<=9 );
    n2 = sqlite4GetVarint64(z, &y);
    assert( n1==n2 );
    assert( x==y );


    if( i>0 ){
      int c = memcmp(z,zp,pn<n1?pn:n1);
      if( x<px ){
        assert( c<0 );
      }else if( x>px ){
        assert( c>0 );
      }else{







|


>
>







250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    x = (x<<32) + randInt();
    nbit = randInt()%65;
    if( nbit<64 ){
      x &= (((sqlite4_uint64)1)<<nbit)-1;
    }
    n1 = sqlite4PutVarint64(z, x);
    assert( n1>=1 && n1<=9 );
    n2 = sqlite4GetVarint64(z, n1, &y);
    assert( n1==n2 );
    assert( x==y );
    n2 = sqlite4GetVarint64(z, n1-1, &y);
    assert( n2==0 );
    if( i>0 ){
      int c = memcmp(z,zp,pn<n1?pn:n1);
      if( x<px ){
        assert( c<0 );
      }else if( x>px ){
        assert( c>0 );
      }else{

Changes to src/vdbe.c.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* Database the cursor belongs to, or -1 */
  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different







|







187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* Database the cursor belongs to, or -1 */
  int isTrueCursor      /* True real cursor.  False for pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  */
  Mem *pMem = &p->aMem[p->nMem-iCur];

  int nByte;
  VdbeCursor *pCx = 0;
  nByte = 
      ROUND8(sizeof(VdbeCursor)) + 
      (isBtreeCursor?sqlite4BtreeCursorSize():0) + 
      2*nField*sizeof(u32);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite4VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite4VdbeMemGrow(pMem, nByte, 0) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;
    if( nField ){
      pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
    }
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
      sqlite4BtreeCursorZero(pCx->pCursor);
    }
  }
  return pCx;
}

/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string







<












<
<
<
<
<
<
<
<







213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230
231








232
233
234
235
236
237
238
  */
  Mem *pMem = &p->aMem[p->nMem-iCur];

  int nByte;
  VdbeCursor *pCx = 0;
  nByte = 
      ROUND8(sizeof(VdbeCursor)) + 

      2*nField*sizeof(u32);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite4VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite4VdbeMemGrow(pMem, nByte, 0) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->iDb = iDb;
    pCx->nField = nField;








  }
  return pCx;
}

/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information.  In other words, if the string
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
** implement a loop.  This test used to be on every single instruction,
** but that meant we more testing than we needed.  By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;


#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
** checks that the sqlite4.nTransaction variable is correctly set to
** the number of non-transaction savepoints currently in the 
** linked list starting at sqlite4.pSavepoint.
** 
** Usage:
**
**     assert( checkSavepointCount(db) );
*/
static int checkSavepointCount(sqlite4 *db){
  int n = 0;
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

/*
** Transfer error message text from an sqlite4_vtab.zErrMsg (text stored
** in memory obtained from sqlite4_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite4DbMalloc).
*/
static void importVtabErrMsg(Vdbe *p, sqlite4_vtab *pVtab){
  sqlite4 *db = p->db;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







465
466
467
468
469
470
471





















472
473
474
475
476
477
478
** implement a loop.  This test used to be on every single instruction,
** but that meant we more testing than we needed.  By only testing the
** flag on jump instructions, we get a (small) speed improvement.
*/
#define CHECK_FOR_INTERRUPT \
   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;






















/*
** Transfer error message text from an sqlite4_vtab.zErrMsg (text stored
** in memory obtained from sqlite4_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite4DbMalloc).
*/
static void importVtabErrMsg(Vdbe *p, sqlite4_vtab *pVtab){
  sqlite4 *db = p->db;
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite4_step() verifies this */
  sqlite4VdbeEnter(p);
  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite4_column_text() or
    ** sqlite4_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;







<







539
540
541
542
543
544
545

546
547
548
549
550
551
552
#ifdef VDBE_PROFILE
  u64 start;                 /* CPU clock count at start of opcode */
  int origPc;                /* Program counter at start of opcode */
#endif
  /*** INSERT STACK UNION HERE ***/

  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite4_step() verifies this */

  if( p->rc==SQLITE_NOMEM ){
    /* This happens if a malloc() inside a call to sqlite4_column_text() or
    ** sqlite4_column_text16() failed.  */
    goto no_mem;
  }
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
  p->rc = SQLITE_OK;
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
  assert( pOp->p1+pOp->p2<=p->nMem+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite4VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->usesStmtJournal );
    break;
  }

  /* If the SQLITE_CountRows flag is set in sqlite4.flags mask, then 
  ** DML statements invoke this opcode to return the number of rows 
  ** modified to the user. This is the only way that a VM that
  ** opens a statement transaction may invoke this opcode.
  **
  ** In case this is such a statement, close any statement transaction
  ** opened by this VM before returning control to the user. This is to
  ** ensure that statement-transactions are always nested, not overlapping.
  ** If the open statement-transaction is not closed here, then the user
  ** may step another VM that opens its own statement transaction. This
  ** may lead to overlapping statement transactions.
  **
  ** The statement transaction is never a top-level transaction.  Hence
  ** the RELEASE call below can never fail.
  */
  assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
  rc = sqlite4VdbeCloseStatement(p, SAVEPOINT_RELEASE);
  if( NEVER(rc!=SQLITE_OK) ){
    break;
  }

  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;







|


















<







1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
  assert( pOp->p1+pOp->p2<=p->nMem+1 );

  /* If this statement has violated immediate foreign key constraints, do
  ** not return the number of rows modified. And do not RELEASE the statement
  ** transaction. It needs to be rolled back.  */
  if( SQLITE_OK!=(rc = sqlite4VdbeCheckFk(p, 0)) ){
    assert( db->flags&SQLITE_CountRows );
    assert( p->needSavepoint );
    break;
  }

  /* If the SQLITE_CountRows flag is set in sqlite4.flags mask, then 
  ** DML statements invoke this opcode to return the number of rows 
  ** modified to the user. This is the only way that a VM that
  ** opens a statement transaction may invoke this opcode.
  **
  ** In case this is such a statement, close any statement transaction
  ** opened by this VM before returning control to the user. This is to
  ** ensure that statement-transactions are always nested, not overlapping.
  ** If the open statement-transaction is not closed here, then the user
  ** may step another VM that opens its own statement transaction. This
  ** may lead to overlapping statement transactions.
  **
  ** The statement transaction is never a top-level transaction.  Hence
  ** the RELEASE call below can never fail.
  */

  rc = sqlite4VdbeCloseStatement(p, SAVEPOINT_RELEASE);
  if( NEVER(rc!=SQLITE_OK) ){
    break;
  }

  /* Invalidate all ephemeral cursor row caches */
  p->cacheCtr = (p->cacheCtr + 2)|1;
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
    if( affinity ){
      applyAffinity(pIn1, affinity, encoding);
      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }

    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    ExpandBlob(pIn1);
    ExpandBlob(pIn3);
    res = sqlite4MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;







<
<







1785
1786
1787
1788
1789
1790
1791


1792
1793
1794
1795
1796
1797
1798
    if( affinity ){
      applyAffinity(pIn1, affinity, encoding);
      applyAffinity(pIn3, affinity, encoding);
      if( db->mallocFailed ) goto no_mem;
    }

    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );


    res = sqlite4MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
*/
case OP_Column: {
  u32 payloadSize;   /* Number of bytes in the record */
  i64 payloadSize64; /* Number of bytes in the record */
  int p1;            /* P1 value of the opcode */
  int p2;            /* column number to retrieve */
  VdbeCursor *pC;    /* The VDBE cursor */
  char *zRec;        /* Pointer to complete record-data */
  BtCursor *pCrsr;   /* The BTree cursor */
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  int nField;        /* number of fields in the record */
  int len;           /* The length of the serialized data for the column */
  int i;             /* Loop counter */
  char *zData;       /* Part of the record being decoded */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  u8 *zIdx;          /* Index into header */
  u8 *zEndHdr;       /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  int szHdr;         /* Size of the header size field at start of record */
  int avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  Mem *pReg;         /* PseudoTable input register */


  p1 = pOp->p1;
  p2 = pOp->p2;
  pC = 0;
  memset(&sMem, 0, sizeof(sMem));
  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  zRec = 0;

  /* This block sets the variable payloadSize to be the total number of
  ** bytes in the record.
  **
  ** zRec is set to be the complete text of the record if it is available.
  ** The complete record text is always available for pseudo-tables
  ** If the record is stored in a cursor, the complete record text
  ** might be available in the  pC->aRow cache.  Or it might not be.
  ** If the data is unavailable,  zRec is set to NULL.
  **
  ** We also compute the number of columns in the record.  For cursors,
  ** the number of columns is stored in the VdbeCursor.nField element.
  */
  pC = p->apCsr[p1];
  assert( pC!=0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 );
#endif
  pCrsr = pC->pCursor;
  if( pCrsr!=0 ){
    /* The record is stored in a B-Tree */
    rc = sqlite4VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      payloadSize = 0;
    }else if( pC->cacheStatus==p->cacheCtr ){
      payloadSize = pC->payloadSize;
      zRec = (char*)pC->aRow;
    }else if( pC->isIndex ){
      assert( sqlite4BtreeCursorIsValid(pCrsr) );
      VVA_ONLY(rc =) sqlite4BtreeKeySize(pCrsr, &payloadSize64);
      assert( rc==SQLITE_OK );   /* True because of CursorMoveto() call above */
      /* sqlite4BtreeParseCellPtr() uses getVarint32() to extract the
      ** payload size, so it is impossible for payloadSize64 to be
      ** larger than 32 bits. */
      assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
      payloadSize = (u32)payloadSize64;
    }else{
      assert( sqlite4BtreeCursorIsValid(pCrsr) );
      VVA_ONLY(rc =) sqlite4BtreeDataSize(pCrsr, &payloadSize);
      assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
    }
  }else if( ALWAYS(pC->pseudoTableReg>0) ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    payloadSize = pReg->n;
    zRec = pReg->z;
    pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
    assert( payloadSize==0 || zRec!=0 );
  }else{
    /* Consider the row to be NULL */
    payloadSize = 0;
  }

  /* If payloadSize is 0, then just store a NULL.  This can happen because of
  ** nullRow or because of a corrupt database. */
  if( payloadSize==0 ){
    MemSetTypeFlag(pDest, MEM_Null);
    goto op_column_out;
  }
  assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
  if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  nField = pC->nField;
  assert( p2<nField );

  /* Read and parse the table header.  Store the results of the parse
  ** into the record header cache fields of the cursor.
  */
  aType = pC->aType;
  if( pC->cacheStatus==p->cacheCtr ){
    aOffset = pC->aOffset;
  }else{
    assert(aType);
    avail = 0;
    pC->aOffset = aOffset = &aType[nField];
    pC->payloadSize = payloadSize;
    pC->cacheStatus = p->cacheCtr;

    /* Figure out how many bytes are in the header */
    if( zRec ){
      zData = zRec;
    }else{
      if( pC->isIndex ){
        zData = (char*)sqlite4BtreeKeyFetch(pCrsr, &avail);
      }else{
        zData = (char*)sqlite4BtreeDataFetch(pCrsr, &avail);
      }
      /* If KeyFetch()/DataFetch() managed to get the entire payload,
      ** save the payload in the pC->aRow cache.  That will save us from
      ** having to make additional calls to fetch the content portion of
      ** the record.
      */
      assert( avail>=0 );
      if( payloadSize <= (u32)avail ){
        zRec = zData;
        pC->aRow = (u8*)zData;
      }else{
        pC->aRow = 0;
      }
    }
    /* The following assert is true in all cases accept when
    ** the database file has been corrupted externally.
    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
    szHdr = getVarint32((u8*)zData, offset);

    /* Make sure a corrupt database has not given us an oversize header.
    ** Do this now to avoid an oversize memory allocation.
    **
    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
    ** types use so much data space that there can only be 4096 and 32 of
    ** them, respectively.  So the maximum header length results from a
    ** 3-byte type for each of the maximum of 32768 columns plus three
    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
    */
    if( offset > 98307 ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }

    /* Compute in len the number of bytes of data we need to read in order
    ** to get nField type values.  offset is an upper bound on this.  But
    ** nField might be significantly less than the true number of columns
    ** in the table, and in that case, 5*nField+3 might be smaller than offset.
    ** We want to minimize len in order to limit the size of the memory
    ** allocation, especially if a corrupt database file has caused offset
    ** to be oversized. Offset is limited to 98307 above.  But 98307 might
    ** still exceed Robson memory allocation limits on some configurations.
    ** On systems that cannot tolerate large memory allocations, nField*5+3
    ** will likely be much smaller since nField will likely be less than
    ** 20 or so.  This insures that Robson memory allocation limits are
    ** not exceeded even for corrupt database files.
    */
    len = nField*5 + 3;
    if( len > (int)offset ) len = (int)offset;

    /* The KeyFetch() or DataFetch() above are fast and will get the entire
    ** record header in most cases.  But they will fail to get the complete
    ** record header if the record header does not fit on a single page
    ** in the B-Tree.  When that happens, use sqlite4VdbeMemFromBtree() to
    ** acquire the complete header text.
    */
    if( !zRec && avail<len ){
      sMem.flags = 0;
      sMem.db = 0;
      rc = sqlite4VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
    }
    zEndHdr = (u8 *)&zData[len];
    zIdx = (u8 *)&zData[szHdr];

    /* Scan the header and use it to fill in the aType[] and aOffset[]
    ** arrays.  aType[i] will contain the type integer for the i-th
    ** column and aOffset[i] will contain the offset from the beginning
    ** of the record to the start of the data for the i-th column
    */
    for(i=0; i<nField; i++){
      if( zIdx<zEndHdr ){
        aOffset[i] = offset;
        if( zIdx[0]<0x80 ){
          t = zIdx[0];
          zIdx++;
        }else{
          zIdx += sqlite4GetVarint32(zIdx, &t);
        }
        aType[i] = t;
        szField = sqlite4VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zIdx = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
      }else{
        /* If i is less that nField, then there are less fields in this
        ** record than SetNumColumns indicated there are columns in the
        ** table. Set the offset for any extra columns not present in
        ** the record to 0. This tells code below to store a NULL
        ** instead of deserializing a value from the record.
        */
        aOffset[i] = 0;
      }
    }
    sqlite4VdbeMemRelease(&sMem);
    sMem.flags = MEM_Null;

    /* If we have read more header data than was contained in the header,
    ** or if the end of the last field appears to be past the end of the
    ** record, or if the end of the last field appears to be before the end
    ** of the record (when all fields present), then we must be dealing 
    ** with a corrupt database.
    */
    if( (zIdx > zEndHdr) || (offset > payloadSize)
         || (zIdx==zEndHdr && offset!=payloadSize) ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_out;
    }
  }

  /* Get the column information. If aOffset[p2] is non-zero, then 
  ** deserialize the value from the record. If aOffset[p2] is zero,
  ** then there are not enough fields in the record to satisfy the
  ** request.  In this case, set the value NULL or to P4 if P4 is
  ** a pointer to a Mem object.
  */
  if( aOffset[p2] ){
    assert( rc==SQLITE_OK );
    if( zRec ){
      VdbeMemRelease(pDest);
      sqlite4VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
    }else{
      len = sqlite4VdbeSerialTypeLen(aType[p2]);
      sqlite4VdbeMemMove(&sMem, pDest);
      rc = sqlite4VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
      if( rc!=SQLITE_OK ){
        goto op_column_out;
      }
      zData = sMem.z;
      sqlite4VdbeSerialGet((u8*)zData, aType[p2], pDest);
    }
    pDest->enc = encoding;
  }else{
    if( pOp->p4type==P4_MEM ){
      sqlite4VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
    }else{
      MemSetTypeFlag(pDest, MEM_Null);
    }
  }

  /* If we dynamically allocated space to hold the data (in the
  ** sqlite4VdbeMemFromBtree() call above) then transfer control of that
  ** dynamically allocated space over to the pDest structure.
  ** This prevents a memory copy.
  */
  if( sMem.zMalloc ){
    assert( sMem.z==sMem.zMalloc );
    assert( !(pDest->flags & MEM_Dyn) );
    assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
    pDest->flags &= ~(MEM_Ephem|MEM_Static);
    pDest->flags |= MEM_Term;
    pDest->z = sMem.z;
    pDest->zMalloc = sMem.zMalloc;
  }

  rc = sqlite4VdbeMemMakeWriteable(pDest);

op_column_out:
  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
**







|
|
|
<
|
<
<
<
<
<
<
<
<
|
|
|
<
<
<
<
<
|
|

<

<
<
<




<
<
<
<
<
<
<
<
<
<
<
<
<
<





|
|
<
<
<

|
<
<
<
<
<
<
<
<
<
<
<
<

|
<
<





|
|
<
<

<
|
<
<
<
<
<

<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
<

<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2084
2085
2086
2087
2088
2089
2090
2091
2092
2093

2094








2095
2096
2097





2098
2099
2100

2101



2102
2103
2104
2105














2106
2107
2108
2109
2110
2111
2112



2113
2114












2115
2116


2117
2118
2119
2120
2121
2122
2123


2124

2125





2126

2127
























































































2128






2129






2130


























2131












2132













2133



2134




2135

2136


2137




















2138
2139
2140
2141
2142
2143
2144
**
** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
** then the cache of the cursor is reset prior to extracting the column.
** The first OP_Column against a pseudo-table after the value of the content
** register has changed should have this bit set.
*/
case OP_Column: {
  KVCursor *pKVCur;         /* Cursor for current entry in the KV storage */
  ValueDecoder *pCodec;     /* The decoder object */
  int p1;                   /* Index of VdbeCursor to decode */

  VdbeCursor *pC;           /* The VDBE cursor */








  Mem *pDest;               /* Where to write the results */
  const KVByteArray *aData; /* The content to be decoded */
  KVSize nData;             /* Size of aData[] in bytes */





  Mem *pDefault;            /* Default value from P4 */
  Mem *pReg;                /* */


  p1 = pOp->p1;



  assert( p1<p->nCursor );
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);














  pC = p->apCsr[p1];
  assert( pC!=0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 );
#endif
  pKVCur = pC->pKVCur;
  if( pKVCur!=0 ){



    if( pC->nullRow ){
      aData = 0;












    }else{
      rc = sqlite4KVCursorData(pKVCur, 0, -1, &aData, &nData);


    }
  }else if( ALWAYS(pC->pseudoTableReg>0) ){
    pReg = &aMem[pC->pseudoTableReg];
    assert( pReg->flags & MEM_Blob );
    assert( memIsValid(pReg) );
    aData = (const KVByteArray*)pReg->z;
    nData = pReg->n;


  }else{

    aData = 0;





    MemSetTypeFlag(pDest, MEM_Null);

  }
























































































  if( rc==SQLITE_OK && aData ){






    rc = sqlite4VdbeCreateDecoder(db, aData, nData, pC->nField, &pCodec);






    if( rc==0 ){


























      pDefault = (pOp->p4type==P4_MEM) ? pOp->p4.pMem : 0;












      rc = sqlite4VdbeDecodeValue(pCodec, pOp->p2, pDefault, pDest);













      sqlite4VdbeDestroyDecoder(pCodec);



    }




  }else{

    sqlite4VdbeMemSetNull(pDest);


  }




















  UPDATE_MAX_BLOBSIZE(pDest);
  REGISTER_TRACE(pOp->p3, pDest);
  break;
}

/* Opcode: Affinity P1 P2 * P4 *
**
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476

2477
2478
2479
2480
2481
2482


2483
2484
2485
2486
2487
2488
2489
2490



2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556


2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587

2588
2589
2590

2591
2592

2593
2594


2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612



2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888


2889
2890
2891
2892
2893
2894
2895

2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969


2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981

2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[p->nMem] );
    assert( memIsValid(pIn1) );
    ExpandBlob(pIn1);
    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}

/* Opcode: MakeKey P1 P2 * * *
**
** This must be followed immediately by a MakeRecord opcode.  This
** opcode performs the subsequence MakeRecord but instead of generating
** a data record, generates a key for the cursor P1.  The data is
** written to P2 of this opcode.  A separate key structure is written to
** P3 of the subsequent MakeRecord opcode.
*/
/* Opcode: MakeRecord P1 P2 P3 P4 *
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table and store the result in P4.
** The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeKey:
case OP_MakeRecord: {
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  Mem *pRec;             /* The new record */
  u64 nData;             /* Number of bytes of data space */
  int nHdr;              /* Number of bytes of header space */
  i64 nByte;             /* Data space required for this record */
  int nZero;             /* Number of zero bytes at the end of the record */
  int nVarint;           /* Number of bytes in a varint */
  u32 serial_type;       /* Type field */
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */

  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] */
  int len;               /* Length of a field */
  VdbeCursor *pC;        /* Cursor to generate key for */


  u8 *aRec2;
  int nRec2;

  nData = 0;         /* Number of bytes of data space */
  nHdr = 0;          /* Number of bytes of header space */
  nZero = 0;         /* Number of zero bytes at the end of the record */
  if( pOp->opcode==OP_MakeKey ){
    pC = p->apCsr[pOp->p1];



    assert( pC!=0 );
    assert( pC->pKeyInfo!=0 );
    pc++;
    pOp++;
    assert( pOp->opcode==OP_MakeRecord );
  }else{
    pC = 0;
  }
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];
  file_format = p->minWriteFileFormat;

  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  for(pRec=pData0; pRec<=pLast; pRec++){
    assert( memIsValid(pRec) );
    if( zAffinity ){
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
    }
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
      sqlite4VdbeMemExpandBlob(pRec);
    }
    serial_type = sqlite4VdbeSerialType(pRec, file_format);
    len = sqlite4VdbeSerialTypeLen(serial_type);
    nData += len;
    nHdr += sqlite4VarintLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      /* Only pure zero-filled BLOBs can be input to this Opcode.
      ** We do not allow blobs with a prefix and a zero-filled tail. */
      nZero += pRec->u.nZero;
    }else if( len ){
      nZero = 0;
    }
  }

  aRec2 = 0;
  if( pC ){

    sqlite4VdbeEncodeKey(db, pData0, nField, pC->iRoot, pC->pKeyInfo,
                         &aRec2, &nRec2);
  }else{
    sqlite4VdbeEncodeData(db, pData0, nField, &aRec2, &nRec2);
  }
  if( aRec2 ){
#if 0
    printf(pC ? "KEY:":"DATA:");
    for(i=0; i<nRec2; i++) printf(" %02x", aRec2[i]&0xff);
    printf("\n");
    fflush(stdout);
#endif
    sqlite4DbFree(db, aRec2);
  }

  /* Add the initial header varint and total the size */
  nHdr += nVarint = sqlite4VarintLen(nHdr);
  if( nVarint<sqlite4VarintLen(nHdr) ){
    nHdr++;


  }
  nByte = nHdr+nData-nZero;
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite4VdbeMemGrow() could clobber the value before it is used).
  */
  if( sqlite4VdbeMemGrow(pOut, (int)nByte, 0) ){
    goto no_mem;
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  for(pRec=pData0; pRec<=pLast; pRec++){
    serial_type = sqlite4VdbeSerialType(pRec, file_format);
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  }
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
    i += sqlite4VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
  }
  assert( i==nByte );

  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pOut->n = (int)nByte;
  pOut->flags = MEM_Blob | MEM_Dyn;
  pOut->xDel = 0;

  if( nZero ){
    pOut->u.nZero = nZero;
    pOut->flags |= MEM_Zero;

  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */

  REGISTER_TRACE(pOp->p3, pOut);
  UPDATE_MAX_BLOBSIZE(pOut);


  break;
}

/* Opcode: Count P1 P2 * * *
**
** Store the number of entries (an integer value) in the table or index 
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  if( ALWAYS(pCrsr) ){
    rc = sqlite4BtreeCount(pCrsr, &nEntry);
  }else{
    nEntry = 0;



  }
  pOut->u.i = nEntry;
  break;
}
#endif

/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {
  int p1;                         /* Value of P1 operand */
  char *zName;                    /* Name of savepoint */
  int nName;
  Savepoint *pNew;
  Savepoint *pSavepoint;
  Savepoint *pTmp;
  int iSavepoint;
  int ii;

  p1 = pOp->p1;
  zName = pOp->p4.z;

  /* Assert that the p1 parameter is valid. Also that if there is no open
  ** transaction, then there cannot be any savepoints. 
  */
  assert( db->pSavepoint==0 || db->autoCommit==0 );
  assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
  assert( db->pSavepoint || db->isTransactionSavepoint==0 );
  assert( checkSavepointCount(db) );

  if( p1==SAVEPOINT_BEGIN ){
    if( db->writeVdbeCnt>0 ){
      /* A new savepoint cannot be created if there are active write 
      ** statements (i.e. open read/write incremental blob handles).
      */
      sqlite4SetString(&p->zErrMsg, db, "cannot open savepoint - "
        "SQL statements in progress");
      rc = SQLITE_BUSY;
    }else{
      nName = sqlite4Strlen30(zName);

#ifndef SQLITE_OMIT_VIRTUALTABLE
      /* This call is Ok even if this savepoint is actually a transaction
      ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
      ** If this is a transaction savepoint being opened, it is guaranteed
      ** that the db->aVTrans[] array is empty.  */
      assert( db->autoCommit==0 || db->nVTrans==0 );
      rc = sqlite4VtabSavepoint(db, SAVEPOINT_BEGIN,
                                db->nStatement+db->nSavepoint);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif

      /* Create a new savepoint structure. */
      pNew = sqlite4DbMallocRaw(db, sizeof(Savepoint)+nName+1);
      if( pNew ){
        pNew->zName = (char *)&pNew[1];
        memcpy(pNew->zName, zName, nName+1);
    
        /* If there is no open transaction, then mark this as a special
        ** "transaction savepoint". */
        if( db->autoCommit ){
          db->autoCommit = 0;
          db->isTransactionSavepoint = 1;
        }else{
          db->nSavepoint++;
        }
    
        /* Link the new savepoint into the database handle's list. */
        pNew->pNext = db->pSavepoint;
        db->pSavepoint = pNew;
        pNew->nDeferredCons = db->nDeferredCons;
      }
    }
  }else{
    iSavepoint = 0;

    /* Find the named savepoint. If there is no such savepoint, then an
    ** an error is returned to the user.  */
    for(
      pSavepoint = db->pSavepoint; 
      pSavepoint && sqlite4StrICmp(pSavepoint->zName, zName);
      pSavepoint = pSavepoint->pNext
    ){
      iSavepoint++;
    }
    if( !pSavepoint ){
      sqlite4SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
      rc = SQLITE_ERROR;
    }else if( 
        db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1) 
    ){
      /* It is not possible to release (commit) a savepoint if there are 
      ** active write statements. It is not possible to rollback a savepoint
      ** if there are any active statements at all.
      */
      sqlite4SetString(&p->zErrMsg, db, 
        "cannot %s savepoint - SQL statements in progress",
        (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
      );
      rc = SQLITE_BUSY;
    }else{

      /* Determine whether or not this is a transaction savepoint. If so,
      ** and this is a RELEASE command, then the current transaction 
      ** is committed. 
      */
      int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
      if( isTransaction && p1==SAVEPOINT_RELEASE ){
        if( (rc = sqlite4VdbeCheckFk(p, 1))!=SQLITE_OK ){
          goto vdbe_return;
        }
        db->autoCommit = 1;
        if( sqlite4VdbeHalt(p)==SQLITE_BUSY ){
          p->pc = pc;
          db->autoCommit = 0;
          p->rc = rc = SQLITE_BUSY;
          goto vdbe_return;
        }
        db->isTransactionSavepoint = 0;
        rc = p->rc;
      }else{
        iSavepoint = db->nSavepoint - iSavepoint - 1;
        for(ii=0; ii<db->nDb; ii++){
          rc = sqlite4BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
          if( rc!=SQLITE_OK ){
            goto abort_due_to_error;
          }
        }
        if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
          sqlite4ExpirePreparedStatements(db);
          sqlite4ResetInternalSchema(db, -1);
          db->flags = (db->flags | SQLITE_InternChanges);
        }
      }
  
      /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
      ** savepoints nested inside of the savepoint being operated on. */
      while( db->pSavepoint!=pSavepoint ){
        pTmp = db->pSavepoint;
        db->pSavepoint = pTmp->pNext;
        sqlite4DbFree(db, pTmp);
        db->nSavepoint--;
      }

      /* If it is a RELEASE, then destroy the savepoint being operated on 
      ** too. If it is a ROLLBACK TO, then set the number of deferred 
      ** constraint violations present in the database to the value stored
      ** when the savepoint was created.  */
      if( p1==SAVEPOINT_RELEASE ){
        assert( pSavepoint==db->pSavepoint );
        db->pSavepoint = pSavepoint->pNext;
        sqlite4DbFree(db, pSavepoint);
        if( !isTransaction ){
          db->nSavepoint--;
        }
      }else{
        db->nDeferredCons = pSavepoint->nDeferredCons;
      }

      if( !isTransaction ){
        rc = sqlite4VtabSavepoint(db, p1, iSavepoint);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
      }
    }
  }

  break;
}

/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
  int desiredAutoCommit;
  int iRollback;
  int turnOnAC;

  desiredAutoCommit = pOp->p1;
  iRollback = pOp->p2;
  turnOnAC = desiredAutoCommit && !db->autoCommit;
  assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
  assert( desiredAutoCommit==1 || iRollback==0 );
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */

  if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
    /* If this instruction implements a ROLLBACK and other VMs are
    ** still running, and a transaction is active, return an error indicating
    ** that the other VMs must complete first. 
    */
    sqlite4SetString(&p->zErrMsg, db, "cannot rollback transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
    /* If this instruction implements a COMMIT and other VMs are writing
    ** return an error indicating that the other VMs must complete first. 
    */
    sqlite4SetString(&p->zErrMsg, db, "cannot commit transaction - "
        "SQL statements in progress");
    rc = SQLITE_BUSY;
  }else if( desiredAutoCommit!=db->autoCommit ){
    if( iRollback ){
      assert( desiredAutoCommit==1 );
      sqlite4RollbackAll(db);
      db->autoCommit = 1;
    }else if( (rc = sqlite4VdbeCheckFk(p, 1))!=SQLITE_OK ){
      goto vdbe_return;
    }else{
      db->autoCommit = (u8)desiredAutoCommit;
      if( sqlite4VdbeHalt(p)==SQLITE_BUSY ){
        p->pc = pc;
        db->autoCommit = (u8)(1-desiredAutoCommit);
        p->rc = rc = SQLITE_BUSY;
        goto vdbe_return;
      }
    }
    assert( db->nStatement==0 );
    sqlite4CloseSavepoints(db);
    if( p->rc==SQLITE_OK ){
      rc = SQLITE_DONE;
    }else{
      rc = SQLITE_ERROR;
    }
    goto vdbe_return;
  }else{
    sqlite4SetString(&p->zErrMsg, db,
        (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
        (iRollback)?"cannot rollback - no transaction is active":
                   "cannot commit - no transaction is active"));
         
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: Transaction P1 P2 * * *
**
** Begin a transaction.  The transaction ends when a Commit or Rollback
** opcode is encountered.  Depending on the ON CONFLICT setting, the
** transaction might also be rolled back if an error is encountered.
**
** P1 is the index of the database file on which the transaction is
** started.  Index 0 is the main database file and index 1 is the
** file used for temporary tables.  Indices of 2 or more are used for
** attached databases.
**
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
** obtained on the database file when a write-transaction is started.  No
** other process can start another write transaction while this transaction is
** underway.  Starting a write transaction also creates a rollback journal. A
** write transaction must be started before any changes can be made to the
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
** on the file.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the affects of this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P2 is zero, then a read-lock is obtained on the database file.
*/
case OP_Transaction: {
  Btree *pBt;



  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pBt = db->aDb[pOp->p1].pBt;

  if( pBt ){
    rc = sqlite4BtreeBeginTrans(pBt, pOp->p2);

    if( rc==SQLITE_BUSY ){
      p->pc = pc;
      p->rc = rc = SQLITE_BUSY;
      goto vdbe_return;
    }
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }

    if( pOp->p2 && p->usesStmtJournal 
     && (db->autoCommit==0 || db->activeVdbeCnt>1) 
    ){
      assert( sqlite4BtreeIsInTrans(pBt) );
      if( p->iStatement==0 ){
        assert( db->nStatement>=0 && db->nSavepoint>=0 );
        db->nStatement++; 
        p->iStatement = db->nSavepoint + db->nStatement;
      }

      rc = sqlite4VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
      if( rc==SQLITE_OK ){
        rc = sqlite4BtreeBeginStmt(pBt, p->iStatement);
      }

      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;
    }
  }
  break;
}

/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version.  P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;

  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );

  sqlite4BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;


  assert( pOp->p2<SQLITE_N_BTREE_META );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  assert( sqlite4SchemaMutexHeld(db, pOp->p1, 0) );
  pIn3 = &aMem[pOp->p3];
  sqlite4VdbeMemIntegerify(pIn3);
  /* See note about index shifting on OP_ReadCookie */
  rc = sqlite4BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
  if( pOp->p2==BTREE_SCHEMA_VERSION ){
    /* When the schema cookie changes, record the new cookie internally */

    pDb->pSchema->schema_cookie = (int)pIn3->u.i;
    db->flags |= SQLITE_InternChanges;
  }else if( pOp->p2==BTREE_FILE_FORMAT ){
    /* Record changes in the file format */
    pDb->pSchema->file_format = (u8)pIn3->u.i;
  }
  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite4ExpirePreparedStatements(db);
    p->expired = 0;
  }
  break;







<









|
|
<
<



<
|
|












<
<
<
<
<
<
<
<


>


<
<
<

>
>
|
|

<
<
<


>
>
>














<






|
|

|
|

|

|
|
<
<
<
<
<
<
<
<
<
<
<



|

>
|
|
<
<
<
|
<
<
<
<
<
<
|
|
|
<
<
<
<
>
>
|
<
<
<

<
<
<
<
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
>
|
<
<
>
|
<
>
|
|
>
>








<


|
|
|
<
|
<
|
>
>
>

|


<








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<













<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<





|
<
<






|
|
<
<
<
<
<

|








<
<


|
>
>


<
|
|
|
<
>
|
|
<
<

<
<
|
|
<
|
|
|
|
<
<
<
<
|
<

<
<
|
<
<
<
<
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<















>
>
|

<

<
<


<
|
<
<
>
|
|
<
<
<
<







2155
2156
2157
2158
2159
2160
2161

2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172


2173
2174
2175

2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189








2190
2191
2192
2193
2194



2195
2196
2197
2198
2199
2200



2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219

2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235











2236
2237
2238
2239
2240
2241
2242
2243



2244






2245
2246
2247




2248
2249
2250



2251








2252

2253










2254



2255
2256
2257


2258
2259

2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272

2273
2274
2275
2276
2277

2278

2279
2280
2281
2282
2283
2284
2285
2286

2287
2288
2289
2290
2291
2292
2293
2294




























































































































































2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307


























































2308
2309
2310
2311
2312
2313


2314
2315
2316
2317
2318
2319
2320
2321





2322
2323
2324
2325
2326
2327
2328
2329
2330
2331


2332
2333
2334
2335
2336
2337
2338

2339
2340
2341

2342
2343
2344


2345


2346
2347

2348
2349
2350
2351




2352

2353


2354




2355
2356

2357



























2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376

2377


2378
2379

2380


2381
2382
2383




2384
2385
2386
2387
2388
2389
2390
  zAffinity = pOp->p4.z;
  assert( zAffinity!=0 );
  assert( zAffinity[pOp->p2]==0 );
  pIn1 = &aMem[pOp->p1];
  while( (cAff = *(zAffinity++))!=0 ){
    assert( pIn1 <= &p->aMem[p->nMem] );
    assert( memIsValid(pIn1) );

    applyAffinity(pIn1, cAff, encoding);
    pIn1++;
  }
  break;
}

/* Opcode: MakeKey P1 P2 * * *
**
** This must be followed immediately by a MakeRecord opcode.  This
** opcode performs the subsequent MakeRecord and also generates
** a key for the cursor P1 and stores that key in register P2.


*/
/* Opcode: MakeRecord P1 P2 P3 P4 *
**

** Convert registers P1..P1+P2-1 into a data record and store the result
** in register P3.  The OP_Column opcode can be used to decode the record.
**
** P4 may be a string that is P2 characters long.  The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeKey:
case OP_MakeRecord: {








  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  Mem *pMem;             /* For looping over inputs */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */



  VdbeCursor *pC;        /* Cursor to generate key for */
  Mem *pKeyOut;          /* Where to store the generated key */
  int keyReg;            /* Register into which to write the key */
  u8 *aRec;              /* The constructed key or value */
  int nRec;              /* Size of aRec[] in bytes */




  if( pOp->opcode==OP_MakeKey ){
    pC = p->apCsr[pOp->p1];
    keyReg = pOp->p2;
    pKeyOut = &aMem[keyReg];
    memAboutToChange(p, pKeyOut);
    assert( pC!=0 );
    assert( pC->pKeyInfo!=0 );
    pc++;
    pOp++;
    assert( pOp->opcode==OP_MakeRecord );
  }else{
    pC = 0;
  }
  nField = pOp->p1;
  zAffinity = pOp->p4.z;
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
  pData0 = &aMem[nField];
  nField = pOp->p2;
  pLast = &pData0[nField-1];


  /* Identify the output register */
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
  pOut = &aMem[pOp->p3];
  memAboutToChange(p, pOut);

  /* Loop through the input elements.  Apply affinity to each one and
  ** expand all zero-blobs.
  */
  for(pMem=pData0; pMem<=pLast; pMem++){
    assert( memIsValid(pMem) );
    if( zAffinity ){
      applyAffinity(pMem, *(zAffinity++), encoding);
    }
    if( pMem->flags&MEM_Zero ){
      sqlite4VdbeMemExpandBlob(pMem);











    }
  }

  /* Compute the key (if this is a MakeKey opcode) */
  if( pC ){
    aRec = 0;
    rc = sqlite4VdbeEncodeKey(db, pData0, nField, pC->iRoot, pC->pKeyInfo,
                              &aRec, &nRec, 0);



    if( rc ){






      sqlite4DbFree(db, aRec);
    }else{
      rc = sqlite4VdbeMemSetStr(pKeyOut, aRec, nRec, 0, SQLITE_DYNAMIC);




      REGISTER_TRACE(keyReg, pKeyOut);
      UPDATE_MAX_BLOBSIZE(pKeyOut);
    }



  }










  /* Compute the value */










  if( rc==SQLITE_OK ){



    aRec = 0;
    rc = sqlite4VdbeEncodeData(db, pData0, nField, &aRec, &nRec);
    if( rc ){


      sqlite4DbFree(db, aRec);
    }else{

      rc = sqlite4VdbeMemSetStr(pOut, aRec, nRec, 0, SQLITE_DYNAMIC);
      REGISTER_TRACE(pOp->p3, pOut);
      UPDATE_MAX_BLOBSIZE(pOut);
    }
  }
  break;
}

/* Opcode: Count P1 P2 * * *
**
** Store the number of entries (an integer value) in the table or index 
** opened by cursor P1 in register P2
*/

case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  VdbeCursor *pC;
  
  pC = p->apCsr[pOp->p1];

  rc = sqlite4VdbeSeekEnd(pC, +1);

  nEntry = 0;
  while( rc!=SQLITE_NOTFOUND ){
    nEntry++;
    rc = sqlite4VdbeNext(pC);
  }
  sqlite4VdbeMemSetInt64(pOut, nEntry);
  break;
}


/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
*/
case OP_Savepoint: {




























































































































































  break;
}

/* Opcode: AutoCommit P1 P2 * * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {


























































  break;
}

/* Opcode: Transaction P1 P2 * * *
**
** Begin a transaction.


**
** P1 is the index of the database file on which the transaction is
** started.  Index 0 is the main database file and index 1 is the
** file used for temporary tables.  Indices of 2 or more are used for
** attached databases.
**
** If P2 is non-zero, then a write-transaction is started.  If P2 is zero
** then a read-transaction is started.





**
** If a write-transaction is started and the Vdbe.needSavepoint flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the affects of this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.


*/
case OP_Transaction: {
  Db *pDb;
  KVStore *pKV;
  int needStmt;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );

  pDb = &db->aDb[pOp->p1];
  pKV = pDb->pKV;
  if( pOp->p2==0 ){

    /* Read transaction needed.  Start if we are not already in one. */
    if( pKV->iTransLevel==0 ){
      rc = sqlite4KVStoreBegin(pKV, 1);


    }


  }else{
    /* A write transaction is needed */

    needStmt = pKV->iTransLevel>0 && (p->needSavepoint || db->activeVdbeCnt>1);
    if( pKV->iTransLevel<2 ){
      rc = sqlite4KVStoreBegin(pKV, 2);
    }else if( p->needSavepoint ){




      rc = sqlite4KVStoreBegin(pKV, pKV->iTransLevel+1);

      if( rc==SQLITE_OK ){


        p->stmtTransMask |= ((yDbMask)1)<<pOp->p1;




      }
    }

  }



























  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
** into cookie number P2 of database P1.  P2==1 is the schema version.  
** P2==2 is the database format. P2==3 is the recommended pager cache 
** size, and so forth.  P1==0 is the main database file and P1==1 is the 
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
*/
case OP_SetCookie: {       /* in3 */
  Db *pDb;
  u32 v;
  int n;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );

  pDb = &db->aDb[pOp->p1];


  pIn3 = &aMem[pOp->p3];
  sqlite4VdbeMemIntegerify(pIn3);

  v = (u32)pIn3->u.i;


  rc = sqlite4KVStorePutMeta(db, pDb->pKV, 0, 1, &v);
  pDb->pSchema->schema_cookie = (int)pIn3->u.i;
  db->flags |= SQLITE_InternChanges;




  if( pOp->p1==1 ){
    /* Invalidate all prepared statements whenever the TEMP database
    ** schema is changed.  Ticket #1644 */
    sqlite4ExpirePreparedStatements(db);
    p->expired = 0;
  }
  break;
3011
3012
3013
3014
3015
3016
3017
3018


3019
3020
3021
3022
3023
3024
3025

3026
3027
3028
3029
3030
3031
3032
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
  int iMeta;
  int iGen;
  Btree *pBt;



  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  assert( sqlite4SchemaMutexHeld(db, pOp->p1, 0) );
  pBt = db->aDb[pOp->p1].pBt;
  if( pBt ){
    sqlite4BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);

    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
  if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
    sqlite4DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite4DbStrDup(db, "database schema has changed");







|
>
>


<
<
|
|
|
>







2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418


2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
** Either a transaction needs to have been started or an OP_Open needs
** to be executed (to establish a read lock) before this opcode is
** invoked.
*/
case OP_VerifyCookie: {
  int iMeta;
  int iGen;
  KVStore *pKV;
  KVByteArray *aData;
  KVSize nData;

  assert( pOp->p1>=0 && pOp->p1<db->nDb );


  pKV = db->aDb[pOp->p1].pKV;
  if( pKV ){
    rc = sqlite4KVStoreGetMeta(pKV, 0, 1, &iMeta);
    if( rc ) break;
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
  if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
    sqlite4DbFree(db, p->zErrMsg);
    p->zErrMsg = sqlite4DbStrDup(db, "database schema has changed");
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    wrFlag = 1;
    assert( sqlite4SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
  if( pOp->p5 ){
    assert( p2>0 );
    assert( p2<=p->nMem );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite4VdbeMemIntegerify(pIn2);







<
|













<

|

<
<
<
<
<
<
<
<
<







2501
2502
2503
2504
2505
2506
2507

2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521

2522
2523
2524









2525
2526
2527
2528
2529
2530
2531
*/
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;

  KVStore *pX;
  VdbeCursor *pCur;
  Db *pDb;

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );

  pDb = &db->aDb[iDb];
  pX = pDb->pKV;
  assert( pX!=0 );









  if( pOp->p5 ){
    assert( p2>0 );
    assert( p2<=p->nMem );
    pIn2 = &aMem[p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite4VdbeMemIntegerify(pIn2);
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
  }
  assert( pOp->p1>=0 );
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->iRoot = p2;
  rc = sqlite4BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite4BtreeCursor() may return is SQLITE_OK. */
  assert( rc==SQLITE_OK );

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;
  break;







|


<
<
<
<







2548
2549
2550
2551
2552
2553
2554
2555
2556
2557




2558
2559
2560
2561
2562
2563
2564
  }
  assert( pOp->p1>=0 );
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->iRoot = p2;
  rc = sqlite4KVStoreOpenCursor(pX, &pCur->pKVCur);
  pCur->pKeyInfo = pKeyInfo;





  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;
  pCur->isIndex = !pCur->isTable;
  break;
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
** different name to distinguish its use.  Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
case OP_OpenAutoindex: 
case OP_OpenEphemeral: {
  VdbeCursor *pCx;
  static const int vfsFlags = 
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;

  assert( pOp->p1>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  rc = sqlite4BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    sqlite4KVStoreOpen(":memory:", &pCx->pTmpKV);
    if( pCx->pTmpKV ) sqlite4KVStoreBegin(pCx->pTmpKV, 2);
    rc = sqlite4BtreeBeginTrans(pCx->pBt, 1);
  }
  if( rc==SQLITE_OK ){
    /* If a transient index is required, create it by calling
    ** sqlite4BtreeCreateTable() with the BTREE_BLOBKEY flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite4BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite4BtreeCursor(pCx->pBt, pgno, 1, 
                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
        pCx->pKeyInfo = pOp->p4.pKeyInfo;
        pCx->pKeyInfo->enc = ENC(p->db);
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite4BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  pCx->isIndex = !pCx->isTable;
  break;
}

/* Opcode: OpenSorter P1 P2 * P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;
#ifndef SQLITE_OMIT_MERGE_SORT
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
  rc = sqlite4VdbeSorterInit(db, pCx);







<
<
<
<
<
<





<
<
<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<











|







2593
2594
2595
2596
2597
2598
2599






2600
2601
2602
2603
2604



2605



2606













2607
2608








2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
** different name to distinguish its use.  Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
case OP_OpenAutoindex: 
case OP_OpenEphemeral: {
  VdbeCursor *pCx;







  assert( pOp->p1>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;



  rc = sqlite4KVStoreOpen(db, "ephm", ":memory:", &pCx->pTmpKV,



          SQLITE_KVOPEN_TEMPORARY | SQLITE_KVOPEN_NO_TRANSACTIONS);













  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  if( pCx->pKeyInfo ) pCx->pKeyInfo->enc = ENC(p->db);








  pCx->isIndex = !pCx->isTable;
  break;
}

/* Opcode: OpenSorter P1 P2 * P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
*/
case OP_SorterOpen: {
  /* VdbeCursor *pCx; */
#ifndef SQLITE_OMIT_MERGE_SORT
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  pCx->pKeyInfo->enc = ENC(p->db);
  pCx->isSorter = 1;
  rc = sqlite4VdbeSorterInit(db, pCx);
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386



3387



3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437


3438
3439
3440

3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451


3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513

3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540



3541
3542
3543
3544
3545
3546
3547
3548


3549
3550
3551
3552

3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743







3744









































































3745







3746
3747

3748
3749


3750

3751


3752


3753

3754




3755
3756




3757
3758



3759
3760

3761
3762
3763
3764




3765


3766
3767
3768


3769

3770
3771
3772

3773
3774

3775
3776
3777







3778





3779
3780
3781
3782
3783
3784
3785
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;



  i64 iKey;      /* The rowid we are to seek to */




  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );
  if( ALWAYS(pC->pCursor!=0) ){
    oc = pOp->opcode;
    pC->nullRow = 0;
    if( pC->isTable ){
      /* The input value in P3 might be of any type: integer, real, string,
      ** blob, or NULL.  But it needs to be an integer before we can do
      ** the seek, so covert it. */
      pIn3 = &aMem[pOp->p3];
      applyNumericAffinity(pIn3);
      iKey = sqlite4VdbeIntValue(pIn3);
      pC->rowidIsValid = 0;

      /* If the P3 value could not be converted into an integer without
      ** loss of information, then special processing is required... */
      if( (pIn3->flags & MEM_Int)==0 ){
        if( (pIn3->flags & MEM_Real)==0 ){
          /* If the P3 value cannot be converted into any kind of a number,
          ** then the seek is not possible, so jump to P2 */
          pc = pOp->p2 - 1;
          break;
        }
        /* If we reach this point, then the P3 value must be a floating
        ** point number. */
        assert( (pIn3->flags & MEM_Real)!=0 );

        if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
          /* The P3 value is too large in magnitude to be expressed as an
          ** integer. */
          res = 1;
          if( pIn3->r<0 ){
            if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
              rc = sqlite4BtreeFirst(pC->pCursor, &res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }else{
            if( oc<=OP_SeekLe ){  assert( oc==OP_SeekLt || oc==OP_SeekLe );
              rc = sqlite4BtreeLast(pC->pCursor, &res);
              if( rc!=SQLITE_OK ) goto abort_due_to_error;
            }
          }


          if( res ){
            pc = pOp->p2 - 1;
          }

          break;
        }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
          /* Use the ceiling() function to convert real->int */
          if( pIn3->r > (double)iKey ) iKey++;
        }else{
          /* Use the floor() function to convert real->int */
          assert( oc==OP_SeekLe || oc==OP_SeekGt );
          if( pIn3->r < (double)iKey ) iKey--;
        }
      } 
      rc = sqlite4BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);


      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( res==0 ){
        pC->rowidIsValid = 1;
        pC->lastRowid = iKey;
      }
    }else{
      nField = pOp->p4.i;
      assert( pOp->p4type==P4_INT32 );
      assert( nField>0 );
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)nField;

      /* The next line of code computes as follows, only faster:
      **   if( oc==OP_SeekGt || oc==OP_SeekLe ){
      **     r.flags = UNPACKED_INCRKEY;
      **   }else{
      **     r.flags = 0;
      **   }
      */
      r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
      assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
      assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
      assert( oc!=OP_SeekGe || r.flags==0 );
      assert( oc!=OP_SeekLt || r.flags==0 );

      r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      ExpandBlob(r.aMem);
      rc = sqlite4BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pC->rowidIsValid = 0;
    }
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif
    if( oc>=OP_SeekGe ){  assert( oc==OP_SeekGe || oc==OP_SeekGt );
      if( res<0 || (res==0 && oc==OP_SeekGt) ){
        rc = sqlite4BtreeNext(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        res = 0;
      }
    }else{
      assert( oc==OP_SeekLt || oc==OP_SeekLe );
      if( res>0 || (res==0 && oc==OP_SeekLt) ){
        rc = sqlite4BtreePrevious(pC->pCursor, &res);
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
        pC->rowidIsValid = 0;
      }else{
        /* res might be negative because the table is empty.  Check to
        ** see if this is the case.
        */
        res = sqlite4BtreeEof(pC->pCursor);

      }
    }
    assert( pOp->p2>0 );
    if( res ){
      pc = pOp->p2 - 1;
    }
  }else{
    /* This happens when attempting to open the sqlite4_master table
    ** for read access returns SQLITE_EMPTY. In this case always
    ** take the jump (since there are no records in the table).
    */
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;




  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( ALWAYS(pC->pCursor!=0) ){
    assert( pC->isTable );
    pC->nullRow = 0;
    pIn2 = &aMem[pOp->p2];


    pC->movetoTarget = sqlite4VdbeIntValue(pIn2);
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 1;
  }

  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
** 
** Cursor P1 is on an index btree.  If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
** does contain an entry whose prefix matches the P3/P4 record then control
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
** See also: Found, NotExists, IsUnique
*/
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int alreadyExists;
  VdbeCursor *pC;
  int res;
  char *pFree;
  UnpackedRecord *pIdxKey;
  UnpackedRecord r;
  char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];

#ifdef SQLITE_TEST
  sqlite4_found_count++;
#endif

  alreadyExists = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pIn3 = &aMem[pOp->p3];
  if( ALWAYS(pC->pCursor!=0) ){

    assert( pC->isTable==0 );
    if( pOp->p4.i>0 ){
      r.pKeyInfo = pC->pKeyInfo;
      r.nField = (u16)pOp->p4.i;
      r.aMem = pIn3;
#ifdef SQLITE_DEBUG
      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
      r.flags = UNPACKED_PREFIX_MATCH;
      pIdxKey = &r;
    }else{
      pIdxKey = sqlite4VdbeAllocUnpackedRecord(
          pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
      ); 
      if( pIdxKey==0 ) goto no_mem;
      assert( pIn3->flags & MEM_Blob );
      assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
      sqlite4VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
      pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
    }
    rc = sqlite4BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
    if( pOp->p4.i==0 ){
      sqlite4DbFree(db, pFree);
    }
    if( rc!=SQLITE_OK ){
      break;
    }
    alreadyExists = (res==0);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsUnique P1 P2 P3 P4 *
**
** Cursor P1 is open on an index b-tree - that is to say, a btree which
** no data and where the keys are records generated by OP_MakeRecord with
** the last field being the integer ROWID of the entry that the index
** entry refers to.
**
** The P3 register contains an integer record number. Call this record 
** number R. Register P4 is the first in a set of N contiguous registers
** that make up an unpacked index key that can be used with cursor P1.
** The value of N can be inferred from the cursor. N includes the rowid
** value appended to the end of the index record. This rowid value may
** or may not be the same as R.
**
** If any of the N registers beginning with register P4 contains a NULL
** value, jump immediately to P2.
**
** Otherwise, this instruction checks if cursor P1 contains an entry
** where the first (N-1) fields match but the rowid value at the end
** of the index entry is not R. If there is no such entry, control jumps
** to instruction P2. Otherwise, the rowid of the conflicting index
** entry is copied to register P3 and control falls through to the next
** instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
  u16 ii;
  VdbeCursor *pCx;
  BtCursor *pCrsr;
  u16 nField;
  Mem *aMx;
  UnpackedRecord r;                  /* B-Tree index search key */
  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  assert( pCx->deferredMoveto==0 );
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
  pCrsr = pCx->pCursor;

  /* If any of the values are NULL, take the jump. */
  nField = pCx->pKeyInfo->nField;
  for(ii=0; ii<nField; ii++){
    if( aMx[ii].flags & MEM_Null ){
      pc = pOp->p2 - 1;
      pCrsr = 0;
      break;
    }
  }
  assert( (aMx[nField].flags & MEM_Null)==0 );

  if( pCrsr!=0 ){
    /* Populate the index search key. */
    r.pKeyInfo = pCx->pKeyInfo;
    r.nField = nField + 1;
    r.flags = UNPACKED_PREFIX_SEARCH;
    r.aMem = aMx;
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif

    /* Extract the value of R from register P3. */
    sqlite4VdbeMemIntegerify(pIn3);
    R = pIn3->u.i;

    /* Search the B-Tree index. If no conflicting record is found, jump
    ** to P2. Otherwise, copy the rowid of the conflicting record to
    ** register P3 and fall through to the next instruction.  */
    rc = sqlite4BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
    if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
      pc = pOp->p2 - 1;
    }else{
      pIn3->u.i = r.rowid;
    }
  }
  break;
}

/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as an integer key.  If a record 
** with that key does not exist in table of P1, then jump to P2. 
** If the record does exist, then fall through.  The cursor is left 
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {        /* jump, in3 */







  VdbeCursor *pC;









































































  BtCursor *pCrsr;







  int res;
  u64 iKey;


  pIn3 = &aMem[pOp->p3];


  assert( pIn3->flags & MEM_Int );

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );


  pC = p->apCsr[pOp->p1];


  assert( pC!=0 );

  assert( pC->isTable );




  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;




  if( ALWAYS(pCrsr!=0) ){
    res = 0;



    iKey = pIn3->u.i;
    rc = sqlite4BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);

    pC->lastRowid = pIn3->u.i;
    pC->rowidIsValid = res==0 ?1:0;
    pC->nullRow = 0;
    pC->cacheStatus = CACHE_STALE;




    pC->deferredMoveto = 0;


    if( res!=0 ){
      pc = pOp->p2 - 1;
      assert( pC->rowidIsValid==0 );


    }

    pC->seekResult = res;
  }else{
    /* This happens when an attempt to open a read cursor on the 

    ** sqlite_master table returns SQLITE_EMPTY.
    */

    pc = pOp->p2 - 1;
    assert( pC->rowidIsValid==0 );
    pC->seekResult = 0;







  }





  break;
}

/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.







<


<

>
>
>
|
>
>
>










<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
<
|
<
|
<
>
>
|
<
<
>
|
<
<
<
<
<
<
<
|
<
|
>
>
|
<
<
|
<
<
<
<
<
<
<
<
<
|
<
|
<
<
|
<
<
<
<
<
<
<
|
<
|
<
<
<
<
|
<
|
<
<
<
<
|
<
<
<
<
|
|
<
<
|
<
<
<
<
|
|
|
<
<
<
<
<
>
|
|
<
|
|
<
<
<
<
<
<









<
<
<
<



>
>
>




<
|
|
|
>
>
|
<
|

>






|
|
|

|





|
|
|

|







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














|
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
|
<
>


>
>
|
>

>
>
|
>
>
|
>
|
>
>
>
>
|
|
>
>
>
>
|
|
>
>
>
|
|
>
|
<
<
|
>
>
>
>
|
>
>
|
|
<
>
>
|
>
|
<
<
>
|
<
>
|
<
|
>
>
>
>
>
>
>
|
>
>
>
>
>







2724
2725
2726
2727
2728
2729
2730

2731
2732

2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750

2751
2752
2753
























2754





2755

2756

2757

2758
2759
2760


2761
2762







2763

2764
2765
2766
2767


2768









2769

2770


2771







2772

2773




2774

2775




2776




2777
2778


2779




2780
2781
2782





2783
2784
2785

2786
2787






2788
2789
2790
2791
2792
2793
2794
2795
2796




2797
2798
2799
2800
2801
2802
2803
2804
2805
2806

2807
2808
2809
2810
2811
2812

2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843




















































































































































2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948

2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983


2984
2985
2986
2987
2988
2989
2990
2991
2992
2993

2994
2995
2996
2997
2998


2999
3000

3001
3002

3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
**
** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLt:         /* jump, in3 */
case OP_SeekLe:         /* jump, in3 */
case OP_SeekGe:         /* jump, in3 */
case OP_SeekGt: {       /* jump, in3 */

  int oc;
  VdbeCursor *pC;

  int nField;
  KVByteArray *aProbe;
  KVSize nProbe;
  const KVByteArray *aKey;
  KVSize nKey;
  int c;
  int n;
  sqlite4_uint64 iRoot;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLe == OP_SeekLt+1 );
  assert( OP_SeekGe == OP_SeekLt+2 );
  assert( OP_SeekGt == OP_SeekLt+3 );
  assert( pC->isOrdered );

  oc = pOp->opcode;
  pC->nullRow = 0;
  if( pC->isTable ){
























    nField = 1;





  }else{

    nField = pOp->p4.i;

  }

  rc = sqlite4VdbeEncodeKey(db, pIn3, nField, pC->iRoot, pC->pKeyInfo,
                            &aProbe, &nProbe, 0);
  if( rc ){


    sqlite4DbFree(db, aProbe);
    break;







  }

  rc = sqlite4KVCursorSeek(pC->pKVCur, aProbe, nProbe, 
                           oc<=OP_SeekLe ? -1 : 1);
  sqlite4DbFree(db, aProbe);
  if( rc==SQLITE_OK ){


    if( oc==OP_SeekLt ){









      rc = sqlite4KVCursorPrev(pC->pKVCur);

    }else if( oc==OP_SeekGt ){


      rc = sqlite4KVCursorNext(pC->pKVCur);







    }

  }else if( rc==SQLITE_INEXACT ){




    rc = SQLITE_OK;

  }




  if( rc==SQLITE_OK ){




    rc = sqlite4KVCursorKey(pC->pKVCur, &aKey, &nKey);
    if( rc==SQLITE_OK ){


      iRoot = 0;




      n = sqlite4GetVarint64(aKey, nKey, &iRoot);
      if( iRoot!=pC->iRoot ) rc = SQLITE_DONE;
      c = aKey[n];





      if( c<0x05 || c>0xfa ) rc = SQLITE_DONE;
    }
  }

  if( rc==SQLITE_DONE ){
    rc = SQLITE_OK;






    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.




*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;
  KVCursor *pKVCur;
  KVByteArray *aKey;
  KVSize nKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  assert( pC->isTable );
  pKVCur = pC->pKVCur;
  rc = sqlite4VdbeEncodeKey(db, aMem+pOp->p2, 1, pC->iRoot, 0,
                            &aKey, &nKey, 0);
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorSeek(pKVCur, aKey, nKey, 0);

    if( rc==SQLITE_NOTFOUND ) rc = SQLITE_CORRUPT_BKPT;
  }
  sqlite4DbFree(db, aKey);
  break;
}
  

/* Opcode: Found P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeKey.  If
** P4>0 then register P3 is the first of P4 registers that should be
** combined to generate a key.
**
** Cursor P1 is open on an index.  If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
*/
/* Opcode: NotFound P1 P2 P3 P4 *
**
** If P4==0 then register P3 holds a blob constructed by MakeKey.  If
** P4>0 then register P3 is the first of P4 registers that should be
** combined to generate key.
** 
** Cursor P1 is on an index.  If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
** does contain an entry whose prefix matches the P3/P4 record then control
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
** See also: Found, NotExists, IsUnique
*/




















































































































































/* Opcode: NotExists P1 P2 P3 * *
**
** Use the content of register P3 as an integer key.  If a record 
** with that key does not exist in table of P1, then jump to P2. 
** If the record does exist, then fall through.  The cursor is left 
** pointing to the record if it exists.
**
** The difference between this operation and NotFound is that this
** operation assumes the key is an integer and that P1 is a table whereas
** NotFound assumes key is a blob constructed from MakeRecord and
** P1 is an index.
**
** See also: Found, NotFound, IsUnique
*/
case OP_NotExists: {    /* jump, in3 */
  pOp->p4.i = 1;
  pOp->p4type = P4_INT32;
  /* Fall through into OP_NotFound */
}
case OP_NotFound:       /* jump, in3 */
case OP_Found: {        /* jump, in3 */
  int alreadyExists;
  VdbeCursor *pC;
  KVByteArray *pFree;
  KVByteArray *pProbe;
  KVSize nProbe;
  const KVByteArray *pKey;
  KVSize nKey;

#ifdef SQLITE_TEST
  sqlite4_found_count++;
#endif

  alreadyExists = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pIn3 = &aMem[pOp->p3];
  assert( pC->pKVCur!=0 );
  assert( pC->isTable==0 || pOp->opcode==OP_NotExists );
  if( pOp->p4.i>0 ){
    rc = sqlite4VdbeEncodeKey(db, pIn3, pOp->p4.i, pC->iRoot,
                              pC->pKeyInfo, &pProbe, &nProbe, 0);
    pFree = pProbe;
  }else{
    pProbe = (KVByteArray*)pIn3->z;
    nProbe = pIn3->n;
    pFree = 0;
  }
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorSeek(pC->pKVCur, pProbe, nProbe, +1);
    if( rc==SQLITE_INEXACT || rc==SQLITE_OK ){
      rc = sqlite4KVCursorKey(pC->pKVCur, &pKey, &nKey);
      if( rc==SQLITE_OK && nKey>=nProbe && memcmp(pKey, pProbe, nKey)==0 ){
        alreadyExists = 1;
        pC->nullRow = 0;
      }
    }
  }
  sqlite4DbFree(db, pFree);
  if( pOp->opcode==OP_Found ){
    if( alreadyExists ) pc = pOp->p2 - 1;
  }else{
    if( !alreadyExists ) pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IsUnique P1 P2 P3 P4 *
**
** Cursor P1 is open on an index.
**
** The P3 register contains an integer record number. Call this record 
** number R. Register P4 is the first in a set of N contiguous registers
** that make up an unpacked index key that can be used with cursor P1.
** The value of N can be inferred from the KeyInfo.nField of the cursor.
** N includes the rowid value appended to the end of the index record.
** This rowid value may or may not be the same as R.
**
** If any of the N registers beginning with register P4 contains a NULL
** value, jump immediately to P2.
**
** Otherwise, this instruction checks if cursor P1 contains an entry
** where the first (N-1) fields match but the rowid value at the end
** of the index entry is not R. If there is no such entry (meaning that
** a row about to be inserted with rowid R is unique) then control jumps
** to instruction P2. Otherwise, the rowid of the conflicting index
** entry is copied to register P3 and control falls through to the next
** instruction.
**
** See also: NotFound, NotExists, Found
*/
case OP_IsUnique: {        /* jump, in3 */
#if 0
  u16 ii;
  VdbeCursor *pCx;
  KVCursor *pKVCur;
  u16 nField;
  Mem *aMx;
  KVByteArray *pProbe;
  KVSize nProbe;
  KVSize nShort;
  KVSize nData;
  int isUnique;

  i64 R;                             /* Rowid stored in register P3 */

  pIn3 = &aMem[pOp->p3];
  aMx = &aMem[pOp->p4.i];
  /* Assert that the values of parameters P1 and P4 are in range. */
  assert( pOp->p4type==P4_INT32 );
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );

  /* Find the index cursor. */
  pCx = p->apCsr[pOp->p1];
  pCx->seekResult = 0;
  pCx->cacheStatus = CACHE_STALE;
  pKVCur = pCx->pKVCur;
  nField = pCx->pKeyInfo->nField;

  /* If any of the values are NULL, take the jump. */
  nField = pCx->pKeyInfo->nField;
  for(ii=0; ii<nField; ii++){
    if( aMx[ii].flags & MEM_Null ){
      pc = pOp->p2 - 1;
      pCrsr = 0;
      break;
    }
  }
  assert( (aMx[nField].flags & MEM_Null)==0 );

  isUnique = 1;
  if( pCrsr!=0 ){
    /* Extract the value of R from register P3. */
    sqlite4VdbeMemIntegerify(pIn3);
    R = pIn3->u.i;

    /* Generate the probe key */
    rc = sqlite4VdbeEncodeKey(db, pIn3, nField, pCx->iRoot,


                              pCx->pKeyInfo, &pProbe, &nProbe, &nShort);
    if( rc==SQLITE_OK ){
      rc = sqlite4KVCursorSeek(pKVCur, pProbe, nProbe, +1);
      if( rc==SQLITE_OK ){
        /* Full key already exists in the index.  Not unique. */
        isUnique = 0;
      }else if( rc==SQLITE_INEXACT ){
        int c = sqlite4KVCursorCompare(pKVCur, pProbe, nShort);
        if( c>0 ){
          rc = sqlite4KVCursorPrev(pKVCur);

          if( rc==SQLITE_OK ){
            c = sqlite4KVCursorCompare(pKVCur, pProbe, nShort);
          }
        }
        if( c ) isUnique = 0;


      }
      sqlite4DbFree(db, pProbe);

      if( isUnique ){
        pc = pOp->p2 - 1;

      }else{
        /* Collision.  Copy the conflicting rowid into register P3. */
        rc = sqlite4KVCursorData(pKVCur, 0, -1, &aData, &nData);
        if( rc==SQLITE_OK ){
          rc = sqlite4VdbeCreateDecoder(db, aData, nData, nField, &pCodec);
          if( rc==SQLITE_OK ){
            rc = sqlite4VdbeDecodeValue(pCodec, nField-1, 0, pIn3);
            sqlite4VdbeDestroyDecoder(pCodec);
          }
        }
      }
    }
  }
#endif
  break;
}

/* Opcode: Sequence P1 P2 * * *
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813

3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825




3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904

3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949

/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum, 
** an SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */

  int res;               /* Result of an sqlite4BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( NEVER(pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */




  }else{
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
    ** probabilistic algorithm
    **
    ** The second algorithm is to select a rowid at random and see if
    ** it already exists in the table.  If it does not exist, we have
    ** succeeded.  If the random rowid does exist, we select a new one
    ** and try again, up to 100 times.
    */
    assert( pC->isTable );

#ifdef SQLITE_32BIT_ROWID
#   define MAX_ROWID 0x7fffffff
#else
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !pC->useRandomRowid ){
      v = sqlite4BtreeGetCachedRowid(pC->pCursor);
      if( v==0 ){
        rc = sqlite4BtreeLast(pC->pCursor, &res);
        if( rc!=SQLITE_OK ){
          goto abort_due_to_error;
        }
        if( res ){
          v = 1;   /* IMP: R-61914-48074 */
        }else{
          assert( sqlite4BtreeCursorIsValid(pC->pCursor) );
          rc = sqlite4BtreeKeySize(pC->pCursor, &v);
          assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
          if( v==MAX_ROWID ){
            pC->useRandomRowid = 1;
          }else{
            v++;   /* IMP: R-29538-34987 */
          }
        }
      }

#ifndef SQLITE_OMIT_AUTOINCREMENT
      if( pOp->p3 ){
        /* Assert that P3 is a valid memory cell. */
        assert( pOp->p3>0 );
        if( p->pFrame ){
          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=pFrame->nMem );
          pMem = &pFrame->aMem[pOp->p3];
        }else{
          /* Assert that P3 is a valid memory cell. */
          assert( pOp->p3<=p->nMem );
          pMem = &aMem[pOp->p3];
          memAboutToChange(p, pMem);
        }
        assert( memIsValid(pMem) );

        REGISTER_TRACE(pOp->p3, pMem);
        sqlite4VdbeMemIntegerify(pMem);
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
          rc = SQLITE_FULL;   /* IMP: R-12275-61338 */
          goto abort_due_to_error;
        }
        if( v<pMem->u.i+1 ){
          v = pMem->u.i + 1;
        }
        pMem->u.i = v;
      }
#endif

      sqlite4BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);

    }
    if( pC->useRandomRowid ){
      /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
      ** largest possible integer (9223372036854775807) then the database
      ** engine starts picking positive candidate ROWIDs at random until
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      /* on the first attempt, simply do one more than previous */
      v = lastRowid;
      v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
      v++; /* ensure non-zero */
      cnt = 0;
      while(   ((rc = sqlite4BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100)){
        /* collision - try another random rowid */
        sqlite4_randomness(sizeof(v), &v);
        if( cnt<5 ){
          /* try "small" random rowids for the initial attempts */
          v &= 0xffffff;
        }else{
          v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
        }
        v++; /* ensure non-zero */
      }
      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }
      assert( v>0 );  /* EV: R-40812-03570 */
    }
    pC->rowidIsValid = 0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pOut->u.i = v;
  break;
}

/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing







<
<
<
<
<
<
<


|
|
>
|
|
<
<


<



|
|
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<
<
<
<
<
<
<
<
<
|
<
<
|
|
|
<
<
<
<
|
<
|
|
<
<
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
|
<
>

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|
|
<
<
<
<
<
<
<
<
|
<
|







3034
3035
3036
3037
3038
3039
3040







3041
3042
3043
3044
3045
3046
3047


3048
3049

3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074









3075


3076
3077
3078




3079

3080
3081







3082
3083
3084












3085






3086








3087

3088
3089





















3090


3091
3092








3093

3094
3095
3096
3097
3098
3099
3100
3101

/* Opcode: NewRowid P1 P2 P3 * *
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** to register P2.







*/
case OP_NewRowid: {           /* out2-prerelease */
  i64 v;                   /* The new rowid */
  VdbeCursor *pC;          /* Cursor of table to get the new rowid */
  const KVByteArray *aKey; /* Key of an existing row */
  KVSize nKey;             /* Size of the existing row key */
  int n;                   /* Number of bytes decoded */



  v = 0;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  /* Some compilers complain about constants of the form 0x7fffffffffffffff.
  ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
  ** to provide the constant while making all compilers happy.
  */
# define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )

  /* The next rowid or record number (different terms for the same
  ** thing) is obtained in a two-step algorithm.
  **
  ** First we attempt to find the largest existing rowid and add one
  ** to that.  But if the largest existing rowid is already the maximum
  ** positive integer, we have to fall through to the second
  ** probabilistic algorithm
  **
  ** The second algorithm is to select a rowid at random and see if
  ** it already exists in the table.  If it does not exist, we have
  ** succeeded.  If the random rowid does exist, we select a new one
  ** and try again, up to 100 times.
  */
  assert( pC->isTable );










  rc = sqlite4VdbeSeekEnd(pC, -1);


  if( rc==SQLITE_NOTFOUND ){
    v = 0;
    rc = SQLITE_OK;




  }else if( rc==SQLITE_OK ){

    rc = sqlite4KVCursorKey(pC->pKVCur, &aKey, &nKey);
    if( rc==SQLITE_OK ){







      n = sqlite4GetVarint64(aKey, nKey, &v);
      if( n==0 ) rc = SQLITE_CORRUPT;
      if( v!=pC->iRoot ) rc = SQLITE_CORRUPT;












    }






    if( rc==SQLITE_OK ){








      n = sqlite4VdbeDecodeIntKey(&aKey[n], nKey-n, &v);

      if( n==0 ) rc = SQLITE_CORRUPT;
    }





















  }else{


    break;
  }








  pOut->flags = MEM_Int;

  pOut->u.i = v+1;
  break;
}

/* Opcode: Insert P1 P2 P3 P4 P5
**
** Write an entry into the table of cursor P1.  A new entry is
** created if it doesn't already exist or the data for an existing
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000


4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
*/
case OP_Insert: 
case OP_InsertInt: {
  Mem *pData;       /* MEM cell holding data for the record to be inserted */
  Mem *pKey;        /* MEM cell holding key  for the record */
  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
  VdbeCursor *pC;   /* Cursor to table into which insert is written */
  int nZero;        /* Number of zero-bytes to append */
  int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
  const char *zDb;  /* database name - used by the update hook */
  const char *zTbl; /* Table name - used by the opdate hook */
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */



  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );







<
<



>
>






<
<







3141
3142
3143
3144
3145
3146
3147


3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158


3159
3160
3161
3162
3163
3164
3165
*/
case OP_Insert: 
case OP_InsertInt: {
  Mem *pData;       /* MEM cell holding data for the record to be inserted */
  Mem *pKey;        /* MEM cell holding key  for the record */
  i64 iKey;         /* The integer ROWID or key for the record to be inserted */
  VdbeCursor *pC;   /* Cursor to table into which insert is written */


  const char *zDb;  /* database name - used by the update hook */
  const char *zTbl; /* Table name - used by the opdate hook */
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
  int n;
  KVByteArray aKey[24];

  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );


  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
  if( pData->flags & MEM_Null ){
    pData->z = 0;
    pData->n = 0;
  }else{
    assert( pData->flags & (MEM_Blob|MEM_Str) );
  }
  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
  if( pData->flags & MEM_Zero ){
    nZero = pData->u.nZero;
  }else{
    nZero = 0;
  }
  sqlite4BtreeSetCachedRowid(pC->pCursor, 0);
  rc = sqlite4BtreeInsert(pC->pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          pOp->p5 & OPFLAG_APPEND, seekResult
  );
  pC->rowidIsValid = 0;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( pC->isTable );







<
<
<
<
|
<
|
|
|
<
<
<
<
<







3174
3175
3176
3177
3178
3179
3180




3181

3182
3183
3184





3185
3186
3187
3188
3189
3190
3191
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
  if( pData->flags & MEM_Null ){
    pData->z = 0;
    pData->n = 0;
  }else{
    assert( pData->flags & (MEM_Blob|MEM_Str) );
  }




  n = sqlite4PutVarint64(aKey, pC->iRoot);

  n += sqlite4VdbeEncodeIntKey(&aKey[n], iKey);
  rc = sqlite4KVStoreReplace(pC->pKVCur->pStore, aKey, n,
                             (const KVByteArray*)pData->z, pData->n);






  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    zDb = db->aDb[pC->iDb].zName;
    zTbl = pOp->p4.z;
    op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
    assert( pC->isTable );
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121

4122
4123
4124
4125
4126
4127
4128
  i64 iKey;
  VdbeCursor *pC;

  iKey = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */

  /* If the update-hook will be invoked, set iKey to the rowid of the
  ** row being deleted.
  */
  if( db->xUpdateCallback && pOp->p4.z ){
    assert( pC->isTable );
    assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
    iKey = pC->lastRowid;
  }

  /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
  ** OP_Column on the same table without any intervening operations that
  ** might move or invalidate the cursor.  Hence cursor pC is always pointing
  ** to the row to be deleted and the sqlite4VdbeCursorMoveto() operation
  ** below is always a no-op and cannot fail.  We will run it anyhow, though,
  ** to guard against future changes to the code generator.
  **/
  assert( pC->deferredMoveto==0 );
  rc = sqlite4VdbeCursorMoveto(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  sqlite4BtreeSetCachedRowid(pC->pCursor, 0);
  rc = sqlite4BtreeDelete(pC->pCursor);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}

/* Opcode: ResetCount * * * * *
**
** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite4_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/







<










<
<
<
<
<
<
<
<
|
<
<
<
<
<











>







3219
3220
3221
3222
3223
3224
3225

3226
3227
3228
3229
3230
3231
3232
3233
3234
3235








3236





3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
  i64 iKey;
  VdbeCursor *pC;

  iKey = 0;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );


  /* If the update-hook will be invoked, set iKey to the rowid of the
  ** row being deleted.
  */
  if( db->xUpdateCallback && pOp->p4.z ){
    assert( pC->isTable );
    assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
    iKey = pC->lastRowid;
  }









  rc = sqlite4KVCursorDelete(pC->pKVCur);






  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
    const char *zDb = db->aDb[pC->iDb].zName;
    const char *zTbl = pOp->p4.z;
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
    assert( pC->iDb>=0 );
  }
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  break;
}

/* Opcode: ResetCount * * * * *
**
** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite4_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/
4140
4141
4142
4143
4144
4145
4146

4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164


4165
4166
4167
4168
4169
4170
4171
** fall through to the next instruction. Otherwise, jump to instruction P2.
*/
case OP_SorterCompare: {
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];

  assert( isSorter(pC) );
  pIn3 = &aMem[pOp->p3];
  rc = sqlite4VdbeSorterCompare(pC, pIn3, &res);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: SorterData P1 P2 * * *
**
** Write into register P2 the current sorter data for sorter cursor P1.
*/
case OP_SorterData: {
  VdbeCursor *pC;
#ifndef SQLITE_OMIT_MERGE_SORT
  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];


  assert( pC->isSorter );
  rc = sqlite4VdbeSorterRowkey(pC, pOut);
#else
  pOp->opcode = OP_RowKey;
  pc--;
#endif
  break;







>














|
<


>
>







3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289

3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
** fall through to the next instruction. Otherwise, jump to instruction P2.
*/
case OP_SorterCompare: {
  VdbeCursor *pC;
  int res;

  pC = p->apCsr[pOp->p1];
  assert( pC->iRoot>0 );
  assert( isSorter(pC) );
  pIn3 = &aMem[pOp->p3];
  rc = sqlite4VdbeSorterCompare(pC, pIn3, &res);
  if( res ){
    pc = pOp->p2-1;
  }
  break;
};

/* Opcode: SorterData P1 P2 * * *
**
** Write into register P2 the current sorter data for sorter cursor P1.
*/
case OP_SorterData: {
  VdbeCursor *pC; 

  pOut = &aMem[pOp->p2];
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifndef SQLITE_OMIT_MERGE_SORT
  assert( pC->isSorter );
  rc = sqlite4VdbeSorterRowkey(pC, pOut);
#else
  pOp->opcode = OP_RowKey;
  pc--;
#endif
  break;
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269



4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294

4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349

4350
4351
4352
4353
4354
4355
4356
4357
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  u32 n;
  i64 n64;

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->isSorter==0 );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( !pC->isSorter );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;
  assert( sqlite4BtreeCursorIsValid(pCrsr) );

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  Hence the following sqlite4VdbeCursorMoveto() call is always
  ** a no-op and can never fail.  But we leave it in place as a safety.
  */
  assert( pC->deferredMoveto==0 );
  rc = sqlite4VdbeCursorMoveto(pC);
  if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;

  if( pC->isIndex ){
    assert( !pC->isTable );
    VVA_ONLY(rc =) sqlite4BtreeKeySize(pCrsr, &n64);
    assert( rc==SQLITE_OK );    /* True because of CursorMoveto() call above */
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    n = (u32)n64;
  }else{
    VVA_ONLY(rc =) sqlite4BtreeDataSize(pCrsr, &n);
    assert( rc==SQLITE_OK );    /* DataSize() cannot fail */
    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
  }
  if( sqlite4VdbeMemGrow(pOut, n, 0) ){
    goto no_mem;
  }
  pOut->n = n;
  MemSetTypeFlag(pOut, MEM_Blob);
  if( pC->isIndex ){
    rc = sqlite4BtreeKey(pCrsr, 0, n, pOut->z);
  }else{
    rc = sqlite4BtreeData(pCrsr, 0, n, pOut->z);
  }
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  VdbeCursor *pC;
  i64 v;
  sqlite4_vtab *pVtab;
  const sqlite4_module *pModule;




  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    importVtabErrMsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->pCursor!=0 );
    rc = sqlite4VdbeCursorMoveto(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->rowidIsValid ){
      v = pC->lastRowid;
    }else{

      rc = sqlite4BtreeKeySize(pC->pCursor, &v);
      assert( rc==SQLITE_OK );  /* Always so because of CursorMoveto() above */
    }
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;
  assert( pC->pCursor || pC->pVtabCursor );
  if( pC->pCursor ){
    sqlite4BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  res = 0;
  if( ALWAYS(pCrsr!=0) ){
    rc = sqlite4BtreeLast(pCrsr, &res);
  }
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->rowidIsValid = 0;
  pC->cacheStatus = CACHE_STALE;
  if( pOp->p2>0 && res ){

    pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: Sort P1 P2 * * *
**







|
|
|













|
|
<

|
<
<
<
<
<
|
<
|
<
<
|
<
<
<
|
<
<
<
<
|
|
|
<
|
<
<
<
<
<
<
<
<
<



















>
>
>








<
<









<
|
|
<
<
<
>
|
|




















<
<
<
<













<
<




<
<
<
|
<
<
<
<
<
|
>
|







3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343

3344
3345





3346

3347


3348



3349




3350
3351
3352

3353









3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383


3384
3385
3386
3387
3388
3389
3390
3391
3392

3393
3394



3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417




3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430


3431
3432
3433
3434



3435





3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
case OP_RowKey:
case OP_RowData: {
  VdbeCursor *pC;
  KVCursor *pCrsr;
  const KVByteArray *pData;
  KVSize nData;

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->isSorter==0 );
  assert( pC->isIndex || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( !pC->isSorter );
  assert( pC->pKVCur!=0 );
  pCrsr = pC->pKVCur;


  if( pOp->opcode==OP_RowKey ){





    rc = sqlite4KVCursorKey(pCrsr, &pData, &nData);

  }else{


    rc = sqlite4KVCursorData(pCrsr, 0, -1, &pData, &nData);



  }




  if( rc==SQLITE_OK && nData>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  sqlite4VdbeMemSetStr(pOut, (const char*)pData, nData, 0, SQLITE_DYNAMIC);









  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  VdbeCursor *pC;
  i64 v;
  sqlite4_vtab *pVtab;
  const sqlite4_module *pModule;
  const KVByteArray *aKey;
  KVSize nKey;
  int n;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;


#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){
    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    importVtabErrMsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{

    rc = sqlite4KVCursorKey(pC->pKVCur, &aKey, &nKey);
    if( rc==SQLITE_OK ){



      n = sqlite4GetVarint64(aKey, nKey, (sqlite4_uint64*)&v);
      n = sqlite4VdbeDecodeIntKey(&aKey[n], nKey-n, &v);
      if( n==0 ) rc = SQLITE_CORRUPT;
    }
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->rowidIsValid = 0;




  break;
}

/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Last: {        /* jump */
  VdbeCursor *pC;



  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );



  rc = sqlite4VdbeSeekEnd(pC, -1);





  if( rc==SQLITE_NOTFOUND ){  
    rc = SQLITE_OK;
    if( pOp->p2 ) pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: Sort P1 P2 * * *
**
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403

4404
4405
4406

4407
4408

4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
  res = 1;
  if( isSorter(pC) ){
    rc = sqlite4VdbeSorterRewind(db, pC, &res);
  }else{
    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite4BtreeFirst(pCrsr, &res);

    pC->atFirst = res==0 ?1:0;
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;

    pC->rowidIsValid = 0;
  }

  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( res ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4BtreeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4BtreePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Next;







<
|





|

|

<
<
|
>
|
|
<
>
|
|
>
|

|















|
















|







3471
3472
3473
3474
3475
3476
3477

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487


3488
3489
3490
3491

3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;

  int doJump;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
  doJump = 1;
  if( isSorter(pC) ){
    rc = sqlite4VdbeSorterRewind(db, pC, &doJump);
  }else{


    rc = sqlite4VdbeSeekEnd(pC, +1);
    if( rc==SQLITE_NOTFOUND ){
      rc = SQLITE_OK;
      doJump = 1;

    }else{
      doJump = 0;
    }
  }
  pC->nullRow = (u8)doJump;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
  if( doJump ){
    pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: Next P1 P2 * P4 P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index.  If there are no more key/value pairs then fall through
** to the following instruction.  But if the cursor advance was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4VdbeNext().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 * * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index.  If there is no previous key/value pairs then fall through
** to the following instruction.  But if the cursor backup was successful,
** jump immediately to P2.
**
** The P1 cursor must be for a real table, not a pseudo-table.
**
** P4 is always of type P4_ADVANCE. The function pointer points to
** sqlite4VdbePrevious().
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
case OP_SorterNext:    /* jump */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_Next;
4462
4463
4464
4465
4466
4467
4468

4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

4482
4483
4484



4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524

4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536














4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite4VdbeSorterNext(db, pC, &res);

  }else{
    res = 1;
    assert( pC->deferredMoveto==0 );
    assert( pC->pCursor );
    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite4BtreeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite4BtreePrevious );
    rc = pOp->p4.xAdvance(pC->pCursor, &res);
  }
  pC->nullRow = (u8)res;
  pC->cacheStatus = CACHE_STALE;
  if( res==0 ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;

#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif



  }
  pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 * * P5
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert:       /* in2 */
#ifdef SQLITE_OMIT_MERGE_SORT
  pOp->opcode = OP_IdxInsert;
#endif
case OP_IdxInsert: {        /* in2 */
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int nKey;
  const char *zKey;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    assert( pC->isTable==0 );
    rc = ExpandBlob(pIn2);
    if( rc==SQLITE_OK ){
      if( isSorter(pC) ){
        rc = sqlite4VdbeSorterWrite(db, pC, pIn2);

      }else{
        nKey = pIn2->n;
        zKey = pIn2->z;
        rc = sqlite4BtreeInsert(pCrsr, zKey, nKey, "", 0, 0,
            ((pOp->p5 & OPFLAG_APPENDBIAS) ? 1 : 0),
            ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
            );
        assert( pC->deferredMoveto==0 );
        pC->cacheStatus = CACHE_STALE;
      }
    }
  }














  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  if( ALWAYS(pCrsr!=0) ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p3;
    r.flags = 0;
    r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    rc = sqlite4BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
    if( rc==SQLITE_OK && res==0 ){
      rc = sqlite4BtreeDelete(pCrsr);
    }
    assert( pC->deferredMoveto==0 );
    pC->cacheStatus = CACHE_STALE;
  }
  break;
}

/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  pOut->flags = MEM_Null;
  if( ALWAYS(pCrsr!=0) ){
    rc = sqlite4VdbeCursorMoveto(pC);
    if( NEVER(rc) ) goto abort_due_to_error;
    assert( pC->deferredMoveto==0 );
    assert( pC->isTable==0 );
    if( !pC->nullRow ){
      rc = sqlite4VdbeIdxRowid(db, pCrsr, &rowid);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      pOut->u.i = rowid;
      pOut->flags = MEM_Int;
    }
  }
  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 







>


<
<
|
|
|

<
<
|


>



>
>
>

















|
<
<
<
<

<
<
<







<
<
|
|
|
<
|
>
|
<
<
<
<
<
<
<
<
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>










<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<












<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3549
3550
3551
3552
3553
3554
3555
3556
3557
3558


3559
3560
3561
3562


3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590




3591



3592
3593
3594
3595
3596
3597
3598


3599
3600
3601

3602
3603
3604








3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631









3632
















3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644






3645
















3646
3647
3648
3649
3650
3651
3652
  if( pC==0 ){
    break;  /* See ticket #2273 */
  }
  assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
  if( isSorter(pC) ){
    assert( pOp->opcode==OP_SorterNext );
    rc = sqlite4VdbeSorterNext(db, pC, &res);
    if( rc==SQLITE_OK && res ) rc = SQLITE_NOTFOUND;
  }else{
    res = 1;


    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite4VdbeNext );
    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite4VdbePrevious );
    rc = pOp->p4.xAdvance(pC);
  }


  if( rc==SQLITE_OK ){
    pc = pOp->p2 - 1;
    if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
    pC->nullRow = 0;
#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif
  }else if( rc==SQLITE_NOTFOUND ){
    pC->nullRow = 1;
    rc = SQLITE_OK;
  }
  pC->rowidIsValid = 0;
  break;
}

/* Opcode: IdxInsert P1 P2 * * P5
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_SorterInsert: {      /* in2 */




  VdbeCursor *pC;




  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );


  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){

    rc = sqlite4VdbeSorterWrite(db, pC, pIn2);
  }
  break;








}


/* Opcode: IdxInsert P1 P2 * * P5
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions.  This opcode writes that key
** into the index P1.  Data for the entry is nil.
**
** P3 is a flag that provides a hint to the b-tree layer that this
** insert is likely to be an append.
**
** This instruction only works for indices.  The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: {        /* in2 */
  assert( 0 );
  break;
}

/* Opcode: IdxDelete P1 P2 P3 * *
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the 
** index opened by cursor P1.
*/
case OP_IdxDelete: {









  assert( 0 );
















  break;
}

/* Opcode: IdxRowid P1 P2 * * *
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */






  assert( 0 );
















  break;
}

/* Opcode: IdxGE P1 P2 P3 P4 P5
**
** The P4 register values beginning with P3 form an unpacked index 
** key that omits the ROWID.  Compare this key value against the index 
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump */
case OP_IdxGE: {        /* jump */
  VdbeCursor *pC;
  int res;
  UnpackedRecord r;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isOrdered );
  if( ALWAYS(pC->pCursor!=0) ){
    assert( pC->deferredMoveto==0 );
    assert( pOp->p5==0 || pOp->p5==1 );
    assert( pOp->p4type==P4_INT32 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    if( pOp->p5 ){
      r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
    }else{
      r.flags = UNPACKED_PREFIX_MATCH;
    }
    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    rc = sqlite4VdbeIdxKeyCompare(pC, &r, &res);
    if( pOp->opcode==OP_IdxLT ){
      res = -res;
    }else{
      assert( pOp->opcode==OP_IdxGE );
      res++;
    }
    if( res>0 ){
      pc = pOp->p2 - 1 ;
    }
  }
  break;
}

/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0.  If
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
      iCnt++;
    }
  }
#else
  iCnt = db->activeVdbeCnt;
#endif
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
    rc = sqlite4BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
  }
  break;
}

/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1.  But, unlike Destroy, do not







<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<







3670
3671
3672
3673
3674
3675
3676






3677



























3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692




















3693





3694
3695
3696
3697
3698
3699
3700
** Otherwise fall through to the next instruction.
**
** If P5 is non-zero then the key value is increased by an epsilon prior 
** to the comparison.  This makes the opcode work like IdxLE.
*/
case OP_IdxLT:          /* jump */
case OP_IdxGE: {        /* jump */






  assert( 0 );



























  break;
}

/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0.  If
** P3==1 then the table to be clear is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */




















  assert( 0 );





  break;
}

/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1.  But, unlike Destroy, do not
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
  int nChange;
 
  nChange = 0;
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
  rc = sqlite4BtreeClearTable(
      db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
  );
  if( pOp->p3 ){
    p->nChange += nChange;
    if( pOp->p3>0 ){
      assert( memIsValid(&aMem[pOp->p3]) );
      memAboutToChange(p, &aMem[pOp->p3]);
      aMem[pOp->p3].u.i += nChange;
    }
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if







<
<
<
<
<
<
<
<
<
<
|
<
<
<
<







3709
3710
3711
3712
3713
3714
3715










3716




3717
3718
3719
3720
3721
3722
3723
** count is incremented by the number of rows in the table being cleared. 
** If P3 is greater than zero, then the value stored in register P3 is
** also incremented by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {










  assert( 0 );




  break;
}

/* Opcode: CreateTable P1 P2 * * *
**
** Allocate a new table in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780





4781
4782
4783
4784
4785

4786
4787







4788
4789




4790
4791

4792
4793



4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;






  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
  pDb = &db->aDb[pOp->p1];

  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){







    /* flags = BTREE_INTKEY; */
    flags = BTREE_INTKEY;




  }else{
    flags = BTREE_BLOBKEY;

  }
  rc = sqlite4BtreeCreateTable(pDb->pBt, &pgno, flags);



  pOut->u.i = pgno;
  break;
}

/* Opcode: ParseSchema P1 * * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4. 
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;

  /* Any prepared statement that invokes this opcode will hold mutexes
  ** on every btree.  This is a prerequisite for invoking 
  ** sqlite4InitCallback().
  */
#ifdef SQLITE_DEBUG
  for(iDb=0; iDb<db->nDb; iDb++){
    assert( iDb==1 || sqlite4BtreeHoldsMutex(db->aDb[iDb].pBt) );
  }
#endif

  iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
  /* Used to be a conditional */ {
    zMaster = SCHEMA_TABLE(iDb);
    initData.db = db;
    initData.iDb = pOp->p1;







|
<

>
>
>
>
>

|

<

>
|
|
>
>
>
>
>
>
>
|
|
>
>
>
>

<
>

|
>
>
>
|

















<
<
<
<
<
<
<
<
<
<







3737
3738
3739
3740
3741
3742
3743
3744

3745
3746
3747
3748
3749
3750
3751
3752
3753

3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771

3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795










3796
3797
3798
3799
3800
3801
3802
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  sqlite4_uint64 iTabno;

  Db *pDb;
  KVCursor *pCur;
  const KVByteArray *aKey;
  KVSize nKey;
  int n;
  KVByteArray aProbe[12];

  iTabno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );

  pDb = &db->aDb[pOp->p1];
  memset(aProbe, 0xff, 9);
  rc = sqlite4KVStoreOpenCursor(pDb->pKV, &pCur);
  if( rc ) break;
  rc = sqlite4KVCursorSeek(pCur, aProbe, 9, -1);
  if( rc==SQLITE_OK ){
    sqlite4KVCursorClose(pCur);
    rc = SQLITE_CORRUPT;
    break;
  }
  if( rc==SQLITE_NOTFOUND ){
    iTabno = 2;
    n = 1;
    rc = SQLITE_OK;
  }else if( rc==SQLITE_INEXACT ){
    rc = sqlite4KVCursorKey(pCur, &aKey, &nKey);
    n = sqlite4GetVarint64(aKey, nKey, &iTabno);
  }else{

    break;
  }
  sqlite4KVCursorClose(pCur);
  if( n==0 ){
    rc = SQLITE_CORRUPT;
  }
  pOut->u.i = iTabno;
  break;
}

/* Opcode: ParseSchema P1 * * P4 *
**
** Read and parse all entries from the SQLITE_MASTER table of database P1
** that match the WHERE clause P4. 
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine.  It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
  int iDb;
  const char *zMaster;
  char *zSql;
  InitData initData;











  iDb = pOp->p1;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
  /* Used to be a conditional */ {
    zMaster = SCHEMA_TABLE(iDb);
    initData.db = db;
    initData.iDb = pOp->p1;
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  int j;          /* Loop counter */
  int nErr;       /* Number of errors reported */
  char *z;        /* Text of the error report */
  Mem *pnErr;     /* Register keeping track of errors remaining */
  
  nRoot = pOp->p2;
  assert( nRoot>0 );
  aRoot = sqlite4DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  if( aRoot==0 ) goto no_mem;
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
  pnErr = &aMem[pOp->p3];
  assert( (pnErr->flags & MEM_Int)!=0 );
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  pIn1 = &aMem[pOp->p1];
  for(j=0; j<nRoot; j++){
    aRoot[j] = (int)sqlite4VdbeIntValue(&pIn1[j]);
  }
  aRoot[j] = 0;
  assert( pOp->p5<db->nDb );
  assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
  z = sqlite4BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
                                 (int)pnErr->u.i, &nErr);
  sqlite4DbFree(db, aRoot);
  pnErr->u.i -= nErr;
  sqlite4VdbeMemSetNull(pIn1);
  if( nErr==0 ){
    assert( z==0 );
  }else if( z==0 ){
    goto no_mem;
  }else{
    sqlite4VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite4_free);
  }
  UPDATE_MAX_BLOBSIZE(pIn1);
  sqlite4VdbeChangeEncoding(pIn1, encoding);
  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3892
3893
3894
3895
3896
3897
3898




































3899
3900
3901
3902
3903
3904
3905
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {




































  break;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */

/* Opcode: RowSetAdd P1 P2 * * *
**
** Insert the integer value held by register P2 into a boolean index
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: {    /* out2-prerelease */
  Btree *pBt;                     /* Btree to change journal mode of */
  Pager *pPager;                  /* Pager associated with pBt */
  int eNew;                       /* New journal mode */
  int eOld;                       /* The old journal mode */
  const char *zFilename;          /* Name of database file for pPager */

  eNew = pOp->p3;
  assert( eNew==PAGER_JOURNALMODE_DELETE 
       || eNew==PAGER_JOURNALMODE_TRUNCATE 
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL
       || eNew==PAGER_JOURNALMODE_QUERY
  );
  assert( pOp->p1>=0 && pOp->p1<db->nDb );

  pBt = db->aDb[pOp->p1].pBt;
  pPager = sqlite4BtreePager(pBt);
  eOld = sqlite4PagerGetJournalMode(pPager);
  if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
  if( !sqlite4PagerOkToChangeJournalMode(pPager) ) eNew = eOld;


  if( rc ){
    eNew = eOld;
  }
  eNew = sqlite4PagerSetJournalMode(pPager, eNew);

  pOut = &aMem[pOp->p2];
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = (char *)sqlite4JournalModename(eNew);
  pOut->n = sqlite4Strlen30(pOut->z);
  pOut->enc = SQLITE_UTF8;
  sqlite4VdbeChangeEncoding(pOut, encoding);
  break;
};
#endif /* SQLITE_OMIT_PRAGMA */


/* Opcode: Expire P1 * * * *
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4358
4359
4360
4361
4362
4363
4364



































4365
4366
4367
4368
4369
4370
4371
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: {    /* out2-prerelease */



































  break;
};
#endif /* SQLITE_OMIT_PRAGMA */


/* Opcode: Expire P1 * * * *
**
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
  u8 isWriteLock = (u8)pOp->p3;
  if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
    int p1 = pOp->p1; 
    assert( p1>=0 && p1<db->nDb );
    assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
    assert( isWriteLock==0 || isWriteLock==1 );
    rc = sqlite4BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
    if( (rc&0xFF)==SQLITE_LOCKED ){
      const char *z = pOp->p4.z;
      sqlite4SetString(&p->zErrMsg, db, "database table is locked: %s", z);
    }
  }
  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**







<
<
<
<
<
<
<
<
<
<
<
<







4397
4398
4399
4400
4401
4402
4403












4404
4405
4406
4407
4408
4409
4410
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {












  break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;
  sqlite4VdbeLeave(p);
  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite4SetString(&p->zErrMsg, db, "string or blob too big");







<







4869
4870
4871
4872
4873
4874
4875

4876
4877
4878
4879
4880
4881
4882
  }

  /* This is the only way out of this procedure.  We have to
  ** release the mutexes on btrees that were acquired at the
  ** top. */
vdbe_return:
  db->lastRowid = lastRowid;

  return rc;

  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  ** is encountered.
  */
too_big:
  sqlite4SetString(&p->zErrMsg, db, "string or blob too big");

Changes to src/vdbe.h.

29
30
31
32
33
34
35

36
37
38
39
40
41
42
/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;


/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {







>







29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/*
** The names of the following types declared in vdbeInt.h are required
** for the VdbeOp definition.
*/
typedef struct VdbeFunc VdbeFunc;
typedef struct Mem Mem;
typedef struct SubProgram SubProgram;
typedef struct VdbeCursor VdbeCursor;

/*
** A single instruction of the virtual machine has an opcode
** and as many as three operands.  The instruction is recorded
** as an instance of the following structure:
*/
struct VdbeOp {
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(BtCursor *, int *);
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */







|







58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    VdbeFunc *pVdbeFunc;   /* Used when p4type is P4_VDBEFUNC */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
    int (*xAdvance)(VdbeCursor*);
  } p4;
#ifdef SQLITE_DEBUG
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  int cnt;                 /* Number of times this instruction was executed */
  u64 cycles;              /* Total time spent executing this instruction */
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
void sqlite4VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite4VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite4VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite4VdbeChangeP5(Vdbe*, u8 P5);
void sqlite4VdbeJumpHere(Vdbe*, int addr);
void sqlite4VdbeChangeToNoop(Vdbe*, int addr);
void sqlite4VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite4VdbeUsesBtree(Vdbe*, int);
VdbeOp *sqlite4VdbeGetOp(Vdbe*, int);
int sqlite4VdbeMakeLabel(Vdbe*);
void sqlite4VdbeRunOnlyOnce(Vdbe*);
void sqlite4VdbeDelete(Vdbe*);
void sqlite4VdbeDeleteObject(sqlite4*,Vdbe*);
void sqlite4VdbeMakeReady(Vdbe*,Parse*);
int sqlite4VdbeFinalize(Vdbe*);







|







180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
void sqlite4VdbeChangeP1(Vdbe*, u32 addr, int P1);
void sqlite4VdbeChangeP2(Vdbe*, u32 addr, int P2);
void sqlite4VdbeChangeP3(Vdbe*, u32 addr, int P3);
void sqlite4VdbeChangeP5(Vdbe*, u8 P5);
void sqlite4VdbeJumpHere(Vdbe*, int addr);
void sqlite4VdbeChangeToNoop(Vdbe*, int addr);
void sqlite4VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N);
void sqlite4VdbeUsesStorage(Vdbe*, int);
VdbeOp *sqlite4VdbeGetOp(Vdbe*, int);
int sqlite4VdbeMakeLabel(Vdbe*);
void sqlite4VdbeRunOnlyOnce(Vdbe*);
void sqlite4VdbeDelete(Vdbe*);
void sqlite4VdbeDeleteObject(sqlite4*,Vdbe*);
void sqlite4VdbeMakeReady(Vdbe*,Parse*);
int sqlite4VdbeFinalize(Vdbe*);

Changes to src/vdbeInt.h.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/* Opaque type used by the explainer */
typedef struct Explain Explain;

/* Opaque type used by vdbecodec.c */
typedef struct ValueDecoder ValueDecoder;

/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree.  You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
** 
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
*/
struct VdbeCursor {
  BtCursor *pCursor;    /* The cursor structure of the backend */
  KVCursor *pKVCur;     /* The cursor structure of the backend */
  Btree *pBt;           /* Separate file holding temporary table */
  KVStore *pTmpKV;      /* Separate file holding a temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
  int iRoot;            /* Root page of the table */
  int pseudoTableReg;   /* Register holding pseudotable content. */
  int nField;           /* Number of fields in the header */
  Bool zeroed;          /* True if zeroed out and ready for reuse */
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */
  Bool deferredMoveto;  /* A call to sqlite4BtreeMoveto() is needed */
  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */
  Bool isSorter;        /* True if a new-style sorter */
  sqlite4_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite4_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite4BtreeMoveto() */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Result of last sqlite4BtreeMoveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
  ** CACHE_STALE and so setting cacheStatus=CACHE_STALE guarantees that
  ** the cache is out of date.
  **
  ** aRow might point to (ephemeral) data for the current row, or it might
  ** be NULL.
  */
  u32 cacheStatus;      /* Cache is valid if this matches Vdbe.cacheCtr */
  int payloadSize;      /* Total number of bytes in the record */
  u32 *aType;           /* Type values for all entries in the record */
  u32 *aOffset;         /* Cached offsets to the start of each columns data */
  u8 *aRow;             /* Data for the current row, if all on one page */
};
typedef struct VdbeCursor VdbeCursor;

/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific







|
|
|







<

<











<







|



|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78















79
80
81
82
83
84
85
/* Opaque type used by the explainer */
typedef struct Explain Explain;

/* Opaque type used by vdbecodec.c */
typedef struct ValueDecoder ValueDecoder;

/*
** A cursor is a pointer into a single database.
** The cursor can seek to an entry with a particular key, or
** loop over all entries.  You can also insert new
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
** 
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.
*/
struct VdbeCursor {

  KVCursor *pKVCur;     /* The cursor structure of the backend */

  KVStore *pTmpKV;      /* Separate file holding a temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int iDb;              /* Index of cursor database in db->aDb[] (or -1) */
  int iRoot;            /* Root page of the table */
  int pseudoTableReg;   /* Register holding pseudotable content. */
  int nField;           /* Number of fields in the header */
  Bool zeroed;          /* True if zeroed out and ready for reuse */
  Bool rowidIsValid;    /* True if lastRowid is valid */
  Bool atFirst;         /* True if pointing to first entry */
  Bool useRandomRowid;  /* Generate new record numbers semi-randomly */
  Bool nullRow;         /* True if pointing to a row with no data */

  Bool isTable;         /* True if a table requiring integer keys */
  Bool isIndex;         /* True if an index containing keys only - no data */
  Bool isOrdered;       /* True if the underlying table is BTREE_UNORDERED */
  Bool isSorter;        /* True if a new-style sorter */
  sqlite4_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */
  const sqlite4_module *pModule;     /* Module for cursor pVtabCursor */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred move-to */
  i64 lastRowid;        /* Last rowid from a Next or NextIdx operation */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */

  /* Result of last sqlite4-Moveto() done by an OP_NotExists or 
  ** OP_IsUnique opcode on this cursor. */
  int seekResult;















};
typedef struct VdbeCursor VdbeCursor;

/*
** When a sub-program is executed (OP_Program), a structure of this type
** is allocated to store the current value of the program counter, as
** well as the current memory cell array and various other frame specific
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
*/
#define MEM_Term      0x0200   /* String rep is nul terminated */
#define MEM_Dyn       0x0400   /* Need to call sqliteFree() on Mem.z */
#define MEM_Static    0x0800   /* Mem.z points to a static string */
#define MEM_Ephem     0x1000   /* Mem.z points to an ephemeral string */
#define MEM_Agg       0x2000   /* Mem.z points to an agg function context */
#define MEM_Zero      0x4000   /* Mem.i contains count of 0s appended to blob */
#ifdef SQLITE_OMIT_INCRBLOB
  #undef MEM_Zero
  #define MEM_Zero 0x0000
#endif

/*
** Clear any existing type flags from a Mem and replace them with f
*/
#define MemSetTypeFlag(p, f) \
   ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)








<
<
<
<







184
185
186
187
188
189
190




191
192
193
194
195
196
197
*/
#define MEM_Term      0x0200   /* String rep is nul terminated */
#define MEM_Dyn       0x0400   /* Need to call sqliteFree() on Mem.z */
#define MEM_Static    0x0800   /* Mem.z points to a static string */
#define MEM_Ephem     0x1000   /* Mem.z points to an ephemeral string */
#define MEM_Agg       0x2000   /* Mem.z points to an agg function context */
#define MEM_Zero      0x4000   /* Mem.i contains count of 0s appended to blob */





/*
** Clear any existing type flags from a Mem and replace them with f
*/
#define MemSetTypeFlag(p, f) \
   ((p)->flags = ((p)->flags&~(MEM_TypeMask|MEM_Zero))|f)

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 usesStmtJournal;     /* True if uses a statement journal */
  u8 readOnly;            /* True for read-only statements */
  u8 isPrepareV2;         /* True if prepared with prepare_v2() */
  int nChange;            /* Number of db changes made since last reset */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  int iStatement;         /* Statement number (or 0 if has not opened stmt) */
  int aCounter[3];        /* Counters used by sqlite4_stmt_status() */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
  char *zSql;             /* Text of the SQL statement that generated this */







|



|
<
<







300
301
302
303
304
305
306
307
308
309
310
311


312
313
314
315
316
317
318
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 explain;             /* True if EXPLAIN present on SQL command */
  u8 changeCntOn;         /* True to update the change-counter */
  u8 expired;             /* True if the VM needs to be recompiled */
  u8 runOnlyOnce;         /* Automatically expire on reset */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  u8 inVtabMethod;        /* See comments above */
  u8 needSavepoint;       /* True if a change might abort and needs savepoint */
  u8 readOnly;            /* True for read-only statements */
  u8 isPrepareV2;         /* True if prepared with prepare_v2() */
  int nChange;            /* Number of db changes made since last reset */
  yDbMask stmtTransMask;  /* db->aDb[] entries that have a subtransaction */


  int aCounter[3];        /* Counters used by sqlite4_stmt_status() */
#ifndef SQLITE_OMIT_TRACE
  i64 startTime;          /* Time when query started - used for profiling */
#endif
  i64 nFkConstraint;      /* Number of imm. FK constraints this VM */
  i64 nStmtDefCons;       /* Number of def. constraints when stmt started */
  char *zSql;             /* Text of the SQL statement that generated this */
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */

/*
** Function prototypes
*/
void sqlite4VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);
int sqlite4VdbeCursorMoveto(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite4VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite4VdbeSerialTypeLen(u32);
u32 sqlite4VdbeSerialType(Mem*, int);
u32 sqlite4VdbeSerialPut(unsigned char*, int, Mem*, int);
u32 sqlite4VdbeSerialGet(const unsigned char*, u32, Mem*);







<







342
343
344
345
346
347
348

349
350
351
352
353
354
355
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */

/*
** Function prototypes
*/
void sqlite4VdbeFreeCursor(Vdbe *, VdbeCursor*);
void sqliteVdbePopStack(Vdbe*,int);

#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite4VdbePrintOp(FILE*, int, Op*);
#endif
u32 sqlite4VdbeSerialTypeLen(u32);
u32 sqlite4VdbeSerialType(Mem*, int);
u32 sqlite4VdbeSerialPut(unsigned char*, int, Mem*, int);
u32 sqlite4VdbeSerialGet(const unsigned char*, u32, Mem*);
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int iTabno,                  /* The table this key applies to */
  KeyInfo *pKeyInfo,           /* Collating sequence information */
  u8 **pzOut,                  /* Write the resulting key here */
  int *pnOut                   /* Number of bytes in the key */

);
int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite4VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*);
int sqlite4VdbeIdxRowid(sqlite4*, BtCursor *, i64 *);
int sqlite4MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite4VdbeExec(Vdbe*);
int sqlite4VdbeList(Vdbe*);
int sqlite4VdbeHalt(Vdbe*);
int sqlite4VdbeChangeEncoding(Mem *, int);
int sqlite4VdbeMemTooBig(Mem*);
int sqlite4VdbeMemCopy(Mem*, const Mem*);







|
>

<
|
|







379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int iTabno,                  /* The table this key applies to */
  KeyInfo *pKeyInfo,           /* Collating sequence information */
  u8 **pzOut,                  /* Write the resulting key here */
  int *pnOut,                  /* Number of bytes in the key */
  int *pnShort                 /* Number of bytes omitting primary key */
);

int sqlite4VdbeEncodeIntKey(u8 *aBuf,sqlite4_int64 v);
int sqlite4VdbeDecodeIntKey(const KVByteArray*, KVSize, sqlite4_int64*);
int sqlite4MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite4VdbeExec(Vdbe*);
int sqlite4VdbeList(Vdbe*);
int sqlite4VdbeHalt(Vdbe*);
int sqlite4VdbeChangeEncoding(Mem *, int);
int sqlite4VdbeMemTooBig(Mem*);
int sqlite4VdbeMemCopy(Mem*, const Mem*);
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457



458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
int sqlite4VdbeMemStringify(Mem*, int);
i64 sqlite4VdbeIntValue(Mem*);
int sqlite4VdbeMemIntegerify(Mem*);
double sqlite4VdbeRealValue(Mem*);
void sqlite4VdbeIntegerAffinity(Mem*);
int sqlite4VdbeMemRealify(Mem*);
int sqlite4VdbeMemNumerify(Mem*);
int sqlite4VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite4VdbeMemRelease(Mem *p);
void sqlite4VdbeMemReleaseExternal(Mem *p);
#define VdbeMemRelease(X)  \
  if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \
    sqlite4VdbeMemReleaseExternal(X);
int sqlite4VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite4OpcodeName(int);
int sqlite4VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite4VdbeCloseStatement(Vdbe *, int);
void sqlite4VdbeFrameDelete(VdbeFrame*);
int sqlite4VdbeFrameRestore(VdbeFrame *);
void sqlite4VdbeMemStoreType(Mem *pMem);
int sqlite4VdbeTransferError(Vdbe *p);




#ifdef SQLITE_OMIT_MERGE_SORT
# define sqlite4VdbeSorterInit(Y,Z)      SQLITE_OK
# define sqlite4VdbeSorterWrite(X,Y,Z)   SQLITE_OK
# define sqlite4VdbeSorterClose(Y,Z)
# define sqlite4VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite4VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
int sqlite4VdbeSorterInit(sqlite4 *, VdbeCursor *);
void sqlite4VdbeSorterClose(sqlite4 *, VdbeCursor *);
int sqlite4VdbeSorterRowkey(VdbeCursor *, Mem *);
int sqlite4VdbeSorterNext(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterRewind(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterWrite(sqlite4 *, VdbeCursor *, Mem *);
int sqlite4VdbeSorterCompare(VdbeCursor *, Mem *, int *);
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
  void sqlite4VdbeEnter(Vdbe*);
  void sqlite4VdbeLeave(Vdbe*);
#else
# define sqlite4VdbeEnter(X)
# define sqlite4VdbeLeave(X)
#endif

#ifdef SQLITE_DEBUG
void sqlite4VdbeMemAboutToChange(Vdbe*,Mem*);
#endif

#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite4VdbeCheckFk(Vdbe *, int);
#else
# define sqlite4VdbeCheckFk(p,i) 0
#endif

int sqlite4VdbeMemTranslate(Mem*, u8);
#ifdef SQLITE_DEBUG
  void sqlite4VdbePrintSql(Vdbe*);
  void sqlite4VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
int sqlite4VdbeMemHandleBom(Mem *pMem);

#ifndef SQLITE_OMIT_INCRBLOB
  int sqlite4VdbeMemExpandBlob(Mem *);
  #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite4VdbeMemExpandBlob(P):0)
#else
  #define sqlite4VdbeMemExpandBlob(x) SQLITE_OK
  #define ExpandBlob(P) SQLITE_OK
#endif

#endif /* !defined(_VDBEINT_H_) */







|













>
>
>



















<
<
<
<
<
<
<
<

















|
<
<
<
|
|
<


412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454








455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472



473
474

475
476
int sqlite4VdbeMemStringify(Mem*, int);
i64 sqlite4VdbeIntValue(Mem*);
int sqlite4VdbeMemIntegerify(Mem*);
double sqlite4VdbeRealValue(Mem*);
void sqlite4VdbeIntegerAffinity(Mem*);
int sqlite4VdbeMemRealify(Mem*);
int sqlite4VdbeMemNumerify(Mem*);

void sqlite4VdbeMemRelease(Mem *p);
void sqlite4VdbeMemReleaseExternal(Mem *p);
#define VdbeMemRelease(X)  \
  if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \
    sqlite4VdbeMemReleaseExternal(X);
int sqlite4VdbeMemFinalize(Mem*, FuncDef*);
const char *sqlite4OpcodeName(int);
int sqlite4VdbeMemGrow(Mem *pMem, int n, int preserve);
int sqlite4VdbeCloseStatement(Vdbe *, int);
void sqlite4VdbeFrameDelete(VdbeFrame*);
int sqlite4VdbeFrameRestore(VdbeFrame *);
void sqlite4VdbeMemStoreType(Mem *pMem);
int sqlite4VdbeTransferError(Vdbe *p);
int sqlite4VdbeSeekEnd(VdbeCursor*, int);
int sqlite4VdbeNext(VdbeCursor*);
int sqlite4VdbePrevious(VdbeCursor*);

#ifdef SQLITE_OMIT_MERGE_SORT
# define sqlite4VdbeSorterInit(Y,Z)      SQLITE_OK
# define sqlite4VdbeSorterWrite(X,Y,Z)   SQLITE_OK
# define sqlite4VdbeSorterClose(Y,Z)
# define sqlite4VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite4VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite4VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
int sqlite4VdbeSorterInit(sqlite4 *, VdbeCursor *);
void sqlite4VdbeSorterClose(sqlite4 *, VdbeCursor *);
int sqlite4VdbeSorterRowkey(VdbeCursor *, Mem *);
int sqlite4VdbeSorterNext(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterRewind(sqlite4 *, VdbeCursor *, int *);
int sqlite4VdbeSorterWrite(sqlite4 *, VdbeCursor *, Mem *);
int sqlite4VdbeSorterCompare(VdbeCursor *, Mem *, int *);
#endif









#ifdef SQLITE_DEBUG
void sqlite4VdbeMemAboutToChange(Vdbe*,Mem*);
#endif

#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite4VdbeCheckFk(Vdbe *, int);
#else
# define sqlite4VdbeCheckFk(p,i) 0
#endif

int sqlite4VdbeMemTranslate(Mem*, u8);
#ifdef SQLITE_DEBUG
  void sqlite4VdbePrintSql(Vdbe*);
  void sqlite4VdbeMemPrettyPrint(Mem *pMem, char *zBuf);
#endif
int sqlite4VdbeMemHandleBom(Mem *pMem);





#define sqlite4VdbeMemExpandBlob(x) SQLITE_OK
#define ExpandBlob(P) SQLITE_OK


#endif /* !defined(_VDBEINT_H_) */

Changes to src/vdbeapi.c.

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
void sqlite4_result_error_nomem(sqlite4_context *pCtx){
  assert( sqlite4_mutex_held(pCtx->s.db->mutex) );
  sqlite4VdbeMemSetNull(&pCtx->s);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->s.db->mallocFailed = 1;
}

/*
** This function is called after a transaction has been committed. It 
** invokes callbacks registered with sqlite4_wal_hook() as required.
*/
static int doWalCallbacks(sqlite4 *db){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_WAL
  int i;
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      int nEntry = sqlite4PagerWalCallback(sqlite4BtreePager(pBt));
      if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
        rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
      }
    }
  }
#endif
  return rc;
}

/*
** Execute the statement pStmt, either until a row of data is ready, the
** statement is completely executed or an error occurs.
**
** This routine implements the bulk of the logic behind the sqlite_step()
** API.  The only thing omitted is the automatic recompile if a 
** schema change has occurred.  That detail is handled by the







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







304
305
306
307
308
309
310





















311
312
313
314
315
316
317
void sqlite4_result_error_nomem(sqlite4_context *pCtx){
  assert( sqlite4_mutex_held(pCtx->s.db->mutex) );
  sqlite4VdbeMemSetNull(&pCtx->s);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->s.db->mallocFailed = 1;
}






















/*
** Execute the statement pStmt, either until a row of data is ready, the
** statement is completely executed or an error occurs.
**
** This routine implements the bulk of the logic behind the sqlite_step()
** API.  The only thing omitted is the automatic recompile if a 
** schema change has occurred.  That detail is handled by the
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
  if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
    sqlite4_int64 iNow;
    sqlite4OsCurrentTimeInt64(db->pVfs, &iNow);
    db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
  }
#endif

  if( rc==SQLITE_DONE ){
    assert( p->rc==SQLITE_OK );
    p->rc = doWalCallbacks(db);
    if( p->rc!=SQLITE_OK ){
      rc = SQLITE_ERROR;
    }
  }

  db->errCode = rc;
  if( SQLITE_NOMEM==sqlite4ApiExit(p->db, p->rc) ){
    p->rc = SQLITE_NOMEM;
  }
end_of_step:
  /* At this point local variable rc holds the value that should be 
  ** returned if this statement was compiled using the legacy 







<
<
<
<
<
<
<
<







400
401
402
403
404
405
406








407
408
409
410
411
412
413
  if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
    sqlite4_int64 iNow;
    sqlite4OsCurrentTimeInt64(db->pVfs, &iNow);
    db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
  }
#endif









  db->errCode = rc;
  if( SQLITE_NOMEM==sqlite4ApiExit(p->db, p->rc) ){
    p->rc = SQLITE_NOMEM;
  }
end_of_step:
  /* At this point local variable rc holds the value that should be 
  ** returned if this statement was compiled using the legacy 

Changes to src/vdbeaux.c.

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
** The zWhere string must have been obtained from sqlite4_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite4VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  int addr = sqlite4VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
  sqlite4VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
  for(j=0; j<p->db->nDb; j++) sqlite4VdbeUsesBtree(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite4VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */







|







202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
** The zWhere string must have been obtained from sqlite4_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite4VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
  int j;
  int addr = sqlite4VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
  sqlite4VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
  for(j=0; j<p->db->nDb; j++) sqlite4VdbeUsesStorage(p, j);
}

/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite4VdbeAddOp4Int(
  Vdbe *p,            /* Add the opcode to this VM */
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }else if( opcode==OP_Next || opcode==OP_SorterNext ){
      pOp->p4.xAdvance = sqlite4BtreeNext;
      pOp->p4type = P4_ADVANCE;
    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite4BtreePrevious;
      pOp->p4type = P4_ADVANCE;
    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }







|


|







431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
      int n;
      assert( p->nOp - i >= 3 );
      assert( pOp[-1].opcode==OP_Integer );
      n = pOp[-1].p1;
      if( n>nMaxArgs ) nMaxArgs = n;
#endif
    }else if( opcode==OP_Next || opcode==OP_SorterNext ){
      pOp->p4.xAdvance = sqlite4VdbeNext;
      pOp->p4type = P4_ADVANCE;
    }else if( opcode==OP_Prev ){
      pOp->p4.xAdvance = sqlite4VdbePrevious;
      pOp->p4type = P4_ADVANCE;
    }

    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<p->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
** the number of entries in the Vdbe.apArg[] array required to execute the 
** returned program.
*/
VdbeOp *sqlite4VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
  VdbeOp *aOp = p->aOp;
  assert( aOp && !p->db->mallocFailed );

  /* Check that sqlite4VdbeUsesBtree() was not called on this VM */
  assert( p->btreeMask==0 );

  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

/*







<
<
<







472
473
474
475
476
477
478



479
480
481
482
483
484
485
** the number of entries in the Vdbe.apArg[] array required to execute the 
** returned program.
*/
VdbeOp *sqlite4VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
  VdbeOp *aOp = p->aOp;
  assert( aOp && !p->db->mallocFailed );




  resolveP2Values(p, pnMaxArg);
  *pnOp = p->nOp;
  p->aOp = 0;
  return aOp;
}

/*
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
  }
  assert( zP4!=0 );
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statements need to know in advance the complete set of
** attached databases that will be use.  A mask of these databases
** is maintained in p->btreeMask.  The p->lockMask value is the subset of
** p->btreeMask of databases that will require a lock.
*/
void sqlite4VdbeUsesBtree(Vdbe *p, int i){
  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
  assert( i<(int)sizeof(p->btreeMask)*8 );
  p->btreeMask |= ((yDbMask)1)<<i;
  if( i!=1 && sqlite4BtreeSharable(p->db->aDb[i].pBt) ){
    p->lockMask |= ((yDbMask)1)<<i;
  }
}

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
** If SQLite is not threadsafe but does support shared-cache mode, then
** sqlite4BtreeEnter() is invoked to set the BtShared.db variables
** of all of BtShared structures accessible via the database handle 
** associated with the VM.
**
** If SQLite is not threadsafe and does not support shared-cache mode, this
** function is a no-op.
**
** The p->btreeMask field is a bitmask of all btrees that the prepared 
** statement p will ever use.  Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache.  Then the runtime of
** this routine is N*N.  But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite4VdbeEnter(Vdbe *p){
  int i;
  yDbMask mask;
  sqlite4 *db;
  Db *aDb;
  int nDb;
  if( p->lockMask==0 ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0, mask=1; i<nDb; i++, mask += mask){
    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
      sqlite4BtreeEnter(aDb[i].pBt);
    }
  }
}
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** Unlock all of the btrees previously locked by a call to sqlite4VdbeEnter().
*/
void sqlite4VdbeLeave(Vdbe *p){
  int i;
  yDbMask mask;
  sqlite4 *db;
  Db *aDb;
  int nDb;
  if( p->lockMask==0 ) return;  /* The common case */
  db = p->db;
  aDb = db->aDb;
  nDb = db->nDb;
  for(i=0, mask=1; i<nDb; i++, mask += mask){
    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
      sqlite4BtreeLeave(aDb[i].pBt);
    }
  }
}
#endif

#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite4VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP4;







|
<
<
<
<
<

|

<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







954
955
956
957
958
959
960
961





962
963
964




965
966






























































967
968
969
970
971
972
973
  }
  assert( zP4!=0 );
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the database at db->aDb[i] is used.





*/
void sqlite4VdbeUsesStorage(Vdbe *p, int i){
  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );




}
































































#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode.  This routine is used for debugging only.
*/
void sqlite4VdbePrintOp(FILE *pOut, int pc, Op *pOp){
  char *zP4;
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->iStatement = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){
    p->aOp[i].cnt = 0;
    p->aOp[i].cycles = 0;
  }
#endif







|







1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
  p->pc = -1;
  p->rc = SQLITE_OK;
  p->errorAction = OE_Abort;
  p->magic = VDBE_MAGIC_RUN;
  p->nChange = 0;
  p->cacheCtr = 1;
  p->minWriteFileFormat = 255;
  p->stmtTransMask = 0;
  p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
  for(i=0; i<p->nOp; i++){
    p->aOp[i].cnt = 0;
    p->aOp[i].cycles = 0;
  }
#endif
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.
  */
  zCsr = (u8*)&p->aOp[p->nOp];       /* Memory avaliable for allocation */
  zEnd = (u8*)&p->aOp[p->nOpAlloc];  /* First byte past end of zCsr[] */

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
  p->expired = 0;







|







1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.
  */
  zCsr = (u8*)&p->aOp[p->nOp];       /* Memory avaliable for allocation */
  zEnd = (u8*)&p->aOp[p->nOpAlloc];  /* First byte past end of zCsr[] */

  resolveP2Values(p, &nArg);
  p->needSavepoint = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
  p->expired = 0;
1575
1576
1577
1578
1579
1580
1581
1582


1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
** happens to hold.
*/
void sqlite4VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }
  sqlite4VdbeSorterClose(p->db, pCx);
  if( pCx->pBt ){


    sqlite4BtreeClose(pCx->pBt);
    sqlite4KVStoreClose(pCx->pTmpKV);
    /* The pCx->pCursor will be close automatically, if it exists, by
    ** the call above. */
  }else if( pCx->pCursor ){
    sqlite4BtreeCloseCursor(pCx->pCursor);
    sqlite4KVCursorClose(pCx->pKVCur);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pCx->pVtabCursor ){
    sqlite4_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite4_module *pModule = pCx->pModule;
    p->inVtabMethod = 1;
    pModule->xClose(pVtabCursor);
    p->inVtabMethod = 0;







|
>
>
|

<
<
<
<
<








1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512





1513
1514
1515
1516
1517
1518
1519
1520
** happens to hold.
*/
void sqlite4VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }
  sqlite4VdbeSorterClose(p->db, pCx);
  if( pCx->pKVCur ){
    sqlite4KVCursorClose(pCx->pKVCur);
  }
  if( pCx->pTmpKV ){
    sqlite4KVStoreClose(pCx->pTmpKV);





  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pCx->pVtabCursor ){
    sqlite4_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite4_module *pModule = pCx->pModule;
    p->inVtabMethod = 1;
    pModule->xClose(pVtabCursor);
    p->inVtabMethod = 0;
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
  /* With this option, sqlite4VtabSync() is defined to be simply 
  ** SQLITE_OK so p is not used. 
  */
  UNUSED_PARAMETER(p);
#endif

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction. This has to
  ** be done before determining whether a master journal file is 
  ** required, as an xSync() callback may add an attached database
  ** to the transaction.
  */
  rc = sqlite4VtabSync(db, &p->zErrMsg);

  /* This loop determines (a) if the commit hook should be invoked and
  ** (b) how many database files have open write transactions, not 
  ** including the temp database. (b) is important because if more than 
  ** one database file has an open write transaction, a master journal
  ** file is required for an atomic commit.
  */ 
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
    Btree *pBt = db->aDb[i].pBt;
    if( sqlite4BtreeIsInTrans(pBt) ){
      needXcommit = 1;
      if( i!=1 ) nTrans++;
      rc = sqlite4PagerExclusiveLock(sqlite4BtreePager(pBt));
    }
  }
  if( rc!=SQLITE_OK ){
    return rc;
  }

  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT;
    }
  }

  /* The simple case - no more than one database file (not counting the
  ** TEMP database) has a transaction active.   There is no need for the
  ** master-journal.
  **
  ** If the return value of sqlite4BtreeGetFilename() is a zero length
  ** string, it means the main database is :memory: or a temp file.  In 
  ** that case we do not support atomic multi-file commits, so use the 
  ** simple case then too.
  */
  if( 0==sqlite4Strlen30(sqlite4BtreeGetFilename(db->aDb[0].pBt))
   || nTrans<=1
  ){
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite4BtreeCommitPhaseOne(pBt, 0);
      }
    }

    /* Do the commit only if all databases successfully complete phase 1. 
    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
    ** IO error while deleting or truncating a journal file. It is unlikely,
    ** but could happen. In this case abandon processing and return the error.
    */
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite4BtreeCommitPhaseTwo(pBt, 0);
      }
    }
    if( rc==SQLITE_OK ){
      sqlite4VtabCommit(db);
    }
  }

  /* The complex case - There is a multi-file write-transaction active.
  ** This requires a master journal file to ensure the transaction is
  ** committed atomicly.
  */
#ifndef SQLITE_OMIT_DISKIO
  else{
    sqlite4_vfs *pVfs = db->pVfs;
    int needSync = 0;
    char *zMaster = 0;   /* File-name for the master journal */
    char const *zMainFile = sqlite4BtreeGetFilename(db->aDb[0].pBt);
    sqlite4_file *pMaster = 0;
    i64 offset = 0;
    int res;
    int retryCount = 0;
    int nMainFile;

    /* Select a master journal file name */
    nMainFile = sqlite4Strlen30(zMainFile);
    zMaster = sqlite4MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
    if( zMaster==0 ) return SQLITE_NOMEM;
    do {
      u32 iRandom;
      if( retryCount ){
        if( retryCount>100 ){
          sqlite4_log(SQLITE_FULL, "MJ delete: %s", zMaster);
          sqlite4OsDelete(pVfs, zMaster, 0);
          break;
        }else if( retryCount==1 ){
          sqlite4_log(SQLITE_FULL, "MJ collide: %s", zMaster);
        }
      }
      retryCount++;
      sqlite4_randomness(sizeof(iRandom), &iRandom);
      sqlite4_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
                               (iRandom>>8)&0xffffff, iRandom&0xff);
      /* The antipenultimate character of the master journal name must
      ** be "9" to avoid name collisions when using 8+3 filenames. */
      assert( zMaster[sqlite4Strlen30(zMaster)-3]=='9' );
      sqlite4FileSuffix3(zMainFile, zMaster);
      rc = sqlite4OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
    }while( rc==SQLITE_OK && res );
    if( rc==SQLITE_OK ){
      /* Open the master journal. */
      rc = sqlite4OsOpenMalloc(pVfs, zMaster, &pMaster, 
          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
          SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
      );
    }
    if( rc!=SQLITE_OK ){
      sqlite4DbFree(db, zMaster);
      return rc;
    }
 
    /* Write the name of each database file in the transaction into the new
    ** master journal file. If an error occurs at this point close
    ** and delete the master journal file. All the individual journal files
    ** still have 'null' as the master journal pointer, so they will roll
    ** back independently if a failure occurs.
    */
    for(i=0; i<db->nDb; i++){
      Btree *pBt = db->aDb[i].pBt;
      if( sqlite4BtreeIsInTrans(pBt) ){
        char const *zFile = sqlite4BtreeGetJournalname(pBt);
        if( zFile==0 ){
          continue;  /* Ignore TEMP and :memory: databases */
        }
        assert( zFile[0]!=0 );
        if( !needSync && !sqlite4BtreeSyncDisabled(pBt) ){
          needSync = 1;
        }
        rc = sqlite4OsWrite(pMaster, zFile, sqlite4Strlen30(zFile)+1, offset);
        offset += sqlite4Strlen30(zFile)+1;
        if( rc!=SQLITE_OK ){
          sqlite4OsCloseFree(pMaster);
          sqlite4OsDelete(pVfs, zMaster, 0);
          sqlite4DbFree(db, zMaster);
          return rc;
        }
      }
    }

    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
    ** flag is set this is not required.
    */
    if( needSync 
     && 0==(sqlite4OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
     && SQLITE_OK!=(rc = sqlite4OsSync(pMaster, SQLITE_SYNC_NORMAL))
    ){
      sqlite4OsCloseFree(pMaster);
      sqlite4OsDelete(pVfs, zMaster, 0);
      sqlite4DbFree(db, zMaster);
      return rc;
    }

    /* Sync all the db files involved in the transaction. The same call
    ** sets the master journal pointer in each individual journal. If
    ** an error occurs here, do not delete the master journal file.
    **
    ** If the error occurs during the first call to
    ** sqlite4BtreeCommitPhaseOne(), then there is a chance that the
    ** master journal file will be orphaned. But we cannot delete it,
    ** in case the master journal file name was written into the journal
    ** file before the failure occurred.
    */
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite4BtreeCommitPhaseOne(pBt, zMaster);
      }
    }
    sqlite4OsCloseFree(pMaster);
    assert( rc!=SQLITE_BUSY );
    if( rc!=SQLITE_OK ){
      sqlite4DbFree(db, zMaster);
      return rc;
    }

    /* Delete the master journal file. This commits the transaction. After
    ** doing this the directory is synced again before any individual
    ** transaction files are deleted.
    */
    rc = sqlite4OsDelete(pVfs, zMaster, 1);
    sqlite4DbFree(db, zMaster);
    zMaster = 0;
    if( rc ){
      return rc;
    }

    /* All files and directories have already been synced, so the following
    ** calls to sqlite4BtreeCommitPhaseTwo() are only closing files and
    ** deleting or truncating journals. If something goes wrong while
    ** this is happening we don't really care. The integrity of the
    ** transaction is already guaranteed, but some stray 'cold' journals
    ** may be lying around. Returning an error code won't help matters.
    */
    disable_simulated_io_errors();
    sqlite4BeginBenignMalloc();
    for(i=0; i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        sqlite4BtreeCommitPhaseTwo(pBt, 1);
      }
    }
    sqlite4EndBenignMalloc();
    enable_simulated_io_errors();

    sqlite4VtabCommit(db);
  }
#endif

  return rc;
}

/* 
** This routine checks that the sqlite4.activeVdbeCnt count variable
** matches the number of vdbe's in the list sqlite4.pVdbe that are







|
<
<
<



<
<
<
<
|
<
|
|
|

<
|


<
<
<









<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
<
<
<
<
<
<







1676
1677
1678
1679
1680
1681
1682
1683



1684
1685
1686




1687

1688
1689
1690
1691

1692
1693
1694



1695
1696
1697
1698
1699
1700
1701
1702
1703


















1704





1705
1706



















































































































1707

































1708
1709
1710






1711
1712
1713
1714
1715
1716
1717
  /* With this option, sqlite4VtabSync() is defined to be simply 
  ** SQLITE_OK so p is not used. 
  */
  UNUSED_PARAMETER(p);
#endif

  /* Before doing anything else, call the xSync() callback for any
  ** virtual module tables written in this transaction.



  */
  rc = sqlite4VtabSync(db, &p->zErrMsg);





  /* Phase one commit */

  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    KVStore *pKV = db->aDb[i].pKV;
    if( pKV && pKV->iTransLevel ){
      needXcommit = 1;

      rc = sqlite4KVStoreCommitPhaseOne(pKV, 0);
    }
  }




  /* If there are any write-transactions at all, invoke the commit hook */
  if( needXcommit && db->xCommitCallback ){
    rc = db->xCommitCallback(db->pCommitArg);
    if( rc ){
      return SQLITE_CONSTRAINT;
    }
  }



















  /* Do phase two of the commit */





  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    KVStore *pKV = db->aDb[i].pKV;



















































































































    if( pKV ){

































      rc = sqlite4KVStoreCommitPhaseTwo(pKV, 0);
    }
  }







  return rc;
}

/* 
** This routine checks that the sqlite4.activeVdbeCnt count variable
** matches the number of vdbe's in the list sqlite4.pVdbe that are
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
  assert( cnt==db->activeVdbeCnt );
  assert( nWrite==db->writeVdbeCnt );
}
#else
#define checkActiveVdbeCnt(x)
#endif

/*
** For every Btree that in database connection db which 
** has been modified, "trip" or invalidate each cursor in
** that Btree might have been modified so that the cursor
** can never be used again.  This happens when a rollback
*** occurs.  We have to trip all the other cursors, even
** cursor from other VMs in different database connections,
** so that none of them try to use the data at which they
** were pointing and which now may have been changed due
** to the rollback.
**
** Remember that a rollback can delete tables complete and
** reorder rootpages.  So it is not sufficient just to save
** the state of the cursor.  We have to invalidate the cursor
** so that it is never used again.
*/
static void invalidateCursorsOnModifiedBtrees(sqlite4 *db){
  int i;
  for(i=0; i<db->nDb; i++){
    Btree *p = db->aDb[i].pBt;
    if( p && sqlite4BtreeIsInTrans(p) ){
      sqlite4BtreeTripAllCursors(p, SQLITE_ABORT);
    }
  }
}

/*
** If the Vdbe passed as the first argument opened a statement-transaction,
** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
** statement transaction is commtted.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
** Otherwise SQLITE_OK.
*/
int sqlite4VdbeCloseStatement(Vdbe *p, int eOp){
  sqlite4 *const db = p->db;
  int rc = SQLITE_OK;

  /* If p->iStatement is greater than zero, then this Vdbe opened a 
  ** statement transaction that should be closed here. The only exception
  ** is that an IO error may have occured, causing an emergency rollback.
  ** In this case (db->nStatement==0), and there is nothing to do.
  */
  if( db->nStatement && p->iStatement ){
    int i;
    const int iSavepoint = p->iStatement-1;

    assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
    assert( db->nStatement>0 );
    assert( p->iStatement==(db->nStatement+db->nSavepoint) );

    for(i=0; i<db->nDb; i++){ 
      int rc2 = SQLITE_OK;
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        if( eOp==SAVEPOINT_ROLLBACK ){
          rc2 = sqlite4BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
        }
        if( rc2==SQLITE_OK ){
          rc2 = sqlite4BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
        }
        if( rc==SQLITE_OK ){
          rc = rc2;
        }
      }
    }
    db->nStatement--;
    p->iStatement = 0;

    if( rc==SQLITE_OK ){
      if( eOp==SAVEPOINT_ROLLBACK ){
        rc = sqlite4VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
      }
      if( rc==SQLITE_OK ){
        rc = sqlite4VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
      }
    }

    /* If the statement transaction is being rolled back, also restore the 
    ** database handles deferred constraint counter to the value it had when 
    ** the statement transaction was opened.  */
    if( eOp==SAVEPOINT_ROLLBACK ){
      db->nDeferredCons = p->nStmtDefCons;
    }
  }
  return rc;
}

/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<











<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|







1737
1738
1739
1740
1741
1742
1743


























1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754


















































1755
1756
1757
1758
1759
1760
1761
1762
  assert( cnt==db->activeVdbeCnt );
  assert( nWrite==db->writeVdbeCnt );
}
#else
#define checkActiveVdbeCnt(x)
#endif



























/*
** If the Vdbe passed as the first argument opened a statement-transaction,
** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 
** statement transaction is commtted.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 
** Otherwise SQLITE_OK.
*/
int sqlite4VdbeCloseStatement(Vdbe *p, int eOp){


















































  return SQLITE_OK;
}

/*
** This function is called when a transaction opened by the database 
** handle associated with the VM passed as an argument is about to be 
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271

2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code.  If the commit could not complete because of
** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
int sqlite4VdbeHalt(Vdbe *p){
  int rc;                         /* Used to store transient return codes */
  sqlite4 *db = p->db;

  /* This function contains the logic that determines if a statement or
  ** transaction will be committed or rolled back as a result of the
  ** execution of this virtual machine. 
  **
  ** If any of the following errors occur:
  **
  **     SQLITE_NOMEM
  **     SQLITE_IOERR
  **     SQLITE_FULL
  **     SQLITE_INTERRUPT
  **
  ** Then the internal cache might have been left in an inconsistent
  ** state.  We need to rollback the statement transaction, if there is
  ** one, or the complete transaction if there is no statement transaction.
  */

  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }
  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }
  checkActiveVdbeCnt(db);

  /* No commit or rollback needed if the program never started */
  if( p->pc>=0 ){
    int mrc;   /* Primary error code from p->rc */
    int eStatementOp = 0;
    int isSpecialError;            /* Set to true if a 'special' error */

    /* Lock all btrees used by the statement */
    sqlite4VdbeEnter(p);

    /* Check for one of the special errors */
    mrc = p->rc & 0xff;
    assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */
    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
    if( isSpecialError ){
      /* If the query was read-only and the error code is SQLITE_INTERRUPT, 
      ** no rollback is necessary. Otherwise, at least a savepoint 
      ** transaction must be rolled back to restore the database to a 
      ** consistent state.
      **
      ** Even if the statement is read-only, it is important to perform
      ** a statement or transaction rollback operation. If the error 
      ** occured while writing to the journal, sub-journal or database
      ** file as part of an effort to free up cache space (see function
      ** pagerStress() in pager.c), the rollback is required to restore 
      ** the pager to a consistent state.
      */
      if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
        if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
          eStatementOp = SAVEPOINT_ROLLBACK;
        }else{
          /* We are forced to roll back the active transaction. Before doing
          ** so, abort any other statements this handle currently has active.
          */
          invalidateCursorsOnModifiedBtrees(db);
          sqlite4RollbackAll(db);
          sqlite4CloseSavepoints(db);
          db->autoCommit = 1;
        }
      }
    }

    /* Check for immediate foreign key violations. */
    if( p->rc==SQLITE_OK ){
      sqlite4VdbeCheckFk(p, 0);
    }
  
    /* If the auto-commit flag is set and this is the only active writer 
    ** VM, then we do either a commit or rollback of the current transaction. 
    **
    ** Note: This block also runs if one of the special errors handled 
    ** above has occurred. 
    */
    if( !sqlite4VtabInSync(db) 
     && db->autoCommit 
     && db->writeVdbeCnt==(p->readOnly==0) 
    ){
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
        rc = sqlite4VdbeCheckFk(p, 1);
        if( rc!=SQLITE_OK ){
          if( NEVER(p->readOnly) ){
            sqlite4VdbeLeave(p);
            return SQLITE_ERROR;
          }
          rc = SQLITE_CONSTRAINT;
        }else{ 
          /* The auto-commit flag is true, the vdbe program was successful 
          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
          ** key constraints to hold up the transaction. This means a commit 
          ** is required. */
          rc = vdbeCommit(db, p);
        }
        if( rc==SQLITE_BUSY && p->readOnly ){
          sqlite4VdbeLeave(p);
          return SQLITE_BUSY;
        }else if( rc!=SQLITE_OK ){
          p->rc = rc;
          sqlite4RollbackAll(db);
        }else{
          db->nDeferredCons = 0;
          sqlite4CommitInternalChanges(db);
        }
      }else{
        sqlite4RollbackAll(db);
      }
      db->nStatement = 0;
    }else if( eStatementOp==0 ){
      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
        eStatementOp = SAVEPOINT_RELEASE;
      }else if( p->errorAction==OE_Abort ){
        eStatementOp = SAVEPOINT_ROLLBACK;
      }else{
        invalidateCursorsOnModifiedBtrees(db);
        sqlite4RollbackAll(db);
        sqlite4CloseSavepoints(db);
        db->autoCommit = 1;
      }
    }
  
    /* If eStatementOp is non-zero, then a statement transaction needs to
    ** be committed or rolled back. Call sqlite4VdbeCloseStatement() to
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
    ** current statement error code.
    */
    if( eStatementOp ){

      rc = sqlite4VdbeCloseStatement(p, eStatementOp);
      if( rc ){
        if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
          p->rc = rc;
          sqlite4DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        invalidateCursorsOnModifiedBtrees(db);
        sqlite4RollbackAll(db);
        sqlite4CloseSavepoints(db);
        db->autoCommit = 1;
      }
    }
  
    /* If this was an INSERT, UPDATE or DELETE and no statement transaction
    ** has been rolled back, update the database connection change-counter. 
    */
    if( p->changeCntOn ){
      if( eStatementOp!=SAVEPOINT_ROLLBACK ){
        sqlite4VdbeSetChanges(db, p->nChange);
      }else{
        sqlite4VdbeSetChanges(db, 0);
      }
      p->nChange = 0;
    }
  
    /* Rollback or commit any schema changes that occurred. */
    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
      sqlite4ResetInternalSchema(db, -1);
      db->flags = (db->flags | SQLITE_InternChanges);
    }

    /* Release the locks */
    sqlite4VdbeLeave(p);
  }

  /* We have successfully halted and closed the VM.  Record this fact. */
  if( p->pc>=0 ){
    db->activeVdbeCnt--;
    if( !p->readOnly ){
      db->writeVdbeCnt--;
    }
    assert( db->activeVdbeCnt>=db->writeVdbeCnt );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }

  /* If the auto-commit flag is set to true, then any locks that were held
  ** by connection db have now been released. Call sqlite4ConnectionUnlocked() 
  ** to invoke any required unlock-notify callbacks.
  */
  if( db->autoCommit ){
    sqlite4ConnectionUnlocked(db);
  }

  assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}


/*
** Each VDBE holds the result of the most recent sqlite4_step() call
** in p->rc.  This routine sets that result back to SQLITE_OK.







|


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<







<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<







<
<
<





<
|
|
<
<
<
<
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|
|
|
|
|
<
<
|
|
|
<
<
<
<
<
<
|
|
<
<
|
<
<
<
<
<
<
<
>
|
|
<
<
<
<
<
<
|
<
<
<
<
|
<
<
<
<
<
<
<
<
|
<
|
|
<
<
<
<
|
|
<
<
















<
<
<
<
<
<
<
<
<







1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

















1798

1799
1800
1801
1802
1803
1804
1805

1806



1807
























1808











1809
1810
1811
1812
1813
1814
1815



1816
1817
1818
1819
1820

1821
1822




1823
1824
1825
1826
1827
1828
1829
1830
1831

1832
1833
1834
1835
1836
1837
1838
1839
1840


1841
1842
1843






1844
1845


1846







1847
1848
1849






1850




1851








1852

1853
1854




1855
1856


1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872









1873
1874
1875
1876
1877
1878
1879
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code.  If the commit could not complete because of
** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
int sqlite4VdbeHalt(Vdbe *p){
  int rc;
  sqlite4 *db = p->db;


















  if( db->mallocFailed ) p->rc = SQLITE_NOMEM;

  if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
  closeAllCursors(p);
  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_OK;
  }
  checkActiveVdbeCnt(db);


  if( p->pc<0 ){



    /* No commit or rollback needed if the program never started */
























  }else{











    /* Check for immediate foreign key violations. */
    if( p->rc==SQLITE_OK ){
      sqlite4VdbeCheckFk(p, 0);
    }
  
    /* If the auto-commit flag is set and this is the only active writer 
    ** VM, then we do either a commit or rollback of the current transaction. 



    */
    if( !sqlite4VtabInSync(db) 
     && db->autoCommit 
     && db->writeVdbeCnt==(p->readOnly==0) 
    ){

      rc = sqlite4VdbeCheckFk(p, 1);
      if( rc!=SQLITE_OK ){




        rc = SQLITE_CONSTRAINT;
      }else{ 
        /* The auto-commit flag is true, the vdbe program was successful 
        ** or hit an 'OR FAIL' constraint and there are no deferred foreign
        ** key constraints to hold up the transaction. This means a commit 
        ** is required. */
        rc = vdbeCommit(db, p);
      }
      if( rc==SQLITE_BUSY && p->readOnly ){

        /* will return the error */
      }else if( rc!=SQLITE_OK ){
        p->rc = rc;
        sqlite4RollbackAll(db);
      }else{
        db->nDeferredCons = 0;
        sqlite4CommitInternalChanges(db);
      }
    }else{


      /* Not in auto-commit mode.  If the statement failed, rollback
      ** the effects of just this one statement */
      if( p->rc!=SQLITE_OK && p->stmtTransMask!=0 ){






        int i;
        for(i=0; i<db->nDb; i++){


          if( p->stmtTransMask & ((yDbMask)1)<<i ){







            KVStore *pKV = db->aDb[i].pKV;
            rc = sqlite4KVStoreRollback(pKV, pKV->iTransLevel-1);
            if( rc ){






              sqlite4RollbackAll(db);




              break;








            }

          }
        }




      }
    }


  }

  /* We have successfully halted and closed the VM.  Record this fact. */
  if( p->pc>=0 ){
    db->activeVdbeCnt--;
    if( !p->readOnly ){
      db->writeVdbeCnt--;
    }
    assert( db->activeVdbeCnt>=db->writeVdbeCnt );
  }
  p->magic = VDBE_MAGIC_HALT;
  checkActiveVdbeCnt(db);
  if( p->db->mallocFailed ){
    p->rc = SQLITE_NOMEM;
  }










  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}


/*
** Each VDBE holds the result of the most recent sqlite4_step() call
** in p->rc.  This routine sets that result back to SQLITE_OK.
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
    p->pNext->pPrev = p->pPrev;
  }
  p->magic = VDBE_MAGIC_DEAD;
  p->db = 0;
  sqlite4VdbeDeleteObject(db, p);
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite4VdbeCursorMoveto(VdbeCursor *p){
  if( p->deferredMoveto ){
    int res, rc;
#ifdef SQLITE_TEST
    extern int sqlite4_search_count;
#endif
    assert( p->isTable );
    rc = sqlite4BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
    if( rc ) return rc;
    p->lastRowid = p->movetoTarget;
    if( res!=0 ) return SQLITE_CORRUPT_BKPT;
    p->rowidIsValid = 1;
#ifdef SQLITE_TEST
    sqlite4_search_count++;
#endif
    p->deferredMoveto = 0;
    p->cacheStatus = CACHE_STALE;
  }else if( ALWAYS(p->pCursor) ){
    int hasMoved;
    int rc = sqlite4BtreeCursorHasMoved(p->pCursor, &hasMoved);
    if( rc ) return rc;
    if( hasMoved ){
      p->cacheStatus = CACHE_STALE;
      p->nullRow = 1;
    }
  }
  return SQLITE_OK;
}

/*
** The following functions:
**
** sqlite4VdbeSerialType()
** sqlite4VdbeSerialTypeLen()
** sqlite4VdbeSerialLen()
** sqlite4VdbeSerialPut()







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2061
2062
2063
2064
2065
2066
2067










































2068
2069
2070
2071
2072
2073
2074
    p->pNext->pPrev = p->pPrev;
  }
  p->magic = VDBE_MAGIC_DEAD;
  p->db = 0;
  sqlite4VdbeDeleteObject(db, p);
}











































/*
** The following functions:
**
** sqlite4VdbeSerialType()
** sqlite4VdbeSerialTypeLen()
** sqlite4VdbeSerialLen()
** sqlite4VdbeSerialPut()
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
  }else if( idx1<szHdr1 ){
    rc = 1;
  }
  return rc;
}
 

/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.
** So the content cannot be trusted.  Do appropriate checks on the content.
*/
int sqlite4VdbeIdxRowid(sqlite4 *db, BtCursor *pCur, i64 *rowid){
  i64 nCellKey = 0;
  int rc;
  u32 szHdr;        /* Size of the header */
  u32 typeRowid;    /* Serial type of the rowid */
  u32 lenRowid;     /* Size of the rowid */
  Mem m, v;

  UNUSED_PARAMETER(db);

  /* Get the size of the index entry.  Only indices entries of less
  ** than 2GiB are support - anything large must be database corruption.
  ** Any corruption is detected in sqlite4BtreeParseCellPtr(), though, so
  ** this code can safely assume that nCellKey is 32-bits  
  */
  assert( sqlite4BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite4BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );

  /* Read in the complete content of the index entry */
  memset(&m, 0, sizeof(m));
  rc = sqlite4VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
  testcase( szHdr==3 );
  testcase( szHdr==m.n );
  if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
    goto idx_rowid_corruption;
  }

  /* The last field of the index should be an integer - the ROWID.
  ** Verify that the last entry really is an integer. */
  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  testcase( typeRowid==1 );
  testcase( typeRowid==2 );
  testcase( typeRowid==3 );
  testcase( typeRowid==4 );
  testcase( typeRowid==5 );
  testcase( typeRowid==6 );
  testcase( typeRowid==8 );
  testcase( typeRowid==9 );
  if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
    goto idx_rowid_corruption;
  }
  lenRowid = sqlite4VdbeSerialTypeLen(typeRowid);
  testcase( (u32)m.n==szHdr+lenRowid );
  if( unlikely((u32)m.n<szHdr+lenRowid) ){
    goto idx_rowid_corruption;
  }

  /* Fetch the integer off the end of the index record */
  sqlite4VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
  *rowid = v.u.i;
  sqlite4VdbeMemRelease(&m);
  return SQLITE_OK;

  /* Jump here if database corruption is detected after m has been
  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
  testcase( m.zMalloc!=0 );
  sqlite4VdbeMemRelease(&m);
  return SQLITE_CORRUPT_BKPT;
}

/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked.  Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pUnpacked.  Return SQLITE_OK on success.
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end.  The rowid at the end of the index entry
** is ignored as well.  Hence, this routine only compares the prefixes 
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite4VdbeIdxKeyCompare(
  VdbeCursor *pC,             /* The cursor to compare against */
  UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */
  int *res                    /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;

  assert( sqlite4BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite4BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the say
  ** that btreeParseCellPtr() and sqlite4GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  memset(&m, 0, sizeof(m));
  rc = sqlite4VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
  *res = sqlite4VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite4VdbeMemRelease(&m);
  return SQLITE_OK;
}

/*
** This routine sets the value to be returned by subsequent calls to
** sqlite4_changes() on the database handle 'db'. 
*/
void sqlite4VdbeSetChanges(sqlite4 *db, int nChange){
  assert( sqlite4_mutex_held(db->mutex) );
  db->nChange = nChange;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







2572
2573
2574
2575
2576
2577
2578






















































































































2579
2580
2581
2582
2583
2584
2585
  }else if( idx1<szHdr1 ){
    rc = 1;
  }
  return rc;
}
 























































































































/*
** This routine sets the value to be returned by subsequent calls to
** sqlite4_changes() on the database handle 'db'. 
*/
void sqlite4VdbeSetChanges(sqlite4 *db, int nChange){
  assert( sqlite4_mutex_held(db->mutex) );
  db->nChange = nChange;

Deleted src/vdbeblob.c.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
** 2007 May 1
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement incremental BLOB I/O.
*/

#include "sqliteInt.h"
#include "vdbeInt.h"

#ifndef SQLITE_OMIT_INCRBLOB

/*
** Valid sqlite4_blob* handles point to Incrblob structures.
*/
typedef struct Incrblob Incrblob;
struct Incrblob {
  int flags;              /* Copy of "flags" passed to sqlite4_blob_open() */
  int nByte;              /* Size of open blob, in bytes */
  int iOffset;            /* Byte offset of blob in cursor data */
  int iCol;               /* Table column this handle is open on */
  BtCursor *pCsr;         /* Cursor pointing at blob row */
  sqlite4_stmt *pStmt;    /* Statement holding cursor open */
  sqlite4 *db;            /* The associated database */
};


/*
** This function is used by both blob_open() and blob_reopen(). It seeks
** the b-tree cursor associated with blob handle p to point to row iRow.
** If successful, SQLITE_OK is returned and subsequent calls to
** sqlite4_blob_read() or sqlite4_blob_write() access the specified row.
**
** If an error occurs, or if the specified row does not exist or does not
** contain a value of type TEXT or BLOB in the column nominated when the
** blob handle was opened, then an error code is returned and *pzErr may
** be set to point to a buffer containing an error message. It is the
** responsibility of the caller to free the error message buffer using
** sqlite4DbFree().
**
** If an error does occur, then the b-tree cursor is closed. All subsequent
** calls to sqlite4_blob_read(), blob_write() or blob_reopen() will 
** immediately return SQLITE_ABORT.
*/
static int blobSeekToRow(Incrblob *p, sqlite4_int64 iRow, char **pzErr){
  int rc;                         /* Error code */
  char *zErr = 0;                 /* Error message */
  Vdbe *v = (Vdbe *)p->pStmt;

  /* Set the value of the SQL statements only variable to integer iRow. 
  ** This is done directly instead of using sqlite4_bind_int64() to avoid 
  ** triggering asserts related to mutexes.
  */
  assert( v->aVar[0].flags&MEM_Int );
  v->aVar[0].u.i = iRow;

  rc = sqlite4_step(p->pStmt);
  if( rc==SQLITE_ROW ){
    u32 type = v->apCsr[0]->aType[p->iCol];
    if( type<12 ){
      zErr = sqlite4MPrintf(p->db, "cannot open value of type %s",
          type==0?"null": type==7?"real": "integer"
      );
      rc = SQLITE_ERROR;
      sqlite4_finalize(p->pStmt);
      p->pStmt = 0;
    }else{
      p->iOffset = v->apCsr[0]->aOffset[p->iCol];
      p->nByte = sqlite4VdbeSerialTypeLen(type);
      p->pCsr =  v->apCsr[0]->pCursor;
      sqlite4BtreeEnterCursor(p->pCsr);
      sqlite4BtreeCacheOverflow(p->pCsr);
      sqlite4BtreeLeaveCursor(p->pCsr);
    }
  }

  if( rc==SQLITE_ROW ){
    rc = SQLITE_OK;
  }else if( p->pStmt ){
    rc = sqlite4_finalize(p->pStmt);
    p->pStmt = 0;
    if( rc==SQLITE_OK ){
      zErr = sqlite4MPrintf(p->db, "no such rowid: %lld", iRow);
      rc = SQLITE_ERROR;
    }else{
      zErr = sqlite4MPrintf(p->db, "%s", sqlite4_errmsg(p->db));
    }
  }

  assert( rc!=SQLITE_OK || zErr==0 );
  assert( rc!=SQLITE_ROW && rc!=SQLITE_DONE );

  *pzErr = zErr;
  return rc;
}

/*
** Open a blob handle.
*/
int sqlite4_blob_open(
  sqlite4* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite4_blob **ppBlob   /* Handle for accessing the blob returned here */
){
  int nAttempt = 0;
  int iCol;               /* Index of zColumn in row-record */

  /* This VDBE program seeks a btree cursor to the identified 
  ** db/table/row entry. The reason for using a vdbe program instead
  ** of writing code to use the b-tree layer directly is that the
  ** vdbe program will take advantage of the various transaction,
  ** locking and error handling infrastructure built into the vdbe.
  **
  ** After seeking the cursor, the vdbe executes an OP_ResultRow.
  ** Code external to the Vdbe then "borrows" the b-tree cursor and
  ** uses it to implement the blob_read(), blob_write() and 
  ** blob_bytes() functions.
  **
  ** The sqlite4_blob_close() function finalizes the vdbe program,
  ** which closes the b-tree cursor and (possibly) commits the 
  ** transaction.
  */
  static const VdbeOpList openBlob[] = {
    {OP_Transaction, 0, 0, 0},     /* 0: Start a transaction */
    {OP_VerifyCookie, 0, 0, 0},    /* 1: Check the schema cookie */
    {OP_TableLock, 0, 0, 0},       /* 2: Acquire a read or write lock */

    /* One of the following two instructions is replaced by an OP_Noop. */
    {OP_OpenRead, 0, 0, 0},        /* 3: Open cursor 0 for reading */
    {OP_OpenWrite, 0, 0, 0},       /* 4: Open cursor 0 for read/write */

    {OP_Variable, 1, 1, 1},        /* 5: Push the rowid to the stack */
    {OP_NotExists, 0, 10, 1},      /* 6: Seek the cursor */
    {OP_Column, 0, 0, 1},          /* 7  */
    {OP_ResultRow, 1, 0, 0},       /* 8  */
    {OP_Goto, 0, 5, 0},            /* 9  */
    {OP_Close, 0, 0, 0},           /* 10 */
    {OP_Halt, 0, 0, 0},            /* 11 */
  };

  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

  flags = !!flags;                /* flags = (flags ? 1 : 0); */
  *ppBlob = 0;

  sqlite4_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite4DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
  pParse = sqlite4StackAllocRaw(db, sizeof(*pParse));
  if( !pParse ) goto blob_open_out;

  do {
    memset(pParse, 0, sizeof(Parse));
    pParse->db = db;
    sqlite4DbFree(db, zErr);
    zErr = 0;

    sqlite4BtreeEnterAll(db);
    pTab = sqlite4LocateTable(pParse, 0, zTable, zDb);
    if( pTab && IsVirtual(pTab) ){
      pTab = 0;
      sqlite4ErrorMsg(pParse, "cannot open virtual table: %s", zTable);
    }
#ifndef SQLITE_OMIT_VIEW
    if( pTab && pTab->pSelect ){
      pTab = 0;
      sqlite4ErrorMsg(pParse, "cannot open view: %s", zTable);
    }
#endif
    if( !pTab ){
      if( pParse->zErrMsg ){
        sqlite4DbFree(db, zErr);
        zErr = pParse->zErrMsg;
        pParse->zErrMsg = 0;
      }
      rc = SQLITE_ERROR;
      sqlite4BtreeLeaveAll(db);
      goto blob_open_out;
    }

    /* Now search pTab for the exact column. */
    for(iCol=0; iCol<pTab->nCol; iCol++) {
      if( sqlite4StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){
        break;
      }
    }
    if( iCol==pTab->nCol ){
      sqlite4DbFree(db, zErr);
      zErr = sqlite4MPrintf(db, "no such column: \"%s\"", zColumn);
      rc = SQLITE_ERROR;
      sqlite4BtreeLeaveAll(db);
      goto blob_open_out;
    }

    /* If the value is being opened for writing, check that the
    ** column is not indexed, and that it is not part of a foreign key. 
    ** It is against the rules to open a column to which either of these
    ** descriptions applies for writing.  */
    if( flags ){
      const char *zFault = 0;
      Index *pIdx;
#ifndef SQLITE_OMIT_FOREIGN_KEY
      if( db->flags&SQLITE_ForeignKeys ){
        /* Check that the column is not part of an FK child key definition. It
        ** is not necessary to check if it is part of a parent key, as parent
        ** key columns must be indexed. The check below will pick up this 
        ** case.  */
        FKey *pFKey;
        for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
          int j;
          for(j=0; j<pFKey->nCol; j++){
            if( pFKey->aCol[j].iFrom==iCol ){
              zFault = "foreign key";
            }
          }
        }
      }
#endif
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        int j;
        for(j=0; j<pIdx->nColumn; j++){
          if( pIdx->aiColumn[j]==iCol ){
            zFault = "indexed";
          }
        }
      }
      if( zFault ){
        sqlite4DbFree(db, zErr);
        zErr = sqlite4MPrintf(db, "cannot open %s column for writing", zFault);
        rc = SQLITE_ERROR;
        sqlite4BtreeLeaveAll(db);
        goto blob_open_out;
      }
    }

    pBlob->pStmt = (sqlite4_stmt *)sqlite4VdbeCreate(db);
    assert( pBlob->pStmt || db->mallocFailed );
    if( pBlob->pStmt ){
      Vdbe *v = (Vdbe *)pBlob->pStmt;
      int iDb = sqlite4SchemaToIndex(db, pTab->pSchema);

      sqlite4VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob);


      /* Configure the OP_Transaction */
      sqlite4VdbeChangeP1(v, 0, iDb);
      sqlite4VdbeChangeP2(v, 0, flags);

      /* Configure the OP_VerifyCookie */
      sqlite4VdbeChangeP1(v, 1, iDb);
      sqlite4VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie);
      sqlite4VdbeChangeP3(v, 1, pTab->pSchema->iGeneration);

      /* Make sure a mutex is held on the table to be accessed */
      sqlite4VdbeUsesBtree(v, iDb); 

      /* Configure the OP_TableLock instruction */
#ifdef SQLITE_OMIT_SHARED_CACHE
      sqlite4VdbeChangeToNoop(v, 2);
#else
      sqlite4VdbeChangeP1(v, 2, iDb);
      sqlite4VdbeChangeP2(v, 2, pTab->tnum);
      sqlite4VdbeChangeP3(v, 2, flags);
      sqlite4VdbeChangeP4(v, 2, pTab->zName, P4_TRANSIENT);
#endif

      /* Remove either the OP_OpenWrite or OpenRead. Set the P2 
      ** parameter of the other to pTab->tnum.  */
      sqlite4VdbeChangeToNoop(v, 4 - flags);
      sqlite4VdbeChangeP2(v, 3 + flags, pTab->tnum);
      sqlite4VdbeChangeP3(v, 3 + flags, iDb);

      /* Configure the number of columns. Configure the cursor to
      ** think that the table has one more column than it really
      ** does. An OP_Column to retrieve this imaginary column will
      ** always return an SQL NULL. This is useful because it means
      ** we can invoke OP_Column to fill in the vdbe cursors type 
      ** and offset cache without causing any IO.
      */
      sqlite4VdbeChangeP4(v, 3+flags, SQLITE_INT_TO_PTR(pTab->nCol+1),P4_INT32);
      sqlite4VdbeChangeP2(v, 7, pTab->nCol);
      if( !db->mallocFailed ){
        pParse->nVar = 1;
        pParse->nMem = 1;
        pParse->nTab = 1;
        sqlite4VdbeMakeReady(v, pParse);
      }
    }
   
    pBlob->flags = flags;
    pBlob->iCol = iCol;
    pBlob->db = db;
    sqlite4BtreeLeaveAll(db);
    if( db->mallocFailed ){
      goto blob_open_out;
    }
    sqlite4_bind_int64(pBlob->pStmt, 1, iRow);
    rc = blobSeekToRow(pBlob, iRow, &zErr);
  } while( (++nAttempt)<5 && rc==SQLITE_SCHEMA );

blob_open_out:
  if( rc==SQLITE_OK && db->mallocFailed==0 ){
    *ppBlob = (sqlite4_blob *)pBlob;
  }else{
    if( pBlob && pBlob->pStmt ) sqlite4VdbeFinalize((Vdbe *)pBlob->pStmt);
    sqlite4DbFree(db, pBlob);
  }
  sqlite4Error(db, rc, (zErr ? "%s" : 0), zErr);
  sqlite4DbFree(db, zErr);
  sqlite4StackFree(db, pParse);
  rc = sqlite4ApiExit(db, rc);
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** Close a blob handle that was previously created using
** sqlite4_blob_open().
*/
int sqlite4_blob_close(sqlite4_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  int rc;
  sqlite4 *db;

  if( p ){
    db = p->db;
    sqlite4_mutex_enter(db->mutex);
    rc = sqlite4_finalize(p->pStmt);
    sqlite4DbFree(db, p);
    sqlite4_mutex_leave(db->mutex);
  }else{
    rc = SQLITE_OK;
  }
  return rc;
}

/*
** Perform a read or write operation on a blob
*/
static int blobReadWrite(
  sqlite4_blob *pBlob, 
  void *z, 
  int n, 
  int iOffset, 
  int (*xCall)(BtCursor*, u32, u32, void*)
){
  int rc;
  Incrblob *p = (Incrblob *)pBlob;
  Vdbe *v;
  sqlite4 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite4_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
    sqlite4Error(db, SQLITE_ERROR, 0);
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
    ** returned, clean-up the statement handle.
    */
    assert( db == v->db );
    sqlite4BtreeEnterCursor(p->pCsr);
    rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
    sqlite4BtreeLeaveCursor(p->pCsr);
    if( rc==SQLITE_ABORT ){
      sqlite4VdbeFinalize(v);
      p->pStmt = 0;
    }else{
      db->errCode = rc;
      v->rc = rc;
    }
  }
  rc = sqlite4ApiExit(db, rc);
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
*/
int sqlite4_blob_read(sqlite4_blob *pBlob, void *z, int n, int iOffset){
  return blobReadWrite(pBlob, z, n, iOffset, sqlite4BtreeData);
}

/*
** Write data to a blob handle.
*/
int sqlite4_blob_write(sqlite4_blob *pBlob, const void *z, int n, int iOffset){
  return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite4BtreePutData);
}

/*
** Query a blob handle for the size of the data.
**
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
int sqlite4_blob_bytes(sqlite4_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  return (p && p->pStmt) ? p->nByte : 0;
}

/*
** Move an existing blob handle to point to a different row of the same
** database table.
**
** If an error occurs, or if the specified row does not exist or does not
** contain a blob or text value, then an error code is returned and the
** database handle error code and message set. If this happens, then all 
** subsequent calls to sqlite4_blob_xxx() functions (except blob_close()) 
** immediately return SQLITE_ABORT.
*/
int sqlite4_blob_reopen(sqlite4_blob *pBlob, sqlite4_int64 iRow){
  int rc;
  Incrblob *p = (Incrblob *)pBlob;
  sqlite4 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite4_mutex_enter(db->mutex);

  if( p->pStmt==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    char *zErr;
    rc = blobSeekToRow(p, iRow, &zErr);
    if( rc!=SQLITE_OK ){
      sqlite4Error(db, rc, (zErr ? "%s" : 0), zErr);
      sqlite4DbFree(db, zErr);
    }
    assert( rc!=SQLITE_SCHEMA );
  }

  rc = sqlite4ApiExit(db, rc);
  assert( rc==SQLITE_OK || p->pStmt==0 );
  sqlite4_mutex_leave(db->mutex);
  return rc;
}

#endif /* #ifndef SQLITE_OMIT_INCRBLOB */
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<










































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Changes to src/vdbecodec.c.

73
74
75
76
77
78
79

80
81
82
83
84


85
86
87
88


89
90
91




92
93
94
95
96
97
98
  u32 size;                    /* Size of a field */
  sqlite4_uint64 ofst;         /* Offset to the payload */
  sqlite4_uint64 type;         /* Datatype */
  sqlite4_uint64 subtype;      /* Subtype for a typed blob */
  int cclass;                  /* class of content */
  int n;                       /* Offset into the header */
  int i;                       /* Loop counter */

  int endHdr;                  /* First byte past header */

  sqlite4VdbeMemSetNull(pOut);
  assert( iVal<=p->mxCol );
  n = sqlite4GetVarint64(p->a, &ofst);


  endHdr = ofst;
  if( endHdr>p->n ) return SQLITE_CORRUPT;
  for(i=0; i<=iVal && n<endHdr; i++){
    n += sqlite4GetVarint64(p->a+n, &type);


    if( type>=22 ){
      cclass = (type-22)%3;
      if( cclass==2 ) n += sqlite4GetVarint64(p->a+n, &subtype);




      size = (type-22)/3;
    }else if( type<=2 ){
      size = 0;
    }else if( type<=10 ){
      size = type - 2;
    }else{
      size = type - 9;







>




|
>
>



|
>
>


|
>
>
>
>







73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  u32 size;                    /* Size of a field */
  sqlite4_uint64 ofst;         /* Offset to the payload */
  sqlite4_uint64 type;         /* Datatype */
  sqlite4_uint64 subtype;      /* Subtype for a typed blob */
  int cclass;                  /* class of content */
  int n;                       /* Offset into the header */
  int i;                       /* Loop counter */
  int sz;                      /* Size of a varint */
  int endHdr;                  /* First byte past header */

  sqlite4VdbeMemSetNull(pOut);
  assert( iVal<=p->mxCol );
  n = sqlite4GetVarint64(p->a, p->n, &ofst);
  if( n==0 ) return SQLITE_CORRUPT;
  ofst += n;
  endHdr = ofst;
  if( endHdr>p->n ) return SQLITE_CORRUPT;
  for(i=0; i<=iVal && n<endHdr; i++){
    sz = sqlite4GetVarint64(p->a+n, p->n-n, &type);
    if( sz==0 ) return SQLITE_CORRUPT;
    n += sz;
    if( type>=22 ){
      cclass = (type-22)%3;
      if( cclass==2 ){
         sz = sqlite4GetVarint64(p->a+n, p->n-n, &subtype);
         if( sz==0 ) return SQLITE_CORRUPT;
         n += sz;
      }
      size = (type-22)/3;
    }else if( type<=2 ){
      size = 0;
    }else if( type<=10 ){
      size = type - 2;
    }else{
      size = type - 9;
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        v = v*256 + p->a[ofst+i-3];
      }
      sqlite4VdbeMemSetInt64(pOut, v);
    }else if( type<=21 ){
      sqlite4_uint64 x;
      int e;
      double r;
      n = sqlite4GetVarint64(p->a+ofst, &x);
      e = (int)x;
      n += sqlite4GetVarint64(p->a+ofst+n, &x);
      if( n!=size ) return SQLITE_CORRUPT;
      r = (double)x;
      if( e&1 ) r = -r;
      if( e&2 ){
        e = -(e>>2);
        while( e<=-10 ){ r /= 1.0e10; e += 10; }
        while( e<0 ){ r /= 10.0; e++; }







|

|







116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        v = v*256 + p->a[ofst+i-3];
      }
      sqlite4VdbeMemSetInt64(pOut, v);
    }else if( type<=21 ){
      sqlite4_uint64 x;
      int e;
      double r;
      n = sqlite4GetVarint64(p->a+ofst, p->n-ofst, &x);
      e = (int)x;
      n += sqlite4GetVarint64(p->a+ofst+n, p->n-(ofst+n), &x);
      if( n!=size ) return SQLITE_CORRUPT;
      r = (double)x;
      if( e&1 ) r = -r;
      if( e&2 ){
        e = -(e>>2);
        while( e<=-10 ){ r /= 1.0e10; e += 10; }
        while( e<0 ){ r /= 10.0; e++; }
138
139
140
141
142
143
144


145




146
147
148
149
150
151
152
        sqlite4VdbeMemSetStr(pOut, (char*)(p->a+ofst+1), size-1, 
                             enc[p->a[ofst]], SQLITE_TRANSIENT);
      }
    }else{
      sqlite4VdbeMemSetStr(pOut, (char*)(p->a+ofst), size, 0, SQLITE_TRANSIENT);
    }
  }


  if( i<iVal ) sqlite4VdbeMemShallowCopy(pOut, pDefault, MEM_Static);




  return SQLITE_OK; 
}

/*
** Return the number of bytes needed to represent a 64-bit signed integer.
*/
static int significantBytes(sqlite4_int64 v){







>
>
|
>
>
>
>







147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        sqlite4VdbeMemSetStr(pOut, (char*)(p->a+ofst+1), size-1, 
                             enc[p->a[ofst]], SQLITE_TRANSIENT);
      }
    }else{
      sqlite4VdbeMemSetStr(pOut, (char*)(p->a+ofst), size, 0, SQLITE_TRANSIENT);
    }
  }
  if( i<iVal ){
    if( pDefault ){
      sqlite4VdbeMemShallowCopy(pOut, pDefault, MEM_Static);
    }else{
      sqlite4VdbeMemSetNull(pOut);
    }
  }
  return SQLITE_OK; 
}

/*
** Return the number of bytes needed to represent a 64-bit signed integer.
*/
static int significantBytes(sqlite4_int64 v){
340
341
342
343
344
345
346
347
348
349

350
351
352
353
354
355

356

















357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
** the integer from most significant to least significant, packed to
** digits to a byte.  Each digit is represented by a number between 1
** and 10 with 1 representing 0 and 10 representing 9.  A zero value 
** marks the end of the significand.  An extra zero is added to fill out
** the final byte, if necessary.
*/
static void encodeIntKey(sqlite4_uint64 m, KeyEncoder *p){
  int i;
  unsigned char aDigits[30];
  aDigits[0] = 0;

  aDigits[1] = 0;
  for(i=2; m; i++){ aDigits[i] = (m%10)+1; m /= 10; }
  p->nOut += sqlite4PutVarint64(p->aOut+p->nOut, (i-2));
  i--;
  while( i>0 ){
    p->aOut[p->nOut++] = aDigits[i]*16 + aDigits[i-1];

    i -= 2;

















  }

}

/*
** Encode the small positive floating point number r using the key
** encoding.  The caller guarantees that r will be less than 1.0 and
** greater than 0.0.
**
** The key encoding is the negative of the exponent E followed by the
** mantessa M.  The exponent E is one less than the number of digits to
** the left of the decimal point.  Since r is less than 1, E will always
** be negative here.  E is output as a varint, and varints must be
** positive, which is why we output -E.  The mantissa is stored two-digits
** per byte as described for the integer encoding above.
*/
static void encodeSmallFloatKey(double r, KeyEncoder *p){
  int e = 0;
  int i, j, n;
  unsigned char aDigits[30];
  assert( r>0.0 && r<1.0 );
  while( r<1e-8 ){ r *= 1e8; e=8; }
  while( r<1.0 ){ r *= 10.0; e++; }
  n = sqlite4PutVarint64(p->aOut+p->nOut, e);
  for(i=0; i<n; i++) p->aOut[i+p->nOut] ^= 0xff;
  p->nOut += n;
  for(i=0; i<18 && r!=0.0; i++){
    int d = r;
    aDigits[i] = 1+d;
    r -= d;
    r *= 10.0;
  }
  aDigits[i] = 0;
  aDigits[i+1] = 0;
  for(j=0; j<=i; j += 2){
    p->aOut[p->nOut++] = aDigits[j]*16 + aDigits[j+1];
  }
}

/*
** Encode the large positive floating point number r using the key
** encoding.  The caller guarantees that r will be finite and greater than
** or equal to 1.0.
**
** The key encoding is the exponent E followed by the mantessa M.  
** The exponent E is one less than the number of digits to the left 
** of the decimal point.  Since r is at least than 1.0, E will always
** be non-negative here. The mantissa is stored two-digits per byte
** as described for the integer encoding above.
*/
static void encodeLargeFloatKey(double r, KeyEncoder *p){
  int e = 0;
  int i, j, n;
  unsigned char aDigits[30];
  assert( r>=1.0 );
  while( r>=1e32 && e<=350 ){ r *= 1e-32; e+=32; }
  while( r>=1e8 && e<=350 ){ r *= 1e-8; e+=8; }
  while( r>=10.0 && e<=350 ){ r *= 0.1; e++; }
  while( r<1.0 ){ r *= 10.0; e--; }
  n = sqlite4PutVarint64(p->aOut+p->nOut, e);
  p->nOut += n;
  for(i=0; i<18 && r!=0.0; i++){
    int d = r;
    aDigits[i] = 1+d;
    r -= d;
    r *= 10.0;
  }
  aDigits[i] = 0;
  aDigits[i+1] = 0;
  for(j=0; j<=i; j += 2){
    p->aOut[p->nOut++] = aDigits[j]*16 + aDigits[j+1];
  }
}


/*
** Encode a single column of the key
*/
static int encodeOneKeyValue(







|
|
|
>
|
|
|
<
|
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
















|
<

|
|





|

|

<
<
<
|
<















|
<

|
|
|





|

|

<
<
<
|
<







355
356
357
358
359
360
361
362
363
364
365
366
367
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420



421

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

438
439
440
441
442
443
444
445
446
447
448
449
450



451

452
453
454
455
456
457
458
** the integer from most significant to least significant, packed to
** digits to a byte.  Each digit is represented by a number between 1
** and 10 with 1 representing 0 and 10 representing 9.  A zero value 
** marks the end of the significand.  An extra zero is added to fill out
** the final byte, if necessary.
*/
static void encodeIntKey(sqlite4_uint64 m, KeyEncoder *p){
  int i = 0;
  unsigned char aDigits[20];
  assert( m>0 );
  do{
    aDigits[i++] = m%100; m /= 100;
  }while( m );
  p->nOut += sqlite4PutVarint64(p->aOut+p->nOut, i);

  while( i ) p->aOut[p->nOut++] = aDigits[--i]*2 + 1;
  p->aOut[p->nOut-1] &= 0xfe;
}

/*
** Encode a single integer using the key encoding.  The caller must 
** ensure that sufficient space exits in a[] (at least 12 bytes).  
** The return value is the number of bytes of a[] used.  
*/
int sqlite4VdbeEncodeIntKey(u8 *a, sqlite4_int64 v){
  int i;
  KeyEncoder s;
  s.aOut = a;
  s.nOut = 1;
  if( v<0 ){
    a[0] = 0x08;
    encodeIntKey((sqlite4_uint64)-v, &s);
    for(i=1; i<s.nOut; i++) a[i] ^= 0xff;
  }else{
    a[0] = 0x0c;
    encodeIntKey((sqlite4_uint64)v, &s);
  }
  return s.nOut;
}

/*
** Encode the small positive floating point number r using the key
** encoding.  The caller guarantees that r will be less than 1.0 and
** greater than 0.0.
**
** The key encoding is the negative of the exponent E followed by the
** mantessa M.  The exponent E is one less than the number of digits to
** the left of the decimal point.  Since r is less than 1, E will always
** be negative here.  E is output as a varint, and varints must be
** positive, which is why we output -E.  The mantissa is stored two-digits
** per byte as described for the integer encoding above.
*/
static void encodeSmallFloatKey(double r, KeyEncoder *p){
  int e = 0;
  int i, n;

  assert( r>0.0 && r<1.0 );
  while( r<1e-8 ){ r *= 1e8; e+=4; }
  while( r<1.0 ){ r *= 100.0; e++; }
  n = sqlite4PutVarint64(p->aOut+p->nOut, e);
  for(i=0; i<n; i++) p->aOut[i+p->nOut] ^= 0xff;
  p->nOut += n;
  for(i=0; i<18 && r!=0.0; i++){
    int d = r;
    p->aOut[p->nOut++] = 2*d + 1;
    r -= d;
    r *= 100.0;
  }



  p->aOut[p->nOut-1] &= 0xfe;

}

/*
** Encode the large positive floating point number r using the key
** encoding.  The caller guarantees that r will be finite and greater than
** or equal to 1.0.
**
** The key encoding is the exponent E followed by the mantessa M.  
** The exponent E is one less than the number of digits to the left 
** of the decimal point.  Since r is at least than 1.0, E will always
** be non-negative here. The mantissa is stored two-digits per byte
** as described for the integer encoding above.
*/
static void encodeLargeFloatKey(double r, KeyEncoder *p){
  int e = 0;
  int i, n;

  assert( r>=1.0 );
  while( r>=1e32 && e<=350 ){ r *= 1e-32; e+=16; }
  while( r>=1e8 && e<=350 ){ r *= 1e-8; e+=4; }
  while( r>=100.0 && e<=350 ){ r *= 0.01; e++; }
  while( r<1.0 ){ r *= 10.0; e--; }
  n = sqlite4PutVarint64(p->aOut+p->nOut, e);
  p->nOut += n;
  for(i=0; i<18 && r!=0.0; i++){
    int d = r;
    p->aOut[p->nOut++] = 2*d + 1;
    r -= d;
    r *= 100.0;
  }



  p->aOut[p->nOut-1] &= 0xfe;

}


/*
** Encode a single column of the key
*/
static int encodeOneKeyValue(
544
545
546
547
548
549
550
551

552
553
554
555
556





557
558
559
560
561
562
563
564
565

566
567

568







569
570

571
572
573
574
575
576
577
578
579
580













































int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int iTabno,                  /* The table this key applies to */
  KeyInfo *pKeyInfo,           /* Collating sequence information */
  u8 **paOut,                  /* Write the resulting key here */
  int *pnOut                   /* Number of bytes in the key */

){
  int i;
  int rc = SQLITE_OK;
  KeyEncoder x;
  u8 *so = pKeyInfo->aSortOrder;






  x.db = db;
  x.aOut = 0;
  x.nOut = 0;
  x.nAlloc = 0;
  *paOut = 0;
  *pnOut = 0;
  if( enlargeEncoderAllocation(&x, (nIn+1)*10) ) return SQLITE_NOMEM;
  x.nOut = sqlite4PutVarint64(x.aOut, iTabno);

  for(i=0; i<pKeyInfo->nField && rc==SQLITE_OK; i++){
    rc = encodeOneKeyValue(&x, aIn+i, so ? so[i] : SQLITE_SO_ASC,

                           pKeyInfo->aColl[i]);







  }
  for(; i<nIn && rc==SQLITE_OK; i++){

    rc = encodeOneKeyValue(&x, aIn+i, SQLITE_SO_ASC, pKeyInfo->aColl[0]);
  }
  if( rc ){
    sqlite4DbFree(db, x.aOut);
  }else{
    *paOut = x.aOut;
    *pnOut = x.nOut;
  }
  return rc;
}




















































|
>




|
>
>
>
>
>









>
|
<
>
|
>
>
>
>
>
>
>

|
>
|









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int iTabno,                  /* The table this key applies to */
  KeyInfo *pKeyInfo,           /* Collating sequence information */
  u8 **paOut,                  /* Write the resulting key here */
  int *pnOut,                  /* Number of bytes in the key */
  int *pnShort                 /* Number of bytes without the primary key */
){
  int i;
  int rc = SQLITE_OK;
  KeyEncoder x;
  u8 *so;
  int iShort;
  int nField;
  CollSeq **aColl;
  CollSeq *xColl;
  static const CollSeq defaultColl;

  x.db = db;
  x.aOut = 0;
  x.nOut = 0;
  x.nAlloc = 0;
  *paOut = 0;
  *pnOut = 0;
  if( enlargeEncoderAllocation(&x, (nIn+1)*10) ) return SQLITE_NOMEM;
  x.nOut = sqlite4PutVarint64(x.aOut, iTabno);
  if( pKeyInfo ){
    nField = pKeyInfo->nField;

    iShort = nField - pKeyInfo->nPK;
    aColl = pKeyInfo->aColl;
    so = pKeyInfo->aSortOrder;
  }else{
    nField = 1;
    iShort = 0;
    xColl = &defaultColl;
    aColl = &xColl;
    so = 0;
  }
  for(i=0; i<nField && rc==SQLITE_OK; i++){
    if( pnShort && i==iShort ) *pnShort = x.nOut;
    rc = encodeOneKeyValue(&x, aIn+i, so ? so[i] : SQLITE_SO_ASC, aColl[i]);
  }
  if( rc ){
    sqlite4DbFree(db, x.aOut);
  }else{
    *paOut = x.aOut;
    *pnOut = x.nOut;
  }
  return rc;
}

/*
** Decode an integer key encoding.  Return the number of bytes in the
** encoding on success.  On an error, return 0.
*/
int sqlite4VdbeDecodeIntKey(
  const KVByteArray *aKey,       /* Input encoding */
  KVSize nKey,                   /* Number of bytes in aKey[] */
  sqlite4_int64 *pVal            /* Write the result here */
){
  int isNeg;
  int e;
  int i, n;
  sqlite4_int64 m;
  KVByteArray aBuf[12];

  if( nKey<3 ) return 0;
  if( nKey>sizeof(aBuf) ) nKey = sizeof(aBuf);
  if( aKey[0]==0x08 ){
    isNeg = 1;
    memcpy(aBuf, aKey, nKey);
    aKey = aBuf;
    for(i=1; i<nKey; i++) aBuf[i] ^= 0xff;
  }else if( aKey[0]==0x0c ){
    isNeg = 0;
  }else{
    return 0;
  }
  n = sqlite4GetVarint64(aKey+1, nKey-1, (sqlite4_uint64*)&m);
  if( m>10 || m==0 ) return 0;
  e = m;
  if( n==0 || n+1>=nKey ) return 0;
  m = 0;
  i = n+1;
  do{
    m = m*100 + aKey[i]/2;
    e--;
  }while( aKey[i++] & 1 );
  if( isNeg ){
    *pVal = -m;
  }else{
    *pVal = m;
  }
  return m==0 ? 0 : i;
}

Added src/vdbecursor.c.













































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
/*
** 2012 February 16
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains methods for the VdbeCursor object.
**
** A VdbeCursor is an abstraction of the KVCursor that includes knowledge
** about different "tables" in the key space.  A VdbeCursor is only active
** over a particular table.  Thus, for example, sqlite4VdbeNext() will
** return SQLITE_NOTFOUND when advancing off the end of a table into the
** next table whereas the lower-level sqlite4KVCursorNext() routine will
** not return SQLITE_NOTFOUND until it is advanced off the end of the very
** last table in the database.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"


/*
** Move a VDBE cursor to the first or to the last element of its table.  The
** first element is sought if iEnd==+1 and the last element if iEnd==-1.
**
** Return SQLITE_OK on success. Return SQLITE_NOTFOUND if the table is empty.
*  Other error codes are also possible for various kinds of errors.
*/
int sqlite4VdbeSeekEnd(VdbeCursor *pC, int iEnd){
  KVCursor *pCur = pC->pKVCur;
  const KVByteArray *aKey;
  KVSize nKey;
  KVSize nProbe;
  int rc;
  KVByteArray aProbe[16];

  assert( iEnd==(+1) || iEnd==(-1) );  
  nProbe = sqlite4PutVarint64(aProbe, pC->iRoot);
  aProbe[nProbe++] = 10 - iEnd*6;
  rc = sqlite4KVCursorSeek(pCur, aProbe, nProbe, iEnd);
  if( rc==SQLITE_OK ){
    return SQLITE_CORRUPT;
  }
  if( rc==SQLITE_INEXACT ){
    rc = sqlite4KVCursorKey(pCur, &aKey, &nKey);
    if( rc==SQLITE_OK && (nKey<nProbe-1 || memcmp(aKey, aProbe, nProbe-1)!=0) ){
      rc = SQLITE_NOTFOUND;
    }
  }
  return rc;
}

/*
** Move a VDBE cursor to the next element in its table.
** Return SQLITE_NOTFOUND if the seek falls of the end of the table.
*/
int sqlite4VdbeNext(VdbeCursor *pC){
  KVCursor *pCur = pC->pKVCur;
  const KVByteArray *aKey;
  KVSize nKey;
  int rc;
  sqlite4_uint64 iTabno;

  rc = sqlite4KVCursorNext(pCur);
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorKey(pCur, &aKey, &nKey);
    if( rc==SQLITE_OK ){
      iTabno = 0;
      sqlite4GetVarint64(aKey, nKey, &iTabno);
      if( iTabno!=pC->iRoot ) rc = SQLITE_NOTFOUND;
    }
  }
  return rc;
}

/*
** Move a VDBE cursor to the previous element in its table.
** Return SQLITE_NOTFOUND if the seek falls of the end of the table.
*/
int sqlite4VdbePrevious(VdbeCursor *pC){
  KVCursor *pCur = pC->pKVCur;
  const KVByteArray *aKey;
  KVSize nKey;
  int rc;
  sqlite4_uint64 iTabno;

  rc = sqlite4KVCursorPrev(pCur);
  if( rc==SQLITE_OK ){
    rc = sqlite4KVCursorKey(pCur, &aKey, &nKey);
    if( rc==SQLITE_OK ){
      iTabno = 0;
      sqlite4GetVarint64(aKey, nKey, &iTabno);
      if( iTabno!=pC->iRoot ) rc = SQLITE_NOTFOUND;
    }
  }
  return rc;
}

Changes to src/vdbemem.c.

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    pMem->pScopyFrom = 0;
#endif
  }

  return SQLITE_OK;
}

/*
** If the given Mem* has a zero-filled tail, turn it into an ordinary
** blob stored in dynamically allocated space.
*/
#ifndef SQLITE_OMIT_INCRBLOB
int sqlite4VdbeMemExpandBlob(Mem *pMem){
  if( pMem->flags & MEM_Zero ){
    int nByte;
    assert( pMem->flags&MEM_Blob );
    assert( (pMem->flags&MEM_RowSet)==0 );
    assert( pMem->db==0 || sqlite4_mutex_held(pMem->db->mutex) );

    /* Set nByte to the number of bytes required to store the expanded blob. */
    nByte = pMem->n + pMem->u.nZero;
    if( nByte<=0 ){
      nByte = 1;
    }
    if( sqlite4VdbeMemGrow(pMem, nByte, 1) ){
      return SQLITE_NOMEM;
    }

    memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
    pMem->n += pMem->u.nZero;
    pMem->flags &= ~(MEM_Zero|MEM_Term);
  }
  return SQLITE_OK;
}
#endif


/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite4VdbeMemNulTerminate(Mem *pMem){
  assert( pMem->db==0 || sqlite4_mutex_held(pMem->db->mutex) );
  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







131
132
133
134
135
136
137





























138
139
140
141
142
143
144
    pMem->pScopyFrom = 0;
#endif
  }

  return SQLITE_OK;
}































/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite4VdbeMemNulTerminate(Mem *pMem){
  assert( pMem->db==0 || sqlite4_mutex_held(pMem->db->mutex) );
  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
  sqlite4VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->type = SQLITE_BLOB;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;

#ifdef SQLITE_OMIT_INCRBLOB
  sqlite4VdbeMemGrow(pMem, n, 0);
  if( pMem->z ){
    pMem->n = n;
    memset(pMem->z, 0, n);
  }
#endif
}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
void sqlite4VdbeMemSetInt64(Mem *pMem, i64 val){







<
<
<
<
<
<
<
<







467
468
469
470
471
472
473








474
475
476
477
478
479
480
  sqlite4VdbeMemRelease(pMem);
  pMem->flags = MEM_Blob|MEM_Zero;
  pMem->type = SQLITE_BLOB;
  pMem->n = 0;
  if( n<0 ) n = 0;
  pMem->u.nZero = n;
  pMem->enc = SQLITE_UTF8;








}

/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
void sqlite4VdbeMemSetInt64(Mem *pMem, i64 val){
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }
  return rc;
}

/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to.  offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data.  The result is written
** into the pMem element.
**
** The pMem structure is assumed to be uninitialized.  Any prior content
** is overwritten without being freed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite4VdbeMemFromBtree(
  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
  int offset,       /* Offset from the start of data to return bytes from. */
  int amt,          /* Number of bytes to return. */
  int key,          /* If true, retrieve from the btree key, not data. */
  Mem *pMem         /* OUT: Return data in this Mem structure. */
){
  char *zData;        /* Data from the btree layer */
  int available = 0;  /* Number of bytes available on the local btree page */
  int rc = SQLITE_OK; /* Return code */

  assert( sqlite4BtreeCursorIsValid(pCur) );

  /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() 
  ** that both the BtShared and database handle mutexes are held. */
  assert( (pMem->flags & MEM_RowSet)==0 );
  if( key ){
    zData = (char *)sqlite4BtreeKeyFetch(pCur, &available);
  }else{
    zData = (char *)sqlite4BtreeDataFetch(pCur, &available);
  }
  assert( zData!=0 );

  if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
    sqlite4VdbeMemRelease(pMem);
    pMem->z = &zData[offset];
    pMem->flags = MEM_Blob|MEM_Ephem;
  }else if( SQLITE_OK==(rc = sqlite4VdbeMemGrow(pMem, amt+2, 0)) ){
    pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
    pMem->enc = 0;
    pMem->type = SQLITE_BLOB;
    if( key ){
      rc = sqlite4BtreeKey(pCur, offset, amt, pMem->z);
    }else{
      rc = sqlite4BtreeData(pCur, offset, amt, pMem->z);
    }
    pMem->z[amt] = 0;
    pMem->z[amt+1] = 0;
    if( rc!=SQLITE_OK ){
      sqlite4VdbeMemRelease(pMem);
    }
  }
  pMem->n = amt;

  return rc;
}

/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite4_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







830
831
832
833
834
835
836




























































837
838
839
840
841
842
843
  }
 
  /* Both values must be blobs.  Compare using memcmp().  */
  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
  if( rc==0 ){
    rc = pMem1->n - pMem2->n;
  }




























































  return rc;
}

/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite4_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or

Changes to src/vdbesort.c.

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
  return SQLITE_OK;
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
*/
int sqlite4VdbeSorterInit(sqlite4 *db, VdbeCursor *pCsr){
  int pgsz;                       /* Page size of main database */
  int mxCache;                    /* Cache size */
  VdbeSorter *pSorter;            /* The new sorter */
  char *d;                        /* Dummy */

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );
  pCsr->pSorter = pSorter = sqlite4DbMallocZero(db, sizeof(VdbeSorter));
  if( pSorter==0 ){
    return SQLITE_NOMEM;
  }
  
  pSorter->pUnpacked = sqlite4VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
  if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
  assert( pSorter->pUnpacked==(UnpackedRecord *)d );

  if( !sqlite4TempInMemory(db) ){
    pgsz = sqlite4BtreeGetPageSize(db->aDb[0].pBt);
    pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
    mxCache = db->aDb[0].pSchema->cache_size;
    if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
    pSorter->mxPmaSize = mxCache * pgsz;
  }

  return SQLITE_OK;
}

/*
** Free the list of sorted records starting at pRecord.







<















<
|
<
<
<







380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402



403
404
405
406
407
408
409
  return SQLITE_OK;
}

/*
** Initialize the temporary index cursor just opened as a sorter cursor.
*/
int sqlite4VdbeSorterInit(sqlite4 *db, VdbeCursor *pCsr){

  int mxCache;                    /* Cache size */
  VdbeSorter *pSorter;            /* The new sorter */
  char *d;                        /* Dummy */

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );
  pCsr->pSorter = pSorter = sqlite4DbMallocZero(db, sizeof(VdbeSorter));
  if( pSorter==0 ){
    return SQLITE_NOMEM;
  }
  
  pSorter->pUnpacked = sqlite4VdbeAllocUnpackedRecord(pCsr->pKeyInfo, 0, 0, &d);
  if( pSorter->pUnpacked==0 ) return SQLITE_NOMEM;
  assert( pSorter->pUnpacked==(UnpackedRecord *)d );

  if( !sqlite4TempInMemory(db) ){

    pSorter->mnPmaSize = 100000;



  }

  return SQLITE_OK;
}

/*
** Free the list of sorted records starting at pRecord.

Changes to src/vtab.c.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
** connection db is left in the p->pVTable list.
*/
static VTable *vtabDisconnectAll(sqlite4 *db, Table *p){
  VTable *pRet = 0;
  VTable *pVTable = p->pVTable;
  p->pVTable = 0;

  /* Assert that the mutex (if any) associated with the BtShared database 
  ** that contains table p is held by the caller. See header comments 
  ** above function sqlite4VtabUnlockList() for an explanation of why
  ** this makes it safe to access the sqlite4.pDisconnect list of any
  ** database connection that may have an entry in the p->pVTable list.
  */
  assert( db==0 || sqlite4SchemaMutexHeld(db, 0, p->pSchema) );

  while( pVTable ){
    sqlite4 *db2 = pVTable->db;
    VTable *pNext = pVTable->pNext;
    assert( db2 );
    if( db2==db ){
      pRet = pVTable;
      p->pVTable = pRet;







<
<
<
<
<
<
<
<







149
150
151
152
153
154
155








156
157
158
159
160
161
162
** connection db is left in the p->pVTable list.
*/
static VTable *vtabDisconnectAll(sqlite4 *db, Table *p){
  VTable *pRet = 0;
  VTable *pVTable = p->pVTable;
  p->pVTable = 0;









  while( pVTable ){
    sqlite4 *db2 = pVTable->db;
    VTable *pNext = pVTable->pNext;
    assert( db2 );
    if( db2==db ){
      pRet = pVTable;
      p->pVTable = pRet;
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
** As a result, a sqlite4.pDisconnect cannot be accessed simultaneously 
** by multiple threads. It is thread-safe.
*/
void sqlite4VtabUnlockList(sqlite4 *db){
  VTable *p = db->pDisconnect;
  db->pDisconnect = 0;

  assert( sqlite4BtreeHoldsAllMutexes(db) );
  assert( sqlite4_mutex_held(db->mutex) );

  if( p ){
    sqlite4ExpirePreparedStatements(db);
    do {
      VTable *pNext = p->pNext;
      sqlite4VtabUnlock(p);







<







193
194
195
196
197
198
199

200
201
202
203
204
205
206
** As a result, a sqlite4.pDisconnect cannot be accessed simultaneously 
** by multiple threads. It is thread-safe.
*/
void sqlite4VtabUnlockList(sqlite4 *db){
  VTable *p = db->pDisconnect;
  db->pDisconnect = 0;


  assert( sqlite4_mutex_held(db->mutex) );

  if( p ){
    sqlite4ExpirePreparedStatements(db);
    do {
      VTable *pNext = p->pNext;
      sqlite4VtabUnlock(p);
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  ** allows a schema that contains virtual tables to be loaded before
  ** the required virtual table implementations are registered.  */
  else {
    Table *pOld;
    Schema *pSchema = pTab->pSchema;
    const char *zName = pTab->zName;
    int nName = sqlite4Strlen30(zName);
    assert( sqlite4SchemaMutexHeld(db, 0, pSchema) );
    pOld = sqlite4HashInsert(&pSchema->tblHash, zName, nName, pTab);
    if( pOld ){
      db->mallocFailed = 1;
      assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    pParse->pNewTable = 0;







<







385
386
387
388
389
390
391

392
393
394
395
396
397
398
  ** allows a schema that contains virtual tables to be loaded before
  ** the required virtual table implementations are registered.  */
  else {
    Table *pOld;
    Schema *pSchema = pTab->pSchema;
    const char *zName = pTab->zName;
    int nName = sqlite4Strlen30(zName);

    pOld = sqlite4HashInsert(&pSchema->tblHash, zName, nName, pTab);
    if( pOld ){
      db->mallocFailed = 1;
      assert( pTab==pOld );  /* Malloc must have failed inside HashInsert() */
      return;
    }
    pParse->pNewTable = 0;

Changes to src/where.c.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
  if( wsFlags & WHERE_COLUMN_IN ) return 0;
  if( pIdx->bUnordered ) return 0;

  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus







|







1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
  if( wsFlags & WHERE_COLUMN_IN ) return 0;
  if( pIdx->bUnordered ) return 0;

  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestKVIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
    if( pUsage[i].argvIndex>0 ){
      pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
    }
  }

  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
  }

  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the







|







2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
    if( pUsage[i].argvIndex>0 ){
      pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
    }
  }

  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestKVIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
  }

  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
** then the cost is calculated in the usual way.
**
** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 
** in the SELECT statement, then no indexes are considered. However, the 
** selected plan may still take advantage of the built-in rowid primary key
** index.
*/
static void bestBtreeIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors not available for indexing */
  Bitmask notValid,           /* Cursors not available for any purpose */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  ExprList *pDistinct,        /* The select-list if query is DISTINCT */







|







2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
** then the cost is calculated in the usual way.
**
** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 
** in the SELECT statement, then no indexes are considered. However, the 
** selected plan may still take advantage of the built-in rowid primary key
** index.
*/
static void bestKVIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors not available for indexing */
  Bitmask notValid,           /* Cursors not available for any purpose */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  ExprList *pDistinct,        /* The select-list if query is DISTINCT */
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
    if( p->needToFreeIdxStr ){
      sqlite4_free(p->idxStr);
    }
    sqlite4DbFree(pParse->db, p);
  }else
#endif
  {
    bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.







|







3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
    if( p->needToFreeIdxStr ){
      sqlite4_free(p->idxStr);
    }
    sqlite4DbFree(pParse->db, p);
  }else
#endif
  {
    bestKVIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices.  Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are Btree cursors associated with each table.  t1 uses cursor
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
** And so forth.  This routine generates code to open those VDBE cursors
** and sqlite4WhereEnd() generates the code to close them.
**
** The code that sqlite4WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries.  The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract







|







4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
**
** Note that the loops might not be nested in the order in which they
** appear in the FROM clause if a different order is better able to make
** use of indices.  Note also that when the IN operator appears in
** the WHERE clause, it might result in additional nested loops for
** scanning through all values on the right-hand side of the IN.
**
** There are cursors associated with each table.  t1 uses cursor
** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
** And so forth.  This routine generates code to open those VDBE cursors
** and sqlite4WhereEnd() generates the code to close them.
**
** The code that sqlite4WhereBegin() generates leaves the cursors named
** in pTabList pointing at their appropriate entries.  The [...] code
** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
        if( IsVirtual(pTabItem->pTab) ){
          sqlite4_index_info **pp = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                           &sCost, pp);
        }else 
#endif
        {
          bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
              pDist, &sCost);
        }
        assert( isOptimal || (sCost.used&notReady)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( pTabItem->pIndex==0 







|







4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
        if( IsVirtual(pTabItem->pTab) ){
          sqlite4_index_info **pp = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                           &sCost, pp);
        }else 
#endif
        {
          bestKVIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
              pDist, &sCost);
        }
        assert( isOptimal || (sCost.used&notReady)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( pTabItem->pIndex==0 

Deleted test/backup.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
# 2009 January 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the sqlite4_backup_XXX API.
#
# $Id: backup.test,v 1.11 2009/06/05 17:09:12 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_not_use_codec

#---------------------------------------------------------------------
# Test organization:
#
# backup-1.*: Warm-body tests.
#
# backup-2.*: Test backup under various conditions. To and from in-memory
#             databases. To and from empty/populated databases. etc.
#
# backup-3.*: Verify that the locking-page (pending byte page) is handled.
#
# backup-4.*: Test various error conditions.
#
# backup-5.*: Test the source database being modified during a backup.
#
# backup-6.*: Test the backup_remaining() and backup_pagecount() APIs.
#
# backup-7.*: Test SQLITE_BUSY and SQLITE_LOCKED errors.
#
# backup-8.*: Test multiple simultaneous backup operations.
#
# backup-9.*: Test that passing a negative argument to backup_step() is
#             interpreted as "copy the whole file".
# 
# backup-10.*: Test writing the source database mid backup.
#

proc data_checksum {db file} { $db one "SELECT md5sum(a, b) FROM ${file}.t1" }
proc test_contents {name db1 file1 db2 file2} {
  $db2 eval {select * from sqlite_master}
  $db1 eval {select * from sqlite_master}
  set checksum [data_checksum $db2 $file2]
  uplevel [list do_test $name [list data_checksum $db1 $file1] $checksum]
}

do_test backup-1.1 {
  execsql {
    BEGIN;
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
    INSERT INTO t1 VALUES(1, randstr(1000,1000));
    INSERT INTO t1 VALUES(2, randstr(1000,1000));
    INSERT INTO t1 VALUES(3, randstr(1000,1000));
    INSERT INTO t1 VALUES(4, randstr(1000,1000));
    INSERT INTO t1 VALUES(5, randstr(1000,1000));
    COMMIT;
  }
} {}

# Sanity check to verify that the [test_contents] proc works.
#
test_contents backup-1.2 db main db main

# Check that it is possible to create and finish backup operations.
#
do_test backup-1.3.1 {
  delete_file test2.db
  sqlite4 db2 test2.db
  sqlite4_backup B db2 main db main
} {B}
do_test backup-1.3.2 {
  B finish
} {SQLITE_OK}
do_test backup-1.3.3 {
  info commands B
} {}

# Simplest backup operation. Backup test.db to test2.db. test2.db is 
# initially empty. test.db uses the default page size.
# 
do_test backup-1.4.1 {
  sqlite4_backup B db2 main db main
} {B}
do_test backup-1.4.2 {
  B step 200
} {SQLITE_DONE}
do_test backup-1.4.3 {
  B finish
} {SQLITE_OK}
do_test backup-1.4.4 {
  info commands B
} {}
test_contents backup-1.4.5 db2 main db main
db close
db2 close
#
# End of backup-1.* tests.
#---------------------------------------------------------------------


#---------------------------------------------------------------------
# The following tests, backup-2.*, are based on the following procedure:
#
#   1) Populate the source database.
#   2) Populate the destination database.
#   3) Run the backup to completion. (backup-2.*.1)
#   4) Integrity check the destination db. (backup-2.*.2)
#   5) Check that the contents of the destination db is the same as that
#      of the source db. (backup-2.*.3)
# 
# The test is run with all possible combinations of the following
# input parameters, except that if the destination is an in-memory
# database, the only page size tested is 1024 bytes (the same as the
# source page-size).
#
#   * Source database is an in-memory database, OR
#   * Source database is a file-backed database.
#
#   * Target database is an in-memory database, OR
#   * Target database is a file-backed database.
#
#   * Destination database is a main file, OR
#   * Destination database is an attached file, OR
#   * Destination database is a temp database.
#
#   * Target database is empty (zero bytes), OR
#   * Target database is larger than the source, OR
#   * Target database is smaller than the source.
#
#   * Target database page-size is the same as the source, OR
#   * Target database page-size is larger than the source, OR
#   * Target database page-size is smaller than the source.
#
#   * Each call to step copies a single page, OR
#   * A single call to step copies the entire source database.
#
set iTest 1
foreach zSrcFile {test.db :memory:} {
foreach zDestFile {test2.db :memory:} {
foreach zOpenScript [list {
  sqlite4 db $zSrcFile
  sqlite4 db2 $zSrcFile
  db2 eval "ATTACH '$zDestFile' AS bak"
  set db_dest db2
  set file_dest bak
} {
  sqlite4 db $zSrcFile
  sqlite4 db2 $zDestFile
  set db_dest db2
  set file_dest main
} {
  sqlite4 db $zSrcFile
  sqlite4 db2 $zDestFile
  set db_dest db2
  set file_dest temp
}] {
foreach rows_dest {0 3 10} {
foreach pgsz_dest {512 1024 2048} {
foreach nPagePerStep {1 200} {

  # Open the databases.
  catch { delete_file test.db }
  catch { delete_file test2.db }
  eval $zOpenScript

  # Set to true if copying to an in-memory destination. Copying to an 
  # in-memory destination is only possible if the initial destination
  # page size is the same as the source page size (in this case 1024 bytes).
  #
  set isMemDest [expr {
    $zDestFile eq ":memory:" || $file_dest eq "temp" && $TEMP_STORE>=2
  }]

  if { $isMemDest==0 || $pgsz_dest == 1024 } {
    if 0 {
      puts -nonewline "Test $iTest: src=$zSrcFile dest=$zDestFile"
      puts -nonewline " (as $db_dest.$file_dest)"
      puts -nonewline " rows_dest=$rows_dest pgsz_dest=$pgsz_dest"
      puts ""
    }

    # Set up the content of the source database.
    execsql {
      PRAGMA page_size = 1024;
      BEGIN;
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a, b);
      INSERT INTO t1 VALUES(1, randstr(1000,1000));
      INSERT INTO t1 VALUES(2, randstr(1000,1000));
      INSERT INTO t1 VALUES(3, randstr(1000,1000));
      INSERT INTO t1 VALUES(4, randstr(1000,1000));
      INSERT INTO t1 VALUES(5, randstr(1000,1000));
      COMMIT;
    }
    
    

    # Set up the content of the target database.
    execsql "PRAGMA ${file_dest}.page_size = ${pgsz_dest}" $db_dest
    if {$rows_dest != 0} {
      execsql "
        BEGIN; 
        CREATE TABLE ${file_dest}.t1(a, b);
        CREATE INDEX ${file_dest}.i1 ON t1(a, b);
      " $db_dest
      for {set ii 0} {$ii < $rows_dest} {incr ii} {
        execsql "
          INSERT INTO ${file_dest}.t1 VALUES(1, randstr(1000,1000))
        " $db_dest
      }
    }
  
    # Backup the source database.
    do_test backup-2.$iTest.1 {
      sqlite4_backup B $db_dest $file_dest db main
      while {[B step $nPagePerStep]=="SQLITE_OK"} {}
      B finish
    } {SQLITE_OK}
    
    # Run integrity check on the backup.
    do_test backup-2.$iTest.2 {
      execsql "PRAGMA ${file_dest}.integrity_check" $db_dest
    } {ok}
  
    test_contents backup-2.$iTest.3 db main $db_dest $file_dest
  
  }

  db close
  catch {db2 close}
  incr iTest

} } } } } }
#
# End of backup-2.* tests.
#---------------------------------------------------------------------

#---------------------------------------------------------------------
# These tests, backup-3.*, ensure that nothing goes wrong if either 
# the source or destination database are large enough to include the
# the locking-page (the page that contains the range of bytes that
# the locks are applied to). These tests assume that the pending
# byte is at offset 0x00010000 (64KB offset), as set by tester.tcl, 
# not at the 1GB offset as it usually is.
#
# The test procedure is as follows (same procedure as used for 
# the backup-2.* tests):
#
#   1) Populate the source database.
#   2) Populate the destination database.
#   3) Run the backup to completion. (backup-3.*.1)
#   4) Integrity check the destination db. (backup-3.*.2)
#   5) Check that the contents of the destination db is the same as that
#      of the source db. (backup-3.*.3)
#
# The test procedure is run with the following parameters varied: 
#
#   * Source database includes pending-byte page.
#   * Source database does not include pending-byte page.
#
#   * Target database includes pending-byte page.
#   * Target database does not include pending-byte page.
#
#   * Target database page-size is the same as the source, OR
#   * Target database page-size is larger than the source, OR
#   * Target database page-size is smaller than the source.
#
set iTest 1
foreach nSrcPg {10 64 65 66 100} {
foreach nDestRow {10 100} {
foreach nDestPgsz {512 1024 2048 4096} {

  catch { delete_file test.db }
  catch { delete_file test2.db }
  sqlite4 db test.db
  sqlite4 db2 test2.db

  # Set up the content of the two databases.
  #
  execsql { PRAGMA page_size = 1024 }
  execsql "PRAGMA page_size = $nDestPgsz" db2
  foreach db {db db2} {
    execsql {
      BEGIN; 
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a, b);
      COMMIT;
    } $db
  }
  while {[file size test.db]/1024 < $nSrcPg} {
    execsql { INSERT INTO t1 VALUES($ii, randstr(200,200)) }
  }

  for {set ii 0} {$ii < $nDestRow} {incr ii} {
    execsql { INSERT INTO t1 VALUES($ii, randstr(1000,1000)) } db2
  }

  # Backup the source database.
  do_test backup-3.$iTest.1 {
    sqlite4_backup B db main db2 main
    while {[B step 10]=="SQLITE_OK"} {}
    B finish
  } {SQLITE_OK}
    
  # Run integrity check on the backup.
  do_test backup-3.$iTest.2 {
    execsql "PRAGMA integrity_check" db2
  } {ok}
  
  test_contents backup-3.$iTest.3 db main db2 main

  db close
  db2 close
  incr iTest
}
}
}

#--------------------------------------------------------------------
do_test backup-3.$iTest.1 {
  catch { forcedelete test.db }
  catch { forcedelete test2.db }
  sqlite4 db test.db
  set iTab 1

  db eval { PRAGMA page_size = 512 }
  while {[file size test.db] <= $::sqlite_pending_byte} {
    db eval "CREATE TABLE t${iTab}(a, b, c)"
    incr iTab
  }

  sqlite4 db2 test2.db
  db2 eval { PRAGMA page_size = 4096 }
  while {[file size test2.db] < $::sqlite_pending_byte} {
    db2 eval "CREATE TABLE t${iTab}(a, b, c)"
    incr iTab
  }

  sqlite4_backup B db2 main db main
  B step -1
} {SQLITE_DONE}

do_test backup-3.$iTest.2 {
  B finish
} {SQLITE_OK}

#
# End of backup-3.* tests.
#---------------------------------------------------------------------


#---------------------------------------------------------------------
# The following tests, backup-4.*, test various error conditions:
# 
# backup-4.1.*: Test invalid database names.
#
# backup-4.2.*: Test that the source database cannot be detached while 
#               a backup is in progress.
#
# backup-4.3.*: Test that the source database handle cannot be closed
#               while a backup is in progress.
#
# backup-4.4.*: Test an attempt to specify the same handle for the
#               source and destination databases.
#
# backup-4.5.*: Test that an in-memory destination with a different
#               page-size to the source database is an error.
#
sqlite4 db test.db
sqlite4 db2 test2.db

do_test backup-4.1.1 {
  catch { sqlite4_backup B db aux db2 main }
} {1}
do_test backup-4.1.2 {
  sqlite4_errmsg db
} {unknown database aux}
do_test backup-4.1.3 {
  catch { sqlite4_backup B db main db2 aux }
} {1}
do_test backup-4.1.4 {
  sqlite4_errmsg db
} {unknown database aux}

do_test backup-4.2.1 {
  catch { forcedelete test3.db }
  catch { forcedelete test4.db }
  execsql { 
    ATTACH 'test3.db' AS aux1;
    CREATE TABLE aux1.t1(a, b);
  }
  execsql { 
    ATTACH 'test4.db' AS aux2;
    CREATE TABLE aux2.t2(a, b);
  } db2
  sqlite4_backup B db aux1 db2 aux2
} {B}
do_test backup-4.2.2 {
  catchsql { DETACH aux2 } db2
} {1 {database aux2 is locked}}
do_test backup-4.2.3 {
  B step 50
} {SQLITE_DONE}
do_test backup-4.2.4 {
  B finish
} {SQLITE_OK}

do_test backup-4.3.1 {
  sqlite4_backup B db aux1 db2 aux2
} {B}
do_test backup-4.3.2 {
  db2 cache flush
  sqlite4_close db2
} {SQLITE_BUSY}
do_test backup-4.3.3 {
  sqlite4_errmsg db2
} {unable to close due to unfinished backup operation}
do_test backup-4.3.4 {
  B step 50
} {SQLITE_DONE}
do_test backup-4.3.5 {
  B finish
} {SQLITE_OK}

do_test backup-4.4.1 {
  set rc [catch {sqlite4_backup B db main db aux1}]
  list $rc [sqlite4_errcode db] [sqlite4_errmsg db]
} {1 SQLITE_ERROR {source and destination must be distinct}}
db close
db2 close

do_test backup-4.5.1 {
  catch { forcedelete test.db }
  sqlite4 db test.db
  sqlite4 db2 :memory:
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, 2);
  }
  execsql {
    PRAGMA page_size = 4096;
    CREATE TABLE t2(a, b);
    INSERT INTO t2 VALUES(3, 4);
  } db2
  sqlite4_backup B db2 main db main
} {B}
do_test backup-4.5.2 {
  B step 5000
} {SQLITE_READONLY}
do_test backup-4.5.3 {
  B finish
} {SQLITE_READONLY}

db close
db2 close
#
# End of backup-5.* tests.
#---------------------------------------------------------------------

#---------------------------------------------------------------------
# The following tests, backup-5.*, test that the backup works properly
# when the source database is modified during the backup. Test cases
# are organized as follows:
#
# backup-5.x.1.*: Nothing special. Modify the database mid-backup.
#
# backup-5.x.2.*: Modify the database mid-backup so that one or more
#                 pages are written out due to cache stress. Then 
#                 rollback the transaction.
#
# backup-5.x.3.*: Database is vacuumed.
#
# backup-5.x.4.*: Database is vacuumed and the page-size modified.
#
# backup-5.x.5.*: Database is shrunk via incr-vacuum.
#
# Each test is run three times, in the following configurations:
#
#   1) Backing up file-to-file. The writer writes via an external pager.
#   2) Backing up file-to-file. The writer writes via the same pager as
#      is used by the backup operation.
#   3) Backing up memory-to-file. 
#
set iTest 0
forcedelete bak.db-wal
foreach {writer file} {db test.db db3 test.db db :memory:} {
  incr iTest
  catch { delete_file bak.db }
  sqlite4 db2 bak.db
  catch { delete_file $file }
  sqlite4 db $file
  sqlite4 db3 $file

  do_test backup-5.$iTest.1.1 {
    execsql {
      BEGIN;
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a, b);
      INSERT INTO t1 VALUES(1, randstr(1000,1000));
      INSERT INTO t1 VALUES(2, randstr(1000,1000));
      INSERT INTO t1 VALUES(3, randstr(1000,1000));
      INSERT INTO t1 VALUES(4, randstr(1000,1000));
      INSERT INTO t1 VALUES(5, randstr(1000,1000));
      COMMIT;
    }
    expr {[execsql {PRAGMA page_count}] > 10}
  } {1}
  do_test backup-5.$iTest.1.2 {
    sqlite4_backup B db2 main db main
    B step 5
  } {SQLITE_OK}
  do_test backup-5.$iTest.1.3 {
    execsql { UPDATE t1 SET a = a + 1 } $writer
    B step 50
  } {SQLITE_DONE}
  do_test backup-5.$iTest.1.4 {
    B finish
  } {SQLITE_OK} 
  integrity_check backup-5.$iTest.1.5 db2
  test_contents backup-5.$iTest.1.6 db main db2 main

  do_test backup-5.$iTest.2.1 {
    execsql {
      PRAGMA cache_size = 10;
      BEGIN;
      INSERT INTO t1 SELECT '', randstr(1000,1000) FROM t1;
      INSERT INTO t1 SELECT '', randstr(1000,1000) FROM t1;
      INSERT INTO t1 SELECT '', randstr(1000,1000) FROM t1;
      INSERT INTO t1 SELECT '', randstr(1000,1000) FROM t1;
      COMMIT;
    }
  } {}
  do_test backup-5.$iTest.2.2 {
    sqlite4_backup B db2 main db main
    B step 50
  } {SQLITE_OK}
  do_test backup-5.$iTest.2.3 {
    execsql { 
      BEGIN;
      UPDATE t1 SET a = a + 1;
      ROLLBACK;
    } $writer
    B step 5000
  } {SQLITE_DONE}
  do_test backup-5.$iTest.2.4 {
    B finish
  } {SQLITE_OK} 
  integrity_check backup-5.$iTest.2.5 db2
  test_contents backup-5.$iTest.2.6 db main db2 main

  do_test backup-5.$iTest.3.1 {
    execsql { UPDATE t1 SET b = randstr(1000,1000) }
  } {}
  do_test backup-5.$iTest.3.2 {
    sqlite4_backup B db2 main db main
    B step 50
  } {SQLITE_OK}
  do_test backup-5.$iTest.3.3 {
    execsql { VACUUM } $writer
    B step 5000
  } {SQLITE_DONE}
  do_test backup-5.$iTest.3.4 {
    B finish
  } {SQLITE_OK} 
  integrity_check backup-5.$iTest.3.5 db2
  test_contents backup-5.$iTest.3.6 db main db2 main

  do_test backup-5.$iTest.4.1 {
    execsql { UPDATE t1 SET b = randstr(1000,1000) }
  } {}
  do_test backup-5.$iTest.4.2 {
    sqlite4_backup B db2 main db main
    B step 50
  } {SQLITE_OK}
  do_test backup-5.$iTest.4.3 {
    execsql { 
      PRAGMA page_size = 2048;
      VACUUM;
    } $writer
    B step 5000
  } {SQLITE_DONE}
  do_test backup-5.$iTest.4.4 {
    B finish
  } {SQLITE_OK} 
  integrity_check backup-5.$iTest.4.5 db2
  test_contents backup-5.$iTest.4.6 db main db2 main

  catch {db close}
  catch {db2 close}
  catch {db3 close}
  catch { delete_file bak.db }
  sqlite4 db2 bak.db
  catch { delete_file $file }
  sqlite4 db $file
  sqlite4 db3 $file
  do_test backup-5.$iTest.5.1 {
    execsql {
      PRAGMA auto_vacuum = incremental;
      BEGIN;
      CREATE TABLE t1(a, b);
      CREATE INDEX i1 ON t1(a, b);
      INSERT INTO t1 VALUES(1, randstr(1000,1000));
      INSERT INTO t1 VALUES(2, randstr(1000,1000));
      INSERT INTO t1 VALUES(3, randstr(1000,1000));
      INSERT INTO t1 VALUES(4, randstr(1000,1000));
      INSERT INTO t1 VALUES(5, randstr(1000,1000));
      COMMIT;
    }
  } {}
  do_test backup-5.$iTest.5.2 {
    sqlite4_backup B db2 main db main
    B step 8
  } {SQLITE_OK}
  do_test backup-5.$iTest.5.3 {
    execsql { 
      DELETE FROM t1;
      PRAGMA incremental_vacuum;
    } $writer
    B step 50
  } {SQLITE_DONE}
  do_test backup-5.$iTest.5.4 {
    B finish
  } {SQLITE_OK} 
  integrity_check backup-5.$iTest.5.5 db2
  test_contents backup-5.$iTest.5.6 db main db2 main
  catch {db close}
  catch {db2 close}
  catch {db3 close}
}
#
# End of backup-5.* tests.
#---------------------------------------------------------------------

#---------------------------------------------------------------------
# Test the sqlite4_backup_remaining() and backup_pagecount() APIs.
#
do_test backup-6.1 {
  catch { forcedelete test.db }
  catch { forcedelete test2.db }
  sqlite4 db test.db
  sqlite4 db2 test2.db
  execsql {
    BEGIN;
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
    INSERT INTO t1 VALUES(1, randstr(1000,1000));
    INSERT INTO t1 VALUES(2, randstr(1000,1000));
    INSERT INTO t1 VALUES(3, randstr(1000,1000));
    INSERT INTO t1 VALUES(4, randstr(1000,1000));
    INSERT INTO t1 VALUES(5, randstr(1000,1000));
    COMMIT;
  }
} {}
do_test backup-6.2 {
  set nTotal [expr {[file size test.db]/1024}]
  sqlite4_backup B db2 main db main
  B step 1
} {SQLITE_OK}
do_test backup-6.3 {
  B pagecount
} $nTotal
do_test backup-6.4 {
  B remaining
} [expr $nTotal-1]
do_test backup-6.5 {
  B step 5
  list [B remaining] [B pagecount]
} [list [expr $nTotal-6] $nTotal]
do_test backup-6.6 {
  execsql { CREATE TABLE t2(a PRIMARY KEY, b) }
  B step 1
  list [B remaining] [B pagecount]
} [list [expr $nTotal-5] [expr $nTotal+2]]

do_test backup-6.X {
  B finish
} {SQLITE_OK}

catch {db close}
catch {db2 close}

#---------------------------------------------------------------------
# Test cases backup-7.* test that SQLITE_BUSY and SQLITE_LOCKED errors
# are returned correctly:
#
# backup-7.1.*: Source database is externally locked (return SQLITE_BUSY).
#
# backup-7.2.*: Attempt to step the backup process while a 
#               write-transaction is underway on the source pager (return
#               SQLITE_LOCKED).
#
# backup-7.3.*: Destination database is externally locked (return SQLITE_BUSY).
#
do_test backup-7.0 {
  catch { forcedelete test.db }
  catch { forcedelete test2.db }
  sqlite4 db2 test2.db
  sqlite4 db test.db
  execsql {
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(a, b);
    INSERT INTO t1 VALUES(1, randstr(1000,1000));
    INSERT INTO t1 SELECT a+ 1, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 2, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 4, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 8, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+16, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+32, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+64, randstr(1000,1000) FROM t1;
  }
} {}

do_test backup-7.1.1 {
  sqlite4_backup B db2 main db main
  B step 5
} {SQLITE_OK}
do_test backup-7.1.2 {
  sqlite4 db3 test.db
  execsql { BEGIN EXCLUSIVE } db3
  B step 5
} {SQLITE_BUSY}
do_test backup-7.1.3 {
  execsql { ROLLBACK } db3
  B step 5
} {SQLITE_OK}
do_test backup-7.2.1 {
  execsql { 
    BEGIN;
    INSERT INTO t1 VALUES(1, 4);
  }
} {}
do_test backup-7.2.2 {
  B step 5000
} {SQLITE_BUSY}
do_test backup-7.2.3 {
  execsql { ROLLBACK }
  B step 5000
} {SQLITE_DONE}
do_test backup-7.2.4 {
  B finish
} {SQLITE_OK}
test_contents backup-7.2.5 db main db2 main
integrity_check backup-7.3.6 db2

do_test backup-7.3.1 {
  db2 close
  db3 close
  forcedelete test2.db
  sqlite4 db2 test2.db
  sqlite4 db3 test2.db

  sqlite4_backup B db2 main db main
  execsql { BEGIN ; CREATE TABLE t2(a, b); } db3

  B step 5
} {SQLITE_BUSY}
do_test backup-7.3.2 {
  execsql { COMMIT } db3
  B step 5000
} {SQLITE_DONE}
do_test backup-7.3.3 {
  B finish
} {SQLITE_OK}
test_contents backup-7.3.4 db main db2 main
integrity_check backup-7.3.5 db2
catch { db2 close }
catch { db3 close }

#-----------------------------------------------------------------------
# The following tests, backup-8.*, test attaching multiple backup
# processes to the same source database. Also, reading from the source
# database while a read transaction is active.
#
# These tests reuse the database "test.db" left over from backup-7.*.
#
do_test backup-8.1 {
  catch { forcedelete test2.db }
  catch { forcedelete test3.db }
  sqlite4 db2 test2.db
  sqlite4 db3 test3.db

  sqlite4_backup B2 db2 main db main
  sqlite4_backup B3 db3 main db main
  list [B2 finish] [B3 finish]
} {SQLITE_OK SQLITE_OK}
do_test backup-8.2 {
  sqlite4_backup B3 db3 main db main
  sqlite4_backup B2 db2 main db main
  list [B2 finish] [B3 finish]
} {SQLITE_OK SQLITE_OK}
do_test backup-8.3 {
  sqlite4_backup B2 db2 main db main
  sqlite4_backup B3 db3 main db main
  B2 step 5
} {SQLITE_OK}
do_test backup-8.4 {
  execsql {
    BEGIN;
    SELECT * FROM sqlite_master;
  }
  B3 step 5
} {SQLITE_OK}
do_test backup-8.5 {
  list [B3 step 5000] [B3 finish]
} {SQLITE_DONE SQLITE_OK}
do_test backup-8.6 {
  list [B2 step 5000] [B2 finish]
} {SQLITE_DONE SQLITE_OK}
test_contents backup-8.7 db main db2 main
test_contents backup-8.8 db main db3 main
do_test backup-8.9 {
  execsql { PRAGMA lock_status }
} {main shared temp closed}
do_test backup-8.10 {
  execsql COMMIT
} {}
catch { db2 close }
catch { db3 close }

#-----------------------------------------------------------------------
# The following tests, backup-9.*, test that:
# 
#   * Passing 0 as an argument to sqlite4_backup_step() means no pages
#     are backed up (backup-9.1.*), and 
#   * Passing a negative value as an argument to sqlite4_backup_step() means 
#     all pages are backed up (backup-9.2.*).
#
# These tests reuse the database "test.db" left over from backup-7.*.
# 
do_test backup-9.1.1 {
  sqlite4 db2 test2.db
  sqlite4_backup B db2 main db main
  B step 1
} {SQLITE_OK}
do_test backup-9.1.2 {
  set nRemaining [B remaining]
  expr {$nRemaining>100}
} {1}
do_test backup-9.1.3 {
  B step 0
} {SQLITE_OK}
do_test backup-9.1.4 {
  B remaining
} $nRemaining

do_test backup-9.2.1 {
  B step -1
} {SQLITE_DONE}
do_test backup-9.2.2 {
  B remaining
} {0}
do_test backup-9.2.3 {
  B finish
} {SQLITE_OK}
catch {db2 close}

ifcapable memorymanage {
  db close
  forcedelete test.db
  forcedelete bak.db

  sqlite4 db test.db
  sqlite4 db2 test.db
  sqlite4 db3 bak.db

  do_test backup-10.1.1 {
    execsql {
      BEGIN;
      CREATE TABLE t1(a, b);
      INSERT INTO t1 VALUES(1, randstr(1000,1000));
      INSERT INTO t1 VALUES(2, randstr(1000,1000));
      INSERT INTO t1 VALUES(3, randstr(1000,1000));
      INSERT INTO t1 VALUES(4, randstr(1000,1000));
      INSERT INTO t1 VALUES(5, randstr(1000,1000));
      CREATE INDEX i1 ON t1(a, b);
      COMMIT;
    }
  } {}
  do_test backup-10.1.2 {
    sqlite4_backup B db3 main db2 main
    B step 5
  } {SQLITE_OK}
  do_test backup-10.1.3 {
    execsql {
      UPDATE t1 SET b = randstr(500,500);
    }
  } {}
  sqlite4_release_memory [expr 1024*1024]
  do_test backup-10.1.3 {
    B step 50
  } {SQLITE_DONE}
  do_test backup-10.1.4 {
    B finish
  } {SQLITE_OK}
  do_test backup-10.1.5 {
    execsql { PRAGMA integrity_check } db3
  } {ok}

  db2 close
  db3 close
}


#-----------------------------------------------------------------------
# Test that if the database is written to via the same database handle being
# used as the source by a backup operation:
#
#   10.1.*: If the db is in-memory, the backup is restarted.
#   10.2.*: If the db is a file, the backup is not restarted.
#
db close
forcedelete test.db test.db-journal
foreach {tn file rc} {
  1 test.db  SQLITE_DONE
  2 :memory: SQLITE_OK
} {
  do_test backup-10.$tn.1 {
    sqlite4 db $file
    execsql { 
      CREATE TABLE t1(a INTEGER PRIMARY KEY, b BLOB);
      BEGIN;
        INSERT INTO t1 VALUES(NULL, randomblob(200));
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
        INSERT INTO t1 SELECT NULL, randomblob(200) FROM t1;
      COMMIT;
      SELECT count(*) FROM t1;
    }
  } {256}

  do_test backup-10.$tn.2 {
    set pgs [execsql {pragma page_count}]
    expr {$pgs > 50 && $pgs < 75}
  } {1}

  do_test backup-10.$tn.3 {
    forcedelete bak.db bak.db-journal
    sqlite4 db2 bak.db
    sqlite4_backup B db2 main db main
    B step 50
  } {SQLITE_OK}

  do_test backup-10.$tn.4 {
    execsql { UPDATE t1 SET b = randomblob(200) WHERE a IN (1, 250) }
  } {}

  do_test backup-10.$tn.5 {
    B step 50
  } $rc

  do_test backup-10.$tn.6 {
    B finish
  } {SQLITE_OK}

  db2 close
}

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted test/backup2.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# 2009 February 4
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the "backup" and "restore" methods
# of the TCL interface - methods which are based on the
# sqlite4_backup_XXX API.
#
# $Id: backup2.test,v 1.4 2009/04/07 14:14:23 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_not_use_codec

ifcapable !trigger||!view { finish_test ; return }

# Fill a database with test data.
#
do_test backup2-1 {
  db eval {
    CREATE TABLE t1(x);
    INSERT INTO t1 VALUES(randstr(8000,8000));
    INSERT INTO t1 VALUES(randstr(8000,8000));
    INSERT INTO t1 VALUES(randstr(8000,8000));
    INSERT INTO t1 VALUES(randstr(8000,8000));
    INSERT INTO t1 VALUES(randstr(8000,8000));
    CREATE VIEW v1 AS SELECT substr(x,10,10) FROM t1;
    CREATE TABLE t2(a,b);
    INSERT INTO t2 VALUES(1,2);
    INSERT INTO t2 VALUES(2,4);
    INSERT INTO t2 SELECT a+2, (a+2)*2 FROM t2;
    INSERT INTO t2 SELECT a+4, (a+4)*2 FROM t2;
    INSERT INTO t2 SELECT a+8, (a+8)*2 FROM t2;
    INSERT INTO t2 SELECT a+16, (a+16)*2 FROM t2;
    INSERT INTO t2 SELECT a+32, (a+32)*2 FROM t2;
    INSERT INTO t2 SELECT a+64, (a+64)*2 FROM t2;
    INSERT INTO t2 SELECT a+128, (a+128)*2 FROM t2;
    CREATE INDEX t2i1 ON t2(a,b);
    CREATE TRIGGER r1 AFTER INSERT ON t2 BEGIN
      SELECT 'hello';
    END;
    ANALYZE;
    PRAGMA integrity_check;
  }
} {ok}

# Remember a check-sum on the database file.
#
unset -nocomplain cksum
set cksum [dbcksum db main]

# Make a backup of the test data.  Verify that the backup copy
# is identical to the original.
#
do_test backup2-2 {
  forcedelete bu1.db
  db backup bu1.db
  sqlite4 db2 bu1.db
  dbcksum db2 main
} $cksum

# Delete the original.  Restore from backup.  Verify the content is
# unchanged.
#
do_test backup2-3.1 {
  db close
  forcedelete test.db test.db-journal
  sqlite4 db test.db
  db2 eval {BEGIN EXCLUSIVE}
  set rc [catch {db restore bu1.db} res]
  lappend rc $res
  db2 eval {ROLLBACK}
  set rc
} {1 {restore failed: source database busy}}
do_test backup2-3.2 {
  db close
  forcedelete test.db test.db-journal
  sqlite4 db test.db
  db restore bu1.db
  dbcksum db main
} $cksum

# Use alternative databases - other than "main".
#
do_test backup2-4 {
  db restore temp bu1.db
  dbcksum db temp
} $cksum
do_test backup2-5 {
  db2 close
  forcedelete bu1.db bu2.db
  db backup temp bu2.db
  sqlite4 db2 bu2.db
  dbcksum db2 main
} $cksum

# Try to backup to a readonly file.
#
do_test backup2-6 {
  db2 close
  catch {file attributes bu2.db -permissions r--------}
  catch {file attributes bu2.db -readonly 1}
  set rc [catch {db backup temp bu2.db} res]
  lappend rc $res
} {1 {backup failed: attempt to write a readonly database}}

# Try to backup to something that is not a database file.
#
do_test backup2-7 {
  catch {file attributes bu2.db -readonly 0}
  catch {file attributes bu2.db -permissions rw-------}
  set out [open bu2.db w]
  puts $out "This is not a valid database file"
  close $out
  set rc [catch {db backup temp bu2.db} res]
  lappend rc $res
} {1 {backup failed: file is encrypted or is not a database}}

# Try to backup database that does not exist
#
do_test backup2-8 {
  forcedelete bu1.db
  set rc [catch {db backup aux1 bu1.db} res]
  lappend rc $res
} {1 {backup failed: unknown database aux1}}

# Invalid syntax on the backup method
#
do_test backup2-9 {
  set rc [catch {db backup} res]
  lappend rc $res
} {1 {wrong # args: should be "db backup ?DATABASE? FILENAME"}}

# Try to restore from an unreadable file.
#
if {$tcl_platform(platform)=="windows"} {
  set msg {cannot open source database: unable to open database file}
} elseif {$tcl_platform(os)=="OpenBSD"} {
  set msg {restore failed: file is encrypted or is not a database}
} else {
  set msg {cannot open source database: disk I/O error}
}
do_test backup2-10 {
  forcedelete bu3.db
  file mkdir bu3.db
  set rc [catch {db restore temp bu3.db} res]
  lappend rc $res
} [list 1 $msg]

# Try to restore from something that is not a database file.
#
do_test backup2-11 {
  set rc [catch {db restore temp bu2.db} res]
  lappend rc $res
} {1 {restore failed: file is encrypted or is not a database}}

# Try to restore a database that does not exist
#
do_test backup2-12 {
  set rc [catch {db restore aux1 bu2.db} res]
  lappend rc $res
} {1 {restore failed: unknown database aux1}}
do_test backup2-13 {
  forcedelete bu4.db
  set rc [catch {db restore bu4.db} res]
  lappend rc $res
} {1 {cannot open source database: unable to open database file}}

# Invalid syntax on the restore method
#
do_test backup2-14 {
  set rc [catch {db restore} res]
  lappend rc $res
} {1 {wrong # args: should be "db restore ?DATABASE? FILENAME"}}
 
forcedelete bu1.db bu2.db bu3.db bu4.db

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















































































































































































































































































































































































Deleted test/backup_ioerr.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# 2009 January 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the handling of IO errors by the
# sqlite4_backup_XXX APIs.
#
# $Id: backup_ioerr.test,v 1.3 2009/04/10 18:41:01 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc data_checksum {db file} { 
  $db one "SELECT md5sum(a, b) FROM ${file}.t1" 
}
proc test_contents {name db1 file1 db2 file2} {
  $db2 eval {select * from sqlite_master}
  $db1 eval {select * from sqlite_master}
  set checksum [data_checksum $db2 $file2]
  uplevel [list do_test $name [list data_checksum $db1 $file1] $checksum]
}

#--------------------------------------------------------------------
# This proc creates a database of approximately 290 pages. Depending
# on whether or not auto-vacuum is configured. Test cases backup_ioerr-1.*
# verify nothing more than this assumption.
#
proc populate_database {db {xtra_large 0}} {
  execsql {
    BEGIN;
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randstr(1000,1000));
    INSERT INTO t1 SELECT a+ 1, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 2, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 4, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 8, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+16, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+32, randstr(1000,1000) FROM t1;
    CREATE INDEX i1 ON t1(b);
    COMMIT;
  } $db
  if {$xtra_large} {
    execsql { INSERT INTO t1 SELECT a+64, randstr(1000,1000) FROM t1 } $db
  }
}
do_test backup_ioerr-1.1 {
  populate_database db
  set nPage [expr {[file size test.db] / 1024}]
  expr {$nPage>130 && $nPage<160}
} {1}
do_test backup_ioerr-1.2 {
  expr {[file size test.db] > $sqlite_pending_byte}
} {1}
do_test backup_ioerr-1.3 {
  db close
  forcedelete test.db
} {}

# Turn off IO error simulation.
#
proc clear_ioerr_simulation {} {
  set ::sqlite_io_error_hit 0
  set ::sqlite_io_error_hardhit 0
  set ::sqlite_io_error_pending 0
  set ::sqlite_io_error_persist 0
}

#--------------------------------------------------------------------
# The following procedure runs with SQLite's IO error simulation 
# enabled.
#
#   1) Start with a reasonably sized database. One that includes the
#      pending-byte (locking) page.
#
#   2) Open a backup process. Set the cache-size for the destination
#      database to 10 pages only.
#
#   3) Step the backup process N times to partially backup the database
#      file. If an IO error is reported, then the backup process is
#      concluded with a call to backup_finish().
#
#      If an IO error occurs, verify that:
#
#      * the call to backup_step() returns an SQLITE_IOERR_XXX error code.
#
#      * after the failed call to backup_step() but before the call to
#        backup_finish() the destination database handle error code and 
#        error message remain unchanged.
#
#      * the call to backup_finish() returns an SQLITE_IOERR_XXX error code.
#
#      * following the call to backup_finish(), the destination database
#        handle has been populated with an error code and error message.
#
#   4) Write to the database via the source database connection. Check 
#      that:
#
#      * If an IO error occurs while writing the source database, the
#        write operation should report an IO error. The backup should 
#        proceed as normal.
#
#      * If an IO error occurs while updating the backup, the write 
#        operation should proceed normally. The error should be reported
#        from the next call to backup_step() (in step 5 of this test
#        procedure).
#
#   5) Step the backup process to finish the backup. If an IO error is 
#      reported, then the backup process is concluded with a call to 
#      backup_finish().
#
#      Test that if an IO error occurs, or if one occured while updating
#      the backup database during step 4, then the conditions listed
#      under step 3 are all true.
#
#   6) Finish the backup process.
#
#   * If the backup succeeds (backup_finish() returns SQLITE_OK), then
#     the contents of the backup database should match that of the
#     source database.
#
#   * If the backup fails (backup_finish() returns other than SQLITE_OK), 
#     then the contents of the backup database should be as they were 
#     before the operation was started.
#
# The following factors are varied:
#
#   * Destination database is initially larger than the source database, OR
#   * Destination database is initially smaller than the source database.
#
#   * IO errors are transient, OR
#   * IO errors are persistent.
#
#   * Destination page-size is smaller than the source.
#   * Destination page-size is the same as the source.
#   * Destination page-size is larger than the source.
#

set iTest 1
foreach bPersist {0 1} {
foreach iDestPagesize {512 1024 4096} {
foreach zSetupBak [list "" {populate_database ddb 1}] {

  incr iTest
  set bStop 0
for {set iError 1} {$bStop == 0} {incr iError} {
  # Disable IO error simulation.
  clear_ioerr_simulation

  catch { ddb close }
  catch { sdb close }
  catch { forcedelete test.db }
  catch { forcedelete bak.db }

  # Open the source and destination databases.
  sqlite4 sdb test.db
  sqlite4 ddb bak.db

  # Step 1: Populate the source and destination databases.
  populate_database sdb
  ddb eval "PRAGMA page_size = $iDestPagesize"
  ddb eval "PRAGMA cache_size = 10"
  eval $zSetupBak

  # Step 2: Open the backup process.
  sqlite4_backup B ddb main sdb main

  # Enable IO error simulation.
  set ::sqlite_io_error_pending $iError
  set ::sqlite_io_error_persist $bPersist

  # Step 3: Partially backup the database. If an IO error occurs, check
  # a few things then skip to the next iteration of the loop.
  #
  set rc [B step 100]
  if {$::sqlite_io_error_hardhit} {

    do_test backup_ioerr-$iTest.$iError.1 {
      string match SQLITE_IOERR* $rc
    } {1}
    do_test backup_ioerr-$iTest.$iError.2 {
      list [sqlite4_errcode ddb] [sqlite4_errmsg ddb]
    } {SQLITE_OK {not an error}}

    set rc [B finish]
    do_test backup_ioerr-$iTest.$iError.3 {
      string match SQLITE_IOERR* $rc
    } {1}

    do_test backup_ioerr-$iTest.$iError.4 {
      sqlite4_errmsg ddb
    } {disk I/O error}

    clear_ioerr_simulation
    sqlite4 ddb bak.db
    integrity_check backup_ioerr-$iTest.$iError.5 ddb

    continue
  }

  # No IO error was encountered during step 3. Check that backup_step()
  # returned SQLITE_OK before proceding.
  do_test backup_ioerr-$iTest.$iError.6 {
    expr {$rc eq "SQLITE_OK"}
  } {1}

  # Step 4: Write to the source database.
  set rc [catchsql { UPDATE t1 SET b = randstr(1000,1000) WHERE a < 50 } sdb]

  if {[lindex $rc 0] && $::sqlite_io_error_persist==0} {
    # The IO error occured while updating the source database. In this
    # case the backup should be able to continue.
    set rc [B step 5000]
    if { $rc != "SQLITE_IOERR_UNLOCK" } {
      do_test backup_ioerr-$iTest.$iError.7 {
        list [B step 5000] [B finish]
      } {SQLITE_DONE SQLITE_OK}

      clear_ioerr_simulation
      test_contents backup_ioerr-$iTest.$iError.8 ddb main sdb main
      integrity_check backup_ioerr-$iTest.$iError.9 ddb
    } else {
      do_test backup_ioerr-$iTest.$iError.10 {
        B finish
      } {SQLITE_IOERR_UNLOCK}
    }

    clear_ioerr_simulation
    sqlite4 ddb bak.db
    integrity_check backup_ioerr-$iTest.$iError.11 ddb

    continue
  }

  # Step 5: Finish the backup operation. If an IO error occurs, check that
  # it is reported correctly and skip to the next iteration of the loop.
  #
  set rc [B step 5000]
  if {$rc != "SQLITE_DONE"} {
    do_test backup_ioerr-$iTest.$iError.12 {
      string match SQLITE_IOERR* $rc
    } {1}
    do_test backup_ioerr-$iTest.$iError.13 {
      list [sqlite4_errcode ddb] [sqlite4_errmsg ddb]
    } {SQLITE_OK {not an error}}

    set rc [B finish]
    do_test backup_ioerr-$iTest.$iError.14 {
      string match SQLITE_IOERR* $rc
    } {1}
    do_test backup_ioerr-$iTest.$iError.15 {
      sqlite4_errmsg ddb
    } {disk I/O error}

    clear_ioerr_simulation
    sqlite4 ddb bak.db
    integrity_check backup_ioerr-$iTest.$iError.16 ddb

    continue
  }

  # The backup was successfully completed.
  #
  do_test backup_ioerr-$iTest.$iError.17 {
    list [set rc] [B finish]
  } {SQLITE_DONE SQLITE_OK}

  clear_ioerr_simulation
  sqlite4 sdb test.db
  sqlite4 ddb bak.db

  test_contents backup_ioerr-$iTest.$iError.18 ddb main sdb main
  integrity_check backup_ioerr-$iTest.$iError.19 ddb

  set bStop [expr $::sqlite_io_error_pending<=0]
}}}}

catch { sdb close }
catch { ddb close }
finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




























































































































































































































































































































































































































































































































































































Deleted test/backup_malloc.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# 2009 January 30
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the handling of OOM errors by the
# sqlite4_backup_XXX APIs.
#
# $Id: backup_malloc.test,v 1.2 2009/02/04 22:46:47 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

source $testdir/malloc_common.tcl

do_malloc_test backup_malloc-1 -tclprep {
  execsql {
    PRAGMA cache_size = 10;
    BEGIN;
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randstr(1000,1000));
    INSERT INTO t1 SELECT a+ 1, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 2, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 4, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+ 8, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+16, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+32, randstr(1000,1000) FROM t1;
    INSERT INTO t1 SELECT a+64, randstr(1000,1000) FROM t1;
    CREATE INDEX i1 ON t1(b);
    COMMIT;
  }
  sqlite4 db2 test2.db
  execsql { PRAGMA cache_size = 10 } db2
} -tclbody {

  # Create a backup object.
  #
  set rc [catch {sqlite4_backup B db2 main db main}]
  if {$rc && [sqlite4_errcode db2] == "SQLITE_NOMEM"} {
    error "out of memory"
  }

  # Run the backup process some.
  #
  set rc [B step 50]
  if {$rc == "SQLITE_NOMEM" || $rc == "SQLITE_IOERR_NOMEM"} {
    error "out of memory"
  }
  
  # Update the database.
  #
  execsql { UPDATE t1 SET a = a + 1 }
  
  # Finish doing the backup.
  #
  set rc [B step 5000]
  if {$rc == "SQLITE_NOMEM" || $rc == "SQLITE_IOERR_NOMEM"} {
    error "out of memory"
  }
 
  # Finalize the backup.
  B finish
} -cleanup {
  catch { B finish }
  catch { db2 close }
}

do_malloc_test backup_malloc-2 -tclprep {
  sqlite4 db2 test2.db
} -tclbody {
  set rc [catch {sqlite4_backup B db2 temp db main}]
  set errcode [sqlite4_errcode db2]
  if {$rc && ($errcode == "SQLITE_NOMEM" || $errcode == "SQLITE_IOERR_NOMEM")} {
    error "out of memory"
  }
} -cleanup {
  catch { B finish }
  db2 close
}

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<














































































































































































Deleted test/incrblob.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# 2007 May 1
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: incrblob.test,v 1.24 2009/06/19 22:23:42 drh Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!autovacuum || !pragma || !incrblob} {
  finish_test
  return
}

do_test incrblob-1.1 {
  execsql {
    CREATE TABLE blobs(k PRIMARY KEY, v BLOB);
    INSERT INTO blobs VALUES('one', X'0102030405060708090A');
    INSERT INTO blobs VALUES('two', X'0A090807060504030201');
  }
} {}

do_test incrblob-1.2.1 {
  set ::blob [db incrblob blobs v 1]
  string match incrblob_* $::blob
} {1}
unset -nocomplain data
do_test incrblob-1.2.2 {
  binary scan [read $::blob] c* data
  set data
} {1 2 3 4 5 6 7 8 9 10}
do_test incrblob-1.2.3 {
  seek $::blob 0
  puts -nonewline $::blob "1234567890"
  flush $::blob
} {}
do_test incrblob-1.2.4 {
  seek $::blob 0
  binary scan [read $::blob] c* data
  set data
} {49 50 51 52 53 54 55 56 57 48}
do_test incrblob-1.2.5 {
  close $::blob
} {}
do_test incrblob-1.2.6 {
  execsql {
    SELECT v FROM blobs WHERE rowid = 1;
  }
} {1234567890}

#--------------------------------------------------------------------
# Test cases incrblob-1.3.X check that it is possible to read and write
# regions of a blob that lie on overflow pages.
#
do_test incrblob-1.3.1 {
  set ::str "[string repeat . 10000]"
  execsql {
    INSERT INTO blobs(rowid, k, v) VALUES(3, 'three', $::str);
  }
} {}

do_test incrblob-1.3.2 {
  set ::blob [db incrblob blobs v 3]
  seek $::blob 8500
  read $::blob 10
} {..........}
do_test incrblob-1.3.3 {
  seek $::blob 8500
  puts -nonewline $::blob 1234567890
} {}
do_test incrblob-1.3.4 {
  seek $::blob 8496
  read $::blob 10
} {....123456}
do_test incrblob-1.3.10 {
  close $::blob
} {}

#------------------------------------------------------------------------
# incrblob-2.*: 
#
# Test that the following operations use ptrmap pages to reduce
# unnecessary reads:
#
#     * Reading near the end of a blob,
#     * Writing near the end of a blob, and
#     * SELECT a column value that is located on an overflow page.
#
proc nRead {db} {
  set bt [btree_from_db $db]
  db_enter $db
  array set stats [btree_pager_stats $bt]
  db_leave $db
  return $stats(read)
}
proc nWrite {db} {
  set bt [btree_from_db $db]
  db_enter $db
  array set stats [btree_pager_stats $bt]
  db_leave $db
  return $stats(write)
}

sqlite4_soft_heap_limit 0

foreach AutoVacuumMode [list 0 1] {

  if {$AutoVacuumMode>0} {
    ifcapable !autovacuum {
      break
    }
  }

  db close
  forcedelete test.db test.db-journal

  sqlite4 db test.db
  execsql "PRAGMA auto_vacuum = $AutoVacuumMode"

  do_test incrblob-2.$AutoVacuumMode.1 {
    set ::str [string repeat abcdefghij 2900]
    execsql {
      BEGIN;
      CREATE TABLE blobs(k PRIMARY KEY, v BLOB, i INTEGER);
      DELETE FROM blobs;
      INSERT INTO blobs VALUES('one', $::str || randstr(500,500), 45);
      COMMIT;
    }
    expr [file size test.db]/1024
  } [expr 31 + $AutoVacuumMode]

  ifcapable autovacuum {
    do_test incrblob-2.$AutoVacuumMode.2 {
      execsql {
        PRAGMA auto_vacuum;
      }
    } $AutoVacuumMode
  }

  do_test incrblob-2.$AutoVacuumMode.3 {
    # Open and close the db to make sure the page cache is empty.
    db close
    sqlite4 db test.db
  
    # Read the last 20 bytes of the blob via a blob handle.
    set ::blob [db incrblob blobs v 1]
    seek $::blob -20 end
    set ::fragment [read $::blob]
    close $::blob
  
    # If the database is not in auto-vacuum mode, the whole of
    # the overflow-chain must be scanned. In auto-vacuum mode,
    # sqlite uses the ptrmap pages to avoid reading the other pages.
    #
    nRead db
  } [expr $AutoVacuumMode ? 4 : 30]

  do_test incrblob-2.$AutoVacuumMode.4 {
    string range [db one {SELECT v FROM blobs}] end-19 end
  } $::fragment

  do_test incrblob-2.$AutoVacuumMode.5 {
    # Open and close the db to make sure the page cache is empty.
    db close
    sqlite4 db test.db
  
    # Write the second-to-last 20 bytes of the blob via a blob handle.
    #
    set ::blob [db incrblob blobs v 1]
    seek $::blob -40 end
    puts -nonewline $::blob "1234567890abcdefghij"
    flush $::blob
  
    # If the database is not in auto-vacuum mode, the whole of
    # the overflow-chain must be scanned. In auto-vacuum mode,
    # sqlite uses the ptrmap pages to avoid reading the other pages.
    #
    nRead db
  } [expr $AutoVacuumMode ? 4 : 30]

  # Pages 1 (the write-counter) and 32 (the blob data) were written.
  do_test incrblob-2.$AutoVacuumMode.6 {
    close $::blob
    nWrite db
  } 2

  do_test incrblob-2.$AutoVacuumMode.7 {
    string range [db one {SELECT v FROM blobs}] end-39 end-20
  } "1234567890abcdefghij"

  do_test incrblob-2.$AutoVacuumMode.8 {
    # Open and close the db to make sure the page cache is empty.
    db close
    sqlite4 db test.db

    execsql { SELECT i FROM blobs } 
  } {45}

  do_test incrblob-2.$AutoVacuumMode.9 {
    nRead db
  } [expr $AutoVacuumMode ? 4 : 30]
}
sqlite4_soft_heap_limit $cmdlinearg(soft-heap-limit)

#------------------------------------------------------------------------
# incrblob-3.*: 
#
# Test the outcome of trying to write to a read-only blob handle.
#
do_test incrblob-3.1 {
  set ::blob [db incrblob -readonly blobs v 1]
  seek $::blob -40 end
  read $::blob 20
} "1234567890abcdefghij"
do_test incrblob-3.2 {
  seek $::blob 0
  set rc [catch {
    puts -nonewline $::blob "helloworld"
  } msg]
  close $::blob
  list $rc $msg
} "1 {channel \"$::blob\" wasn't opened for writing}"

do_test incrblob-3.3 {
  set ::blob [db incrblob -readonly blobs v 1]
  seek $::blob -40 end
  read $::blob 20
} "1234567890abcdefghij"
do_test incrblob-3.4 {
  set rc [catch {
    sqlite4_blob_write $::blob 20 "qwertyuioplkjhgfds" 
  } msg]
  list $rc $msg
} {1 SQLITE_READONLY}
catch {close $::blob}

#------------------------------------------------------------------------
# incrblob-4.*: 
#
# Try a couple of error conditions:
#
#     4.1 - Attempt to open a row that does not exist.
#     4.2 - Attempt to open a column that does not exist.
#     4.3 - Attempt to open a table that does not exist.
#     4.4 - Attempt to open a database that does not exist.
#
#     4.5 - Attempt to open an integer
#     4.6 - Attempt to open a real value
#     4.7 - Attempt to open an SQL null
#
#     4.8 - Attempt to open an indexed column for writing
#     4.9 - Attempt to open an indexed column for reading (this works)
#
#     4.11 - Attempt to open a column of a view.
#     4.12 - Attempt to open a column of a virtual table.
#
do_test incrblob-4.1 {
  set rc [catch {
    set ::blob [db incrblob blobs v 2]
  } msg ] 
  list $rc $msg
} {1 {no such rowid: 2}}
do_test incrblob-4.2 {
  set rc [catch {
    set ::blob [db incrblob blobs blue 1]
  } msg ] 
  list $rc $msg
} {1 {no such column: "blue"}}
do_test incrblob-4.3 {
  set rc [catch {
    set ::blob [db incrblob nosuchtable blue 1]
  } msg ]
  list $rc $msg
} {1 {no such table: main.nosuchtable}}
do_test incrblob-4.4 {
  set rc [catch {
    set ::blob [db incrblob nosuchdb blobs v 1]
  } msg ] 
  list $rc $msg
} {1 {no such table: nosuchdb.blobs}}

do_test incrblob-4.5 {
  set rc [catch {
    set ::blob [db incrblob blobs i 1]
  } msg ] 
  list $rc $msg
} {1 {cannot open value of type integer}}
do_test incrblob-4.6 {
  execsql {
    INSERT INTO blobs(k, v, i) VALUES(123, 567.765, NULL);
  }
  set rc [catch {
    set ::blob [db incrblob blobs v 2]
  } msg ] 
  list $rc $msg
} {1 {cannot open value of type real}}
do_test incrblob-4.7 {
  set rc [catch {
    set ::blob [db incrblob blobs i 2]
  } msg ] 
  list $rc $msg
} {1 {cannot open value of type null}}

do_test incrblob-4.8.1 {
  execsql {
    INSERT INTO blobs(k, v, i) VALUES(X'010203040506070809', 'hello', 'world');
  }
  set rc [catch {
    set ::blob [db incrblob blobs k 3]
  } msg ] 
  list $rc $msg
} {1 {cannot open indexed column for writing}}
do_test incrblob-4.8.2 {
  execsql {
    CREATE TABLE t3(a INTEGER PRIMARY KEY, b);
    INSERT INTO t3 VALUES(1, 2);
  }
  set rc [catch {
    set ::blob [db incrblob -readonly t3 a 1]
  } msg ] 
  list $rc $msg
} {1 {cannot open value of type null}}
do_test incrblob-4.8.3 {
  set rc [catch {
    set ::blob [db incrblob -readonly t3 rowid 1]
  } msg ] 
  list $rc $msg
} {1 {no such column: "rowid"}}

do_test incrblob-4.9.1 {
  set rc [catch {
    set ::blob [db incrblob -readonly blobs k 3]
  } msg]
} {0}
do_test incrblob-4.9.2 {
  binary scan [read $::blob] c* c
  close $::blob
  set c
} {1 2 3 4 5 6 7 8 9}

do_test incrblob-4.10 {
  set ::blob [db incrblob -readonly blobs k 3]
  set rc [catch { sqlite4_blob_read $::blob 10 100 } msg]
  list $rc $msg
} {1 SQLITE_ERROR}
do_test incrblob-4.10.2 {
  close $::blob
} {}

ifcapable view {
  do_test incrblob-4.11 {
    execsql { CREATE VIEW blobs_view AS SELECT k, v, i FROM blobs }
    set rc [catch { db incrblob blobs_view v 3 } msg]
    list $rc $msg
  } {1 {cannot open view: blobs_view}}
}
ifcapable vtab {
  register_echo_module [sqlite4_connection_pointer db]
  do_test incrblob-4.12 {
    execsql { CREATE VIRTUAL TABLE blobs_echo USING echo(blobs) }
    set rc [catch { db incrblob blobs_echo v 3 } msg]
    list $rc $msg
  } {1 {cannot open virtual table: blobs_echo}}
}


#------------------------------------------------------------------------
# incrblob-5.*: 
#
#     Test that opening a blob in an attached database works.
#
ifcapable attach {
  do_test incrblob-5.1 {
    forcedelete test2.db test2.db-journal
    set ::size [expr [file size [info script]]]
    execsql {
      ATTACH 'test2.db' AS aux;
      CREATE TABLE aux.files(name, text);
      INSERT INTO aux.files VALUES('this one', zeroblob($::size));
    }
    set fd  [db incrblob aux files text 1]
    fconfigure $fd -translation binary
    set fd2 [open [info script]]
    fconfigure $fd2 -translation binary
    puts -nonewline $fd [read $fd2]
    close $fd
    close $fd2
    set ::text [db one {select text from aux.files}]
    string length $::text
  } [file size [info script]]
  do_test incrblob-5.2 {
    set fd2 [open [info script]]
    fconfigure $fd2 -translation binary
    set ::data [read $fd2]
    close $fd2
    set ::data
  } $::text
}

# free memory
unset -nocomplain ::data
unset -nocomplain ::text

#------------------------------------------------------------------------
# incrblob-6.*: 
#
#     Test that opening a blob for write-access is impossible if
#     another connection has the database RESERVED lock.
#
#     Then test that blob writes that take place inside of a
#     transaction are not visible to external connections until
#     after the transaction is commited and the blob channel 
#     closed.
#
#     This test does not work with the "memsubsys1" configuration.
#     Permutation memsubsys1 configures a very small static allocation 
#     for use as page-cache memory. This causes SQLite to upgrade
#     to an exclusive lock when writing earlier than usual, which
#     makes some of these tests fail.
#
sqlite4_soft_heap_limit 0
if {[permutation] != "memsubsys1"} {
  do_test incrblob-6.1 {
    sqlite4 db2 test.db
    execsql {
      BEGIN;
      INSERT INTO blobs(k, v, i) VALUES('a', 'different', 'connection');
    } db2
  } {}
  do_test incrblob-6.2 {
    execsql {
      SELECT rowid FROM blobs
    }
  } {1 2 3}
  do_test incrblob-6.3 {
    set rc [catch {
      db incrblob blobs v 1
    } msg]
    list $rc $msg
  } {1 {database is locked}}
  do_test incrblob-6.4 {
    set rc [catch {
      db incrblob blobs v 3
    } msg]
    list $rc $msg
  } {1 {database is locked}}
  do_test incrblob-6.5 {
    set ::blob [db incrblob -readonly blobs v 3]
    read $::blob
  } {hello}
  do_test incrblob-6.6 {
    close $::blob
  } {}
  
  do_test incrblob-6.7 {
    set ::blob [db2 incrblob blobs i 4]
    gets $::blob
  } {connection}
  do_test incrblob-6.8 {
    tell $::blob
  } {10}
  do_test incrblob-6.9 {
    seek $::blob 0
    puts -nonewline $::blob "invocation"
    flush $::blob
  } {}
  
  # At this point rollback should be illegal (because 
  # there is an open blob channel).  But commit is also illegal because
  # the open blob is read-write.
  #
  do_test incrblob-6.10 {
    catchsql {
      ROLLBACK;
    } db2
  } {1 {cannot rollback transaction - SQL statements in progress}}
  do_test incrblob-6.11 {
    catchsql {
      COMMIT;
    } db2
  } {1 {cannot commit transaction - SQL statements in progress}}
  
  do_test incrblob-6.12 {
    execsql {
      SELECT * FROM blobs WHERE rowid = 4;
    }
  } {}
  do_test incrblob-6.13 {
    close $::blob
  } {}
  do_test incrblob-6.14 {
    catchsql {
      COMMIT;
    } db2
  } {0 {}}
  do_test incrblob-6.15 {
    execsql {
      SELECT * FROM blobs WHERE rowid = 4;
    }
  } {a different invocation}
  db2 close
}
sqlite4_soft_heap_limit $cmdlinearg(soft-heap-limit)

#-----------------------------------------------------------------------
# The following tests verify the behaviour of the incremental IO
# APIs in the following cases:
#
#     7.1 A row that containing an open blob is modified.
#
#     7.2 A CREATE TABLE requires that an overflow page that is part
#         of an open blob is moved.
#
#     7.3 An INCREMENTAL VACUUM moves an overflow page that is part
#         of an open blob.
#
# In the first case above, correct behaviour is for all subsequent
# read/write operations on the blob-handle to return SQLITE_ABORT.
# More accurately, blob-handles are invalidated whenever the table
# they belong to is written to.
#
# The second two cases have no external effect. They are testing
# that the internal cache of overflow page numbers is correctly
# invalidated.
#
do_test incrblob-7.1.0 {
  execsql {
    BEGIN;
    DROP TABLE blobs;
    CREATE TABLE t1 (a, b, c, d BLOB);
    INSERT INTO t1(a, b, c, d) VALUES(1, 2, 3, 4);
    COMMIT;
  }
} {}

foreach {tn arg} {1 "" 2 -readonly} {

  execsql {
    UPDATE t1 SET d = zeroblob(10000);
  }

  do_test incrblob-7.1.$tn.1 {
    set ::b [eval db incrblob $arg t1 d 1]
    binary scan [sqlite4_blob_read $::b 5000 5] c* c
    set c
  } {0 0 0 0 0}
  do_test incrblob-7.1.$tn.2 {
    execsql {
      UPDATE t1 SET d = 15;
    }
  } {}
  do_test incrblob-7.1.$tn.3 {
    set rc [catch { sqlite4_blob_read $::b 5000 5 } msg]
    list $rc $msg
  } {1 SQLITE_ABORT}
  do_test incrblob-7.1.$tn.4 {
    execsql {
      SELECT d FROM t1;
    }
  } {15}
  do_test incrblob-7.1.$tn.5 {
    set rc [catch { close $::b } msg]
    list $rc $msg
  } {0 {}}
  do_test incrblob-7.1.$tn.6 {
    execsql {
      SELECT d FROM t1;
    }
  } {15}

}

set fd [open [info script]]
fconfigure $fd -translation binary
set ::data [read $fd 14000]
close $fd

db close
forcedelete test.db test.db-journal
sqlite4 db test.db

do_test incrblob-7.2.1 {
  execsql {
    PRAGMA auto_vacuum = "incremental";
    CREATE TABLE t1(a INTEGER PRIMARY KEY, b);        -- root@page3
    INSERT INTO t1 VALUES(123, $::data);
  }
  set ::b [db incrblob -readonly t1 b 123]
  fconfigure $::b -translation binary
  read $::b
} $::data
do_test incrblob-7.2.2 {
  execsql {
    CREATE TABLE t2(a INTEGER PRIMARY KEY, b);        -- root@page4
  }
  seek $::b 0
  read $::b
} $::data
do_test incrblob-7.2.3 {
  close $::b
  execsql {
    SELECT rootpage FROM sqlite_master;
  }
} {3 4}

set ::otherdata "[string range $::data 0 1000][string range $::data 1001 end]"
do_test incrblob-7.3.1 {
  execsql {
    INSERT INTO t2 VALUES(456, $::otherdata);
  }
  set ::b [db incrblob -readonly t2 b 456]
  fconfigure $::b -translation binary
  read $::b
} $::otherdata
do_test incrblob-7.3.2 {
  expr [file size test.db]/1024
} 30
do_test incrblob-7.3.3 {
  execsql {
    DELETE FROM t1 WHERE a = 123;
    PRAGMA INCREMENTAL_VACUUM(0);
  }
  seek $::b 0
  read $::b
} $::otherdata

# Attempt to write on a read-only blob.  Make sure the error code
# gets set.  Ticket #2464.
#
do_test incrblob-7.4 {
  set rc [catch {sqlite4_blob_write $::b 10 HELLO} msg]
  lappend rc $msg
} {1 SQLITE_READONLY}
do_test incrblob-7.5 {
  sqlite4_errcode db
} {SQLITE_READONLY}
do_test incrblob-7.6 {
  sqlite4_errmsg db
} {attempt to write a readonly database}

# Test that if either the "offset" or "amount" arguments to
# sqlite4_blob_write() are less than zero, SQLITE_ERROR is returned.
# 
do_test incrblob-8.1 {
  execsql { INSERT INTO t1 VALUES(314159, 'sqlite') }
  set ::b [db incrblob t1 b 314159]
  fconfigure $::b -translation binary
  set rc [catch {sqlite4_blob_write $::b 10 HELLO -1} msg]
  lappend rc $msg
} {1 SQLITE_ERROR}
do_test incrblob-8.2 {
  sqlite4_errcode db
} {SQLITE_ERROR}
do_test incrblob-8.3 {
  set rc [catch {sqlite4_blob_write $::b -1 HELLO 5} msg]
  lappend rc $msg
} {1 SQLITE_ERROR}
do_test incrblob-8.4 {
  sqlite4_errcode db
} {SQLITE_ERROR}
do_test incrblob-8.5 {
  execsql {SELECT b FROM t1 WHERE a = 314159}
} {sqlite}
do_test incrblob-8.6 {
  set rc [catch {sqlite4_blob_write $::b 0 etilqs 6} msg]
  lappend rc $msg
} {0 {}}
do_test incrblob-8.7 {
  execsql {SELECT b FROM t1 WHERE a = 314159}
} {etilqs}

# The following test case exposes an instance in the blob code where
# an error message was set using a call similar to sqlite4_mprintf(zErr),
# where zErr is an arbitrary string. This is no good if the string contains
# characters that can be mistaken for printf() formatting directives.
#
do_test incrblob-9.1 {
  list [catch { db incrblob t1 "A tricky column name %s%s" 1 } msg] $msg
} {1 {no such column: "A tricky column name %s%s"}}


finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted test/incrblob2.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# 2008 June 9
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# Test that it is possible to have two open blob handles on a single
# blob object.
#
# $Id: incrblob2.test,v 1.11 2009/06/29 06:00:37 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!autovacuum || !pragma || !incrblob} {
  finish_test
  return
}

do_test incrblob2-1.0 {
  execsql {
    CREATE TABLE blobs(id INTEGER PRIMARY KEY, data BLOB);
    INSERT INTO blobs VALUES(NULL, zeroblob(5000));
    INSERT INTO blobs VALUES(NULL, zeroblob(5000));
    INSERT INTO blobs VALUES(NULL, zeroblob(5000));
    INSERT INTO blobs VALUES(NULL, zeroblob(5000));
  }
} {}

foreach iOffset [list 0 256 4094] {
  do_test incrblob2-1.$iOffset.1 {
    set fd [db incrblob blobs data 1]
    puts $fd "[string repeat x $iOffset]SQLite version 3.6.0"
    close $fd
  } {}
  
  do_test incrblob2-1.$iOffset.2 {
    set fd1 [db incrblob blobs data 1]
    set fd2 [db incrblob blobs data 1]
    fconfigure $fd1 -buffering none
    fconfigure $fd2 -buffering none
    if {$iOffset != 0} {
      seek $fd2 $iOffset start
      seek $fd1 $iOffset start
    }
    read $fd1 6
  } {SQLite}
  
  do_test incrblob2-1.$iOffset.3 {
    read $fd2 6
  } {SQLite}
  
  do_test incrblob2-1.$iOffset.4 {
    seek $fd2 $iOffset start
    seek $fd1 $iOffset start
    puts -nonewline $fd2 "etiLQS"
  } {}

  
  do_test incrblob2-1.$iOffset.5 {
    seek $fd1 $iOffset start
    read $fd1 6
  } {etiLQS}
  
  do_test incrblob2-1.$iOffset.6 {
    seek $fd2 $iOffset start
    read $fd2 6
  } {etiLQS}
  
  do_test incrblob2-1.$iOffset.7 {
    seek $fd1 $iOffset start
    read $fd1 6
  } {etiLQS}
  
  do_test incrblob2-1.$iOffset.8 {
    close $fd1
    close $fd2
  } {}
}

#--------------------------------------------------------------------------

foreach iOffset [list 0 256 4094] {

  do_test incrblob2-2.$iOffset.1 {
    set fd1 [db incrblob blobs data 1]
    seek $fd1 [expr $iOffset - 5000] end
    fconfigure $fd1 -buffering none

    set fd2 [db incrblob blobs data 1]
    seek $fd2 [expr $iOffset - 5000] end
    fconfigure $fd2 -buffering none

    puts -nonewline $fd1 "123456"
  } {}
  
  do_test incrblob2-2.$iOffset.2 {
    read $fd2 6
  } {123456}

  do_test incrblob2-2.$iOffset.3 {
    close $fd1
    close $fd2
  } {}
}

do_test incrblob2-3.1 {
  set fd1 [db incrblob blobs data 1]
  fconfigure $fd1 -buffering none
} {}
do_test incrblob2-3.2 {
  execsql {
    INSERT INTO blobs VALUES(5, zeroblob(10240));
  }
} {}
do_test incrblob2-3.3 {
  set rc [catch { read $fd1 6 } msg]
  list $rc $msg
} {0 123456}
do_test incrblob2-3.4 {
  close $fd1
} {}

#--------------------------------------------------------------------------
# The following tests - incrblob2-4.* - test that blob handles are 
# invalidated at the correct times.
#
do_test incrblob2-4.1 {
  unset -nocomplain data
  db eval BEGIN
  db eval { CREATE TABLE t1(id INTEGER PRIMARY KEY, data BLOB); }
  for {set ii 1} {$ii < 100} {incr ii} {
    set data [string repeat "blob$ii" 500]
    db eval { INSERT INTO t1 VALUES($ii, $data) }
  }
  db eval COMMIT
} {}

proc aborted_handles {} {
  global handles

  set aborted {}
  for {set ii 1} {$ii < 100} {incr ii} {
    set str "blob$ii"
    set nByte [string length $str]
    set iOffset [expr $nByte * $ii * 2]

    set rc [catch {sqlite4_blob_read $handles($ii) $iOffset $nByte} msg]
    if {$rc && $msg eq "SQLITE_ABORT"} {
      lappend aborted $ii
    } else {
      if {$rc || $msg ne $str} {
        error "blob $ii: $msg"
      }
    }
  }
  set aborted
}

do_test incrblob2-4.2 {
  for {set ii 1} {$ii < 100} {incr ii} {
    set handles($ii) [db incrblob t1 data $ii]
  }
  aborted_handles
} {}

# Update row 3. This should abort handle 3 but leave all others untouched.
#
do_test incrblob2-4.3 {
  db eval {UPDATE t1 SET data = data || '' WHERE id = 3}
  aborted_handles
} {3}

# Test that a write to handle 3 also returns SQLITE_ABORT.
#
do_test incrblob2-4.3.1 {
  set rc [catch {sqlite4_blob_write $::handles(3) 10 HELLO} msg]
  list $rc $msg
} {1 SQLITE_ABORT}

# Delete row 14. This should abort handle 6 but leave all others untouched.
#
do_test incrblob2-4.4 {
  db eval {DELETE FROM t1 WHERE id = 14}
  aborted_handles
} {3 14}

# Change the rowid of row 15 to 102. Should abort handle 15.
#
do_test incrblob2-4.5 {
  db eval {UPDATE t1 SET id = 102 WHERE id = 15}
  aborted_handles
} {3 14 15}

# Clobber row 92 using INSERT OR REPLACE.
#
do_test incrblob2-4.6 {
  db eval {INSERT OR REPLACE INTO t1 VALUES(92, zeroblob(1000))}
  aborted_handles
} {3 14 15 92}

# Clobber row 65 using UPDATE OR REPLACE on row 35. This should abort 
# handles 35 and 65.
#
do_test incrblob2-4.7 {
  db eval {UPDATE OR REPLACE t1 SET id = 65 WHERE id = 35}
  aborted_handles
} {3 14 15 35 65 92}

# Insert a couple of new rows. This should not invalidate any handles.
#
do_test incrblob2-4.9 {
  db eval {INSERT INTO t1 SELECT NULL, data FROM t1}
  aborted_handles
} {3 14 15 35 65 92}

# Delete all rows from 1 to 25. This should abort all handles up to 25.
#
do_test incrblob2-4.9 {
  db eval {DELETE FROM t1 WHERE id >=1 AND id <= 25}
  aborted_handles
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 35 65 92}

# Delete the whole table (this will use sqlite4BtreeClearTable()). All handles
# should now be aborted.
#
do_test incrblob2-4.10 {
  db eval {DELETE FROM t1}
  aborted_handles
} {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99}

do_test incrblob2-4.1.X {
  for {set ii 1} {$ii < 100} {incr ii} {
    close $handles($ii) 
  }
} {}

#--------------------------------------------------------------------------
# The following tests - incrblob2-5.* - test that in shared cache an open
# blob handle counts as a read-lock on its table.
#
ifcapable shared_cache {
  db close
  set ::enable_shared_cache [sqlite4_enable_shared_cache 1]

  do_test incrblob2-5.1 {
    sqlite4 db test.db
    sqlite4 db2 test.db

    execsql {
      INSERT INTO t1 VALUES(1, 'abcde');
    }
  } {}

  do_test incrblob2-5.2 {
    catchsql { INSERT INTO t1 VALUES(2, 'fghij') } db2
  } {0 {}}

  do_test incrblob2-5.3 {
    set blob [db incrblob t1 data 1]
    catchsql { INSERT INTO t1 VALUES(3, 'klmno') } db2
  } {1 {database table is locked}}

  do_test incrblob2-5.4 {
    close $blob
    execsql BEGIN db2
    catchsql { INSERT INTO t1 VALUES(4, 'pqrst') } db2
  } {0 {}}

  do_test incrblob2-5.5 {
    set rc [catch { db incrblob -readonly t1 data 1 } msg]
    list $rc $msg
  } {1 {database table is locked: t1}}

  do_test incrblob2-5.6 {
    execsql { PRAGMA read_uncommitted=1 }
    set blob [db incrblob -readonly t1 data 4]
    read $blob
  } {pqrst}

  do_test incrblob2-5.7 {
    catchsql { INSERT INTO t1 VALUES(3, 'klmno') } db2
  } {0 {}}

  do_test incrblob2-5.8 {
    close $blob
  } {}

  db2 close
  db close
  sqlite4_enable_shared_cache $::enable_shared_cache
}

#--------------------------------------------------------------------------
# The following tests - incrblob2-6.* - test a specific scenario that might
# be causing an error.
#
sqlite4 db test.db
do_test incrblob2-6.1 {
  execsql {
    DELETE FROM t1;
    INSERT INTO t1 VALUES(1, zeroblob(100));
  }
  
  set rdHandle [db incrblob -readonly t1 data 1]
  set wrHandle [db incrblob t1 data 1]

  sqlite4_blob_read $rdHandle 0 100

  sqlite4_blob_write $wrHandle 0 ABCDEF

  close $wrHandle
  close $rdHandle
} {}

do_test incrblob2-6.2 {
  set rdHandle [db incrblob -readonly t1 data 1]
  sqlite4_blob_read $rdHandle 0 2
} {AB}

do_test incrblob2-6.3 {
  set wrHandle [db incrblob t1 data 1]
  sqlite4_blob_write $wrHandle 0 ZZZZZZZZZZ
  sqlite4_blob_read $rdHandle 2 4
} {ZZZZ}

do_test incrblob2-6.4 {
  close $wrHandle
  close $rdHandle
} {}

sqlite4_memory_highwater 1
do_test incrblob2-7.1 {
  db eval {
    CREATE TABLE t2(B BLOB);
    INSERT INTO t2 VALUES(zeroblob(10 * 1024 * 1024)); 
  }
  expr {[sqlite4_memory_highwater]<(5 * 1024 * 1024)}
} {1}

do_test incrblob2-7.2 {
  set h [db incrblob t2 B 1]
  expr {[sqlite4_memory_highwater]<(5 * 1024 * 1024)}
} {1}

do_test incrblob2-7.3 {
  seek $h 0 end
  tell $h
} [expr 10 * 1024 * 1024]

do_test incrblob2-7.4 {
  expr {[sqlite4_memory_highwater]<(5 * 1024 * 1024)}
} {1}

do_test incrblob2-7.5 {
  close $h
} {}

#---------------------------------------------------------------------------
# The following tests, incrblob2-8.*, test that nothing terrible happens
# when a statement transaction is rolled back while there are open 
# incremental-blob handles. At one point an assert() was failing when
# this was attempted.
#
do_test incrblob2-8.1 {
  execsql BEGIN
  set h [db incrblob t2 B 1]
  set rc [catch {
    db eval {SELECT rowid FROM t2} { execsql "DROP TABLE t2" }
  } msg] 
  list $rc $msg
} {1 {database table is locked}}
do_test incrblob2-8.2 {
  close $h
  execsql COMMIT
} {}
do_test incrblob2-8.3 {
  execsql {
    CREATE TABLE t3(a INTEGER UNIQUE, b TEXT);
    INSERT INTO t3 VALUES(1, 'aaaaaaaaaaaaaaaaaaaa');
    INSERT INTO t3 VALUES(2, 'bbbbbbbbbbbbbbbbbbbb');
    INSERT INTO t3 VALUES(3, 'cccccccccccccccccccc');
    INSERT INTO t3 VALUES(4, 'dddddddddddddddddddd');
    INSERT INTO t3 VALUES(5, 'eeeeeeeeeeeeeeeeeeee');
  }
} {}
do_test incrblob2-8.4 {
  execsql BEGIN
  set h [db incrblob t3 b 3]
  sqlite4_blob_read $h 0 20
} {cccccccccccccccccccc}
do_test incrblob2-8.5 {
  catchsql {UPDATE t3 SET a = 6 WHERE a > 3}
} {1 {column a is not unique}}
do_test incrblob2-8.6 {
  catchsql {UPDATE t3 SET a = 6 WHERE a > 3}
} {1 {column a is not unique}}
do_test incrblob2-8.7 {
  sqlite4_blob_read $h 0 20
} {cccccccccccccccccccc}
do_test incrblob2-8.8 {
  catchsql {UPDATE t3 SET a = 6 WHERE a = 3 OR a = 5}
} {1 {column a is not unique}}
do_test incrblob2-8.9 {
  set rc [catch {sqlite4_blob_read $h 0 20} msg]
  list $rc $msg
} {1 SQLITE_ABORT}
do_test incrblob2-8.X {
  close $h
} {}

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




































































































































































































































































































































































































































































































































































































































































































































































































































































Deleted test/incrblob3.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# 2010 October 20
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

sqlite4 db test.db
sqlite4_db_config_lookaside db 0 0 0

do_execsql_test incrblob3-1.1 {
  CREATE TABLE blobs(k INTEGER PRIMARY KEY, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(100));
  INSERT INTO blobs VALUES(2, zeroblob(100));
} {}

# Test the sqlite4_blob_reopen()/read()/write() functions.
#
do_test incrblob3-1.2 {
  set ::blob [db incrblob blobs v 1]
  puts $::blob "hello world"
} {}

do_test incrblob3-1.3 {
  sqlite4_blob_reopen $::blob 2
  puts $::blob "world hello"
} {}

do_test incrblob3-1.4 {
  sqlite4_blob_reopen $::blob 1
  gets $::blob
} {hello world}

do_test incrblob3-1.5 {
  sqlite4_blob_reopen $::blob 2
  gets $::blob
} {world hello}

do_test incrblob3-1.6 { close $::blob } {}

# Test some error conditions.
#
#   incrblob3-2.1: Attempting to reopen a row that does not exist.
#   incrblob3-2.2: Attempting to reopen a row that does not contain a blob
#                  or text value.
#
do_test incrblob3-2.1.1 {
  set ::blob [db incrblob blobs v 1]
  list [catch {sqlite4_blob_reopen $::blob 3} msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-2.1.2 {
  list [sqlite4_errcode db] [sqlite4_errmsg db]
} {SQLITE_ERROR {no such rowid: 3}}
do_test incrblob3-2.1.3 {
  list [catch {sqlite4_blob_reopen $::blob 1} msg] $msg
} {1 SQLITE_ABORT}
do_test incrblob3-2.1.4 { close $::blob } {}

do_execsql_test incrblob3-2.2.1 {
  INSERT INTO blobs VALUES(3, 42);
  INSERT INTO blobs VALUES(4, 54.4);
  INSERT INTO blobs VALUES(5, NULL);
}
foreach {tn rowid type} {
  1 3 integer
  2 4 real
  3 5 null
} {
  do_test incrblob3-2.2.$tn.1 {
    set ::blob [db incrblob blobs v 1]
    list [catch {sqlite4_blob_reopen $::blob $rowid} msg] $msg
  } {1 SQLITE_ERROR}
  do_test incrblob3-2.2.$tn.2 {
    list [sqlite4_errcode db] [sqlite4_errmsg db]
  } "SQLITE_ERROR {cannot open value of type $type}"

  do_test incrblob3-2.2.$tn.3 {
    list [catch {sqlite4_blob_reopen $::blob 1} msg] $msg
  } {1 SQLITE_ABORT}
  do_test incrblob3-2.2.$tn.4 {
    list [catch {sqlite4_blob_read $::blob 0 10} msg] $msg
  } {1 SQLITE_ABORT}
  do_test incrblob3-2.2.$tn.5 {
    list [catch {sqlite4_blob_write $::blob 0 "abcd"} msg] $msg
  } {1 SQLITE_ABORT}
  do_test incrblob3-2.2.$tn.6 {
    sqlite4_blob_bytes $::blob
  } {0}

  do_test incrblob3-2.2.$tn.7 { close $::blob } {}
}

# Test that passing NULL to sqlite4_blob_XXX() APIs returns SQLITE_MISUSE.
#
#   incrblob3-3.1: sqlite4_blob_reopen()
#   incrblob3-3.2: sqlite4_blob_read()
#   incrblob3-3.3: sqlite4_blob_write()
#   incrblob3-3.4: sqlite4_blob_bytes()
#
do_test incrblob3-3.1 {
  list [catch {sqlite4_blob_reopen {} 3} msg] $msg
} {1 SQLITE_MISUSE}

do_test incrblob3-3.2 {
  list [catch {sqlite4_blob_read {} 0 10} msg] $msg
} {1 SQLITE_MISUSE}

do_test incrblob3-3.3 {
  list [catch {sqlite4_blob_write {} 0 "abcd"} msg] $msg
} {1 SQLITE_MISUSE}

do_test incrblob3-3.4 { sqlite4_blob_bytes {} } {0}

do_test incrblob3-3.5 { sqlite4_blob_close {} } {}

# Test out-of-range reading and writing
#
do_test incrblob3-4.1 {
  set ::blob [db incrblob blobs v 1]
  sqlite4_blob_bytes $::blob
} {100}
do_test incrblob3-4.2 {
  list [catch { sqlite4_blob_read $::blob -1 10 } msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-4.3 {
  list [catch { sqlite4_blob_read $::blob 0 -10 } msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-4.4 {
  list [catch { sqlite4_blob_read $::blob 95 10 } msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-4.5 {
  list [catch { sqlite4_blob_write $::blob -1 "abcdefghij" 10 } msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-4.6 {
  list [catch { sqlite4_blob_write $::blob 0 "abcdefghij" -10 } msg] $msg
} {1 SQLITE_ERROR}
do_test incrblob3-4.7 {
  list [catch { sqlite4_blob_write $::blob 95 "abcdefghij" } msg] $msg
} {1 SQLITE_ERROR}

do_test incrblob3-4.8 { close $::blob } {}

# Test that modifying the row a blob handle points to aborts the blob.
#
do_test incrblob3-5.1 {
  set ::blob [db incrblob blobs v 1]
  sqlite4_blob_bytes $::blob
} {100}
do_test incrblob3-5.2 {
  execsql { UPDATE blobs SET v = '123456789012345678901234567890' WHERE k = 1 }
  list [catch { sqlite4_blob_read $::blob 0 10 } msg] $msg
} {1 SQLITE_ABORT}

# Test various errors that can occur in sqlite4_blob_open():
#
#   1. Trying to open a virtual table column.
#   2. Trying to open a view column.
#   3. Trying to open a column that does not exist.
#   4. Trying to open a read/write handle on an indexed column.
#   5. Trying to open a read/write handle on the child key of an FK constraint.
#
ifcapable fts3 {
  do_test incrblob3-6.1 {
    execsql {
      CREATE VIRTUAL TABLE ft USING fts3;
      INSERT INTO ft VALUES('rules to open a column to which');
    }

    list [catch { db incrblob ft content 1 } msg] $msg
  } {1 {cannot open virtual table: ft}}
}
ifcapable view {
  do_test incrblob3-6.2 {
    execsql { CREATE VIEW v1 AS SELECT * FROM blobs }
    list [catch { db incrblob v1 content 1 } msg] $msg
  } {1 {cannot open view: v1}}
}

do_test incrblob3-6.3 {
  list [catch { db incrblob blobs content 1 } msg] $msg
} {1 {no such column: "content"}}

do_test incrblob3-6.4.1 {
  execsql { 
    CREATE TABLE t1(a, b);
    CREATE INDEX i1 ON t1(b);
    INSERT INTO t1 VALUES(zeroblob(100), zeroblob(100));
  }
  list [catch { db incrblob t1 b 1 } msg] $msg
} {1 {cannot open indexed column for writing}}
do_test incrblob3-6.4.2 {
  set ::blob [db incrblob t1 a 1]
  close $::blob
} {}
do_test incrblob3-6.4.3 {
  set ::blob [db incrblob -readonly t1 b 1]
  close $::blob
} {}

do_test incrblob3-6.5.1 {
  execsql { 
    CREATE TABLE p1(a PRIMARY KEY);
    CREATE TABLE c1(a, b REFERENCES p1);
    PRAGMA foreign_keys = 1;
    INSERT INTO p1 VALUES(zeroblob(100));
    INSERT INTO c1 VALUES(zeroblob(100), zeroblob(100));
  }
  list [catch { db incrblob c1 b 1 } msg] $msg
} {1 {cannot open foreign key column for writing}}

do_test incrblob3-6.5.2 {
  set ::blob [db incrblob c1 a 1]
  close $::blob
} {}
do_test incrblob3-6.5.3 {
  set ::blob [db incrblob -readonly c1 b 1]
  close $::blob
} {}
do_test incrblob3-6.5.4 {
  execsql { PRAGMA foreign_keys = 0 }
  set ::blob [db incrblob c1 b 1]
  close $::blob
} {}


# Test that sqlite4_blob_open() handles transient and persistent schema 
# errors correctly.
#
do_test incrblob3-7.1 {
  sqlite4 db2 test.db
  sqlite4_db_config_lookaside db2 0 0 0
  execsql { CREATE TABLE t2(x) } db2
  set ::blob [db incrblob blobs v 1]
  close $::blob
} {}
db2 close

testvfs tvfs -default 1
tvfs filter xAccess
tvfs script access_method

proc access_method {args} {
  set schemacookie [hexio_get_int [hexio_read test.db 40 4]]
  incr schemacookie
  hexio_write test.db 40 [hexio_render_int32 $schemacookie]

  set dbversion [hexio_get_int [hexio_read test.db 24 4]]
  incr dbversion
  hexio_write test.db 24 [hexio_render_int32 $dbversion]

  return ""
}

do_test incrblob3-7.2 {
  sqlite4 db test.db 
  sqlite4_db_config_lookaside db 0 0 0
  list [catch {db incrblob blobs v 1} msg] $msg
} {1 {database schema has changed}}
db close
tvfs delete

finish_test

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
































































































































































































































































































































































































































































































































































Deleted test/incrblob_err.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# 2007 May 1
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# $Id: incrblob_err.test,v 1.14 2008/07/18 17:16:27 drh Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

ifcapable {!incrblob  || !memdebug || !tclvar} {
  finish_test
  return
}

source $testdir/malloc_common.tcl

unset -nocomplain ::fd ::data
set ::fd [open [info script]]
set ::data [read $::fd]
close $::fd

do_malloc_test 1 -tclprep {
  set bytes [file size [info script]]
  execsql {
    CREATE TABLE blobs(k, v BLOB);
    INSERT INTO blobs VALUES(1, zeroblob($::bytes));
  }
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  set rc [catch {puts -nonewline $::blob $::data}]
  if {$rc} { error "out of memory" }
} 

do_malloc_test 2 -tclprep {
  execsql {
    CREATE TABLE blobs(k, v BLOB);
    INSERT INTO blobs VALUES(1, $::data);
  }
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  set rc [catch {set ::r [read $::blob]}]
  if {$rc} { 
    error "out of memory" 
  } elseif {$::r ne $::data} {
    error "Bad data read..."
  }
}

do_malloc_test 3 -tclprep {
  execsql {
    CREATE TABLE blobs(k, v BLOB);
    INSERT INTO blobs VALUES(1, $::data);
  }
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  set rc [catch {set ::r [read $::blob]}]
  if {$rc} { 
    error "out of memory" 
  } elseif {$::r ne $::data} {
    error "Bad data read..."
  }
  set rc [catch {close $::blob}]
  if {$rc} { 
    error "out of memory" 
  }
}

do_ioerr_test incrblob_err-4 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  read $::blob
}

do_ioerr_test incrblob_err-5 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(length(CAST($::data AS BLOB))));
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  puts -nonewline $::blob $::data
  close $::blob
}

do_ioerr_test incrblob_err-6 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data || $::data || $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  seek $::blob -20 end
  puts -nonewline $::blob "12345678900987654321"
  close $::blob
}

do_ioerr_test incrblob_err-7 -cksum 1 -sqlprep {
  PRAGMA auto_vacuum = 1;
  CREATE TABLE blobs(k INTEGER PRIMARY KEY, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(500 * 1020));
} -tclbody {
  # Read some data from the end of the large blob inserted into table 
  # "blobs". This forces the IO error to occur while reading a pointer
  # map page for the purposes of seeking to the end of the blob.
  #
  sqlite4 db2 test.db
  set ::blob [db2 incrblob blobs v 1]
  sqlite4_blob_read $::blob [expr 500*1020-20] 20
  close $::blob
}
catch {db2 close}

do_ioerr_test incrblob_err-8 -cksum 1 -sqlprep {
  PRAGMA auto_vacuum = 1;
  CREATE TABLE blobs(k INTEGER PRIMARY KEY, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(500 * 1020));
} -tclbody {
  # Read some data from the end of the large blob inserted into table 
  # "blobs". This forces the IO error to occur while reading a pointer
  # map page for the purposes of seeking to the end of the blob.
  #
  sqlite4 db2 test.db
  set ::blob [db2 incrblob blobs v 1]
  sqlite4_blob_write $::blob [expr 500*1020-20] 12345678900987654321
  close $::blob
}

catch {db2 close}

finish_test
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<






















































































































































































































































































Deleted test/incrblobfault.test.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# 2010 October 26
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix incrblobfault

do_execsql_test 1.0 {
  CREATE TABLE blob(x INTEGER PRIMARY KEY, v BLOB);
  INSERT INTO blob VALUES(1, 'hello world');
  INSERT INTO blob VALUES(2, 'world hello');
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
  INSERT INTO blob SELECT NULL, v FROM blob;
}

do_faultsim_test 1 -prep {
  sqlite4 db test.db
  set ::blob [db incrblob blob v 1]
} -body {
  if {[catch {sqlite4_blob_reopen $::blob 1000}]} {
    error [sqlite4_errmsg db]
  }
} -test {
  faultsim_test_result {0 {}}
  close $::blob
}

do_faultsim_test 2 -prep {
  sqlite4 db test.db
  set ::blob [db incrblob blob v 1]
} -body {
  if {[catch {sqlite4_blob_reopen $::blob -1}]} {
    error [sqlite4_errmsg db]
  }
} -test {
  faultsim_test_result {1 {no such rowid: -1}}
  close $::blob
}

do_faultsim_test 3 -prep {
  sqlite4 db test.db
} -body {
  set ::blob [db incrblob blob v 1]
  gets $::blob
} -test {
  faultsim_test_result {0 {hello world}}
  catch { close $::blob }
}

finish_test

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<