Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Make it possible to flush part of the in-memory tree to disk without blocking writer clients.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 6c686c6d1a860ff29dd2bdcd1fda4d5db991acaa
User & Date: dan 2012-09-17 20:41:53.645
Context
2012-09-18
15:48
Fix a bug preventing block recycling in multi-threaded tests. check-in: 93d9ff7c12 user: dan tags: trunk
2012-09-17
20:41
Make it possible to flush part of the in-memory tree to disk without blocking writer clients. check-in: 6c686c6d1a user: dan tags: trunk
2012-09-15
17:03
Improve performance testing script lsmperf.tcl. check-in: 108a6143bf user: dan tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to lsm-test/lsmtest_main.c.
477
478
479
480
481
482
483
























484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503
504
505
#define ST_PAUSE   2
#define ST_FETCH   3
#define ST_SCAN    4
#define ST_NSCAN   5
#define ST_KEYSIZE 6
#define ST_VALSIZE 7

























int do_speed_test2(int nArg, char **azArg){
  struct Option {
    const char *zOpt;
    int eVal;
    int iDefault;
  } aOpt[] = {
    { "-repeat",  ST_REPEAT,    10},
    { "-write",   ST_WRITE,  10000},
    { "-pause",   ST_PAUSE,      0},
    { "-fetch",   ST_FETCH,      0},
    { "-scan",    ST_SCAN,       0},
    { "-nscan",   ST_NSCAN,      0},
    { "-keysize", ST_KEYSIZE,   12},
    { "-valsize", ST_VALSIZE,  100},
    { "-system",  -1,            0},

    {0, 0, 0}
  };
  int i;
  int aParam[8];
  int rc = 0;

  TestDb *pDb;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>















>







477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#define ST_PAUSE   2
#define ST_FETCH   3
#define ST_SCAN    4
#define ST_NSCAN   5
#define ST_KEYSIZE 6
#define ST_VALSIZE 7


static void print_speed_test_help(){
  printf(
"\n"
"Repeat the following $repeat times:\n"
"  1. Insert $write key-value pairs. One transaction for each write op.\n"
"  2. Pause for $pause ms.\n"
"  3. Perform $fetch queries on the database.\n"
"\n"
"  Keys are $keysize bytes in size. Values are $valsize bytes in size\n"
"  Both keys and values are pseudo-randomly generated\n"
"\n"
"Options are:\n"
"  -repeat  $repeat                 (default value 10)\n"
"  -write   $write                  (default value 10000)\n"
"  -pause   $pause                  (default value 0)\n"
"  -fetch   $fetch                  (default value 0)\n"
"  -keysize $keysize                (default value 12)\n"
"  -valsize $valsize                (default value 100)\n"
"  -system  $system                 (default value \"lsm\"\n"
"\n"
);
}

int do_speed_test2(int nArg, char **azArg){
  struct Option {
    const char *zOpt;
    int eVal;
    int iDefault;
  } aOpt[] = {
    { "-repeat",  ST_REPEAT,    10},
    { "-write",   ST_WRITE,  10000},
    { "-pause",   ST_PAUSE,      0},
    { "-fetch",   ST_FETCH,      0},
    { "-scan",    ST_SCAN,       0},
    { "-nscan",   ST_NSCAN,      0},
    { "-keysize", ST_KEYSIZE,   12},
    { "-valsize", ST_VALSIZE,  100},
    { "-system",  -1,            0},
    { "help",     -2,            0},
    {0, 0, 0}
  };
  int i;
  int aParam[8];
  int rc = 0;

  TestDb *pDb;
513
514
515
516
517
518
519
520






521
522
523
524
525
526
527
    if( aOpt[i].zOpt ) aParam[aOpt[i].eVal] = aOpt[i].iDefault;
  }

  /* Process the command line switches. */
  for(i=0; i<nArg; i+=2){
    int iSel;
    rc = testArgSelect(aOpt, "switch", azArg[i], &iSel);
    if( rc ) return rc;






    if( i+1==nArg ){
      testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
      return 1;
    }
    if( aOpt[iSel].eVal>=0 ){
      aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
    }else{







|
>
>
>
>
>
>







538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    if( aOpt[i].zOpt ) aParam[aOpt[i].eVal] = aOpt[i].iDefault;
  }

  /* Process the command line switches. */
  for(i=0; i<nArg; i+=2){
    int iSel;
    rc = testArgSelect(aOpt, "switch", azArg[i], &iSel);
    if( rc ){
      return rc;
    }
    if( aOpt[iSel].eVal==-2 ){
      print_speed_test_help();
      return 0;
    }
    if( i+1==nArg ){
      testPrintError("option %s requires an argument\n", aOpt[iSel].zOpt);
      return 1;
    }
    if( aOpt[iSel].eVal>=0 ){
      aParam[aOpt[iSel].eVal] = atoi(azArg[i+1]);
    }else{
Changes to lsm-test/lsmtest_tdb3.c.
585
586
587
588
589
590
591

592
593
594
595
596
597

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

617
618
619

620
621
622
623
624
625
626

static void xWorkHook(lsm_db *db, void *pArg){
  LsmDb *p = (LsmDb *)pArg;
  if( p->xWork ) p->xWork(db, p->pWorkCtx);
}

#define TEST_NO_RECOVERY -1


int test_lsm_config_str(
  LsmDb *pLsm,
  lsm_db *db, 
  int bWorker,
  const char *zStr

){
  struct CfgParam {
    const char *zParam;
    int bWorker;
    int eParam;
  } aParam[] = {
    { "write_buffer",     0, LSM_CONFIG_WRITE_BUFFER },
    { "page_size",        0, LSM_CONFIG_PAGE_SIZE },
    { "block_size",       0, LSM_CONFIG_BLOCK_SIZE },
    { "safety",           0, LSM_CONFIG_SAFETY },
    { "autowork",         0, LSM_CONFIG_AUTOWORK },
    { "log_size",         0, LSM_CONFIG_LOG_SIZE },
    { "mmap",             0, LSM_CONFIG_MMAP },
    { "use_log",          0, LSM_CONFIG_USE_LOG },
    { "nmerge",           0, LSM_CONFIG_NMERGE },
    { "max_freelist",     0, LSM_CONFIG_MAX_FREELIST },
    { "multi_proc",       0, LSM_CONFIG_MULTIPLE_PROCESSES },
    { "worker_nmerge",    1, LSM_CONFIG_NMERGE },
    { "test_no_recovery", 0, TEST_NO_RECOVERY },

    { 0, 0 }
  };
  const char *z = zStr;


  assert( db );
  while( z[0] ){
    const char *zStart;

    /* Skip whitespace */
    while( *z==' ' ) z++;







>

|



|
>



















>



>







585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

static void xWorkHook(lsm_db *db, void *pArg){
  LsmDb *p = (LsmDb *)pArg;
  if( p->xWork ) p->xWork(db, p->pWorkCtx);
}

#define TEST_NO_RECOVERY -1
#define TEST_THREADS     -2

static int test_lsm_config_str(
  LsmDb *pLsm,
  lsm_db *db, 
  int bWorker,
  const char *zStr,
  int *pnThread
){
  struct CfgParam {
    const char *zParam;
    int bWorker;
    int eParam;
  } aParam[] = {
    { "write_buffer",     0, LSM_CONFIG_WRITE_BUFFER },
    { "page_size",        0, LSM_CONFIG_PAGE_SIZE },
    { "block_size",       0, LSM_CONFIG_BLOCK_SIZE },
    { "safety",           0, LSM_CONFIG_SAFETY },
    { "autowork",         0, LSM_CONFIG_AUTOWORK },
    { "log_size",         0, LSM_CONFIG_LOG_SIZE },
    { "mmap",             0, LSM_CONFIG_MMAP },
    { "use_log",          0, LSM_CONFIG_USE_LOG },
    { "nmerge",           0, LSM_CONFIG_NMERGE },
    { "max_freelist",     0, LSM_CONFIG_MAX_FREELIST },
    { "multi_proc",       0, LSM_CONFIG_MULTIPLE_PROCESSES },
    { "worker_nmerge",    1, LSM_CONFIG_NMERGE },
    { "test_no_recovery", 0, TEST_NO_RECOVERY },
    { "threads",          0, TEST_THREADS },
    { 0, 0 }
  };
  const char *z = zStr;
  int nThread = 1;

  assert( db );
  while( z[0] ){
    const char *zStart;

    /* Skip whitespace */
    while( *z==' ' ) z++;
657
658
659
660
661
662
663



664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692


693
694
695
696
697
698
699
        }
      }else{
        if( pLsm ){
          switch( eParam ){
            case TEST_NO_RECOVERY:
              pLsm->bNoRecovery = iVal;
              break;



          }
        }
      }
    }else if( z!=zStart ){
      goto syntax_error;
    }
  }


  return 0;
 syntax_error:
  testPrintError("syntax error at: \"%s\"\n", z);
  return 1;
}

int tdb_lsm_config_str(TestDb *pDb, const char *zStr){
  int rc = 0;
  if( tdb_lsm(pDb) ){
    int i;
    LsmDb *pLsm = (LsmDb *)pDb;

    rc = test_lsm_config_str(pLsm, pLsm->db, 0, zStr);
#ifdef LSM_MUTEX_PTHREADS
    for(i=0; rc==0 && i<pLsm->nWorker; i++){
      rc = test_lsm_config_str(0, pLsm->aWorker[i].pWorker, 1, zStr);
    }
#endif
  }
  return rc;
}



static int testLsmOpen(
  const char *zCfg,
  const char *zFilename, 
  int bClear, 
  TestDb **ppDb
){







>
>
>








>












|


|





>
>







661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        }
      }else{
        if( pLsm ){
          switch( eParam ){
            case TEST_NO_RECOVERY:
              pLsm->bNoRecovery = iVal;
              break;
            case TEST_THREADS:
              nThread = iVal;
              break;
          }
        }
      }
    }else if( z!=zStart ){
      goto syntax_error;
    }
  }

  if( pnThread ) *pnThread = nThread;
  return 0;
 syntax_error:
  testPrintError("syntax error at: \"%s\"\n", z);
  return 1;
}

int tdb_lsm_config_str(TestDb *pDb, const char *zStr){
  int rc = 0;
  if( tdb_lsm(pDb) ){
    int i;
    LsmDb *pLsm = (LsmDb *)pDb;

    rc = test_lsm_config_str(pLsm, pLsm->db, 0, zStr, 0);
#ifdef LSM_MUTEX_PTHREADS
    for(i=0; rc==0 && i<pLsm->nWorker; i++){
      rc = test_lsm_config_str(0, pLsm->aWorker[i].pWorker, 1, zStr, 0);
    }
#endif
  }
  return rc;
}

static int testLsmStartWorkers(LsmDb *, int, const char *, const char *);

static int testLsmOpen(
  const char *zCfg,
  const char *zFilename, 
  int bClear, 
  TestDb **ppDb
){
747
748
749
750
751
752
753

754
755
756

757







758
759
760
761
762
763
764
  pDb->env.xShmBarrier = testEnvShmBarrier;
  pDb->env.xShmMap = testEnvShmMap;
  pDb->env.xShmUnmap = testEnvShmUnmap;
  pDb->env.xSleep = testEnvSleep;

  rc = lsm_new(&pDb->env, &pDb->db);
  if( rc==LSM_OK ){

    lsm_config_log(pDb->db, xLog, 0);
    lsm_config_work_hook(pDb->db, xWorkHook, (void *)pDb);
    rc = tdb_lsm_config_str((TestDb *)pDb, zCfg);

    if( rc==LSM_OK ) rc = lsm_open(pDb->db, zFilename);







    if( rc!=LSM_OK ){
      test_lsm_close((TestDb *)pDb);
      pDb = 0;
    }
  }

  *ppDb = (TestDb *)pDb;







>


|
>

>
>
>
>
>
>
>







757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
  pDb->env.xShmBarrier = testEnvShmBarrier;
  pDb->env.xShmMap = testEnvShmMap;
  pDb->env.xShmUnmap = testEnvShmUnmap;
  pDb->env.xSleep = testEnvSleep;

  rc = lsm_new(&pDb->env, &pDb->db);
  if( rc==LSM_OK ){
    int nThread = 1;
    lsm_config_log(pDb->db, xLog, 0);
    lsm_config_work_hook(pDb->db, xWorkHook, (void *)pDb);

    rc = test_lsm_config_str(pDb, pDb->db, 0, zCfg, &nThread);
    if( rc==LSM_OK ) rc = lsm_open(pDb->db, zFilename);

#ifdef LSM_MUTEX_PTHREADS
    if( rc==LSM_OK && (nThread==2 || nThread==3) ){
      testLsmStartWorkers(pDb, nThread-1, zFilename, zCfg);
    }
#endif

    if( rc!=LSM_OK ){
      test_lsm_close((TestDb *)pDb);
      pDb = 0;
    }
  }

  *ppDb = (TestDb *)pDb;
883
884
885
886
887
888
889

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

909
910
911
912
913
914
915
  while( (pWorker = p->pWorker) ){
    int nWrite = 0;
    int rc;

    /* Do some work. If an error occurs, exit. */
    pthread_mutex_unlock(&p->worker_mutex);
    rc = lsm_work(pWorker, p->lsm_work_flags, p->lsm_work_npage, &nWrite);

    pthread_mutex_lock(&p->worker_mutex);
    if( rc!=LSM_OK ){
      p->worker_rc = rc;
      break;
    }

    /* If the call to lsm_work() indicates that there is nothing more
    ** to do at this point, wait on the condition variable. The thread will
    ** wake up when it is signaled either because the client thread has
    ** flushed an in-memory tree into the db file or when the connection
    ** is being closed.  */
    if( nWrite==0 ){
      if( p->pWorker && p->bDoWork==0 ){
        pthread_cond_wait(&p->worker_cond, &p->worker_mutex);
      }
      p->bDoWork = 0;
    }
  }
  pthread_mutex_unlock(&p->worker_mutex);

  
  return 0;
}


/*
** Signal worker thread iWorker that there may be work to do.







>

|

















>







902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
  while( (pWorker = p->pWorker) ){
    int nWrite = 0;
    int rc;

    /* Do some work. If an error occurs, exit. */
    pthread_mutex_unlock(&p->worker_mutex);
    rc = lsm_work(pWorker, p->lsm_work_flags, p->lsm_work_npage, &nWrite);
    printf("# worked %d units\n", nWrite);
    pthread_mutex_lock(&p->worker_mutex);
    if( rc!=LSM_OK && rc!=LSM_BUSY ){
      p->worker_rc = rc;
      break;
    }

    /* If the call to lsm_work() indicates that there is nothing more
    ** to do at this point, wait on the condition variable. The thread will
    ** wake up when it is signaled either because the client thread has
    ** flushed an in-memory tree into the db file or when the connection
    ** is being closed.  */
    if( nWrite==0 ){
      if( p->pWorker && p->bDoWork==0 ){
        pthread_cond_wait(&p->worker_cond, &p->worker_mutex);
      }
      p->bDoWork = 0;
    }
  }
  pthread_mutex_unlock(&p->worker_mutex);
  printf("# worker EXIT\n");
  
  return 0;
}


/*
** Signal worker thread iWorker that there may be work to do.
962
963
964
965
966
967
968

969
970
971
972
973
974
975
static void mt_client_work_hook(lsm_db *db, void *pArg){
  LsmDb *pDb = (LsmDb *)pArg;     /* LsmDb database handle */
  int i;                          /* Iterator variable */

  /* Invoke the user level work-hook, if any. */
  if( pDb->xWork ) pDb->xWork(db, pDb->pWorkCtx);


  /* Signal each worker thread */
  for(i=0; i<pDb->nWorker; i++){
    mt_signal_worker(pDb, i);
  }
}

static void mt_worker_work_hook(lsm_db *db, void *pArg){







>







983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
static void mt_client_work_hook(lsm_db *db, void *pArg){
  LsmDb *pDb = (LsmDb *)pArg;     /* LsmDb database handle */
  int i;                          /* Iterator variable */

  /* Invoke the user level work-hook, if any. */
  if( pDb->xWork ) pDb->xWork(db, pDb->pWorkCtx);

  printf("# signalling worker threads\n");
  /* Signal each worker thread */
  for(i=0; i<pDb->nWorker; i++){
    mt_signal_worker(pDb, i);
  }
}

static void mt_worker_work_hook(lsm_db *db, void *pArg){
1010
1011
1012
1013
1014
1015
1016



































1017
1018
1019
1020
1021
1022
1023
  /* Kick off the worker thread. */
  if( rc==0 ) rc = pthread_cond_init(&p->worker_cond, 0);
  if( rc==0 ) rc = pthread_mutex_init(&p->worker_mutex, 0);
  if( rc==0 ) rc = pthread_create(&p->worker_thread, 0, worker_main, (void *)p);

  return rc;
}




































static int test_lsm_mt(
  const char *zFilename,          /* File to open */
  int nWorker,                    /* Either 1 or 2, for worker threads */
  int bClear,                     /* True to delete any existing db */
  TestDb **ppDb                   /* OUT: TestDb database handle */
){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
  /* Kick off the worker thread. */
  if( rc==0 ) rc = pthread_cond_init(&p->worker_cond, 0);
  if( rc==0 ) rc = pthread_mutex_init(&p->worker_mutex, 0);
  if( rc==0 ) rc = pthread_create(&p->worker_thread, 0, worker_main, (void *)p);

  return rc;
}


static int testLsmStartWorkers(
  LsmDb *pDb, int nWorker, const char *zFilename, const char *zCfg
){
  int rc;
  int bAutowork = 0;
  assert( nWorker==1 || nWorker==2 );

#if 0
  /* Turn off auto-work and configure a work-hook on the client connection. */
  lsm_config(pDb->db, LSM_CONFIG_AUTOWORK, &bAutowork);
#endif
  lsm_config_work_hook(pDb->db, mt_client_work_hook, (void *)pDb);

  pDb->aWorker = (LsmWorker *)testMalloc(sizeof(LsmWorker) * nWorker);
  memset(pDb->aWorker, 0, sizeof(LsmWorker) * nWorker);
  pDb->nWorker = nWorker;

  rc = mt_start_worker(
      pDb, 0, zFilename, LSM_WORK_CHECKPOINT|LSM_WORK_FLUSH, 512
  );
#if 0
  rc = mt_start_worker(pDb, 0, zFilename, LSM_WORK_CHECKPOINT, 
      nWorker==1 ? 512 : 0
  );
#endif

  if( rc==0 && nWorker==2 ){
    rc = mt_start_worker(pDb, 1, zFilename, 0, 512);
  }

  return rc;
}


static int test_lsm_mt(
  const char *zFilename,          /* File to open */
  int nWorker,                    /* Either 1 or 2, for worker threads */
  int bClear,                     /* True to delete any existing db */
  TestDb **ppDb                   /* OUT: TestDb database handle */
){
Changes to src/lsmInt.h.
79
80
81
82
83
84
85


86
87
88
89
90



91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
typedef struct FileSystem FileSystem;
typedef struct Level Level;
typedef struct LogMark LogMark;
typedef struct LogRegion LogRegion;
typedef struct LogWriter LogWriter;
typedef struct LsmString LsmString;
typedef struct Mempool Mempool;


typedef struct MetaPage MetaPage;
typedef struct MultiCursor MultiCursor;
typedef struct Page Page;
typedef struct Segment Segment;
typedef struct SegmentMerger SegmentMerger;



typedef struct Snapshot Snapshot;
typedef struct TransMark TransMark;
typedef struct Tree Tree;
typedef struct TreeMark TreeMark;
typedef struct TreeVersion TreeVersion;
typedef struct TreeCursor TreeCursor;
typedef struct Merge Merge;
typedef struct MergeInput MergeInput;

typedef struct TreeHeader TreeHeader;
typedef struct ShmHeader ShmHeader;
typedef struct ShmChunk ShmChunk;
typedef struct ShmReader ShmReader;

typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
typedef lsm_i64 i64;
typedef unsigned long long int u64;








>
>





>
>
>



|
|
|
<
<
<
|
<
<
<







79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101



102



103
104
105
106
107
108
109
typedef struct FileSystem FileSystem;
typedef struct Level Level;
typedef struct LogMark LogMark;
typedef struct LogRegion LogRegion;
typedef struct LogWriter LogWriter;
typedef struct LsmString LsmString;
typedef struct Mempool Mempool;
typedef struct Merge Merge;
typedef struct MergeInput MergeInput;
typedef struct MetaPage MetaPage;
typedef struct MultiCursor MultiCursor;
typedef struct Page Page;
typedef struct Segment Segment;
typedef struct SegmentMerger SegmentMerger;
typedef struct ShmChunk ShmChunk;
typedef struct ShmHeader ShmHeader;
typedef struct ShmReader ShmReader;
typedef struct Snapshot Snapshot;
typedef struct TransMark TransMark;
typedef struct Tree Tree;
typedef struct TreeCursor TreeCursor;
typedef struct TreeHeader TreeHeader;
typedef struct TreeMark TreeMark;



typedef struct TreeRoot TreeRoot;




typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
typedef lsm_i64 i64;
typedef unsigned long long int u64;

229
230
231
232
233
234
235






236
237
238
239
240
241
242
243
244
245
246
247
248





249
250
251
252
253
254
255
struct DbLog {
  u32 cksum0;                     /* Checksum 0 at offset iOff */
  u32 cksum1;                     /* Checksum 1 at offset iOff */
  i64 iSnapshotId;                /* Log space has been reclaimed to this ss */
  LogRegion aRegion[3];           /* Log file regions (see docs in lsm_log.c) */
};







/*
** Tree header structure. 
*/
struct TreeHeader {
  u32 iUsedShmid;                 /* Id of first shm chunk used by this tree */
  u32 iNextShmid;                 /* Shm-id of next chunk allocated */
  u32 iFirst;                     /* Chunk number of smallest shm-id */
  u32 iTransId;                   /* Current transaction id */
  u32 nChunk;                     /* Number of chunks in shared-memory file */
  u32 iRoot;                      /* Offset of root node in shm file */
  u32 nHeight;                    /* Current height of tree structure */
  u32 iWrite;                     /* Write offset in shm file */
  u32 nByte;                      /* Size of current tree structure in bytes */





  DbLog log;                      /* Current layout of log file */ 
  u32 aCksum[2];                  /* Checksums 1 and 2. */
};

/*
** Database handle structure.
**







>
>
>
>
>
>







<

|
<


>
>
>
>
>







228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
struct DbLog {
  u32 cksum0;                     /* Checksum 0 at offset iOff */
  u32 cksum1;                     /* Checksum 1 at offset iOff */
  i64 iSnapshotId;                /* Log space has been reclaimed to this ss */
  LogRegion aRegion[3];           /* Log file regions (see docs in lsm_log.c) */
};

struct TreeRoot {
  u32 iRoot;
  u32 nHeight;
  u32 iTransId;
};

/*
** Tree header structure. 
*/
struct TreeHeader {
  u32 iUsedShmid;                 /* Id of first shm chunk used by this tree */
  u32 iNextShmid;                 /* Shm-id of next chunk allocated */
  u32 iFirst;                     /* Chunk number of smallest shm-id */

  u32 nChunk;                     /* Number of chunks in shared-memory file */
  TreeRoot root;                  /* Root and height of current tree */

  u32 iWrite;                     /* Write offset in shm file */
  u32 nByte;                      /* Size of current tree structure in bytes */
  TreeRoot oldroot;               /* Root and height of the previous tree */
  u32 iOldShmid;                  /* Last shm-id used by previous tree */
  i64 iOldLog;                    /* Log offset associated with old tree */
  u32 oldcksum0;
  u32 oldcksum1;
  DbLog log;                      /* Current layout of log file */ 
  u32 aCksum[2];                  /* Checksums 1 and 2. */
};

/*
** Database handle structure.
**
458
459
460
461
462
463
464

465
466
467
468
469
470
471
** to read or write a database file on disk. See the description of struct
** Database below for futher details.
*/
struct Snapshot {
  Database *pDatabase;            /* Database this snapshot belongs to */
  Level *pLevel;                  /* Pointer to level 0 of snapshot (or NULL) */
  i64 iId;                        /* Snapshot id */


  /* Used by worker snapshots only */
  int nBlock;                     /* Number of blocks in database file */
  u32 aiAppend[LSM_APPLIST_SZ];   /* Append point list */
  Freelist freelist;              /* Free block list */
  int nFreelistOvfl;              /* Number of extra free-list entries in LSM */
};







>







466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
** to read or write a database file on disk. See the description of struct
** Database below for futher details.
*/
struct Snapshot {
  Database *pDatabase;            /* Database this snapshot belongs to */
  Level *pLevel;                  /* Pointer to level 0 of snapshot (or NULL) */
  i64 iId;                        /* Snapshot id */
  i64 iLogOff;                    /* Log file offset */

  /* Used by worker snapshots only */
  int nBlock;                     /* Number of blocks in database file */
  u32 aiAppend[LSM_APPLIST_SZ];   /* Append point list */
  Freelist freelist;              /* Free block list */
  int nFreelistOvfl;              /* Number of extra free-list entries in LSM */
};
508
509
510
511
512
513
514




515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
*/
int lsmTreeNew(lsm_env *, int (*)(void *, int, void *, int), Tree **ppTree);
void lsmTreeRelease(lsm_env *, Tree *);
void lsmTreeClear(lsm_db *);
int lsmTreeInit(lsm_db *);
int lsmTreeRepair(lsm_db *);





int lsmTreeSize(lsm_db *);
int lsmTreeEndTransaction(lsm_db *pDb, int bCommit);
int lsmTreeBeginTransaction(lsm_db *pDb);
int lsmTreeLoadHeader(lsm_db *pDb, int *);
int lsmTreeLoadHeaderOk(lsm_db *, int);

int lsmTreeInsert(lsm_db *pDb, void *pKey, int nKey, void *pVal, int nVal);
void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark);
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark);

int lsmTreeCursorNew(lsm_db *pDb, TreeCursor **);
void lsmTreeCursorDestroy(TreeCursor *);

int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes);
int lsmTreeCursorNext(TreeCursor *pCsr);
int lsmTreeCursorPrev(TreeCursor *pCsr);
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast);
void lsmTreeCursorReset(TreeCursor *pCsr);







>
>
>
>


<







|







517
518
519
520
521
522
523
524
525
526
527
528
529

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
*/
int lsmTreeNew(lsm_env *, int (*)(void *, int, void *, int), Tree **ppTree);
void lsmTreeRelease(lsm_env *, Tree *);
void lsmTreeClear(lsm_db *);
int lsmTreeInit(lsm_db *);
int lsmTreeRepair(lsm_db *);

void lsmTreeMakeOld(lsm_db *pDb, int *pnFlush);
void lsmTreeDiscardOld(lsm_db *pDb);
int lsmTreeHasOld(lsm_db *pDb);

int lsmTreeSize(lsm_db *);
int lsmTreeEndTransaction(lsm_db *pDb, int bCommit);

int lsmTreeLoadHeader(lsm_db *pDb, int *);
int lsmTreeLoadHeaderOk(lsm_db *, int);

int lsmTreeInsert(lsm_db *pDb, void *pKey, int nKey, void *pVal, int nVal);
void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark);
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark);

int lsmTreeCursorNew(lsm_db *pDb, int, TreeCursor **);
void lsmTreeCursorDestroy(TreeCursor *);

int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes);
int lsmTreeCursorNext(TreeCursor *pCsr);
int lsmTreeCursorPrev(TreeCursor *pCsr);
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast);
void lsmTreeCursorReset(TreeCursor *pCsr);
Changes to src/lsm_ckpt.c.
36
37
38
39
40
41
42


43


44
45
46
47
48
49
50
51
**     5. The block size.
**     6. The number of levels.
**     7. The nominal database page size.
**     8. Flag indicating if there exists a FREELIST record in the database.
**
**   Log pointer:
**


**     4 integers (2 for a 64-bit offset and 2 for a 64-bit checksum). See 


**     ckptExportLog() and ckptImportLog().
**
**   Append points:
**
**     4 integers. See ckptExportAppendlist().
**
**   For each level in the database, a level record. Formatted as follows:
**







>
>
|
>
>
|







36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
**     5. The block size.
**     6. The number of levels.
**     7. The nominal database page size.
**     8. Flag indicating if there exists a FREELIST record in the database.
**
**   Log pointer:
**
**     1. The log offset MSW.
**     2. The log offset LSW.
**     3. Log checksum 0.
**     4. Log checksum 1.
**
**     See ckptExportLog() and ckptImportLog().
**
**   Append points:
**
**     4 integers. See ckptExportAppendlist().
**
**   For each level in the database, a level record. Formatted as follows:
**
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  int *piOut, 
  int *pRc
){
  int iOut = *piOut;

  assert( iOut==CKPT_HDR_LO_MSW );

  if( bFlush ){
    DbLog *pLog = &pDb->treehdr.log;
    i64 iOff = pLog->aRegion[2].iEnd;
    ckptSetValue(p, iOut++, (iOff >> 32) & 0xFFFFFFFF, pRc);
    ckptSetValue(p, iOut++, (iOff & 0xFFFFFFFF), pRc);
    ckptSetValue(p, iOut++, pLog->cksum0, pRc);
    ckptSetValue(p, iOut++, pLog->cksum1, pRc);
  }else{
    for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
      ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
    }
  }

  *piOut = iOut;







|
|
<


|
|







326
327
328
329
330
331
332
333
334

335
336
337
338
339
340
341
342
343
344
345
  int *piOut, 
  int *pRc
){
  int iOut = *piOut;

  assert( iOut==CKPT_HDR_LO_MSW );

  if( bFlush && pDb->treehdr.iOldShmid ){
    i64 iOff = pDb->treehdr.iOldLog;

    ckptSetValue(p, iOut++, (iOff >> 32) & 0xFFFFFFFF, pRc);
    ckptSetValue(p, iOut++, (iOff & 0xFFFFFFFF), pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
    ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
  }else{
    for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
      ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
    }
  }

  *piOut = iOut;
1035
1036
1037
1038
1039
1040
1041

1042
1043
1044
1045
1046
1047
1048
    int nCopy;
    int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
    int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;

    pNew->iId = lsmCheckpointId(aCkpt, 0);
    pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
    rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);


    /* Make a copy of the append-list */
    nCopy = sizeof(u32) * LSM_APPLIST_SZ;
    memcpy(pNew->aiAppend, &aCkpt[CKPT_HDR_SIZE+CKPT_LOGPTR_SIZE], nCopy);

    /* Copy the free-list */
    if( bInclFreelist ){







>







1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    int nCopy;
    int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
    int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;

    pNew->iId = lsmCheckpointId(aCkpt, 0);
    pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
    rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
    pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);

    /* Make a copy of the append-list */
    nCopy = sizeof(u32) * LSM_APPLIST_SZ;
    memcpy(pNew->aiAppend, &aCkpt[CKPT_HDR_SIZE+CKPT_LOGPTR_SIZE], nCopy);

    /* Copy the free-list */
    if( bInclFreelist ){
Changes to src/lsm_main.c.
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  }

  /* Write the contents of the in-memory tree into the database file and 
  ** update the worker snapshot accordingly. Then flush the contents of 
  ** the db file to disk too. No calls to fsync() are made here - just 
  ** write().  */
  if( rc==LSM_OK ) rc = lsmSortedFlushTree(pDb, &nOvfl);
  if( rc==LSM_OK ) lsmTreeClear(pDb);

  lsmFinishWork(pDb, 1, nOvfl, &rc);

  /* Restore the position of any open cursors */
  if( rc==LSM_OK && pDb->pCsr ){
    lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
    pDb->pClient = 0;
    rc = lsmCheckpointLoad(pDb, 0);







<
<







218
219
220
221
222
223
224


225
226
227
228
229
230
231
  }

  /* Write the contents of the in-memory tree into the database file and 
  ** update the worker snapshot accordingly. Then flush the contents of 
  ** the db file to disk too. No calls to fsync() are made here - just 
  ** write().  */
  if( rc==LSM_OK ) rc = lsmSortedFlushTree(pDb, &nOvfl);


  lsmFinishWork(pDb, 1, nOvfl, &rc);

  /* Restore the position of any open cursors */
  if( rc==LSM_OK && pDb->pCsr ){
    lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
    pDb->pClient = 0;
    rc = lsmCheckpointLoad(pDb, 0);
532
533
534
535
536
537
538

539
540
541
542
543
544
545

    nBefore = lsmTreeSize(pDb);
    rc = lsmTreeInsert(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
    nAfter = lsmTreeSize(pDb);
    nDiff = (nAfter/nQuant) - (nBefore/nQuant);
    if( rc==LSM_OK && pDb->bAutowork && nDiff!=0 ){
      rc = dbAutoWork(pDb, nDiff * LSM_AUTOWORK_QUANT);

    }
  }

  /* If a transaction was opened at the start of this function, commit it. 
  ** Or, if an error has occurred, roll it back.
  */
  if( bCommit ){







>







530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

    nBefore = lsmTreeSize(pDb);
    rc = lsmTreeInsert(pDb, (void *)pKey, nKey, (void *)pVal, nVal);
    nAfter = lsmTreeSize(pDb);
    nDiff = (nAfter/nQuant) - (nBefore/nQuant);
    if( rc==LSM_OK && pDb->bAutowork && nDiff!=0 ){
      rc = dbAutoWork(pDb, nDiff * LSM_AUTOWORK_QUANT);
      if( rc==LSM_BUSY ) rc = LSM_OK;
    }
  }

  /* If a transaction was opened at the start of this function, commit it. 
  ** Or, if an error has occurred, roll it back.
  */
  if( bCommit ){
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741



742
743
744
745
746
747

















748
749
750



751
752
753
754
755
756
757
    }
  }

  return rc;
}

int lsm_commit(lsm_db *pDb, int iLevel){
  int bFlush = 0;
  int rc = LSM_OK;

  assert_db_state( pDb );

  /* A value less than zero means close the innermost nested transaction. */
  if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);

  if( iLevel<pDb->nTransOpen ){
    if( iLevel==0 ){

      /* Commit the transaction to disk. */
      if( lsmTreeSize(pDb)>pDb->nTreeLimit ){
        lsmTreeEndTransaction(pDb, 1);
        bFlush = 1;
        rc = lsmFlushToDisk(pDb);
      }
      if( rc==LSM_OK ) rc = lsmLogCommit(pDb);
      if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){
        rc = lsmFsSyncLog(pDb->pFS);
      }




      lsmFinishWriteTrans(pDb, (rc==LSM_OK));
    }
    pDb->nTransOpen = iLevel;
  }

  dbReleaseClientSnapshot(pDb);

















  if( pDb->bAutowork && bFlush && rc==LSM_OK ){
    rc = lsmCheckpointWrite(pDb);
  }



  return rc;
}

int lsm_rollback(lsm_db *pDb, int iLevel){
  int rc = LSM_OK;
  assert_db_state( pDb );








|











<
<
<
<
<





>
>
>



|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>
>







712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730





731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    }
  }

  return rc;
}

int lsm_commit(lsm_db *pDb, int iLevel){
  int nFlush = 0;                 /* Number of flushable trees in memory */
  int rc = LSM_OK;

  assert_db_state( pDb );

  /* A value less than zero means close the innermost nested transaction. */
  if( iLevel<0 ) iLevel = LSM_MAX(0, pDb->nTransOpen - 1);

  if( iLevel<pDb->nTransOpen ){
    if( iLevel==0 ){

      /* Commit the transaction to disk. */





      if( rc==LSM_OK ) rc = lsmLogCommit(pDb);
      if( rc==LSM_OK && pDb->eSafety==LSM_SAFETY_FULL ){
        rc = lsmFsSyncLog(pDb->pFS);
      }

      if( lsmTreeSize(pDb)>pDb->nTreeLimit ){
        lsmTreeMakeOld(pDb, &nFlush);
      }
      lsmFinishWriteTrans(pDb, (rc==LSM_OK));
    }
    pDb->nTransOpen = iLevel;

  }
  dbReleaseClientSnapshot(pDb);

  /* If nFlush==0, then do not flush any data from the in-memory tree to 
  ** disk. If nFlush==1, then there exists an "old" tree that should be 
  ** flushed to disk if auto-work is enabled. Or if nFlush==2, then both
  ** the old and current trees are large enough to flush to disk. In this
  ** case do so regardless of the auto-work setting.  
  **
  ** If auto-work is enabled and data was written to disk, also sync the 
  ** db and checkpoint the latest snapshot.
  **
  ** Ignore any LSM_BUSY errors that occur during these operations. If
  ** LSM_BUSY does occur, it means some other connection is already working
  ** on flushing the in-memory tree or checkpointing the database. 
  */
  assert( rc!=LSM_BUSY);
  if( rc==LSM_OK && (nFlush>1 || (nFlush && pDb->bAutowork)) ){
    rc = lsmFlushToDisk(pDb);
    if( rc==LSM_OK && pDb->bAutowork ){
      rc = lsmCheckpointWrite(pDb);
    }
  }
  if( rc==LSM_BUSY ) rc = LSM_OK;

  return rc;
}

int lsm_rollback(lsm_db *pDb, int iLevel){
  int rc = LSM_OK;
  assert_db_state( pDb );

Changes to src/lsm_shared.c.
172
173
174
175
176
177
178


179
180
181
182
183
184
185
186
    if( rc==LSM_OK ){
      /* Flush the in-memory tree, if required. If there is data to flush,
      ** this will create a new client snapshot in Database.pClient. The
      ** checkpoint (serialization) of this snapshot may be written to disk
      ** by the following block.  */
      rc = lsmTreeLoadHeader(pDb, 0);
      if( rc==LSM_OK && lsmTreeSize(pDb)>0 ){


        rc = lsmFlushToDisk(pDb);
      }

      /* Write a checkpoint to disk. */
      if( rc==LSM_OK ){
        rc = lsmCheckpointWrite(pDb);
      }








>
>
|







172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    if( rc==LSM_OK ){
      /* Flush the in-memory tree, if required. If there is data to flush,
      ** this will create a new client snapshot in Database.pClient. The
      ** checkpoint (serialization) of this snapshot may be written to disk
      ** by the following block.  */
      rc = lsmTreeLoadHeader(pDb, 0);
      if( rc==LSM_OK && lsmTreeSize(pDb)>0 ){
        int nFlush = 0;
        lsmTreeMakeOld(pDb, &nFlush);
        if( nFlush ) rc = lsmFlushToDisk(pDb);
      }

      /* Write a checkpoint to disk. */
      if( rc==LSM_OK ){
        rc = lsmCheckpointWrite(pDb);
      }

735
736
737
738
739
740
741

742
743



744
745
746
747
748
749
750
    rc = lsmLogBegin(pDb);
  }

  /* If everything was successful, set the "transaction-in-progress" flag
  ** and return LSM_OK. Otherwise, if some error occurred, relinquish the 
  ** WRITER lock and return an error code.  */
  if( rc==LSM_OK ){

    pShm->bWriter = 1;
    pDb->treehdr.iTransId++;



  }else{
    lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
    if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb);
  }
  return rc;
}








>

|
>
>
>







737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    rc = lsmLogBegin(pDb);
  }

  /* If everything was successful, set the "transaction-in-progress" flag
  ** and return LSM_OK. Otherwise, if some error occurred, relinquish the 
  ** WRITER lock and return an error code.  */
  if( rc==LSM_OK ){
    TreeHeader *p = &pDb->treehdr;
    pShm->bWriter = 1;
    p->root.iTransId++;
    if( lsmTreeHasOld(pDb) && p->iOldLog==pDb->pClient->iLogOff ){
      lsmTreeDiscardOld(pDb);
    }
  }else{
    lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
    if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb);
  }
  return rc;
}

Changes to src/lsm_sorted.c.
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280

  int flags;                      /* Mask of CURSOR_XXX flags */
  int (*xCmp)(void *, int, void *, int);         /* Compare function */
  int eType;                      /* Cache of current key type */
  Blob key;                       /* Cache of current key (or NULL) */
  Blob val;                       /* Cache of current value */

  TreeCursor *pTreeCsr;           /* Single tree cursor */
  int nSegCsr;                    /* Size of aSegCsr[] array */
  LevelCursor *aSegCsr;           /* Array of cursors open on sorted files */
  int nTree;
  int *aTree;
  BtreeCursor *pBtCsr;

  Snapshot *pSnap;

  /* Used by cursors flushing the in-memory tree only */
  int *pnOvfl;                    /* Number of free-list entries to store */
  void *pSystemVal;               /* Pointer to buffer to free */
};

#define CURSOR_DATA_TREE      0

#define CURSOR_DATA_SYSTEM    1
#define CURSOR_DATA_SEGMENT   2


/*
** CURSOR_IGNORE_DELETE
**   If set, this cursor will not visit SORTED_DELETE keys.
**
** CURSOR_NEW_SYSTEM







|













|
>
|
|







250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

  int flags;                      /* Mask of CURSOR_XXX flags */
  int (*xCmp)(void *, int, void *, int);         /* Compare function */
  int eType;                      /* Cache of current key type */
  Blob key;                       /* Cache of current key (or NULL) */
  Blob val;                       /* Cache of current value */

  TreeCursor *apTreeCsr[2];       /* One or two tree cursors */
  int nSegCsr;                    /* Size of aSegCsr[] array */
  LevelCursor *aSegCsr;           /* Array of cursors open on sorted files */
  int nTree;
  int *aTree;
  BtreeCursor *pBtCsr;

  Snapshot *pSnap;

  /* Used by cursors flushing the in-memory tree only */
  int *pnOvfl;                    /* Number of free-list entries to store */
  void *pSystemVal;               /* Pointer to buffer to free */
};

#define CURSOR_DATA_TREE0     0   /* Current tree cursor */
#define CURSOR_DATA_TREE1     1   /* The "old" tree, if any */
#define CURSOR_DATA_SYSTEM    2
#define CURSOR_DATA_SEGMENT   3


/*
** CURSOR_IGNORE_DELETE
**   If set, this cursor will not visit SORTED_DELETE keys.
**
** CURSOR_NEW_SYSTEM
1338
1339
1340
1341
1342
1343
1344

1345
1346
1347
1348
1349
1350
1351

    lsmFsPageRef(pTest);
    while( pTest ){
      Page *pNext;

      int rc = lsmFsDbPageNext(pPtr->pSeg, pTest, eDir, &pNext);
      lsmFsPageRelease(pTest);

      pTest = pNext;

      if( pTest ){
        int nData;
        u8 *aData = fsPageData(pTest, &nData);
        int nCell = pageGetNRec(aData, nData);
        int flags = pageGetFlags(aData, nData);







>







1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353

    lsmFsPageRef(pTest);
    while( pTest ){
      Page *pNext;

      int rc = lsmFsDbPageNext(pPtr->pSeg, pTest, eDir, &pNext);
      lsmFsPageRelease(pTest);
      if( rc ) return 1;
      pTest = pNext;

      if( pTest ){
        int nData;
        u8 *aData = fsPageData(pTest, &nData);
        int nCell = pageGetNRec(aData, nData);
        int flags = pageGetFlags(aData, nData);
1850
1851
1852
1853
1854
1855
1856
1857

1858
1859
1860
1861
1862
1863
1864
}

static void mcursorFreeComponents(MultiCursor *pCsr){
  int i;
  lsm_env *pEnv = pCsr->pDb->pEnv;

  /* Close the tree cursor, if any. */
  lsmTreeCursorDestroy(pCsr->pTreeCsr);


  /* Close the sorted file cursors */
  for(i=0; i<pCsr->nSegCsr; i++){
    segmentCursorClose(pEnv, &pCsr->aSegCsr[i]);
  }

  /* And the b-tree cursor, if any */







|
>







1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
}

static void mcursorFreeComponents(MultiCursor *pCsr){
  int i;
  lsm_env *pEnv = pCsr->pDb->pEnv;

  /* Close the tree cursor, if any. */
  lsmTreeCursorDestroy(pCsr->apTreeCsr[0]);
  lsmTreeCursorDestroy(pCsr->apTreeCsr[1]);

  /* Close the sorted file cursors */
  for(i=0; i<pCsr->nSegCsr; i++){
    segmentCursorClose(pEnv, &pCsr->aSegCsr[i]);
  }

  /* And the b-tree cursor, if any */
1872
1873
1874
1875
1876
1877
1878
1879

1880
1881
1882
1883
1884
1885
1886
  /* Zero fields */
  pCsr->nSegCsr = 0;
  pCsr->aSegCsr = 0;
  pCsr->nTree = 0;
  pCsr->aTree = 0;
  pCsr->pSystemVal = 0;
  pCsr->pSnap = 0;
  pCsr->pTreeCsr = 0;

  pCsr->pBtCsr = 0;
}

void lsmMCursorClose(MultiCursor *pCsr){
  if( pCsr ){
    lsm_db *pDb = pCsr->pDb;
    MultiCursor **pp;             /* Iterator variable */







|
>







1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
  /* Zero fields */
  pCsr->nSegCsr = 0;
  pCsr->aSegCsr = 0;
  pCsr->nTree = 0;
  pCsr->aTree = 0;
  pCsr->pSystemVal = 0;
  pCsr->pSnap = 0;
  pCsr->apTreeCsr[0] = 0;
  pCsr->apTreeCsr[1] = 0;
  pCsr->pBtCsr = 0;
}

void lsmMCursorClose(MultiCursor *pCsr){
  if( pCsr ){
    lsm_db *pDb = pCsr->pDb;
    MultiCursor **pp;             /* Iterator variable */
1981
1982
1983
1984
1985
1986
1987






1988
1989
1990
1991
1992
1993
1994
1995
1996


1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007





2008

2009
2010
2011
2012
2013
2014
2015
    }
  }

  return rc;
}








static int multiCursorNew(
  lsm_db *pDb,                    /* Database handle */
  Snapshot *pSnap,                /* Snapshot to use for this cursor */
  int useTree,                    /* If true, search the in-memory tree */
  int bUserOnly,                  /* If true, ignore all system data */
  MultiCursor **ppCsr             /* OUT: Allocated cursor */
){
  int rc = LSM_OK;                /* Return Code */
  MultiCursor *pCsr = *ppCsr;     /* Allocated multi-cursor */



  if( pCsr==0 ){
    pCsr = (MultiCursor *)lsmMallocZeroRc(pDb->pEnv, sizeof(MultiCursor), &rc);
    if( pCsr ){
      pCsr->pNext = pDb->pCsr;
      pDb->pCsr = pCsr;
    }
  }

  if( rc==LSM_OK ){
    if( useTree ){





      rc = lsmTreeCursorNew(pDb, &pCsr->pTreeCsr);

    }
    pCsr->pDb = pDb;
    pCsr->pSnap = pSnap;
    pCsr->xCmp = pDb->xCmp;
    if( bUserOnly ){
      pCsr->flags |= CURSOR_IGNORE_SYSTEM;
    }







>
>
>
>
>
>



|





>
>










|
>
>
>
>
>
|
>







1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
    }
  }

  return rc;
}


/*
** Parameter iUseTree must be set to 0, 1 or 2. If it is not zero, then a 
** tree cursor is added to the multi-cursor before it is returned. If 
** iUseTree is 1, then the cursor accesses the entire tree. Otherwise, if
** iUseTree is 2, it iterates through the "old" tree only.
*/
static int multiCursorNew(
  lsm_db *pDb,                    /* Database handle */
  Snapshot *pSnap,                /* Snapshot to use for this cursor */
  int iUseTree,                   /* If true, search the in-memory tree */
  int bUserOnly,                  /* If true, ignore all system data */
  MultiCursor **ppCsr             /* OUT: Allocated cursor */
){
  int rc = LSM_OK;                /* Return Code */
  MultiCursor *pCsr = *ppCsr;     /* Allocated multi-cursor */

  assert( iUseTree==0 || iUseTree==1 || iUseTree==2 );

  if( pCsr==0 ){
    pCsr = (MultiCursor *)lsmMallocZeroRc(pDb->pEnv, sizeof(MultiCursor), &rc);
    if( pCsr ){
      pCsr->pNext = pDb->pCsr;
      pDb->pCsr = pCsr;
    }
  }

  if( rc==LSM_OK ){
    if( iUseTree ){
      rc = lsmTreeCursorNew(pDb, iUseTree-1, &pCsr->apTreeCsr[0]);
      if( rc==LSM_OK && lsmTreeHasOld(pDb) 
       && iUseTree==1
       && pDb->treehdr.iOldLog!=pSnap->iLogOff
      ){
        rc = lsmTreeCursorNew(pDb, 1, &pCsr->apTreeCsr[1]);
      }
    }
    pCsr->pDb = pDb;
    pCsr->pSnap = pSnap;
    pCsr->xCmp = pDb->xCmp;
    if( bUserOnly ){
      pCsr->flags |= CURSOR_IGNORE_SYSTEM;
    }
2127
2128
2129
2130
2131
2132
2133
2134


2135
2136
2137
2138
2139
2140
2141
2142
2143

2144
2145
2146
2147
2148
2149
2150
  int *pnKey                      /* OUT: Size of *ppKey in bytes */
){
  int nKey = 0;
  void *pKey = 0;
  int eType = 0;

  switch( iKey ){
    case CURSOR_DATA_TREE:


      if( lsmTreeCursorValid(pCsr->pTreeCsr) ){
        int nVal;
        void *pVal;

        lsmTreeCursorKey(pCsr->pTreeCsr, &pKey, &nKey);
        lsmTreeCursorValue(pCsr->pTreeCsr, &pVal, &nVal);
        eType = (nVal<0) ? SORTED_DELETE : SORTED_WRITE;
      }
      break;


    case CURSOR_DATA_SYSTEM:
      if( pCsr->flags & CURSOR_AT_FREELIST ){
        pKey = (void *)"FREELIST";
        nKey = 8;
        eType = SORTED_SYSTEM_WRITE;
      }







|
>
>
|



|
|



>







2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
  int *pnKey                      /* OUT: Size of *ppKey in bytes */
){
  int nKey = 0;
  void *pKey = 0;
  int eType = 0;

  switch( iKey ){
    case CURSOR_DATA_TREE0:
    case CURSOR_DATA_TREE1: {
      TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
      if( lsmTreeCursorValid(pTreeCsr) ){
        int nVal;
        void *pVal;

        lsmTreeCursorKey(pTreeCsr, &pKey, &nKey);
        lsmTreeCursorValue(pTreeCsr, &pVal, &nVal);
        eType = (nVal<0) ? SORTED_DELETE : SORTED_WRITE;
      }
      break;
    }

    case CURSOR_DATA_SYSTEM:
      if( pCsr->flags & CURSOR_AT_FREELIST ){
        pKey = (void *)"FREELIST";
        nKey = 8;
        eType = SORTED_SYSTEM_WRITE;
      }
2172
2173
2174
2175
2176
2177
2178
2179

2180
2181
2182
2183
2184
2185
2186
2187
2188
static int multiCursorGetVal(
  MultiCursor *pCsr, 
  int iVal, 
  void **ppVal, 
  int *pnVal
){
  int rc = LSM_OK;
  if( iVal==CURSOR_DATA_TREE ){

    if( lsmTreeCursorValid(pCsr->pTreeCsr) ){
      lsmTreeCursorValue(pCsr->pTreeCsr, ppVal, pnVal);
    }else{
      *ppVal = 0;
      *pnVal = 0;
    }
  }else if( iVal==CURSOR_DATA_SYSTEM ){
    if( pCsr->flags & CURSOR_AT_FREELIST ){
      void *aVal;







|
>
|
|







2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
static int multiCursorGetVal(
  MultiCursor *pCsr, 
  int iVal, 
  void **ppVal, 
  int *pnVal
){
  int rc = LSM_OK;
  if( iVal==CURSOR_DATA_TREE0 || iVal==CURSOR_DATA_TREE1 ){
    TreeCursor *pTreeCsr = pCsr->apTreeCsr[iVal-CURSOR_DATA_TREE0];
    if( lsmTreeCursorValid(pTreeCsr) ){
      lsmTreeCursorValue(pTreeCsr, ppVal, pnVal);
    }else{
      *ppVal = 0;
      *pnVal = 0;
    }
  }else if( iVal==CURSOR_DATA_SYSTEM ){
    if( pCsr->flags & CURSOR_AT_FREELIST ){
      void *aVal;
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327





2328
2329
2330
2331
2332
2333
2334
}

static int multiCursorEnd(MultiCursor *pCsr, int bLast){
  int rc = LSM_OK;
  int i;

  pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK);
  if( pCsr->pTreeCsr ){
    rc = lsmTreeCursorEnd(pCsr->pTreeCsr, bLast);
  }





  if( pCsr->flags & CURSOR_NEW_SYSTEM ){
    assert( bLast==0 );
    pCsr->flags |= CURSOR_AT_FREELIST;
  }
  for(i=0; rc==LSM_OK && i<pCsr->nSegCsr; i++){
    rc = segmentCursorEnd(&pCsr->aSegCsr[i], bLast);
  }







|
|

>
>
>
>
>







2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
}

static int multiCursorEnd(MultiCursor *pCsr, int bLast){
  int rc = LSM_OK;
  int i;

  pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK);
  if( pCsr->apTreeCsr[0] ){
    rc = lsmTreeCursorEnd(pCsr->apTreeCsr[0], bLast);
  }
  if( rc==LSM_OK && pCsr->apTreeCsr[1] ){
    rc = lsmTreeCursorEnd(pCsr->apTreeCsr[1], bLast);
  }


  if( pCsr->flags & CURSOR_NEW_SYSTEM ){
    assert( bLast==0 );
    pCsr->flags |= CURSOR_AT_FREELIST;
  }
  for(i=0; rc==LSM_OK && i<pCsr->nSegCsr; i++){
    rc = segmentCursorEnd(&pCsr->aSegCsr[i], bLast);
  }
2364
2365
2366
2367
2368
2369
2370
2371

2372
2373
2374
2375
2376
2377
2378
  return rc;
}


int mcursorSave(MultiCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr->aTree ){
    if( pCsr->aTree[1]==CURSOR_DATA_TREE ){

      multiCursorCacheKey(pCsr, &rc);
    }
    mcursorFreeComponents(pCsr);
  }
  return rc;
}








|
>







2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
  return rc;
}


int mcursorSave(MultiCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr->aTree ){
    int iTree = pCsr->aTree[1];
    if( iTree==CURSOR_DATA_TREE0 || iTree==CURSOR_DATA_TREE1 ){
      multiCursorCacheKey(pCsr, &rc);
    }
    mcursorFreeComponents(pCsr);
  }
  return rc;
}

2417
2418
2419
2420
2421
2422
2423
2424

2425
2426
2427
2428
2429





























2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
  return pCsr->pDb;
}



void lsmMCursorReset(MultiCursor *pCsr){
  int i;
  lsmTreeCursorReset(pCsr->pTreeCsr);

  for(i=0; i<pCsr->nSegCsr; i++){
    segmentCursorReset(&pCsr->aSegCsr[i]);
  }
  pCsr->key.nData = 0;
}






























/*
** Seek the cursor.
*/
int lsmMCursorSeek(MultiCursor *pCsr, void *pKey, int nKey, int eSeek){
  int eESeek = eSeek;             /* Effective eSeek parameter */
  int rc = LSM_OK;
  int i;
  int res; 
  int iPtr = 0; 

  if( eESeek==LSM_SEEK_LEFAST ) eESeek = LSM_SEEK_LE;
  assert( eESeek==LSM_SEEK_EQ || eESeek==LSM_SEEK_LE || eESeek==LSM_SEEK_GE );

  assert( (pCsr->flags & CURSOR_NEW_SYSTEM)==0 );
  assert( (pCsr->flags & CURSOR_AT_FREELIST)==0 );

  pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK);
  lsmTreeCursorSeek(pCsr->pTreeCsr, pKey, nKey, &res);
  switch( eESeek ){
    case LSM_SEEK_EQ:
      if( res!=0 ){
        lsmTreeCursorReset(pCsr->pTreeCsr);
      }
      break;
    case LSM_SEEK_GE:
      if( res<0 && lsmTreeCursorValid(pCsr->pTreeCsr) ){
        lsmTreeCursorNext(pCsr->pTreeCsr);
      }
      break;
    default:
      if( res>0 ){
        assert( lsmTreeCursorValid(pCsr->pTreeCsr) );
        lsmTreeCursorPrev(pCsr->pTreeCsr);
      }
      break;
  }

  for(i=0; rc==LSM_OK && i<pCsr->nSegCsr; i++){
    rc = segmentCursorSeek(&pCsr->aSegCsr[i], pKey, nKey, iPtr, eESeek, &iPtr);
  }

  if( rc==LSM_OK ){
    rc = multiCursorAllocTree(pCsr);







|
>





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








<









|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<







2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495

2496
2497
2498
2499
2500
2501
2502
2503
2504
2505








2506









2507
2508
2509
2510
2511
2512
2513
  return pCsr->pDb;
}



void lsmMCursorReset(MultiCursor *pCsr){
  int i;
  lsmTreeCursorReset(pCsr->apTreeCsr[0]);
  lsmTreeCursorReset(pCsr->apTreeCsr[1]);
  for(i=0; i<pCsr->nSegCsr; i++){
    segmentCursorReset(&pCsr->aSegCsr[i]);
  }
  pCsr->key.nData = 0;
}

static void treeCursorSeek(
  TreeCursor *pTreeCsr, 
  void *pKey, int nKey, 
  int eSeek
){
  if( pTreeCsr ){
    int res = 0;
    lsmTreeCursorSeek(pTreeCsr, pKey, nKey, &res);
    switch( eSeek ){
      case LSM_SEEK_EQ:
        if( res!=0 ){
          lsmTreeCursorReset(pTreeCsr);
        }
        break;
      case LSM_SEEK_GE:
        if( res<0 && lsmTreeCursorValid(pTreeCsr) ){
          lsmTreeCursorNext(pTreeCsr);
        }
        break;
      default:
        if( res>0 ){
          assert( lsmTreeCursorValid(pTreeCsr) );
          lsmTreeCursorPrev(pTreeCsr);
        }
        break;
    }
  }
}

/*
** Seek the cursor.
*/
int lsmMCursorSeek(MultiCursor *pCsr, void *pKey, int nKey, int eSeek){
  int eESeek = eSeek;             /* Effective eSeek parameter */
  int rc = LSM_OK;
  int i;

  int iPtr = 0; 

  if( eESeek==LSM_SEEK_LEFAST ) eESeek = LSM_SEEK_LE;
  assert( eESeek==LSM_SEEK_EQ || eESeek==LSM_SEEK_LE || eESeek==LSM_SEEK_GE );

  assert( (pCsr->flags & CURSOR_NEW_SYSTEM)==0 );
  assert( (pCsr->flags & CURSOR_AT_FREELIST)==0 );

  pCsr->flags &= ~(CURSOR_NEXT_OK | CURSOR_PREV_OK);
  treeCursorSeek(pCsr->apTreeCsr[0], pKey, nKey, eESeek);








  treeCursorSeek(pCsr->apTreeCsr[1], pKey, nKey, eESeek);










  for(i=0; rc==LSM_OK && i<pCsr->nSegCsr; i++){
    rc = segmentCursorSeek(&pCsr->aSegCsr[i], pKey, nKey, iPtr, eESeek, &iPtr);
  }

  if( rc==LSM_OK ){
    rc = multiCursorAllocTree(pCsr);
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
  return rc;
}

int lsmMCursorValid(MultiCursor *pCsr){
  int res = 0;
  if( pCsr->aTree ){
    int iKey = pCsr->aTree[1];
    if( iKey==CURSOR_DATA_TREE ){
      res = lsmTreeCursorValid(pCsr->pTreeCsr);
    }else{
      void *pKey; 
      multiCursorGetKey(pCsr, iKey, 0, &pKey, 0);
      res = pKey!=0;
    }
  }
  return res;







|
|







2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
  return rc;
}

int lsmMCursorValid(MultiCursor *pCsr){
  int res = 0;
  if( pCsr->aTree ){
    int iKey = pCsr->aTree[1];
    if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
      res = lsmTreeCursorValid(pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0]);
    }else{
      void *pKey; 
      multiCursorGetKey(pCsr, iKey, 0, &pKey, 0);
      res = pKey!=0;
    }
  }
  return res;
2560
2561
2562
2563
2564
2565
2566
2567

2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
}

static int multiCursorAdvance(MultiCursor *pCsr, int bReverse){
  int rc = LSM_OK;                /* Return Code */
  if( lsmMCursorValid(pCsr) ){
    do {
      int iKey = pCsr->aTree[1];
      if( iKey==CURSOR_DATA_TREE ){

        if( bReverse ){
          rc = lsmTreeCursorPrev(pCsr->pTreeCsr);
        }else{
          rc = lsmTreeCursorNext(pCsr->pTreeCsr);
        }
      }else if( iKey==CURSOR_DATA_SYSTEM ){
        assert( pCsr->flags & CURSOR_AT_FREELIST );
        assert( pCsr->flags & CURSOR_NEW_SYSTEM );
        assert( bReverse==0 );
        pCsr->flags &= ~CURSOR_AT_FREELIST;
      }else if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nSegCsr) ){







|
>

|

|







2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
}

static int multiCursorAdvance(MultiCursor *pCsr, int bReverse){
  int rc = LSM_OK;                /* Return Code */
  if( lsmMCursorValid(pCsr) ){
    do {
      int iKey = pCsr->aTree[1];
      if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
        TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
        if( bReverse ){
          rc = lsmTreeCursorPrev(pTreeCsr);
        }else{
          rc = lsmTreeCursorNext(pTreeCsr);
        }
      }else if( iKey==CURSOR_DATA_SYSTEM ){
        assert( pCsr->flags & CURSOR_AT_FREELIST );
        assert( pCsr->flags & CURSOR_NEW_SYSTEM );
        assert( bReverse==0 );
        pCsr->flags &= ~CURSOR_AT_FREELIST;
      }else if( iKey==(CURSOR_DATA_SEGMENT+pCsr->nSegCsr) ){
2600
2601
2602
2603
2604
2605
2606

2607
2608

2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623

int lsmMCursorPrev(MultiCursor *pCsr){
  if( (pCsr->flags & CURSOR_PREV_OK)==0 ) return LSM_MISUSE_BKPT;
  return multiCursorAdvance(pCsr, 1);
}

int lsmMCursorKey(MultiCursor *pCsr, void **ppKey, int *pnKey){


  if( pCsr->aTree[1]==CURSOR_DATA_TREE ){

    lsmTreeCursorKey(pCsr->pTreeCsr, ppKey, pnKey);
  }else{
    int nKey;

#ifndef NDEBUG
    void *pKey;
    int eType;
    multiCursorGetKey(pCsr, pCsr->aTree[1], &eType, &pKey, &nKey);
    assert( eType==pCsr->eType );
    assert( nKey==pCsr->key.nData );
    assert( memcmp(pKey, pCsr->key.pData, nKey)==0 );
#endif

    nKey = pCsr->key.nData;
    if( nKey==0 ){







>

|
>
|






|







2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666

int lsmMCursorPrev(MultiCursor *pCsr){
  if( (pCsr->flags & CURSOR_PREV_OK)==0 ) return LSM_MISUSE_BKPT;
  return multiCursorAdvance(pCsr, 1);
}

int lsmMCursorKey(MultiCursor *pCsr, void **ppKey, int *pnKey){
  int iKey = pCsr->aTree[1];

  if( iKey==CURSOR_DATA_TREE0 || iKey==CURSOR_DATA_TREE1 ){
    TreeCursor *pTreeCsr = pCsr->apTreeCsr[iKey-CURSOR_DATA_TREE0];
    lsmTreeCursorKey(pTreeCsr, ppKey, pnKey);
  }else{
    int nKey;

#ifndef NDEBUG
    void *pKey;
    int eType;
    multiCursorGetKey(pCsr, iKey, &eType, &pKey, &nKey);
    assert( eType==pCsr->eType );
    assert( nKey==pCsr->key.nData );
    assert( memcmp(pKey, pCsr->key.pData, nKey)==0 );
#endif

    nKey = pCsr->key.nData;
    if( nKey==0 ){
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
  pNext = lsmDbSnapshotLevel(pDb->pWorker);
  pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);

  /* Create a cursor to gather the data required by the new segment. The new
  ** segment contains everything in the tree and pointers to the next segment
  ** in the database (if any).  */
  if( rc==LSM_OK ){
    rc = multiCursorNew(pDb, pDb->pWorker, bTree, 0, &pCsr);
    if( rc==LSM_OK ){
      pNew->pNext = pNext;
      lsmDbSnapshotSetLevel(pDb->pWorker, pNew);
    }
    if( rc==LSM_OK ){
      if( pNext ){
        assert( pNext->pMerge==0 || pNext->nRight>0 );







|







3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
  pNext = lsmDbSnapshotLevel(pDb->pWorker);
  pNew = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);

  /* Create a cursor to gather the data required by the new segment. The new
  ** segment contains everything in the tree and pointers to the next segment
  ** in the database (if any).  */
  if( rc==LSM_OK ){
    rc = multiCursorNew(pDb, pDb->pWorker, (bTree ? 2 : 0), 0, &pCsr);
    if( rc==LSM_OK ){
      pNew->pNext = pNext;
      lsmDbSnapshotSetLevel(pDb->pWorker, pNew);
    }
    if( rc==LSM_OK ){
      if( pNext ){
        assert( pNext->pMerge==0 || pNext->nRight>0 );
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
  int *pnOvfl                     /* OUT: Number of free-list entries written */
){
  int rc;

  assert( pDb->pWorker );

  /* If there is nothing to do, return early. */
  if( lsmTreeSize(pDb)==0 && lsmCheckpointOverflowRequired(pDb)==0 ){
    *pnOvfl = 0;
    return LSM_OK;
  }

  rc = sortedNewToplevel(pDb, 1, pnOvfl);
  assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) );








|







3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
  int *pnOvfl                     /* OUT: Number of free-list entries written */
){
  int rc;

  assert( pDb->pWorker );

  /* If there is nothing to do, return early. */
  if( lsmTreeHasOld(pDb)==0 && lsmCheckpointOverflowRequired(pDb)==0 ){
    *pnOvfl = 0;
    return LSM_OK;
  }

  rc = sortedNewToplevel(pDb, 1, pnOvfl);
  assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) );

4027
4028
4029
4030
4031
4032
4033




4034
4035
4036
4037
4038
4039
4040
4041
4042
4043

4044
4045
4046
4047

4048
4049
4050
4051
4052
4053
4054
4055



4056
4057
4058

4059
4060





4061
4062
4063

4064
4065
4066
4067



4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
}

/*
** Perform work to merge database segments together.
*/
int lsm_work(lsm_db *pDb, int flags, int nPage, int *pnWrite){
  int rc = LSM_OK;                /* Return code */





  /* This function may not be called if pDb has an open read or write
  ** transaction. Return LSM_MISUSE if an application attempts this.  */
  if( pDb->nTransOpen || pDb->pCsr ) return LSM_MISUSE_BKPT;

  /* If the FLUSH flag is set, try to flush the contents of the in-memory
  ** tree to disk.  */
  if( (flags & LSM_WORK_FLUSH) ){
    rc = lsmBeginWriteTrans(pDb);
    if( rc==LSM_OK ){

      rc = lsmFlushToDisk(pDb);
      lsmFinishWriteTrans(pDb, 1);
      lsmFinishReadTrans(pDb);
    }

  }

  if( rc==LSM_OK && nPage>0 ){
    int bOptimize = ((flags & LSM_WORK_OPTIMIZE) ? 1 : 0);
    int nWrite = 0;
    int nOvfl = -1;

    assert( pDb->pWorker==0 );



    rc = lsmBeginWork(pDb);
    if( rc==LSM_OK ){
      rc = sortedWork(pDb, nPage, bOptimize, &nWrite);

    }






    if( rc==LSM_OK && nWrite ){
      rc = lsmSortedFlushDb(pDb);
      if( rc==LSM_OK && lsmCheckpointOverflowRequired(pDb) ){

        rc = sortedNewToplevel(pDb, 0, &nOvfl);
      }
    }




    if( nWrite ){
      lsmFinishWork(pDb, 0, nOvfl, &rc);
    }else{
      int rcdummy = LSM_BUSY;
      lsmFinishWork(pDb, 0, 0, &rcdummy);
    }

    assert( pDb->pWorker==0 );
    if( pnWrite ) *pnWrite = nWrite;
  }else if( pnWrite ){
    *pnWrite = 0;
  }

  /* If the LSM_WORK_CHECKPOINT flag is specified and one is available,
  ** write a checkpoint out to disk.  */
  if( rc==LSM_OK && (flags & LSM_WORK_CHECKPOINT) ){
    rc = lsmCheckpointWrite(pDb);
  }








>
>
>
>





<
<
|


>
|



>


|
|
|
|
|
|
>
>
>
|
|
|
>

|
>
>
>
>
>



>



|
>
>
>
|
|




|
|
<
<
<
<







4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085


4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135




4136
4137
4138
4139
4140
4141
4142
}

/*
** Perform work to merge database segments together.
*/
int lsm_work(lsm_db *pDb, int flags, int nPage, int *pnWrite){
  int rc = LSM_OK;                /* Return code */
  int nOvfl = 0;
  int bFlush = 0;
  int bFinishWork = 0;
  int nWrite = 0;

  /* This function may not be called if pDb has an open read or write
  ** transaction. Return LSM_MISUSE if an application attempts this.  */
  if( pDb->nTransOpen || pDb->pCsr ) return LSM_MISUSE_BKPT;



  if( (flags & LSM_WORK_FLUSH) && (flags & LSM_WORK_OPTIMIZE) ){
    rc = lsmBeginWriteTrans(pDb);
    if( rc==LSM_OK ){
      int nDummy;
      lsmTreeMakeOld(pDb, &nDummy);
      lsmFinishWriteTrans(pDb, 1);
      lsmFinishReadTrans(pDb);
    }
    if( rc==LSM_BUSY ) rc = LSM_OK;
  }

  assert( pDb->pWorker==0 );
  if( (flags & LSM_WORK_FLUSH) || nPage>0 ){
    rc = lsmBeginWork(pDb);
    bFinishWork = 1;
  }

  /* If the FLUSH flag is set, try to flush the contents of the in-memory
  ** tree to disk.  */
  if( rc==LSM_OK && ((flags & LSM_WORK_FLUSH)) ){
    rc = lsmTreeLoadHeader(pDb, 0);
    if( rc==LSM_OK && pDb->treehdr.iOldShmid ){
      rc = lsmSortedFlushTree(pDb, &nOvfl);
      bFlush = 1;
    }
  }

  /* If nPage is greater than zero, do some merging. */
  if( rc==LSM_OK && nPage>0 ){
    int bOptimize = ((flags & LSM_WORK_OPTIMIZE) ? 1 : 0);
    rc = sortedWork(pDb, nPage, bOptimize, &nWrite);
    if( rc==LSM_OK && nWrite ){
      rc = lsmSortedFlushDb(pDb);
      if( rc==LSM_OK && lsmCheckpointOverflowRequired(pDb) ){
        nOvfl = -1;
        rc = sortedNewToplevel(pDb, 0, &nOvfl);
      }
    }
  }

  if( pnWrite ) *pnWrite = nWrite;
  if( bFinishWork ){
    if( nWrite || bFlush ){
      lsmFinishWork(pDb, bFlush, nOvfl, &rc);
    }else{
      int rcdummy = LSM_BUSY;
      lsmFinishWork(pDb, 0, 0, &rcdummy);
    }
  }
  assert( pDb->pWorker==0 );





  /* If the LSM_WORK_CHECKPOINT flag is specified and one is available,
  ** write a checkpoint out to disk.  */
  if( rc==LSM_OK && (flags & LSM_WORK_CHECKPOINT) ){
    rc = lsmCheckpointWrite(pDb);
  }

4514
4515
4516
4517
4518
4519
4520
4521

4522
4523
4524
4525
4526
4527
4528

  return LSM_OK;
}

void lsmSortedSaveTreeCursors(lsm_db *pDb){
  MultiCursor *pCsr;
  for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
    lsmTreeCursorSave(pCsr->pTreeCsr);

  }
}

#ifdef LSM_DEBUG_EXPENSIVE
/*
** This function is only included in the build if LSM_DEBUG_EXPENSIVE is 
** defined. Its only purpose is to evaluate various assert() statements to 







|
>







4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585

  return LSM_OK;
}

void lsmSortedSaveTreeCursors(lsm_db *pDb){
  MultiCursor *pCsr;
  for(pCsr=pDb->pCsr; pCsr; pCsr=pCsr->pNext){
    lsmTreeCursorSave(pCsr->apTreeCsr[0]);
    lsmTreeCursorSave(pCsr->apTreeCsr[1]);
  }
}

#ifdef LSM_DEBUG_EXPENSIVE
/*
** This function is only included in the build if LSM_DEBUG_EXPENSIVE is 
** defined. Its only purpose is to evaluate various assert() statements to 
Changes to src/lsm_tree.c.
90
91
92
93
94
95
96






97
98
99
100
101
102
103
#define MAX_DEPTH 32

typedef struct TreeKey TreeKey;
typedef struct TreeNode TreeNode;
typedef struct TreeLeaf TreeLeaf;
typedef struct NodeVersion NodeVersion;







/*
** Container for a key-value pair. Within the *-shm file, each key/value
** pair is stored in a single allocation (which may not actually be 
** contiguous in memory). Layout is the TreeKey structure, followed by
** the nKey bytes of key blob, followed by the nValue bytes of value blob
** (if nValue is non-negative).
*/







>
>
>
>
>
>







90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#define MAX_DEPTH 32

typedef struct TreeKey TreeKey;
typedef struct TreeNode TreeNode;
typedef struct TreeLeaf TreeLeaf;
typedef struct NodeVersion NodeVersion;

struct TreeOld {
  u32 iShmid;                     /* Last shared-memory chunk in use by old */
  u32 iRoot;                      /* Offset of root node in shm file */
  u32 nHeight;                    /* Height of tree structure */
};

/*
** Container for a key-value pair. Within the *-shm file, each key/value
** pair is stored in a single allocation (which may not actually be 
** contiguous in memory). Layout is the TreeKey structure, followed by
** the nKey bytes of key blob, followed by the nValue bytes of value blob
** (if nValue is non-negative).
*/
148
149
150
151
152
153
154

155
156
157
158
159
160
161
** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
** index of the TreeNode.apChild[] pointer followed to descend to the 
** current element. Hence apTreeNode[0] always contains the root node of
** the tree.
*/
struct TreeCursor {
  lsm_db *pDb;                    /* Database handle for this cursor */

  int iNode;                      /* Cursor points at apTreeNode[iNode] */
  TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
  u8 aiCell[MAX_DEPTH];           /* Current position in tree */
  TreeKey *pSave;                 /* Saved key */
  TreeBlob blob;                  /* Dynamic storage for a key */
};








>







154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
** index of the TreeNode.apChild[] pointer followed to descend to the 
** current element. Hence apTreeNode[0] always contains the root node of
** the tree.
*/
struct TreeCursor {
  lsm_db *pDb;                    /* Database handle for this cursor */
  TreeRoot *pRoot;                /* Root node and height of tree to access */
  int iNode;                      /* Cursor points at apTreeNode[iNode] */
  TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
  u8 aiCell[MAX_DEPTH];           /* Current position in tree */
  TreeKey *pSave;                 /* Saved key */
  TreeBlob blob;                  /* Dynamic storage for a key */
};

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
** Run various assert() statements to check that the working-version of the
** tree is correct in the following respects:
**
**   * todo...
*/
void assert_tree_looks_ok(int rc, Tree *pTree){
  if( rc==LSM_OK ){
    TreeVersion *p = pTree->pWorking ? pTree->pWorking : pTree->pCommit;
    if( p ){
      assert( (p->nHeight==0)==(p->pRoot==0) );
      assert_node_looks_ok(p->pRoot, p->nHeight);
    }
  }
}
#else
# define assert_tree_looks_ok(x,y)
#endif

#ifdef LSM_DEBUG








<
<
<
<
<
<
<







359
360
361
362
363
364
365







366
367
368
369
370
371
372
/*
** Run various assert() statements to check that the working-version of the
** tree is correct in the following respects:
**
**   * todo...
*/
void assert_tree_looks_ok(int rc, Tree *pTree){







}
#else
# define assert_tree_looks_ok(x,y)
#endif

#ifdef LSM_DEBUG

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462





463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    }
  }

  printf("%s\n", s.z);
  lsmStringClear(&s);

  for(i=0; i<4 && nHeight>0; i++){
    u32 iPtr = getChildPtr(pNode, pDb->treehdr.iTransId, i);
    if( iPtr ){
      dump_node_contents(pDb, iPtr, nIndent + 2, nHeight-1);
    }
  }

  tblobFree(pDb, &b);
}

void dump_tree_contents(lsm_db *pDb, const char *zCaption){

  printf("\n%s\n", zCaption);
  if( pDb->treehdr.iRoot ){
    dump_node_contents(pDb, pDb->treehdr.iRoot, 0, pDb->treehdr.nHeight-1);
  }
  fflush(stdout);
}

#endif

/*
** Initialize a cursor object, the space for which has already been
** allocated.
*/
static void treeCursorInit(lsm_db *pDb, TreeCursor *pCsr){
  memset(pCsr, 0, sizeof(TreeCursor));
  pCsr->pDb = pDb;





  pCsr->iNode = -1;
}

/*
** Return a pointer to the mapping of the TreeKey object that the cursor
** is pointing to. 
*/
static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
  return (TreeKey *)treeShmkey(pCsr->pDb,
      pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]], 
      TK_LOADVAL, pBlob, pRc
  );
}

/*
** Save the current position of tree cursor pCsr.
*/
int lsmTreeCursorSave(TreeCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr->pSave==0 ){
    int iNode = pCsr->iNode;
    if( iNode>=0 ){
      pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
    }
    pCsr->iNode = -1;
  }
  return rc;







|









>

|
|










|


>
>
>
>
>



















|







430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    }
  }

  printf("%s\n", s.z);
  lsmStringClear(&s);

  for(i=0; i<4 && nHeight>0; i++){
    u32 iPtr = getChildPtr(pNode, pDb->treehdr.root.iTransId, i);
    if( iPtr ){
      dump_node_contents(pDb, iPtr, nIndent + 2, nHeight-1);
    }
  }

  tblobFree(pDb, &b);
}

void dump_tree_contents(lsm_db *pDb, const char *zCaption){
  TreeRoot *p = &pDb->treehdr.root;
  printf("\n%s\n", zCaption);
  if( p->iRoot ){
    dump_node_contents(pDb, p->iRoot, 0, p->nHeight-1);
  }
  fflush(stdout);
}

#endif

/*
** Initialize a cursor object, the space for which has already been
** allocated.
*/
static void treeCursorInit(lsm_db *pDb, int bOld, TreeCursor *pCsr){
  memset(pCsr, 0, sizeof(TreeCursor));
  pCsr->pDb = pDb;
  if( bOld ){
    pCsr->pRoot = &pDb->treehdr.oldroot;
  }else{
    pCsr->pRoot = &pDb->treehdr.root;
  }
  pCsr->iNode = -1;
}

/*
** Return a pointer to the mapping of the TreeKey object that the cursor
** is pointing to. 
*/
static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
  return (TreeKey *)treeShmkey(pCsr->pDb,
      pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]], 
      TK_LOADVAL, pBlob, pRc
  );
}

/*
** Save the current position of tree cursor pCsr.
*/
int lsmTreeCursorSave(TreeCursor *pCsr){
  int rc = LSM_OK;
  if( pCsr && pCsr->pSave==0 ){
    int iNode = pCsr->iNode;
    if( iNode>=0 ){
      pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
    }
    pCsr->iNode = -1;
  }
  return rc;
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
){
  TreeKey *p;
  u32 iPtr;
  int nRem;
  u8 *a;
  int n;

#if 0
  nRem = sizeof(TreeKey) + nKey + (nVal>0 ? nVal : 0);
  *piPtr = iPtr = treeShmalloc(pDb, 1, nRem, pRc);
  p = treeShmptr(pDb, iPtr, pRc);
  if( *pRc ) return 0;
  p->nKey = nKey;
  p->nValue = nVal;
  memcpy(&p[1], pKey, nKey);
  if( nVal>0 ) memcpy(((u8 *)&p[1]) + nKey, pVal, nVal);
  return p;
#endif

  /* Allocate space for the TreeKey structure itself */
  *piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
  p = treeShmptr(pDb, iPtr, pRc);
  if( *pRc ) return 0;
  p->nKey = nKey;
  p->nValue = nVal;








<
<
<
<
<
<
<
<
<
<
<
<







628
629
630
631
632
633
634












635
636
637
638
639
640
641
){
  TreeKey *p;
  u32 iPtr;
  int nRem;
  u8 *a;
  int n;













  /* Allocate space for the TreeKey structure itself */
  *piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
  p = treeShmptr(pDb, iPtr, pRc);
  if( *pRc ) return 0;
  p->nKey = nKey;
  p->nValue = nVal;

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
** internal node, or by allocating a new TreeNode structure and then 
** calling this function on the parent of the internal node.
*/
static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
  int rc = LSM_OK;
  if( pCsr->iNode<0 ){
    /* iNew is the new root node */
    pDb->treehdr.iRoot = iNew;
  }else{
    /* If this node already has version 2 content, allocate a copy and
    ** update the copy with the new pointer value. Otherwise, store the
    ** new pointer as v2 data within the current node structure.  */

    TreeNode *p;                  /* The node to be modified */
    int iChildPtr;                /* apChild[] entry to modify */







|







710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
** internal node, or by allocating a new TreeNode structure and then 
** calling this function on the parent of the internal node.
*/
static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
  int rc = LSM_OK;
  if( pCsr->iNode<0 ){
    /* iNew is the new root node */
    pDb->treehdr.root.iRoot = iNew;
  }else{
    /* If this node already has version 2 content, allocate a copy and
    ** update the copy with the new pointer value. Otherwise, store the
    ** new pointer as v2 data within the current node structure.  */

    TreeNode *p;                  /* The node to be modified */
    int iChildPtr;                /* apChild[] entry to modify */
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        pCopy->aiChildPtr[iChildPtr] = iNew;
        pCsr->iNode--;
        rc = treeUpdatePtr(pDb, pCsr, iCopy);
      }
    }else{
      /* The "v2 data" option */
      u32 iPtr;
      assert( pDb->treehdr.iTransId>0 );

      if( pCsr->iNode ){
        iPtr = getChildPtr(
            pCsr->apTreeNode[pCsr->iNode-1], 
            pDb->treehdr.iTransId, pCsr->aiCell[pCsr->iNode-1]
        );
      }else{
        iPtr = pDb->treehdr.iRoot;
      }
      rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);

      if( rc==LSM_OK ){
        p->iV2 = pDb->treehdr.iTransId;
        p->iV2Child = (u8)iChildPtr;
        p->iV2Ptr = iNew;
      }
    }
  }

  return rc;







|




|


|




|







736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
        pCopy->aiChildPtr[iChildPtr] = iNew;
        pCsr->iNode--;
        rc = treeUpdatePtr(pDb, pCsr, iCopy);
      }
    }else{
      /* The "v2 data" option */
      u32 iPtr;
      assert( pDb->treehdr.root.iTransId>0 );

      if( pCsr->iNode ){
        iPtr = getChildPtr(
            pCsr->apTreeNode[pCsr->iNode-1], 
            pDb->treehdr.root.iTransId, pCsr->aiCell[pCsr->iNode-1]
        );
      }else{
        iPtr = pDb->treehdr.root.iRoot;
      }
      rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);

      if( rc==LSM_OK ){
        p->iV2 = pDb->treehdr.root.iTransId;
        p->iV2Child = (u8)iChildPtr;
        p->iV2Ptr = iNew;
      }
    }
  }

  return rc;
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
      u32 iRoot; TreeNode *pRoot; /* New root node */

      pRoot = newTreeNode(pDb, &iRoot, &rc);
      pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
      pRoot->aiChildPtr[1] = iLeft;
      pRoot->aiChildPtr[2] = iRight;

      pDb->treehdr.iRoot = iRoot;
      pDb->treehdr.nHeight++;
    }else{

      pCsr->iNode--;
      rc = treeInsert(pDb, pCsr, 
          iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
      );
    }







|
|







811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
      u32 iRoot; TreeNode *pRoot; /* New root node */

      pRoot = newTreeNode(pDb, &iRoot, &rc);
      pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
      pRoot->aiChildPtr[1] = iLeft;
      pRoot->aiChildPtr[2] = iRight;

      pDb->treehdr.root.iRoot = iRoot;
      pDb->treehdr.root.nHeight++;
    }else{

      pCsr->iNode--;
      rc = treeInsert(pDb, pCsr, 
          iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
      );
    }
959
960
961
962
963
964
965



966















967
968
969







970

971




972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
  return rc;
}

/*
** Empty the contents of the in-memory tree.
*/
void lsmTreeClear(lsm_db *pDb){



  pDb->treehdr.iTransId = 1;















  pDb->treehdr.iRoot = 0;
  pDb->treehdr.nHeight = 0;
  pDb->treehdr.nByte = 0;







  pDb->treehdr.iUsedShmid = pDb->treehdr.iNextShmid-1;

}





/*
** This function is called during recovery to initialize the 
** tree header. Only the database connections private copy of the tree-header
** is initialized here - it will be copied into shared memory if log file
** recovery is successful.
*/
int lsmTreeInit(lsm_db *pDb){
  ShmChunk *pOne;
  int rc = LSM_OK;

  pDb->treehdr.iTransId = 1;
  pDb->treehdr.iFirst = 1;
  pDb->treehdr.nChunk = 2;
  pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
  pDb->treehdr.iNextShmid = 2;
  pDb->treehdr.iUsedShmid = 1;

  pOne = treeShmChunkRc(pDb, 1, &rc);







>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>
>
>
>
>
>
|
>

>
>
>
>











|







953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
  return rc;
}

/*
** Empty the contents of the in-memory tree.
*/
void lsmTreeClear(lsm_db *pDb){
  pDb->treehdr.root.iTransId = 1;
  pDb->treehdr.root.iRoot = 0;
  pDb->treehdr.root.nHeight = 0;
  pDb->treehdr.nByte = 0;
  pDb->treehdr.iUsedShmid = pDb->treehdr.iNextShmid-1;
}

void lsmTreeMakeOld(lsm_db *pDb, int *pnFlush){
  if( pDb->treehdr.iOldShmid ){
    *pnFlush = 2;
  }else{
    *pnFlush = 1;
    pDb->treehdr.iOldLog = pDb->treehdr.log.aRegion[2].iEnd;
    pDb->treehdr.oldcksum0 = pDb->treehdr.log.cksum0;
    pDb->treehdr.oldcksum1 = pDb->treehdr.log.cksum1;
    pDb->treehdr.iOldShmid = pDb->treehdr.iNextShmid-1;
    memcpy(&pDb->treehdr.oldroot, &pDb->treehdr.root, sizeof(TreeRoot));

    pDb->treehdr.root.iTransId = 1;
    pDb->treehdr.root.iRoot = 0;
    pDb->treehdr.root.nHeight = 0;
    pDb->treehdr.nByte = 0;
  }
}

void lsmTreeDiscardOld(lsm_db *pDb){
  assert( lsmShmAssertLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL) 
       || lsmShmAssertLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_EXCL) 
  );
  pDb->treehdr.iUsedShmid = pDb->treehdr.iOldShmid;
  pDb->treehdr.iOldShmid = 0;
}

int lsmTreeHasOld(lsm_db *pDb){
  return pDb->treehdr.iOldShmid!=0;
}

/*
** This function is called during recovery to initialize the 
** tree header. Only the database connections private copy of the tree-header
** is initialized here - it will be copied into shared memory if log file
** recovery is successful.
*/
int lsmTreeInit(lsm_db *pDb){
  ShmChunk *pOne;
  int rc = LSM_OK;

  pDb->treehdr.root.iTransId = 1;
  pDb->treehdr.iFirst = 1;
  pDb->treehdr.nChunk = 2;
  pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
  pDb->treehdr.iNextShmid = 2;
  pDb->treehdr.iUsedShmid = 1;

  pOne = treeShmChunkRc(pDb, 1, &rc);
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
/*
** Iterate through the current in-memory tree. If there are any v2-pointers
** with transaction ids larger than db->treehdr.iTransId, zero them.
*/
static int treeRepairPtrs(lsm_db *db){
  int rc = LSM_OK;

  if( db->treehdr.nHeight>1 ){
    TreeCursor csr;               /* Cursor used to iterate through tree */
    u32 iTransId = db->treehdr.iTransId;

    /* Initialize the cursor structure. Also decrement the nHeight variable
    ** in the tree-header. This will prevent the cursor from visiting any
    ** leaf nodes.  */
    db->treehdr.nHeight--;
    treeCursorInit(db, &csr);

    rc = lsmTreeCursorEnd(&csr, 0);
    while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
      TreeNode *pNode = csr.apTreeNode[csr.iNode];
      if( pNode->iV2>iTransId ){
        pNode->iV2Child = 0;
        pNode->iV2Ptr = 0;
        pNode->iV2 = 0;
      }
      rc = lsmTreeCursorNext(&csr);
    }
    tblobFree(csr.pDb, &csr.blob);

    db->treehdr.nHeight++;
  }

  return rc;
}

static int treeRepairList(lsm_db *db){
  int rc = LSM_OK;







|

|




|
|













|







1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
/*
** Iterate through the current in-memory tree. If there are any v2-pointers
** with transaction ids larger than db->treehdr.iTransId, zero them.
*/
static int treeRepairPtrs(lsm_db *db){
  int rc = LSM_OK;

  if( db->treehdr.root.nHeight>1 ){
    TreeCursor csr;               /* Cursor used to iterate through tree */
    u32 iTransId = db->treehdr.root.iTransId;

    /* Initialize the cursor structure. Also decrement the nHeight variable
    ** in the tree-header. This will prevent the cursor from visiting any
    ** leaf nodes.  */
    db->treehdr.root.nHeight--;
    treeCursorInit(db, 0, &csr);

    rc = lsmTreeCursorEnd(&csr, 0);
    while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
      TreeNode *pNode = csr.apTreeNode[csr.iNode];
      if( pNode->iV2>iTransId ){
        pNode->iV2Child = 0;
        pNode->iV2Ptr = 0;
        pNode->iV2 = 0;
      }
      rc = lsmTreeCursorNext(&csr);
    }
    tblobFree(csr.pDb, &csr.blob);

    db->treehdr.root.nHeight++;
  }

  return rc;
}

static int treeRepairList(lsm_db *db){
  int rc = LSM_OK;
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
  int nKey,                       /* Size of key data in bytes */
  void *pVal,                     /* Pointer to value data (or NULL) */
  int nVal                        /* Bytes in value data (or -ve for delete) */
){
  int rc = LSM_OK;                /* Return Code */
  TreeKey *pTreeKey;              /* New key-value being inserted */
  u32 iTreeKey;
  TreeHeader *pHdr = &pDb->treehdr;

  assert( nVal>=0 || pVal==0 );
  assert_tree_looks_ok(LSM_OK, pTree);
#if 0
  dump_tree_contents(pDb, "before");
#endif

  /* Allocate and populate a new key-value pair structure */
  pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
  if( rc!=LSM_OK ) return rc;

  if( pHdr->iRoot==0 ){
    /* The tree is completely empty. Add a new root node and install
    ** (pKey/nKey) as the middle entry. Even though it is a leaf at the
    ** moment, use newTreeNode() to allocate the node (i.e. allocate enough
    ** space for the fields used by interior nodes). This is because the
    ** treeInsert() routine may convert this node to an interior node. */
    TreeNode *pRoot = newTreeNode(pDb, &pHdr->iRoot, &rc);
    if( rc==LSM_OK ){
      assert( pHdr->nHeight==0 );
      pRoot->aiKeyPtr[1] = iTreeKey;
      pHdr->nHeight = 1;
    }
  }else{
    TreeCursor csr;
    int res;

    /* Seek to the leaf (or internal node) that the new key belongs on */
    treeCursorInit(pDb, &csr);
    lsmTreeCursorSeek(&csr, pKey, nKey, &res);

    if( res==0 ){
      /* The search found a match within the tree. */
      TreeNode *pNew;
      u32 iNew;
      TreeNode *pNode = csr.apTreeNode[csr.iNode];
      int iCell = csr.aiCell[csr.iNode];

      /* Create a copy of this node */
      if( (csr.iNode>0 && csr.iNode==(pHdr->nHeight-1)) ){
        pNew = copyTreeLeaf(pDb, (TreeLeaf *)pNode, &iNew, &rc);
      }else{
        pNew = copyTreeNode(pDb, pNode, &iNew, &rc);
      }

      if( rc==LSM_OK ){
        /* Modify the value in the new version */







|











|





|

|

|






|










|







1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
  int nKey,                       /* Size of key data in bytes */
  void *pVal,                     /* Pointer to value data (or NULL) */
  int nVal                        /* Bytes in value data (or -ve for delete) */
){
  int rc = LSM_OK;                /* Return Code */
  TreeKey *pTreeKey;              /* New key-value being inserted */
  u32 iTreeKey;
  TreeRoot *p = &pDb->treehdr.root;

  assert( nVal>=0 || pVal==0 );
  assert_tree_looks_ok(LSM_OK, pTree);
#if 0
  dump_tree_contents(pDb, "before");
#endif

  /* Allocate and populate a new key-value pair structure */
  pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
  if( rc!=LSM_OK ) return rc;

  if( p->iRoot==0 ){
    /* The tree is completely empty. Add a new root node and install
    ** (pKey/nKey) as the middle entry. Even though it is a leaf at the
    ** moment, use newTreeNode() to allocate the node (i.e. allocate enough
    ** space for the fields used by interior nodes). This is because the
    ** treeInsert() routine may convert this node to an interior node. */
    TreeNode *pRoot = newTreeNode(pDb, &p->iRoot, &rc);
    if( rc==LSM_OK ){
      assert( p->nHeight==0 );
      pRoot->aiKeyPtr[1] = iTreeKey;
      p->nHeight = 1;
    }
  }else{
    TreeCursor csr;
    int res;

    /* Seek to the leaf (or internal node) that the new key belongs on */
    treeCursorInit(pDb, 0, &csr);
    lsmTreeCursorSeek(&csr, pKey, nKey, &res);

    if( res==0 ){
      /* The search found a match within the tree. */
      TreeNode *pNew;
      u32 iNew;
      TreeNode *pNode = csr.apTreeNode[csr.iNode];
      int iCell = csr.aiCell[csr.iNode];

      /* Create a copy of this node */
      if( (csr.iNode>0 && csr.iNode==(p->nHeight-1)) ){
        pNew = copyTreeLeaf(pDb, (TreeLeaf *)pNode, &iNew, &rc);
      }else{
        pNew = copyTreeNode(pDb, pNode, &iNew, &rc);
      }

      if( rc==LSM_OK ){
        /* Modify the value in the new version */
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

1360
1361

1362
1363
1364
1365
1366
1367
1368
int lsmTreeSize(lsm_db *pDb){
  return pDb->treehdr.nByte;
}

/*
** Open a cursor on the in-memory tree pTree.
*/
int lsmTreeCursorNew(lsm_db *pDb, TreeCursor **ppCsr){
  TreeCursor *pCsr;
  *ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
  if( pCsr ){
    treeCursorInit(pDb, pCsr);
    return LSM_OK;
  }
  return LSM_NOMEM_BKPT;
}

/*
** Close an in-memory tree cursor.
*/
void lsmTreeCursorDestroy(TreeCursor *pCsr){
  if( pCsr ){
    tblobFree(pCsr->pDb, &pCsr->blob);
    lsmFree(pCsr->pDb->pEnv, pCsr);
  }
}

void lsmTreeCursorReset(TreeCursor *pCsr){

  pCsr->iNode = -1;
  pCsr->pSave = 0;

}

#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey){
  TreeKey *p;
  int cmp = 0;
  int rc = LSM_OK;







|



|
















>
|
|
>







1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
int lsmTreeSize(lsm_db *pDb){
  return pDb->treehdr.nByte;
}

/*
** Open a cursor on the in-memory tree pTree.
*/
int lsmTreeCursorNew(lsm_db *pDb, int bOld, TreeCursor **ppCsr){
  TreeCursor *pCsr;
  *ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
  if( pCsr ){
    treeCursorInit(pDb, bOld, pCsr);
    return LSM_OK;
  }
  return LSM_NOMEM_BKPT;
}

/*
** Close an in-memory tree cursor.
*/
void lsmTreeCursorDestroy(TreeCursor *pCsr){
  if( pCsr ){
    tblobFree(pCsr->pDb, &pCsr->blob);
    lsmFree(pCsr->pDb->pEnv, pCsr);
  }
}

void lsmTreeCursorReset(TreeCursor *pCsr){
  if( pCsr ){
    pCsr->iNode = -1;
    pCsr->pSave = 0;
  }
}

#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey){
  TreeKey *p;
  int cmp = 0;
  int rc = LSM_OK;
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
**     is smaller than the key and set *pRes to -1, or
**
**   * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
*/
int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
  int rc = LSM_OK;                /* Return code */
  lsm_db *pDb = pCsr->pDb;
  TreeHeader *pHdr = &pCsr->pDb->treehdr;
  int (*xCmp)(void *, int, void *, int) = pDb->xCmp;

  u32 iNodePtr;                   /* Location of current node in search */

  /* Discard any saved position data */
  treeCursorRestore(pCsr, 0);

  iNodePtr = pDb->treehdr.iRoot;
  if( iNodePtr==0 ){
    /* Either an error occurred or the tree is completely empty. */
    assert( rc!=LSM_OK || pDb->treehdr.iRoot==0 );
    *pRes = -1;
    pCsr->iNode = -1;
  }else{
    TreeBlob b = {0, 0};
    int res = 0;                  /* Result of comparison function */
    int iNode = -1;
    while( iNodePtr ){







|







|


|







1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
**     is smaller than the key and set *pRes to -1, or
**
**   * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
*/
int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
  int rc = LSM_OK;                /* Return code */
  lsm_db *pDb = pCsr->pDb;
  TreeRoot *pRoot = pCsr->pRoot;
  int (*xCmp)(void *, int, void *, int) = pDb->xCmp;

  u32 iNodePtr;                   /* Location of current node in search */

  /* Discard any saved position data */
  treeCursorRestore(pCsr, 0);

  iNodePtr = pRoot->iRoot;
  if( iNodePtr==0 ){
    /* Either an error occurred or the tree is completely empty. */
    assert( rc!=LSM_OK || pRoot->iRoot==0 );
    *pRes = -1;
    pCsr->iNode = -1;
  }else{
    TreeBlob b = {0, 0};
    int res = 0;                  /* Result of comparison function */
    int iNode = -1;
    while( iNodePtr ){
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        res = xCmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
        if( res==0 ){
          pCsr->aiCell[iNode] = iTest;
          break;
        }
      }

      if( iNode<(pHdr->nHeight-1) ){
        iNodePtr = getChildPtr(pNode, pDb->treehdr.iTransId, iTest + (res<0));
      }else{
        iNodePtr = 0;
      }
      pCsr->aiCell[iNode] = iTest + (iNodePtr && (res<0));
    }

    *pRes = res;







|
|







1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
        res = xCmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
        if( res==0 ){
          pCsr->aiCell[iNode] = iTest;
          break;
        }
      }

      if( iNode<(pRoot->nHeight-1) ){
        iNodePtr = getChildPtr(pNode, pRoot->iTransId, iTest + (res<0));
      }else{
        iNodePtr = 0;
      }
      pCsr->aiCell[iNode] = iTest + (iNodePtr && (res<0));
    }

    *pRes = res;
1473
1474
1475
1476
1477
1478
1479

1480
1481
1482
1483
1484
1485
1486
1487

int lsmTreeCursorNext(TreeCursor *pCsr){
#ifndef NDEBUG
  TreeKey *pK1;
  TreeBlob key1 = {0, 0};
#endif
  lsm_db *pDb = pCsr->pDb;

  const int iLeaf = pDb->treehdr.nHeight-1;
  int iCell; 
  int rc = LSM_OK; 
  TreeNode *pNode; 

  /* Restore the cursor position, if required */
  int iRestore = 0;
  treeCursorRestore(pCsr, &iRestore);







>
|







1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514

int lsmTreeCursorNext(TreeCursor *pCsr){
#ifndef NDEBUG
  TreeKey *pK1;
  TreeBlob key1 = {0, 0};
#endif
  lsm_db *pDb = pCsr->pDb;
  TreeRoot *pRoot = pCsr->pRoot;
  const int iLeaf = pRoot->nHeight-1;
  int iCell; 
  int rc = LSM_OK; 
  TreeNode *pNode; 

  /* Restore the cursor position, if required */
  int iRestore = 0;
  treeCursorRestore(pCsr, &iRestore);
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518

  pNode = pCsr->apTreeNode[pCsr->iNode];
  iCell = ++pCsr->aiCell[pCsr->iNode];

  /* If the current node is not a leaf, and the current cell has sub-tree
  ** associated with it, descend to the left-most key on the left-most
  ** leaf of the sub-tree.  */
  if( pCsr->iNode<iLeaf && getChildPtr(pNode, pDb->treehdr.iTransId, iCell) ){
    do {
      u32 iNodePtr;
      pCsr->iNode++;
      iNodePtr = getChildPtr(pNode, pDb->treehdr.iTransId, iCell);
      pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
      pCsr->apTreeNode[pCsr->iNode] = pNode;
      iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
    }while( pCsr->iNode < iLeaf );
  }

  /* Otherwise, the next key is found by following pointer up the tree 







|



|







1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

  pNode = pCsr->apTreeNode[pCsr->iNode];
  iCell = ++pCsr->aiCell[pCsr->iNode];

  /* If the current node is not a leaf, and the current cell has sub-tree
  ** associated with it, descend to the left-most key on the left-most
  ** leaf of the sub-tree.  */
  if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
    do {
      u32 iNodePtr;
      pCsr->iNode++;
      iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
      pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
      pCsr->apTreeNode[pCsr->iNode] = pNode;
      iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
    }while( pCsr->iNode < iLeaf );
  }

  /* Otherwise, the next key is found by following pointer up the tree 
1538
1539
1540
1541
1542
1543
1544

1545
1546
1547
1548
1549
1550
1551
1552

int lsmTreeCursorPrev(TreeCursor *pCsr){
#ifndef NDEBUG
  TreeKey *pK1;
  TreeBlob key1 = {0, 0};
#endif
  lsm_db *pDb = pCsr->pDb;

  const int iLeaf = pDb->treehdr.nHeight-1;
  int iCell; 
  int rc = LSM_OK; 
  TreeNode *pNode; 

  /* Restore the cursor position, if required */
  int iRestore = 0;
  treeCursorRestore(pCsr, &iRestore);







>
|







1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

int lsmTreeCursorPrev(TreeCursor *pCsr){
#ifndef NDEBUG
  TreeKey *pK1;
  TreeBlob key1 = {0, 0};
#endif
  lsm_db *pDb = pCsr->pDb;
  TreeRoot *pRoot = pCsr->pRoot;
  const int iLeaf = pRoot->nHeight-1;
  int iCell; 
  int rc = LSM_OK; 
  TreeNode *pNode; 

  /* Restore the cursor position, if required */
  int iRestore = 0;
  treeCursorRestore(pCsr, &iRestore);
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
  pNode = pCsr->apTreeNode[pCsr->iNode];
  iCell = pCsr->aiCell[pCsr->iNode];
  assert( iCell>=0 && iCell<3 );

  /* If the current node is not a leaf, and the current cell has sub-tree
  ** associated with it, descend to the right-most key on the right-most
  ** leaf of the sub-tree.  */
  if( pCsr->iNode<iLeaf && getChildPtr(pNode, pDb->treehdr.iTransId, iCell) ){
    do {
      u32 iNodePtr;
      pCsr->iNode++;
      iNodePtr = getChildPtr(pNode, pDb->treehdr.iTransId, iCell);
      pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
      if( rc!=LSM_OK ) break;
      pCsr->apTreeNode[pCsr->iNode] = pNode;
      iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
      pCsr->aiCell[pCsr->iNode] = iCell;
    }while( pCsr->iNode < iLeaf );
  }







|



|







1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
  pNode = pCsr->apTreeNode[pCsr->iNode];
  iCell = pCsr->aiCell[pCsr->iNode];
  assert( iCell>=0 && iCell<3 );

  /* If the current node is not a leaf, and the current cell has sub-tree
  ** associated with it, descend to the right-most key on the right-most
  ** leaf of the sub-tree.  */
  if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
    do {
      u32 iNodePtr;
      pCsr->iNode++;
      iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
      pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
      if( rc!=LSM_OK ) break;
      pCsr->apTreeNode[pCsr->iNode] = pNode;
      iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
      pCsr->aiCell[pCsr->iNode] = iCell;
    }while( pCsr->iNode < iLeaf );
  }
1606
1607
1608
1609
1610
1611
1612

1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
/*
** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
** in-memory tree.
*/
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
  lsm_db *pDb = pCsr->pDb;
  TreeHeader *pHdr = &pDb->treehdr;

  int rc = LSM_OK;

  u32 iNodePtr;
  pCsr->iNode = -1;

  /* Discard any saved position data */
  treeCursorRestore(pCsr, 0);

  iNodePtr = pHdr->iRoot;
  while( iNodePtr ){
    int iCell;
    TreeNode *pNode;

    pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
    if( rc ) break;

    if( bLast ){
      iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
    }else{
      iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
    }
    pCsr->iNode++;
    pCsr->apTreeNode[pCsr->iNode] = pNode;

    if( pCsr->iNode<pHdr->nHeight-1 ){
      iNodePtr = getChildPtr(pNode, pHdr->iTransId, iCell);
    }else{
      iNodePtr = 0;
    }
    pCsr->aiCell[pCsr->iNode] = iCell - (iNodePtr==0 && bLast);
  }

  return rc;







>








|















|
|







1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
/*
** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
** in-memory tree.
*/
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
  lsm_db *pDb = pCsr->pDb;
  TreeHeader *pHdr = &pDb->treehdr;
  TreeRoot *pRoot = pCsr->pRoot;
  int rc = LSM_OK;

  u32 iNodePtr;
  pCsr->iNode = -1;

  /* Discard any saved position data */
  treeCursorRestore(pCsr, 0);

  iNodePtr = pRoot->iRoot;
  while( iNodePtr ){
    int iCell;
    TreeNode *pNode;

    pNode = (TreeNode *)treeShmptr(pDb, iNodePtr, &rc);
    if( rc ) break;

    if( bLast ){
      iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
    }else{
      iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
    }
    pCsr->iNode++;
    pCsr->apTreeNode[pCsr->iNode] = pNode;

    if( pCsr->iNode<pRoot->nHeight-1 ){
      iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
    }else{
      iNodePtr = 0;
    }
    pCsr->aiCell[pCsr->iNode] = iCell - (iNodePtr==0 && bLast);
  }

  return rc;
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

/*
** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
** pointer to the same TreeMark structure may be used to roll the tree
** contents back to their current state.
*/
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
  pMark->iRoot = pDb->treehdr.iRoot;
  pMark->nHeight = pDb->treehdr.nHeight;
  pMark->iWrite = pDb->treehdr.iWrite;
  pMark->nChunk = pDb->treehdr.nChunk;
  pMark->iNextShmid = pDb->treehdr.iNextShmid;
  pMark->iRollback = intArraySize(&pDb->rollback);
}

/*







|
|







1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

/*
** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
** pointer to the same TreeMark structure may be used to roll the tree
** contents back to their current state.
*/
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
  pMark->iRoot = pDb->treehdr.root.iRoot;
  pMark->nHeight = pDb->treehdr.root.nHeight;
  pMark->iWrite = pDb->treehdr.iWrite;
  pMark->nChunk = pDb->treehdr.nChunk;
  pMark->iNextShmid = pDb->treehdr.iNextShmid;
  pMark->iRollback = intArraySize(&pDb->rollback);
}

/*
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
      pFree->iNext = pDb->treehdr.iFirst;
      pFree->iShmid = iShmid--;
      pDb->treehdr.iFirst = iFree;
    }
  }

  /* Restore the tree-header fields */
  pDb->treehdr.iRoot = pMark->iRoot;
  pDb->treehdr.nHeight = pMark->nHeight;
  pDb->treehdr.iWrite = pMark->iWrite;
  pDb->treehdr.nChunk = pMark->nChunk;
  pDb->treehdr.iNextShmid = pMark->iNextShmid;
}

/*
** Load the in-memory tree header from shared-memory into pDb->treehdr.







|
|







1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
      pFree->iNext = pDb->treehdr.iFirst;
      pFree->iShmid = iShmid--;
      pDb->treehdr.iFirst = iFree;
    }
  }

  /* Restore the tree-header fields */
  pDb->treehdr.root.iRoot = pMark->iRoot;
  pDb->treehdr.root.nHeight = pMark->nHeight;
  pDb->treehdr.iWrite = pMark->iWrite;
  pDb->treehdr.nChunk = pMark->nChunk;
  pDb->treehdr.iNextShmid = pMark->iNextShmid;
}

/*
** Load the in-memory tree header from shared-memory into pDb->treehdr.
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
  }
  pShm->bWriter = 0;
  intArrayFree(pDb->pEnv, &pDb->rollback);

  return LSM_OK;
}

/*
** Begin a new transaction.
*/
int lsmTreeBeginTransaction(lsm_db *pDb){
  pDb->treehdr.iTransId++;
  return LSM_OK;
}








<
<
<
<
<
<
<
<
1843
1844
1845
1846
1847
1848
1849








  }
  pShm->bWriter = 0;
  intArrayFree(pDb->pEnv, &pDb->rollback);

  return LSM_OK;
}









Changes to tool/lsmperf.tcl.
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    incr nShift [expr $nWrite/4]
  }
  append script "plot $plot1 $plot2 $plot3\n"
  append script $data1
  append script $data2
  append script $data3


  append script "pause -1\n"
  exec_gnuplot_script $script $zPng
}

do_write_test x.png 100 100000 100000 1000 {
  LSM   "mmap=1 multi_proc=0 safety=1" 
  LevelDB leveldb
}











<




|
|
<





148
149
150
151
152
153
154

155
156
157
158
159
160

161
162
163
164
165
    incr nShift [expr $nWrite/4]
  }
  append script "plot $plot1 $plot2 $plot3\n"
  append script $data1
  append script $data2
  append script $data3


  append script "pause -1\n"
  exec_gnuplot_script $script $zPng
}

do_write_test x.png 180 10000 10000 1000 {
  LSM   "mmap=1 multi_proc=0 safety=1 threads=2 autowork=0" 

}