Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Change various things to use sqlite4_num instead of double. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sqlite4-num |
Files: | files | file ages | folders |
SHA1: |
ba341252335cbe112540a59564c4a59a |
User & Date: | dan 2013-05-30 18:26:49.274 |
Context
2013-05-30
| ||
19:01 | Use the same code to encode keys for rowid indexes as regular indexes. check-in: 9265ac66c8 user: dan tags: sqlite4-num | |
18:26 | Change various things to use sqlite4_num instead of double. check-in: ba34125233 user: dan tags: sqlite4-num | |
2013-05-29
| ||
18:52 | Further progress on this. src4.test is now passing again. check-in: 9cf2ab46f5 user: dan tags: sqlite4-num | |
Changes
Changes to src/vdbe.c.
︙ | ︙ | |||
1570 1571 1572 1573 1574 1575 1576 | ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ | | | 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 | ** has REAL affinity. Such column values may still be stored as ** integers, for space efficiency, but after extraction we want them ** to have only a real value. */ case OP_RealAffinity: { /* in1 */ pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Int ){ MemSetTypeFlag(pIn1, MEM_Real); } break; } #endif #ifndef SQLITE4_OMIT_CAST /* Opcode: ToText P1 * * * * |
︙ | ︙ | |||
2038 2039 2040 2041 2042 2043 2044 | case OP_If: /* jump, in1 */ case OP_IfNot: { /* jump, in1 */ int c; pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ c = pOp->p3; }else{ | < | < < < | 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 | case OP_If: /* jump, in1 */ case OP_IfNot: { /* jump, in1 */ int c; pIn1 = &aMem[pOp->p1]; if( pIn1->flags & MEM_Null ){ c = pOp->p3; }else{ c = sqlite4VdbeNumValue(pIn1).m!=0; if( pOp->opcode==OP_IfNot ) c = !c; } if( c ){ pc = pOp->p2-1; } break; } |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
407 408 409 410 411 412 413 | int sqlite4VdbeMemMakeWriteable(Mem*); int sqlite4VdbeMemStringify(Mem*, int); i64 sqlite4VdbeIntValue(Mem*); int sqlite4VdbeMemIntegerify(Mem*); double sqlite4VdbeRealValue(Mem*); sqlite4_num sqlite4VdbeNumValue(Mem *); void sqlite4VdbeIntegerAffinity(Mem*); | < | 407 408 409 410 411 412 413 414 415 416 417 418 419 420 | int sqlite4VdbeMemMakeWriteable(Mem*); int sqlite4VdbeMemStringify(Mem*, int); i64 sqlite4VdbeIntValue(Mem*); int sqlite4VdbeMemIntegerify(Mem*); double sqlite4VdbeRealValue(Mem*); sqlite4_num sqlite4VdbeNumValue(Mem *); void sqlite4VdbeIntegerAffinity(Mem*); int sqlite4VdbeMemNumerify(Mem*); void sqlite4VdbeMemSetRowSet(Mem *pMem); void sqlite4VdbeMemRelease(Mem *p); void sqlite4VdbeMemReleaseExternal(Mem *p); #define VdbeMemRelease(X) \ if((X)->flags&(MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame)) \ |
︙ | ︙ |
Changes to src/vdbecodec.c.
︙ | ︙ | |||
132 133 134 135 136 137 138 | num.m = x; num.e = (e >> 2); if( e & 0x02 ) num.e = -1 * num.e; if( e & 0x01 ) num.sign = 1; pOut->u.num = num; MemSetTypeFlag(pOut, MEM_Real); | < < < < < < < < < < < < < < < < < < < | 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | num.m = x; num.e = (e >> 2); if( e & 0x02 ) num.e = -1 * num.e; if( e & 0x01 ) num.sign = 1; pOut->u.num = num; MemSetTypeFlag(pOut, MEM_Real); }else if( cclass==0 ){ if( size==0 ){ sqlite4VdbeMemSetStr(pOut, "", 0, SQLITE4_UTF8, SQLITE4_TRANSIENT, 0); }else if( p->a[ofst]>0x02 ){ sqlite4VdbeMemSetStr(pOut, (char*)(p->a+ofst), size, SQLITE4_UTF8, SQLITE4_TRANSIENT, 0); }else{ |
︙ | ︙ | |||
246 247 248 249 250 251 252 | n = significantBytes(i1); aOut[nOut++] = n+2; nPayload += n; aAux[i].n = n; }else if( flags & MEM_Real ){ sqlite4_num *p = &aIn[i].u.num; int e; | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | n = significantBytes(i1); aOut[nOut++] = n+2; nPayload += n; aAux[i].n = n; }else if( flags & MEM_Real ){ sqlite4_num *p = &aIn[i].u.num; int e; assert( p->sign==0 || p->sign==1 ); if( p->e<0 ){ e = (p->e*-4) + 2 + p->sign; }else{ e = (p->e*4) + p->sign; } n = sqlite4PutVarint64(aAux[i].z, (sqlite4_uint64)e); n += sqlite4PutVarint64(aAux[i].z+n, p->m); aAux[i].n = n; aOut[nOut++] = n+9; nPayload += n; }else if( flags & MEM_Str ){ n = aIn[i].n; |
︙ | ︙ | |||
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | p->aOut[p->nOut++] = 2*d + 1; r -= d; } p->aOut[p->nOut-1] &= 0xfe; return e; } /* ** Encode a single column of the key */ static int encodeOneKeyValue( KeyEncoder *p, /* Key encoder context */ Mem *pMem, /* Value to be encoded */ u8 sortOrder, /* Sort order for this value */ u8 isLastValue, /* True if this is the last value in the key */ CollSeq *pColl /* Collating sequence for the value */ ){ int flags = pMem->flags; int i, e; int n; int iStart = p->nOut; if( flags & MEM_Null ){ if( enlargeEncoderAllocation(p, 1) ) return SQLITE4_NOMEM; p->aOut[p->nOut++] = 0x05; /* NULL */ }else if( flags & MEM_Int ){ sqlite4_int64 v; sqlite4_num_to_int64(pMem->u.num, &v); if( enlargeEncoderAllocation(p, 11) ) return SQLITE4_NOMEM; if( v==0 ){ p->aOut[p->nOut++] = 0x15; /* Numeric zero */ }else if( v<0 ){ p->aOut[p->nOut++] = 0x08; /* Large negative number */ i = p->nOut; e = encodeIntKey((sqlite4_uint64)-v, p); if( e<=10 ) p->aOut[i-1] = 0x13-e; while( i<p->nOut ) p->aOut[i++] ^= 0xff; }else{ i = p->nOut; p->aOut[p->nOut++] = 0x22; /* Large positive number */ e = encodeIntKey((sqlite4_uint64)v, p); if( e<=10 ) p->aOut[i] = 0x17+e; } }else | > > > > > > > > > > > | < | | > | < < < < < < < < | | < < < < < < > > > > | > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > | > > > > > | > | 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | p->aOut[p->nOut++] = 2*d + 1; r -= d; } p->aOut[p->nOut-1] &= 0xfe; return e; } static void putVarint64(KeyEncoder *p, sqlite4_uint64 v, int bInvert){ unsigned char *z = &p->aOut[p->nOut]; int n = sqlite4PutVarint64(z, v); if( bInvert ){ int i; for(i=0; i<n; i++) z[i] = ~z[i]; } p->nOut += n; } /* ** Encode a single column of the key */ static int encodeOneKeyValue( KeyEncoder *p, /* Key encoder context */ Mem *pMem, /* Value to be encoded */ u8 sortOrder, /* Sort order for this value */ u8 isLastValue, /* True if this is the last value in the key */ CollSeq *pColl /* Collating sequence for the value */ ){ int flags = pMem->flags; int i, e; int n; int iStart = p->nOut; if( flags & MEM_Null ){ if( enlargeEncoderAllocation(p, 1) ) return SQLITE4_NOMEM; p->aOut[p->nOut++] = 0x05; /* NULL */ }else #if 0 if( flags & MEM_Int ){ sqlite4_int64 v; sqlite4_num_to_int64(pMem->u.num, &v); if( enlargeEncoderAllocation(p, 11) ) return SQLITE4_NOMEM; if( v==0 ){ p->aOut[p->nOut++] = 0x15; /* Numeric zero */ }else if( v<0 ){ p->aOut[p->nOut++] = 0x08; /* Large negative number */ i = p->nOut; e = encodeIntKey((sqlite4_uint64)-v, p); if( e<=10 ) p->aOut[i-1] = 0x13-e; while( i<p->nOut ) p->aOut[i++] ^= 0xff; }else{ i = p->nOut; p->aOut[p->nOut++] = 0x22; /* Large positive number */ e = encodeIntKey((sqlite4_uint64)v, p); if( e<=10 ) p->aOut[i] = 0x17+e; } }else #endif if( flags & (MEM_Real|MEM_Int) ){ sqlite4_num num = pMem->u.num; if( enlargeEncoderAllocation(p, 16) ) return SQLITE4_NOMEM; if( num.m==0 ){ p->aOut[p->nOut++] = 0x15; /* Numeric zero */ }else if( sqlite4_num_isnan(num) ){ p->aOut[p->nOut++] = 0x06; /* NaN */ }else if( sqlite4_num_isinf(num) ){ p->aOut[p->nOut++] = num.sign ? 0x07 : 0x23; /* Neg and Pos infinity */ }else{ int e; u64 m; int iDigit = 0; u8 aDigit[12]; while( (num.m % 10)==0 ){ num.e++; num.m = num.m / 10; } m = num.m; e = num.e; if( num.e % 2 ){ aDigit[0] = 10 * (m % 10); m = m / 10; e--; iDigit = 1; }else{ iDigit = 0; } while( m ){ aDigit[iDigit++] = (m % 100); m = m / 100; } e = (iDigit + (e/2)); if( e>11 ){ /* Large value */ if( num.sign==0 ){ p->aOut[p->nOut++] = 0x22; putVarint64(p, e, 0); }else{ p->aOut[p->nOut++] = 0x08; putVarint64(p, e, 1); } } else if( e>=0 ){ /* Medium value */ if( num.sign==0 ){ p->aOut[p->nOut++] = 0x17+e; }else{ p->aOut[p->nOut++] = 0x13-e; } } else{ /* Small value */ if( num.sign==0 ){ p->aOut[p->nOut++] = 0x16; putVarint64(p, -1*e, 1); }else{ p->aOut[p->nOut++] = 0x14; putVarint64(p, -1*e, 0); } } /* Write M to the output. */ while( (iDigit--)>0 ){ u8 d = aDigit[iDigit]*2; if( iDigit!=0 ) d |= 0x01; if( num.sign ) d = ~d; p->aOut[p->nOut++] = d; } } }else if( flags & MEM_Str ){ Mem *pEnc; /* Pointer to memory cell in correct enc. */ Mem sMem; /* Value converted to different encoding */ int enc; /* Required encoding */ |
︙ | ︙ | |||
848 849 850 851 852 853 854 855 856 857 858 859 860 861 | } m = 0; i = 1; do{ m = m*100 + aKey[i]/2; e--; }while( aKey[i++] & 1 ); if( isNeg ){ *pVal = -m; }else{ *pVal = m; } return m==0 ? 0 : i; } | > > | 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 | } m = 0; i = 1; do{ m = m*100 + aKey[i]/2; e--; }while( aKey[i++] & 1 ); while( (e--)>0 ){ m = m*100; } if( isNeg ){ *pVal = -m; }else{ *pVal = m; } return m==0 ? 0 : i; } |
Changes to src/vdbemem.c.
︙ | ︙ | |||
334 335 336 337 338 339 340 341 342 | /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ double sqlite4VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite4_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | > < < | < < < < < | < < < < | 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ double sqlite4VdbeRealValue(Mem *pMem){ double rVal = 0.0; assert( pMem->db==0 || sqlite4_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); sqlite4_num_to_double(sqlite4VdbeNumValue(pMem), &rVal); return rVal; } /* ** Extract and return a numeric value from memory cell pMem. This call ** does not modify the contents or flags of *pMem in any way. */ sqlite4_num sqlite4VdbeNumValue(Mem *pMem){ |
︙ | ︙ | |||
425 426 427 428 429 430 431 | } } MemSetTypeFlag(pMem, MEM_Int); return SQLITE4_OK; } | < < < < < < < < < < < < < | 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | } } MemSetTypeFlag(pMem, MEM_Int); return SQLITE4_OK; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. |
︙ | ︙ |
Changes to test/simple.test.
︙ | ︙ | |||
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 | do_execsql_test 76.4 { CREATE TABLE t2(a REAL, str); } do_execsql_test 76.5 { INSERT INTO t2 VALUES(0.0012345, ''); } do_execsql_test 76.6 { SELECT cast(a AS TEXT) FROM t2 } {0.0012345} finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 | do_execsql_test 76.4 { CREATE TABLE t2(a REAL, str); } do_execsql_test 76.5 { INSERT INTO t2 VALUES(0.0012345, ''); } do_execsql_test 76.6 { SELECT cast(a AS TEXT) FROM t2 } {0.0012345} #------------------------------------------------------------------------- # Integer keys. # reset_db do_execsql_test 77.1 { CREATE TABLE t1(x) } do_test 77.2 { for {set i 0} {$i < 99} {incr i} { execsql { INSERT INTO t1 VALUES(NULL) } } } {} do_execsql_test 77.3 { INSERT INTO t1 VALUES(NULL) } do_execsql_test 77.4 { INSERT INTO t1 VALUES(NULL) } #------------------------------------------------------------------------- # reset_db do_test 78.1 { execsql { CREATE TABLE t1 (id INTEGER PRIMARY KEY, v); INSERT INTO t1 VALUES(42, 3); } } {} do_execsql_test 78.2 { SELECT id, v FROM t1 WHERE id>1.5; } {42 3} finish_test |