Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fixes for SQLITE4_ENABLE_STAT3 builds.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: d5d0e93a57390c343fe9cdf4c6eb88c940491798
User & Date: dan 2013-06-22 19:57:26.884
Context
2013-06-24
19:03
Fixes for the sqlite_stat3 related ANALYZE functionality. check-in: f93e75f2b1 user: dan tags: trunk
2013-06-22
19:57
Fixes for SQLITE4_ENABLE_STAT3 builds. check-in: d5d0e93a57 user: dan tags: trunk
2013-06-17
20:15
Modifications to make the ANALYZE command work (sqlite_stat1 only). check-in: 7d8efac62f user: dan tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/analyze.c.
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191



192
193
194
195
196
197
198
199
200






201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE4_STAT3_SAMPLES
# define SQLITE4_STAT3_SAMPLES 24
#endif

/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;
struct Stat3Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  struct Stat3Sample {
    i64 iRowid;                /* Rowid in main table of the key */



    tRowcnt nEq;               /* sqlite_stat3.nEq */
    tRowcnt nLt;               /* sqlite_stat3.nLt */
    tRowcnt nDLt;              /* sqlite_stat3.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
  } *a;                     /* An array of samples */
};

#ifdef SQLITE4_ENABLE_STAT3






/*
** Implementation of the stat3_init(C,S) SQL function.  The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).
**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).
*/
static void stat3Init(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){

  Stat3Accum *p;
  tRowcnt nRow;
  int mxSample;
  int n;

  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite4_value_int64(argv[0]);
  mxSample = sqlite4_value_int(argv[1]);
  n = sizeof(*p) + sizeof(p->a[0])*mxSample;
  p = sqlite4MallocZero( n );
  if( p==0 ){
    sqlite4_result_error_nomem(context);
    return;
  }
  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite4_randomness(sizeof(p->iPrn), &p->iPrn);
  sqlite4_result_blob(context, p, sizeof(p), sqlite4_free);
}
static const FuncDef stat3InitFuncdef = {
  2,                /* nArg */
  SQLITE4_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Init,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_init",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};


/*
** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function.  The
** arguments describe a single key instance.  This routine makes the 
** decision about whether or not to retain this key for the sqlite_stat3
** table.
**
** The return value is NULL.
*/
static void stat3Push(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  Stat3Accum *p = (Stat3Accum*)sqlite4_value_blob(argv[4]);
  tRowcnt nEq = sqlite4_value_int64(argv[0]);
  tRowcnt nLt = sqlite4_value_int64(argv[1]);
  tRowcnt nDLt = sqlite4_value_int64(argv[2]);

  i64 rowid = sqlite4_value_int64(argv[3]);
  u8 isPSample = 0;
  u8 doInsert = 0;
  int iMin = p->iMin;
  struct Stat3Sample *pSample;
  int i;
  u32 h;








|












|
>
>
>









>
>
>
>
>
>














>









|








|
|



<













|











|



>
|







171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
** Recommended number of samples for sqlite_stat3
*/
#ifndef SQLITE4_STAT3_SAMPLES
# define SQLITE4_STAT3_SAMPLES 24
#endif

/*
** Three SQL functions - stat3_init(), stat3_push(), and stat3_get() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct Stat3Accum Stat3Accum;
struct Stat3Accum {
  tRowcnt nRow;             /* Number of rows in the entire table */
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int iMin;                 /* Index of entry with minimum nEq and hash */
  int mxSample;             /* Maximum number of samples to accumulate */
  int nSample;              /* Current number of samples */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  struct Stat3Sample {
    void *pKey;                /* Index key for this sample */
    int nKey;                  /* Bytes of pKey in use */
    int nAlloc;                /* Bytes of space allocated at pKey */

    tRowcnt nEq;               /* sqlite_stat3.nEq */
    tRowcnt nLt;               /* sqlite_stat3.nLt */
    tRowcnt nDLt;              /* sqlite_stat3.nDLt */
    u8 isPSample;              /* True if a periodic sample */
    u32 iHash;                 /* Tiebreaker hash */
  } *a;                     /* An array of samples */
};

#ifdef SQLITE4_ENABLE_STAT3

static void delStat3Accum(void *pCtx, void *p){
  sqlite4 *db = (sqlite4*)pCtx;
  sqlite4DbFree(db, p);
}

/*
** Implementation of the stat3_init(C,S) SQL function.  The two parameters
** are the number of rows in the table or index (C) and the number of samples
** to accumulate (S).
**
** This routine allocates the Stat3Accum object.
**
** The return value is the Stat3Accum object (P).
*/
static void stat3Init(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  sqlite4 *db = sqlite4_context_db_handle(context);
  Stat3Accum *p;
  tRowcnt nRow;
  int mxSample;
  int n;

  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite4_value_int64(argv[0]);
  mxSample = sqlite4_value_int(argv[1]);
  n = sizeof(*p) + sizeof(p->a[0])*mxSample;
  p = (Stat3Accum *)sqlite4DbMallocZero(db, n);
  if( p==0 ){
    sqlite4_result_error_nomem(context);
    return;
  }
  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite4_randomness(sqlite4_db_env(db), sizeof(p->iPrn), &p->iPrn);
  sqlite4_result_blob(context, p, sizeof(p), delStat3Accum, (void*)db);
}
static const FuncDef stat3InitFuncdef = {
  2,                /* nArg */

  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Init,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_init",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};


/*
** Implementation of the stat3_push(nEq,nLt,nDLt,idxkey,P) SQL function.  The
** arguments describe a single key instance.  This routine makes the 
** decision about whether or not to retain this key for the sqlite_stat3
** table.
**
** The return value is NULL.
*/
static void stat3Push(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  Stat3Accum *p = (Stat3Accum*)sqlite4_value_blob(argv[4], 0);
  tRowcnt nEq = sqlite4_value_int64(argv[0]);
  tRowcnt nLt = sqlite4_value_int64(argv[1]);
  tRowcnt nDLt = sqlite4_value_int64(argv[2]);
  const void *pKey;
  int nKey;
  u8 isPSample = 0;
  u8 doInsert = 0;
  int iMin = p->iMin;
  struct Stat3Sample *pSample;
  int i;
  u32 h;

290
291
292
293
294
295
296










297
298
299
300
301
302
303
304
  if( p->nSample==p->mxSample ){
    assert( p->nSample - iMin - 1 >= 0 );
    memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
    pSample = &p->a[p->nSample-1];
  }else{
    pSample = &p->a[p->nSample++];
  }










  pSample->iRowid = rowid;
  pSample->nEq = nEq;
  pSample->nLt = nLt;
  pSample->nDLt = nDLt;
  pSample->iHash = h;
  pSample->isPSample = isPSample;

  /* Find the new minimum */







>
>
>
>
>
>
>
>
>
>
|







300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
  if( p->nSample==p->mxSample ){
    assert( p->nSample - iMin - 1 >= 0 );
    memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
    pSample = &p->a[p->nSample-1];
  }else{
    pSample = &p->a[p->nSample++];
  }

  pKey = sqlite4_value_blob(argv[3], &nKey);
  if( nKey>pSample->nAlloc ){
    sqlite4 *db = sqlite4_context_db_handle(context);
    int nReq = nKey*4;
    pSample->pKey = sqlite4DbReallocOrFree(db, pSample->pKey, nReq);
    if( pSample->pKey==0 ) return;
    pSample->nAlloc = nReq;
  }
  memcpy(pSample->pKey, pKey, nKey);
  pSample->nKey = nKey;
  pSample->nEq = nEq;
  pSample->nLt = nLt;
  pSample->nDLt = nDLt;
  pSample->iHash = h;
  pSample->isPSample = isPSample;

  /* Find the new minimum */
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348


349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368







369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
      }
    }
    p->iMin = iMin;
  }
}
static const FuncDef stat3PushFuncdef = {
  5,                /* nArg */
  SQLITE4_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Push,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_push",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};

/*
** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
** used to query the results.  Content is returned for the Nth sqlite_stat3
** row where N is between 0 and S-1 and S is the number of samples.  The
** value returned depends on the number of arguments.
**


**   argc==2    result:  rowid
**   argc==3    result:  nEq
**   argc==4    result:  nLt
**   argc==5    result:  nDLt
*/
static void stat3Get(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  int n = sqlite4_value_int(argv[1]);
  Stat3Accum *p = (Stat3Accum*)sqlite4_value_blob(argv[0]);

  assert( p!=0 );
  if( p->nSample<=n ) return;
  switch( argc ){
    case 2:  sqlite4_result_int64(context, p->a[n].iRowid); break;
    case 3:  sqlite4_result_int64(context, p->a[n].nEq);    break;
    case 4:  sqlite4_result_int64(context, p->a[n].nLt);    break;
    default: sqlite4_result_int64(context, p->a[n].nDLt);   break;







  }
}
static const FuncDef stat3GetFuncdef = {
  -1,               /* nArg */
  SQLITE4_UTF8,      /* iPrefEnc */
  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Get,         /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_get",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};
#endif /* SQLITE4_ENABLE_STAT3 */










<

















>
>
|
|
|
|







|




<
|
|
|
>
>
>
>
>
>
>




<






|







344
345
346
347
348
349
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
      }
    }
    p->iMin = iMin;
  }
}
static const FuncDef stat3PushFuncdef = {
  5,                /* nArg */

  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Push,        /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_push",     /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};

/*
** Implementation of the stat3_get(P,N,...) SQL function.  This routine is
** used to query the results.  Content is returned for the Nth sqlite_stat3
** row where N is between 0 and S-1 and S is the number of samples.  The
** value returned depends on the number of arguments.
**
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);

**   argc==2    result:  nEq
**   argc==3    result:  nLt
**   argc==4    result:  nDLt
**   argc==5    result:  sample
*/
static void stat3Get(
  sqlite4_context *context,
  int argc,
  sqlite4_value **argv
){
  int n = sqlite4_value_int(argv[1]);
  Stat3Accum *p = (Stat3Accum*)sqlite4_value_blob(argv[0], 0);

  assert( p!=0 );
  if( p->nSample<=n ) return;
  switch( argc ){

    case 2: sqlite4_result_int64(context, p->a[n].nEq);    break;
    case 3: sqlite4_result_int64(context, p->a[n].nLt);    break;
    case 4: sqlite4_result_int64(context, p->a[n].nDLt);   break;
    default: {
      assert( argc==5 );
      sqlite4_result_blob(
          context, p->a[n].pKey, p->a[n].nKey, SQLITE4_TRANSIENT, 0
      );
      break;
    }
  }
}
static const FuncDef stat3GetFuncdef = {
  -1,               /* nArg */

  0,                /* flags */
  0,                /* pUserData */
  0,                /* pNext */
  stat3Get,         /* xFunc */
  0,                /* xStep */
  0,                /* xFinalize */
  "stat3_get",      /* zName */
  0,                /* pHash */
  0                 /* pDestructor */
};
#endif /* SQLITE4_ENABLE_STAT3 */



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */
#ifdef SQLITE4_ENABLE_STAT3
  int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
  int regNumLt = iMem++;       /* Number of keys less than regSample */
  int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
  int regSample = iMem++;      /* The next sample value */
  int regRowid = regSample;    /* Rowid of a sample */
  int regAccum = iMem++;       /* Register to hold Stat3Accum object */
  int regLoop = iMem++;        /* Loop counter */
  int regCount = iMem++;       /* Number of rows in the table or index */
  int regTemp1 = iMem++;       /* Intermediate register */
  int regTemp2 = iMem++;       /* Intermediate register */
  int once = 1;                /* One-time initialization */
  int shortJump = 0;           /* Instruction address */
  int iTabCur = pParse->nTab++; /* Table cursor */

#endif
  int regCol = iMem++;         /* Content of a column in analyzed table */
  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */

  v = sqlite4GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;







<






<

>

<







436
437
438
439
440
441
442

443
444
445
446
447
448

449
450
451

452
453
454
455
456
457
458
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* The stat column of sqlite_stat1 */
#ifdef SQLITE4_ENABLE_STAT3
  int regNumEq = regStat1;     /* Number of instances.  Same as regStat1 */
  int regNumLt = iMem++;       /* Number of keys less than regSample */
  int regNumDLt = iMem++;      /* Number of distinct keys less than regSample */
  int regSample = iMem++;      /* The next sample value */

  int regAccum = iMem++;       /* Register to hold Stat3Accum object */
  int regLoop = iMem++;        /* Loop counter */
  int regCount = iMem++;       /* Number of rows in the table or index */
  int regTemp1 = iMem++;       /* Intermediate register */
  int regTemp2 = iMem++;       /* Intermediate register */
  int once = 1;                /* One-time initialization */

  int iTabCur = pParse->nTab++; /* Table cursor */
  int addrEq;
#endif

  int regRec = iMem++;         /* Register holding completed record */
  int regTemp = iMem++;        /* Temporary use register */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */

  v = sqlite4GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
451
452
453
454
455
456
457
458
459
460
461
462
463




464
465
466
467
468
469
470
#endif

  iIdxCur = pParse->nTab++;
  sqlite4VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;
    KeyInfo *pKey;
    int addrIfNot = 0;           /* address of OP_IfNot */
    int *aChngAddr;              /* Array of jump instruction addresses */

    int regCnt;                  /* Total number of rows in table. */
    int regPrev;                 /* Previous index key read from database */
    int aregCard;                /* Cardinality array registers */





    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite4DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite4IndexKeyinfo(pParse, pIdx);







<

<



>
>
>
>







475
476
477
478
479
480
481

482

483
484
485
486
487
488
489
490
491
492
493
494
495
496
#endif

  iIdxCur = pParse->nTab++;
  sqlite4VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;
    KeyInfo *pKey;

    int *aChngAddr;              /* Array of jump instruction addresses */

    int regCnt;                  /* Total number of rows in table. */
    int regPrev;                 /* Previous index key read from database */
    int aregCard;                /* Cardinality array registers */
#ifdef SQLITE4_ENABLE_STAT3
    int addrAddimm;              /* Address at top of stat3 output loop */
    int addrIsnull;              /* Another address within the stat3 loop */
#endif

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
    nCol = pIdx->nColumn;
    aChngAddr = sqlite4DbMallocRaw(db, sizeof(int)*nCol);
    if( aChngAddr==0 ) continue;
    pKey = sqlite4IndexKeyinfo(pParse, pIdx);
482
483
484
485
486
487
488
489
490
491
492
493

494



495
496
497
498
499
500
501
    sqlite4VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE4_ENABLE_STAT3
    if( once ){
      once = 0;
      sqlite4OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
    }
    sqlite4VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    sqlite4VdbeAddOp2(v, OP_Integer, SQLITE4_STAT3_SAMPLES, regTemp1);
    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumEq);
    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumLt);
    sqlite4VdbeAddOp2(v, OP_Integer, -1, regNumDLt);

    sqlite4VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);



    sqlite4VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                      (char*)&stat3InitFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 2);
#endif /* SQLITE4_ENABLE_STAT3 */

    /* The block of memory cells initialized here is used as follows.
    **







|
|
|
|
|
>

>
>
>







508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    sqlite4VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);

#ifdef SQLITE4_ENABLE_STAT3
    if( once ){
      once = 0;
      sqlite4OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
    }

    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumEq);
    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumLt);
    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumDLt);

    assert( regAccum==regSample+1 );
    sqlite4VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
    assert( regTemp1==regCount+1 );
    sqlite4VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
    sqlite4VdbeAddOp2(v, OP_Integer, SQLITE4_STAT3_SAMPLES, regTemp1);
    sqlite4VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
                      (char*)&stat3InitFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 2);
#endif /* SQLITE4_ENABLE_STAT3 */

    /* The block of memory cells initialized here is used as follows.
    **
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

553
554
555


556

557
558
559
560

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579


580
581
582




583
584
585

586
587
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    regCnt = iMem;
    regPrev = iMem+1;
    aregCard = iMem+2;

    sqlite4VdbeAddOp2(v, OP_Integer, 0, regCnt);
    sqlite4VdbeAddOp2(v, OP_Null, 0, regPrev);
    for(i=0; i<nCol; i++){
      sqlite4VdbeAddOp2(v, OP_Integer, 1, aregCard+i);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite4VdbeMakeLabel(v);
    sqlite4VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite4VdbeCurrentAddr(v);
    sqlite4VdbeAddOp2(v, OP_AddImm, regCnt, 1);  /* Increment row counter */
    sqlite4VdbeAddOp4Int(v, OP_AnalyzeKey, iIdxCur, regPrev, aregCard, nCol);

#if 0
    for(i=0; i<nCol; i++){
      CollSeq *pColl;
      sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
      if( i==0 ){
        /* Always record the very first row */
        addrIfNot = sqlite4VdbeAddOp1(v, OP_IfNot, iMem+1);
      }
      assert( pIdx->azColl!=0 );
      assert( pIdx->azColl[i]!=0 );
      pColl = sqlite4LocateCollSeq(pParse, pIdx->azColl[i]);
      aChngAddr[i] = sqlite4VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
                                      (char*)pColl, P4_COLLSEQ);
      sqlite4VdbeChangeP5(v, SQLITE4_NULLEQ);
      VdbeComment((v, "jump if column %d changed", i));
#ifdef SQLITE4_ENABLE_STAT3
      if( i==0 ){
        sqlite4VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
        VdbeComment((v, "incr repeat count"));
      }
#endif

    }

    sqlite4VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
    for(i=0; i<nCol; i++){
      sqlite4VdbeJumpHere(v, aChngAddr[i]);  /* Set jump dest for the OP_Ne */


      if( i==0 ){

        sqlite4VdbeJumpHere(v, addrIfNot);   /* Jump dest for OP_IfNot */
#ifdef SQLITE4_ENABLE_STAT3
        sqlite4VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                          (char*)&stat3PushFuncdef, P4_FUNCDEF);

        sqlite4VdbeChangeP5(v, 5);
        sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
        sqlite4VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
        sqlite4VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
        sqlite4VdbeAddOp2(v, OP_Integer, 1, regNumEq);
#endif        
      }
      sqlite4VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
      sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
    }
    sqlite4DbFree(db, aChngAddr);
#endif

    /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
    sqlite4VdbeResolveLabel(v, endOfLoop);

    sqlite4VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite4VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE4_ENABLE_STAT3


    sqlite4VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                      (char*)&stat3PushFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 5);




    sqlite4VdbeAddOp2(v, OP_Integer, -1, regLoop);
    shortJump = 
    sqlite4VdbeAddOp2(v, OP_AddImm, regLoop, 1);

    sqlite4VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 2);

    sqlite4VdbeAddOp1(v, OP_IsNull, regTemp1);
    sqlite4VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
    sqlite4VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
    sqlite4ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
    sqlite4VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 3);
    sqlite4VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 4);
    sqlite4VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
                      (char*)&stat3GetFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 5);
    sqlite4VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
    sqlite4VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
    sqlite4VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
    sqlite4VdbeAddOp2(v, OP_Goto, 0, shortJump);
    sqlite4VdbeJumpHere(v, shortJump+2);
#endif        

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries







|








<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
|
<
<

>
|
>
|
<
|
>
>
|
>
|
<
|
|
>
|
<
|
|
|
<
<
|
<
<
<








>
>



>
>
>
>

<
|
>
|
|
|
>
|
<
<
<
<
<
<
<
<
<
<
<
<



|
|
|







543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

















559

560


561
562
563
564
565

566
567
568
569
570
571

572
573
574
575

576
577
578


579



580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597

598
599
600
601
602
603
604












605
606
607
608
609
610
611
612
613
614
615
616
617
    regCnt = iMem;
    regPrev = iMem+1;
    aregCard = iMem+2;

    sqlite4VdbeAddOp2(v, OP_Integer, 0, regCnt);
    sqlite4VdbeAddOp2(v, OP_Null, 0, regPrev);
    for(i=0; i<nCol; i++){
      sqlite4VdbeAddOp2(v, OP_Integer, 0, aregCard+i);
    }

    /* Start the analysis loop. This loop runs through all the entries in
    ** the index b-tree.  */
    endOfLoop = sqlite4VdbeMakeLabel(v);
    sqlite4VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
    topOfLoop = sqlite4VdbeCurrentAddr(v);
    sqlite4VdbeAddOp2(v, OP_AddImm, regCnt, 1);  /* Increment row counter */

















#ifdef SQLITE4_ENABLE_STAT3

    sqlite4VdbeAddOp2(v, OP_Copy, aregCard, regTemp1);


#endif
    sqlite4VdbeAddOp4Int(v, OP_AnalyzeKey, iIdxCur, regPrev, aregCard, nCol);

#ifdef SQLITE4_ENABLE_STAT3
    sqlite4VdbeAddOp2(v, OP_AddImm, regNumEq, 1);

    addrEq = sqlite4VdbeAddOp3(v, OP_Eq, aregCard, 0,regTemp1);
    assert( regNumEq==regNumLt-1  && regNumEq==regNumDLt-2
         && regNumEq==regSample-3 && regNumEq==regAccum-4
    );
    sqlite4VdbeAddOp2(v, OP_RowKey, iIdxCur, regSample);
    sqlite4VdbeChangeP5(v, 1);

    sqlite4VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2, 
        (char*)&stat3PushFuncdef, P4_FUNCDEF
    );
    sqlite4VdbeChangeP5(v, 5);

    sqlite4VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
    sqlite4VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
    sqlite4VdbeAddOp2(v, OP_Integer, 0, regNumEq);


    sqlite4VdbeJumpHere(v, addrEq);



#endif

    /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
    sqlite4VdbeResolveLabel(v, endOfLoop);

    sqlite4VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
    sqlite4VdbeAddOp1(v, OP_Close, iIdxCur);
#ifdef SQLITE4_ENABLE_STAT3

    /* Push the last record (if any) to the accumulator. */
    sqlite4VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
                      (char*)&stat3PushFuncdef, P4_FUNCDEF);
    sqlite4VdbeChangeP5(v, 5);

    /* This block codes a loop that iterates through all entries stored
    ** by the accumulator (the Stat3Accum object). 
    */
    sqlite4VdbeAddOp2(v, OP_Integer, -1, regLoop);

    addrAddimm = sqlite4VdbeAddOp2(v, OP_AddImm, regLoop, 1);
    for(i=0; i<4; i++){
      sqlite4VdbeAddOp3(v, OP_Function, 1, regAccum, regNumEq+i);
      sqlite4VdbeChangeP4(v, -1, (char*)&stat3GetFuncdef, P4_FUNCDEF);
      sqlite4VdbeChangeP5(v, i+2);
    }
    addrIsnull = sqlite4VdbeAddOp1(v, OP_IsNull, regNumEq);












    sqlite4VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
    sqlite4VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
    sqlite4VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
    sqlite4VdbeAddOp2(v, OP_Goto, 0, addrAddimm);
    sqlite4VdbeJumpHere(v, addrIsnull);
#endif

    /* Store the results in sqlite_stat1.
    **
    ** The result is a single row of the sqlite_stat1 table.  The first
    ** two columns are the names of the table and index.  The third column
    ** is a string composed of a list of integer statistics about the
    ** index.  The first integer in the list is the total number of entries
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite4DeleteIndexSamples(sqlite4 *db, Index *pIdx){
#ifdef SQLITE4_ENABLE_STAT3
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];
      if( p->eType==SQLITE4_TEXT || p->eType==SQLITE_BLOB ){
        sqlite4DbFree(db, p->u.z);
      }
    }
    sqlite4DbFree(db, pIdx->aSample);
  }
  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);







<
<
<
<
<
<
<
<
|
<







853
854
855
856
857
858
859








860

861
862
863
864
865
866
867

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite4DeleteIndexSamples(sqlite4 *db, Index *pIdx){
#ifdef SQLITE4_ENABLE_STAT3








  sqlite4DbFree(db, pIdx->aSample);

  if( db && db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
881
882
883
884
885
886
887
888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909


910
911
912
913

914
915
916

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942


943
944
945
946
947
948
949
950
951
952

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
*/
static int loadStat3(sqlite4 *db, const char *zDb){
  int rc;                       /* Result codes from subroutines */
  sqlite4_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */
  int eType;                    /* Datatype of a sample */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */


  assert( db->lookaside.bEnabled==0 );
  if( !sqlite4FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE4_OK;
  }

  zSql = sqlite4MPrintf(db, 
      "SELECT idx,count(*) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
  if( !zSql ){
    return SQLITE4_NOMEM;
  }
  rc = sqlite4_prepare(db, zSql, -1, &pStmt, 0);
  sqlite4DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite4_step(pStmt)==SQLITE4_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */



    zIndex = (char *)sqlite4_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite4_column_int(pStmt, 1);

    pIdx = sqlite4FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );

    pIdx->nSample = nSample;
    pIdx->aSample = sqlite4DbMallocZero(db, nSample*sizeof(IndexSample));
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite4_finalize(pStmt);
      return SQLITE4_NOMEM;
    }
  }
  rc = sqlite4_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite4MPrintf(db, 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
  if( !zSql ){
    return SQLITE4_NOMEM;
  }
  rc = sqlite4_prepare(db, zSql, -1, &pStmt, 0);
  sqlite4DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite4_step(pStmt)==SQLITE4_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int i;          /* Loop counter */
    tRowcnt sumEq;  /* Sum of the nEq values */



    zIndex = (char *)sqlite4_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite4FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    if( pIdx==pPrevIdx ){
      idx++;
    }else{
      pPrevIdx = pIdx;
      idx = 0;

    }
    assert( idx<pIdx->nSample );
    pSample = &pIdx->aSample[idx];
    pSample->nEq = (tRowcnt)sqlite4_column_int64(pStmt, 1);
    pSample->nLt = (tRowcnt)sqlite4_column_int64(pStmt, 2);
    pSample->nDLt = (tRowcnt)sqlite4_column_int64(pStmt, 3);
    if( idx==pIdx->nSample-1 ){
      if( pSample->nDLt>0 ){
        for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
        pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
      }
      if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
    }
    eType = sqlite4_column_type(pStmt, 4);
    pSample->eType = (u8)eType;
    switch( eType ){
      case SQLITE4_INTEGER: {
        pSample->u.i = sqlite4_column_int64(pStmt, 4);
        break;
      }
      case SQLITE4_FLOAT: {
        pSample->u.r = sqlite4_column_double(pStmt, 4);
        break;
      }
      case SQLITE4_NULL: {
        break;
      }
      default: assert( eType==SQLITE4_TEXT || eType==SQLITE_BLOB ); {
        const char *z = (const char *)(
              (eType==SQLITE4_BLOB) ?
              sqlite4_column_blob(pStmt, 4):
              sqlite4_column_text(pStmt, 4)
           );
        int n = z ? sqlite4_column_bytes(pStmt, 4) : 0;
        pSample->nByte = n;
        if( n < 1){
          pSample->u.z = 0;
        }else{
          pSample->u.z = sqlite4DbMallocRaw(db, n);
          if( pSample->u.z==0 ){
            db->mallocFailed = 1;
            sqlite4_finalize(pStmt);
            return SQLITE4_NOMEM;
          }
          memcpy(pSample->u.z, z, n);
        }
      }
    }

  }
  return sqlite4_finalize(pStmt);
}
#endif /* SQLITE4_ENABLE_STAT3 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The







<

>







|












>
>

|


>



>

|



















|




>
>

|








>













<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
|
<
<
<
<
<
<
<
|
<
<
<
>







875
876
877
878
879
880
881

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966






967










968



969

970







971



972
973
974
975
976
977
978
979
*/
static int loadStat3(sqlite4 *db, const char *zDb){
  int rc;                       /* Result codes from subroutines */
  sqlite4_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  int idx = 0;                  /* slot in pIdx->aSample[] for next sample */

  IndexSample *pSample;         /* A slot in pIdx->aSample[] */
  u8 *pSpace;                   /* Space for copy of all samples */

  assert( db->lookaside.bEnabled==0 );
  if( !sqlite4FindTable(db, "sqlite_stat3", zDb) ){
    return SQLITE4_OK;
  }

  zSql = sqlite4MPrintf(db, 
      "SELECT idx, count(*), sum(length(sample)) FROM %Q.sqlite_stat3"
      " GROUP BY idx", zDb);
  if( !zSql ){
    return SQLITE4_NOMEM;
  }
  rc = sqlite4_prepare(db, zSql, -1, &pStmt, 0);
  sqlite4DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite4_step(pStmt)==SQLITE4_ROW ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nSpace;     /* Bytes of space required for all samples */
    int nAlloc;     /* Bytes of space to allocate */

    zIndex = (char *)sqlite4_column_text(pStmt, 0, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite4_column_int(pStmt, 1);
    nSpace = sqlite4_column_int(pStmt, 2);
    pIdx = sqlite4FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    assert( pIdx->nSample==0 );
    nAlloc = nSample*sizeof(IndexSample) + nSpace;
    pIdx->nSample = nSample;
    pIdx->aSample = (IndexSample*)sqlite4DbMallocZero(db, nAlloc);
    pIdx->avgEq = pIdx->aiRowEst[1];
    if( pIdx->aSample==0 ){
      db->mallocFailed = 1;
      sqlite4_finalize(pStmt);
      return SQLITE4_NOMEM;
    }
  }
  rc = sqlite4_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite4MPrintf(db, 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
  if( !zSql ){
    return SQLITE4_NOMEM;
  }
  rc = sqlite4_prepare(db, zSql, -1, &pStmt, 0);
  sqlite4DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite4_step(pStmt)==SQLITE4_ROW && 0 ){
    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int i;          /* Loop counter */
    tRowcnt sumEq;  /* Sum of the nEq values */
    const u8 *aVal;
    int nVal;

    zIndex = (char *)sqlite4_column_text(pStmt, 0, 0);
    if( zIndex==0 ) continue;
    pIdx = sqlite4FindIndex(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    if( pIdx==pPrevIdx ){
      idx++;
    }else{
      pPrevIdx = pIdx;
      idx = 0;
      pSpace = (u8*)&pIdx->aSample[pIdx->nSample];
    }
    assert( idx<pIdx->nSample );
    pSample = &pIdx->aSample[idx];
    pSample->nEq = (tRowcnt)sqlite4_column_int64(pStmt, 1);
    pSample->nLt = (tRowcnt)sqlite4_column_int64(pStmt, 2);
    pSample->nDLt = (tRowcnt)sqlite4_column_int64(pStmt, 3);
    if( idx==pIdx->nSample-1 ){
      if( pSample->nDLt>0 ){
        for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
        pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
      }
      if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
    }

















    aVal = sqlite4_column_blob(pStmt, 4, &nVal);



    pSample->aVal = pSpace;

    pSample->nVal = nVal;







    memcpy(pSample->aVal, aVal, nVal);



    pSpace += nVal;
  }
  return sqlite4_finalize(pStmt);
}
#endif /* SQLITE4_ENABLE_STAT3 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
Changes to src/mem.c.
762
763
764
765
766
767
768









769
770
771
772
773
774
775

  rc = sqlite4_buffer_resize(pBuf, nOrig+n);
  if( rc==SQLITE4_OK ){
    memcpy(&((u8 *)pBuf->p)[nOrig], p, n);
  }
  return rc;
}










void sqlite4_buffer_clear(sqlite4_buffer *pBuf){
  sqlite4_mm_free(pBuf->pMM, pBuf->p);
  sqlite4_buffer_init(pBuf, pBuf->pMM);
}









>
>
>
>
>
>
>
>
>







762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

  rc = sqlite4_buffer_resize(pBuf, nOrig+n);
  if( rc==SQLITE4_OK ){
    memcpy(&((u8 *)pBuf->p)[nOrig], p, n);
  }
  return rc;
}

int sqlite4_buffer_set(
  sqlite4_buffer *pBuf, 
  const void *p, 
  sqlite4_size_t n
){
  pBuf->n = 0;
  return sqlite4_buffer_append(pBuf, p, n);
}

void sqlite4_buffer_clear(sqlite4_buffer *pBuf){
  sqlite4_mm_free(pBuf->pMM, pBuf->p);
  sqlite4_buffer_init(pBuf, pBuf->pMM);
}


Changes to src/sqlite.h.in.
233
234
235
236
237
238
239

240
241
242
243
244
245
246
  sqlite4_size_t n;
};

void sqlite4_buffer_init(sqlite4_buffer *, sqlite4_mm *);
void sqlite4_buffer_clear(sqlite4_buffer *);
int sqlite4_buffer_resize(sqlite4_buffer *, sqlite4_size_t);
int sqlite4_buffer_append(sqlite4_buffer *, const void *, sqlite4_size_t);


/*
** CAPIREF: Translate Text Encodings
**
** This API function is used to translate between utf-8 and utf-16 text
** encodings. 
**







>







233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  sqlite4_size_t n;
};

void sqlite4_buffer_init(sqlite4_buffer *, sqlite4_mm *);
void sqlite4_buffer_clear(sqlite4_buffer *);
int sqlite4_buffer_resize(sqlite4_buffer *, sqlite4_size_t);
int sqlite4_buffer_append(sqlite4_buffer *, const void *, sqlite4_size_t);
int sqlite4_buffer_set(sqlite4_buffer *, const void *, sqlite4_size_t);

/*
** CAPIREF: Translate Text Encodings
**
** This API function is used to translate between utf-8 and utf-16 text
** encodings. 
**
Changes to src/sqliteInt.h.
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {
  union {
    char *z;        /* Value if eType is SQLITE4_TEXT or SQLITE4_BLOB */
    double r;       /* Value if eType is SQLITE4_FLOAT */
    i64 i;          /* Value if eType is SQLITE4_INTEGER */
  } u;
  u8 eType;         /* SQLITE4_NULL, SQLITE4_INTEGER ... etc. */
  int nByte;        /* Size in byte of text or blob. */
  tRowcnt nEq;      /* Est. number of rows where the key equals this sample */
  tRowcnt nLt;      /* Est. number of rows where key is less than this sample */
  tRowcnt nDLt;     /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of







<
<
<
|
<
|
<







1401
1402
1403
1404
1405
1406
1407



1408

1409

1410
1411
1412
1413
1414
1415
1416

/*
** Each sample stored in the sqlite_stat3 table is represented in memory 
** using a structure of this type.  See documentation at the top of the
** analyze.c source file for additional information.
*/
struct IndexSample {



  u8 *aVal;         /* Pointer to index-key encoded value blob */

  int nVal;         /* Size of array aKey[] in bytes */

  tRowcnt nEq;      /* Est. number of rows where the key equals this sample */
  tRowcnt nLt;      /* Est. number of rows where key is less than this sample */
  tRowcnt nDLt;     /* Est. number of distinct keys less than this sample */
};

/*
** Each token coming out of the lexer is an instance of
Changes to src/vdbe.c.
2378
2379
2380
2381
2382
2383
2384

2385
2386
2387
2388
2389
2390
2391
  rc = sqlite4VdbeSeekEnd(pC, +1);
  nEntry = 0;
  while( rc!=SQLITE4_NOTFOUND ){
    nEntry++;
    rc = sqlite4VdbeNext(pC);
  }
  sqlite4VdbeMemSetInt64(pOut, nEntry);

  break;
}

/* Opcode: Savepoint P1 * * P4 *
**
** This opcode is used to implement the SQL BEGIN, COMMIT, ROLLBACK,
** SAVEPOINT, RELEASE and ROLLBACK TO commands. As follows:







>







2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
  rc = sqlite4VdbeSeekEnd(pC, +1);
  nEntry = 0;
  while( rc!=SQLITE4_NOTFOUND ){
    nEntry++;
    rc = sqlite4VdbeNext(pC);
  }
  sqlite4VdbeMemSetInt64(pOut, nEntry);
  if( rc==SQLITE4_NOTFOUND ) rc = SQLITE4_OK;
  break;
}

/* Opcode: Savepoint P1 * * P4 *
**
** This opcode is used to implement the SQL BEGIN, COMMIT, ROLLBACK,
** SAVEPOINT, RELEASE and ROLLBACK TO commands. As follows:
3299
3300
3301
3302
3303
3304
3305
3306



3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320

3321
3322
3323
3324
3325
3326
3327
    if( rc==SQLITE4_OK ){
      n = sqlite4GetVarint64((u8 *)aKey, nKey, (u64 *)&v);
      if( n==0 ) rc = SQLITE4_CORRUPT_BKPT;
      if( v!=pC->iRoot ) rc = SQLITE4_CORRUPT_BKPT;
    }
    if( rc==SQLITE4_OK ){
      n = sqlite4VdbeDecodeIntKey(&aKey[n], nKey-n, &v);
      if( n==0 || v==LARGEST_INT64 ) rc = SQLITE4_FULL;



    }
  }else{
    break;
  }
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( pOp->p3 && rc==SQLITE4_OK ){
    pIn3 = sqlite4RegisterInRootFrame(p, pOp->p3);
    assert( memIsValid(pIn3) );
    REGISTER_TRACE(pOp->p3, pIn3);
    sqlite4VdbeMemIntegerify(pIn3);
    assert( (pIn3->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
    i3 = sqlite4_num_to_int64(pIn3->u.num, 0);
    if( i3==MAX_ROWID ){
      rc = SQLITE4_FULL;

    }
    if( v<i3 ) v = i3;
  }
#endif
  pOut->flags = MEM_Int;
  pOut->u.num = sqlite4_num_from_int64(v+1);
  break;







|
>
>
>














>







3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
    if( rc==SQLITE4_OK ){
      n = sqlite4GetVarint64((u8 *)aKey, nKey, (u64 *)&v);
      if( n==0 ) rc = SQLITE4_CORRUPT_BKPT;
      if( v!=pC->iRoot ) rc = SQLITE4_CORRUPT_BKPT;
    }
    if( rc==SQLITE4_OK ){
      n = sqlite4VdbeDecodeIntKey(&aKey[n], nKey-n, &v);
      if( n==0 || v==LARGEST_INT64 ){
        assert( 0 );
        rc = SQLITE4_FULL;
      }
    }
  }else{
    break;
  }
#ifndef SQLITE_OMIT_AUTOINCREMENT
  if( pOp->p3 && rc==SQLITE4_OK ){
    pIn3 = sqlite4RegisterInRootFrame(p, pOp->p3);
    assert( memIsValid(pIn3) );
    REGISTER_TRACE(pOp->p3, pIn3);
    sqlite4VdbeMemIntegerify(pIn3);
    assert( (pIn3->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
    i3 = sqlite4_num_to_int64(pIn3->u.num, 0);
    if( i3==MAX_ROWID ){
      rc = SQLITE4_FULL;
      assert( 0 );
    }
    if( v<i3 ) v = i3;
  }
#endif
  pOut->flags = MEM_Int;
  pOut->u.num = sqlite4_num_from_int64(v+1);
  break;
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553







3554
3555
3556
3557
3558
3559
3560
3561


3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576






3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597



3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631


3632

3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * *
**
** Write into register P2 the complete row key for cursor P1.
** There is no interpretation of the data.  
** The key is copied onto the P3 register exactly as 
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.







*/
case OP_SorterData:
case OP_RowKey:
case OP_RowData: {
  VdbeCursor *pC;
  KVCursor *pCrsr;
  const KVByteArray *pData;
  KVSize nData;



  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pKVCur!=0 );
  pCrsr = pC->pKVCur;

  if( pOp->opcode==OP_RowKey ){
    rc = sqlite4KVCursorKey(pCrsr, &pData, &nData);






  }else{
    rc = sqlite4KVCursorData(pCrsr, 0, -1, &pData, &nData);
  }
  if( rc==SQLITE4_OK && nData>db->aLimit[SQLITE4_LIMIT_LENGTH] ){
    goto too_big;
  }
  sqlite4VdbeMemSetStr(pOut, (const char*)pData, nData, 0, SQLITE4_TRANSIENT,0);
  pOut->enc = SQLITE4_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: AnalyzeKey P1 P2 P3 P4
**
** P1 is an open cursor that currently points to a valid row. P2 is a 
** register that contains either a NULL value, or an index key. If it is 
** not NULL, this opcode compares the key in register P2 with the key of 
** the row P1 currently points to and determines the number of fields in
** the prefix that the two keys share in common (which may be zero).
** Call this value N. It then increments the integer values stored in
** N consecutive register starting at P3.



**
** Finally, the key belonging to the current row of cursor P1 is copied
** into register P2.
*/
case OP_AnalyzeKey: {
  VdbeCursor *pC;
  const KVByteArray *pNew;
  KVSize nNew;
  Mem *pKey;
  Mem *aIncr;
  int nEq;
  int nTotal;
  int i;
  int nSz;

  pKey = &aMem[pOp->p2];
  aIncr = &aMem[pOp->p3];
  nTotal = pOp->p4.i;
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pKVCur!=0 );
  assert( pOp->p4type==P4_INT32 );

  rc = sqlite4KVCursorKey(pC->pKVCur, &pNew, &nNew);
  if( rc==SQLITE4_OK ){
    assert( pKey->flags & (MEM_Blob|MEM_Null) );
    if( pKey->flags & MEM_Blob ){
      for(i=0; i<nNew && i<pKey->n && pNew[i]==(KVByteArray)pKey->z[i]; i++);

      /* The two keys share i bytes in common. Figure out how many fields
      ** this corresponds to. Store said value in variable nEq. */
      sqlite4VdbeShortKey(pNew, i, LARGEST_INT32, &nEq);




      /* Increment nTotal-nEq registers */
      for(i=nEq; i<nTotal; i++){
        memAboutToChange(p, &aIncr[i]);
        sqlite4VdbeMemIntegerify(&aIncr[i]);
        aIncr[i].u.num = sqlite4_num_add(
            aIncr[i].u.num, sqlite4_num_from_int64(1)
        );
        REGISTER_TRACE(pOp->p1, &aIncr[i]);
      }
    }

    /* Copy the new key into register P2 */
    memAboutToChange(p, pKey);
    sqlite4VdbeMemSetStr(pKey, (const char*)pNew, nNew, 0, SQLITE4_TRANSIENT,0);
    pKey->enc = SQLITE4_UTF8;
    UPDATE_MAX_BLOBSIZE(pKey);
  }


  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that







|

|
<
|
|

|

>
>
>
>
>
>
>








>
>















>
>
>
>
>
>



















|
|
>
>
>













<




















>
>
|
>
|
|
|
|
|
|
|
|
<








<







3543
3544
3545
3546
3547
3548
3549
3550
3551
3552

3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632

3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664

3665
3666
3667
3668
3669
3670
3671
3672

3673
3674
3675
3676
3677
3678
3679
** There is no interpretation of the data.  
** It is just copied onto the P2 register exactly as 
** it is found in the database file.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
*/
/* Opcode: RowKey P1 P2 * * P5
**
** Write into register P2 the complete row key for cursor P1. There is 

** no interpretation of the data. The key is copied onto the P3 register 
** exactly as it is found in the database file.
**
** The P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P5 is non-zero, it is a flag indicating that this value will be
** stored as a sample in the sqlite_stat3 table. At present, this means
** that the table number is stripped from the start of the record, and
** then all but the initial field removed from the end. In other words,
** the blob copied into register P2 is the first field of the index-key
** only.
*/
case OP_SorterData:
case OP_RowKey:
case OP_RowData: {
  VdbeCursor *pC;
  KVCursor *pCrsr;
  const KVByteArray *pData;
  KVSize nData;
  int nVarint;
  u64 dummy;

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pKVCur!=0 );
  pCrsr = pC->pKVCur;

  if( pOp->opcode==OP_RowKey ){
    rc = sqlite4KVCursorKey(pCrsr, &pData, &nData);
    if( pOp->p5 ){
      nData = sqlite4VdbeShortKey(pData, nData, 1, 0);
      nVarint = sqlite4GetVarint64(pData, nData, &dummy);
      pData += nVarint;
      nData -= nVarint;
    }
  }else{
    rc = sqlite4KVCursorData(pCrsr, 0, -1, &pData, &nData);
  }
  if( rc==SQLITE4_OK && nData>db->aLimit[SQLITE4_LIMIT_LENGTH] ){
    goto too_big;
  }
  sqlite4VdbeMemSetStr(pOut, (const char*)pData, nData, 0, SQLITE4_TRANSIENT,0);
  pOut->enc = SQLITE4_UTF8;  /* In case the blob is ever cast to text */
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: AnalyzeKey P1 P2 P3 P4
**
** P1 is an open cursor that currently points to a valid row. P2 is a 
** register that contains either a NULL value, or an index key. If it is 
** not NULL, this opcode compares the key in register P2 with the key of 
** the row P1 currently points to and determines the number of fields in
** the prefix that the two keys share in common (which may be zero).
** Call this value N. If P2 is NULL, set N to zero.
**
** P3 is the first in an array of P4 registers containing integer values.
** The first N of these are left as is by this instruction. The remaining
** (P4-N) are incremented.
**
** Finally, the key belonging to the current row of cursor P1 is copied
** into register P2.
*/
case OP_AnalyzeKey: {
  VdbeCursor *pC;
  const KVByteArray *pNew;
  KVSize nNew;
  Mem *pKey;
  Mem *aIncr;
  int nEq;
  int nTotal;
  int i;


  pKey = &aMem[pOp->p2];
  aIncr = &aMem[pOp->p3];
  nTotal = pOp->p4.i;
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pKVCur!=0 );
  assert( pOp->p4type==P4_INT32 );

  rc = sqlite4KVCursorKey(pC->pKVCur, &pNew, &nNew);
  if( rc==SQLITE4_OK ){
    assert( pKey->flags & (MEM_Blob|MEM_Null) );
    if( pKey->flags & MEM_Blob ){
      for(i=0; i<nNew && i<pKey->n && pNew[i]==(KVByteArray)pKey->z[i]; i++);

      /* The two keys share i bytes in common. Figure out how many fields
      ** this corresponds to. Store said value in variable nEq. */
      sqlite4VdbeShortKey(pNew, i, LARGEST_INT32, &nEq);
    }else{
      nEq = 0;
    }

    /* Increment nTotal-nEq registers */
    for(i=nEq; i<nTotal; i++){
      memAboutToChange(p, &aIncr[i]);
      sqlite4VdbeMemIntegerify(&aIncr[i]);
      aIncr[i].u.num = sqlite4_num_add(
          aIncr[i].u.num, sqlite4_num_from_int64(1)
      );
      REGISTER_TRACE(pOp->p1, &aIncr[i]);

    }

    /* Copy the new key into register P2 */
    memAboutToChange(p, pKey);
    sqlite4VdbeMemSetStr(pKey, (const char*)pNew, nNew, 0, SQLITE4_TRANSIENT,0);
    pKey->enc = SQLITE4_UTF8;
    UPDATE_MAX_BLOBSIZE(pKey);
  }


  break;
}

/* Opcode: Rowid P1 P2 * * *
**
** Store in register P2 an integer which is the key of the table entry that
Changes to src/vdbecodec.c.
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
** be freed by the caller using sqlite4DbFree() to avoid a memory leak.
*/
int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int nInTotal,                /* Number of values in a complete key */
  int iTabno,                  /* The table this key applies to */
  KeyInfo *pKeyInfo,           /* Collating sequence and sort-order info */
  u8 **paOut,                  /* Write the resulting key here */
  int *pnOut,                  /* Number of bytes in the key */
  int nExtra                   /* extra bytes of space appended to the key */
){
  int i;
  int rc = SQLITE4_OK;







|







630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
** be freed by the caller using sqlite4DbFree() to avoid a memory leak.
*/
int sqlite4VdbeEncodeKey(
  sqlite4 *db,                 /* The database connection */
  Mem *aIn,                    /* Values to be encoded */
  int nIn,                     /* Number of entries in aIn[] */
  int nInTotal,                /* Number of values in a complete key */
  int iTabno,                  /* The table this key applies to, or negative */
  KeyInfo *pKeyInfo,           /* Collating sequence and sort-order info */
  u8 **paOut,                  /* Write the resulting key here */
  int *pnOut,                  /* Number of bytes in the key */
  int nExtra                   /* extra bytes of space appended to the key */
){
  int i;
  int rc = SQLITE4_OK;
653
654
655
656
657
658
659

660

661
662
663
664
665
666
667
  x.aOut = 0;
  x.nOut = 0;
  x.nAlloc = 0;
  *paOut = 0;
  *pnOut = 0;

  if( enlargeEncoderAllocation(&x, (nIn+1)*10) ) return SQLITE4_NOMEM;

  x.nOut = sqlite4PutVarint64(x.aOut, iTabno);

  aColl = pKeyInfo->aColl;
  so = pKeyInfo->aSortOrder;
  for(i=0; i<nIn && rc==SQLITE4_OK; i++){
    rc = encodeOneKeyValue(&x, aIn+i, so ? so[i] : SQLITE4_SO_ASC,
                           i==nInTotal-1, aColl[i]);
  }








>
|
>







653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
  x.aOut = 0;
  x.nOut = 0;
  x.nAlloc = 0;
  *paOut = 0;
  *pnOut = 0;

  if( enlargeEncoderAllocation(&x, (nIn+1)*10) ) return SQLITE4_NOMEM;
  if( iTabno>=0 ){
    x.nOut = sqlite4PutVarint64(x.aOut, iTabno);
  }
  aColl = pKeyInfo->aColl;
  so = pKeyInfo->aSortOrder;
  for(i=0; i<nIn && rc==SQLITE4_OK; i++){
    rc = encodeOneKeyValue(&x, aIn+i, so ? so[i] : SQLITE4_SO_ASC,
                           i==nInTotal-1, aColl[i]);
  }

Changes to src/where.c.
14
15
16
17
18
19
20



21
22
23
24
25
26
27
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"





/*
** Trace output macros
*/
#if defined(SQLITE4_TEST) || defined(SQLITE4_DEBUG)
int sqlite4WhereTrace = 0;
#endif







>
>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"

/* For VdbeCodecEncodeKey() - revisit this */
#include "vdbeInt.h"


/*
** Trace output macros
*/
#if defined(SQLITE4_TEST) || defined(SQLITE4_DEBUG)
int sqlite4WhereTrace = 0;
#endif
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497

2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE4_OK on success.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite4_value *pVal,        /* Value to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  tRowcnt n;
  IndexSample *aSample;
  int i, eType;
  int isEq = 0;
  i64 v;
  double r, rS;

  assert( roundUp==0 || roundUp==1 );
  assert( pIdx->nSample>0 );

  if( pVal==0 ) return SQLITE4_ERROR;
  n = pIdx->aiRowEst[0];
  aSample = pIdx->aSample;
  eType = sqlite4_value_type(pVal);

  if( eType==SQLITE4_INTEGER ){
    v = sqlite4_value_int64(pVal);
    r = (i64)v;
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE4_NULL ) continue;
      if( aSample[i].eType>=SQLITE4_TEXT ) break;
      if( aSample[i].eType==SQLITE4_INTEGER ){
        if( aSample[i].u.i>=v ){
          isEq = aSample[i].u.i==v;
          break;
        }
      }else{
        assert( aSample[i].eType==SQLITE4_FLOAT );
        if( aSample[i].u.r>=r ){
          isEq = aSample[i].u.r==r;
          break;
        }
      }
    }
  }else if( eType==SQLITE4_FLOAT ){
    r = sqlite4_value_double(pVal);
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE4_NULL ) continue;
      if( aSample[i].eType>=SQLITE4_TEXT ) break;
      if( aSample[i].eType==SQLITE4_FLOAT ){
        rS = aSample[i].u.r;
      }else{
        rS = aSample[i].u.i;
      }
      if( rS>=r ){
        isEq = rS==r;
        break;
      }
    }
  }else if( eType==SQLITE4_NULL ){
    i = 0;
    if( aSample[0].eType==SQLITE4_NULL ) isEq = 1;
  }else{
    assert( eType==SQLITE4_TEXT || eType==SQLITE4_BLOB );
    for(i=0; i<pIdx->nSample; i++){
      if( aSample[i].eType==SQLITE4_TEXT || aSample[i].eType==SQLITE4_BLOB ){
        break;
      }
    }
    if( i<pIdx->nSample ){      
      sqlite4 *db = pParse->db;
      CollSeq *pColl;
      const u8 *z;
      if( eType==SQLITE4_BLOB ){
        z = (const u8 *)sqlite4_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE4_UTF8 );
      }else{
        pColl = sqlite4GetCollSeq(db, SQLITE4_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){
          sqlite4ErrorMsg(pParse, "no such collation sequence: %s",
                          *pIdx->azColl);
          return SQLITE4_ERROR;
        }
        z = (const u8 *)sqlite4ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE4_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite4ValueBytes(pVal, pColl->enc);
  
      for(; i<pIdx->nSample; i++){
        int c;
        int eSampletype = aSample[i].eType;
        if( eSampletype<eType ) continue;
        if( eSampletype!=eType ) break;
#ifndef SQLITE4_OMIT_UTF16
        if( pColl->enc!=SQLITE4_UTF8 ){
          int nSample;
          char *zSample = sqlite4Utf8to16(
              db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
          );
          if( !zSample ){
            assert( db->mallocFailed );
            return SQLITE4_NOMEM;
          }
          c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
          sqlite4DbFree(db, zSample);
        }else
#endif
        {
          c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
        }
        if( c>=0 ){
          if( c==0 ) isEq = 1;
          break;
        }
      }
    }
  }

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then isEq==1.
  */







|





|

<
<



>
|


<

<
<
<
<
<
<
<
<
<
<
|
<
<
|
|
<
<
<
<
|
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
<
<







2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495


2496
2497
2498
2499
2500
2501
2502

2503










2504


2505
2506




2507

2508









2509



2510




2511

















2512







2513


2514



















2515
2516
2517


2518
2519
2520
2521
2522
2523
2524
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE4_OK on success.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  sqlite4_buffer *pBuf,       /* Buffer containing encoded value to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  tRowcnt n;
  IndexSample *aSample;
  int i;
  int isEq = 0;



  assert( roundUp==0 || roundUp==1 );
  assert( pIdx->nSample>0 );
  assert( pBuf->n>0 );

  n = pIdx->aiRowEst[0];
  aSample = pIdx->aSample;















  /* Set variable i to the index of the first sample equal to or larger 
  ** than the value in pBuf. Set isEq to true if the value is equal, or




  ** false otherwise.  */

  for(i=0; i<pIdx->nSample; i++){









    int res;



    int n = pBuf->n;




    if( n>aSample[i].nVal ) n = aSample[i].nVal;

























    res = memcmp(pBuf->p, aSample[i].aVal, n);


    if( res==0 ) res = pBuf->n - aSample[i].nVal;



















    if( res>=0 ){
      isEq = (res==0);
      break;


    }
  }

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then isEq==1.
  */
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652

2653
2654
2655
2656






2657
2658
2659
2660
2661
2662








2663

2664


2665


2666
2667














2668
2669
2670
2671
2672
2673
2674
    aStat[0] = iLower + iGap;
  }
  return SQLITE4_OK;
}
#endif /* SQLITE4_ENABLE_STAT3 */

/*
** If expression pExpr represents a literal value, set *pp to point to
** an sqlite4_value structure containing the same value, with affinity
** aff applied to it, before returning. It is the responsibility of the 
** caller to eventually release this structure by passing it to 
** sqlite4ValueFree().
**
** If the current parse is a recompile (sqlite4Reprepare()) and pExpr
** is an SQL variable that currently has a non-NULL value bound to it,
** create an sqlite4_value structure containing this value, again with
** affinity aff applied to it, instead.
**
** If neither of the above apply, set *pp to NULL.
**
** If an error occurs, return an error code. Otherwise, SQLITE4_OK.
*/
#ifdef SQLITE4_ENABLE_STAT3
static int valueFromExpr(
  Parse *pParse, 

  Expr *pExpr, 
  u8 aff, 
  sqlite4_value **pp
){






  if( pExpr->op==TK_VARIABLE
   || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    int iVar = pExpr->iColumn;
    sqlite4VdbeSetVarmask(pParse->pVdbe, iVar);
    *pp = sqlite4VdbeGetValue(pParse->pReprepare, iVar, aff);








    return SQLITE4_OK;

  }


  return sqlite4ValueFromExpr(pParse->db, pExpr, SQLITE4_UTF8, aff, pp);


}
#endif















/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):







|
|
|
<
<



|
<

|





|
>
|
|
|

>
>
>
>
>
>





|
>
>
>
>
>
>
>
>
|
>
|
>
>
|
>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>







2549
2550
2551
2552
2553
2554
2555
2556
2557
2558


2559
2560
2561
2562

2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
    aStat[0] = iLower + iGap;
  }
  return SQLITE4_OK;
}
#endif /* SQLITE4_ENABLE_STAT3 */

/*
** If expression pExpr represents a literal value, extract it and apply
** the affinity aff to it. Then encode the value using the database index
** key encoding and write the result into buffer pBuf.


**
** If the current parse is a recompile (sqlite4Reprepare()) and pExpr
** is an SQL variable that currently has a non-NULL value bound to it,
** do the same with the bound value.

**
** If neither of the above apply, leave the buffer empty.
**
** If an error occurs, return an error code. Otherwise, SQLITE4_OK.
*/
#ifdef SQLITE4_ENABLE_STAT3
static int valueFromExpr(
  Parse *pParse,                  /* Parse context */
  KeyInfo *pKeyinfo,              /* Collation sequence and sort order */
  Expr *pExpr,                    /* Expression to extract value from */
  u8 aff,                         /* Affinity to apply to value */
  sqlite4_buffer *pBuf            /* Buffer to populate */
){
  int rc = SQLITE4_OK;
  sqlite4 *db = pParse->db;
  sqlite4_value *pVal = 0;

  assert( pBuf->n==0 );

  if( pExpr->op==TK_VARIABLE
   || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    int iVar = pExpr->iColumn;
    sqlite4VdbeSetVarmask(pParse->pVdbe, iVar);
    pVal = sqlite4VdbeGetValue(pParse->pReprepare, iVar, aff);
  }else{
    rc = sqlite4ValueFromExpr(db, pExpr, SQLITE4_UTF8, aff, &pVal);
  }

  if( pVal && rc==SQLITE4_OK ){
    u8 *aOut;
    int nOut;
    rc = sqlite4VdbeEncodeKey(db, pVal, 1, 2, -1, pKeyinfo, &aOut, &nOut, 0);
    if( rc==SQLITE4_OK ){
      rc = sqlite4_buffer_set(pBuf, aOut, nOut);
    }
    sqlite4DbFree(db, aOut);
  }

  sqlite4ValueFree(pVal);
  return SQLITE4_OK;
}
#endif

static int whereSampleKeyinfo(Parse *pParse, Index *p, KeyInfo *pKeyInfo){
  CollSeq *pColl;
  memset(pKeyInfo, 0, sizeof(KeyInfo));
  pKeyInfo->db = pParse->db;
  pKeyInfo->enc = SQLITE4_UTF8;
  pKeyInfo->nField = p->nColumn;
  pKeyInfo->nPK = 1;
  pKeyInfo->nData = 0;
  pKeyInfo->aSortOrder = p->aSortOrder;
  pKeyInfo->aColl[0] = pColl = sqlite4LocateCollSeq(pParse, p->azColl[0]);
  pKeyInfo->aColl[0] = pColl;
  return pColl ? SQLITE4_OK : SQLITE4_ERROR;
}

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
2714
2715
2716
2717
2718
2719
2720
2721


2722
2723
2724
2725
2726



2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750

2751
2752
2753
2754
2755
2756
2757
  double *pRangeDiv   /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE4_OK;

#ifdef SQLITE4_ENABLE_STAT3

  if( nEq==0 && p->nSample ){
    sqlite4_value *pRangeVal;


    tRowcnt iLower = 0;
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;




    if( pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
      if( rc==SQLITE4_OK
       && whereKeyStats(pParse, p, pRangeVal, 0, a)==SQLITE4_OK
      ){
        iLower = a[0];
        if( pLower->eOperator==WO_GT ) iLower += a[1];
      }
      sqlite4ValueFree(pRangeVal);
    }
    if( rc==SQLITE4_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, pExpr, aff, &pRangeVal);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
      if( rc==SQLITE4_OK
       && whereKeyStats(pParse, p, pRangeVal, 1, a)==SQLITE4_OK
      ){
        iUpper = a[0];
        if( pUpper->eOperator==WO_LE ) iUpper += a[1];
      }
      sqlite4ValueFree(pRangeVal);
    }

    if( rc==SQLITE4_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{
        *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
      }
      WHERETRACE(("range scan regions: %u..%u  div=%g\n",







|
>
>





>
>
>
|

|


|




|



|


|




<

>







2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705

2706
2707
2708
2709
2710
2711
2712
2713
2714
  double *pRangeDiv   /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE4_OK;

#ifdef SQLITE4_ENABLE_STAT3

  if( nEq==0 && p->nSample ){
    sqlite4 *db = pParse->db;
    KeyInfo keyinfo;
    sqlite4_buffer buf;              /* Buffer used for index sample */
    tRowcnt iLower = 0;
    tRowcnt iUpper = p->aiRowEst[0];
    tRowcnt a[2];
    u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;

    sqlite4_buffer_init(&buf, db->pEnv->pMM);
    rc = whereSampleKeyinfo(pParse, p, &keyinfo);

    if( rc==SQLITE4_OK && pLower ){
      Expr *pExpr = pLower->pExpr->pRight;
      rc = valueFromExpr(pParse, &keyinfo, pExpr, aff, &buf);
      assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
      if( rc==SQLITE4_OK
       && whereKeyStats(pParse, p, &buf, 0, a)==SQLITE4_OK
      ){
        iLower = a[0];
        if( pLower->eOperator==WO_GT ) iLower += a[1];
      }
      sqlite4_buffer_set(&buf, 0, 0);
    }
    if( rc==SQLITE4_OK && pUpper ){
      Expr *pExpr = pUpper->pExpr->pRight;
      rc = valueFromExpr(pParse, &keyinfo, pExpr, aff, &buf);
      assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
      if( rc==SQLITE4_OK
       && whereKeyStats(pParse, p, &buf, 1, a)==SQLITE4_OK
      ){
        iUpper = a[0];
        if( pUpper->eOperator==WO_LE ) iUpper += a[1];
      }

    }
    sqlite4_buffer_clear(&buf);
    if( rc==SQLITE4_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{
        *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
      }
      WHERETRACE(("range scan regions: %u..%u  div=%g\n",
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804


2805
2806



2807
2808

2809


2810
2811

2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite4_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */

  assert( p->aSample!=0 );
  assert( p->nSample>0 );


  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  if( pExpr ){



    rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
    if( rc ) goto whereEqualScanEst_cancel;

  }else{


    pRhs = sqlite4ValueNew(pParse->db);
  }

  if( pRhs==0 ) return SQLITE4_NOTFOUND;
  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE4_OK ){
    WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite4ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE4_ENABLE_STAT3) */

#ifdef SQLITE4_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on







|






>
>


>
>
>
|
|
>

>
>
|

>
|
|





|







2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite4_buffer buf;
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */

  assert( p->aSample!=0 );
  assert( p->nSample>0 );

  sqlite4_buffer_init(&buf, pParse->db->pEnv->pMM);
  aff = p->pTable->aCol[p->aiColumn[0]].affinity;
  if( pExpr ){
    KeyInfo keyinfo;
    rc = whereSampleKeyinfo(pParse, p, &keyinfo);
    if( rc==SQLITE4_OK ){
      rc = valueFromExpr(pParse, &keyinfo, pExpr, aff, &buf);
      if( buf.n==0 ) return SQLITE4_NOTFOUND;
    }
  }else{
    /* Populate the buffer with a NULL. */
    u8 aNull[2] = {0x05, 0xfa};        /* ASC, DESC */
    rc = sqlite4_buffer_set(&buf, &aNull[p->aSortOrder[0]], 1);
  }
  if( rc ) goto whereEqualScanEst_cancel;

  rc = whereKeyStats(pParse, p, &buf, 0, a);
  if( rc==SQLITE4_OK ){
    WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite4_buffer_clear(&buf);
  return rc;
}
#endif /* defined(SQLITE4_ENABLE_STAT3) */

#ifdef SQLITE4_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
Changes to test/analyze.test.
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
} {t3 t3i1 t3i3 t4 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.3 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t3i1 t3i3 t4 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4 t4i1 t4i2 t4}
ifcapable stat3 {
  do_test analyze-5.5 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {







|














|







323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
} {t3 t3i1 t3i3 t4 t4i1 t4i2 t3 t4}
ifcapable stat3 {
  do_test analyze-5.3 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t3 t3i1 t3i3 t4 t4i1 t4i2 t3 t4}
}
do_test analyze-5.4 {
  execsql {
    DROP TABLE t3;
    SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1;
    SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1;
  }
} {t4 t4i1 t4i2 t4}
ifcapable stat3 {
  do_test analyze-5.5 {
    execsql {
      SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1;
      SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1;
    }
  } {t4 t4i1 t4i2 t4}
}

# This test corrupts the database file so it must be the last test
# in the series.
#
do_test analyze-99.1 {
  execsql {
Changes to test/permutations.test.
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  tkt-02a8e81d44.test tkt-26ff0c2d1e.test tkt-2d1a5c67d.test
  tkt-2ea2425d34.test tkt-31338dca7e.test
  tkt-38cb5df375.test tkt-3998683a16.test tkt-3a77c9714e.test
  tkt-3fe897352e.test tkt-4a03edc4c8.test tkt-54844eea3f.test
  tkt-5e10420e8d.test tkt-752e1646fc.test tkt-80ba201079.test
  tkt-80e031a00f.test tkt-91e2e8ba6f.test tkt-9d68c883.test
  tkt-b1d3a2e531.test tkt-b351d95f9.test  tkt-b72787b1.test
  tkt-bd484a090c.test tkt-cbd054fa6b.test tkt-d11f09d36e.test
  tkt-d635236375.test tkt-f973c7ac31.test tkt-fa7bf5ec.test
  tkt1443.test tkt1444.test tkt1449.test tkt1473.test tkt1501.test
  tkt1514.test tkt1537.test tkt1873.test
  tkt2141.test tkt2192.test tkt2213.test tkt2285.test tkt2339.test
  tkt2391.test tkt2450.test tkt2640.test tkt2767.test tkt2817.test
  tkt2822.test tkt2832.test tkt2927.test tkt2942.test tkt3121.test
  tkt3201.test tkt3292.test tkt3298.test tkt3334.test tkt3346.test







|







215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  tkt-02a8e81d44.test tkt-26ff0c2d1e.test tkt-2d1a5c67d.test
  tkt-2ea2425d34.test tkt-31338dca7e.test
  tkt-38cb5df375.test tkt-3998683a16.test tkt-3a77c9714e.test
  tkt-3fe897352e.test tkt-4a03edc4c8.test tkt-54844eea3f.test
  tkt-5e10420e8d.test tkt-752e1646fc.test tkt-80ba201079.test
  tkt-80e031a00f.test tkt-91e2e8ba6f.test tkt-9d68c883.test
  tkt-b1d3a2e531.test tkt-b351d95f9.test  tkt-b72787b1.test
  tkt-bd484a090c.test tkt-d11f09d36e.test
  tkt-d635236375.test tkt-f973c7ac31.test tkt-fa7bf5ec.test
  tkt1443.test tkt1444.test tkt1449.test tkt1473.test tkt1501.test
  tkt1514.test tkt1537.test tkt1873.test
  tkt2141.test tkt2192.test tkt2213.test tkt2285.test tkt2339.test
  tkt2391.test tkt2450.test tkt2640.test tkt2767.test tkt2817.test
  tkt2822.test tkt2832.test tkt2927.test tkt2942.test tkt3121.test
  tkt3201.test tkt3292.test tkt3298.test tkt3334.test tkt3346.test
Changes to test/simple.test.
1539
1540
1541
1542
1543
1544
1545

















1546
1547
do_test 79.1 {
  set r1 [expr 0.684377705997032]
  execsql "CREATE TABLE t1(x UNIQUE)"
  execsql "INSERT INTO t1 VALUES($r1)"
  execsql "PRAGMA integrity_check"
} {ok}


















finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
do_test 79.1 {
  set r1 [expr 0.684377705997032]
  execsql "CREATE TABLE t1(x UNIQUE)"
  execsql "INSERT INTO t1 VALUES($r1)"
  execsql "PRAGMA integrity_check"
} {ok}

reset_db
do_execsql_test 80.1 {
  CREATE TABLE t1(tbl, idx, nEq, nLt, nDLt, sample);
  INSERT INTO t1 VALUES('t1', 't1i3', 1, 0, 0, x'1802');
  INSERT INTO t1 VALUES('t1', 't1i3', 1, 1, 1, x'1802');
  INSERT INTO t1 VALUES('t1', 't1i2', 1, 0, 0, x'1804');
  INSERT INTO t1 VALUES('t1', 't1i2', 1, 1, 1, x'1806');
  INSERT INTO t1 VALUES('t1', 't1i1', 1, 0, 0, x'1802');
  INSERT INTO t1 VALUES('t1', 't1i1', 1, 1, 1, x'1802');
  INSERT INTO t1 VALUES('t1', 't1', 1, 0, 0, x'1802');
  INSERT INTO t1 VALUES('t1', 't1', 1, 1, 1, x'1804');
}

do_execsql_test 80.2 {
  SELECT idx, count(*), sum(length(sample)) FROM t1 GROUP BY idx
} {t1 2 4 t1i1 2 4 t1i2 2 4 t1i3 2 4}

finish_test