Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Modifications to make the ANALYZE command work (sqlite_stat1 only). |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
7d8efac62fe969b1f4ed8aba9c6e0510 |
User & Date: | dan 2013-06-17 20:15:50.571 |
Context
2013-06-22
| ||
19:57 | Fixes for SQLITE4_ENABLE_STAT3 builds. check-in: d5d0e93a57 user: dan tags: trunk | |
2013-06-17
| ||
20:15 | Modifications to make the ANALYZE command work (sqlite_stat1 only). check-in: 7d8efac62f user: dan tags: trunk | |
05:35 | Remove the sqlite4_progress_handler interface. Change the documentation of load_extension() to say that it sets the db handle error message and code. check-in: 02ec769ae0 user: dan tags: trunk | |
Changes
Changes to main.mk.
︙ | ︙ | |||
47 48 49 50 51 52 53 | #OPTS += -DSQLITE4_DEBUG=1 -DLSM_DEBUG=1 OPTS += -DHAVE_GMTIME_R OPTS += -DHAVE_LOCALTIME_R OPTS += -DHAVE_MALLOC_USABLE_SIZE OPTS += -DHAVE_USLEEP #OPTS += -DSQLITE4_MEMDEBUG=1 #OPTS += -DSQLITE4_NO_SYNC=1 -DLSM_NO_SYNC=1 | | < | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | #OPTS += -DSQLITE4_DEBUG=1 -DLSM_DEBUG=1 OPTS += -DHAVE_GMTIME_R OPTS += -DHAVE_LOCALTIME_R OPTS += -DHAVE_MALLOC_USABLE_SIZE OPTS += -DHAVE_USLEEP #OPTS += -DSQLITE4_MEMDEBUG=1 #OPTS += -DSQLITE4_NO_SYNC=1 -DLSM_NO_SYNC=1 #OPTS += -DSQLITE4_OMIT_ANALYZE OPTS += -DSQLITE4_OMIT_AUTOMATIC_INDEX OPTS += -DSQLITE4_OMIT_VIRTUALTABLE=1 OPTS += -DSQLITE4_OMIT_XFER_OPT OPTS += -DSQLITE4_THREADSAFE=0 # This is how we compile # TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src -I$(TOP) |
︙ | ︙ |
Changes to src/analyze.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 | ** The ANALYZE command gather statistics about the content of tables ** and indices. These statistics are made available to the query planner ** to help it make better decisions about how to perform queries. ** ** The following system tables are or have been supported: ** ** CREATE TABLE sqlite_stat1(tbl, idx, stat); | < < < < | < < | < | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ** The ANALYZE command gather statistics about the content of tables ** and indices. These statistics are made available to the query planner ** to help it make better decisions about how to perform queries. ** ** The following system tables are or have been supported: ** ** CREATE TABLE sqlite_stat1(tbl, idx, stat); ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); ** ** The sqlite_stat3 table is only created if SQLITE4_ENABLE_STAT3 is ** defined. ** ** Format of sqlite_stat1: ** ** There is normally one row per index, with the index identified by the ** name in the idx column. The tbl column is the name of the table to ** which the index belongs. In each such row, the stat column will be ** a string consisting of a list of integers. The first integer in this |
︙ | ︙ | |||
51 52 53 54 55 56 57 | ** "unordered" keyword is present, then the query planner assumes that ** the index is unordered and will not use the index for a range query. ** ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat ** column contains a single integer which is the (estimated) number of ** rows in the table identified by sqlite_stat1.tbl. ** | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | ** "unordered" keyword is present, then the query planner assumes that ** the index is unordered and will not use the index for a range query. ** ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat ** column contains a single integer which is the (estimated) number of ** rows in the table identified by sqlite_stat1.tbl. ** ** Format for sqlite_stat3: ** ** The sqlite_stat3 table may contain multiple entries for each index. ** The idx column names the index and the tbl column is the table of the ** index. If the idx and tbl columns are the same, then the sample is ** of the INTEGER PRIMARY KEY. The sample column is a value taken from ** the left-most column of the index. The nEq column is the approximate ** number of entires in the index whose left-most column exactly matches ** the sample. nLt is the approximate number of entires whose left-most ** column is less than the sample. The nDLt column is the approximate ** number of distinct left-most entries in the index that are less than ** the sample. ** ** Future versions of SQLite might change to store a string containing ** multiple integers values in the nDLt column of sqlite_stat3. The first ** integer will be the number of prior index entries that are distinct in ** the left-most column. The second integer will be the number of prior index ** entries that are distinct in the first two columns. The third integer ** will be the number of prior index entries that are distinct in the first ** three columns. And so forth. With that extension, the nDLt field is ** similar in function to the sqlite_stat1.stat field. ** ** There can be an arbitrary number of sqlite_stat3 entries per index. |
︙ | ︙ | |||
167 168 169 170 171 172 173 174 175 176 | const char *zTab = aTable[i].zName; Table *pStat; if( (pStat = sqlite4FindTable(db, zTab, pDb->zName))==0 ){ /* The sqlite_stat[12] table does not exist. Create it. Note that a ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ sqlite4NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); | > > | > | > | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | const char *zTab = aTable[i].zName; Table *pStat; if( (pStat = sqlite4FindTable(db, zTab, pDb->zName))==0 ){ /* The sqlite_stat[12] table does not exist. Create it. Note that a ** side-effect of the CREATE TABLE statement is to leave the rootpage ** of the new table in register pParse->regRoot. This is important ** because the OpenWrite opcode below will be needing it. */ pParse->pPKRoot = &aRoot[i]; sqlite4NestedParse(pParse, "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols ); assert( pParse->nErr>0 || aRoot[i]>0 ); pParse->pPKRoot = 0; aCreateTbl[i] = 1; }else{ /* The table already exists. If zWhere is not NULL, delete all entries ** associated with the table zWhere. If zWhere is NULL, delete the ** entire contents of the table. */ Index *pPK = sqlite4FindPrimaryKey(pStat, 0); aRoot[i] = pPK->tnum; assert( aRoot[i]>0 ); if( zWhere ){ sqlite4NestedParse(pParse, "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere ); }else{ /* The sqlite_stat[12] table already exists. Delete all rows. */ sqlite4VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); |
︙ | ︙ | |||
245 246 247 248 249 250 251 | int argc, sqlite4_value **argv ){ Stat3Accum *p; tRowcnt nRow; int mxSample; int n; | < | < | | | 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | int argc, sqlite4_value **argv ){ Stat3Accum *p; tRowcnt nRow; int mxSample; int n; UNUSED_PARAMETER(argc); nRow = (tRowcnt)sqlite4_value_int64(argv[0]); mxSample = sqlite4_value_int(argv[1]); n = sizeof(*p) + sizeof(p->a[0])*mxSample; p = sqlite4MallocZero( n ); if( p==0 ){ sqlite4_result_error_nomem(context); return; } p->a = (struct Stat3Sample*)&p[1]; p->nRow = nRow; p->mxSample = mxSample; p->nPSample = p->nRow/(mxSample/3+1) + 1; sqlite4_randomness(sizeof(p->iPrn), &p->iPrn); sqlite4_result_blob(context, p, sizeof(p), sqlite4_free); } static const FuncDef stat3InitFuncdef = { 2, /* nArg */ SQLITE4_UTF8, /* iPrefEnc */ 0, /* flags */ 0, /* pUserData */ 0, /* pNext */ |
︙ | ︙ | |||
460 461 462 463 464 465 466 | int iTabCur = pParse->nTab++; /* Table cursor */ #endif int regCol = iMem++; /* Content of a column in analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regNewRowid = iMem++; /* Rowid for the inserted record */ | < | | > > > > | 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | int iTabCur = pParse->nTab++; /* Table cursor */ #endif int regCol = iMem++; /* Content of a column in analyzed table */ int regRec = iMem++; /* Register holding completed record */ int regTemp = iMem++; /* Temporary use register */ int regNewRowid = iMem++; /* Rowid for the inserted record */ v = sqlite4GetVdbe(pParse); if( v==0 || NEVER(pTab==0) ){ return; } if( pTab->pIndex==0 ){ /* Do not gather statistics on views or virtual tables */ return; } if( sqlite4_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ /* Do not gather statistics on system tables */ return; } iDb = sqlite4SchemaToIndex(db, pTab->pSchema); assert( iDb>=0 ); #ifndef SQLITE4_OMIT_AUTHORIZATION if( sqlite4AuthCheck(pParse, SQLITE4_ANALYZE, pTab->zName, 0, db->aDb[iDb].zName ) ){ return; } #endif iIdxCur = pParse->nTab++; sqlite4VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; KeyInfo *pKey; int addrIfNot = 0; /* address of OP_IfNot */ int *aChngAddr; /* Array of jump instruction addresses */ int regCnt; /* Total number of rows in table. */ int regPrev; /* Previous index key read from database */ int aregCard; /* Cardinality array registers */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); nCol = pIdx->nColumn; aChngAddr = sqlite4DbMallocRaw(db, sizeof(int)*nCol); if( aChngAddr==0 ) continue; pKey = sqlite4IndexKeyinfo(pParse, pIdx); |
︙ | ︙ | |||
530 531 532 533 534 535 536 | #endif /* SQLITE4_ENABLE_STAT3 */ /* The block of memory cells initialized here is used as follows. ** ** iMem: ** The total number of rows in the table. ** | | > > > < < < < < < | | > | > > | | > > | 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | #endif /* SQLITE4_ENABLE_STAT3 */ /* The block of memory cells initialized here is used as follows. ** ** iMem: ** The total number of rows in the table. ** ** iMem+1: ** Previous record read from index. ** ** iMem+1+1 .. iMem+1+nCol: ** Number of distinct entries in index considering the ** left-most N columns only, where N is between 1 and nCol, ** inclusive. */ regCnt = iMem; regPrev = iMem+1; aregCard = iMem+2; sqlite4VdbeAddOp2(v, OP_Integer, 0, regCnt); sqlite4VdbeAddOp2(v, OP_Null, 0, regPrev); for(i=0; i<nCol; i++){ sqlite4VdbeAddOp2(v, OP_Integer, 1, aregCard+i); } /* Start the analysis loop. This loop runs through all the entries in ** the index b-tree. */ endOfLoop = sqlite4VdbeMakeLabel(v); sqlite4VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); topOfLoop = sqlite4VdbeCurrentAddr(v); sqlite4VdbeAddOp2(v, OP_AddImm, regCnt, 1); /* Increment row counter */ sqlite4VdbeAddOp4Int(v, OP_AnalyzeKey, iIdxCur, regPrev, aregCard, nCol); #if 0 for(i=0; i<nCol; i++){ CollSeq *pColl; sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); if( i==0 ){ /* Always record the very first row */ addrIfNot = sqlite4VdbeAddOp1(v, OP_IfNot, iMem+1); } |
︙ | ︙ | |||
595 596 597 598 599 600 601 602 603 604 605 606 607 608 | sqlite4VdbeAddOp2(v, OP_Integer, 1, regNumEq); #endif } sqlite4VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); } sqlite4DbFree(db, aChngAddr); /* Always jump here after updating the iMem+1...iMem+1+nCol counters */ sqlite4VdbeResolveLabel(v, endOfLoop); sqlite4VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); sqlite4VdbeAddOp1(v, OP_Close, iIdxCur); #ifdef SQLITE4_ENABLE_STAT3 | > | 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | sqlite4VdbeAddOp2(v, OP_Integer, 1, regNumEq); #endif } sqlite4VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); sqlite4VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); } sqlite4DbFree(db, aChngAddr); #endif /* Always jump here after updating the iMem+1...iMem+1+nCol counters */ sqlite4VdbeResolveLabel(v, endOfLoop); sqlite4VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); sqlite4VdbeAddOp1(v, OP_Close, iIdxCur); #ifdef SQLITE4_ENABLE_STAT3 |
︙ | ︙ | |||
656 657 658 659 660 661 662 | sqlite4VdbeAddOp2(v, OP_SCopy, iMem, regStat1); if( jZeroRows<0 ){ jZeroRows = sqlite4VdbeAddOp1(v, OP_IfNot, iMem); } for(i=0; i<nCol; i++){ sqlite4VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite4VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); | | | < < < < < < < < < < | | < | 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 | sqlite4VdbeAddOp2(v, OP_SCopy, iMem, regStat1); if( jZeroRows<0 ){ jZeroRows = sqlite4VdbeAddOp1(v, OP_IfNot, iMem); } for(i=0; i<nCol; i++){ sqlite4VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite4VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); sqlite4VdbeAddOp3(v, OP_Add, iMem, aregCard+i, regTemp); sqlite4VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite4VdbeAddOp3(v, OP_Divide, aregCard+i, regTemp, regTemp); sqlite4VdbeAddOp1(v, OP_ToInt, regTemp); sqlite4VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); } sqlite4VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite4VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite4VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); sqlite4VdbeChangeP5(v, OPFLAG_APPEND); } sqlite4VdbeJumpHere(v, jZeroRows); jZeroRows = sqlite4VdbeAddOp0(v, OP_Goto); sqlite4VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite4VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite4VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite4VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); sqlite4VdbeChangeP5(v, OPFLAG_APPEND); if( pParse->nMem<regRec ) pParse->nMem = regRec; sqlite4VdbeJumpHere(v, jZeroRows); |
︙ | ︙ | |||
789 790 791 792 793 794 795 | /* Form 2: Analyze the database or table named */ iDb = sqlite4FindDb(db, pName1); if( iDb>=0 ){ analyzeDatabase(pParse, iDb); }else{ z = sqlite4NameFromToken(db, pName1); if( z ){ | | | | | | | | | | 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 | /* Form 2: Analyze the database or table named */ iDb = sqlite4FindDb(db, pName1); if( iDb>=0 ){ analyzeDatabase(pParse, iDb); }else{ z = sqlite4NameFromToken(db, pName1); if( z ){ if( (pTab = sqlite4LocateTable(pParse, 0, z, 0))!=0 ){ analyzeTable(pParse, pTab, 0); }else if( (pIdx = sqlite4FindIndex(db, z, 0))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); } sqlite4DbFree(db, z); } } }else{ /* Form 3: Analyze the fully qualified table name */ iDb = sqlite4TwoPartName(pParse, pName1, pName2, &pTableName); if( iDb>=0 ){ zDb = db->aDb[iDb].zName; z = sqlite4NameFromToken(db, pTableName); if( z ){ if( (pTab = sqlite4LocateTable(pParse, 0, z, zDb))!=0 ){ analyzeTable(pParse, pTab, 0); }else if( (pIdx = sqlite4FindIndex(db, z, zDb))!=0 ){ analyzeTable(pParse, pIdx->pTable, pIdx); } sqlite4DbFree(db, z); } } } } |
︙ | ︙ | |||
831 832 833 834 835 836 837 | /* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** ** argv[0] = name of the table ** argv[1] = name of the index (might be NULL) | | | > > > > > > > > | | | < | | | < | < < | < > | > | | 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 | /* ** This callback is invoked once for each index when reading the ** sqlite_stat1 table. ** ** argv[0] = name of the table ** argv[1] = name of the index (might be NULL) ** argv[2] = results of analysis - one integer for each column ** ** Entries for which argv[1]==NULL simply record the number of rows in ** the table. */ static int analysisLoader( void *pData, /* Pointer to analysisInfo structure */ int nVal, /* Size of apVal[] array */ sqlite4_value **apVal, /* Values for current row */ const char **NotUsed /* Column names (not used by this function) */ ){ analysisInfo *pInfo = (analysisInfo*)pData; Index *pIndex; Table *pTable; int i, c, n; tRowcnt v; const char *zTab = sqlite4_value_text(apVal[0], 0); const char *zIdx = sqlite4_value_text(apVal[1], 0); const char *z = sqlite4_value_text(apVal[2], 0); assert( nVal==3 ); UNUSED_PARAMETER2(NotUsed, nVal); if( zTab==0 || zIdx==0 || z==0 ) return 0; pTable = sqlite4FindTable(pInfo->db, zTab, pInfo->zDatabase); if( pTable==0 ){ return 0; } pIndex = sqlite4FindIndex(pInfo->db, zIdx, pInfo->zDatabase); n = pIndex ? pIndex->nColumn : 0; for(i=0; *z && i<=n; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } if( i==0 ) pTable->nRowEst = v; if( pIndex==0 ) break; pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; #if 0 if( strcmp(z, "unordered")==0 ){ pIndex->bUnordered = 1; break; } #endif } return 0; } /* ** If the Index.aSample variable is not NULL, delete the aSample[] array ** and its contents. */ void sqlite4DeleteIndexSamples(sqlite4 *db, Index *pIdx){ #ifdef SQLITE4_ENABLE_STAT3 if( pIdx->aSample ){ int j; for(j=0; j<pIdx->nSample; j++){ IndexSample *p = &pIdx->aSample[j]; if( p->eType==SQLITE4_TEXT || p->eType==SQLITE_BLOB ){ sqlite4DbFree(db, p->u.z); } } sqlite4DbFree(db, pIdx->aSample); } if( db && db->pnBytesFreed==0 ){ pIdx->nSample = 0; |
︙ | ︙ | |||
919 920 921 922 923 924 925 926 927 928 929 930 931 932 | sqlite4_stmt *pStmt = 0; /* An SQL statement being run */ char *zSql; /* Text of the SQL statement */ Index *pPrevIdx = 0; /* Previous index in the loop */ int idx = 0; /* slot in pIdx->aSample[] for next sample */ int eType; /* Datatype of a sample */ IndexSample *pSample; /* A slot in pIdx->aSample[] */ if( !sqlite4FindTable(db, "sqlite_stat3", zDb) ){ return SQLITE4_OK; } zSql = sqlite4MPrintf(db, "SELECT idx,count(*) FROM %Q.sqlite_stat3" " GROUP BY idx", zDb); | > | 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 | sqlite4_stmt *pStmt = 0; /* An SQL statement being run */ char *zSql; /* Text of the SQL statement */ Index *pPrevIdx = 0; /* Previous index in the loop */ int idx = 0; /* slot in pIdx->aSample[] for next sample */ int eType; /* Datatype of a sample */ IndexSample *pSample; /* A slot in pIdx->aSample[] */ assert( db->lookaside.bEnabled==0 ); if( !sqlite4FindTable(db, "sqlite_stat3", zDb) ){ return SQLITE4_OK; } zSql = sqlite4MPrintf(db, "SELECT idx,count(*) FROM %Q.sqlite_stat3" " GROUP BY idx", zDb); |
︙ | ︙ | |||
945 946 947 948 949 950 951 | zIndex = (char *)sqlite4_column_text(pStmt, 0); if( zIndex==0 ) continue; nSample = sqlite4_column_int(pStmt, 1); pIdx = sqlite4FindIndex(db, zIndex, zDb); if( pIdx==0 ) continue; assert( pIdx->nSample==0 ); pIdx->nSample = nSample; | | | 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 | zIndex = (char *)sqlite4_column_text(pStmt, 0); if( zIndex==0 ) continue; nSample = sqlite4_column_int(pStmt, 1); pIdx = sqlite4FindIndex(db, zIndex, zDb); if( pIdx==0 ) continue; assert( pIdx->nSample==0 ); pIdx->nSample = nSample; pIdx->aSample = sqlite4DbMallocZero(db, nSample*sizeof(IndexSample)); pIdx->avgEq = pIdx->aiRowEst[1]; if( pIdx->aSample==0 ){ db->mallocFailed = 1; sqlite4_finalize(pStmt); return SQLITE4_NOMEM; } } |
︙ | ︙ | |||
1007 1008 1009 1010 1011 1012 1013 | case SQLITE4_FLOAT: { pSample->u.r = sqlite4_column_double(pStmt, 4); break; } case SQLITE4_NULL: { break; } | | | | 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | case SQLITE4_FLOAT: { pSample->u.r = sqlite4_column_double(pStmt, 4); break; } case SQLITE4_NULL: { break; } default: assert( eType==SQLITE4_TEXT || eType==SQLITE_BLOB ); { const char *z = (const char *)( (eType==SQLITE4_BLOB) ? sqlite4_column_blob(pStmt, 4): sqlite4_column_text(pStmt, 4) ); int n = z ? sqlite4_column_bytes(pStmt, 4) : 0; pSample->nByte = n; if( n < 1){ pSample->u.z = 0; }else{ pSample->u.z = sqlite4DbMallocRaw(db, n); if( pSample->u.z==0 ){ db->mallocFailed = 1; sqlite4_finalize(pStmt); return SQLITE4_NOMEM; } memcpy(pSample->u.z, z, n); } |
︙ | ︙ | |||
1085 1086 1087 1088 1089 1090 1091 | /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite4MPrintf(db, "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE4_NOMEM; }else{ | | > > > | 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 | /* Load new statistics out of the sqlite_stat1 table */ zSql = sqlite4MPrintf(db, "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); if( zSql==0 ){ rc = SQLITE4_NOMEM; }else{ rc = sqlite4_exec(db, zSql, analysisLoader, &sInfo); sqlite4DbFree(db, zSql); } /* Load the statistics from the sqlite_stat3 table. */ #ifdef SQLITE4_ENABLE_STAT3 if( rc==SQLITE4_OK ){ int lookasideEnabled = db->lookaside.bEnabled; db->lookaside.bEnabled = 0; rc = loadStat3(db, sInfo.zDatabase); db->lookaside.bEnabled = lookasideEnabled; } #endif if( rc==SQLITE4_NOMEM ){ db->mallocFailed = 1; } return rc; } #endif /* SQLITE4_OMIT_ANALYZE */ |
Changes to src/build.c.
︙ | ︙ | |||
1488 1489 1490 1491 1492 1493 1494 | /* If no explicit PRIMARY KEY has been created, add an implicit ** primary key here. An implicit primary key works the way "rowid" ** did in SQLite 3. */ addImplicitPrimaryKey(pParse, p, iDb); } pPk = sqlite4FindPrimaryKey(p, 0); assert( pPk || pParse->nErr || db->mallocFailed ); | > | > > > > > > > > | 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 | /* If no explicit PRIMARY KEY has been created, add an implicit ** primary key here. An implicit primary key works the way "rowid" ** did in SQLite 3. */ addImplicitPrimaryKey(pParse, p, iDb); } pPk = sqlite4FindPrimaryKey(p, 0); assert( pPk || pParse->nErr || db->mallocFailed ); if( pPk ){ iPkRoot = pPk->tnum; if( pParse->pPKRoot ){ /* If pParse->pPKRoto is non-zero, it is a pointer to a location in ** which to store the root page number of the table just created. ** This is used by the ANALYZE command when creating the sqlite_stat* ** tables. */ *pParse->pPKRoot = iPkRoot; } } } #ifndef SQLITE4_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ |
︙ | ︙ | |||
2357 2358 2359 2360 2361 2362 2363 | pTab = sqlite4SrcListLookup(pParse, p->pTblName); if( !pTab || db->mallocFailed ) return 0; assert( db->aDb[iDb].pSchema==pTab->pSchema ); assert( pParse->nErr==0 ); /* TODO: We will need to reinstate this block when sqlite_master is ** modified to use an implicit primary key. */ | < | > | < | 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 | pTab = sqlite4SrcListLookup(pParse, p->pTblName); if( !pTab || db->mallocFailed ) return 0; assert( db->aDb[iDb].pSchema==pTab->pSchema ); assert( pParse->nErr==0 ); /* TODO: We will need to reinstate this block when sqlite_master is ** modified to use an implicit primary key. */ if( sqlite4_strnicmp(pTab->zName, "sqlite_", 7)==0 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){ sqlite4ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); return 0; } /* Verify that this is not an attempt to create an index on a view or ** virtual table. */ if( IsView(pTab) ){ sqlite4ErrorMsg(pParse, "views may not be indexed"); return 0; } |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
11 12 13 14 15 16 17 | ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ | < | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | ************************************************************************* ** Internal interface definitions for SQLite. ** */ #ifndef _SQLITEINT_H_ #define _SQLITEINT_H_ #define SQLITE4_OMIT_PROGRESS_CALLBACK 1 #define SQLITE4_OMIT_VIRTUALTABLE 1 #define SQLITE4_OMIT_XFER_OPT 1 #define SQLITE4_OMIT_LOCALTIME 1 /* ** These #defines should enable >2GB file support on POSIX if the |
︙ | ︙ | |||
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 | yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE4_MAX_ATTACHED+2]; /* Values of cookies to verify */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ int nMaxArg; /* Max args passed to user function by sub-program */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ u32 oldmask; /* Mask of old.* columns referenced */ | > | 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 | yDbMask writeMask; /* Start a write transaction on these databases */ yDbMask cookieMask; /* Bitmask of schema verified databases */ u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ int cookieValue[SQLITE4_MAX_ATTACHED+2]; /* Values of cookies to verify */ int regRowid; /* Register holding rowid of CREATE TABLE entry */ int *pPKRoot; /* if !=0, CREATE TABLE should store root of PK here */ AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ int nMaxArg; /* Max args passed to user function by sub-program */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ u32 oldmask; /* Mask of old.* columns referenced */ |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2137 2138 2139 2140 2141 2142 2143 | int nField = pC->nField; if( pC->pKeyInfo && pC->pKeyInfo->nData ) nField = pC->pKeyInfo->nData; rc = sqlite4VdbeCreateDecoder(db, aData, nData, nField, &pCodec); if( rc==0 ){ pDefault = (pOp->p4type==P4_MEM) ? pOp->p4.pMem : 0; rc = sqlite4VdbeDecodeValue(pCodec, pOp->p2, pDefault, pDest); | < | 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | int nField = pC->nField; if( pC->pKeyInfo && pC->pKeyInfo->nData ) nField = pC->pKeyInfo->nData; rc = sqlite4VdbeCreateDecoder(db, aData, nData, nField, &pCodec); if( rc==0 ){ pDefault = (pOp->p4type==P4_MEM) ? pOp->p4.pMem : 0; rc = sqlite4VdbeDecodeValue(pCodec, pOp->p2, pDefault, pDest); sqlite4VdbeDestroyDecoder(pCodec); } }else{ sqlite4VdbeMemSetNull(pDest); } UPDATE_MAX_BLOBSIZE(pDest); REGISTER_TRACE(pOp->p3, pDest); |
︙ | ︙ | |||
2885 2886 2887 2888 2889 2890 2891 | } }else{ assert( pIdx->pKeyInfo->nPK>0 ); assert( pPk->pKeyInfo->nPK==0 ); rc = sqlite4KVCursorKey(pIdx->pKVCur, &aKey, &nKey); if( rc==SQLITE4_OK ){ nShort = sqlite4VdbeShortKey(aKey, nKey, | | | 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 | } }else{ assert( pIdx->pKeyInfo->nPK>0 ); assert( pPk->pKeyInfo->nPK==0 ); rc = sqlite4KVCursorKey(pIdx->pKVCur, &aKey, &nKey); if( rc==SQLITE4_OK ){ nShort = sqlite4VdbeShortKey(aKey, nKey, pIdx->pKeyInfo->nField - pIdx->pKeyInfo->nPK, 0 ); nPkKey = sqlite4VarintLen(pPk->iRoot) + nKey - nShort; aPkKey = sqlite4DbMallocRaw(db, nPkKey); if( aPkKey ){ putVarint32(aPkKey, pPk->iRoot); |
︙ | ︙ | |||
3197 3198 3199 3200 3201 3202 3203 | pProbe = &aMem[pOp->p3]; pC = p->apCsr[pOp->p1]; pOut = (pOp->p4.i==0 ? 0 : &aMem[pOp->p4.i]); assert( pOut==0 || (pOut->flags & MEM_Blob) ); nShort = sqlite4VdbeShortKey((u8 *)pProbe->z, pProbe->n, | | | 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 | pProbe = &aMem[pOp->p3]; pC = p->apCsr[pOp->p1]; pOut = (pOp->p4.i==0 ? 0 : &aMem[pOp->p4.i]); assert( pOut==0 || (pOut->flags & MEM_Blob) ); nShort = sqlite4VdbeShortKey((u8 *)pProbe->z, pProbe->n, pC->pKeyInfo->nField - pC->pKeyInfo->nPK, 0 ); assert( nShort<=pProbe->n ); assert( (nShort==pProbe->n)==(pC->pKeyInfo->nPK==0) ); dir = (pC->pKeyInfo->nPK==0 ? 0 : 1); rc = sqlite4KVCursorSeek(pC->pKVCur, (u8 *)pProbe->z, nShort, dir); |
︙ | ︙ | |||
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 | } if( rc==SQLITE4_OK && nData>db->aLimit[SQLITE4_LIMIT_LENGTH] ){ goto too_big; } sqlite4VdbeMemSetStr(pOut, (const char*)pData, nData, 0, SQLITE4_TRANSIENT,0); pOut->enc = SQLITE4_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: Rowid P1 P2 * * * ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 | } if( rc==SQLITE4_OK && nData>db->aLimit[SQLITE4_LIMIT_LENGTH] ){ goto too_big; } sqlite4VdbeMemSetStr(pOut, (const char*)pData, nData, 0, SQLITE4_TRANSIENT,0); pOut->enc = SQLITE4_UTF8; /* In case the blob is ever cast to text */ UPDATE_MAX_BLOBSIZE(pOut); break; } /* Opcode: AnalyzeKey P1 P2 P3 P4 ** ** P1 is an open cursor that currently points to a valid row. P2 is a ** register that contains either a NULL value, or an index key. If it is ** not NULL, this opcode compares the key in register P2 with the key of ** the row P1 currently points to and determines the number of fields in ** the prefix that the two keys share in common (which may be zero). ** Call this value N. It then increments the integer values stored in ** N consecutive register starting at P3. ** ** Finally, the key belonging to the current row of cursor P1 is copied ** into register P2. */ case OP_AnalyzeKey: { VdbeCursor *pC; const KVByteArray *pNew; KVSize nNew; Mem *pKey; Mem *aIncr; int nEq; int nTotal; int i; int nSz; pKey = &aMem[pOp->p2]; aIncr = &aMem[pOp->p3]; nTotal = pOp->p4.i; pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->nullRow==0 ); assert( pC->pseudoTableReg==0 ); assert( pC->pKVCur!=0 ); assert( pOp->p4type==P4_INT32 ); rc = sqlite4KVCursorKey(pC->pKVCur, &pNew, &nNew); if( rc==SQLITE4_OK ){ assert( pKey->flags & (MEM_Blob|MEM_Null) ); if( pKey->flags & MEM_Blob ){ for(i=0; i<nNew && i<pKey->n && pNew[i]==(KVByteArray)pKey->z[i]; i++); /* The two keys share i bytes in common. Figure out how many fields ** this corresponds to. Store said value in variable nEq. */ sqlite4VdbeShortKey(pNew, i, LARGEST_INT32, &nEq); /* Increment nTotal-nEq registers */ for(i=nEq; i<nTotal; i++){ memAboutToChange(p, &aIncr[i]); sqlite4VdbeMemIntegerify(&aIncr[i]); aIncr[i].u.num = sqlite4_num_add( aIncr[i].u.num, sqlite4_num_from_int64(1) ); REGISTER_TRACE(pOp->p1, &aIncr[i]); } } /* Copy the new key into register P2 */ memAboutToChange(p, pKey); sqlite4VdbeMemSetStr(pKey, (const char*)pNew, nNew, 0, SQLITE4_TRANSIENT,0); pKey->enc = SQLITE4_UTF8; UPDATE_MAX_BLOBSIZE(pKey); } break; } /* Opcode: Rowid P1 P2 * * * ** ** Store in register P2 an integer which is the key of the table entry that ** P1 is currently point to. |
︙ | ︙ |
Changes to src/vdbeInt.h.
︙ | ︙ | |||
380 381 382 383 384 385 386 | KeyInfo *pKeyInfo, /* Collating sequence information */ u8 **pzOut, /* Write the resulting key here */ int *pnOut, /* Number of bytes in the key */ int nExtra /* Append extra bytes on end of key */ ); int sqlite4VdbeEncodeIntKey(u8 *aBuf,sqlite4_int64 v); int sqlite4VdbeDecodeIntKey(const KVByteArray*, KVSize, sqlite4_int64*); | | | 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | KeyInfo *pKeyInfo, /* Collating sequence information */ u8 **pzOut, /* Write the resulting key here */ int *pnOut, /* Number of bytes in the key */ int nExtra /* Append extra bytes on end of key */ ); int sqlite4VdbeEncodeIntKey(u8 *aBuf,sqlite4_int64 v); int sqlite4VdbeDecodeIntKey(const KVByteArray*, KVSize, sqlite4_int64*); int sqlite4VdbeShortKey(const u8 *, int, int, int *); int sqlite4MemCompare(Mem*, Mem*, const CollSeq*,int*); int sqlite4VdbeExec(Vdbe*); int sqlite4VdbeList(Vdbe*); int sqlite4VdbeHalt(Vdbe*); int sqlite4VdbeChangeEncoding(Mem *, int); int sqlite4VdbeMemTooBig(Mem*); int sqlite4VdbeMemCopy(Mem*, const Mem*); |
︙ | ︙ |
Changes to src/vdbecodec.c.
︙ | ︙ | |||
544 545 546 547 548 549 550 | ** Variables aKey/nKey contain an encoded index key. This function returns ** the length (in bytes) of the key with all but the first nField fields ** removed. */ int sqlite4VdbeShortKey( const u8 *aKey, /* Buffer containing encoded key */ int nKey, /* Size of buffer aKey[] in bytes */ | | > > | | 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 | ** Variables aKey/nKey contain an encoded index key. This function returns ** the length (in bytes) of the key with all but the first nField fields ** removed. */ int sqlite4VdbeShortKey( const u8 *aKey, /* Buffer containing encoded key */ int nKey, /* Size of buffer aKey[] in bytes */ int nField, /* Number of fields */ int *pnOut /* Number of complete fields read (or NULL) */ ){ u8 *p = (u8*)aKey; u8 *pEnd = (u8*)&aKey[nKey]; u64 dummy; int i; /* Skip over the "root page" number at the start of the key */ p += sqlite4GetVarint64(p, pEnd-p, &dummy); for(i=0; i<nField && p<pEnd; i++){ u8 c = *(p++); switch( c ){ case 0x05: case 0xFA: /* NULL */ case 0x06: case 0xF9: /* NaN */ case 0x07: case 0xF8: /* -ve infinity */ case 0x15: case 0xEA: /* zero */ |
︙ | ︙ | |||
576 577 578 579 580 581 582 | case 0xDB: /* Text (descending index) */ case 0xDA: /* Blob (descending index) */ while( (0xFF!=*(p++)) ); break; case 0x26: /* Blob-final (ascending) */ case 0xD9: /* Blob-final (descending) */ | > | | 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 | case 0xDB: /* Text (descending index) */ case 0xDA: /* Blob (descending index) */ while( (0xFF!=*(p++)) ); break; case 0x26: /* Blob-final (ascending) */ case 0xD9: /* Blob-final (descending) */ p = pEnd; break; case 0x22: case 0xDD: /* Large positive number */ case 0x14: case 0xEB: /* Small negative number */ case 0x16: case 0xE9: /* Small positive number */ case 0x08: case 0xF7: { /* Large negative number */ u8 d; /* Value of byte following "c" */ |
︙ | ︙ | |||
608 609 610 611 612 613 614 | if( c<0x15 || (c>0xDC && c<0xEA) ){ while( !((*p++) & 0x01) ); }else{ while( ((*p++) & 0x01) ); } break; } | | > > > | 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 | if( c<0x15 || (c>0xDC && c<0xEA) ){ while( !((*p++) & 0x01) ); }else{ while( ((*p++) & 0x01) ); } break; } if( p>pEnd ) break; } if( pnOut ) *pnOut = i; return (p - aKey); } /* ** Generate a database key from one or more data values. ** |
︙ | ︙ |
Changes to test/analyze.test.
︙ | ︙ | |||
139 140 141 142 143 144 145 | do_test analyze-3.1 { execsql { INSERT INTO t1 VALUES(1,2); INSERT INTO t1 VALUES(1,3); ANALYZE main.t1; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } | | | | | | | | | | | | | | 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | do_test analyze-3.1 { execsql { INSERT INTO t1 VALUES(1,2); INSERT INTO t1 VALUES(1,3); ANALYZE main.t1; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {2 1} t1i1 {2 2} t1i2 {2 1} t1i3 {2 2 1}} do_test analyze-3.2 { execsql { INSERT INTO t1 VALUES(1,4); INSERT INTO t1 VALUES(1,5); ANALYZE t1; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {4 1} t1i1 {4 4} t1i2 {4 1} t1i3 {4 4 1}} do_test analyze-3.3 { execsql { INSERT INTO t1 VALUES(2,5); ANALYZE main; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {5 1} t1i1 {5 3} t1i2 {5 2} t1i3 {5 3 1}} do_test analyze-3.4 { execsql { CREATE TABLE t2 AS SELECT * FROM t1; CREATE INDEX t2i1 ON t2(a); CREATE INDEX t2i2 ON t2(b); CREATE INDEX t2i3 ON t2(a,b); ANALYZE; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {5 1} t1i1 {5 3} t1i2 {5 2} t1i3 {5 3 1} t2 {5 1} t2i1 {5 3} t2i2 {5 2} t2i3 {5 3 1}} do_test analyze-3.5 { execsql { DROP INDEX t2i3; ANALYZE t1; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {5 1} t1i1 {5 3} t1i2 {5 2} t1i3 {5 3 1} t2 {5 1} t2i1 {5 3} t2i2 {5 2}} do_test analyze-3.6 { execsql { ANALYZE t2; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {5 1} t1i1 {5 3} t1i2 {5 2} t1i3 {5 3 1} t2 {5 1} t2i1 {5 3} t2i2 {5 2}} do_test analyze-3.7 { execsql { DROP INDEX t2i2; ANALYZE t2; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t1 {5 1} t1i1 {5 3} t1i2 {5 2} t1i3 {5 3 1} t2 {5 1} t2i1 {5 3}} do_test analyze-3.8 { execsql { CREATE TABLE t3 AS SELECT a, b, rowid AS c, 'hi' AS d FROM t1; CREATE INDEX t3i1 ON t3(a); CREATE INDEX t3i2 ON t3(a,b,c,d); CREATE INDEX t3i3 ON t3(d,b,c,a); DROP TABLE t1; DROP TABLE t2; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {} do_test analyze-3.9 { execsql { ANALYZE; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t3 {5 1} t3i1 {5 3} t3i2 {5 3 1 1 1} t3i3 {5 5 2 1 1}} do_test analyze-3.10 { execsql { CREATE TABLE [silly " name](a, b, c); CREATE INDEX 'foolish '' name' ON [silly " name](a, b); CREATE INDEX 'another foolish '' name' ON [silly " name](c); INSERT INTO [silly " name] VALUES(1, 2, 3); INSERT INTO [silly " name] VALUES(4, 5, 6); ANALYZE; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {{another foolish ' name} {2 1} {foolish ' name} {2 1 1} {silly " name} {2 1} t3 {5 1} t3i1 {5 3} t3i2 {5 3 1 1 1} t3i3 {5 5 2 1 1}} do_test analyze-3.11 { execsql { DROP INDEX "foolish ' name"; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {{another foolish ' name} {2 1} {silly " name} {2 1} t3 {5 1} t3i1 {5 3} t3i2 {5 3 1 1 1} t3i3 {5 5 2 1 1}} do_test analyze-3.11 { execsql { DROP TABLE "silly "" name"; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t3 {5 1} t3i1 {5 3} t3i2 {5 3 1 1 1} t3i3 {5 5 2 1 1}} # Try corrupting the sqlite_stat1 table and make sure the # database is still able to function. # do_test analyze-4.0 { sqlite4 db2 test.db db2 eval { CREATE TABLE t4(x,y,z); CREATE INDEX t4i1 ON t4(x); CREATE INDEX t4i2 ON t4(y); INSERT INTO t4 SELECT a,b,c FROM t3; } db2 close db close sqlite4 db test.db execsql { ANALYZE; SELECT idx, stat FROM sqlite_stat1 ORDER BY idx; } } {t3 {5 1} t3i1 {5 3} t3i2 {5 3 1 1 1} t3i3 {5 5 2 1 1} t4 {5 1} t4i1 {5 3} t4i2 {5 2}} do_test analyze-4.1 { execsql { PRAGMA writable_schema=on; INSERT INTO sqlite_stat1 VALUES(null,null,null); PRAGMA writable_schema=off; } db close |
︙ | ︙ | |||
301 302 303 304 305 306 307 | INSERT INTO t3 SELECT a+32, b+32, c+32, d+32 FROM t3; INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3; INSERT INTO t4 SELECT a, b, c FROM t3; ANALYZE; SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1; } | | | | | | | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | INSERT INTO t3 SELECT a+32, b+32, c+32, d+32 FROM t3; INSERT INTO t3 SELECT a+64, b+64, c+64, d+64 FROM t3; INSERT INTO t4 SELECT a, b, c FROM t3; ANALYZE; SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1; } } {t3 t3i1 t3i2 t3i3 t4 t4i1 t4i2 t3 t4} ifcapable stat3 { do_test analyze-5.1 { execsql { SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1; } } {t3 t3i1 t3i2 t3i3 t4 t4i1 t4i2 t3 t4} } do_test analyze-5.2 { execsql { DROP INDEX t3i2; SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1; } } {t3 t3i1 t3i3 t4 t4i1 t4i2 t3 t4} ifcapable stat3 { do_test analyze-5.3 { execsql { SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1; } } {t3i1 t3i3 t4 t4i1 t4i2 t3 t4} } do_test analyze-5.4 { execsql { DROP TABLE t3; SELECT DISTINCT idx FROM sqlite_stat1 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat1 ORDER BY 1; } } {t4 t4i1 t4i2 t4} ifcapable stat3 { do_test analyze-5.5 { execsql { SELECT DISTINCT idx FROM sqlite_stat3 ORDER BY 1; SELECT DISTINCT tbl FROM sqlite_stat3 ORDER BY 1; } } {t4i1 t4i2 t4} |
︙ | ︙ |
Changes to test/auth.test.
︙ | ︙ | |||
1947 1948 1949 1950 1951 1952 1953 | } set ::authargs } {t4 {} main {} t2 {} main {}} do_test auth-1.295 { execsql { SELECT count(*) FROM sqlite_stat1; } | | | | 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 | } set ::authargs } {t4 {} main {} t2 {} main {}} do_test auth-1.295 { execsql { SELECT count(*) FROM sqlite_stat1; } } 4 proc auth {code args} { if {$code=="SQLITE4_ANALYZE"} { set ::authargs [concat $::authargs $args] return SQLITE4_DENY } return SQLITE4_OK } do_test auth-1.296 { set ::authargs {} catchsql { ANALYZE; } } {1 {not authorized}} do_test auth-1.297 { execsql { SELECT count(*) FROM sqlite_stat1; } } 4 } ;# ifcapable analyze # Authorization for ALTER TABLE ADD COLUMN. # These tests are omitted if the library # was built without ALTER TABLE support. ifcapable {altertable} { |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
137 138 139 140 141 142 143 144 145 146 147 148 149 150 | lsm1.test lsm2.test lsm3.test lsm4.test lsm5.test csr1.test ckpt1.test mc1.test fts5expr1.test fts5query1.test fts5rnd1.test fts5create.test fts5snippet.test auth.test auth2.test auth3.test auth4.test aggerror.test attach.test autoindex1.test badutf.test between.test bigrow.test | > | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | lsm1.test lsm2.test lsm3.test lsm4.test lsm5.test csr1.test ckpt1.test mc1.test fts5expr1.test fts5query1.test fts5rnd1.test fts5create.test fts5snippet.test analyze.test auth.test auth2.test auth3.test auth4.test aggerror.test attach.test autoindex1.test badutf.test between.test bigrow.test |
︙ | ︙ |